
Chapter 7

Versioning Your Code with
Monticello

Co-written with
Oscar Nierstrasz (oscar.nierstrasz@acm.org)

A versioning system helps you to store and log multiple versions of your
code. In addition it may help you to manage concurrent accesses to a com-
mon source code repository. It keeps track of all changes to a set of docu-
ments and enables several developers to collaborate. As soon as the size of
your software increases beyond a few classes, you probably need a version-
ing system.

Many different versioning systems are available. CVS1, Subversion2, and
Git3 are probably the most popular. In principle you could use them to man-
age the development of Pharo software projects, but such a practice would
disconnect the versioning system from the Pharo environment. In addi-
tion, CVS-like tools only version plain text files and not individual packages,
classes or methods. We would therefore lack the ability to track changes at
the appropriate level of granularity. If the versioning tools know that you
store classes and methods instead of plain text, they can do a better job of
supporting the development process.

There are multiple repositories to store your projects. SmalltalkHub4 and
Squeaksource 35 are the two main and free-to-use repositories. They are ver-
sioning systems for Pharo in which classes and methods, rather than lines of

1http://www.nongnu.org/cvs
2http://subversion.tigris.org
3http://git-scm.com/
4http://smalltalkhub.com/
5http://ss3.gemstone.com/

102 Versioning Your Code with Monticello

text, are the units of change. In this chapter we will use SmalltalkHub, but
Squeaksource 3 can be use samely. SmalltalkHub is a central online reposi-
tory in which you can store versions of your applications using Monticello.
SmalltalkHub is the equivalent of SourceForge, and Monticello the equiva-
lent of CVS.

In this chapter, you will learn how to use use Monticello and
SmalltalkHub to manage your software. We have already met Monticello
briefly in earlier chapters6. This chapter delves into the details of Monticello
and describes some additional features that are useful for versioning large
applications.

7.1 Basic usage

We will start by reviewing the basics of creating a package and committing
changes, and then we will see how to update and merge changes.

Running example — perfect numbers

We will use a small running example of perfect numbers7 in this chapter to
illustrate the features of Monticello. We will start our project by defining
some simple tests.

Define a subclass of TestCase called PerfectTest in the package Perfect, and de-
fine the following test methods in the protocol running:

PerfectTest»testPerfect
self assert: 6 isPerfect.
self assert: 7 isPerfect not.
self assert: 28 isPerfect.

Of course these tests will fail as we have not yet implemented the isPerfect
method for integers. We would like to put this code under the control of
Monticello as we revise and extend it.

Launching Monticello

Monticello is included in the standard Pharo distribution. Monticello Browser
can be selected from the World menu. In Figure 7.1, we see that the Monti-
cello Browser consists of two list panes and one button pane. The left pane

6“A first application” and “The Pharo programming environment”
7Perfect numbers were discovered by Euclid. A perfect number is a positive integer that is

the sum of its proper divisors. 6 = 1 + 2 + 3 is the first perfect number.

Basic usage 103

lists installed packages and the right panes shows known repositories. Vari-
ous operations may be performed via the button pane and the menus of the
two list panes.

Figure 7.1: The Monticello Browser.

Creating a package

Monticello manages versions of packages. A package is essentially a named
set of classes and methods. In fact, a package is an object — an instance of
PackageInfo — that knows how to identify the classes and methods that be-
long to it.

We would like to version our PerfectTest class. The right way to do this
is to define a package — called Perfect — containing PerfectTest and all the re-
lated classes and methods we will introduce later. For the moment, no such
package exists. We only have a category called (not coincidentally) Perfect.
This is perfect, since Monticello will map categories to packages for us.

Press the +Package in the Monticello browser and enter Perfect.

Voilà! You have just created the Perfect Monticello package.

Monticello packages follow a number of important naming conventions
for class and method categories. Our new package named Perfect contains:

• All classes in the category Perfect , or in categories whose names start
with Perfect-. For now this includes only our PerfectTest class.

• All methods belonging to any class (in any category) that are defined in
a protocol named *perfect or *Perfect , or in protocols whose names start
with *perfect- or *Perfect-. Such methods are known as extensions. We
don’t have any yet, but we will define some very soon.

• All methods belonging to any classes in the category Perfect , or in cate-
gories whose names begin with Perfect-, except those in protocols whose

104 Versioning Your Code with Monticello

Figure 7.2: Creating the Perfect package.

names start with * (i.e., those belonging to other packages). This in-
cludes our testPerfect method, since it belongs to the protocol running.

Committing changes

Note in Figure 7.2 that the Save button is disabled (greyed out).

