Separating Concerns with First-Class Namespaces*

Oscar Nierstrasz, Franz Achermann
Software Composition Group, University of Bern
www.ilam.unibe.ch/~scg.

Abstract

As applications evolve, it becomes harder and harder to separate independent concerns. Small
changes to a software system increasingly affect different parts of the source code. AOP and related
approaches offer various ways to separate concerns into concrete software artifacts, but what is the
essence of this process? We claim that first-class namespaces — which we refer to as forms — offer a
suitable foundation for separating concerns by offering simple yet expressive mechanisms for defining
composable abstractions. We demonstrate how forms help a programmer to separate concerns by
means of practical examples in Piccola, an experimental composition language.

1 Introduction

It is well-accepted that complex software systems should be developed as sets of manageable pieces,
where each piece ideally addresses a single concern. These pieces are then composed together to achieve
the desired behavior of the application. However, carving a complex system up into suitable pieces, may
be far from trivial since concerns typically overlap and interfere. Tarr et al. [32] argue that we cannot
achieve this separation in a single-paradigm language due to the single dominant dimension of separation
supported by the language. For instance, while object-oriented programming separates everything into
objects, concerns like persistence and synchronization are not naturally represented as objects, so they
get tangled into several objects in the application. The fact that each concern cannot be factored out
into a single abstraction leads to components incorporating several varying aspects. This hinders their
reusability in other contexts.

AOP and related approaches offer various techniques and mechanisms that make it easier to factor
out concerns into composable software artifacts [13]. Many of these approaches attempt to augment a
host language with features or tools that compensate for the shortcomings of the dominant paradigm.

We propose, instead, to ask a different question, namely:

Is there a simple programming model that can serve as a good basis for defining arbitrary
kinds of composable abstractions?

Such a model should be capable of expressing not only conventional programming abstractions, such
as procedures, objects, classes and modules, but also higher-order abstractions, such as (for example)
mixins, metaclasses, wrappers, and coordination abstractions.

As a typical example, consider a generic readers/writers synchronization policy. Although it is rea-
sonably straightforward in most programming languages to implement such a policy for a given data
abstraction, it can be difficult to impossible to implement a generic policy as a composable software
artifact that can be applied in a straightforward way to any existing data abstraction.

Furthermore, we seek to raise the level of abstraction so that instead of “wiring” software components
together at a low level, we are able to plug them together using high-level connectors. A compositional

*In Aspect-Oriented Software Development, R.E. Filman, T. Elrad, S. Clarke and M. Aksit (Eds.), pp. 243-259, Addison-
Wesley, 2005.

2 PICCOLA 2

style (also referred to in the literature as an “architectural style” [28]) specifies a set of component inter-
faces, connectors to plug together components, and rules governing valid compositions of components.
In short, we seek to make the way in which software systems are composed explicit and manipulable so
they can be easily understood and adapted.

We propose forms as a suitable foundation for developing composable software abstractions. Forms
unify extensible records, services and first-class namespaces. On one hand they offer a familiar mechanism
for modeling various kinds of data abstractions as records. On the other hand they offer a fine degree
of control in manipulating, extending and composing the namespaces available to running applications.
A service is just an abstraction over a form, that is, a function that takes a form as an argument and
returns a form. Since a service is also a form, forms offer a suitable basis for modeling high-order software
abstractions. Forms can thus be conveniently used to model composable namespaces that both provide
and require sets of services.

Piccola [4, 23] is an experimental composition language based on forms. In addition to forms and
services, Piccola provides agents (concurrent processes) and channels (unbounded buffers providing non-
blocking send and blocking receive services) as core mechanisms. With these basic mechanisms, Piccola
can be used to easily express the kind of composable abstractions we are targeting.

In Section 2 we provide a brief overview of Piccola and its design rationale. In particular, we show
how forms, agents and channels support a layered approach to defining compositional styles. In Section
3 we present a non-trivial example of composing mixin layers with forms. In Section 4 we briefly survey
some of the ways in which forms support software composition. We conclude in Section 5 with some
remarks concerning the current status of Piccola and ongoing work.

2 Piccola

In this section we give an overview of the layered architecture of Piccola itself, a brief example of generic
wrappers in Piccola, and an overview of the kinds of composition abstractions that can be conveniently
expressed in Piccola.

Piccola is designed to be a composition language, rather than a general purpose programming lan-
guage. As such, it reduces software composition to a bare minimum of core mechanisms, that is, forms,
agents and channels, which can then be used to define higher-level abstractions.

