
VISON: An Ontology-Based Approach for
Software Visualization Tool Discoverability

Leonel Merino∗, Ekaterina Kozlova†‡, Oscar Nierstrasz‡, Daniel Weiskopf∗
∗VISUS, University of Stuttgart, Germany

†National Research University Higher School of Economics, Russia
‡SCG, University of Bern, Switzerland

Abstract—Although many tools have been presented in the
research literature of software visualization, there is little
evidence of their adoption. To choose a suitable visualization
tool, practitioners need to analyze various characteristics of
tools such as their supported software concerns and level
of maturity. Indeed, some tools can be prototypes for which
the lifespan is expected to be short, whereas others can be
fairly mature products that are maintained for a longer time.
Although such characteristics are often described in papers,
we conjecture that practitioners willing to adopt software
visualizations require additional support to discover suitable
visualization tools. In this paper, we elaborate on our efforts to
provide such support. To this end, we systematically analyzed
research papers in the literature of software visualization and
curated a catalog of 70 available tools that employ various
visualization techniques to support the analysis of multiple
software concerns. We further encapsulate these characteristics
in an ontology. VISON, our software visualization ontology,
captures these semantics as concepts and relationships. We
report on early results of usage scenarios that demonstrate how
the ontology can support (i) developers to find suitable tools
for particular development concerns, and (ii) researchers who
propose new software visualization tools to identify a baseline
tool for a controlled experiment.

I. INTRODUCTION

Complex questions may arise during software develop-
ment [1]–[4]. Over the last two decades, many software visu-
alizations have been presented in the research literature and
shown to be suitable to address some of these questions [5].
However, there is still little evidence of where and how
software visualizations are being discovered and adopted by
practitioners. To find a suitable tool, practitioners need to
examine aspects such as the development tasks supported
by the tool, the required execution environment, the level
of maturity of the tool, and whether there is a maintenance
plan for future improvements and bug fixes. For example,
practitioners can be reluctant to adopt some prototypical
visualization tools that often have a short lifespan, and
more open to adopt tools that belong to long-term projects
and are expected to be maintained for a fairly long time.

To address the gap between existing software visualiza-
tions and their practical applications, we build on previous
studies [6], [7] in which we reviewed the literature of soft-
ware visualization to collect their characteristics. This article
is based on results that were reported in the doctoral thesis
of the first author [8]. We updated the review and curated a
catalog of 70 publicly available software visualization tools.

Figure 1: A Sankey diagram that presents our curated
catalog of 70 available visualization tools introduced in the
literature of software visualization, classified by publication
year, software aspects, evaluation strategy, and tool name.

For each tool in the catalog, we identify (i) the tool’s name
(e.g., Jive), (ii) software aspects (e.g., behavior, structure,
evolution), (iii) software concerns (e.g., execution traces of
Java programs), (iv) last update (e.g., 2017), (v) execution
environment (e.g., Eclipse plug-in), (vi) employed visual-
ization techniques (e.g., node-link diagram), (vii) display
medium (e.g., standard computer screen (SCS), immersive
virtual reality (I3D)), and (viii) evaluations (e.g., controlled
experiment). Figure 1 shows a Sankey diagram of our
catalog of visualization tools introduced in the literature
of software visualization. The ontology, which enables both
textual and visual search methods, then can be used by
practitioners to find suitable software visualizations as well
as by researchers who can reflect on the software visual-

ar
X

iv
:1

90
8.

04
09

0v
1 

 [
cs

.S
E

] 
 1

2 
A

ug
 2

01
9



Figure 2: An overview of the concept hierarchy of the VISON software visualization ontology using the OntoGraf
visualization plug-in. Blue edges denote subclass relationships and violet edges identify instances of a class.

ization domain. The ontology can also enable higher-level
frameworks to support practitioners to search for software
visualization tools.

Why a software visualization ontology? Ontologies are
formal and explicit descriptions of concepts in a domain [9].
Ontologies can help (i) share a common understanding
of the structure of information among people or software
agents, (ii) reuse domain knowledge, (iii) enforce domain
assumptions, (iv) separate domain knowledge from opera-
tional knowledge, and (v) analyze domain knowledge.

Figure 2 shows an overview of VISON, our software vi-
sualization ontology that encapsulates main characteristics
of software visualizations. To the best of our knowledge,
VISON is the first ontology of software visualizations. We
elaborate on lessons learned from developing the ontology,
and early results of usability through usage scenarios.

To populate VISON, we built on a set of selected papers of
previous surveys of the software visualization literature [6],
[7]. Specifically, we scanned each classified design study
paper to identify software visualization tools. For each tool
that we found, we checked whether the tool is publicly
available on the internet. In the end, we curated a catalog

of 70 publicly available software visualization tools that we
used to populate our ontology.

The main contribution of this paper is twofold: (i) a
curated catalog of 70 available software visualization tools
and, (ii) a publicly available [10] software visualization
ontology.

The remainder of the paper is structured as follows:
Section II describes related work that focuses on practi-
cal applications of software visualizations and catalogs of
software visualization tools. Section III elaborates on the
main concepts of ontologies that are addressed in our
study. Section IV presents VISON, our software visualization
ontology. We first elaborate on a catalog of 70 available
software visualization tools, and then we discuss ontology
implementation details. Section VI concludes and presents
future work.

II. RELATED WORK

We group related work into two main themes. We first
discuss research that proposes approaches to practical ap-
plications of software visualization tools. Then, we elaborate
on studies that present catalogs of software visualization
tools.



A. Practical Applications of Software Visualizations

We observe that there are only a few studies that have
been carried out to fill the gap between existing software
visualizations and their practical applications. For instance,
Hassaine et al. [11] elaborate on an approach for generating
visualizations to support software maintenance tasks. Sfayhi
and Sahraoui [12] describe how to generate interactive
visualizations based on descriptions of code analysis tasks.
To this end, developers are required to describe the task
using a domain-specific language. Grammel et al. [13] in-
vestigate how novices construct information visualizations.
Based on the analysis of the usage of simple visualizations
such as charts and scatter plots, they identify a user’s need
for information visualization tools. However, we observe
that these visualizations provide limited support for the
analysis of development concerns. Three other studies [14]–
[16] investigate software development tasks for which visu-
alization tools have been proposed, however, we consider
that the tasks in these studies are at a too high-level for
developers to find an appropriate visualization to their
particular needs. Merino et al. [17] introduce a meta-
visualization approach of live visualization example objects
annotated with the type of development questions that
they can help investigate. In the visualization, developers
can identify suitable visualization examples by detecting
the surrounding keywords in the tag-iconic cloud-based
visualization. Instead, we propose the use of an ontology
that can encapsulate the semantics of the characteristics of
software visualizations. As opposed to the described studies,
our ontology-based approach leverages existing software
visualization tools by attempting to provide practitioners
a means for discovery.

