
Explora: Tackling Corpus Analysis with a
Distributed Architecture

Leonel Merino

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. When analysing a corpus of software, researchers often ask
questions that entail exploration and navigation, such as “what packages
contain fat interfaces in open-source systems?”, “how consistently is the
code being commented?” and “are naming conventions being followed?”.
The answers to these questions can impact software maintainability and
evolution. Software visualisation can be of aid to understanding and ex-
ploring the answers to such questions, but corpus visualisations are time-
consuming and difficult to achieve since they require large amounts of
data to be processed. We tackle this constrain by using a distributed
architecture. In this paper we propose an environment where researchers
can build queries for their questions and afterwards rapidly visualise
them. We elaborate on a proof-of-concept tool named Explora and we
report early results when visualising Qualitas Corpus [4].

This paper uses colours in the figures. Please read a coloured print-
out of this paper for a better understanding.

1 Introduction

A software corpus is a curated catalogue of software systems intended to be used
for empirical studies of code artefacts. A corpus can be understood as the set of
models of the systems that it contains. Our approach aims to analyse in parallel
all systems at once. Loading the entire set of models in a single server can be
difficult since it could require more memory than available. Even if memory
is not a problem the performance would be compromised. We overcome this
constrain by splitting the corpus into subsets which can be computed in parallel
in a distributed architecture. In the following section we introduce Explora the
proof-of-concept tool that we developed.

2 Explora: a proof-of-concept

Explora uses the Moose [2] platform for running analysis of FAMIX [5] mod-
els. By loading models of systems —an abstraction of a system that contains
its properties— it can answer questions about the system’s properties such as
“what is the longest class hierarchy?”, “what is the average depth of class hier-
archies?”, “what dependencies are between package A with package B?”, “are

http://scg.unibe.ch/

2 Leonel Merino

there interfaces without implementations?”. These questions are about software
properties. In Moose, instead of writing questions in natural language users can
obtain their answers by rephrasing them as Smalltalk messages. For instance, for
the question “what is the average depth of class hierarchies?” we could send the
query allInheritanceDefinitions average:[:e | |n size| n := e next.

size:=0. n isNil ifTrue:[0] ifFalse:[[n isNil] whileFalse:[size

:= size +1. n := n next]. size]] to the model. A query such that
which quantifies a software property is called a software metric.

Moose runs on the Pharo Virtual Machine in 32-bit mode. It means that it
can manage only a portion of the total available memory of a 64-bit computer.
In our experience this threshold is a bit above 1 GB. Moose models tend to be
quite large. For instance, a model of JRE (almost 1 MLOC) occupies around 230
MB. It means that it is not feasible to load an entire corpus in a Moose image
(a corpus can contain dozens of systems like this and even larger).

Explora offers two main features for end-users: Workbench and Visualiser.
The former offers capabilities to explore the corpus in a textual browser. It is
meant as a starting point on which the user rephrase his question by building a
software metric. Figure 1 shows the workflow of Explora. Firstly, the user defines
a query and triggers its computation. Secondly, he analyses the results. He can
perform this exploration several times to fine-tune the query. Thirdly, once he
finds results that he want to visualise he can write a metric based on the query
(something quantifiable). Finally, the corpus can be explored through the lens
of this metric in the other main feature —Visualiser. In the next sections we will
explain these features in more detail and show examples.

2.1 Workbech

The workbench has two main use cases: (1) a user is exploring the corpus by
posing queries and inspecting results; and (2) a user defines a new software
metric for visualisation. The first scenario is an exploratory process used when
looking for interesting software properties for visualisation. Once the user stops
interacting with this feature the results are discarded. In contrast, the definition
of new metrics is persistent and shared with all other Explora instances (once a
user creates a metric users of other Explora instances can take advantage of it).

