
-

inger
Requirements for a Composition Language *

Oscar Nierstrasz
Theo Dirk Meijler

University of Berne†

Abstract

Abstract The key requirement for open systems is that they be flexible, or recomposable. This suggests that they must
first of all be composable. Object-oriented techniques help by allowing applications to be viewed as compositions of col-
laborating objects, but are limited in supporting other kinds of abstractions that may have finer or coarser granularity than
objects. A composition language supports the technical requirements of a component-oriented development approach by
shifting emphasis from programming and inheritance of classes to specification and composition of components. Objects
are viewed as processes, and components are abstractions over the object space. An application is viewed as an explicit com
position of software components. By making software architectures explicit and manipulable, we expect to better support
application evolution and flexibility. In this position paper we will elaborate our requirements and outline a strategy for the
design and implementation of a composition language for the development of open systems.

* In Proceedings of the ECOOP 94 workshop on Models and Languages for Coordination of Parallelism and Distribution, Spr
Verlag, LNCS 924, 1995, pp. 147-161.

† Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012 Berne, Switzerland. Tel: +41 (31)
631.4618. Fax: +41 (31) 631.3965. E-mail: {oscar, meijler}@iam.unibe.ch WWW: http://iamwww.unibe.ch/~scg
er-
th-
nal-
ier-
e
ob-

e
d
po-
ill
ns
ith

 a
ent
be
cify
ion

ntal
dis-
ob-
nte-
 the
hine
er-
idly
als
r a

el
ical
1 Introduction
Software systems can be viewed in two distinct ways. A run-
ning system can be seen as a collection of interacting run-time
entities. At the level of system specification, however, we can
view the same system as a composition of various software
components [32]. The granularity and nature of the compo-
nents need not necessarily correspond to that of the run-time
entities, since the domain of discourse is different. In the first
case, we are in the domain of application itself, whereas in the
second case we are in the domain of systems construction. The
nature of the abstractions that are useful for each domain will,
in general, be different.

When we speak of open systems, this distinction is cru-
cial, because the essential feature of open systems is that they
be recomposable — a system is open if it is open to changing
requirements. That means that the way in which the system is
composed must be open to change over time. We claim that
object-oriented techniques go a long way to supporting this
view of open systems, but they fall somewhat short of the
mark by (i) failing to clearly distinguish the computational and
compositional views of applications, and (ii) over-emphasiz-
ing the object view, thus failing to provide general component
specification and composition mechanisms. A composition
language would function at a higher level of abstraction by
providing an integrating framework for objects and compo-
nents. Components function at the compositional level where-
as objects function at the computational level. The interfaces
are different because different concerns are addressed. Object
interfaces address computational needs, whereas component
interfaces must be designed to support flexible system con-
struction.

To support open systems development, a composition lan-
guage must support the specification of (i) systems as compo-

sitions of components, (ii) component frameworks that define
standard interfaces, protocols and behaviour, and (iii) int
face mappings to existing components possibly written in o
er programming languages. Component frameworks are a
ogous to object-oriented frameworks (i.e., abstract class h
archies for particular domains [13]), but allow for th
specification of general component abstractions, not just
ject classes. Component frameworks essentially define archi-
tectural styles [1] in that applications built using the sam
framework will exhibit similar architectural structure an
make use of the same kinds of collaborations between com
nents. Furthermore, individual application architectures w
be made explicit and manipulable by specifying applicatio
as compositions of components. The essential difference w
approaches taken in projects such as Darwin [18] is that, in-
stead of fixing the architectural styles of application through
particular set of composition mechanisms, the compon
frameworks supported by a composition language will
open-ended.The language can be used not only to spe
compositions themselves, but also the kinds of composit
mechanisms appropriate to a given architectural style.