Before we save our Perfect package, we need to specify where we want to
save it. A repository is a package container, which may either be local to your
machine or remote (accessed over the network). Various protocols may be
used to establish a connection between your Pharo image and a repository.
As we will see later (Section 7.5), Monticello supports a large choice of repos-
itories, though the most commonly used is HTTP, since this is the one used
by SmalltalkHub.

At least one repository, called package-cache, is set up by default, and
is shown as the first entry in the list of repositories on the right-hand side
of your Monticello browser (see Figure 7.1). The package-cache is created
automatically in the local directory where your Pharo image is located. It
will contain a copy of all the packages you download from remote reposito-
ries. By default, copies of your packages are also saved in the package-cache
when you save them to a remote server.

Each package knows which repositories it can be saved to. To add a new
repository to the selected package, press the +Repository button. This will
offer a number of choices of different kinds of repository, including HTTP.
For the rest of the chapter we will work with the package-cache repository, as
this is all we need to explore the features of Monticello.

Select the directory repository named package cache, press Save , enter an ap-
propriate log message, and Accept to save the changes.

Basic usage 105

Figure 7.3: You may set a new version name and a commit message when
you save a version of a package.

The Perfect package is now saved in package-cache, which is nothing more
than a directory contained in the same directory as your Pharo image. Note,
however, that if you use any other kind or repository (e.g., HTTP, FTP, an-
other local directory), a copy of your package will also be saved in the
package-cache.

Use your favorite file browser (e.g., Windows Explorer, Finder or XTerm) to
confirm that a file Perfect-XX.1.mcz was created in your package cache. XX corre-
sponds to your name or initials.8

A version is an immutable snapshot of a package that has been written
to a repository. Each version has a unique version number to identify it in a
repository. Be aware, however, that this number is not globally unique — in
another repository you might have the same file identifier for a different snap-
shot. For example, Perfect-onierstrasz.1.mcz in another repository might be the
final, deployed version of our project! When saving a version into a reposi-
tory, the next available number is automatically assigned to the version, but
you can change this number if you wish. Note that version branches do
not interfere with the numbering scheme (as with CVS or Subversion). As
we shall see later, versions are by default ordered by their version number
when viewing a repository.

Class extensions

Let’s implement the methods that will make our tests green.

Define the following two methods in the class Integer, and put each method in
a protocol called *perfect. Also add the new boundary tests. Check that the tests are
now green.

8In the past, the convention was for developers to log their changes using only their initials.
Now, with many developers sharing identical initials, the convention is to use an identifier
based on the full name, such as “apblack” or “AndrewBlack”.

106 Versioning Your Code with Monticello

Integer»isPerfect
^ self > 1 and: [self divisors sum = self]

Integer»divisors
^ (1 to: self - 1) select: [:each | (self rem: each) = 0]

PerfectTest»testPerfectBoundary
self assert: 0 isPerfect not.
self assert: 1 isPerfect not.

Although the methods on Integer do not belong to the Perfect category,
they do belong to the Perfect package since they are in a protocol whose name
starts with * and matches the package name. Such methods are known as
class extensions, since they extend existing classes. These methods will be
available only to someone who loads the Perfect package.

“Clean” and “Dirty” packages

Modifying the code in a package with any of the development tools makes
that package dirty. This means that the version of the package in the image
is different from the version that has been saved or loaded.

Figure 7.4: Modifying our Perfect package will “dirty” it.

In the Monticello browser, a dirty package can be recognized by an as-
terix (*) preceding its name. This indicates which packages have uncommit-
ted changes, and therefore need to be saved into a repository if those changes
are not to be lost. Saving a dirty package cleans it.

Try the Browse and Changes buttons to see what they do. Save the changes
to the Perfect package. Confirm that the package is now “clean” again.

Basic usage 107

The Repository inspector

The contents of a repository can be explored using a repository inspector,
which is launched using the Open button of Monticello (cf Figure 7.5).

Select the package-cache repository and open it. You should see something like
Figure 7.5.

Figure 7.5: A repository inspector.

All the packages in the repository are listed on the left-hand side of the
inspector:

• an underlined package name means that this package is installed in
the image;

• a bold underlined name means that the package is installed, but that
there is a more recent version in the repository;

• a name in a normal typeface means that the package is not installed in
the image.

Once a package is selected, the right-hand pane lists the versions of the se-
lected package:

• an underlined version name means that this version is installed in the
image;

• a bold version name means that this version is not an ancestor of the
installed version. This may mean that it is a newer version, or that it
belongs to a different branch from the installed version;

108 Versioning Your Code with Monticello

• a version name displayed with a normal typeface shows an older ver-
sion than the installed current one.

Action-clicking the right-hand side of the inspector opens a menu with
different sorting options. The unchanged entry in the menu discards any par-
ticular sorting. It uses the order given by the repository.

Loading, unloading and updating packages

At present we have two versions of the Perfect package stored safely in our
package-cache repository. We will now see how to unload this package, load
an earlier version, and finally update it.