Forms. A form is an extensible record. For example, a=(x=1,y=2) defines a form a that binds labels x
and y. We can project a label in a form, such as w=a.x, or we can extend a form with new bindings;
for example, b=(a,z=3) extends a with a binding for label z. A form is also a namespace; for
example, (’a,x+y) evaluates x+y in the namespace a.

Services. A service is a function over forms. println is a standard Piccola service that prints its
argument form. newPoint p: (x=p.x,y=p.y) takes a form p as its argument and returns a form
that extracts just the x and y bindings from p. Note that a service is also a form, so we can bind
labels to services, extend services with bindings, or extend forms with services. (A service can be
thought of as a form with single “call” label, just as a function object in C++ is an object with
an operator () member function.)

Agents. The standard Piccola service run invokes the do service of its argument as a new, concurrent
agent. (The code run(do:println "hello") creates a new agent that asynchronously prints
“hello”.)

Channels. A channel is an unbounded buffer that can be used to synchronize agents. newChannel ()
returns a form with services send and receive. send is non-blocking, while receive blocks if
there is no data on the channel. As a simple example, stop:newChannel () .receive() is a service
that causes an agent to stop dead (i.e., it tries to read from a channel that no other agent ever
writes to).

2 PICCOLA 3

Applications Components + Scripts

Compositional styles | Streams, events, GUI composition, ...

Standard libraries Basic coordination abstractions, built-in types
Piccola Operator syntax, introspection, component wrappers
Piccola-calculus Forms, agents, channels, services

Table 1: Piccola Layers

The formal semantics of Piccola is compactly expressed with the help of the Piccola-calculus [2, 22], a
process calculus that extends Milner’s m-calculus [19] with forms and services.
With these mechanisms, Piccola can express three complementary kinds of composition:

1. Namespace composition. A form can be extended with another form, yielding a new form.

2. Functional composition. Services can be invoked with a form as an argument, yielding a form as a
result.

3. Agent composition. Concurrent agents can be composed and coordinated by means of shared
channels.

2.1 Piccola Layers

Piccola is intended to be used in a layered fashion (see Table 1) to ultimately support a paradigm of
“scripting” applications together from a set of software components [6]. In the ideal case, components
constitute a kind of “component algebra” in which operators connect components, and again yield
components. Scripts, then, compose components, yielding up bigger components.

At the lowest level, the Piccola run-time system provides nothing but the core mechanisms of the Pic-
cola-calculus. Programming at this level would be like programming in a concurrent assembly language.

The next level defines the Piccola language. In Piccola, everything is a form, so Piccola hides the
operators of the Piccola-calculus and models everything in terms of forms and services. There is no
special syntax to express agents and channels, just standard services run and newChannel. Mechanisms
for defining infix and prefix operators are also provided, which is convenient for specifying component
connectors as compositional operators. More importantly, reflective mechanisms are provided for explor-
ing forms, wrapping them, and wrapping existing components from a host programming language (i.e.,
Java or Squeak [11], in the current Piccola implementations).

When Piccola starts up, a number of standard libraries are loaded. At this level, Piccola provides
access to a number of built-in types (i.e., Booleans, numbers, strings, collections, file streams, and so
on). In most cases, these standard types wrap existing Java components to provide them with more
convenient compositional interfaces. The standard libraries also provide a number of standard services
that implement various common control structures in terms of forms, agents and channels. Exception
handling, for example, is implemented using two agents to run the try and catch blocks, and a channel
to coordinate them in case an exception is raised [6].

On top of the standard libraries, one may define various compositional styles that abstract away
from the low-level wiring of the Piccola-calculus, and provide instead higher level plugs, or connectors
corresponding to a problem domain. A simple GUI style, for example, that wraps Java AWT and Swing
components can easily be defined in Piccola. Furthermore, the style gives us a simple component algebra
in which a composition of GUI components is again a GUI component

Finally, at the top level, one may use these styles to script together components. For example, the
GUI style is used to build an interactive console for developing and testing JPiccola scripts (see Figure

1).

