Explora: A Visualisation Tool
for Metric Analysis of Software Corpora

Leonel Merino
Software Composition Group
University of Bern
Bern, Switzerland
merino@iam.unibe.ch

Abstract—When analysing software metrics, users find that
visualisation tools lack support for (1) the detection of patterns
within metrics; and (2) enabling analysis of software corpora.

In this paper we present Explora, a visualisation tool designed
for the simultaneous analysis of multiple metrics of systems
in software corpora. Explora incorporates a novel lightweight
visualisation technique called PolyGrid that promotes the de-
tection of graphical patterns. We present an example where we
analyse the relation of subtype polymorphism with inheritance
and invocation in corpora of Smalltalk and Java systems and
find that (1) subtype polymorphism is more likely to be found
in large hierarchies; (2) as class hierarchies grow horizontally,
they also do so vertically; and (3) in polymorphic hierarchies the
length of the name of the classes is orthogonal to the cardinality
of the call sites.

I. INTRODUCTION

Meet Edgar, an empirical software engineering researcher.
In the past he has been interested in assessing the prevalence
of reuse by inheritance and invocation of software in
different languages [1]. Currently he wants to expand his
analysis to subtype polymorphism [2]. He believes that
although polymorphism can be an elegant solution for
modelling variability, it can make systems more difficult
to understand. Therefore, he wants to (I) understand how
widely spread is the usage of polymorphism in systems
written in Java — one of the most popular languages,
compared to systems written in Smalltalk — one of the
oldest object-oriented languages. He also wants to (2) find
interesting systems for more detailed analysis. He realises
that many research studies have used JHotDraw for their
analysis [2], [3]. JHotDraw —a Java port of Smalltalk’s
HotDraw by Erich Gamma— is a great example of a well-
designed system that was developed as an exercise in
applying design patterns [4]. However, Edgar asks himself
what other systems can also be good candidates for his
analysis. The answer could be obtained by building a metric
for measuring the occurrence of polymorphism. Instead,
the answer is not that straightforward because (3) he also
would like to know how inheritance and invocation relate to
polymorphism. He wonders what characterises polymorphic
systems; (4) is polymorphism most likely found in systems
that have large class hierarchies?; (5) are polymorphic call
sites more invoked than other entities of the system?.

978-1-4673-7526-9/15 © 2015 IEEE

Mircea Lungu
Software Composition Group
University of Bern
Bern, Switzerland
lungu@iam.unibe.ch

195

Oscar Nierstrasz
Software Composition Group
University of Bern
Bern, Switzerland
oscar@iam.unibe.ch

This could represent an excellent candidate for applying
the Goal-Question-Metric paradigm (GQM) [5]. GQM pro-
vides a three-step framework in which one must: (1) define a
goal, (2) derive questions to determine if the goal is met, and
(3) decide what metrics are suitable to answer the questions.

Indeed, Edgar has (1) a goal, namely he wants to un-
derstand how subtype polymorphism relates to inheritance
and invocation in Java and Smalltalk systems; (2) initial
questions, namely those posed previously; and (3) metrics
that tackle attributes related to polymorphism, inheritance
and invocation. However, since his goal is broad, he realises
that his questions are rather incomplete. He wonders what
other questions could be formulated that can be answered
with those metrics. He therefore wants to measure various
attributes of the software and compare their metric values
to expose trends. Afterwards he might develop more precise
hypotheses to explore.

A software corpus offers to Edgar diverse software systems
suitable for his research. The analysis of software corpora
of different languages allows researchers to understand not
only the potential capabilities of the language but the way
in which practitioners actually use it.

Additionally, software visualisation can provide support
to Edgar for the analysis of multiple metrics. He could
detect graphical patterns that can lead to the detection
of relationships among metrics. The visual inspection that
can be performed when visualising software can unveil
information that could not be detected by statistical analysis,
as seen in Anscombe’s quartet [6].

