
The Story of Moose: an Agile Reengineering Environment

Oscar Nierstrasz
Software Composition Group

University of Berne
Switzerland

Stéphane Ducasse
Software Composition Group

University of Berne
Switzerland

www.iam.unibe.ch/∼scg

Tudor Gı̂rba
Software Composition Group

University of Berne
Switzerland

ABSTRACT
Moose is a language-independent environment for reverse-
and re-engineering complex software systems. Moose pro-
vides a set of services including a common meta-model, met-
rics evaluation and visualization, a model repository, and
generic GUI support for querying, browsing and grouping.
The development effort invested in Moose has paid off in
precisely those research activities that benefit from applying
a combination of complementary techniques. We describe
how Moose has evolved over the years, we draw a number
of lessons learned from our experience, and we outline the
present and future of Moose.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance—Restructur-
ing, reverse engineering, and reengineering

General Terms
Measurement, Design, Experimentation

Keywords
Reverse engineering, Reengineering, Metrics, Visualization

1. INTRODUCTION
Software systems need to evolve continuously if they are to

be effective [41]. As systems evolve, their structure decays,
unless effort is undertaken to reengineer them [41, 44, 23,
11].

The reengineering process comprises various activities, in-
cluding model capture and analysis (i.e., reverse engineer-
ing), assessment of problems to be repaired, and migration
from the legacy software towards the reengineered system.
Although in practice this is an ongoing and iterative process,
we can idealize it (see Figure 1) as a transformation through
various abstraction layers from legacy code towards a new
system [11, 13, 35].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings ESEC-FSE’05, pp. 1-10, ISBN 1-59593-014-0.September
5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

a z

xxx

yyy
Yyy

Xxx

z

Requirements

Code

Designs

model capture and analysis

problem assessment

migration

Figure 1: The Reengineering life cycle.

What may not be clear from this very simplified picture is
that various kinds of documents are available to the software
reengineer. In addition to the code base, there may be doc-
umentation (though often out of sync with the code), bug
reports, tests and test data, database schemas, and espe-
cially the version history of the code base. Other important
sources of information include the various stakeholders (i.e.,
users, developers, maintainers, etc.), and the running system
itself. The reengineer will neither rely on a single source of
information, nor on a single technique for extracting and
analyzing that information [11].

Reengineering is a complex task, and it usually involves
several techniques. The more data we have at hand, the
more techniques we require to apply to understand this data.
These techniques range from data mining, to data presen-
tation and to data manipulation. Different techniques are
implemented in different tools, by different people. An in-
frastructure is needed for integrating all these tools.

Moose is a reengineering environment that offers a com-
mon infrastructure for various reverse- and re-engineering
tools [22]. At the core of Moose is a common meta-model
for representing software systems in a language-independent
way. Around this core are provided various services that
are available to the different tools. These services include
metrics evaluation and visualization, a repository for storing
multiple models, a meta-meta model for tailoring the Moose
meta-model, and a generic GUI for browsing, querying and
grouping.

Moose has been developed over nearly ten years, and has
itself been extensively reengineered during the time that it
has evolved. Initially Moose was little more than a com-
mon meta-model for integrating various ad hoc tools. As it

http://www.iam.unibe.ch/~scg/

became apparent that these tools would benefit immensely
from a common infrastructure, we invested in the evolution
and expansion of Moose. This expansion faced numerous
challenges, particularly that of scalability, since legacy sys-
tems tend to be large. Without extensive reengineering,
however, Moose itself would have quickly become unwieldy
and unmanageable. Instead, we have managed to keep the
core of Moose quite small, and only extended its function-
ality when there was a clear added value to be obtained.
In its latest version Moose has 217 implementation classes
and 78 test classes.

Common wisdom states that one should only invest enough
in a research prototype to achieve the research results that
one seeks. Although this tactic generally holds, it fails in
the reengineering domain where a common infrastructure
is needed to even begin to carry out certain kinds of re-
search. In an nutshell, the added value arises precisely when
multiple techniques can be combined to break new research
ground.

From another perspective, the research process consists
of formulating an hypothesis based on observations, and
performing an experiment to evaluate the hypothesis. The
shorter the distance between the formulation and the evalu-
ation of an hypothesis, the more hypotheses can be explored.
With Moose, one can reuse and extend the previous expe-
riences and, in this way, shorten the distance between the
original hypothesis and the result.

In this paper we attempt to draw some lessons from our
experience developing and using the Moose environment.
In Section 2 we outline the current architecture of Moose,
and we briefly recount the history of its evolution. Then, in
Section 3 we see how Moose has been used to carry out
an array of different reverse- and re-engineering research
projects. In each case, we can see that the investment in
Moose paid off precisely at the point where multiple tech-
niques are being combined to achieve a particular research
goal. In effect, we could greatly accelerate the research ac-
tivities because we had an infrastructure upon which we
could build, even though this infrastructure was at any point
in time rather minimal. In Section 4 we summarize some of
the lessons learned. We conclude in Section 5 with some
remarks on our ongoing research activities.

2. MOOSE
Moose was born in the context of Famoos, a European

project1 whose goal was to support the evolution of first-
generation object-oriented software towards object-oriented
frameworks. Famoos focussed on methods and tools to anal-
yse and detect design problems in object-oriented legacy sys-
tems, and to migrate these systems towards more flexible
architectures. The main results of Famoos are summarized
in the Famoos Handbook [13] and in the “Object-Oriented
Reengineering Patterns” book [11].