B. Catalogs of Software Visualization Tools

Some studies examine software visualization tools, in
particular, to create guidelines for designing and evaluating
software visualizations. For example, Storey et al. [18] ex-
amine 12 software visualization tools and propose a frame-
work to evaluate software visualizations based on intent,
information, presentation, interaction, and effectiveness.
Sensalire et al. [19], [20] classify the features users require in
software visualization tools. To this end, they elaborate on
lessons learned from evaluating 20 software visualization
tools and identify dimensions that can help design an
evaluation and then analyze the results. In our investigation,
we do not attempt to provide a comprehensive catalog of
software visualization tools, but we seek to provide a means
to boost software visualization discoverability.

Some other studies present taxonomies that characterize
software visualization tools. Myers [21] classifies software
visualization tools based on whether they focus on code,
data, or algorithms; and whether they are implemented
in a static or dynamic fashion. Price et al. [22] present
a taxonomy of software visualization tools based on six
dimensions: scope, content, form, method, interaction, and
effectiveness. Maletic et al. [23] propose a taxonomy of five

dimensions to classify software visualization tools: tasks,
audience, target, representation, and medium. Schots et
al. [24] extend this taxonomy by adding two dimensions:
resource requirements of visualizations, and evidence of
their utility. Merino et al. [6] add needs as a main char-
acteristic of software visualization tools. In their context,
“needs” refers to the set of questions that are supported
by software visualization tools. Although we consider these
studies crucial for reflecting on the software visualization
domain, we think that practitioners may require a more
comprehensive support to identify a suitable tool. In par-
ticular, we believe that the semantics of concepts and their
relationships are often missing in taxonomies and other
classifications. The use of an ontology enforces the analysis
of these relationships, which can play an important role in
identifying a suitable visualization tools.

III. ONTOLOGY DESIGN CONSIDERATIONS

An ontology is a formalization of a model to describe
what is essential in a domain. That is, the ontology de-
scribes the concepts in the domain that can define various
properties and restrictions. Hence, an ontology populated
with a set of individual instances of the concepts is usually
referred to as a knowledge base. However, defining what
in the domain is modeled as a concept or an instance is
subjective. We opted to follow the widely used guidelines
proposed by Noy and McGuiness [25]. We now elaborate
on how we addressed their suggested steps to create our
software visualization ontology.

Step 1. Determine the domain and scope of the ontology.

• What is the domain that the ontology will cover?
Software visualizations.

• For what we are going to use the ontology? To allow
1) developers to find suitable visualizations for their
particular concerns and 2) researchers to reflect on the
software visualization domain.

• For what types of questions the information in the
ontology should provide answers? Questions that iden-
tify particular software visualizations that fulfill the
restrictions imposed by the context of the developers
needs.

• Who will use and maintain the ontology? Software
developers willing to adopt visualizations, and who
have used a visualization from the ontology and want
to add new supported questions to it. Also, researchers
who want to add new data to the ontology for a new
or an existing indexed visualization approach.

Step 2. Consider reusing existing ontologies. To the best
of our knowledge, this is the first ontology of software
visualizations.

Step 3. Enumerate important terms in the ontology. We
include the characteristics of software visualization and
their evaluations, as well as the classifications presented
in previous studies [6], [7].



Step 4. Define the concepts and the concept hierarchy. We
opt for a bottom-up development process in which we
start from instances of proposed software visualizations.
For each, we identify the various concepts involved in
its context (e.g., tasks, media, environments, frameworks,
questions, evaluation strategies). We define a hierarchy of
concepts following an “is-a” relation. When defining the
concepts, we avoid creating cycles and validate that sibling
concepts (i.e., at the same level in the hierarchy) correspond
to the same level of generality.

Step 5. Define the properties of concepts. We characterize
the concepts based on their properties. For instance, for
the concept medium we define the dimensionality (e.g.,
2D/3D) property. Then, when we define particular software
visualizations as instances in the ontology, we can specify
a medium and its dimensionality. Thus, researchers can
use the ontology to investigate, for instance, the correlation
between evaluation strategies and visualizations that use vi-
sualization techniques of a higher dimensionality displayed
on a medium of a lower dimensionality.

Step 6. Define the restrictions of the properties. We only use
restrictions to define disjoint concepts.

Step 7. Create instances. We create instances in the ontol-
ogy for each proposed software visualization in our data
set. Thus, visualization tools are the materialization of a
combination of property values of concepts.

IV. VISON: SOFTWARE VISUALIZATION ONTOLOGY

Certainly, an empty ontology that describes concepts
and relationships but has no instances cannot be useful
for practitioners. Therefore, before we describe an imple-
mentation of our ontology, we elaborate on the systematic
approach that we used to populate it. In the following, we
describe the process followed to collect a set of relevant
software visualization tools and their characteristics from
the research literature.

A. Software Visualization Tools

We built on the data sets from the proposed software
visualization approaches (presented in previous studies [6],
[7]). We reviewed the 387 software visualization papers
published in the VISSOFT/SOFTVIS conferences. Since the
goal of our investigation is to facilitate the discoverability of
software visualization tools, we included in our catalog only
software visualization tools that are: (C1) identified with a
name and (C2) publicly available on the internet.

We scanned each paper to identify a name for the
proposed software visualization approach. Then, we looked
for a URL where the tool might be available. In most cases
(where we did not find a URL in the paper), we searched
the Web using the name of the tool (C1). When we did
not find a positive result, we added “visualization” to the
search keywords. When we found an available tool (C2),
we checked the last time when the tool was updated.

Sometimes, we had to download the tool to look for the date
in the files. In the end, we found 70 software visualization
tools that fulfill the criteria and that we therefore included
in our catalog.

To characterize a tool we first identified its name and
whether it focuses on the structure, behavior, or evolution
of software systems [26]. Then, for the tools in each cate-
gory, we identified the development concern expressed by
the visualization. Instead of describing high-level tasks (e.g.,
reverse-engineering), we formulated descriptions with the
main keywords of the concerns (e.g., “reports that summa-
rize methods execution”), which we think can help devel-
opers relate their particular context to the one envisioned
by a proposed visualization tool. We also classified the
tools based on their execution environment, the employed
visualization technique, and the medium used to display
them. Finally, we reused the data presented in our previous
study [7] to highlight the maturity of tools that have proven
effective to support the target task through evaluations.

Table I presents our curated catalog of 70 available
software visualization tools classified by the software’s date
of last update, environment required to execute, employed
visualization technique, medium, and evidence of the vi-
sualization’s effectiveness through evaluations. Each tool’s
name is linked to a URL that contains instructions for
downloading and installation. Visualization tools are clas-
sified into software aspects: behavior, evolution, and struc-
ture.

1) Behavior: Several visualization tools support teaching
various subjects in computer science. ToonTalk [27] comes
with a visual language (similar to Scratch [28]) that is
to be used on the Web. The tool targets children as an
audience. We are not aware of any evaluation of ToonTalk.
However, the tool has been maintained over the last twelve
years, which shows evidence of maturity. Similarly, Tiled
Grace [29] offers a visual representation alternative to the
textual mode when programming in the Grace language.
Another mature tool is Clack [30], which helps students
of network courses understand the behavior of routers.
GraphWorks [31] focuses on supporting students of graph
theory, although it has not been maintained in the last few
years.