2 PICCOLA 4

6 O O Piccola Console
File Edit Run Tools

NECIEIEERER]

h 113
e —

Figure 1: The JPiccola console — scripted from wrapped Java GUI components

2.2 Generic Wrappers

Let us first consider the problem of defining a generic wrapper. wrapPrePost wraps each service of its
argument form by invoking pre- and post-services before and after the original body. The implementation
uses the built-in service forEachLabel to iterate over the labels of the argument.

wrapPrePost Arg:

’wrappedForm = newVar () # local variable
forEachLabel
form = Arg.form
do Label: # wrap each service in Arg.form
wrappedForm.set # update the result
’wrappedService Args:
Arg.pre() # invoke the pre-service
Label.project(form) (Args) # invoke original service
Arg.post() # invoke the post-service
wrappedForm.get () # get the result so far
Label.bind(wrappedService) # extend tt with the new binding
wrappedForm.get () # return the wrapped form

Although detailed explanation of the code is beyond the scope of this discussion (please see the JPiccola
Guide for details [23]), a few observations may help the reader to follow this example. wrapPrePost is a
service being defined that takes a single Arg form as its argument. Arg is expected to provide bindings for
pre, post and form. wrappedForm is a local binding (made local by the Piccola > operator). newVar is a
standard service that returns a persistent variable with get and set services. forEachLabel is another
standard service, whose argument is the indented form on the following lines. This argument provides
bindings for form (a value) and do (a service). forEachLabel generates a first-class representation of
each label bound in the form. A first-class label is a form that represents a label and provides services
such as bind, project and restrict. The first-class labels are use to reflect over the structure of the
argument form and build a new, wrapped representation.

A key point to notice is that all services in Piccola are monadic; that is, they always take a single
form as an argument, rather than a tuple of forms. This makes the task of wrapping services much
simpler than it would be in most programming languages.

3 AN EXAMPLE: MIXIN LAYER COMPOSITION 5

We could now use this generic wrapper to wrap a component with an arbitrary synchronization policy.
Suppose, for example, we define semaphores like this:

newSemaphore:
’sem = newChannel()
p: sem.receive()
v: sem.send()

v ()
and a mutual exclusion synchronization policy like this:

newMutexPolicy:
’sync = newSemaphore ()
pre: sync.p(Q)
post: sync.v()

Now if F is some form, we can wrap each of its services with a mutual exclusion policy as follows:

MutexF = wrapPrePost
form = F
newMutexPolicy()

A readers/writer synchronization policy could be similarly defined. In this case, however, we must
distinguish between reader and writer services, and use the wrapPrePost service to wrap them separately
with their own policies:

bindRWPolicy Arg:
wrapPrePost
form = Arg.reader
pre Arg.policy.preR
post = Arg.policy.postR
wrapPrePost
form = Arg.writer
pre = Arg.policy.preW
post = Arg.policy.postW

We must now explicitly list the services to be wrapped:

RWsynchedF = bindRWPolicy

policy = newRWPolicy() # create reader writer policy
reader = (rl1 = F.rl, r2 = F.r2) # r1 and r2 are reader methods
writer = (w = F.w) # w is a writer method

Generic wrappers play an important part in compositional styles, since they constitute a form of
reusable “glue code” that can adapt components to different styles. Automatically invoked wrappers
are used in Piccola, for example, to adapt Java components to compositional styles. Java AWT and
Swing components, for example, are automatically wrapped when they are accessed by a Piccola script,
allowing them to be connected using the GUI style defined in Piccola.

3 An Example: Mixin Layer Composition

In this section, we give a concrete example of mixin layer composition [30] implemented as a compositional
style in SPiccola (the Squeak implementation of Piccola [25]). Mixin layers are (in our view) a less well
known and non-trivial composition style. Implementing mixin layers requires an object-oriented language
that supports nested classes and mixins. The language P+, for example, extends C++ to support static
and type-safe mixin layer composition [29]. Implementing mixin layer composition in Piccola thus serves

3 AN EXAMPLE: MIXIN LAYER COMPOSITION 6

to validate that Piccola is expressive enough to tackle high-level composition abstractions. Finally, mixin
layers are a good candidate to illustrate component algebras, because composed mixin layers are again
mixin layers.

We present the graph traversal application proposed by Holland [10]. This application defines dif-
ferent operations on an undirected graph. VertextNumbering numbers the nodes in a depth-first order,
CycleChecking determines whether the graph contains a cycle, and ConnectedRegions partitions the
nodes of the graph into connected regions. Holland implemented the application based on a framework.
Later, Van Hilst et al. [33] reimplemented it using roles and mixins. Smaragdakis and Batory finally
used mixin layers to implement the same application [30, 31].