2.1 What is Moose?
Moose is a language-independent environment for reverse-

and re-engineering legacy software systems [15]. In essence,
Moose functions as a repository for software models, pro-
viding numerous services for importing, viewing, querying

1ESPRIT Project 21975: “Framework-based Approach for
Mastering Object-Oriented Software Evolution”. Sept.
1996-Sept. 1999.

TraceScraper

CodeCrawler

ConAn Van

External Parser

Smalltalk

Java C++ Cobol

VisualWorks Interface CDIF/XMI Interface

CDIF XMI

Model
Repository

Meta
Model

Basic
Analysis

Tools
Meta

Descriptions

Moose

data flow

Tools

uses
uses and extends

Hapax

Figure 2: The architecture of Moose.

and manipulating these models [22].
At the core of Moose is the language-independent meta-

model. The meta-model determines how software systems
are modeled within Moose. Moose focuses on object-orient-
ed software, so its meta-model provides object-oriented mod-
eling features. At the same time, Moose is designed to
support reverse- and re-engineering activities, so the meta-
model includes features for modeling, for example, method
invocations and attribute accesses [57, 56].

Software source code, written in different programming
languages, can be parsed using various third-party tools,
and imported into Moose by means of the CDIF or XMI
exchange formats.

Although Moose mainly focuses on object-oriented sys-
tems, one important requirement is that it not impose a
fixed meta-model, but rather provide the infrastructure to
extend the meta-model according to the needs of the analy-
sis. We therefore take an active stand towards supporting
the various needs of tools, rather than confining them to a
fixed view of the world. We achieve this by providing for a
MOF-like meta-meta-model. Each entity in the meta-model
is described according to the meta-meta-model. Based on
this description we provide services such as a generic GUI
for querying and manipulating models.

The user interface offers services for basic manipulation
of entities: selection, introspection and navigation. These
services too make use of the meta-descriptions. As Moose
is designed to be extended by different reengineering tools,
we provide a registration mechanism for these tools. For
example, each entity in the GUI offers a menu, to which
relevant tools can register themselves. Thus, a visualization
tool that provides for a class view, would register itself to
the class entity, and the user can apply the visualization to
a given class from anywhere in the environment.

Selection expression

Model entity groups Entities in the selected group Properties

Entity menu

Figure 3: Moose Browser.

Figure 3 shows the Moose Browser. In the left pane we
have the model and the groups of entities. The selected
group spawns on the right side a view of its entities. In our
example, we have selected the group of classes of Jboss. Ev-
erywhere in the environment, one can interact with an entity
(be it a class, method or group) by spawning the entity’s as-
sociated menu. In the lower part of the browser we have
a query engine that can combine metrics, Smalltalk queries
and logic queries. The result of a query is another group
that can be manipulated with the same user interface. In the
same browser, one can manipulate the entities in a spread-
sheet manner, by adding columns with different properties
(e.g., metrics) or sorting the table. The browser is general
enough to work with any type of entity, and therefore, when-
ever a tool extends the meta-model with a particular entity,
it is provided with the default browsing capabilities.

Legacy software systems tend to be large, so scalability
is a key requirement for Moose. One key technique that
allows Moose to deal with large volumes of data is lazy
evaluation combined with caching. For example, although
Moose provides for an extensive set of metrics, not all of
them are needed for all analyses. Even the relevant metrics
are typically not needed for all entities in the system. Thus,
instead of computing all metrics for all entities at once, our
infrastructure allows for lazy computation of the metrics.

In Moose we can manipulate multiple models at the same
time due to the multi-model repository. The main benefit
of this feature is the ability to store the models of different
versions of the system and thus to be able to analyze its
evolution.

2.2 History of Moose
In the beginning of the Famoos project Moose was merely

the implementation of a language independent meta-model
known as Famix [12].

The parsing of C/C++ code was done through Sniff+
[7], and the produced models were imported via the CDIF
standard [8]. Initially, Moose provided for a hard-coded
importer and served as basis for simple visualization and
program fact extractor (1997). Then it started to be used
to compute metrics [9, 10]. Later on, as the meta-model
evolved, it became apparent that the import/export service
should be orthogonal to the meta-model and most impor-
tant that the environment should support meta-model ex-

tension. As a consequence, a first, extremely simple meta-
meta-model was implemented, which, at the time, could rep-
resent entities and relationships (1998).

With the introduction of the XMI standard, a first MOF
meta-meta-model was implemented and CDIF meta-models
were transformed into MOF meta-models for the XMI model
generation. However, MOF was not used as the underlying
Moose meta-meta-model [54].

In parallel, the visualization development led to the ex-
tension of the set of metrics computed. At the time, Code-
Crawler was the flagship application of Moose, and for
a significant period CodeCrawler influenced the architec-
ture of Moose (1999) [40]. For example, the metrics had
to be computed for all entities before the views could be
generated.

The interest in researching the evolution of systems led
to the implementation of the meta-model repository. As
such, the first application was the Evolution Matrix (2001)
[38]. Later on, more research was invested in understand-
ing the evolution of systems, resulting in the development
of Van (2002). Because the evolution analysis requires large
amounts of data to be manipulated, it was not feasible any-
more to manipulate all the model information all the time.
Also, the computation of the metrics beforehand for all enti-
ties in the model was another bottleneck. As a consequence,
several services were implemented: partial loading of the
models, lazy computation of the properties, and caching of
results.

