Requirements for a Composition Language

Oscar Nierstrasz
Theo Dirk Meijler

University of Berne®

Abstract

Abstract The key requirement for open systems is that they be flexiblsg@mposableThis suggests that they must

first of all be composable. Object-oriented techniques help by allowing applications to be viewed as compositions of col-
laborating objects, but are limited in supporting other kinds of abstractions that may have finer or coarser granularity than
objects. A composition language supports the technical requirements of a component-oriented development approach by
shifting emphasis from programming and inheritance of classes to specification and composition of components. Objects
are viewed as processes, and components are abstractions over the object space. An application is viewed as an explicit com-
position of software components. By making software architectures explicit and manipulable, we expect to better support
application evolution and flexibility. In this position paper we will elaborate our requirements and outline a strategy for the
design and implementation of a composition language for the development of open systems.

* In Proceedings of the ECOOP 94 workshop on Models and Languages for Coordination of Parallelism and Distribution, Springer
Verlag, LNCS 924, 1995, pp. 147-161.

T Authors’ addresstnstitut fir Informatik (IAM), Universitat Bern, Neubriickstrasse 10, CH-3012 Berne, SwitzeTlalnet41 (31)
631.4618Fax: +41 (31) 631.396%-mail: {oscar, meijler}@iam.unibe.cWWW:http://iamwww.unibe.ch/~scg

1 Introduction sitions of components, (iomponent frameworkbat define

Soft ¢ be vi din two distinct A standard interfaces, protocols and behaviour, and (iii) inter-
oftware systems can be viewed In tWo distinct ways. A rfie mappings to existing components possibly written in oth-

ning system can be seen as a collection of interacting run'ti@?%rogramming languages. Component frameworks are anal-
entities. At the level of system specification, however, we can

: e : gous to object-oriented frameworks (i.e., abstract class hier-
view the same system ascampositionof various software

: archies for particular domains [13]), but allow for the
components [32]. The granularity and nature of the compo-_ ..~ . . :
aneuﬁcatmn of general component abstractions, not just ob-

nents need not necessarily correspond to that of the run-ti .)
" . . . o _Ject classes. Component frameworks essentially dafirta-
entities, since the domain of discourse is different. In the fitS ; . : .
ctural styleg[1] in that applications built using the same

case, we are in the d_omain of application itself, Wherea§ in ﬁemework will exhibit similar architectural structure and
second case we are in the domain of systems construction. ﬁe use of the same kinds of collaborations between compo-
nature of the abstractions that are useful for each domain Wrﬂf”,1 S o . ;
in general, be different. nents. Furthermore, individual application architectures will
’ ~_ be made explicit and manipulable by specifying applications

~ When we speak of open systems, this distinction is Ciik compositions of components. The essential difference with
cial, because the essential feature of open systems is that oaches taken in projects suctDaswin [18] is that, in-
berecomposable—a system is open if it is open to changingieaq of fixing the architectural styles of application through a
reqwremednts. Thgt means thart1the way in Wh'Cth\?e S’Iy,SterBéﬁicular set of composition mechanisms, the component
compose must be open to change over time. We claim Yaeworks supported by a composition language will be
object-oriented techniques go a long way to supporting tlal en-ended.The language can be used not only to specify

wevx:(gf qpfer?l'systten?s, ?u;.trlgy fgllhs{ﬁmewhat tsr:.ort (I)f tg mpositions themselves, but also the kinds of composition
mar y.(.') aing fo clearly aistinguish the computational ang o -, 4 pjsms appropriate to a given architectural style.
compositional views of applications, and (ii) over-emphasiz-

ing the object view, thus failing to provide genamanponent The composition language we propose is an experimental
specification and composition mechanisms. A compositigfiototype currently under development. To address open, dis-
language would function at a higher level of abstraction ybuted systems, it is based on an object model in which ob-

providing an integrating framework for obje@sd compo- jects and components map to a formal abstract machine inte-
nents. Components function at the Compositional level Whetﬁating processes and functions [28] The mappmg is also the
as objects function at the computational level. The interfaggssis for the experimental prototype, as the abstract machine
are different because different concerns are addressed. Ohiggdelf executable. Our development strategy is highly exper-

interfaces address computational needs, whereas compopg8htal, and we expect the language design to evolve rapidly
interfaces must be designed to support flexible system cg@g-the result of our application experiments. One of our goals
struction. is to use the composition language as the back-end for a

To support open systems development, a composition l&iamework-driven visual composition tool. The formal model
guage must support the specification of (i) systems as compbebjects and components must then translate to a graphical

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 2

representation that will be more convenient for interactive dpus institutions. These applications may therefore well be-
plication composition based on component frameworks. come part of a larger fully-automated work-flow system.