In this paper we present Explora, a visualisation tool that
encourages top-down exploration of relationships among
multiple software metrics of software corpora. Explora is
written in Pharo [7], an open-source Smalltalk system. It
uses the Moose platform [8] for software analysis as well as
the Roassal engine [9] for building visualisations. The users
of Explora can analyse metrics defined on the FAMIX meta-
model [10]. Explora shows aggregated results of multiple
metrics from the top (systems) to the bottom (methods). It
incorporates a novel visualisation technique that enables
users to analyse many metrics of a system simultaneously,
thus allowing users to define thresholds for understanding
when a value is low, high or common.

VISSOFT 2015, Bremen, Germany

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

It combines Polymetric Views [11] with the Small Multiples
technique [12] that boosts comparison. The main strengths
of Explora are:

« Discoverability. It encourages exploration for discovering
hidden relationships among metrics.

. Corpora. Tt is designed to analyse software corpora,
which boosts repeatable analysis.

« Flexibility. It allows users to use custom metrics towards
achieving their specific needs.

The remainder of the paper is structured as follows:
Section II describes the preliminary tasks for the analysis;
Section III introduces our lightweight visualisation technique;
Section IV shows an analysis example; Section V presents
related work; and Section VI concludes and presents future
work.

ITI. SETTING UP EXPLORA

Edgar has used Explora in the past. He is aware of the
workflow for setting up Explora for the first time.! Before
Edgar begins the analysis, he defines the set of metrics that
he wants to explore. After some minutes inspecting the
documentation of the FAMIX meta-model, he realises that
FAMIX does not provide specific metrics for the analysis
of polymorphism. However, he can build a metric for that
purpose based on the data stored in the model. Inspired by
Class Hierarchy Analysis [13] he develops a metric called
polymorphismCardinality (PC) that measures the degree
of polymorphism of a call site. Basically for each method
the metric counts top-down the number of times that
method is overridden. Listing 1 shows the specifics of its
implementation.

Listing 1. Smalltalk implementation of polymorphismCardinality
| class cardinality |
class := self belongsTo.
(class directSubclasses isEmpty or: [class isStub])
ifTrue:[1 0]
ifFalse: [
self isOverriden ifTrue: [
cardinality := 0.
class allSubclassesDo: [:sc |
| submethod |
submethod := sc methods select:
[:sm | sm signature = self signature].
submethod isEmpty ifFalse: [
cardinality := cardinality + 1]].
1 cardinality] ifFalse:[10]]

Secondly he specifies the pre-existing set of metrics that
he wants to analyse. He selects metrics defined at the class
level, such as fanin (FI), fanOut (FO), hierarchyNestingLevel
(HNL), numberOfMethods (NOM), nameLength (NL), total-
NumberOfChildren (TNOC), as well as metrics defined at
the method level, such as numberOfLinesOfCode (NOLOC),
cyclomaticComplexity (CC), numberOfComments (NOC).

Thttp://scg.unibe.ch/research/explora

III. THE POLYGRID

Explora is designed for top-down exploration. Users start
analysing metrics at the highest abstraction level (system)
through a visualisation technique called PolyGrid, which is
designed for the analysis of several metrics simultaneously.
A PolyGrid is built as a grid of polymetric views, called
PolyCells.

A PolyCell, such as the one seen in Figure 1 (a), depicts a
bird’s-eye view of the corpora. A label on top of the PolyCell
describes the metrics that are mapped to the position,
height, width and colour intensity respectively. Note that
position in this context refers to the order (left-to-right,
top-to-bottom) in which rectangles are sorted. In the figure,
TNOC (total number of children) determines the position;
NL (name length) defines the height; NOM (number of
methods) defines the width; and HNL (hierarchy nesting
level) determines the colour intensity of rectangles. Each
rectangle represents a different system of the corpora. In
the figure, the mouse is over the rectangle representing the
Chronos system, which is also highlighted in all the other
PolyGrids. Systems are sorted (left-to-right, top-to-bottom)
by the left-most metric listed in the label. This means that
the rectangle on the top-left corner represents the system
that has the highest TNOC value, while the rectangle in
the right-bottom corner depicts the system that has the
lowest value. The corpus to which a system belongs can
be distinguished by the colour of the rectangle. Systems of
Smalltalk corpus are green while system of Java corpus are
blue. In Figure 1 (a), users can notice a colour gradient top-
down that exposes a high correlation between the TNOC
and HNL (the metrics mapped to the position and the
colour intensity respectively). TNOC shows how large a class
hierarchy is, while HNL measures its depth. This suggests
that as hierarchies become larger they also become deeper,
which seems not be a property related to the language of
systems (rectangles of the same colour are scattered).