It became apparent that the meta-descriptions are a pow-
erful way of separating the data representation (i.e., the
meta-model) from the different techniques to manipulate
this data. We consequently started to implement a MOF-
like meta-meta-model (2002) and replaced the original one.
It offers an architecture similar to that of the Eclipse Mod-
eling Framwork (EMF).

As an application of the meta-description, the develop-
ment of a generic GUI was started to provide basic services
such as navigation, querying, and introspection (2003). An
important role in the caching mechanism and in the query-
ing is played by the notion of a group as a first-class entity:
every query or selection in Moose yields a group, and any
group can be manipulated in the Browser (2003).

Because more and more tools started to be implemented
on top of Moose, a plug-in mechanism was needed to al-
low these tools to complement each other without impos-
ing a hard-coded dependency between them. Each tool can
register itself to the menu attached to each entity in the
meta-model.

The combination of menus and groups meant that com-
plex analyses could be broken down into multiple steps, each
of which may make use of a different tool. Combining and
composing tools thereby becomes natural and transparent.

3. APPLICATIONS
Moose has served as the basis for a large number of re-

search projects in the areas of reverse- and re-engineering.
In this section we provide an overview of some of these appli-
cations. Most of our attention has been focused on reverse
engineering and problem analysis rather than actual trans-
formation of legacy systems, so the applications we present
here reflect this focus.

3.1 Metrics and Visualization
Moose provides the basic bricks needed for several high

level analyses [9, 10]. For example, Moose allows for a
set of metrics to be attached to each entity. In a reverse
engineering context software metrics are interesting because
they can be used to assess the quality and complexity of a
system and because they are known to scale up. However,
metric measurements are typically presented in huge tables
that can be hard to interpret. This situation is worse when
metric values are combined.

Visualization is a well-known technique to support the un-
derstanding of large applications [55]. CodeCrawler is a
visualization engine [40] built on top of Moose that presents
metrics visually as polymetric views [37]. A polymetric view,
is a two-dimensional visualization of nodes (as entities) and
edges (as relationships) that maps various metric values to
attributes of the nodes and edges. For example, different
metrics can be mapped to the size, position and color of a
node, or to the thickness and color of the edge.

Polymetric views can be generated for different purposes:
coarse-grained views to assess global system properties, fine-
grained views to assess properties of individual software arti-
facts, and evolutionary views to assess properties over time.

Figure 4 shows a System Complexity View which is coarse
grained view [39]. The figure shows the hierarchies of Code-
Crawler itself. Each node represents a class, and each edge
represents an inheritance relationship. The height of a node
represents the number of methods, the width represents the
number of attributes and the color represents the number
of lines of code. Such views can help to direct a reverse
engineers’ attention to Exceptional Entities [11]. For exam-
ple, tall, isolated, dark nodes have many methods, many
lines of code, and few attributes, and they may be signs of
procedural classes with long, algorithmic methods.

To understand a system, one needs to go beyond the over-
all structure and into the fine-grained details of its parts. An
example of such a fine-grained polymetric view is the Class
Blueprint [16]. The goal is to obtain an understanding of
the inner structure of one class or several classes at once.
Furthermore, it is useful for detecting patterns in the imple-
mentation of classes and class hierarchies. These patterns
help one to answer questions regarding the internal struc-
ture of classes and class hierarchies and are also useful for
the detection of design patterns [34].

Another high-level visualization is the Evolution Matrix
[38]. Whereas the coarse-grained and fine-grained views fo-
cus on the structure of the system, the Evolution Matrix
presents a view of the evolution of the system. It displays
several versions of the classes of the system by displaying
each class as a node in a matrix. Each row in the matrix
represents the overall history (i.e., the versions) of the class
while each column represents a version of the system. This
view reveals class evolution patterns like: growing classes,
stable classes, etc.

Multiple metrics can also be effectively combined into but-
terfly views to provide high-level characterizations of soft-
ware entities such as packages [18].

Though Figure 2 shows CodeCrawler as being one of
the tools built on top of Moose, in fact CodeCrawler
provides visualization services for numerous other tools that
use Moose.

Legend:

Class

NOM

NOA

LOC

Inheritance

Figure 4: CodeCrawler displaying itself in a System-
Complexity View.

3.2 Concept Analysis
Visualization of direct metrics can be a very effective tool

for exploring a software model at various levels of granular-
ity, but it does not, by itself, help one to identify implicit
recurring patterns in the code. Coding idioms, design pat-
terns, architectural constraints and contracts are all exam-
ples of such recurring patterns. They are implicit in the
sense that no language feature or direct metric can be used
to identify them. Furthermore, if one is not actively looking
for a specific pattern, one might never discover it.

One way to uncover such recurring patterns is to apply
clustering techniques. Formal Concept Analysis (FCA) is a
well-known clustering technique that is especially well suited
to this problem. FCA takes as input a collection of enti-
ties, each of which exhibits a certain set of properties, and
produces as output a set of concepts, which are clusters of
entities exhibiting the same properties. Furthermore, the
concepts are organized into a lattice, such that concepts
that are higher in the lattice exhibit more properties but
fewer entities. The top and bottom of the lattice repre-
sent, respectively, the concept consisting of all entities but
no common properties, and the concept with all properties,
but no entities sharing all these properties.