Select the Perfect package and its repository in the Monticello browser. Action-
click on the package name and select unload package .

Figure 7.6: Unloading a package.

You should now be able to confirm that the Perfect package has vanished
from your image!

In the Monticello browser, select the package-cache in the repository pane,
without selecting anything in the package pane, and Open the repository inspector.
Scroll down and select the Perfect package. It should be displayed in a normal type-
face, indicated that it is not installed. Now select version 1 of the package and Load
it.

Basic usage 109

Figure 7.7: Loading an earlier version.

You should now be able to verify that only the original (red) tests are
loaded.

Select the second version of the Perfect package in the repository inspector and
Load it. You have now updated the package to the latest version.

Now the tests should be green again.

Branching

A branch is a line of development versions that exists independently of an-
other line, yet still shares a common ancestor version if you look far enough
back in time.

You may create new version branch when saving your package. Branch-
ing is useful when you want to have a new parallel development. For ex-
ample, suppose your job is to maintain a software in your company. One
day a different division asks you for the same software, but with a few parts
tweaked for them, since they do things slightly differently. The way to deal
with this situation is to create a second branch of your program that incorpo-
rate the tweaks, while leaving the first branch unmodified.

From the repository inspector, select version 1 of the Perfect package and Load
it. Version 2 should again be displayed in bold, indicating that it no longer loaded
(since it is not an ancestor of version 1). Now implement the following two Integer

methods and place them in the *perfect protocol, and also modify the existing
PerfectTest test method as follows:

110 Versioning Your Code with Monticello

Integer»isPerfect
self < 2 ifTrue: [^ false].
^ self divisors sum = self

Integer»divisors
^ (1 to: self - 1) select: [:each | (self \\ each) = 0]

PerfectTest»testPerfect
self assert: 2 isPerfect not.
self assert: 6 isPerfect.
self assert: 7 isPerfect not.
self assert: 28 isPerfect.

Once again the tests should be green, though our implementation of per-
fect numbers is slightly different.

Attempt to load version 2 of the Perfect package.

Now you should get a warning that you have unsaved changes.

Figure 7.8: Unsaved changes warning.

Select Cancel to avoid overwriting your new methods. Now Save your
changes. Enter your log message, and Accept the new version.

Congratulations! You have now created a new branch of the Perfect pack-
age.

If you still have the repository inspector open, Refresh it to see the new version
(Figure 7.9).

Merging

You can merge one version of a package with another using the Merge but-
ton in the Monticello browser. Typically you will want to do this when (i)

Basic usage 111

Figure 7.9: Versions 2 and 3 are separate branches of version 1.

you discover that you have been working on a out-of-date version, or (ii)
branches that were previously independent have to be re-integrated. Both
scenarios are common when multiple developers are working on the same
package.

Consider the current situation with our Perfect package, as illustrated at
the left of Figure 7.10. We have published a new version 3 that is based
on version 1. Since version 2 is also based on version 1, versions 2 and 3
constitute independent branches.

Figure 7.10: Branching (left) and merging (right).

At this point we realize that there are changes in version 2 that we would
like to merge with our changes from version 3. Since we have version 3
currently loaded, we would like to merge in changes from version 2, and
publish a new, merged version 4, as illustrated at the right of Figure 7.10.

112 Versioning Your Code with Monticello

Figure 7.11: Select a separate branch (in bold) to be merged.

Select version 2 in the repository browser, as shown in Figure 7.11, and click
the Merge button.

The merge tool is a tool that allows for fine-grained package version
merging. Elements contained in the package to-be-merged are listed in the
upper text pane. The lower text pane shows the definition of a selected ele-
ment.

Figure 7.12: Version 2 of the Perfect package being merged with the current
version 3.

In Figure 7.12 we see the three differences between versions 2 and 3 of

Exploring Monticello repositories 113

the Perfect package. The method PerfectTest»testPerfectBoundary is new, and the
two indicated methods of Integer have been changed. In the lower pane we
see the old and new versions of the source code of Integer»isPerfect. New
code is displayed in red, removed code is barred and displayed in blue, and
unchanged code is shown in black.

A method or a class is in conflict if its definition has been altered. Fig-
ure 7.12 shows 2 conflicting methods in the class Integer: isPerfect and divisors.
A conflicting package element is indicated by being underlined, barred, or
bold. The full set of typeface conventions is as follows:

Plain=No Conflict. A plain typeface indicates the definition is non-
conflicting. For example, the method PerfectTest»testPerfectBoundary does
not conflict with an existing method, and can be installed.

Red=A method is conflicting. A decision needs to be taken to keep the pro-
posed change or reject it. The proposed method Integer»>isPerfect is
in conflict with an existing definition in the image. The conflict can
be resolved by right clicking on the method and Keep current version or
Use incoming version .