Notice that Edgar wants to analyse ten metrics but each
PolyCell can only handle four. This means that there are
('), or 5040 different PolyCells that can be generated
potentially. Explora simplifies the analysis by setting the
number of PolyCells in a PolyGrid to the number of metrics
under analysis, as seen in Figure 1. In it, each PolyCell
maps a different metric to the position of rectangles. The
remaining three metrics are arbitrarily selected for promoting
exploration. Edgar can generate a new PolyGrid, for exploring
another part of the solution space, as many times as he
wants. Explora provides support for traversing back and forth
the history of views. Users can also save/load the history
in/from a file encouraging users to share their findings.

IV. ANALYSIS EXAMPLE
Edgar analyses the visualisation shown in Figure 1. He
detects some graphical patterns.

« Cluster-based: In PolyCells (c), (f) and (g) rectangles of
the same colour are mostly clustered together. This

196

http://scg.unibe.ch/research/explora

TNOC NL NOM HNL

PC NOM TNOC NL
T L
Idchmnos TNOC(2.7)] -- NL(21.6)] -- NOM(20.2)] - HNL(K?)

(1] |

(@) . .

FO NOLOC NOM PC

I-—u.. l.l CC FI NO_L(E PC
T T T ===
..ll] 1] I ___=—_ u
mggueeign lII '__"ll |
L i) Lo ol Tttt
HEg='in O — T 1
=y .!||| gun SR (E) -
TR L R eI
-m I "= —_——

NOC TNOC PC NOM
-

HNL NOC CC NOM NOM CC FO NL

NOLOC FI NOM FO " - -
1 e
=g . -
I -.- Ll L
- e WL
mpym = DT T
. o (d)

NL HNL CC NOLOC

- FI FO NOC NOM = = I ==

— (| prec-eEmgEE==g

N, rigmems muTwmmee

N i
Sy _ (f) poa=ainsa(g)

Figure 1. A PolyGrid for the analysis of 10 metrics on Java and Smalltalk corpora. A label on top of each PolyCell lists the metrics that are mapped to
the position, height, width and colour intensity of a rectangle respectively. Note that each PolyCell maps a different metric to the position. Here the user
has moused over the “Chronos” system in the first PolyCell, causing it to be highlighted in all the others as well.

pattern emerges when the metric mapped to the
position of rectangles is related to the criteria used for
choosing the systems of the corpora. In the example,
the criterion is the language. This means that the
values of the metric are similar for systems written
in the same language. Examples of this pattern are
detected in PolyCell (c) which suggests that methods
in Smalltalk are normally written with fewer lines of
code (NOLOC) than in Java; (f) which shows that most
Smalltalk systems have higher values of FI than Java
systems; and (g) which suggests that classes in Smalltalk
systems have longer names (NL) than classes in Java.

« Weight-based: In PolyCells (c) and (f) larger rectangles
are mostly at the bottom and top respectively. This
pattern emerges when the metrics mapped to height
and width of the rectangle are related to the metric
mapped to position. An example of this pattern is
PolyCell (c) which shows that systems where methods
are shorter (lower values of NOLOC), classes usually
have higher FI and/or have more methods (higher
values of FI and NOM). Indeed Smalltalk systems have
the highest FI values (green rectangles are at the top in
PolyCell (f)). However, PolyCell (e) shows that Smalltalk
systems are scattered and even some concentrate at
the bottom, which means they have lower values of
NOM.

- High-Density: In PolyCell (f) there is little space left
between rectangles. This pattern occurs when the
metric mapped to the height of rectangles is highly
correlated to the metric mapped to the position. In (f)
as the values of FI decrease the same occurs with the
values of FO. Notice that this pattern would also occur

in PolyCell (e) if Smalltalk systems (green rectangles)
were removed. This suggests that in Java systems, as
CC increases so does FI (median values).