FCA can be applied to the analysis of software systems by
specifying which are the entities and properties of interest
[1]. For example by choosing methods and instance variables
of classes as the entities, and calling and accessing relation-
ships as properties, FCA can identify various canonical types
of classes as concepts, such as those whose methods system-
atically access all the state of the object, and those in which
groups of methods access only part of the state [3]. FCA can
also be applied at much coarser levels of granularity, for ex-
ample, to identify implicit contracts within class hierarchies
[4], and to detect recurring collaboration patterns amongst
groups of classes [2].

Although, it was not the focus of the research, during
the experimentation CodeCrawler was heavily used as a
visualization back-end of the concepts. For example, Fig-
ure 5 shows a visualization of State Usage inside a Class
Blueprint. The rightmost nodes represent the attributes in
the class. The rest of the nodes represent the methods in
the class. The methods marked with green (grey in the print
version) are the methods that are related to both attributes.

Figure 5: ConAn using CodeCrawler to visualize
how state is used in the methods of a class.

3.3 History Analysis
Reengineering efforts classically focus on the most recent

version of a software system, since that is the snapshot that
reflects most of the requirements and contains most of the
features. On the other hand, it is the history of the system
that reveals how it has evolved, and where chronic problems
may lie. For example, analyzing the past can reveal depen-
dency patterns based on co-change history [25] or can be
used to predict change propagation [33].

A key principle behind the development of Moose is to
make the meta-model explicit. Although a great deal of re-
search interest for software evolution has been awakened in
recent years, most of the research is entrenched in the soft-
ware models imposed by current versioning systems. For ex-
ample, CVS is a widely used versioning system and it offers
the infrastructure to manipulate files and text. However,
no semantics of the structure of the code can be directly
accessed or manipulated through CVS.

To compensate for this shortcoming, we developed Hismo,
a meta-model that models history as a first class entity [14].
A history is a collection of versions. Thus, in Hismo, a class
history is modeled as a collection of class versions, a method
history as a collection of method versions, and so on. Hismo
is used by Van, a tool for analyzing version histories built
on top of Moose.

The first applications of Hismo are historical measure-
ments. One example is “Yesterday’s Weather” [26], a mea-
sure intended to indicate the need to reengineer certain parts
of the system based on which parts have been undergoing
the most change in the recent past. This reflects the retro-
spective empirical observation that the parts of the system
that have changed in the near past are most likely to change
in the near future.

In another application, we used the historical informa-
tion to define a so-called time-based detection strategy [45].
A detection strategy denotes a measurement-based rule for
detecting design flaws [42]. For example, God Class [51] is
one “bad smell” that can be detected using such a detection

OpenGL3dObject

Vrml

Topology OpenGL
DisplayModel

Figure 6: Van using CodeCrawler to show how class
hierarchies evolve.

Takeover by the Green author

Teamwork
between the Green and Red authors

Familiarization and expansion
of the Blue author

Monologue of the Green author

Figure 7: Chronia visualizing how developers change
the files.

strategy. The resulted classes that result from the detection
strategies are candidates for refactoring. Yet, not all God
Classes are equally bad. We used the historical informa-
tion to define a time-based detection strategy to detect God
Classes which were stable, or God Classes which were per-
sistent. In our example, we used this information to classify
the “badness” of the God Classes.

We also used CodeCrawler to characterize how class
hierarchies evolve [30]. Figure 6 shows a polymetric view of
Jun, an Open-Source 3D Multimedia Library. This polymet-
ric view is similar to the System Complexity View, except
that it displays evolution properties. The darker a node is,
the older the class is, and the bigger a node is, the more
the class was changed. Along the same line, the darker and
thicker an edge is, the older the inheritance relationship is.
Cyan (light grey) denotes nodes and edges that are no longer
present in the last version of the system.

In another application we used ConAn to combine histor-
ical analysis with Formal Concept Analysis to detect con-
cepts related to co-changing entities [27]. We used this tech-
nique to detect parallel inheritance or “shotgun surgery” [24]
based on which classes consistently change in tandem during
the same iteration.

Although Hismo was only used in the context of software
reverse engineering, we showed that the concept of history
does not depend on the type of data, and it can be applied
to any structural meta-model [28].

Recently, we have developed Chronia, a new tool to an-
alyze directly CVS. An application of this tool is the Own-
ership Map, a visualization describing the way developers
change code [29]. Figure 7 shows the Ownership Map of a
medium Java system: each line in the visualization repre-
sents the history of a file and the color of a pixel in the line
is given by the author that owns the most lines in the file
at the respective moment. From the visualization, we can

detect several patterns of the behavior of the developers:
teamwork, takeover, familiarization etc.

3.4 Dynamic Analysis
Most of the analyses performed with the help of Moose

focus on modeling and manipulating the static information
extracted from the source code of the systems under study.
Source code alone, however, cannot tell you what run-time
structures will be created, how frequently certain messages
will be sent, or, in the presence of polymorphism, to in-
stances of which classes variables will be dynamically bound.

A reverse engineer is not restricted to analyzing source
code. The system under analysis can be instrumented, and
execution traces can be generated for selected scenarios. Al-
though such traces can easily generate massive amounts of
data (i.e., typically many megabytes for just short execu-
tion runs), it is possible to effectively manage this data by
exploiting the static knowledge as well.