In this position paper we present a motivating scenario in The example raises the following questions:
§2 and we summarize our requirements in 83. In 84 we discus§ oy can we create families of components and applica-
the formal object model and the open problems to be resolved. ns in such a way that it is both easy to set up a frame-

Our implementation stra_tegy and ongoing work is outlineq i work for such a family, and easy to “instantiate” a specif-
85, and we conclude with some remarks about future direc- . application (or component)?

tions. * How can we set up various frameworks such that we can
still create a greater whole in which the different applica-

2 Compositional Development of tions created using these various frameworks may be

Open Systems viewed as components that cooperate? Kinds of cooper-

ation may for example be, that components are linked

Large companies and institutions often have a great need for from input to output, or that one component may delegate
open component frameworks since they must frequently de- 3 task to another component.

velop many similar applications, and they must cope with
long-lived applications whose requirements change over time.
Let us consider an example which has been worked on by one nent-oriented development approach?

of the authors. [I, th bination of these th ts, and
The ministry of Education and Science in the Netherlands :n generay, e compination ot tese ITree aspects, and es-
used to send around many different kinds of paper formspteCIaIIy of the first two, has not been supported very well by

many different kinds of educational institutions. These institde, o o development environments and methods (whether

tions would fill in and return these forms; on the basis of tr(\)gject-orlented or not). Because frameworks based on class-

: : . . hierarchies are still hard to create and to use these have been
information gathered, the size of subsidies and allowances

. - reated for large scale use and/or by large institutions on-
would be determined. Now the ministry wants to replace t . . .
) . : 6][16][17]. Much work is being done on component inter-
various paper forms by electronic form systems in order

: . - operability [4][37][38][40][42] but these solutions are not
gathse_r and process the information more efficiently. frameworks and they are not framework-based, that is, they
ince:

_ . . don’t support development of distributed applications as a
« the design of agiven form may change considerably fraghole, they provide only specific forms of connectivity.

yearto year, We assert that the following approach should be taken to-

* the various different form applications should look angards the development and use of open and flexible frame-
feel alike to users, and works:

* the ministry would like to reduce the costs of developing - A single framework should be based on an identification
many similar forms applications, of the terms or components and composition mechanisms in
a need was perceived for a generic “framework” for creatinghich a user of the framework (the developer) wants to de-
electronic form applications. The ministry, however, was alseribe an application. In our example these components are
concerned about limiting the cost of developing the framfgrms, questions and their contents. The composition mecha-
work. nism used here is object inclusion: a form consists of ques-
The framework that was developed wasrealized as an tions.

abstract class hierarChy. For the kind of applications under Creating such a framework will amount to defining these

consideration, an abstract class hierarchy was perceivedi@sain specific “high-level” components and composition

providing too much freedom, and being too difficult to use faechanisms and mapping these to more general “low-level”
create a single application. Furthermore, setting up sucloiponents and composition mechanisms. In the example,
framework is not deemed to be an easy task [13]. Instead, g amounted for example to mapping the high-level question
most natural scenario for developers turned out to be to sp&mponent, to somewhat lower level components of a general
ify electronic forms applications by directly listing the quesspreadsheet widget (interaction object) and text-field widgets.
tions that should be presented in the application and the kind It must be possible to use a single application instantiated

?f mformai;ltlon tgat.sho(;JId ?ﬁ tetr;]tered p]?rague;tidfhe from a framework as a component of a larger system. Creating
r?m(ta_worA\ivas iSIgBel so thatthe tS'IFI)eCI 'g daeh € afp— frameworks for open systems requires extra effort. It must be
plication. Aform of subclassing was still needed when, origassible to regard thren-time abstractionthat are created as

How can we still exploit object-oriented reuse features,
particularly inheritance, while adopting a more compo-

:) 0
ample, integrity and correctness tests would have to be adged, -, computational entities so that they can cooperate. The

to a form, or when particular forms or questions required n n-time abstractions may either be objects (e.g., an editable

St.‘ilr?.dard prt(IeSﬁntatlon(.j At the mif rfrl1entf, ”‘f‘?se fc_)rmfhare Uf%?ﬁ'n may be viewed as an object, possibly as an active object
within a partly human-driven work-fiow forfinancing the varg, 1t it may actively participate in the work-flow) or infor-

mation filters. However, since the user of a framework thinks
in terms of design-time entities or components, a framework
must support the linking of these components. From the point

* Note that our description of the example has been simplified
to the extreme for the purpose of this paper.

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 3

of view of a component as part of a larger whole, the form apgnts may be of finer or coarser granularity, and other forms
plication of the example must be viewed as a data-source cofrabstraction and composition may relate components.
ponent (since it is the source of a filled-in form), which can be |f we consider the key characteristic of open applications,
linked to other components to process the information. In gefe can derive a series of requirements for a composition lan-
eral links between components that may be supported aregﬁ%ge;

example, data-flow links [21] and links to describe how com-
ponents in which requests for operations are generated (user
interface components) can be served by components that exe-
cute these operations [20]. *

Open topologyopen applications are inherently concur-
rent and distributed;

Heterogeneityapplications may run on a variety of hard-
ware and software platforms;

Evolving requirementsapplication requirements are not
fixed in advance, so a flexible architecture is needed to
meet changing requirements.