The composition language we propose is an experime
prototype currently under development. To address open,
tributed systems, it is based on an object model in which
jects and components map to a formal abstract machine i
grating processes and functions [28]. The mapping is also
basis for the experimental prototype, as the abstract mac
is itself executable. Our development strategy is highly exp
imental, and we expect the language design to evolve rap
as the result of our application experiments. One of our go
is to use the composition language as the back-end fo
framework-driven visual composition tool. The formal mod
of objects and components must then translate to a graph

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 2

e-

ca-
e-

if-

an
a-
be
er-
ed
ate

s,
o-

 es-
by
her
ass-
been
on-
r-
t

hey
 a

 to-
e-

on
s in
de-
 are
ha-
es-

se
n
el”
ple,
ion
eral
ts.

ted
ting
 be

 The
ble
ject
-
ks
ork
int
representation that will be more convenient for interactive ap-
plication composition based on component frameworks.

In this position paper we present a motivating scenario in
§2 and we summarize our requirements in §3. In §4 we discuss
the formal object model and the open problems to be resolved.
Our implementation strategy and ongoing work is outlined in
§5, and we conclude with some remarks about future direc-
tions.

2 Compositional Development of
Open Systems

Large companies and institutions often have a great need for
open component frameworks since they must frequently de-
velop many similar applications, and they must cope with
long-lived applications whose requirements change over time.
Let us consider an example which has been worked on by one
of the authors.

The ministry of Education and Science in the Netherlands
used to send around many different kinds of paper forms to
many different kinds of educational institutions. These institu-
tions would fill in and return these forms; on the basis of the
information gathered, the size of subsidies and allowances
would be determined. Now the ministry wants to replace the
various paper forms by electronic form systems in order to
gather and process the information more efficiently.

Since:

• the design of a given form may change considerably from
year to year,

• the various different form applications should look and
feel alike to users, and

• the ministry would like to reduce the costs of developing
many similar forms applications,

a need was perceived for a generic “framework” for creating
electronic form applications. The ministry, however, was also
concerned about limiting the cost of developing the frame-
work.

The framework that was developed was not realized as an
abstract class hierarchy. For the kind of applications under
consideration, an abstract class hierarchy was perceived as
providing too much freedom, and being too difficult to use to
create a single application. Furthermore, setting up such a
framework is not deemed to be an easy task [13]. Instead, the
most natural scenario for developers turned out to be to spec-
ify electronic forms applications by directly listing the ques-
tions that should be presented in the application and the kind
of information that should be entered per question*. The
framework was designed so that the specification was the ap-
plication. A form of subclassing was still needed when, for ex-
ample, integrity and correctness tests would have to be added
to a form, or when particular forms or questions required non-
standard presentation. At the moment, these forms are used
within a partly human-driven work-flow for financing the var-

ious institutions. These applications may therefore well b
come part of a larger fully-automated work-flow system.

The example raises the following questions:

• How can we create families of components and appli
tions in such a way that it is both easy to set up a fram
work for such a family, and easy to “instantiate” a spec
ic application (or component)?

• How can we set up various frameworks such that we c
still create a greater whole in which the different applic
tions created using these various frameworks may
viewed as components that cooperate? Kinds of coop
ation may for example be, that components are link
from input to output, or that one component may deleg
a task to another component.

• How can we still exploit object-oriented reuse feature
particularly inheritance, while adopting a more comp
nent-oriented development approach?

In general, the combination of these three aspects, and
pecially of the first two, has not been supported very well
software development environments and methods (whet
object-oriented or not). Because frameworks based on cl
hierarchies are still hard to create and to use these have
created for large scale use and/or by large institutions
ly[6][16][17]. Much work is being done on component inte
operability [4][37][38][40][42] but these solutions are no
frameworks and they are not framework-based, that is, t
don’t support development of distributed applications as
whole, they provide only specific forms of connectivity.

We assert that the following approach should be taken
wards the development and use of open and flexible fram
works:

A single framework should be based on an identificati
of the terms or components and composition mechanism
which a user of the framework (the developer) wants to
scribe an application. In our example these components
forms, questions and their contents. The composition mec
nism used here is object inclusion: a form consists of qu
tions.