Perspectives are high-level views of a software system ex-
pressed, for example, in terms of components and connec-
tors, or in terms of roles and collaborations. Gaudi rep-
resents our first effort to recover high-level views by cor-
relating static and dynamic information [46, 47, 48]. In
this approach, Moose is used to build up a static model of
the software system under study. This model is then trans-
formed into a set of Prolog facts. Next, the source code is
instrumented and various scenarios are executed to generate
execution traces. Once again, these traces are transformed
into sets of Prolog facts that encode which events took place
at run-time. Next, a series of Prolog-queries are iteratively
posed to build the high-level view of the system. This infor-
mation can then be used to graphically render, for example,
the components-and-connectors view.

In another approach, we combined visualization, metrics
and run-time information to offer a highly condensed view
of the execution of applications. We developed Divoor,
a metrics engine for dynamic information, and then used
CodeCrawler for the visualization [17]. The visualization
consists of polymetric views of the static structure, where
each node is annotated with dynamic information: number
of instances created of a class, number of message passed to
and from a class etc.

More recent work explores further the relationship be-
tween the dynamic information and the static information
[31]. The approach is implemented in TraceScraper and
the aim is two-fold: characterize the structural entities with
respect to features and characterize the features with respect
to the structural entities. The approach is based on extend-
ing the meta-model with the trace as an explicit entity and
on linking it with the structural entities (e.g., classes, meth-
ods) that it passes through. The structural entities can be
characterized according to their importance in the features.
For example, a class can be characterized as infrastructural
(when it is used in most of the features) or single feature
(when it is used in only one feature). At the same time, the
features can also be characterized as being related or not
based on the code they use.

This model is further explored in combination with the
Hismo meta-model to analyze the evolution of the role of
the structural entities with respect to a given set of features
[32]. History measurements are defined to detect structural
entities that become more important within the system as
they become parts of its infrastructure, or entities that lose

A

Class 'Object'

Figure 8: Internal and external duplication

importance as they are used by fewer features. Such in-
formation can be used, for example to detect the features
that the development is currently focused on, or to detect
refactorings or obsolete code.

3.5 Clone Detection
Duplicated code is one of the most common signs of code

rot in legacy software systems. Contrary to initial expec-
tations, however, duplicated code can be quite difficult to
identify in large systems, since code is rarely copied out-
right, but is generally copied and modified in various ways.
Formatting may be changed arbitrarily, and bits of code
may be inserted or deleted at multiple locations. As a con-
sequence, simple string-matching alone is unlikely to be very
successful in identifying code clones.

Duploc is a tool that augments simple string-matching
with noise elimination to remove the effects of reformatting,
and post-filtering to identify only significant runs of dupli-
cation [21]. Surprisingly, the lightweight approach based on
string-matching is highly effective, and yields high recall and
acceptable precision compared with more sophisticated ap-
proaches based on, for example, comparison of syntax trees
[19, 49].

Duploc is an example of a language-independent reverse-
engineering tool that was not based on Moose, mainly be-
cause the string-matching approach did not require the level
of detail offered by the Moose models of software.

Nevertheless, we were able to leverage the metrics visual-
ization tools of Moose to gain additional insights into the
nature of code duplication. In Figure 8 we see a System
Model view of part of Jboss– a polymetric view in which
boxes represent classes of a hierarchy, the width of each box
represents the degree of internal duplication (i.e., within a
class), the height represents the external duplication (i.e.,
between different classes), and thick lines represent copied
code [50]. (The small squares are classes outside of Jboss.)
Class A in the figure indicates code duplication between a
subclass and its superclass.

3.6 Semantic Analysis
Trying to understand a software system by just analyzing

its structure is a bit like trying to appreciate a painting with
just a light meter. The structure of a software system tells
us how parts of the code are related, but not what they
mean. Important clues to the meaning of the system can
be found in the source code, i.e., in the names of identifiers
and in the comments.

Hapax implements Latent Semantic Indexing (LSI), an

Figure 9: Hapax showing the semantic similarity cor-
relation matrix for the classes of JEdit. The same
visualization engine is also used by Chronia.

information retrieval technique to analyze the space formed
by documents and terms. As an application to software
reengineering, Hapax considers structural entities to be doc-
uments and the identifiers to be terms.

Searching is a straightforward application of LSI, so Ha-
pax is well-suited to searching for the most relevant entities
for a given text query. A more ambitious application for
reverse engineering is to cluster the entities based on their
semantic similarity [36]. Figure 9 shows a correlation matrix
visualization of all the classes of JEdit. The visualization en-
gine used is shared with Chronia (Section 3.3). The matrix
displays the classes both on the rows and on the columns.
The grayness of a dot in the matrix is determined by the
similarity between the corresponding classes. The dark bor-
ders delimit the detected clusters.

LSI is also used to determine the most relevant terms for
the given clusters, thus the approach also indicates what
the clusters are about. For example, the top-left clusters
are characterized by the terms: “cell”, “renderer”, “pane”,
“scroller” and “frame”. This indicates that clusters refer to
the user interface.

4. LESSONS LEARNED
Moose appears to violate the principle that research pro-

totypes are just that – prototypes that serve as a proof-of-
concept to achieve a research result, but not more than that.
Common wisdom states that one should invest no more into
research prototypes than is necessary to publish a paper or
get the next research grant.

Although the total effort invested in Moose over the years
may be considerable, in fact the effort invested at any point
in time was not more than would have been devoted to an ad
hoc tool. The key difference is that Moose has been refined,

extended and reengineered over the years rather than simply
being thrown away. In the end, Moose is still relatively
small, but it is far more useful as a research medium than
its original Famix ancestor.