Right arrow=Repository replace current. An element with right arrow will
be used and replace the current element in the image. In Figure 7.12
we see that Integer»isPerfect from version 2 has been used.

Left arrow=Repository version rejected. An element with left arrow has
been rejected, and the local definition will not be replaced. In Fig-
ure 7.12 Integer»divisors from version 2 is rejected, so the definition from
version 3 will remain.

Use incoming version of Integer»>isPerfect and keep current version of Integer»
divisors, and click the Merge button. Confirm that the tests are all green. Commit
the new merged version of Perfect as version 4.

If you now refresh the repository inspector, you will see that there are no
more versions shown in bold, i.e., all versions are ancestors of the currently
loaded version 4 (Figure 7.13).

7.2 Exploring Monticello repositories

Monticello has many other useful features. As we can see in Figure 7.1, the
Monticello browser window has eight buttons. We have already used four of
them — +Package , Save , +Repository and Open . We will now look at Browse
and Changes which are used to explore the state and history of repositories

114 Versioning Your Code with Monticello

Figure 7.13: All older versions are now ancestors of merged version 4.

Browse

The Browse button opens a “snapshot browser” to display the contents of
a package. The advantage of the snapshot browser over the browser is its
ability to display class extensions.

Select the Perfect package and click the Browse button.

Figure 7.14: The snapshot browser reveals that the Perfect package extends
the class Integer with 2 methods.

For example, Figure 7.14 shows the class extensions defined in the Perfect
package. Note that code cannot be edited here, though by action-clicking, if
your environment has been set up accordingly) on a class or a method name
you can open a regular browser.

Advanced topics 115

It is a good practice to always browse the code of your package before
publishing it, to ensure that it really contains what you think it does.

Changes

The Changes button computes the difference between the code in the image
and the most recent version of the package in the repository.

Make the following changes to PerfectTest, and then click the Changes button
in the Monticello browser.

PerfectTest»testPerfect
self assert: 2 isPerfect not.
self assert: 6 isPerfect.
self assert: 7 isPerfect not.
self assert: 496 isPerfect.

PerfectTest»testPerfectTo1000
self assert: ((1 to: 1000) select: [:each | each isPerfect]) = #(6 28 496)

Figure 7.15: The patch browser shows the difference between the code in the
image and the most recently committed version.

Figure 7.15 shows that the Perfect package has been locally modified with
one changed method and one new method. As usual, action-clicking on a
change offers you a choice of contextual operations.

7.3 Advanced topics

Now we will have a look at several advanced topics, including history, man-
aging dependencies, making configuration, and class initialization.

116 Versioning Your Code with Monticello

History

By action-clicking on a package, you can select the item History . It opens
a version history viewer that displays the comments committed along with
each version of the selected package (see Figure 7.16). The versions of the
package, in this case Perfect, are listed on the left, while information about
the selected version is displayed on the right.

Select the Perfect package, right click and select the History item.

Figure 7.16: The version history viewer provides information about the vari-
ous versions of a package.

By action-clicking on a particular version, you can explore the changes
with respect to the current working copy of the package loaded in the image,
or spawn a new history browser relative to the selected version.

Dependencies

Most applications cannot live on their own and typically require the pres-
ence of other packages in order to work properly. For example, let us have a
look at Pier9, a meta-described content management system. Pier is a large
piece of software with many facets (tools, documentations, blog, catch strate-
gies, security, ...). Each facet is implemented by a separate package. Most
Pier packages cannot be used in isolation since they refer to methods and
classes defined in other packages. Monticello provides a dependency mech-
anism for declaring the required packages of a given package to ensure that it
will be correctly loaded.

Essentially, the dependency mechanism ensures that all required pack-
ages of a package are loaded before the package is loaded itself. Since re-
quired packages may themselves require other packages, the process is ap-
plied recursively to a tree of dependencies, ensuring that the leaves of the
tree are loaded before any branches that depend on them. Whenever new

9http://source.lukas-renggli.ch/pier

Advanced topics 117

versions of required packages are checked in, then new versions of the pack-
ages that depend on them will automatically depend on the new versions.

Dependencies cannot be expressed across repositories. All re-
quiring and required packages must live in the same
repository.

Figure 7.17 illustrates how this works in Pier. Package Pier-All is an empty
package that acts as a kind of umbrella. It requires Pier-Blog, Pier-Caching and
all the other Pier packages.

Figure 7.17: Dependencies in Pier.

Because of these dependencies, installing Pier-All causes all the other Pier
packages to be installed. Furthermore, when developing, the only package
that needs to be saved is Pier-All; all dependent dirty packages are saved
automatically.