« Smooth-Gradient: In PolyCell (a) a smooth colour
gradient is perceived when traversing the rectangles
top-down or bottom-up. This pattern reveals a high
correlation between the metric mapped to the position
with the one mapped to the colour intensity. In PolyCell
(a) it suggests that TNOC and HNL might be highly
correlated. This means that as class hierarchies become
larger, they also become deeper.

Notice that there are PolyCells that reveal several patterns,
such as the case of PolyCell (f) that exposes Cluster-based,
Weight-based, and High-Density patterns.

A. Research Questions

Edgar revisits his research questions posed in Section I.

RQ1 Do highly polymorphic systems have large class
hierarchies?

Figure 2 shows a collection of views of the top 5 systems
with the highest median values of PC, plus systems ranked
16 and 17 (the Smalltalk system with the highest value
and JHotDraw respectively). The views were collected by
drilling down into the systems shown in Figure 1 (b). In the
visualisation classes are depicted by rectangles which map
four metrics PC, NOM, TNOC and NL to the attributes of
the rectangle position, height, width and colour intensity
respectively. The analysis suggests that classes that belong
to large hierarchies tend to present more polymorphism
(wider rectangles are found frequently at the top).

197

JHotDraw—_7_.21

-

[R R [. Bl LEEEL

Figure 2. Drilling down into the top systems regarding PC. Rectangles
depict classes of systems. The position, height, width and colour intensity
of rectangles are mapped to PC, NOM, TNOC and NL respectively. Notice
that wider rectangles are systematically at the top, which suggests a high
correlation between PC and TNOC

RQ2 What other systems besides JHotDraw can be good
candidates for polymorphism analysis?

Table I summarises the top five systems that have a higher
aggregated value (using the median) of PC, plus systems
ranked 16 and 17. The systems were collected from Figure 1
(b). Although these systems do not have huge hierarchies of
overridden methods (with the exception of the Weapon class
in MegaMek-0.35.18), they present a much higher frequency
of highly overridden methods than JHotDraw, which for
some analyses can represent more interesting systems.

Table 1
SYSTEMS THAT HAVE THE HIGHEST VALUES OF POLYMORPHISMCARDINALITY
(AGGREGATED USING THE MEDIAN) OF WHICH JHOTDRAW IS RANKED 17. FOR
EACH SYSTEM IS DISPLAYED THE NAME OF THE ROOT CLASS OF THE LARGEST
HIERARCHY OF POTENTIAL POLYMORPHIC METHODS.

Rank Name Median Class Max
1 JChemPaint-3.0.1 0.6 ChemObject 28.6
2 ProGuard-4.5.1 0.5 SimplifiedVisitor ~ 8.6

3 MegaMek-0.35.18 0.5 Weapon 241.5
4 Axion-1.0-M2 0.5 BaseDataType 4.9

5 SableCC-3.2 0.4 Node 18.1
16 EyeSee 0.4 ESAbstractAxisPS 6

17 JHotDraw-7.5.1 0.3 AbstractBean 7.9

RQ3 Do polymorphic methods have longer names?

Neither Figure 1 (b), nor Figure 2 suggests a Smooth-Gradient
pattern which would be expected if PC would relate to NL.
Therefore, it does not seems to be a characteristic of highly
polymorphic systems to consistently have longer method
names. However, when analysing these metrics in the classes
within a system there seems to be a relationship. In Figure
3 (left) classes of the system are depicted by rectangles. The
position, height, width and colour intensity of rectangles are
mapped to NL, PC, HNL and FI respectively. The analysis
suggests that classes that expose higher values of PC (taller

rectangles) tend to have shorter names (tall rectangles are
mostly at the bottom). This could be explained by the
fact that highly extended classes need longer names for
describing more specialised entities. Notice that the tallest
rectangles correspond to the root classes in the polymorphic
hierarchies, which explains why there are only few of them.

e Exploring Menssana
e Gy g odan

Menssana

- iy & P
" ooy e
Bl TS N L

Figure 3. Details-on-demand of Menssana system. On the left classes of the
system are depicted by rectangles. The position, height, width and colour
intensity are mapped to NL, PC, HNL and FI respectively. On the right a
dependency graph shows the same classes using a cluster layout following
the class hierarchy (grey edges). Blue edges depict class dependencies. An
inspection shows that classes in a higher level of the hierarchy are the
tallest rectangles in the diagram of the left, such as MenssanaConcern the
class highlighted in red.