The three main implementation classes are Graph, Vertex, and Workspace. The Graph class defines
a container of vertices with the usual graph properties. The nodes are stored as instances of the class
Vertex. The Workspace class includes the specific part of a traversal. For instance, the Workspace
object plays the role WorkspaceNumber in the VertexNumbering application to associate numbers to
the nodes. This role specifies a slot in which to store a current number and to assign and increment
this number each time a new node is visited during depth-first traversal. We can implement such a role
using a mixin. The mixin adds the specific members and operations to its superclass when composed.
Similarly, a mixin adds the number slot to a vertex class.

Smaragdakis and Batory use the GenVoca model [9] to keep the different mixins applied to classes
in synch. A GenVoca component is a mixin layer. In essence, a mixin layer encapsulates all the mixins
necessary for a single collaboration. For instance the mixin layer Number to implement the VertexrNum-
bering collaboration contains two mixins: one to add the vertex numbering during traversal and one to
add the number to a vertex. The advantages of using mixin layers instead of isolated mixins are clear:
Design or change elements in the application are encapsulated and implemented in a single component.

3.1 Mixins Layers in Piccola

We now seek a simple way to model and compose mixins and mixin layers. We would like to achieve
the kind of simplicity illustrated by the following example. graph provides constructors for graphs
and vertices. We then compose it, using the ** mixin layer composition operator, with mixin layers
dft, numberNodes and cycle, which, respectively, provide services for depth-first traversal, automatic
numbering of nodes, and cycle detection:

layers = graph ** dft ** numberNodes ** cycle
newGraph: layers.asGraph()

newVertex: layers.asVertex()

g = newGraph()

We claim that the model of explicit namespaces offered by forms provides us with a good way of
modeling compositional abstractions like mixin layers.

First of all, although Piccola provides only forms, not objects or classes, it is relatively simple to
model objects and classes as forms. An object is just a form providing services that access some private
state, such as the semaphores we saw earlier. A class is a form offering services shared by all instances,
such as constructors, and services to create subclasses [6].

In our example, graph represents a base-level mixin layer, that is, one that provides services asGraph
and asVertex to create new graphs and vertices. A graph itself provides services like insert and each
to insert a new vertex or visit each vertex. The other mixin layers wrap the asGraph and asVertex of
the layer below to create graphs and vertices with new or adapted services. In each case, it is important
that the mixin layer simultaneously wrap both constructors, since the new and adapted services typically
depend on each other.

How do the mixin layers work? Let consider the numberNodes layer

numberNodes =
asVertex V:

3 AN EXAMPLE: MIXIN LAYER COMPOSITION 7

Vv
number = newVar (0)
asGraph G:
G
visit:
n = newCounter ()
G.each(do V: V.number.set(n.inc()))

asVertex wraps a vertex to provide it with a number. asGraph wraps a graph to provide it with a
visit service that increments the number of each of its vertices. These two services simultaneously wrap
vertices and graphs from the layer below, so we are sure that when a vertex is visit, it actually provides
a number binding.

Next, we need to implement a composition operator ** such that “A ** B” is a composite mixin
layer, provided that A and B are mixin layers. We could implement a generic mixin layer composition
operator in the style of our wrapPrePost service, but for simplicity we just consider the specific problem
of composing graph mixin layers:

’Defaults = (asVertex X:X, asGraph X: X)
**k_ A B:

’A (Defaults, A) # possibly override defaults
’B (Defaults, B)

asVertex X: B.asVertex(A.asVertex(X))

asGraph X: B.asGraph(A.asGraph(X))

The form Defaults contains default values for the asVertex and asGraph wrappers, namely the identity
function. We rebind A and B so that the actual arguments may override these defaults. Finally, we
compose new asVertex and asGraph wrappers from those provided by the arguments.

Note that the order in which the mixin layers are composed affects the end result. numberNodes, for
example, depends on the each service provided by graphs of the layer below. The graph layer provides
such a service, but the dft layer happens to replace this service by a depth-first traversal each service. As
a consequence, graph**dft**xnumberNodes and graph**numberNodes**dft exhibit different behaviors.