Let us see how this works in practice. Our Perfect package currently bun-
dles the tests together with the implementation. Suppose we would like
instead to separate these into separate packages, so that the implementation
can be loaded without the tests. By default, however, we would like to load
everything.

Take the following steps:

• Load version 4 of the Perfect package from the package cache

• Create a new package in the browser called NewPerfect-Tests and drag the
class PerfectTest to this package

• Rename the *perfect protocol of the Integer class to *newperfect-extensions
(action-click to rename it)

118 Versioning Your Code with Monticello

• In the Monticello browser, add the packages NewPerfect-All and NewPerfect-
Extensions.

• Add NewPerfect-Extensions and NewPerfect-Tests as required packages to
NewPerfect-All (action-click on NewPerfect-All)

• Save package NewPerfect-All in the package-cache repository. Note that Mon-
ticello prompts for comments to save the required packages too.

• Check that all three packages have been saved in the package cache.

• Monticello thinks that Perfect is still loaded. Unload it and then load
NewPerfect-All from the repository inspector. This will cause NewPerfect-
Extensions and NewPerfect-Tests to be loaded as well as required packages.

• Check that all tests run.

Note that when NewPerfect-All is selected in the Monticello browser, the
dependent packages are displayed in bold (see Figure 7.18).

Figure 7.18: NewPerfect-All requires NewPerfect-Extensions and NewPerfect-Tests.

If you further develop the Perfect package, you should
only load or save NewPerfect-All, not its required packages.

Here is the reason why:

• If you load NewPerfect-All from a repository (package-cache, or any-
where else), this will cause NewPerfect-Extensions and NewPerfect-Tests
to be loaded from the same repository.

• If you modify the PerfectTest class, this will cause the NewPerfect-Tests
and NewPerfect-All packages to both become dirty (but not NewPerfect-
Extensions).

Advanced topics 119

• To commit the change, you should save NewPerfect-All. This will com-
mit a new version of NewPerfect-All which then requires the new version
of NewPerfect-Tests. (It will also depend on the existing, unmodified ver-
sion of NewPerfect-Extensions.) Loading the latest version of NewPerfect-
All will also load the latest version of the required packages.

• If instead you save NewPerfect-Tests, this will not cause NewPerfect-All to
be saved. This is bad because you effectively break the dependency. If
you then load the latest version of NewPerfect-All you will not get the
latest versions of the required packages. Don’t do it!

Do not name your top level package with a suffix (e.g.,
Perfect) that could match your subpackages. Do not de-
fine Perfect as a required package of Perfect-Extensions or
PerfectTest. You would get in trouble since Monticello
would save all the classes for three packages while you
only want two packages and an empty one at the top
level.

To build more flexible dependencies between packages, we recommend
to use a Metacello configuration (see Chapter 9). The +Config button creates
a kind of configuration structure. The only thing to do is to add the depen-
dencies.

Class initialization

When Monticello loads a package into the image, any class that defines an
initialize method on the class side will be sent the initialize message. The mes-
sage is sent only to classes that define this method on the class side. A class
that does not define this method will not be initialized, even if initialize is de-
fined by one of its superclasses. NB: the initialize method is not invoked
when you merely reload a package!

Class initialization can be used to perform any number of checks or spe-
cial actions. A particularly useful application is to add new instance vari-
ables to a class.

Class extensions are strictly limited to adding new methods to a class.
Sometimes, however, extension methods may need new instance variables
to exist.

Suppose, for example, that we want to extend the TestCase class of SUnit
with methods to keep track of the history of the last time the test was red.
We would need to store that information somewhere, but unfortunately we
cannot define instance variables as part of our extension.

120 Versioning Your Code with Monticello

A solution would be to define an initialize method on the class side of one
of the classes:

TestCaseExtension class>>initialize
(TestCase instVarNames includes: 'lastRedRun')

ifFalse: [TestCase addInstVarName: 'lastRedRun']

When our package is loaded, this code will be evaluated and the instance
variable will be added, if it does not already exist. Note that if you change
a class that is not in your package, the other package will become dirty. In
the previous example, the package SUnit contains TestCase. After installing
TestCaseExtension, the package SUnit will become dirty.

7.4 Getting a change set from two versions

A Monticello version is the snapshot of one or more packages. A version
contains the complete set of class and method definitions that constitute the
underlying packages. Sometimes, it is useful to have a “patch” from two
versions. A patch is the set of all necessary side effect in the system to go
from one version A to another version B.

Change set is a Pharo built-in mechanism to define system patches. A
change set is composed of global side effects on the system. New change set
may be created and edited from the Change Sorter. This tool is available from
the World Û Tools entry.