Some other tools are available to deal with understanding
the execution of programs for testing. The Eclipse plug-in
Jive [33] (shown in Figure 3) stands out since it has been
maintained for the last eleven years, which is congruent
with anecdotal evidence of its adoption. Even though all
of these tools are available, almost none of them have
been maintained lately. Amongst them, ProfVis [34] is the
only one that has proven effective in an experiment. A
few others—Jove [35] and Veld Visualizer [36]—have been
presented only through usage scenarios. Other tools that,
to our knowledge, have not been evaluated are Jive [37],
TraceVis [38], and Evolve [39]. Two tools—Beat [40] and
Synchrovis [41]—target the analysis of the behavior of con-



Table I: A curated catalog of 70 available software visualization tools. Tools are grouped by aspects: Behavior, Structure,
Evolution, and E.-S.-B. (their combination).

Asp. Tool’s Name Year Software Concern Environment Technique Med. Evaluation

B
eh

av
io

r

Clack 2018 Concepts for teaching networks in CS Java Node-link SCS Anecdotal
ToonTalk 2018 Concepts for teaching children to program Web Visual language SCS N/A
LTSView 2017 Transition systems Various 3D node-link SCS N/A
Gzoltar 2017 Fault localization for debugging Java progs. Java;Ecli. Icicle; treemap SCS Experiment
SIFEI 2017 Spreadsheets formulas for testing Excel Visual language SCS Experiment
SwarmDebugging 2017 Reuse knowledge of debugging sessions Eclipse Node-link SCS Usage Scen.
MethodExecutionReports 2017 Summarization of methods execution Java Charts SCS Experiment
Jive 2016 Execution traces of Java programs Eclipse Node-L; aug.src. SCS Anecdotal
Cerebro 2016 Execution traces for feature identification Web Node-link SCS Usage Scen.
Jsvee; Kelmu 2016 Concepts for teaching programming in CS Web Aug. source code SCS Usage Scen.
Kayrebt 2015 Control and data flow of the Linux kernel Linux Node-link SCS Usage Scen.
TiledGrace 2015 Programming in the Grace language Web Visual language SCS Experiment
jGrasp 2015 Concepts for teaching programming in CS Various Aug. source code SCS Exp.; Survey
xViZiT 2015 Spreadsheets formulas for testing Java Aug. source code SCS Usage Scen.
Beat 2014 Execution traces of Java concurrent prog. Eclipse Aug. source code SCS N/A
regVIS 2014 Assembler control-flow of regular expr. Windows Visual language SCS Experiment
GraphWorks 2013 Concepts for teaching graph theory in CS Java Anim. node-link SCS N/A
Synchrovis 2013 Execution traces of Java concurrent prog. Java City SCS Usage Scen.
PlanAni 2011 Concepts for teaching programming in CS Various Aug. source code SCS Experiment
ProfVis 2011 Execution traces of Java programs Java Node-link SCS Experiment
GEM 2011 Dynamic verification of MPI programs Eclipse Aug. source code SCS N/A
Dyvise 2009 Java heap to detect memory problems Java Icicle SCS Anecdotal
Jive 2007 Execution traces of Java programs Java Charts SCS Usage Scen.
Jove 2007 Execution traces of Java programs Java Charts SCS N/A
VeldVisualizer 2007 Execution traces of Java programs Java Pixel SCS N/A
TraceVis 2007 Execution traces based on call graphs Java Node-link SCS Usage Scen.
ALVIS 2006 Concepts for teaching programming in CS Windows Visual language SCS N/A
Evolve 2003 Execution traces of Java programs Java Pixel SCS Usage Scen.

St
ru

ct
u

re

PhysVis 2018 Software quality based on metric analysis VisualStudio 3D node-link I3D Usage Scen.
SpartanRefactoring 2018 Automatic code refactoring for readability Eclipse Aug. source code SCS N/A
Softwarenaut 2017 Architecture and dependency analysis VisualWorks Node-L.; treemap SCS N/A
CodeMetropolis 2017 Software quality based on metric analysis Java City SCS N/A
Explen 2017 Slice-based techs. for large metamodels Eclipse UML SCS N/A
iTraceVis 2017 Eye movement data of code reading Eclipse Heatmap SCS Experiment
CityVR 2017 Architecture based on metrics in OOP Pharo; U. City I3D Experiment
ExplorViz 2016 Architecture based on metric analysis Web City S/I Experiment
MetaVis 2016 Annotated visualization example objects Pharo Node-L.; tag cloud SCS Usage Scen.
CodeCity 2015 Software quality based on code smells Pharo City SCS Usage Scen.
Explora 2015 Software quality based on metric analysis Pharo Polymetric views SCS Usage Scen.
OrionPlanning 2015 Arch. modularization and consistency Pharo Node-link SCS Usage Scen.
VariabilityBlueprint 2015 Decomposition of models in FOP Pharo Polymetric views SCS Usage Scen.
StenchBlossom 2014 Software quality based on code smells Eclipse Aug. source code SCS Experiment
Visuocode 2014 Navigation and composition of systems Mac Aug. source code SCS N/A
SolidSDD 2014 Software quality based on code clones Windows HEB SCS Usage Scen.
SolidFX 2013 Architecture, metric and dependencies Windows HEB; pixel SCS Experiment
SeeIT3D 2013 Software architecture of Java systems Eclipse City SCS Experiment
AspectMaps 2013 Architecture of aspect-oriented programs Pharo Iconic; pixel SCS Experiment
VisMOOS 2010 Software architecture of Java systems Eclipse Node-link SCS N/A
Rigi 2009 Architecture and dependency analysis Various Node-link SCS N/A
Barrio 2009 Architecture and dependency analysis Eclipse Node-link SCS Usage Scen.

E
vo

lu
ti

o
n

FlaskDashboard 2017 Flask Python Web services performance Python Charts; heatmap SCS Usage Scen.
ObjectEvolutionBlueprint 2016 Object mutations Pharo Charts SCS Experiment
TypeV 2016 Abstract syntax trees of a system’s project Web Charts SCS Usage Scen.
SHriMP 2015 Hierarchical structures in OOP Eclipse Node-link SCS N/A
AGG 2013 Hierarchical structures in OOP Java Node-link SCS N/A
DEVis 2013 Technical documents Eclipse Spiral SCS Theoretical
ClonEvol 2013 Software quality based on code clones Windows HEB SCS Usage Scen.
SoftwareEvolutionStorylines 2010 Developers interactions in projects Processing StoryLines; charts SCS N/A
CVSgrab 2009 Interactions during debugging Windows Pixel SCS N/A
VisualCodeNavigator 2007 Source code changes Windows Aug. src.; pixel SCS Usage Scen.
CVSscan 2007 Source code changes Windows Pixel SCS Case Study
MetricView 2006 Hierarchical structures and metrics in OOP Windows 3D UML SCS N/A

E
.-

S.
-B

.