These characteristics motivate the following technical re-

The creation of frameworks may be supported by a frame-,
work of frameworks or a “meta-framework.” For that meta-
framework, the components are the abstractions that are used
by the framework-designer tdefine the components and
composition mechanisms of the framework. This meta-frame-,
work may also support the mapping between abstractionswements:
providing specific design-time links between definitions of 1. Encapsulationto cope with system complexity and to
high-level and definitions of low-level components (e.g. be- Provide for flexible architectures, bathjectsandcom-

tween the definition of “table-question” and “spread-sheet por.lentsare needed; .])
widget” for our example). 2. Objects as Processesbjects may be active or passive,

local or remote, simple or composite, but all objects can
be viewed as processes;
3. Components as Abstractionsomponents are (poten-
1. Support for component framework specification. Since tia|ly higher-order) software abstractions that are com-
we seek high-level tools for instantiating applications posed in various ways to yield applications;

from frameworks, the specification of a framework . .
should assign a semantics to components and composi4: PIug compatibility:a type model encompassing both ob-

tions by a mapping to the run-time entities [20]. It must ~ Jects and components is needed to reason about valid
be possible to specify a range of different kinds of com- bindings and compositions;
position and plug-compatibility rules between compo- 5. Formal object modela standard object model is needed
nents. to bridge the gap between the composition and language
2. Support for application composition. It must be possible and implementation of components on one hand, and
to specify an application as a composition of components higher-level composition tools on the other hand;
conforming to particular framework. Interactive tools for 6. Scalability: the use of the language should scale from
visualising frameworks, components and compositions small to large systems, and from highly dynamic usage
would help as a bridge between analysis (requirements), with incomplete type information to compiled and high-
design (frameworks) and implementation (composi- |y optimized usage.

tions). Ideally, visual composition would ramework- Let us consider each of these requirements in turn. We
dnv_en.Support can, a_n_d must be than DVO_/Ided for '®Rave already briefly discussed the need for both objects and
soning about compositions, and for mapping compogsmponents. Objects are run-time entities that are configured
tions to the run-time system. to achieve a certain end. The configuration —eamnposition
3 Requirements for a Composition — itself_ need not correspond pre_cisely to the object-level
view, since both more finely-grained and more coarsely
Language grained components may come into play. Mix-ins, interfaces

A composition language should support the flexible constri@ld protocols are all prime candidates for specification as
tion and evolution of app"cations by promoting Systemaﬁ.@mponents, but cannot be instantiated direCtly as ObjeCtS, and
component-oriented development of open systems. This &€ not necessarily conveniently modeled as abstract classes
quires not only that one be able to specify systems as confj#ier. Modules, packages, frameworks and even generic con-
sitions of software components, but that these Compositiéigyrations or architectures are also good candidates for more
conform to componeritameworkshat encode flexible archi- coarsely-grained components [2].

tectures for a range of applications. It is not enough to have a Objects, being run-time entities, in general have state and
library of “reusable” software artifacts — what makes a softaay execute concurrently. Whether or not objects have their
ware component interesting is the fact that it has lomen own internal threads, or may be otherwise considered “ac-
signedto work together with other components within théve,” each object can be viewed as a kind of servepras-
context of a generic architecture. This is precisely what distass The process view of objects formalizes the notion that an
guishes an object-oriented framework from a traditional softbject is an autonomous entity, and not just a data structure to
ware library. A component framework generalizes this notiti@ accessed by a designated set of procedures. In the context
to frameworks of components that are not necessarily objettoncurrent clients, it is even more important to formalize
classes, and are not necessarily related by inheritance: contipeprocess view, as it will allow us to express the synchroni-

We can distinguish two kinds of technological support
that can help support framework design and use:

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 4

sation constraints directly within the behaviour of an objecomposition tools. A formal object model is necessary to act
rather than as an orthogonal concept. This corresponds toabhdhe “glue” between these layers. Integrating objects and
“homogeneous” object model for object-based concurrencymponents, concurrent activities, communication, and a rig-
[34] in which all objects are potentially active, and assume @ous notion of plug compatibility, into a common framework

sponsibility for their own concurrency control. presents various semantic difficulties [31]. We argue, there-