The difference between two Monticello versions may be easily captured
by creating a new change set before loading a second version of a package.
As an illustration, we will capture the differences between version 1 and 2 of
the Perfect package:

1. Load version 1 of Perfect from the Monticello browser

2. Open a change sorter and create a new change set. Let’s name it DiffPer-
fect

3. Load version 2

4. In the change sorter, you should now see the difference between ver-
sion 1 and 2. The change set may be saved on the filesystem by action-
clicking on it and selecting file out . A DiffPerfect.X.cs file is now located
next to your Pharo image.

Kinds of repositories 121

7.5 Kinds of repositories

Several kinds of repositories are supported by Monticello, each with differ-
ent characteristics and uses. Repositories can be read-only, write-only or
read-write. Access rights may be defined globally or can be tied to a particu-
lar user (as in SmalltalkHub, for example).

HTTP. HTTP repositories are probably the most popular kind of repository
since this is the kind supported by SmalltalkHub.

The nice thing about HTTP repositories is that it’s easy to link directly
to specific versions from web sites. With a little configuration work on the
HTTP server, HTTP repositories can be made browsable by ordinary web
browsers, WebDAV clients, and so on.

HTTP repositories may be used with an HTTP server other than
SmalltalkHub. For example, a simple configuration10 turns Apache into a
Monticello repository with restricted access rights:

"My apache2 install worked as a Monticello repository right out of the box on my
RedHat 7.2 server. For posterity's sake, here's all I had to add to my apache2 config:"
Alias /monticello/ /var/monticello/
<Directory /var/monticello>
DAV on
Options indexes
Order allow,deny
Allow from all
AllowOverride None
Limit write permission to list of valid users.
<LimitExcept GET PROPFIND OPTIONS REPORT>
AuthName "Authorization Realm"
AuthUserFile /etc/monticello-auth
AuthType Basic
Require valid-user

</LimitExcept>
</Directory>
"This gives a world-readable, authorized-user-writable Monticello repository in
/var/monticello. I created /etc/monticello-auth with htpasswd and off I went.
I love Monticello and look forward to future improvements."

FTP. This is similar to an HTTP repository, except that it uses an FTP server
instead. An FTP server may also offer restricted access right and different
FTP clients may be used to browse such Monticello repository.

10http://www.visoracle.com/squeak/faq/monticello-1.html

122 Versioning Your Code with Monticello

GOODS. This repository type stores versions in a GOODS object database.
GOODS is a fully distributed object-oriented database management system
that uses an active client model11. It’s a read-write repository, so it makes
a good “working” repository where versions can be saved and retreived.
Because of the transaction support, journaling and replication capabilities
offered by GOODS, it is suitable for large repositories used by many clients.

Directory. A directory repository stores versions in a directory in the local
file system. Since it requires very little work to set up, it’s handy for pri-
vate projects; since it requires no network connection, it’s the only option
for disconnected development. The package-cache we have been using in the
exercises for this chapter is an example of this kind of repository. Versions
in a directory repository may be copied to a public or shared repository at a
later time. SmalltalkHub supports this feature by allowing package versions
(.mcz files) to be imported for a given project. Simply log in to SmalltalkHub,
navigate to the project, and click on the Import Versions link.

Directory with Subdirectories. A “directory with subdirectories” is very
similar to “directory” except that it looks in subdirectories to retrieve list
of available packages. Instead of having a flat directory that contains all
package versions, such as repository may be hierarchically structured with
subdirectories.

SMTP. SMTP repositories are useful for sending versions by mail. When
creating an SMTP repository, you specify a destination email address. This
could be the address of another developer — the package’s maintainer, for
example — or a mailing list such as pharo-project. Any versions saved in
such a repository will be emailed to this address. SMTP repositories are
write-only.

Programmatically adding repositories For particular purposes, it may be
necessary to programmatically add new repositories. This happens when
managing configuration and large set of distributed monticello packages
or simply customizing the entries available in the Monticello browser. For
example, the following code snippet programmatically adds new directory
repositories

{'/path/to/repositories/project-1/'.
'/path/to/repositories/project-2/'.
'/path/to/repositories/project-3/'. } do:
[:path |

repo := MCDirectoryRepository new directory:

11http://www.garret.ru/goods.html

Kinds of repositories 123

(path asFileReference).
MCRepositoryGroup default addRepository: repo].

Using SmalltalkHub

SmalltalkHub is a online repository that you can use to store your Monticello
packages. An instance is running and accessible from http://smalltalkhub.com/.

Figure 7.19: SmalltalkHub, the online Monticello code repository.

