
Class Composition in FACE, a Framework Adaptive Composition Environment 1

Class Composition in FACE, a Framework
Adaptive Composition Environment

Theo Dirk Meijler*, Serge Demeyer*, Robert Enge l**

(*): University of Berne, Software Composition Group, {meijler, demeyer}@iam.unibe.ch,

(**): Washington University, Computer Science Department, engel@cs.wustl.edu

Abstract

Creating applications using object-oriented frameworks is often difficult, since
subclassing plays a too important role. Subclassing is a “white-box” form of
reuse, and thus requires the developer to understand the underlying implemen-
tation. In the approach described in this paper, class composition is introduced
as a form of black-box class reuse. It may be seen to extend the concept of pa-
rameterized (generic) classes, especially since it allows mutual relationships
as parameters. We illustrate class composition on basis of a design pattern.

1 Introduction

When comparing the development of applications using frameworks [7.] to the devel-
opment of applications using libraries or from scratch, using a framework is —after a
learning period— significantly less labor intensive [12.]. Thus frameworks have a
large commercial value.

Still, the use and evolution of a framework has many pitfalls. Realizing a system
using a framework often demands the creation of subclasses, which requires a pro-
found knowledge of the implementation of the superclass [8.],[13.] and the way
classes are supposed to cooperate. Moreover, the dependency of the subclass from the
superclass may lead to the situation where changes in the implementation of the su-
perclass may invalidate the subclass [8.],[13.]. These problems mainly originate from
the fact that subclassing is an open, “white-box” form of reuse, meaning that the sub-
class implementor basically reuses the superclass by extending on its implementation.
White-box reuse is often contrasted to black-box reuse, where the developer does not
need to know how a piece of software is implemented to reuse it. A well known exam-
ple of this is object composition. Objects can be reused without knowing how they
have been implemented, by specializing them through parameters and links to other
objects. Object composition is therefore recommended and applied increasingly [4.]
as a reuse form in frameworks. However, since object implementations must still be
adapted, class reuse is still required, and therefore subclassing seems still to be
needed as well.

Theo Dirk Meijler*, Serge Demeyer*, Robert Engel**2

Genericity [5.],[1.] is a form of class reuse thatis black-box. A generic class can
already be reused by only parameterizing it, e.g., a class implementing generic list-el-
ements can be reused by parameterizing it with the class name characterizing the ob-
jects to be stored in the list. Still, so far genericity has not challenged subclassing as
being the main form of class reuse, the reason being that the current use of genericity
does not provide enough flexibility.

FACE is a “Framework Adaptive Composition Environment” which main inten-
tion is to simplify framework usage. We have developed a form of black-box class re-
use that extends on genericity, while totally hiding class implementation. The main
extension of genericity is that relations between classes can be used to specialize
those classes. We do not principally restrict what these relationships may mean. The
idea is, that the application developer can just parameterize and compose classes in
order to achieve the class specialization necessary within the Framework. Since the
classes hide their implementation we in fact call them “class components”. That ap-
plication development in this way is possible is a result of the fact that the Framework
imposes the class specializations that make sense anyhow, and thus the fully uncon-
strained form of specialization through subclassing is not needed.

Design patterns [4.] are patterns of class cooperations that have proven themselves
to be viable solutions to frequently occurring problems in framework design. Since
the application of design patterns therefore forms an important part of the design of a
good framework, it is a logical step to illustrate the feasibility of the FACE approach
by applying it to individual patterns. An applied (but isolated) design pattern is seen
as a kind of “mini-framework” in which the major aspects of the FACE approach may
be shown as we do in this paper. Especially, we show that in order to have black-box
class composition one needs to have various “families” of class components, each of
them having their own family-specific specialization interface. In section 2 we shall
(roughly) show how the isolated application of a pattern may indeed be mapped to a
class composition, where for each of the roles in the pattern there is a corresponding
family of class components with a corresponding specialization interface.

In order to realize a framework that allows for application development in this
way, one needs to define the various families of class components and define their
specialization interfaces. This includes rules describing whether members of which
class component families may be linked to members of which other families. More-
over, it involves, next to implementing the “base” functionality, implementing how
the run-time system behavior depends on the information in the class composition. In
section 3, we shall show how a separate layer of meta-classes is used to define the var-
ious families needed in the class composition for the pattern, and their composition
rules. It is this layer which makes FACE “framework adaptive”. In section 4 we
shortly mention how information in the class composition gets run-time meaning. In
section 5 we give some related work, in Section 6 we conclude.

Class Composition in FACE, a Framework Adaptive Composition Environment 3

2 The “Abstract Factory” Design pattern as a Class Composition
in FACE

Figure 1 shows a class composition in the FACE approach, that realizes a specific use

of the abstract factory pattern containing a factory for creating user interface widgets
and windows. Before going into an explanation of what such a composition means, a
short explanation of the pattern: The Abstract Factory design pattern is used when cli-
ent objects want to create certain objects (e.g., window objects, scrollbar objects) but
the instantiation of these objects should not commit the client to choosing a specific
implementation for these objects (e.g., either Presentation Manager Window or Motif
Window). The basic idea of the pattern is to delegate the creation to a special factory
object upon a client request. By using polymorphism, the factory object’s class deter-
mines how the factory object reacts to a request for a certain object. E.g., when re-

Figure 1. A class composition representing a typical usage of the AbstractFactory
pattern. Note that the name of the family of the class component, e.g. ConcFact
for PMWidgetFactory, could not be given everywhere.