Components, on the other hand, are software abstractidfge. that not only is a common object model necessary, but
They may also be run-time entities to which applications mgye model must have a formal foundation that addresses the se-
connect, but, more generally, components must be Compog@gltics of both functional composition and concurrency. This
and instantiated before they are part of a running applicatié?ndation can then not only be used to formalize plug com-
Mix-ins and templates are prime examples of components tpatibility, but it can be used as a reference for establishing the
arenotrun-time entities. Components will typically be highercorrespondence between the composition language and imple-
order, in the sense that the composition of existing comgBentation languages, and it can be used to provide either di-
nents may yield new components that must be further insté@ftly or indirectly (i.e., via the composition language) a for-
tiated before run-time entities are obtained. This is precis8hal semantics for graphical composition tools [21].
what happens with inheritance: an abstract class is a higher-or-A final key requirement for a composition language is that
der component that is partially instantiated to another comjitobe scalable. Both small and large systems, and centralized
nent — a subclass — by inheritance [3]. By supporting the remd distributed systems should be configurable. A scalable
tion that software components mayarey useful abstraction, language can be used both in a “rapid prototyping” mode and
not just object classes, we allow for the definition of mudh production mode. In the first case, changes can be dynami-
more flexible, and, we argue, more conceptually natural cooally made to a running system, and in the second case, static
ponent frameworks. analysis can be performed to generate a more optimized run-

To support flexible reconfiguration of applications, it i§me system. Explicit type declarations may be left out when
important that not only compositions be explicit, but that tf@mposing a system, but will be typically required when a
generic architectures from which they are derived be explié@mponent framework is released and published. When a
as components. In an object-oriented framework, the archité@mposition language is used as back-end for a visual compo-
ture of applications based on the framework is typidafly Sition tool, it must be possible to immediately propagate
plicit in the interfaces of the class hierarchy. In a compon&hnges in configuration to running applications, rather than

framework, architectures (generic compositions) would thefigquiring the tool to generate and compile code from the
selves be components. graphical specifications. On the other hand, it must be possible

Components, however, can still benefit from an object ﬂ‘é),' eliminate unnecessary dynamic lookups and checks in sta-

vour: One of the strengths of inheritance over functional co e configurations by analyzing the specification and generat-

position is that the sequence in which formal parameters (iI g_g_p;_ttlmtlzed hc_ode. It sh(t)ugii not fbe necessary _to sacrifice
virtual methods) are bound is not fixed in the class interfaé&x' ity 1o achieve acceptable periormance, or vice versa.

A similar degree of flexibility can be obtained by using namg- Formal Models of Objects and
based binding for parameters for components as well [5]. De- Components

fault values for parameters can also be specified and optional-
ly overridden in the same way as is possible in most inhefifficulties in integrating concurrency into object-oriented
ance schemes. languages are well-documented [14][19][31][34]. Integrating
Plug compatibility formally expresses how componenfsCOmponent-oriented approach with concurrent objects poses
may be composed. Various different forms of “compositiofy€t more semantic difficulties, particularly in terms of devel-
may co-exist, however, and plug-compatibility must cofPing & usable model of plug-compatibility for both objects

with these different forms. At the very least, functional cond components. A formal model of objects and components
position and communications interconnection, for compghould be chosen in order to help answer the following ques-

nents and objects respectively, must both be considered. YQ0S:

though most attempts to formally specify type systems for ob-
ject-oriented languages adopt a functional view of objects
[10], such a view ignores the fact that objects typically require
clients to conform to a simple protocol in order for their com-
posed behaviour to be valid [30]. Components, on the other
hand, being static rather than dynamic, are truly functional en-
tities. A unified type model that accommodates both objects
and components would allow one to reason about plug com-
patibility for both kinds of entities, and would at least partially .
address the problem of checking compatibility of object pro-
tocols.

A composition language should also serve as a bridge be-
tween traditional implementation languages and higher-level

How can objects be viewed as procesgebjects are
message-passing entities with hidden state, and so are
processes, but processes may exhibit arbitrary behaviour,
whereas objects are interesting because (i) they provide
servicesaccording to a public interface, and (i) they have

a very regular internal structure that allows them to be
both instantiated and specialized. A formal object model
must dictate whatindsof processes are objects.

How can components be viewed as process abstractions?
A composition specifies how an application, as a collec-
tion of interacting objects, is composed from a set of soft-
ware components. If objects are processes, then compo-
nents are abstractions (functions) over the process space.

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 5

What does this mean formally? May components be ar- values; objects and components may themselves be val-
bitrary abstractions, or, as with objects, must some disci- UE€s;

pline be imposed in order to obtain only meaningful ab- 2. Concurrencyan application is a concurrent composition
stractions? of objects (whether or not there may be multiple concur-
rent threads active at any time);

» How can inheritance co-exist with other forms of compo- . . . _ _ .
Choice:an object typically provides an interface consist-

sition? Inheritance can be viewed as a combination of))
higher-order compositions [3]. Integrating inheritance ing of a ch0|c_e of services; a component may be com-
cleanly with concurrency features is non-trivial [14][19], ~ POS€d inavariety of alternative ways;

so extending a concurrent object-oriented model to ac-4- Abstraction: objects and components are abstract enti-
commodate component-oriented composition cannot be ties whose behaviour and functionality is only accessible
straightforward. To achieve such an integration, we be- through their interface;

lieve that it will be necessary to “unbundle” inheritance 5. Instantiation:objects can be dynamically instantiated, so
and understand it in terms of more primitive composition it must be possible to generate new names for objects and
operations. Once we can talk about both inheritance and their communication channels, and to communicate
composition within the same formal model, the integra- these names to existing objects.