Use a web browser to visit the main page http:// smalltalkhub.com/ . When you
select a project, you should see this kind of repository expression:

MCHttpRepository
location: 'http://smalltalkhub.com/mc/PharoExtras/Phexample/main'
user: ''
password: ''

124 Versioning Your Code with Monticello

Add this repository to Monticello by clicking +Repository , and then selecting HTTP .
Fill out the template with the URL corresponding to the project — you can copy the
above repository expression from the web page and paste it into the template. Since
you are not going to commit new versions of this package, you do not need to fill in
the user and password. Open the repository, select the latest version of Phexample
and click Load .

Pressing the Join link on the SmalltalkHub home page will probably be
your first step if you do not have a SmalltalkHub account. Once you are a
member, + New Project allows you to create a new project.

Figure 7.20: Repositories under SmalltalkHub are configurable.

SmalltalkHub offers options (cf. Figure 7.20) to configure a project repos-
itory: tags may be assigned, a license may be chosen with access for people
who are not part of the project may be restricted (private, public), and users
may be defined to be members of the project. You also can create a team that
shares projects.

7.6 The .mcz file format

Versions are stored in repositories as binary files. These files are commonly
call “mcz files” as they carry the extension .mcz. This stands for “Monticello

The .mcz file format 125

zip” since an mcz file is simply a zipped file containing the source code and
other meta-data.

An mcz file can be dragged and dropped onto an open
image file, just like a change set. Pharo will then prompt
you to ask if you want to load the package it contains.
Monticello will not know which repository the package
came from, however, so do not use this technique for de-
velopment.

You may try to unzip such a file, for example to view the source code
directly, but normally end users should not need to unzip these files them-
selves. If you unzip it, you will find the following members of the mcz file.

File contents Mcz files are actually ZIP archives that follow certain conven-
tions. Conceptually a version contains four things:

• Package. A version is related to a particular package. Each mcz file
contains a file called “package” that contains information about the
package’s name.

• VersionInfo. This is the meta-data about the snapshot. It contains the
author initials, date and time the snapshot was taken, and the ances-
try of the snapshot. Each mcz file contains a member called “version”
which contains this information.

A version doesn’t contain a full history of the source code. It’s a snap-
shot of the code at a single point in time, with a UUID identifying that
snapshot, and a record of the UUIDs of all the previous snapshots it’s
descended from.

• Snapshot. A Snapshot is a record of the state of the package at a partic-
ular time. Each mcz file contains a directory named “snapshot/”. All
the members in this directory contain definitions of program elements,
which when combined form the Snapshot. Current versions of Monti-
cello only create one member in this directory, called “source.st”.

• Dependencies. A version may depend on specific version of other pack-
ages. An mcz file may contain a “dependencies/” directory with a
member for each dependency. These members will be named after
each package the Monticello package depends upon. For example, a
Pier-All mcz file will contains files named Pier-Blog and Pier-Caching in
its dependencies directory.

126 Versioning Your Code with Monticello

Source code encoding The member named “snapshot/source.st” contains
a standard fileout of the code that belongs to the package.

Metadata encoding The other members of the zip archive are encoded us-
ing S-expressions. Conceptually, the expressions represent nestable dictio-
naries. Each pair of elements in a list represent a key and value. For example,
the following is an excerpt of a “version” file of a package named AA:

(name 'AA-ab.3' message 'empty log message' date '10 January 2008' time '10
:31:06 am' author 'ab' ancestors ((name 'AA-ab.2' message...)))

It basically says that the version AA-ab.3 has an empty log message, was
created on January 10, 2008, by ab, and has an ancestor named AA-ab.2, ...

7.7 Chapter summary

This chapter has presented the functionality of Monticello in detail. The fol-
lowing points were covered:

• Monticello are mapped to Smalltalk categories and method protocols.
If you add a package called Foo to Monticello, it will include all classes
in categories called Foo or starting with Foo-. It will also include all
methods in those categories, except those in protocols starting with *.
Finally it will include all class extension methods in protocols called *foo
or starting with *foo- anywhere else in the system.

• When you modify any methods or classes in a package, it will be
marked as “dirty” in Monticello, and can be saved to a repository.

• There are many kinds of repositories, the most popular being HTTP
repositories, such as those hosted by SmalltalkHub.

• Saved packages are caches locally in a directory called package-cache.

• The Monticello repository inspector can be used to browse a repository.
You can select which versions of packages to load or unload.

• You can create a new branch of a package by basing a new version on
another version which is earlier than the latest version. The reposi-
tory inspector keeps track of the ancestry of packages and can tell you
which versions belong to separate branches.

• Branches can be merged. Monticello offers a fine degree of control over
the resolution of conflicts between merged versions. The merged ver-
sion will have as its ancestor the two versions it was merged from.

Chapter summary 127

• Monticello can keep track of dependencies between packages. When a
package with dependencies to required packages is saved, a new ver-
sion of that package is created, which then depends on the latest ver-
sions of all the required packages.