Make your meta-model explicit.A meta-model describes
the way the system can be represented, that is, it provides
bricks for reasoning. A rapid prototype built using exist-
ing tools is often a slave to the paradigms and models im-
plicit in those tools. By making the meta-model explicit,
we were able to develop tools that cooperate better, and
so obtain benefits by combining results of multiple tools.
Without this, each tool would have been a standalone pro-
totype without any potential for supporting further experi-
ments. By developing our own meta-model we were able to
establish a minimal infrastructure for integrating the exper-
imental tools that we built in the early days of the Famoos
project.

Control your meta-model.One premise of Moose is not
just to provide a static meta-model, but to provide for the
infrastructure to extend the meta-model according to the
needs of the analysis. Thus, our aim is to take an active
stand towards the nature of data, and not to be governed
by the meta-models provided by different tools available.
For example, CVS is a widely used versioning system and it
offers text-based information. Instead of directly analyzing
the data provided by CVS, we define Hismo, our history
meta-model to be able to express analyses at different levels
of abstractions.

Leverage tools that combine techniques.At the start
of Famoos, we were content to experiment by combining
various off-the-shelf tools and prototypes to quickly obtain
initial results. As it became clear that certain combinations
of techniques were especially productive, the investment in
home-grown tools became worthwhile. In particular, the
combination of software metrics and visualization offered by
CodeCrawler could not be achieved by merely combin-
ing existing tools. The meta-modeling framework offered by
Moose gave us the possibility to experiment with numer-
ous reverse and reengineering techniques that would have
been much more difficult without a modeling infrastructure
in place.

Use of a dynamic programming environment.Moose
and most of the tools built on top of it have been developed
using VisualWorks Smalltalk [58]. We strongly believe that
Smalltalk has contributed to the success of Moose in several
important ways.

In Smalltalk, everything is an object, and all objects live
in a persistent image. Code is incrementally compiled, so
there is effectively no physical or temporal separation be-
tween “run-time” and “compile-time”. As a consequence,
all objects are always available, and it is possible to send
any message to any object at any time. In particular, since
querying is a central part of analysis, we could directly use
the Smalltalk language as a query language, instead of hav-
ing to develop a specialized, ad hoc query language.

The Smalltalk environment also offers a generic inspector
which allows one to explore the contents of any given ob-
ject. As a result, whenever our own GUI was not expressive

enough we could always drop down and use the inspector.
In this way we could quickly test out ideas without investing
a great deal in coding, and thus evaluate whether it would
be worthwhile to invest in a certain direction.

Focus on problems, not solutions.In the end, the re-
search process is not about building tools, but about ex-
ploring ideas. In the context of reengineering research, how-
ever, one must build tools to explore ideas. Crafting a tool
requires engineering expertise and effort, which consumes
valuable research resources.

The art is to keep the research process agile in the sense
that one concentrates on the research problems, while still
keeping an eye out for the possible benefits of generalization.

As an example, Chronia and Hapax are recently-built
tools that share the same visualization engine. It is only
now, however, that the shared interest has been identified,
that it becomes worthwhile to invest in factoring out this vi-
sualization engine to make it more readily available to other
efforts.

Exploit new opportunities.Research opportunities con-
stantly arise, if one is prepared to recognize them.

As an example, our research into code duplication led us
to explore language mechanisms to enable fine-grained fac-
toring of common functionality into traits [20, 52, 53].

Similarly, the observation that software evolution is dif-
ficult to manage in programming languages that require
global consistency at all times led to the development of
classboxes, a module system in which various parts of a soft-
ware system may see different, inconsistent extensions of
shared modules [5, 6].

A platform for research is a fine thing, but one should also
be prepared at any time to strike out in new directions.

5. CONCLUSIONS
Over the space of several years, Moose has evolved from

a simple meta-model for integrating various experimental
reverse- and re-engineering tools, to a platform offering var-
ious common services, such as software metrics evaluation
and visualization, generic GUI services for querying, brows-
ing and grouping, and support for multiple, concurrent mod-
els. Although Moose has evolved considerably, it has re-
mained relatively small, thanks to reengineering efforts be-
ing applied to Moose itself, and care taken to ensure that
only the essential common services find their way to the core
of Moose.

Whereas most research prototypes typical have a very
short half-life, Moose has survived mainly because it serves
to support various other research activities, particularly those
which can benefit from combinations of techniques, such as
metrics and visualization, or static and dynamic analysis.

Moose continues to evolve in new directions. The 2D vi-
sualization framework of CodeCrawler is being extended
to support 3D visualization and animation of dynamic traces.
We are developing a bridge to popular version control sys-
tems so that version histories can be directly explored from
the perspective of the Moose meta-model. We have been
extending the metrics framework to explore new kinds of
metrics that better capture notions of coupling and cohe-
sion for component frameworks, thus taking usage scenarios
into account. We are exploring the use of Formal Concept

Analysis to identify refactoring opportunities. We have also
experimented with other clustering techniques to automat-
ically categorize classes according to their internal calling
patterns [34]. In each case, Moose has accelerated the re-
search activity by allowing us to leverage our investment
in meta-modeling, metrics, visualization, and other comple-
mentary techniques.

Finally, the research activities surrounding Moose have
indirectly led us to explore new directions in programming
languages design, in the search for language mechanisms and
features that ease the task of developing systems that can
gracefully evolve over time [43].