tion issues should become transparent. Considering these requirements, it appears that we need a
- What is plug-compatibility for objects and componentggrmal model that combines features of a process calculus (to
odel objects as processes) ardaalculus (to model com-

Objects and components will have different kinds _
“olugs” or type interfaces, but plug compatibility is an isPonents as abstractions). In fact, there has been some success

sue in both cases, as we would like to be able to repl r&énodeling object_s and inheritance using CCS as a founda-
objects and components within a composition by plu on [33]. CCS [22] is a process calculus modeled loosely after

compatible ones. Types and subtyping rules must be f e\ calculus, in which functional abstraction is replaced by

mally specified, and their semantics justified in terms fput guz_;lrds OVET Process expressions, V_/here guards are asso-
lated with named channels, application is replaced by output

the formal object model. An open problem is how to ex L
tend traditional type systems to express limited dyna 8ards also addressed to named channels, and composition is
y choice (over guarded expressions) and concurrent compo-

properties such as protocols: a valid client-server rela-. o .)

tionship typical requires the client to obey a simple prgltlon. (Non-deterministic) reductm_n occurs when input and

tocol. Rather than simply raise exceptions when prot%l-JtpUt guards maFch, and communication takes place.)
cols are violated, it would be desirable to (i) express pro- The shortcomings of CCS are well-known, the most sig-
tocols formally as part of an object’s type interface, (iljificant being that, although new processes can be dynamical-
statically validate clients’ conformance to protocols, ard instantiated, channel names cannot be communicated and
(iii) determine automatically when one protocol can H& neéw channel names can be dynamically introduced. Func-
formally viewed as a “subtype” of another [30]. tional abstraction cannot be modeled, and it is also not possi-

ble to pass process expressions as values. These technical

 How can we infer properties of the behaviour of condhortcomings where attacked by various researchers [7] [23]
posed applications from the specifications of their corps] [36] [39], and have culminated in theealculus, a calcu-
ponentsReasoning about behaviour in a compositionls of “mobile processes” in which channel names can be
way is a notoriously difficult problem. So far it is not poscommunicated and newly introduced using rules analogous to
sible to prove systems correct from the knowledge thbse for the\ calculus to avoid capture of names. Although
individual components may be correct, for various tecthe 1t calculusonly allows for the communication of names as
nical reasons (such as aliasing [11]). To have any hope/gfues, it has been shown that both a polyadialculus [26]
proving even partial properties of systems from the spggtlowing the communication of tuples), and a higher-order
ifications of components, we need to assign formal sgilculus [36] (allowing the communication of process abstrac-

mantics to compositions. tions as values) can be faithfully modeled by a mapping to the

* What does it mean to compose components from diﬁe@}(ﬁnad'c calculus.
hardware and software environmenfa# a composition The higher-ordert calculus is a close fit to our require-
language to act as “glue” between components writtenTieNts and appears to be an excellent basis for developing a
different languages, or running in different environformal model of objects and components. Already, there have
ments, a common reference model is needed to def@&n some attempts to develop an “object calculus” based on
what composition and interaction mean across tMariants of thercalculus [12][28], and some researchers have
boundaries of different language models. experimented with modeling object-oriented language fea-
tures in thetcalculus [35]. So far, however, there is no stand-
Technically, there are a number of features that a formgy model of objects as processes, and the relative advantages
model should capture: and disadvantages of the possible mappings have not be sys-

1. Communication and bindingobjects’ behaviour con- ematically catalogues or evaluated.

sists in the exchange of messages; components’ func- Another consideration for a calculus of objects and com-
tionality is instantiated by binding formal parameters foonents would be the use of nhames for component abstrac-

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 6

tions. As demonstrated by Dami [5]A&alculus with names Clearly, the most crucial part to fix is the formal foundation.
not only goes a long way towards modeling object-orient@the first experiments should determine what features of a
features (such as inheritance) more conveniently than a cigher-order process calculus are needed for an adequate ab-
ventional\ calculus (though without addressing concurrenstract machine, and whether there are any technical shortcom-
and communication), it greatly increases flexibility in thangs to be resolved. Next, the different possible ways of mod-
specification and use of abstractions since parameters caellmg objects and components must be systematically evaluat-
bound by name in any order. This suggests that a higher-omeldkr This suggests thatcdass of possible language designs

1t calculus based entirely on names would be a good founduaust in effect be evaluated.

tion for a formal model of objects and components. Finally, specific language features must be introduced and
5 Incrementally Developing a evaluated. This s_hould be the last aspect of the language to be

Composition Lanauaae frozen. In fact, since the language should serve as a “meta-

P guag framework” for defining various component frameworks, it

We propose an experimental and evolutionary approach to ¢leeuld be as flexible as possible. Ideally, one should be able
veloping and implementing a practical composition languade.define new language concepts with their associated syntax
There are too many open questions to consider a conventi@sahew abstractions, analogous to the way that new language
approach in which the language is fully specified beforefeatures can be introduced into CLOS by defining a suitable
compiler is implemented and the language is first used: = meta-object protocol [15].