Mondrian 2018 Execution traces of feature dependencies Pharo Polymetric views SCS N/A
Getaviz 2018 Developing and evaluating software vis. Web City S/I N/A
CodeBubbles 2018 Debugging within CodeBubbles Ecli.; VS Visual language SCS N/A
CHIVE 2015 Feature location (reconnaissance) Eclipse 3D node-link SCS N/A
Graph 2015 Code dependencies Pharo Node-link SCS Usage Scen.
SpiderSense 2015 Execution traces of Java programs Web Pixel; treemap SCS Usage Scen.
Vizz3D 2013 Software architecture and quality Java 3D node-link SCS N/A
GEF3D 2010 Execution traces of Java programs Eclipse 3D UML SCS Usage Scen.

https://github.com/danwent/clack-graphical-router
https://github.com/ToonTalk
http://www.mcrl2.org/web/user_manual/tools/release/ltsview.html
http://www.gzoltar.com
https://github.com/kuleszdl/SIFEI
https://github.com/SwarmDebugging
https://github.com/fabian-beck/Method-Execution-Reports
http://www.cse.buffalo.edu/jive
http://spideruci.github.io/cerebro/
https://github.com/Aalto-LeTech/jsvee
https://github.com/lgeorget/Kayrebt-Dumper
http://homepages.ecs.vuw.ac.nz/~mwh/
http://www.jgrasp.org/
https://xvizit.wordpress.com/portfolio/metrics-based-spreadsheet-visualization/
https://github.com/pj/beat
http://www.sts.tu-harburg.de/projects/regvis/regvis.html
https://github.com/danmedani/GraphWorks
http://kieker-monitoring.net/download/synchrovis/
http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://ftaiani.ouvaton.org/7-software/profvis.html
http://formalverification.cs.utah.edu/ISP-Eclipse/
ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
http://cs.brown.edu/~spr/research/vizjive.html
http://cs.brown.edu/~spr/
http://cs.brown.edu/~spr/
http://www.win.tue.nl/~wstahw/projects/finished/PieterDeelen/index.html
http://eecs.wsu.edu/~veupl/soft/index.htm
http://www.sable.mcgill.ca/evolve/
https://bitbucket.org/physviz/physviz
https://marketplace.eclipse.org/content/spartan-refactoring-0
https://github.com/mircealungu/Softwarenaut
https://github.com/geryxyz/CodeMetropolis
https://github.com/arnobl/kompren
https://github.com/SERESLab/iTrace-Archive
http://scg.unibe.ch/research/cityvr
https://www.explorviz.net
http://smalltalkhub.com/#!/~merino/MetaVisualization
http://smalltalkhub.com/#!/~RichardWettel/CodeCity
http://scg.unibe.ch/research/explora
http://smalltalkhub.com/#!/~GustavoSantos/OrionChangesBrowser
http://smalltalkhub.com/#!/~abergel/Familiar
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
https://www.visuocode.com
http://www.solidsourceit.com/index.html
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
https://github.com/davidmr/seeit3d
https://pleiad.cl/research/software/aspectmaps
http://ftparmy.com/123154-vismoos.html
http://www.rigi.cs.uvic.ca/Pages/download.html
https://code.google.com/archive/p/barrio/
https://pypi.org/project/flask-monitoring-dashboard/1.8/
http://smalltalkhub.com/#!/~abergel/ObjectEvolutionBlueprint
https://github.com/mdfeist/TypeV
https://sourceforge.net/projects/chiselgroup/
http://www.user.tu-berlin.de/o.runge/AGG/WWW/down_V205/index.html
https://sites.google.com/site/junjizhi/devis_tool
http://www.cs.rug.nl/svcg/SoftVis/ClonEvol
https://code.google.com/archive/p/evolines/downloads
http://www.cs.rug.nl/svcg/SoftVis/VCN
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://www.win.tue.nl/san/projects/empanada/metricview/
http://agilevisualization.com/AgileVisualization/Mondrian/0202-Mondrian.html
https://github.com/getaviz/Getaviz
http://cs.brown.edu/~spr/codebubbles/
http://sourceforge.net/projects/chive/
http://smalltalkhub.com/#!/~abergel/GraphViewer
https://github.com/spideruci/sense-vis
http://vizz3d.sourceforge.net
https://www.eclipse.org/gef3d/


Figure 3: The Jive visualization tool to support the analysis
of behavior of concurrent Java applications. Figure taken
from the Web [32], and reused with permission © 2005
Jayaraman.

current Java programs, whereas the tool Cerebro [42] can be
used to identify software features from the runtime data.

Three visualization tools support debugging tasks based
on the visualization of program behavior. Dyvise [43] sup-
ports the detection of memory problems through the visu-
alization of the Java heap. GEM [44] (shown in Figure 4)
is a graphical explorer of MPI programs. Gzoltar [45] has
shown evidence of effectiveness through an experiment.
More recently, SwarmDebugging [46] is an Eclipse plug-in
that aims to reuse the knowledge of previous debugging
sessions to recommend locations in the code to define
breakpoints.

Four visualization tools support various aspects of teach-
ing computer science courses. PlanAni [47] is a program
animation system based on the concept of the roles of vari-
ables for teaching programming. ALVIS [48] enables algo-
rithm visualization to learning programming. jGrasp [49] is
an integrated development environment with visualizations
for teaching Java. Jsvee and Kelmu [50] are visualization
libraries to help instructors teach aspects of the runtime of
a program.

Other visualization tools deal with various particular
concerns. LTSView [51] is the oldest one, and it is still
being maintained. It supports the visualization of transition
systems that model the behavior of a software. SIFEI [52]
and xViZiT [53] focus on the visualization of spreadsheets,
whereas regVis [54] deals with the visualization of assembler
control-flow based on regular expressions. Method Execu-
tion Reports [55] embed word-size graphics in reports of
method executions. Kayrebt [56] provides support for activ-
ity diagram extraction and a visualization toolset designed
for the Linux codebase.

All the twenty-eight listed tools that focus on the behavior
of software systems are displayed on the standard computer
screen.

Figure 4: The GEM graphical explorer of MPI programs. ©
2010 IEEE. Reprinted, with permission, from Humprey et
al. [44].

2) Structure: Various other visualization tools focus on
particular concerns. MetaVis [17] can be used to visualize
annotated software visualization example objects. Orion-
Planning [57] includes visualization for modularization and
consistency of software projects. Explen [58] supports the
visualization of large metamodels. iTraceVis [59] has shown
evidence of being effective to investigate how developers
read code through the visualization of their eye gazes.
Spartan Refactoring allows automatic code refactoring in
the editor. Visuocode [60] supports the navigation and
composition of software systems.

Some visualization tools are available for supporting
architecture tasks such as SeeIT3D [61] and VisMOOS [62].
SolidFX [63], Softwarenaut [64] (shown in Figure 5),
Rigi [65], and Barrio [66] are suitable for the analysis of
structures and dependencies in object-oriented software
systems, AspectMaps [67] supports aspect-oriented pro-
grams, and Variability blueprint [68] does so for feature-
oriented programs.

Three tools support the visualization of software systems
quality based on the analysis of code smells. CodeCity [69]
(shown in Figure 6) and CodeMetropolis [70] visualize
software metrics based on the city metaphor. StenchBlos-
som [71] augments the Eclipse source code editor with
ambient visualizations. SolidSDD [72] supports visual clone
analysis. Explora [73] is a visualization tool for software
quality based on the analysis of metrics.