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “RECAST: Evo-
lution of Object-Oriented Applications” (SNF Project No.
620-066077, Sept. 2002 - Aug. 2006).

6. REFERENCES
[1] G. Arévalo. High Level Views in Object Oriented

Systems using Formal Concept Analysis. PhD thesis,
University of Berne, Jan. 2005.

[2] G. Arévalo, F. Buchli, and O. Nierstrasz. Detecting
implicit collaboration patterns. In Proceedings of
WCRE ’04 (11th Working Conference on Reverse
Engineering), pages 122–131. IEEE Computer Society
Press, Nov. 2004.

[3] G. Arévalo, S. Ducasse, and O. Nierstrasz. X-Ray
views: Understanding the unternals of classes. In
Proceedings of ASE ’03 (18th Conference on
Automated Software Engineering), pages 267–270.
IEEE Computer Society Press, Oct. 2003. Short paper.

[4] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering
unanticipated dependency schemas in class hierarchies.
In Proceedings of CSMR ’05 (9th European Conference
on Software Maintenance and Reengineering), pages
62–71. IEEE Computer Society Press, Mar. 2005.

[5] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J:
Controlling the scope of change in Java. In
Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05),
New York, NY, USA, 2005. ACM Press. To appear.

[6] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts.
Classboxes: Controlling visibility of class extensions.
Computer Languages, Systems and Structures,
31(3-4):107–126, May 2005.

[7] W. R. Bischofberger. Sniff: A pragmatic approach to a
c++ programming environment. In C++ Conference,
pages 67–82, 1992.

[8] C. T. Committee. CDIF framework for modeling and
extensibility. Technical Report EIA/IS-107, Electronic
Industries Association, Jan. 1994. See
http://www.cdif.org/.

[9] S. Demeyer and S. Ducasse. Metrics, do they really
help? In J. Malenfant, editor, Proceedings LMO ’99
(Languages et Modèles à Objets), pages 69–82.
HERMES Science Publications, Paris, 1999.

[10] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In Proceedings of
OOPSLA ’2000 (International Conference on

Object-Oriented Programming Systems, Languages and
Applications), pages 166–178, 2000.

[11] S. Demeyer, S. Ducasse, and O. Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan
Kaufmann, 2002.

[12] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1
— The FAMOOS Information Exchange Model.
Technical report, University of Bern, 2001.

[13] S. Ducasse and S. Demeyer, editors. The FAMOOS
Object-Oriented Reengineering Handbook. University
of Bern, Oct. 1999.

[14] S. Ducasse, T. Gı̂rba, and J.-M. Favre. Modeling
software evolution by treating history as a first class
entity. In Workshop on Software Evolution Through
Transformation (SETra 2004), pages 71–82, 2004.

[15] S. Ducasse, T. Gı̂rba, M. Lanza, and S. Demeyer.
Moose: a Collaborative and Extensible Reengineering
Environment. In Tools for Software Maintenance and
Reengineering, RCOST / Software Technology Series,
pages 55 – 71. Franco Angeli, 2005.

[16] S. Ducasse and M. Lanza. The class blueprint:
Visually supporting the understanding of classes.
IEEE Transactions on Software Engineering,
31(1):75–90, 2005.

[17] S. Ducasse, M. Lanza, and R. Bertuli. High-level
polymetric views of condensed run-time information.
In Proceedings of CSMR 2004 (Conference on
Software Maintenance and Reengineering), pages 309
– 318, 2004.

[18] S. Ducasse, M. Lanza, and L. Ponisio. Butterflies: A
visual approach to characterize packages. In
Proceedings of the 11th IEEE International Software
Metrics Symposium (METRICS’05). IEEE Computer
Society, 2005. To appear.

[19] S. Ducasse, O. Nierstrasz, and M. Rieger. On the
effectiveness of clone detection by string matching.
International Journal on Software Maintenance:
Research and Practice, 2005. To appear.

[20] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. Black. Traits: A mechanism for fine-grained reuse.
Transactions on Programming Languages and
Systems, 2005. To appear.

[21] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In H. Yang and L. White, editors, Proceedings ICSM
’99 (International Conference on Software
Maintenance), pages 109–118. IEEE Computer
Society, Sept. 1999.

[22] S. Ducasse and S. Tichelaar. Dimensions of
reengineering environment infrastructures.
International Journal on Software Maintenance:
Research and Practice, 15(5):345–373, Oct. 2003.

[23] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27(1):1–12, 2001.

[24] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[25] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
Proceedings of the International Conference on

Software Maintenance 1998 (ICSM ’98), pages
190–198, 1998.

[26] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s
Weather: Guiding Early Reverse Engineering Efforts
by Summarizing the Evolution of Changes. In
Proceedings of ICSM ’04 (International Conference on
Software Maintenance), pages 40–49. IEEE Computer
Society Press, 2004.

[27] T. Gı̂rba, S. Ducasse, R. Marinescu, and D. Raţiu.
Identifying entities that change together. In Ninth
IEEE Workshop on Empirical Studies of Software
Maintenance, 2004.

[28] T. Gı̂rba, J.-M. Favre, and S. Ducasse. Using
meta-model transformation to model software
evolution, 2004.

[29] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse.
How Developers Drive Software Evolution. In
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE). IEEE Computer
Society Press, 2005. to appear.

[30] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing
the evolution of class hierarchies. In Proceedings of
European Conference on Software Maintenance
(CSMR 2005), 2005.