3.2 Software Evolution with Mixin Layers

The resulting separation of concerns enables us now to combine or replace mixin layers in a straightfor-
ward way. Suppose, for example, that graphs may be exposed to concurrent clients. In this case, we
might want to apply a synchronization policy to the graph. The mixin layer exclusive applies a mutual
exclusion synchronization policy to all the methods of graph. Since the order of mixin layer composition
is significant, we apply this layer last of all:

layers = graph ** dft ** numberNodes ** cycle ** exclusive
We can also change the depth-first traversal to a breadth-first traversal by replacing a component:
layers = graph ** bft ** numberNodes ** cycle

We can adapt a layer that (by chance) does not follow the naming conventions by introducing some
glue code:

myLayer =
asGraph = legacyLayer.addFancyFeatureToGraph
asVertex = legacyLayer.addFancyFeatureToNode

In case there are many components that need to be adapted in the same way, we can abstract from
the glue code to obtain a general-purpose glue abstraction:

4 SPECIFYING COMPOSITIONAL STYLES WITH FORMS 8

Figure 2: graph() #** dft ** visual vs. graph() ** sdft ** visual

legacyAdaptor legacyLayer:
asGraph = legacyLayer.addFancyFeatureToGraph
asVertex = legacylLayer.addFancyFeatureToNode
myLayer = legacyAdaptor(myLegacyLayer)

As a final validation of mixin layers, we found it straightforward to extend the graph traversal mixin
layer framework with a new mixin layer for visualizing graphs. The visual layer in SPiccola packages
the glue code needed to display graphs in Squeak:

visual =
asGraph G:
G
’defaultColor = Smalltalk("Color").yellow()
morph = newVar(0)

replace G.each by an animated version
each Block:

This new mixin layer can now be added to any graph traversal mixin layer composition at the
appropriate point. In figure 2 we see visualizations of thread-unsafe and thread-safe graphs that have
been subjected to two concurrent traversals that mark and unmark the nodes (i.e. by changing their
color). The visualization clearly shows that only the thread-safe graph is uniformly colored at the end.

4 Specifying Compositional Styles with Forms

We now briefly survey some of the typical compositional styles and techniques that are used to make
software more flexible and adaptable. We demonstrate how Piccola forms support them. Note that these
styles are not orthogonal.

Component algebras. A component algebra is a compositional style in which the composition of two
or more components is again a component. The best-known example of a component algebra is
pipes and filters. The components are sources, filters and sinks, and the principle operator is the

5 CONCLUDING REMARKS 9

pipe. A source composed with a filter yields a source, and a filter composed with a filter is again
a filter.

We believe that any compositional style can be conveniently expressed as a component algebra.
In addition to pipes and filters, we have developed and experimented with component algebras for
GUI components [6], input/output streams [4], coordination of concurrent agents [3], and mixin
layers [21].

Higher-order wrappers. Many kinds of extensions can be factored out as simple wrappers, adding
“before and after” behavior. Since all values (including abstractions) are forms in Piccola, abstrac-
tions are higher-order, making it easy to specify higher-order wrappers. As we have seen in section
2.2, services in Piccola are monadic, always taking a single form as an argument. This makes it
possible to define generic wrappers that do not depend on the number of arguments. Piccola uses
wrappers heavily to adapt components to conform to a particular style.

Glue abstractions. Many glue abstractions can be expressed as simple wrappers. Glue abstractions
can wrap known services or add new ones while leaving other undisturbed [16, 26]. A simple glue
abstraction, for example, can wrap a java.math.Biglnteger to provide it with the usual arithmetic
operators. (Java does not provide operator overloading, so a Biginteger provides methods like add
and multiply instead of + and —.)

Mixins and metaobjects. Higher-order wrappers make it possible to define mixins and other compo-
sition mechanisms for building objects. Piccola provides only forms as “primitive objects”, but one
can define a variety of other object models on top of forms [26]. One of Piccola’s few keywords is
def, used to define a fixpoint, but it is also possible to delay binding of self, which makes object
models with explicit metaobjects attractive. Metaobjects enable run-time reflection [12].

Coordination abstractions. Piccola provides primitives to instantiate concurrent agents or to explic-
itly create new channels within scripts. The formal semantics of Piccola is in terms of a process
calculus, so concurrency is built-in, not added-on [16, 26]. This makes it easy to define coordination
abstractions as abstractions over scripts. Furthermore, coordination can be seen as a special case
of scripting, and many coordination styles can be naturally expressed as component algebras [3].