Twenty of the listed tools that focus on the structure of
software systems are displayed using the standard com-
puter screen. Only three use immersive virtual reality:
PhysVis [76], in which users visualize software metrics
shown as a physical particle system, ExplorViz [77], in
which developers obtain an overview of the architecture
of a system represented as a city, and CityVR [78], which



Figure 5: The Softwarenaut tool for visualization of hierar-
chical structures to support architecture tasks. Figure taken
from the Web [74], and reused with permission © 2006
Lungu.

Figure 6: The CodeCity tool, which visualizes the structure
of software systems to support the analysis of code smells.
Figure taken from the Web [75], and reused with permis-
sion © Wettel.

adds interactions and visualization of software metrics and
smells.

3) Evolution: A few tools support the visualization of
the evolution of hierarchical structures in object-oriented
programs such as AGG [79]. SHriMP [80] is the oldest one
and has been maintained for twelve years. MetricView [81]
presents a UML class diagram in 3D that is augmented
with software metrics. Others deal with various concerns.
CVSgrab [82] supports the visualization of the evolution
of interactions of developers during debugging, whereas
Visual Code Navigator [83] and CVSscan [84] (shown in
Figure 7) focus on source code changes. DEVis [85] is
used to visualize the evolution of technical documents.
Object Evolution Blueprint [86] deals with the evolution
of object mutations. Flask dashboard [87] supports the

Figure 7: The CVSscan visualization tool to support the
analysis of evolution for software maintenance. Figure taken
from the Web [91], and reused with permission © 2005
Telea.

Figure 8: The ClonEvol visualization tool, which helps de-
velopers analyze the evolution of code clones. © 2013 IEEE.
Reprinted, with permission, from Hanjalić [89].

visualization of the performance evolution over versions of
Web services implemented using the Flask framework for
Python. TypeV [88] allows one to analyze the evolution of
a system through the visualization of abstract syntax trees.
ClonEvol [89] (shown in Figure 8) visualizes the evolution
of code clones to improve the quality of systems. Software
Evolution Storylines [90] supports the visualization of the
interactions between developers during software project
evolution.

All the twelve listed tools that focus on the evolution of
software systems are displayed on the standard computer
screen.



Figure 9: The Graph domain-specific language for agile pro-
totyping of visualization of graph structures. Figure taken
from the Web [101], and reused with permission © 2014
Bergel.

4) Behavior/Evolution/Structure: Eight approaches corre-
spond to frameworks that can be used to visualize multiple
aspects of software systems. Four of them correspond to
active projects introduced several years ago. Mondrian [92]
is an engine for rapid lightweight visualization, which is
currently supported in the Roassal engine [93]. CodeBub-
bles [94] is an environment that encapsulates code snippets
into bubbles that can be reused through composition.
Vizz3D [95] is a framework for online configuration of
3D information visualizations that was originally available
for Eclipse, and later made available for Visual Studio.
CHIVE [96] is a framework for developing, in particular,
3D software visualizations.

GEF3D [97] is a framework for developing 2D/2.5D/3D
graphical editors. Graph [98] is a domain-specific language
for visualizing software dependencies as a graph (shown
in Figure 9). Getaviz [99] and SpiderSense [100] enable
the design, implementation, and evaluation of software
visualizations.

The framework Getaviz supports visualizations displayed
in immersive virtual reality, whereas the seven other frame-
works are limited to the standard computer screen.

The characterization presented in Table I contains only
part of the content of our data set described in previous
publications [6], [7]. Various other characteristics of soft-
ware visualizations can help developers willing to adopt
visualization to find a suitable approach. We believe that an
ontology can be suitable to implement such richer model.

B. Implementation Details

We implement our ontology using Protégé [102], a popu-
lar, free, and open-source framework for the design and
use of ontologies. In it, we define the concepts (in the
tool called classes), properties, restrictions, and instances.
Figure 10 shows the classes view in Protégé with a detail of

Figure 10: The classes view in Protégé showing the hierarchy
of concepts. We selected the name of the tools, which are
listed in the right pane.

Table II: Metrics of the software visualization ontology.

Property Metric Value

Metrics

Axiom 3,290
Logical axiom count 2,428
Declaration axiom count 862
Class count 150
Individual property count 20

Class axioms
SubClassOf 143
DisjointClasses 32

Object property axioms
SubObjectPropertyOf 1
ObjectPropertyDomain 2
ObjectPropertyRange 3

Individual axioms
ClassAssertion 696
ObjectPropertyAssertion 1,547
NegativeObjectPropertyAssertion 4

the hierarchy of concepts. As the concept, we selected the
name of the tools, which are listed in the right pane.

Figure 2 shows an overview of our implementation of the
concepts hierarchy using the OntoGraf visualization plug-in
included in Protégé.

We present the list of metrics available in the Ontology
metrics view of Protégé in Table II. Although we are aware
that many more individuals and relationships must be
added to the ontology to increase its usability, we observe
that our current implementation is not small according to a
survey of ontology metrics [103] that reported that ontolo-
gies on average contain 36.11 classes (standard deviation of
78.53) and 28.13 instances (standard deviation of 97.59).

V. USAGE SCENARIOS

We now demonstrate the ontology through two usage
scenarios.

Scenario 1. Find suitable visualization tools that support
the analysis of performance issues at runtime.



Figure 11: Scenario 1: Finding suitable visualization tools
that support the analysis of performance issues at runtime.

Figure 12: Scenario 2: Finding suitable free visualization
tools that support the visualization of source code.

Two concepts are defined in the specification of this
need: (1) the source of the data is the runtime and (2) the
problem dealt is the performance of the software system.
We translate this specification to the syntax specified by
the Ontology Web Language (OWL). Figure 11 shows the
resulting query and the suitable tools returned.

Scenario 2. Find visualization tools under a free license that
support the analysis of source code.

Similarly, the specification of this need defines two con-
cepts: (1) the license of the tool has to be free and (2) the
source of the data must be the source code of the software
system. Figure 12 shows the translated specification of the
need in the OWL syntax and the suitable tools returned.

Threats to Validity

In our paper selection process, we might have over-
looked papers from relevant venues that describe impor-
tant software visualization tools. We mitigated this bias
by selecting papers published in the two most frequently
cited venues dedicated to software visualization: SOFTVIS
and VISSOFT. We selected software visualization papers
published between 2002 to 2018 in SOFTVIS and VISSOFT.
The excluded papers from other venues or published before
2002 may affect the generalizability of our results. We
mitigated bias in the data collection procedure (which could
obstruct reproducibility of our investigation) by establishing
a protocol to extract the data of each paper equally, and

by maintaining a spreadsheet to keep records, normalize
terms, and identify anomalies.

VI. CONCLUSION

Although many software visualization approaches have
been proposed to deal with various software concerns,
usually developers are not aware of tools they can put
into action. In this paper, we presented our attempts to fill
the gap between existing software visualizations and their
practical applications: (1) We presented a curated catalog
of 70 available software visualization tools that we linked
to their repositories; we classified the tools into various
categories (e.g., task, data, environment) to help developers
who look for suitable visualizations. (2) We summarized
our results in developing VISON, our software visualization
ontology.