V. RELATED WORK

Lange et al. developed MetricViewEvolution [14], a visual-
isation tool that allows users to analyse software metrics for
managing model quality during development and evolution
through an enhanced UML-like diagram. It implements
a visualisation called MetricViews, which can map up to
three software metrics to the colour, size and shape of the
marks. MetricViewEvolution allows users to analyse only
single systems. The analysis of metrics —constrained at the
class level— is meant for improving the understanding of a
system, instead of the discovering of relationships among
metrics.

Garcia et al. [15] developed a tool for understanding
software project structure, class relationships, class coupling,
class level metrics and source code. It was designed for the
analysis of one system at a time, which hampers repeating
the analysis in other systems. Although it allows users to
analyse metrics, it only does so at the granularity of methods
and classes. The tool displays metric values as numbers as
well as bar charts which hinders the ability to compare them.
Moreover, it does not provide support for users to interpret
the values of metrics.

Risi et al. [16] proposed a tool for the identification of
fault-prone classes through the analysis of software metrics.
They developed a visualisation technique that uses a mark
composed of an ellipse and a rectangle that can map up to
ten metrics to its graphical attributes. However, their tool can
only cope with the analysis of one system at a time. Since

198

their focus is to detect fault-prone classes, users cannot
analyse metrics at other level of granularity. Moreover, the
tool does not provide flexibility for mapping a different set
of metrics.

The Small Project Observatory developed by Lungu et
al. [17] is a visualisation tool for the analysis of software
ecosystems. A central view provides support for users to
analyse several projects. In it, for each project a set of pre-
defined metrics is shown (as numbers) such as number of
developers, number of commits. This does not encourage
comparison, and actually hinders the interpretation of metric
values and detection of patterns.

In summary, existing tools lack support for reasoning
about software source code through the construction and
analysis of multiple metrics of software corpora. To the best
of our knowledge there is no existing tool that (1) allows
users to define custom software metrics; (2) supports the
analysis of corpora; and (3) encourages the detection of
patterns among metrics.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced Explora, a visualisation
tool for the simultaneous analysis of multiple metrics of
software corpora. We elaborated on our novel lightweight
visualisation technique called PolyGrid, which provides a
bird’s eye view of several corpora for discovering hidden
relationships among metrics. We demonstrated the tool by
analysing corpora composed of Java and Smalltalk systems.
In the example we showed the flexibility of the tool by
implementing a custom metric for the analysis of the
cardinality of polymorphic call sites. We performed a top-
down analysis showing the tool support at different levels
of granularity. The analysis exposed that polymorphic call
sites that have a higher cardinality (PC) are more likely
found in large hierarchies (TNOC). Additionally, we found
that systems that contains larger hierarchies (higher TNOC)
also have deeper ones (higher HNL). Moreover, the analysis
showed that in polymorphic hierarchies the length of the
name of the classes (NL) is orthogonal to the cardinality of
the call sites (PC).

We realise that the analysis of metrics in a software
visualisation is very sensitive to their values (range and distri-
bution). In the future we want to improve the visualisations
by fine-tuning the normalisation of values. The distribution
of the values of metrics can differ among languages and
domain, therefore we believe that using a polynomial
regression for normalising the values could provide more
accurate analyses. Additionally, we want to improve Explora
by adding features for performing statistical analysis that
can complement the findings detected through the visual
exploration. Finally, we believe that instead of choosing
arbitrary metrics for complementing the one used to map
the position, the PolyGrid could improve the exploration by
mapping first metrics that have higher correlation.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). Merino has been partially funded
by CONICYT BCH/Doctorado Extranjero 72140330.