• If classes in your packages have class-side initialize methods, then
initialize will be sent to those classes when your package is loaded. This
mechanism can be used to perform various checks or start-up actions.
A particularly useful application is to add new instance variables to
classes for which you are defining extension methods.

• Monticello stores package versions in a special zipped file with the file
extension .mcz. The mcz file contains a snapshot of the complete source
code of that version of your package, as well as files containing other
important metadata, such a package dependencies.

• You can drag and drop an mcz file onto your image as a quick way to
load it.

	Preface
	Libraries
	Zero Configuration Scripts and Command-Line Handlers
	Getting the VM and the Image
	Getting the VM only
	Handling command line options
	Anatomy of a handler
	Using ZeroConf script with Jenkins
	Chapter summary

	Files with FileSystem
	Getting started
	Navigating a file system
	Opening read and write Streams
	Renaming, copying and deleting Files and Directories
	The main entry point: FileReference
	Looking at FileSystem internals
	Chapter summary

	Sockets
	Basic Concepts
	TCP Client
	TCP Server
	SocketStream
	Tips for Networking Experiments
	Chapter summary

	The Settings Framework
	Settings architecture
	The Settings Browser
	Declaring a setting
	Organizing your settings
	Providing more precise value domain
	Launching a script
	Setting styles management
	Extending the Settings Browser
	Chapter summary

	Regular Expressions in Pharo
	Tutorial example—generating a site map
	Regex syntax
	Regex API
	Implementation notes by Vassili Bykov
	Chapter summary

	Source Management
	Versioning Your Code with Monticello
	Basic usage
	Exploring Monticello repositories
	Advanced topics
	Getting a change set from two versions
	Kinds of repositories
	The .mcz file format
	Chapter summary

	Gofer: Scripting Package Loading
	Preamble: Package management system
	What is Gofer?
	Using Gofer
	Gofer actions
	Some useful scripts
	Chapter summary

	Managing Projects with Metacello
	Introduction
	One tool for each job
	Metacello features
	A simple case study
	Loading a Metacello Configuration
	Managing dependencies between packages
	Baselines
	Groups
	Dependencies between projects
	About dependency granularity
	Executing code before and after installation
	Platform specific package
	Milestoning development: symbolic versions
	Load types
	Conditional loading
	Project version attributes
	Chapter summary

	Frameworks
	Glamour
	Installation and first browser
	Presentation, Transmission and Ports
	Composing and Interaction
	Chapter summary

	Agile Visualization with Roassal
	Installation and first visualization
	Roassal core model
	Detailing shapes
	Edges: linking elements
	Layouts
	Events and Callbacks
	The interaction hierarchy
	Understanding a View's Camera
	Beyond Pharo
	Chapter summary

	Scripting Visualizations with Mondrian
	Installation and first visualization
	Starting with Mondrian
	Visualizing the collection framework
	Reshaping nodes
	Multiple edges
	Colored shapes
	More on colors
	Popup view
	Subviews
	Forwarding events
	Events
	Interaction
	Chapter summary

	Language
	Handling Exceptions
	Introduction
	Ensuring execution
	Handling non-local returns
	Exception handlers
	Error codes — don't do this!
	Specifying which exceptions will be handled
	Signaling an exception
	Finding handlers
	Handling exceptions
	Comparing outer with pass
	Exceptions and [mathescape=false,backgroundcolor=white,basicstyle=]ensure:/ifCurtailed: interaction
	Example: Deprecation
	Example: Halt implementation
	Specific exceptions
	When not to use exceptions
	Exceptions implementation
	Ensure:'s implementation
	Chapter summary

	Blocks: a Detailed Analysis
	Basics
	Variables and blocks
	Variables can outlive their defining method
	Returning from inside a block
	Contexts: representing method execution
	Message execution
	Chapter conclusion

	Exploring Little Numbers
	Power of 2 and Numbers
	Bit shifting is multiplying by 2 powers
	Bit manipulation and access
	Ten's complement of a number
	Negative numbers
	Two's complement of a number
	SmallIntegers in Pharo
	Hexadecimal
	Chapter summary

	Fun with Floats
	Never test equality on floats
	Dissecting a Float
	With floats, printing is inexact
	Float rounding is also inexact
	Fun with inexact representations
	Chapter summary

	Tools
	Profiling Applications
	What does profiling mean?
	A simple example
	Code profiling in Pharo
	Read and interpret the results
	Illustrative analysis
	Counting messages
	Memorized Fibonacci
	SpaceTally for memory consumption per Class
	Few advices
	How MessageTally is implemented?
	Chapter summary

	PetitParser: Building Modular Parsers
	Writing parsers with PetitParser
	Composite grammars with PetitParser
	Testing a grammar
	Case Study: A JSON Parser
	PetitParser Browser
	Packrat Parsers
	Chapter summary