The ontology offers a rich model to encapsulate the
various characteristics of software visualizations. We re-
ported on our experience designing and implementing our
ontology of software visualizations in the Protégé tool. We
demonstrated how the ontology can be used through usage
scenarios. Our ontology is publicly available [10]. We expect
the ontology will help developers find suitable software
visualizations and researchers to reflect on the field. Users
of the ontology will be able to contribute, for instance, by
adding characteristics of new visualizations, or by adding
the results of evaluations of existing visualizations. In the
future, we plan to combine our previous work on meta-
visualization [17] with VISON.

ACKNOWLEDGMENTS

Merino and Weiskopf acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 251654672 – TRR 161. Nierstrasz
thanks the Swiss National Science Foundation for its finan-
cial support of “Agile Software Assistance” (project 181973).
The authors thank Craig Anslow and Mircea Lungu for
valuable comments on a previous version of the paper.

REFERENCES

[1] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of FSE. ACM,
2006, pp. 23–34.

[2] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collo-
cated software development teams,” in Proceedings of ICSE. IEEE
Computer Society, 2007, pp. 344–353.

[3] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in Proceedings of ICSE. ACM, 2010,
pp. 175–184.

[4] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Proceeedings of PLATEAU. ACM, 2010, pp. 8:1–8:6.

[5] L. Merino, M. Ghafari, and O. Nierstrasz, “Towards actionable
visualisation in software development,” in Proceedings of VISSOFT.
IEEE, 2016.

[6] ——, “Towards actionable visualization for software developers,”
Journal of Software: Evolution and Process, vol. 30, no. 2, p. e1923,
2017.

[7] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A systematic
literature review of software visualization evaluation,” Journal of
Systems and Software, vol. 144, pp. 165–180, 2018.



[8] L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming issues of 3D
software visualization through immersive augmented reality,” in
Proceedings of VISSOFT. IEEE, 2018, pp. 54–64.

[9] T. R. Gruber, “Toward principles for the design of ontologies used
for knowledge sharing?” International Journal of Human-Computer
Studies, vol. 43, no. 5-6, pp. 907–928, 1995.

[10] L. Merino, E. Kozlova, O. Nierstrasz, and D. Weiskopf, “Artifact:
VISON: An Ontology-Based Approach for Software Visualization
Tool Discoverability,” Jul. 2019. [Online]. Available: https://doi.org/
10.5281/zenodo.3268626

[11] S. Hassaine, K. Dhambri, H. Sahraoui, and P. Poulin, “Generating
visualization-based analysis scenarios from maintenance task de-
scriptions,” in Proceedings of VISSOFT. IEEE, 2009, pp. 41–44.

[12] A. Sfayhi and H. Sahraoui, “What you see is what you asked for: An
effort-based transformation of code analysis tasks into interactive
visualization scenarios,” in Proceedings of SCAM. IEEE, 2011, pp.
195–203.

[13] L. Grammel, M. Tory, and M.-A. Storey, “How information visualiza-
tion novices construct visualizations,” Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 943–952, 2010.

[14] K. Gallagher, A. Hatch, and M. Munro, “A framework for software
architecture visualization assessment,” in Proceedings of VISSOFT.
IEEE Computer Society, 2005, pp. 76–81.

[15] J. Paredes, C. Anslow, and F. Maurer, “Information visualization for
agile software development,” in Proceedings of VISSOFT. IEEE, 2014,
pp. 157–166.

[16] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of
software architecture visualization techniques,” Journal of Systems
and Software, vol. 94, pp. 161–185, 2014.

[17] L. Merino, M. Ghafari, O. Nierstrasz, A. Bergel, and J. Kubelka,
“MetaVis: Exploring actionable visualization,” in Proceedings of VIS-
SOFT. IEEE, 2016, pp. 151–155.

[18] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the use of
visualization to support awareness of human activities in software
development: a survey and a framework,” in Proceedings of SOFTVIS.
ACM, 2005, pp. 193–202.

[19] M. Sensalire, P. Ogao, and A. Telea, “Classifying desirable features of
software visualization tools for corrective maintenance,” in Proceed-
ings of SOFTVIS. ACM, 2008, pp. 87–90.

[20] ——, “Evaluation of software visualization tools: Lessons learned,”
in Proceedings of VISSOFT. IEEE, 2009, pp. 19–26.

[21] B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden, D. Kosbie,
E. Pervin, A. Mickish, and P. Marchal, “Garnet: Comprehensive sup-
port for graphical highly-interactive user interfaces,” IEEE Computer,
vol. 23, no. 11, pp. 71–85, 1990.

[22] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy of
software visualization,” Journal of Visual Languages and Computing,
vol. 4, no. 3, pp. 211–266, 1993.

[23] J. I. Maletic, A. Marcus, and M. Collard, “A task oriented view of
software visualization,” in Proceedings of VISSOFT. IEEE, 2002, pp.
32–40.

[24] M. Schots and C. Werner, “Using a task-oriented framework to
characterize visualization approaches,” in Proceedings of VISSOFT.
IEEE, 2014, pp. 70–74.

[25] N. F. Noy, D. L. McGuinness et al., “Ontology development 101: A
guide to creating your first ontology,” 2001, Stanford Knowledge Sys-
tems Laboratory Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880.

[26] S. Diehl, Software Visualization. Berlin Heidelberg: Springer-Verlag,
2007.

[27] K. Kahn, “Time travelling animated program executions,” in Pro-
ceedings of SOFTVIS. ACM, 2006, pp. 185–186.

[28] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and M. Resnick,
“Scratch: A sneak preview,” in Proceedings of C5. IEEE Computer
Society, 2004, pp. 104–109.

[29] M. Homer and J. Noble, “A tile-based editor for a textual program-
ming language,” in Proceedings of VISSOFT. IEEE, 2013, pp. 1–4.

[30] D. Wendlandt, M. Casado, P. Tarjan, and N. McKeown, “The clack
graphical router: visualizing network software,” in Proceedings of
SOFTVIS. ACM, 2006, pp. 7–15.

[31] D. Medani, G. Haggard, C. Bassett, P. Koch, N. Lampert, T. Medlock,
S. Pierce, R. Smith, and A. Yehl, “Graph works-pilot graph theory
visualization tool,” in Proceedings of SOFTVIS. ACM, 2010, pp. 205–
206.

[32] B. Jayaraman, “JIVE,” Jul. 2019. [Online]. Available: https://cse.
buffalo.edu/jive/images/home/JIVE-UI.png

[33] P. Gestwicki and B. Jayaraman, “Methodology and architecture of
jive,” in Proceedings of SOFTVIS. ACM, 2005, pp. 95–104.

[34] S. Lin, F. Taïani, T. C. Ormerod, and L. J. Ball, “Towards anomaly
comprehension: using structural compression to navigate profiling
call-trees,” in Proceedings of SOFTVIS. ACM, 2010, pp. 103–112.

[35] S. P. Reiss, “The paradox of software visualization,” in Proceedings
of VISSOFT. IEEE, 2005, pp. 59–63.

[36] ——, “Visualizing program execution using user abstractions,” in
Proceedings of SOFTVIS. ACM, 2006, pp. 125–134.

[37] ——, “Visualizing Java in action,” in Proceedings of SOFTVIS. ACM,
2003, pp. 57–66.