Implicit policies. Forms are also used in Piccola to represent namespaces [5]. Whenever a script is
evaluated, it has access to two special namespaces, representing respectively the root context and
the dynamic context. The root context defines the global environment, but can be specialized to
define a “sandbox” for an untrusted agent, or to override or extend global services (like println).
The dynamic context is the environment provided by a client of an agent, and can be used to
define implicit policies. This mechanism can be used, for example, to define an exception handling
mechanism for Piccola [5, 6] (the handler is always passed in the dynamic context). The same
mechanisms are used more generally to optionally override any kind of default policy.

Default arguments. Since abstractions are monadic, taking a single form as an argument, and since
forms can be extended, it is straightforward to define default arguments for services, as we did in
defining the ** mixin layer composition operator.

5 Concluding Remarks

As we have argued elsewhere [4], Piccola lies somewhere between a scripting language, like Python or
TCL, an architectural description language (ADL), like Wright [7] or Rapide [15], a coordination language,
like Darwin [18] or Manifold [8], and a glue language, like Smalltalk or C.

A type system has been developed for Piccola [16], but it too is at the level of the process calculus.
We would like to reason about higher-level types in terms of components and their composition. Ideally,
we might like a type system that can express not only required and provided services, but even some
more detailed dependencies [14, 20, 24].

REFERENCES 10

In previous papers, we have presented the conceptual framework of components, scripts and glue [27],
the formal underpinnings of Piccola in terms of the Piccola-calculus [4, 17, 23], and a tour of the Piccola
language features [6]. We have demonstrated how Piccola forms can model different notions of explicit
namespaces [5], we have shown how different forms of coordination can be expressed as compositional
styles [3], and we have argued that aspect-oriented programming [13] can be expressed as feature mixins
in Piccola [1]. We have also argued that software systems can evolve gracefully only if they are designed
in such a way as to cleanly separate stable and flexible aspects into components and scripts [21].

Here we have argued that the mechanism of explicit namespaces provided by forms is crucial to
achieving a clean separation of concerns.

Piccola is designed to be a composition language, good at expressing different kinds of compositional
styles, each of which may be suitable for composing components for different application domains. We
are still experimenting with applications of Piccola. Although we believe that Piccola provides the right
abstractions needed to express applications as flexible compositions of software components, we still
have to prove that these techniques can succeed in separating concerns for complex domains where other
approaches have failed.

Our long-term goal is to develop a framework that supports the definition of higher-level composition
operators and in which we can reason about properties of composite components. Piccola should serve
as a platform to develop a composition environment hosting components and supporting the flexible
scripting of components within user-defined architectural styles.

Acknowledgements

This work has been supported by the Swiss National Science Foundation under Projects #20-53711.98, “A
framework approach to composing heterogeneous applications”, #20-61655.00, “Meta-models and Tools
for Evolution Towards Component Systems”, and the Swiss Federal Office for Education and Science
under Project BBW #96.00335-1, within the Esprit Working Group 24512: “COORDINA: Coordination
Models and Languages.”

Thanks to Robert Filman and Markus Gaelli for numerous suggestions and corrections.

References

[1] Franz Achermann. Language support for feature mixing. In Workshop on Multi-Dimensional Sep-
aration of Concerns in Software Engineering (ICSE 2000), Limerick, Ireland, June 2000.

[2] Franz Achermann. Forms, Agents and Channels — Defining Composition Abstraction with Style.
PhD thesis, University of Berne, January 2002.

[3] Franz Achermann, Stefan Kneubiihl, and Oscar Nierstrasz. Scripting coordination styles. In Anténio
Porto and Gruia-Catalin Roman, editors, Coordination ’2000, volume 1906 of LNCS, pages 19-35,
Limassol, Cyprus, September 2000. Springer-Verlag.

[4] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Piccola — a small
composition language. In Howard Bowman and John Derrick, editors, Formal Methods for Dis-
tributed Processing — A Survey of Object-Oriented Approaches, pages 403—426. Cambridge Univer-
sity Press, 2001.

[5] Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In Jirg Gutknecht and Wolf-
gang Weck, editors, Modular Programming Languages, volume 1897 of LNCS, pages 77-89, Ziirich,
Switzerland, September 2000. Springer-Verlag.

[6] Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts — A Tour of Piccola.
In Mehmet Aksit, editor, Software Architectures and Component Technology, pages 261-292. Kluwer,
2001.

REFERENCES 11

[7]

8]

[10]

[11]

[12]

[13]

Robert Allen and David Garlan. The Wright architectural specification language. CMU-CS-96-TB,
School of Computer Science, Carnegie Mellon University, Pittsburgh, September 1996.