AbstractFactoryPattern

Client

Window:AbstSpecOp

PMWindow:ConcreteProd MotifWindow

ScrollBar:AbstSpecOp

PMScrollBar MotifScrollBar

WidgetFactory: AbsFact

MotifWidgetFactory:ConcFact

PMWidgetFactory:ConcFact

CreateWindow

CreateScrollBar

factory 1:1

CreateWindow

CreateScrollBar

CreateWindow

CreateScrollBar

factory
client

product

ref 1:n

Creates

Creates

Creates

Creates

Legend, as far as different from/ extending the OMT notation:

factory 1:1

ref. to major classes in pattern
pattern identifying component

association descriptor (and not just aggregation as in OMT) for the
 association “factory”, describing the property “factory”

CreateWindow(Creation) operation
Creates link between creation operation and the class component it instantiates

AbsProd

(specific for pattern)

subtyping: interface conformity

Theo Dirk Meijler*, Serge Demeyer*, Robert Engel**4

quested to create a window a MotifWidgetFactory object will return a Motif window,
a PMWidgetFactory a PMWindow.

Note that for each of the different roles in the class composition above, (either cli-
ent, factory, or product) there exists a different “family” of special-purpose class com-
ponents, having each its own specialization interface. In the figure, the name of this
family is given after the “:” in the name of the class component. We highlight an im-
portant part of the class composition for the applied pattern. A component of the type
“ConcFact”, is specialized by the set of “Create” operations that it has, e.g., “Cre-
ateWindow” and “CreateScrollbar”. Moreover, each of these operations is specialized
by a link (relationship) to the product class that it creates. Such explicit relationships
between components in the schema thus replace the “traditional” form of specializa-
tion where factory classes are specialized by writing these create methods.

3 Configuring FACE by means of Meta-classes

To make class compositions as shown in section 2 possible, the various class compo-
nent families must be defined together with their specialization interface. In Figure 2
below, we show how each of the role-specific families of class components can be de-
fined by so-called meta-class components: class components of which the instances
are class components. The figure also illustrates how the specialization interface can
be defined for the instances of meta-class components through so-called association
descriptors that link those meta-class components. For example, the association de-
scriptor “creates” between “ConcrCreateOp” and “ConcreteProd” shows how a create
operation (a component that is an instance of “ConcrCreateOp”) can have a link to the
product class (an instance of “ConcreteProd”) it creates.

Note that the meta-classes defining the various families of possible class compo-
nents are themselves not just ordinary classes, but also classcomponents: They have a
black-box specialization interface in the sense that they can only be specialized by
means of association descriptors. In this way the framework developer who creates
such a meta-class composition has the same advantages, namely black-box composi-

Class Composition in FACE, a Framework Adaptive Composition Environment 5

tion, in creating this composition as the developer of an application has in creating a
class composition.

4 Giving run-time meaning to a class composition

To give a class composition such as shown in Figure 1 a run-time meaning, our
current approach is to interpret1 the information in the composition. The class compo-
sition is represented explicitly at run-time as objects that represent the class compo-
nents and relationships. This is quite natural, since the composition will normally be
created interactively as an object structure by the application developer anyway. The
class components are thus run-time represented as objects but they function as
classes, in the sense that they can be requested for instances. When requested for in-
stances, they (e.g., by copying a prototype that they carry, or calling a constructor),
will return an instance object. The instance objects will have a generic implementa-
tion, implemented in the “underlying” object-oriented language2. The implementa-
tion is generic in the sense that these instance objects will query the objects represent-
ing the class composition to adapt their behavior to the parameters.

1. Another possibility could be to generate “real” classes of some existing object-oriented program-
ming language.

2. which can be anything: so far, implementations have been done in Self and C++

Figure 2. Composition of meta-class components that define the families of class
components used in Fig 1. and the way these may be composed. Metaclass
components are indicated with double lines at the sides. These define classes of
class components, e.g., all Concrete Widget class components in Figure 1are
instance of “ConcreteFact”. Association descriptors are indicated by diamonds.

AbstractFact

subtype 1:N

ConcreteFact

MetaClient

CreateOp

ConcrCreateOp

subtype 1:N

MetaAbsFactPattern

client 1:1

operations 1:N

MetaAbstrOper

operation 1:1

operations 1:N

factory 1:1

AbstrSpecProd

subtype 1:N

ConcreteProd

creates 1:1

product 1:1

MetaAbstrProd

Theo Dirk Meijler*, Serge Demeyer*, Robert Engel**6

5 Related work

Although this paper is not meant to give a full overview of related work, we mention
the most influential sources of inspiration:

• Composition at the level of classes is especially encountered in “generic” con-
structs, where classes can be parameterized with other classes, such as in the
template classes in C++ [9.]. Also the work of Batory et. al., [2.], is based on pa-
rameterizing class level components with class level components. Our work en-
hances the scope of possible relationships between classes thus allowing for
more expressivity.