[38] P. Deelen, F. van Ham, C. Huizing, and H. van de Watering, “Visu-
alization of dynamic program aspects,” in Proceedings of VISSOFT,
2007, pp. 39–46.

[39] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. Hendfren,
and C. Verbrugge, “EVolve: an open extensible software visualization
framework,” in Proceedings of ACM, 2003, pp. 37–49.

[40] P. Johnson and S. Marsland, “Beat: a tool for visualizing the exe-
cution of object orientated concurrent programs,” in Proceedings of
SOFTVIS. ACM, 2010, pp. 225–226.

[41] J. Waller, C. Wulf, F. Fittkau, P. Döhring, and W. Hasselbring, “Syn-
chroVis: 3D visualization of monitoring traces in the city metaphor
for analyzing concurrency,” in Proceedings of VISSOFT. IEEE, 2013,
pp. 1–4.

[42] V. K. Palepu and J. A. Jones, “Revealing runtime features and
constituent behaviors within software,” in Proceedings of VISSOFT.
IEEE, 2015, pp. 86–95.

[43] S. P. Reiss, “Visualizing the Java heap to detect memory problems,”
in Proceedings of VISSOFT. IEEE, 2009, pp. 73–80.

[44] A. Humphrey, C. Derrick, G. Gopalakrishnan, and B. Tibbitts, “Gem:
Graphical explorer of MPI programs,” in Proceedings of ICPP. IEEE,
2010, pp. 161–168.

[45] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5 visualizations
in software fault localization,” in Proceedings of VISSOFT. IEEE,
2013, pp. 1–10.

[46] F. Petrillo, G. Lacerda, M. Pimenta, and C. Freitas, “Visualizing inter-
active and shared debugging sessions,” in Proceedings of VISSOFT.
IEEE, 2015, pp. 140–144.

[47] J. Sajaniemi and M. Kuittinen, “Program animation based on the
roles of variables,” in Proceedings of SOFTVIS. ACM, 2003, pp. 7–
16.

[48] C. D. Hundhausen, J. L. Brown, and S. Farley, “Adding procedures
and pointers to the ALVIS algorithm visualization software: a prelim-
inary design,” in Proceedings of SOFTVIS. ACM, 2006, pp. 155–156.

[49] J. H. Cross II and T. D. Hendrix, “jGRASP: an integrated development
environment with visualizations for teaching Java in CS1, CS2, and
beyond,” Journal of Computing Sciences in Colleges, vol. 23, no. 2,
pp. 170–172, 2007.

[50] T. Sirkiä, “Jsvee & Kelmu: Creating and tailoring program anima-
tions for computing education,” Journal of Software: Evolution and
Process, vol. 30, no. 2, p. e1924, 2018.

[51] B. Ploeger and C. Tankink, “Improving an interactive visualization
of transition systems,” in Proceedings of SOFTVIS. ACM, 2008, pp.
115–124.

[52] D. Kulesz, J. Scheurich, and F. Beck, “Integrating anomaly diagnosis
techniques into spreadsheet environments,” in Proceedings of VIS-
SOFT. IEEE, 2014, pp. 11–19.

[53] K. Hodnigg and M. Pinzger, “XVIZIT: Visualizing cognitive units in
spreadsheets,” in Proceedings of VISSOFT. IEEE, 2015, pp. 210–214.

[54] S. Toprak, A. Wichmann, and S. Schupp, “Lightweight structured vi-
sualization of assembler control flow based on regular expressions,”
in Proceedings of VISSOFT. IEEE, 2014, pp. 97–106.

[55] F. Beck, H. A. Siddiqui, A. Bergel, and D. Weiskopf, “Method execu-
tion reports: Generating text and visualization to describe program
behavior,” in Proceedings of VISSOFT. IEEE, 2017, pp. 1–10.

[56] L. Georget, F. Tronel, and V. V. T. Tong, “Kayrebt: An activity
diagram extraction and visualization toolset designed for the Linux
codebase,” in Proceedings of VISSOFT. IEEE, 2015, pp. 170–174.

[57] G. Santos, N. Anquetil, A. Etien, S. Ducasse, and M. T. Valente, “Ori-
onPlanning: Improving modularization and checking consistency on
software architecture,” in Proceedings of VISSOFT. IEEE, 2015, pp.
190–194.

https://doi.org/10.5281/zenodo.3268626
https://doi.org/10.5281/zenodo.3268626
https://cse.buffalo.edu/jive/images/home/JIVE-UI.png
https://cse.buffalo.edu/jive/images/home/JIVE-UI.png


[58] A. Blouin, N. Moha, B. Baudry, and H. Sahraoui, “Slicing-based
techniques for visualizing large metamodels,” in Proceedings of
VISSOFT. IEEE, 2014, pp. 25–29.

[59] B. Clark and B. Sharif, “iTraceVis: Visualizing eye movement data
within Eclipse,” in Proceedings of VISSOFT. IEEE, 2017, pp. 22–32.

[60] D. R. Bradley and I. J. Hayes, “Visuocode: A software development
environment that supports spatial navigation and composition.” in
Proceedings of VISSOFT. IEEE, 2013, pp. 1–4.

[61] B. Sharif, G. Jetty, J. Aponte, and E. Parra, “An empirical study
assessing the effect of SeeIT 3D on comprehension,” in Proceedings
of VISSOFT. IEEE, 2013, pp. 1–10.

[62] A. Fronk, A. Bruckhoff, and M. Kern, “3D visualisation of code
structures in Java software systems,” in Proceedings of SOFTVIS.
ACM, 2006, pp. 145–146.

[63] A. Telea and D. Auber, “Code flows: Visualizing structural evolution
of source code,” Computer Graphic Forum, vol. 27, no. 3, pp. 831–
838, 2008.

[64] M. Lungu, M. Lanza, and T. Gîrba, “Package patterns for visual
architecture recovery,” in Proceedings of CSMR. IEEE, 2006, pp.
185–196.

[65] H. M. Kienle and H. A. Muller, “Requirements of software visual-
ization tools: A literature survey,” in Proceedings of VISSOFT. IEEE
Computer Society, 2007, pp. 2–9.

[66] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow,
“Cluster analysis of Java dependency graphs,” in Proceedings of
SOFTVIS. ACM, 2008, pp. 91–94.

[67] J. Fabry and A. Bergel, “Design decisions in AspectMaps,” in Pro-
ceedings of VISSOFT. IEEE, 2013, pp. 1–4.

[68] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser, “A visual
support for decomposing complex feature models,” in Proceedings
of VISSOFT. IEEE, 2015, pp. 76–85.

[69] R. Wettel and M. Lanza, “Program comprehension through software
habitability,” in Proceedings of ICPC. IEEE, 2007, pp. 231–240.

[70] G. Balogh and Á. Beszédes, “CodeMetropolis – a Minecraft based
collaboration tool for developers,” in Proceedings of VISSOFT. IEEE,
2013, pp. 1–4.

[71] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Proceedings of SOFTVIS. ACM, 2010, pp. 5–14.

[72] L. Voinea and A. C. Telea, “Visual clone analysis with SolidSDD,” in
Proceedings of VISSOFT. IEEE, 2014, pp. 79–82.