[31] O. Greevy and S. Ducasse. Correlating features and
code using a compact two-sided trace analysis
approach. In Proceedings of CSMR 2005 (9th
European Conference on Software Maintenance and
Reengineering. IEEE Computer Society Press, 2005.

[32] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing
feature traces to incorporate the semantics of change
in software evolution analysis. In Proceedings of ICSM
2005 (21th International Conference on Software
Maintenance), Sept. 2005. to appear.

[33] A. Hassan and R. Holt. Predicting change propagation
in software systems. In Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM’04), pages 284–293. IEEE Computer Society
Press, Sept. 2004.

[34] M.-P. Horvath. Automatic recognition of class
blueprint patterns. Diploma thesis, University of Bern,
Oct. 2004.

[35] R. Kazman, S. Woods, and S. Carriére. Requirements
for integrating software architecture and reengineering
models: Corum ii. In Proceedings of WCRE ’98, pages
154–163. IEEE Computer Society, 1998. ISBN:
0-8186-89-67-6.

[36] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse
engineering with semantic clustering, 2005. submitted.

[37] M. Lanza. Object-Oriented Reverse Engineering —
Coarse-grained, Fine-grained, and Evolutionary
Software Visualization. PhD thesis, University of
Berne, May 2003.

[38] M. Lanza and S. Ducasse. Understanding software
evolution using a combination of software visualization
and software metrics. In Proceedings of LMO 2002
(Langages et Modèles à Objets, pages 135–149, 2002.

[39] M. Lanza and S. Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering.
IEEE Transactions on Software Engineering,
29(9):782–795, Sept. 2003.

[40] M. Lanza and S. Ducasse. Codecrawler - an extensible

and language independent 2d and 3d software
visualization tool. In Tools for Software Maintenance
and Reengineering, RCOST / Software Technology
Series, pages 74 – 94. Franco Angeli, 2005.

[41] M. M. Lehman and L. Belady. Program Evolution –
Processes of Software Change. London Academic
Press, 1985.

[42] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Proceedings of
ICSM ’04 (International Conference on Software
Maintenance), pages 350–359. IEEE Computer
Society Press, 2004.

[43] O. Nierstrasz, A. Bergel, M. Denker, S. Ducasse,
M. Gälli, and R. Wuyt. On the revival of dynamic
languages. In T. Gschwind and U. Aßmann, editors,
Proceedings of Software Composition 2005. LNCS,
2005. Invited paper. To appear.

[44] D. L. Parnas. Software Aging. In Proceedings of ICSE
’94 (International Conference on Software
Engineering), pages 279–287. IEEE Computer Society
/ ACM Press, 1994.

[45] D. Raţiu, S. Ducasse, T. Gı̂rba, and R. Marinescu.
Using history information to improve design flaws
detection. In Proceedings of CSMR 2004 (European
Conference on Software Maintenance and
Reengineering), pages 223–232, 2004.

[46] T. Richner. Recovering Behavioral Design Views: a
Query-Based Approach. PhD thesis, University of
Berne, May 2002.

[47] T. Richner and S. Ducasse. Recovering high-level
views of object-oriented applications from static and
dynamic information. In H. Yang and L. White,
editors, Proceedings ICSM ’99 (International
Conference on Software Maintenance), pages 13–22.
IEEE Computer Society Press, Sept. 1999.

[48] T. Richner and S. Ducasse. Using dynamic
information for the iterative recovery of collaborations
and roles. In Proceedings of ICSM ’2002 (International
Conference on Software Maintenance), Oct. 2002.

[49] M. Rieger. Effective Clone Detection Without
Language Barriers. PhD thesis, University of Berne,
June 2005.

[50] M. Rieger, S. Ducasse, and M. Lanza. Insights into
system-wide code duplication. In Proceedings of
WCRE 2004 (11th Working Conference on Reverse
Engineering). IEEE Computer Society Press, Nov.
2004.

[51] A. J. Riel. Object-Oriented Design Heuristics. Addison
Wesley, 1996.

[52] N. Schärli. Traits — Composing Classes from
Behavioral Building Blocks. PhD thesis, University of
Berne, Feb. 2005.

[53] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black.
Traits: Composable units of behavior. In Proceedings
ECOOP 2003 (European Conference on
Object-Oriented Programming), volume 2743 of LNCS,
pages 248–274. Springer Verlag, July 2003.

[54] A. Schlapbach. Generic XMI support for the MOOSE
reengineering environment. Informatikprojekt,
University of Bern, June 2001.

[55] J. T. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, editors. Software Visualization — Programming

as a Multimedia Experience. The MIT Press, 1998.

[56] S. Tichelaar. Modeling Object-Oriented Software for
Reverse Engineering and Refactoring. PhD thesis,
University of Berne, Dec. 2001.

[57] S. Tichelaar, S. Ducasse, S. Demeyer, and
O. Nierstrasz. A Meta-model for
Language-Independent Refactoring. In Proceedings of
ISPSE ’00 (International Conference on Software
Evolution), pages 157–167. IEEE Computer Society
Press, 2000.

[58] Cincom Smalltalk, Sept. 2003.
http://www.cincom.com/scripts/smalltalk.dll/.

	Introduction
	Moose
	What is Moose?
	History of Moose

	Applications
	Metrics and Visualization
	Concept Analysis
	History Analysis
	Dynamic Analysis
	Clone Detection
	Semantic Analysis

	Lessons Learned
	Conclusions
	References