Creating such a framework will amount to defining the
domain specific “high-level” components and compositio
mechanisms and mapping these to more general “low-lev
components and composition mechanisms. In the exam
this amounted for example to mapping the high-level quest
component, to somewhat lower level components of a gen
spreadsheet widget (interaction object) and text-field widge

It must be possible to use a single application instantia
from a framework as a component of a larger system. Crea
frameworks for open systems requires extra effort. It must
possible to regard the run-time abstractions that are created as
general computational entities so that they can cooperate.
run-time abstractions may either be objects (e.g., an edita
form may be viewed as an object, possibly as an active ob
so that it may actively participate in the work-flow) or infor
mation filters. However, since the user of a framework thin
in terms of design-time entities or components, a framew
must support the linking of these components. From the po

* Note that our description of the example has been simplified
to the extreme for the purpose of this paper.

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 3

ms

s,
lan-

r-

-

t
 to

re-

,
an

m-

-
alid

d
age
nd

m
ge
-

We
and
red

vel
ly
es
as

 and
sses
on-
ore

and
eir

ac-

 an
e to
ntext
ze
ni-
of view of a component as part of a larger whole, the form ap-
plication of the example must be viewed as a data-source com-
ponent (since it is the source of a filled-in form), which can be
linked to other components to process the information. In gen-
eral links between components that may be supported are, for
example, data-flow links [21] and links to describe how com-
ponents in which requests for operations are generated (user
interface components) can be served by components that exe-
cute these operations [20].

The creation of frameworks may be supported by a frame-
work of frameworks or a “meta-framework.” For that meta-
framework, the components are the abstractions that are used
by the framework-designer to define the components and
composition mechanisms of the framework. This meta-frame-
work may also support the mapping between abstractions by
providing specific design-time links between definitions of
high-level and definitions of low-level components (e.g. be-
tween the definition of “table-question” and “spread-sheet
widget” for our example).

We can distinguish two kinds of technological support
that can help support framework design and use:

1. Support for component framework specification. Since
we seek high-level tools for instantiating applications
from frameworks, the specification of a framework
should assign a semantics to components and composi-
tions by a mapping to the run-time entities [20]. It must
be possible to specify a range of different kinds of com-
position and plug-compatibility rules between compo-
nents.

2. Support for application composition. It must be possible
to specify an application as a composition of components
conforming to particular framework. Interactive tools for
visualising frameworks, components and compositions
would help as a bridge between analysis (requirements),
design (frameworks) and implementation (composi-
tions). Ideally, visual composition would be framework-
driven. Support can, and must be than provided for rea-
soning about compositions, and for mapping composi-
tions to the run-time system.

3 Requirements for a Composition
Language

A composition language should support the flexible construc-
tion and evolution of applications by promoting systematic
component-oriented development of open systems. This re-
quires not only that one be able to specify systems as compo-
sitions of software components, but that these compositions
conform to component frameworks that encode flexible archi-
tectures for a range of applications. It is not enough to have a
library of “reusable” software artifacts — what makes a soft-
ware component interesting is the fact that it has been de-
signed to work together with other components within the
context of a generic architecture. This is precisely what distin-
guishes an object-oriented framework from a traditional soft-
ware library. A component framework generalizes this notion
to frameworks of components that are not necessarily object
classes, and are not necessarily related by inheritance: compo-

nents may be of finer or coarser granularity, and other for
of abstraction and composition may relate components.

If we consider the key characteristic of open application
we can derive a series of requirements for a composition
guage:

• Open topology: open applications are inherently concu
rent and distributed;

• Heterogeneity: applications may run on a variety of hard
ware and software platforms;

• Evolving requirements: application requirements are no
fixed in advance, so a flexible architecture is needed
meet changing requirements.

These characteristics motivate the following technical
quirements:

1. Encapsulation: to cope with system complexity and to
provide for flexible architectures, both objects and com-
ponents are needed;

2. Objects as Processes: objects may be active or passive
local or remote, simple or composite, but all objects c
be viewed as processes;

3. Components as Abstractions: components are (poten-
tially higher-order) software abstractions that are co
posed in various ways to yield applications;

4. Plug compatibility: a type model encompassing both ob
jects and components is needed to reason about v
bindings and compositions;

5. Formal object model: a standard object model is neede
to bridge the gap between the composition and langu
and implementation of components on one hand, a
higher-level composition tools on the other hand;

6. Scalability: the use of the language should scale fro
small to large systems, and from highly dynamic usa
with incomplete type information to compiled and high
ly optimized usage.