Farhad Arbab. The IWIM model for coordination of concurrent activities. In Paolo Ciancarini and
Chris Hankin, editors, Proceedings of COORDINATION ’96, volume 1061 of LNCS, pages 34-55,
Cesena, Italy, 1996. Springer-Verlag.

Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty Sirkin. The
GenVoca model of software-system generators. IEEFE Software, pages 89-94, September 1994.

Tan M. Holland. Specifying reusable components using contracts. In O. Lehrmann Madsen, editor,
Proceedings ECOOP 92, volume 615 of LNCS, pages 287-308, Utrecht, the Netherlands, June 1992.
Springer-Verlag.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In Proceedings OOPSLA ’97, pages 318-326.
ACM Press, November 1997.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet Aksit and Satoshi Matsuoka,
editors, Proceedings ECOOP ’97, volume 1241 of LNCS, pages 220-242, Jyvaskyla, Finland, June
1997. Springer-Verlag.

Stefan Kneubiihl. Typeful compositional styles. Diploma thesis, University of Bern, April 2003.

David C. Luckham and James Vera. An event-based architecture definition language. IEEE Trans-
actions on Software Engineering, 21(9):717-734, September 1995.

Markus Lumpe. A Pi-Calculus Based Approach to Software Composition. Ph.D. thesis, University
of Bern, Institute of Computer Science and Applied Mathematics, January 1999.

Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. A Formal Language for Composition.
In Gary Leavens and Murali Sitaraman, editors, Foundations of Component Based Systems, pages
69-90. Cambridge University Press, 2000.

Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeffrey Kramer. Specifying distributed software
architectures. In Proceedings ESEC ’95, volume 989 of LNCS, pages 137-153. Springer-Verlag,
September 1995.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part I/IL
Information and Computation, 100:1-77, 1992.

Oscar Nierstrasz. Contractual types. Technical Report TAM-03-004, Institut fiir Informatik, Uni-
versitiat Bern, Switzerland, 2003.

Oscar Nierstrasz and Franz Achermann. Supporting Compositional Styles for Software Evolution.
In Proceedings International Symposium on Principles of Software Evolution (ISPSE 2000), pages
11-19, Kanazawa, Japan, November 2000. IEEE.

Oscar Nierstrasz and Franz Achermann. A calculus for modeling software components. In S. Graf
F. S. De Boer, M. M. Bonsangue and W-P. de Roever, editors, FMCO 2002 Proceedings, volume
2852 of LNCS, pages 339-360. Springer-Verlag, 2003.

Oscar Nierstrasz, Franz Achermann, and Stefan Kneubiihl. A guide to JPiccola. Technical Report
TAM-03-003, Institut fiir Informatik, Universitat Bern, Switzerland, June 2003.

REFERENCES 12

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

Oscar Nierstrasz, Jean-Guy Schneider, and Franz Achermann. Agents everywhere, all the time. In
ECOOP 2000 Workshop on Component-Oriented Programming, 2000.

Nathanael Scharli. Supporting pure composition by inter-language bridging on the meta-level.
Diploma thesis, University of Bern, September 2001.

Jean-Guy Schneider. Components, Scripts, and Glue: A conceptual framework for software compo-
sition. Ph.D. thesis, University of Bern, Institute of Computer Science and Applied Mathematics,
October 1999.

Jean-Guy Schneider and Oscar Nierstrasz. Components, scripts and glue. In Leonor Barroca, Jon
Hall, and Patrick Hall, editors, Software Architectures — Advances and Applications, pages 13-25.
Springer-Verlag, 1999.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

Vivek P. Singhal. A Programming Language for Writing Domain-Specific Software System Genera-
tors. PhD thesis, University of Texas at Austin, September 1996.

Yannis Smaragdakis and Don Batory. Implementing layered design with mixin layers. In Eric Jul,
editor, Proceedings ECOOP 98, volume 1445 of LNCS, pages 550-570, Brussels, Belgium, July
1998.

Yannis Smaragdakis and Don Batory. Implementing reusable object-oriented components. In 5th
International Conference on Software Reuse, Victoria, Canada, June 1998.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of ICSE ’99, pages 107-119, Los Angeles
CA, USA, 1999.

Michael VanHilst and David Notkin. Using C+4 Templates to Implement Role-Based Designs.
In JSSST International Symposium on Object Technologies for Advanced Software, pages 22-37.
Springer Verlag, 1996.