The user does not need to know the details of the implementation of work-
bench to build a metric. Neither he need to be aware of which object stores the
system models, nor he needs to iterate through the collection of systems to eval-
uate a metric. The implementation provides the user with bounded keywords to
refer both at the highest level —a system— and at the lowest level —a method.
We named the former eachModel which allows users to perform some computa-
tion on every model of the systems; and eachMethod, which does the same for
all methods. For example, lets say a user is analysing if naming conventions are
being followed. He can evaluate name length of methods by exploring the model
with a query —as shown in Figure 2— which associates each system with the
name of the method with the longest name. The results show a method with
a huge name in the fitlibraryforfitnesse system, the rest seem to be related to

Explora: Tackling Corpus Analysis with a Distributed Architecture 3

Fig. 1. Explora workflow

methods for testing and exceptions. Although this query is not a metric (the
results are not a quantification of a property) it allows the user to easily build a
metric based on it. In this case the user can define a metric like this allMethods
collect:[:m | m name -> m name size] . Once the user is happy with the
new metric and wants to visualise it, he can save it by clicking the red icon. This
triggers the creation of the metric locally and communicates it to other servers.
From this point on each server has a persistent definition of the new metric and
is able to deploy it over its models.

2.2 Visualiser

The visualiser is a tool for top-down exploration of the corpus. The interface
provides the list of metrics previously created. Once the users select a metric,
they see boxes representing each system of the corpus. Each box is labelled with
the system’s name. The box is filled in with different intensities of grey. The
darker the box, the higher the value of the metric. The metric is aggregated
bottom-up using the maximum value. Systems are sorted from darker to lighter.
In this way, not only can users spot the systems with the highest and lowest value,
but they can also compare the distribution of the value of the metric across all

4 Leonel Merino

Fig. 2. Workbench User Interface

systems. As shown in Figure 3 the result can be a long gradient of grey boxes
from white to black, or in some cases it can be something more monotone with
very slightly differences between systems —as shown in Figure 4— showing that
for all systems the metric produces similar values. This gives an idea of how
widely spread are the values of the metric for these system entities. We selected
this metaphor for the visualisation because, like a histogram, it aids users to see
the distribution of a metric value but at the same time it allows them to identify
an entity and to compare them each other. To see the distribution of the values
of a metric helps users to identify if the answer to their queries is an abnormal
observation or rather common.

Fig. 3. Highly spread

Explora: Tackling Corpus Analysis with a Distributed Architecture 5

Fig. 4. Monotone

Fig. 5. Outlier

Following the example of method name length—as shown in Figure 5— the
user can see that there is an outlier system containing a method with a name
much longer than the ones in the rest of the systems (its colour is much more
darker than the rest). Figure 6 shows the sequence of actions made by the user
when visualising this metric: 1) the user request “details-on-demand” about a
system by clicking on its box representation. The result is a list of packages
depicted with the same metaphor. Each package is depicted as a box labelled
with its name and coloured with an intensity of grey which represents the value
of the metric for that package. Once again users can compare packages and
easily spot the package with the highest and lowest value. In our example, the
method with the longest name is in the package fitbook. It also shows that the
rest of the packages contain methods with name’s length in a similar range to
the other systems (the intensity of the grey is similar); 2) users can go deeper in
the structure hierarchy. By clicking a package users see the classes that belong
to that package. Each class is represented by a box with its name and filled in
with an intensity of grey representing the metric; 3) by clicking a class users
can see both the source code and the list of methods of that class. Methods are
depicted using the same metaphor; 4) by clicking on a method its source code is
selected. Notice that entities which are selected are highlighted in red.

6 Leonel Merino

Fig. 6. Top-down visualisation of method name length

2.3 Architecture

Explora instances can run in one of three modes: Broker, Server and Client.
The purpose of a Broker is to provide Clients with the information needed to
communicate with Servers. They do it by holding a list of triples with the IP
address, port and systems that Servers offer. Consequently, when a Server starts,
it sends to the Broker the list of system models that it holds. If a Server stops
its records are automatically removed from the Broker. When a Client starts it
retrieves the list from the Broker, so afterwards it can send queries to Servers
directly. When a Server receives a message it creates an independent process to
respond to it. This process receives a String containing the Smalltalk message
sent by the Client. Servers execute it locally and send a message back with the
result. In theory this result can be any Smalltalk object, but in practice we are
constrained by the amount of bytes needed by the object to be transmitted over
the network. This means that we privilege to transmit little objects to have a
better performance. In this way, in the visualiser instead of returning a FAMIX
object which size can be several megabytes, we return an Array object with only
the information needed to produce the visualisation which typically take up few
kilobytes. This result (also an object) is serialised and transmitted to the Client.
Finally, the Client is able to materialise the answer. This architecture supports

Explora: Tackling Corpus Analysis with a Distributed Architecture 7

Fig. 7. Explora architecture (arrows show TCP/IP communication)

both features Workbench and Visualiser. This means that actions performed in
these features are computed and solved remotely by other Explora instances.