Let us consider each of these requirements in turn.
have already briefly discussed the need for both objects
components. Objects are run-time entities that are configu
to achieve a certain end. The configuration — or composition
— itself need not correspond precisely to the object-le
view, since both more finely-grained and more coarse
grained components may come into play. Mix-ins, interfac
and protocols are all prime candidates for specification
components, but cannot be instantiated directly as objects,
are not necessarily conveniently modeled as abstract cla
either. Modules, packages, frameworks and even generic c
figurations or architectures are also good candidates for m
coarsely-grained components [2].

Objects, being run-time entities, in general have state
may execute concurrently. Whether or not objects have th
own internal threads, or may be otherwise considered “
tive,” each object can be viewed as a kind of server, or proc-
ess. The process view of objects formalizes the notion that
object is an autonomous entity, and not just a data structur
be accessed by a designated set of procedures. In the co
of concurrent clients, it is even more important to formali
the process view, as it will allow us to express the synchro

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 4

act
and
rig-
rk
re-
but
e se-
his
m-
 the
ple-

r di-
r-

at
ized
ble
nd
mi-
tatic
run-
en
 a
n a
po-
te
an
he
ible
sta-
at-
ice
.

d
g
ses
l-
ts
nts
es-

 are
our,
ide
e
be
el

ns?
c-
ft-
po-
ace.
sation constraints directly within the behaviour of an object
rather than as an orthogonal concept. This corresponds to the
“homogeneous” object model for object-based concurrency
[34] in which all objects are potentially active, and assume re-
sponsibility for their own concurrency control.

Components, on the other hand, are software abstractions.
They may also be run-time entities to which applications may
connect, but, more generally, components must be composed
and instantiated before they are part of a running application.
Mix-ins and templates are prime examples of components that
are not run-time entities. Components will typically be higher-
order, in the sense that the composition of existing compo-
nents may yield new components that must be further instan-
tiated before run-time entities are obtained. This is precisely
what happens with inheritance: an abstract class is a higher-or-
der component that is partially instantiated to another compo-
nent — a subclass — by inheritance [3]. By supporting the no-
tion that software components may be any useful abstraction,
not just object classes, we allow for the definition of much
more flexible, and, we argue, more conceptually natural com-
ponent frameworks.

To support flexible reconfiguration of applications, it is
important that not only compositions be explicit, but that the
generic architectures from which they are derived be explicit
as components. In an object-oriented framework, the architec-
ture of applications based on the framework is typically im-
plicit in the interfaces of the class hierarchy. In a component
framework, architectures (generic compositions) would them-
selves be components.

Components, however, can still benefit from an object fla-
vour: One of the strengths of inheritance over functional com-
position is that the sequence in which formal parameters (i.e.,
virtual methods) are bound is not fixed in the class interface.
A similar degree of flexibility can be obtained by using name-
based binding for parameters for components as well [5]. De-
fault values for parameters can also be specified and optional-
ly overridden in the same way as is possible in most inherit-
ance schemes.

Plug compatibility formally expresses how components
may be composed. Various different forms of “composition”
may co-exist, however, and plug-compatibility must cope
with these different forms. At the very least, functional com-
position and communications interconnection, for compo-
nents and objects respectively, must both be considered. Al-
though most attempts to formally specify type systems for ob-
ject-oriented languages adopt a functional view of objects
[10], such a view ignores the fact that objects typically require
clients to conform to a simple protocol in order for their com-
posed behaviour to be valid [30]. Components, on the other
hand, being static rather than dynamic, are truly functional en-
tities. A unified type model that accommodates both objects
and components would allow one to reason about plug com-
patibility for both kinds of entities, and would at least partially
address the problem of checking compatibility of object pro-
tocols.