[73] L. Merino, M. Lungu, and O. Nierstrasz, “Explora: A visualisation tool
for metric analysis of software corpora,” in Proceedings of VISSOFT.
IEEE, 2015, pp. 195–199.

[74] M. Lungu, “Softwarenaut,” Jul. 2019. [On-
line]. Available: https://cloud.githubusercontent.com/assets/
464519/21022349/9ec2f748-bd7c-11e6-87ad-29c5332caba9.png

[75] R. Wettel, “CodeCity,” Jul. 2019. [Online]. Available: https:
//wettel.github.io/pics/wof/jmol.png

[76] S. Scarle and N. Walkinshaw, “Visualising software as a particle
system,” in Proceedings of VISSOFT. IEEE, 2015, pp. 66–75.

[77] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visual-
ization for comprehending large software landscapes: The ExplorViz
approach,” in Proceedings of VISSOFT. IEEE, 2013, pp. 1–4.

[78] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Game-
ful software visualization,” in Proceedings of ICSME. IEEE, 2017, pp.
633–637.

[79] S. Jucknath-John and D. Graf, “Icon graphs: visualizing the evolution
of large class models,” in Proceedings of SOFTVIS. ACM, 2006, pp.
167–168.

[80] R. Lintern, J. Michaud, M.-A. Storey, and X. Wu, “Plugging-in visu-
alization: experiences integrating a visualization tool with Eclipse,”
in Proceedings of SOFTVIS. ACM, 2003, pp. 47–56.

[81] M. Termeer, C. F. Lange, A. Telea, and M. R. Chaudron, “Visual
exploration of combined architectural and metric information,” in
Proceedings of VISSOFT. IEEE, 2005, pp. 1–6.

[82] L. Voinea and A. Telea, “How do changes in buggy Mozilla files
propagate?” in Proceedings of SOFTVIS, vol. 4, no. 05, 2006, pp. 147–
148.

[83] W. De Pauw, S. Krasikov, and J. F. Morar, “Execution patterns for
visualizing web services,” in Proceedings of SOFTVIS. ACM, 2006,
pp. 37–45.

[84] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visualization of
code evolution,” in Proceedings of SOFTVIS, 2005, pp. 47–56.

[85] J. Zhi and G. Ruhe, “DEVis: A tool for visualizing software document
evolution,” in Proceedings of VISSOFT. IEEE, 2013, pp. 1–4.

[86] R. Schulz, F. Beck, J. W. C. Felipez, and A. Bergel, “Visually exploring
object mutation,” in Proceedings of VISSOFT. IEEE, 2016, pp. 21–25.

[87] P. Vogel, T. Klooster, V. Andrikopoulos, and M. Lungu, “A low-effort
analytics platform for visualizing evolving Flask-based Python web
services,” in Proceedings of VISSOFT. IEEE, 2017, pp. 109–113.

[88] M. D. Feist, E. A. Santos, I. Watts, and A. Hindle, “Visualizing project
evolution through abstract syntax tree analysis,” in Proceedings of
VISSOFT. IEEE, 2016, pp. 11–20.

[89] A. Hanjalić, “ClonEvol: Visualizing software evolution with code
clones,” in Proceedings of VISSOFT, 2013, pp. 1–4.

[90] M. Ogawa and K.-L. Ma, “Software evolution storylines,” in Proceed-
ings of SOFTVIS. ACM, 2010, pp. 35–42.

[91] A. Telea, “CVSscan,” Jul. 2019. [Online]. Available:
https://www.researchgate.net/profile/Stephan_Diehl2/publication/
221555679/figure/fig46/AS:669038149640208@1536522533700/
CVSScan-evolution-of-a-single-file.png

[92] M. Meyer, T. Gîrba, and M. Lungu, “Mondrian: An agile visualization
framework,” in Proceedings of SOFTVIS. ACM, 2006, pp. 135–144.

[93] I. Fernandez, A. Bergel, J. P. S. Alcocer, A. Infante, and T. Gîrba,
“Glyph-based software component identification,” in Proceedings of
ICPC, 2016, pp. 1–10.

[94] S. P. Reiss, “The challenge of helping the programmer during
debugging,” in Proceedings of VISSOFT. IEEE, 2014, pp. 112–116.

[95] T. Panas, R. Lincke, and W. Löwe, “Online-configuration of software
visualization with Vizz3D,” in Proceedings of SOFTVIS, 2005, pp. 173–
182.

[96] B. Cleary, A. Le Gear, C. Exton, and J. Buckley, “A combined software
reconnaissance & static analysis Eclipse visualisation plug-in,” in
Proceedings of VISSOFT. IEEE, 2005, pp. 1–2.

[97] J. von Pilgrim and K. Duske, “GEF3D: a framework for two-, two-
and-a-half-, and three-dimensional graphical editors,” in Proceed-
ings of SOFTVIS. ACM, 2008, pp. 95–104.

[98] A. Bergel, S. Maass, S. Ducasse, and T. Gîrba, “A domain-specific
language for visualizing software dependencies as a graph,” in
Proceedings of VISSOFT, 2014, pp. 45–49.

[99] D. Baum, J. Schilbach, P. Kovacs, U. Eisenecker, and R. Müller,
“GETAVIZ: generating structural, behavioral, and evolutionary views
of software systems for empirical evaluation,” in Proceedings of
VISSOFT. IEEE, 2017, pp. 114–118.

[100] N. H. Reddy, J. Kim, V. K. Palepu, and J. A. Jones, “SPIDER SENSE:
Software-engineering, networked, system evaluation,” in Proceedings
of VISSOFT. IEEE, 2015, pp. 205–209.

[101] A. Bergel, “GRAPH,” Jul. 2019. [Online]. Available: http:
//agilevisualization.com/img/circle.png

[102] M. A. Musen, “The Protégé project: a look back and a look forward,”
AI Matters, vol. 1, no. 4, pp. 4–12, 2015.

[103] M. Sicilia, D. Rodríguez, E. García-Barriocanal, and S. Sánchez-
Alonso, “Empirical findings on ontology metrics,” Expert Systems
with Applications, vol. 39, no. 8, pp. 6706–6711, 2012.

https://cloud.githubusercontent.com/assets/464519/21022349/9ec2f748-bd7c-11e6-87ad-29c5332caba9.png
https://cloud.githubusercontent.com/assets/464519/21022349/9ec2f748-bd7c-11e6-87ad-29c5332caba9.png
https://wettel.github.io/pics/wof/jmol.png
https://wettel.github.io/pics/wof/jmol.png
https://www.researchgate.net/profile/Stephan_Diehl2/publication/221555679/figure/fig46/AS:669038149640208@1536522533700/CVSScan-evolution-of-a-single-file.png
https://www.researchgate.net/profile/Stephan_Diehl2/publication/221555679/figure/fig46/AS:669038149640208@1536522533700/CVSScan-evolution-of-a-single-file.png
https://www.researchgate.net/profile/Stephan_Diehl2/publication/221555679/figure/fig46/AS:669038149640208@1536522533700/CVSScan-evolution-of-a-single-file.png
http://agilevisualization.com/img/circle.png
http://agilevisualization.com/img/circle.png