* Whatis an appropriate semantic foundation? Once the semantic foundation and the object model are
« How can objects and components best be modeled witfiaPilized, it may be possible (and desirable) to eliminate an
that foundation? implementation layer by directly implementing the object

. What language features are most useful for definirrInOdel.' The generality of the process c_alculus wiII_not be need-
compositions and component frameworks? & to implement Ia_mguage feature_s, since thgy will all map to
’ the level of the object model, and it will certainly be possible
Instead, we propose an approach in which the languggexploit properties of the object model to achieve a more ef-
can be used alreaghhileit is being formally specified, and sofjcient prototype. The underlying process calculus semantics
insight concerning the usefulness of concepts and features\gainserve, however, as a reference implementation, and can
feed back more quickly into the language design. In fact, theyvide formal justification for any optimizations introduced.

language itself is not the goal, but the discovery and identifi- Although a textual language has the advantage of being

cation of the concepts and mechanisms that will best suppaort. . . N
. easier to formally specify and implement, a graphical interface
component-oriented development.

. to software composition has more appeal as a natural way to
A layered approach to language design would proceed &8y and think of components and compositions. We plan to

follows: an abstract machine would be built thatimplementg@vebp in parallel a framework-driven visual composition
higher-order process calculus, as described above. Langugggthat can act as a front end to a composition language. As
features to implement objects and components are then \ggn the work of de Mey [21], such a tool would differ from
signed by specifying a semantic mapping from the syntacligisting commercial visual composition tools in that it would
constructs of the language to the process calculus [22][38} application domain-independent. The tool would be param-
The mapping will be an executable specification, as will tRgarized by “composition models” for various component
target calculus. As a consequence, a running prototype willhgneworks that determine what constraints apply to their
available at all times. composition. In our approach, additionally, the semantics of
Since the goal is to support component-oriented devel@emposition would be directly inherited from that of the com-
ment, is critical that the language be tested on “real” rathmsition language, rather than from a separately provided
than “toy” examples. If the language is designed “on paperiodel. Moreover, the way that components and compositions
before it is used, it will be impossible to experiment with mosge visualized will also be configurable for different domains,
than toy examples until an implementation is complete aas part of the composition model. In the long term, we expect
available. If the language specification is itself a running prixat this configuration itself will just be another application of
totype, it will be possible to experiment with interesting examisual composition.
ples from the beginning and to have these experiments directly)
influence the evolution of the language itself. Experimens Concluding Remarks

will include existing (object-oriented) frameworks as well ag composition language would function at a higher level than
composition tools. Since compositions may act as glue *&eprogramming language by allowing one to specify explicitly
tween existing components, it will be important to experime&t,mponems, compositions and component frameworks. Such
with existing components as early as possible. a language would lie somewhere between Smalltalk [8], ML
The experiments should serve to answer the questions [i84] and Perl [41], providing a computational model in which
ed above, namely, what abstractions are most useful for define may talk about (concurrent) objects, higher-order abstrac-
ing compositions and component frameworks, what basiocns, and interaction with external components. As with
model of objects and components best supports these abs8atalltalk, one should be able to define frameworks of abstract
tions, and what formal semantics should serve as a foundatmymponents; as with ML, one should be able to specify strong-

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler

typed, higher-order abstractions; and as with Perl, one shddld
be able to compose applications quickly and flexibly from
both newly-defined and existing components. -

We have argued in favour of a formal approach to speci-
fying and developing a composition language, but we have
only presented our requirements. The precise natures of thd&e-
mantic foundation, of the formal object model, and of the lan-
guage itself have not been defined here. Instead, we have pro-
posed an evolutionary approach based on executable language
specification, that will allow us to arrive at a stable langua
design by experimentation and incremental refinement. Some
earlier experiments were encouraging [27][28], and we plg
now to embark on a more ambitious experiment.

A number of difficult technical issues remain to be ex?]
plored and resolved. Aside from the problem of elaborating
the formal object model, there is an open question of devel
ing a suitable type model for both objects and components.
“Plug-compatibility” should take not only interfaces into agqy]
count, but the fact that objects, to be used correctly, often re-
quire clients to respect a particular protocol. A framework for
specifying protocols as finite state processes has been pka}
posed by one of the authors in a separate paper [30], but it re-
mains unclear how such a framework could be practically in-
corporated into a composition language. [13]

Efficient implementation of a composition language is a
long-term goal, but it is too early to say how flexibility and ac-
ceptable performance can both be provided while respectﬁ?ﬁﬂ
the desired formal semantics. We expect that it will be possi-
ble to partially optimize the implementation of statically ana-
lysed components by techniques that can be justified by [@g
formal semantics.