Figure 7 shows a diagram with the distributed architecture of Explora. In the
picture are shown the Broker, 6 Servers and a Client. This deployment supports
85 systems from Qualitas Corpus distributed across 6 Explora Servers each one
using less than 500 MB of memory.

2.4 Technical Infrastructure

Explora is developed in Pharo —a Smalltalk inspired language. Explora’s user
interface uses Glamour [3] which is a framework for building browsers. It offers
means to define browser properties such as the number of panes, their sizes,
layout and the flow that connects the information among panes.

The visualisations offered by Explora in the Visualiser are based on Roassal
[1]—a visualisation engine— which provides the means to define graphical rep-
resentations of objects. Although we used very basic capabilities of Roassal we
left as future work to provide more advanced visualisations. Advanced visualisa-
tions could use visual features such as other shapes, colours, edges and layouts
to represent more properties of an entity.

3 Future work

Customised representations The visualiser provides a basic representation
of model entities, just depicting them by labelled-boxes and using grey for rep-
resenting the metric. We think that more advanced users can profit from means

8 Leonel Merino

to customise these graphical representations. We envision a way in which users
can freely customise some parts of the visualisation.

Results in Workbench When sending a query, in the Workbench, the results
are shown in the lower pane —as shown in Figure 2. This pane shows a list of
elements, each of which is a string composed of the name of a system followed
by a list with the result of the message which was sent to that system (it can
be a list of one element). We would like to present this data as a table offering
features to sort data by each column.

Tackling with malicious queries Explora is meant for accessing user’s own
corpus, it does not have features for tackling with malicious code —i.e. code
injection. This means that Explora servers can execute harmful queries. In the
future Explora can be used as a distributed environment where users from differ-
ent places (using Explora clients) can access a shared corpus (cluster of Explora
servers) which they do not own. In that case, we think would be mandatory to
provide Explora with mechanisms to prevent code injection.

Covering the entire catalogue In Qualitas Corpus there are large systems
which require more than 500 MB. Although we wanted each server to use no more
than this threshold so they would have enough space for developing memory-
intensive metrics, we would like to cover the entire catalogue. For that purpose
we propose to provide dedicated servers —each one holding only one model—
with more memory. A complementary strategy would be to load less information
when creating the model of the system.

4 Conclusion

In conclusion, although software visualisation is of great aid for analysis when
trying to apply it on large pieces of software —such as a corpus— managing
large data in memory turns to be complex. A distributed architecture for par-
allel computing offers a good fit to software analysis and visualisations. In this
paper we presented Explora as a proof-of-concept tool for corpus analysis and
visualisation based on a distributed architecture. The tool provides means to
build software metrics and to visualise them. We described the specifics of the
implementation and discussed some future work to improve metrics creation and
to provide custom visualisations for advanced users.

Acknowledgements

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Assessment” (SNSF project No.
200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). This work has been partially
funded by CONICYT BCH/Doctorado Extranjero 72140330.

Explora: Tackling Corpus Analysis with a Distributed Architecture 9

References

1. Vanessa Peña Araya, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and
Jannik Laval. Agile visualization with Roassal. In Deep Into Pharo, pages 209–239.
Square Bracket Associates, September 2013.

2. Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Moose: an agile reengineering
environment. In Proceedings of ESEC/FSE 2005, pages 99–102, September 2005.
Tool demo.

3. Tudor Gı̂rba, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik
Laval. Glamour. In Deep Into Pharo, pages 191–207. Square Bracket Associates,
September 2013.

4. E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton, and
J. Noble. The Qualitas Corpus: A curated collection of Java code for empirical
studies. In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 336 –345, December 2010.

5. Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. PhD thesis, University of Bern, December 2001.

	Explora: Tackling Corpus Analysis with a Distributed Architecture
	Leonel Merino