REFERENCES

[1]1 L. Merino, M. Lungu, and O. Nierstrasz, “Explora: Infrastructure
for scaling up software visualisation to corpora,” in SATToSE’14:
Post-Proceedings of the 7th International Seminar Series on Advanced
Techniques & Tools for Software Evolution, vol. 1354. CEUR Workshop
Proceedings (CEUR-WS.org), 2015, http://ceur-ws.org/Vol-1354/.
[Online]. Available: http://scg.unibe.ch/archive/papers/Meril5a.pdf

[2] N. Milojkovi¢, A. Caracciolo, M. Lungu, O. Nierstrasz, D. Rothlisberger,
and R. Robbes, “Polymorphism in the spotlight: Studying its prevalence
in Java and Smalltalk,” in Proceedings of International Conference
on Program Comprehension (ICPC 2015), 2015, pp. 1-10, to appear.
[Online]. Available: http://scg.unibe.ch/archive/papers/Milol5a.pdf

[3] A. van Deursen, M. Marin, and L. Moonen, “A systematic aspect-

oriented refactoring and testing strategy, and its application to

JHotDraw,” arXiv preprint cs/0503015, 2005.

“JHotDraw: a Java GUI framework for technical and structured

graphics,” www.jhotdraw.org. [Online]. Available: http://www.jhotdraw.

org

[5] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA, USA: PWS Publishing Co.,
1998.

[6] E J. Anscombe, “Graphs in statistical analysis,” The American Statisti-

cian, vol. 27, no. 1, pp. 17-21, 1973.

A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and

M. Denker, Pharo by Example. Square Bracket Associates, 2009.

[Online]. Available: http://pharobyexample.org

O. Nierstrasz, S. Ducasse, and T. Girba, “The story of Moose: an

agile reengineering environment,” in Proceedings of the European

Software Engineering Conference (ESEC/FSE'05). New York, NY, USA:

ACM Press, Sep. 2005, pp. 1-10, invited paper. [Online]. Available:

http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

[9] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval, “Agile

visualization with Roassal,” in Deep Into Pharo. Square Bracket

Associates, Sep. 2013, pp. 209-239.

S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1 — The FAMOOS

Information Exchange Model,” University of Bern, Tech. Rep., 2001.

M. Lanza and S. Ducasse, “Polymetric views—a lightweight

visual approach to reverse engineering,” Transactions on Software

Engineering (TSE), vol. 29, no. 9, pp. 782-795, Sep. 2003. [Online].

Available: http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.

pdf

E. R. Tufte, Envisioning Information. Graphics Press, 1990.

J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented

programs using static class hierarchy analysis,” in Proceedings ECOOP

95, ser. LNCS, W. Olthoff, Ed., vol. 952. Aarhus, Denmark: Springer-

Verlag, Aug. 1995, pp. 77-101.

C. E Lange, M. A. Wijns, and M. R. Chaudron, “MetricViewEvolution:

UML-based views for monitoring model evolution and quality,”

in Software Maintenance and Reengineering, 2007. CSMR'07. 11th

European Conference on. IEEE, 2007, pp. 327-328.

J. Garcia, A. G. Torres, D. A. G. Aguilar, R. Therén, and E J. G. Pefalvo,

“A visual analytics tool for software project structure and relationships

among classes,” in Smart Graphics. Springer, 2009, pp. 203-212.

M. Risi and G. Scanniello, “MetricAttitude: a visualization tool for the

reverse engineering of object oriented software,” in Proceedings of

the International Working Conference on Advanced Visual Interfaces.

ACM, 2012, pp. 449-456.

M. Lungu, M. Lanza, T. Girba, and R. Robbes, “The Small Project

Observatory: Visualizing software ecosystems,” Science of Computer

Programming, Elsevier, vol. 75, no. 4, pp. 264-275, Apr. 2010. [Online].

Available: http://scg.unibe.ch/archive/papers/Lung09aSPO.pdf

(4

[7

(8

[10]

[11]

[12]
(13]

[14]

[15]

(16]

[17]

199

http://scg.unibe.ch/archive/papers/Meri15a.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
www.jhotdraw.org
http://www.jhotdraw.org
http://www.jhotdraw.org
http://pharobyexample.org
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lung09aSPO.pdf

	Introduction
	Setting Up Explora
	The PolyGrid
	Analysis Example
	Research Questions

	Related Work
	Conclusion and Future Work
	References