Finally, we acknowledge that the most difficult problemi-6]
are not so much technological as methodological [29]. Com-
ponent-oriented development is based on a different softwgrﬂ
process and software lifecycle from traditional (or event ob-
ject-oriented) development. In particular, the incremental de-
velopment of component frameworks must be explicitly supg]
ported by the methods and by the project management infra-
structure [9]. A composition language only attempts to
provide limited technological support for such methods.

Acknowledgements

We gratefully acknowledge the financial support of the Swiss

National Science Foundation under project no. 21—40610.9éb]

References
[1] Gregory Abowd, Robert Allen and David Garlan, “Using Styl¢21]
to Understand Descriptions of Software Architectufrp-
ceedings SIGSOFT 93, ACM Software Engineering Netés

18, no. 5, Dec 1993, pp. 9-20. [22]

Gilad Bracha, “The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance,” Ph.D. thesis, Dept. 0f23]
Computer Science, University of Utah, March 1992.

William Cook and Jens Palsberg, “A Denotational Semantics of
Inheritance and its CorrectnesBfoceedings OOPSLA '89,
ACM SIGPLAN Noticessol. 24, no. 10, Oct. 1989, pp. 433{24]
443.

(2]

(3]

William Cook, “Application Integration, not Application Dis-
tribution,” ACM OOPS Messenger, Addendum to the Proceed-
ings of OOPSLA 1998%0l. 5, no. 2, April 1994, pp. 70-71.

Laurent Dami, “Software Composition: Towards an Integration
of Functional and Object-Oriented Approaches,” Ph.D. thesis
No. 396, University of Geneva, 1994.

Thomas Eggenschwiler and Erich Gamma, “ET++SwapsMan-
ager: Using Object Technology in the Financial Engineering
Domain”,Proceedings OOPSLA '92, ACM SIGPLAN Notjces
vol. 27, no. 10, Oct. 1992, pp. 166-177.

Uffe Engberg and M. Nielsen, “A Calculus of Communicating
Systems with Label Passing,” DAIMI PB-208, University of
Aarhus, 1986.

Adele Goldberg and David Robso8malltalk 80: the Lan-
guage and its Implementatiohddison-Wesley, May 1983.

Adele Goldberg and Kenneth S. Rub8ycceeding With Ob-
jects: Decision Frameworks for Project Managem@widison
Wesley, 1995, forthcoming.

Carl A. Gunter and John C. Mitcheltheoretical Aspects of
Object-Oriented Programmindhe MIT Press, 1994.

John Hogg, “Islands: Aliasing Protection in Object-Oriented
Languages,Proceedings OOPSLA '91, ACM SIGPLAN No-
tices vol. 26, no. 11, Nov 1991, pp. 271-285.

Kohei Honda and Mario Tokoro, “An Object Calculus for
Asynchronous CommunicatiorProceedings ECOOP '9P.
America (Ed.), LNCS 512, Springer-Verlag, Geneva, Switzer-
land, July 15-19, 1991, pp. 133-147.

Ralph E. Johnson and Brian Foote, “Designing Reusable Class-
es,” Journal of Object-Oriented Programmingol. 1, no. 2,
1988, pp. 22-35.

Dennis G. Kafura and Keung Hae Lee, “Inheritance in Actor
Based Concurrent Object-Oriented Languagksjteedings
ECOOP '89 S. Cook (Ed.), Cambridge University Press, Not-
tingham, July 10-14, 1989, pp. 131-145.

Gregor Kiczales, Jim des Riviéres and Daniel G. Bobfw,
Art of the Metaobject ProtocaMIT Press (Ed.), 1991.

Mark a. Linton, John M. Vlissides and Paul r. Calder, “Compos-
ing user interfaces with InterViewsComputer\ol. 22, no. 2,
1989, pp. 8-22.

Peter W. Madany, “An Object-Oriented Framework for Filesys-
tems,Ph.D. Thesis University of lllinois at Urbana-Cham-
paign 1992

Jeff Magee, Naranker Dulay and Jeffrey Kramer, “Structuring
Parallel and Distributed Program&toceedings of the Inter-
national Workshop on Configurable Distributed Systdros-
don, March 1992.

Satoshi Matsuoka and Akinori Yonezawa, “Analysis of Inherit-
ance Anomaly in Object-Oriented Concurrent Programming
Languages,’Research Directions in Concurrent Object-Ori-

ented ProgrammingG. Agha, P. Wegner and A. Yonezawa
(Ed.), MIT Press, 1993, pp. 107-150.