• The commercial work on componentware [14.], such as Visual Basic [11.] Our
work gives application of components a much greater scope, since we unify
work on components with work on object-oriented frameworks.

• Work on meta object protocols [6.], where the correspondence between meta-
classes and classes is similar as between meta-class components and class com-
ponents in our model.

6 Conclusion

Black-box reuse is a form of reuse where the person who reuses does not need to
know the internals, the implementation, of a software component in order to reuse it.
This form of reuse is often connected to object composition, where the encapsulation
of objects allows them to be reused by parameterization and composition only. This is
contrasted to white-box reuse, where in order to reuse, implementation needs to be
known and understood, which makes it more difficult and error prone. This is encoun-
tered in the most common used form of class reuse: subclassing. Subclassing is not
only white-box, it is also very general, any kind of specialization is possible. This
while a framework very often imposes specific specializations that “make sense”. We
therefore extend on the other already known form of class reuse, which does not have
these problems: genericity. Especially, the parameterization of classes (“class compo-
nents”) with meaningful relationships between them is a new form of genericity. In
the paper we have illustrated this approach by treating a specific application of the
“Abstract Factory” design pattern as a mini-framework. We have shown how impor-
tant aspects for specializing the applied pattern, e.g., which concrete factory class in-
stantiates which concrete product, can be specified by composition only.

How this approach scales up for large frameworks is outside the scope of this pa-
per. We are doing, and have done [10.] work on this. A major issue is whether the ap-
proach indeed provides the developer with enough flexibility and expressivity. We be-
lieve that this is so for the following reasons:

1. In this paper we have presented forms of class parameterization with relative
little information contents. The approach allows for more complex forms of pa-

Class Composition in FACE, a Framework Adaptive Composition Environment 7

rameterization, with as the most general, but least controllable possibility the
parameterization with procedures.

2. Our approach is (therefore) related to existing “componentware” approaches
[11.] These have turned out to be not only useful, but very successful.

3. Use of this extended form of genericity by the application developer does not
preclude the use of “old-fashioned” subclassing by the framework developer to
introduce new kinds of parameterizable class components. Moreover, when
there is a need for adapting the composition and parameterization possibilities
of the application developer, this can be done by adapting the meta-class com-
position, and correspondingly adapting the run-time meaning. The latter is also
done in “normal” object-oriented programming which does not create a bigger
obstacle than “traditional” framework extension.

References

1. American National Standards Institute, Inc.,The Programming Language Ada Reference Man-
ual, G. Goos and J. Hartmanis (Ed.), LNCS 155, Springer-Verlag, 1983.

2. Don Batory and Sean O’Malley, “The Design and Implementation of Hierarchical Software Sys-
tems With Reusable Components,”ACM Transactions on Software Engineering. and Methodol-
ogy, October 1992.

3. Grady Booch and James Rumbaugh,Unified Method for Object-Oriented Development Version
0.8, Rational Software Corporation, 1995.

4. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,Design Patterns, Addison Wes-
ley, Reading, MA, 1995.

5. Joseph A. Goguen,Principles of Parameterized Programming, In T.J. Biggerstaff and A.J. Perlis
(Ed.), Software Reusability vol. I, ACM Press & Addison-Wesley, Reading, Mass., 1989, pp.
159-225.

6. Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow,The Art of the Metaobject Protocol,
MIT Press (Ed.), 1991.

7. Ralph E. Johnson and Brian Foote, ‘‘Designing Reusable Classes,’’Journal of Object-Oriented
Programming, vol. 1, no. 2, 1988, pp. 22-35.

8. John Lamping, ‘‘Typing the Specialization Interface,’’Proceedings OOPSLA ’93, ACM SIG-
PLAN Notices, vol. 28, no. 10, Oct. 1993, pp. 201-214.

9. Simon Lippman,The C++ Primer, Second Edition, Addison-Wesley, 1991, (3).

10. Theo Dirk Meijler, ‘‘User-level Integration of Data and Operation Resources by means of a Self-
descriptive Data Model,’’ Ph.D. Thesis, Erasmus University Rotterdam, Sept. 1993.

11. Microsoft Corporation,Visual Basic Programmer’s Guide, 1993.

12. Simon Moser and Oscar Nierstrasz, “Measuring the Effects of Object-Oriented Frameworks on
the Software Process,” submitted for publication, IAM, U. Berne, Dec. 1995.

13. Patrick Steyaert, Carine Lucas, Kim Mens and Theo D’Hondt, “Reuse Contracts: Managing the
Evolution of Reusable Assets,”Proceedings OOPSLA’96, ACM SIGPLAN Notices.

14. James Udell, “Componentware,”Byte, vol. 19, no. 5, May 1994, pp. 46-56.