Theo Dirk Meijler, “User-level Integration of Data and Opera-
tion Resources by means of a Self-descriptive Data Model”,
Ph.D. Thesis, Erasmus University Rotterdam, Sept. 1993

Vicki de Mey, “Visual Composition of Software Applications,”
Ph.D. thesis (no. 2660), Dept. of Computer Science, University
of Geneva, 1994.

Robin Milner, Communication and Concurrencirentice-
Hall, 1989.

Robin Milner, Joachim Parrow and David Walker, “A Calculus
of Mobile Processes, Parts | and 1l,” Reports ECS-LFCS-89-85
and -86, Computer Science Dept., University of Edinburgh,
March 1989.

Robin Milner, M. Tofte and R. HarpéFhe definition of stan-
dard ML, MIT Press, Cambridge, 1990.

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Robin Milner, “Functions as ProcesseBrbceedings ICALP [33]
'90, M.S. Paterson (Ed.), LNCS 443, Springer-Verlag, War-
wick U., July 1990, pp. 167-180.

Robin Milner, “The Polyadic pi Calculus: a tutorial,” ECS-
LFCS-91-180, Computer Science Dept., University of Edirt-34]
burgh, Oct. 1991.

Oscar Nierstrasz, “A Guide to Specifying Concurrent Behav-
iour with Abacus,” Object Management, D. Tsichritzis (Ed.),
Centre Universitaire d’Informatique, University of Geneve35]
July 1990, pp. 267-293.

Oscar Nierstrasz, “Towards an Object Calcul®sgceedings
of the ECOOP '91 Workshop on Object-Based Concurre
Computing M. Tokoro, O. Nierstrasz, P. Wegner (Ed.), LNC
612, Springer-Verlag, 1992, pp. 1-20.

6]

Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis, “Com-
ponent-Oriented Software Developme@gmmunications of [37]
the ACM vol. 35, no. 9, Sept 1992, pp. 160-165.

Oscar Nierstrasz, “Regular Types for Active Obje®sjceed- [38]
ings OOPSLA '93, ACM SIGPLAN Noticesl. 28, no. 10,
Oct. 1993, pp. 1-15. 39]
Oscar Nierstrasz, “Composing Active ObjecRésearch Di-
rections in Concurrent Object-Oriented Programmin@. [40]

Agha, P. Wegner and A. Yonezawa (Ed.), MIT Press, 1993, pp.
151-171. [41]

Oscar Nierstrasz and Laurent Dami, “Component-Oriented
Software Technology,Object-Oriented Software Composi-[42]
tion, O. Nierstrasz, D. Tsichritzis (Ed.), Prentice-Hall, 1995, to
appeatr.

Michael Papathomas, “A Unifying Framework for Process Cal-
culus Semantics of Concurrent Object-Oriented Languages,”
Proceedings of the ECOOP '91 Workshop on Object-Based
Concurrent ComputingM. Tokoro, O. Nierstrasz, P. Wegner
(Ed.), LNCS 612, Springer-Verlag, 1992, pp. 53-79.

Michael Papathomas, “Language Design Rationale and Se-
mantic Framework for Concurrent Object-Oriented Program-
ming,” Ph.D. thesis No. 2522, Dept. of Computer Science, Uni-
versity of Geneva, 1992.

Benjamin C. Pierce, “Programming in the Pi-Calculus — An
Experiment in Concurrent Language Design,” PICT Version
3.4c tutorial, ftp:/ftp.dcs.ed.ac.uk/pub/bep/pict.tar.Z, Univer-
sity of Edinburgh, March, 1994.

Davide Sangiorgi, “Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms,” Ph.D. thesis, CST-
99-93 (also: ECS-LFCS-93-266), Computer Science Dept.,
University of Edinburgh, May 1993.

Richard Soley (Ed.QObject Management Architecture Guide
Object Management Group, Frameington, MA, Nov. 1990.
Alan Snyder, “Open Systems for Software: An Object-Orient-
ed Solution,"”ACM OOPS Messenger, Addendum to the Pro-
ceedings of OOPSLA 1998l. 5, no. 2, April 1994, pp. 67-68.
Bent Thomsen, “Calculi for Higher Order Communicating
Systems,” Ph.D. thesis, Imperial College, London, 1990.

Jon Udell, “Componentware,” iByte Vol. 19, No 5, May
1994, pp 46-56.

Larry Wall and Randal L. Schwart®rogramming Petl
O'Reilly & Associates, Inc., 1990.

Antony S. Williams, “The OLE 2.0 Object ModelACM
OOPS Messenger, Addendum to the Proceedings of OOPSLA
1993 vol. 5, no. 2, April 1994, pp. 68-70.

	Requirements for a Composition Language
	1 Introduction
	2 Compositional Development of Open Systems
	3 Requirements for a Composition Language
	4 Formal Models of Objects and Components
	5 Incrementally Developing a Composition Language
	6 Concluding Remarks
	References