A composition language should also serve as a bridge be-
tween traditional implementation languages and higher-level

composition tools. A formal object model is necessary to
as the “glue” between these layers. Integrating objects
components, concurrent activities, communication, and a
orous notion of plug compatibility, into a common framewo
presents various semantic difficulties [31]. We argue, the
fore, that not only is a common object model necessary,
the model must have a formal foundation that addresses th
mantics of both functional composition and concurrency. T
foundation can then not only be used to formalize plug co
patibility, but it can be used as a reference for establishing
correspondence between the composition language and im
mentation languages, and it can be used to provide eithe
rectly or indirectly (i.e., via the composition language) a fo
mal semantics for graphical composition tools [21].

A final key requirement for a composition language is th
it be scalable. Both small and large systems, and central
and distributed systems should be configurable. A scala
language can be used both in a “rapid prototyping” mode a
in production mode. In the first case, changes can be dyna
cally made to a running system, and in the second case, s
analysis can be performed to generate a more optimized
time system. Explicit type declarations may be left out wh
composing a system, but will be typically required when
component framework is released and published. Whe
composition language is used as back-end for a visual com
sition tool, it must be possible to immediately propaga
changes in configuration to running applications, rather th
requiring the tool to generate and compile code from t
graphical specifications. On the other hand, it must be poss
to eliminate unnecessary dynamic lookups and checks in
ble configurations by analyzing the specification and gener
ing optimized code. It should not be necessary to sacrif
flexibility to achieve acceptable performance, or vice versa

4 Formal Models of Objects and
Components

Difficulties in integrating concurrency into object-oriente
languages are well-documented [14][19][31][34]. Integratin
a component-oriented approach with concurrent objects po
yet more semantic difficulties, particularly in terms of deve
oping a usable model of plug-compatibility for both objec
and components. A formal model of objects and compone
should be chosen in order to help answer the following qu
tions:

• How can objects be viewed as processes? Objects are
message-passing entities with hidden state, and so
processes, but processes may exhibit arbitrary behavi
whereas objects are interesting because (i) they prov
services according to a public interface, and (ii) they hav
a very regular internal structure that allows them to
both instantiated and specialized. A formal object mod
must dictate what kinds of processes are objects.

• How can components be viewed as process abstractio
A composition specifies how an application, as a colle
tion of interacting objects, is composed from a set of so
ware components. If objects are processes, then com
nents are abstractions (functions) over the process sp

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 5

val-

n
ur-

t-
m-

ti-
le

o
 and
te

ed a
 (to

ccess
da-
fter
by
asso-
put
on is
po-

nd

ig-
cal-
and
nc-
ssi-
nical
23]

be
s to
h
s

r
c-

the

-
ng a
ave
 on

ve
a-
d-
ages
 sys-

m-
rac-
What does this mean formally? May components be ar-
bitrary abstractions, or, as with objects, must some disci-
pline be imposed in order to obtain only meaningful ab-
stractions?

• How can inheritance co-exist with other forms of compo-
sition? Inheritance can be viewed as a combination of
higher-order compositions [3]. Integrating inheritance
cleanly with concurrency features is non-trivial [14][19],
so extending a concurrent object-oriented model to ac-
commodate component-oriented composition cannot be
straightforward. To achieve such an integration, we be-
lieve that it will be necessary to “unbundle” inheritance
and understand it in terms of more primitive composition
operations. Once we can talk about both inheritance and
composition within the same formal model, the integra-
tion issues should become transparent.

• What is plug-compatibility for objects and components?
Objects and components will have different kinds of
“plugs” or type interfaces, but plug compatibility is an is-
sue in both cases, as we would like to be able to replace
objects and components within a composition by plug-
compatible ones. Types and subtyping rules must be for-
mally specified, and their semantics justified in terms of
the formal object model. An open problem is how to ex-
tend traditional type systems to express limited dynamic
properties such as protocols: a valid client-server rela-
tionship typical requires the client to obey a simple pro-
tocol. Rather than simply raise exceptions when proto-
cols are violated, it would be desirable to (i) express pro-
tocols formally as part of an object’s type interface, (ii)
statically validate clients’ conformance to protocols, and
(iii) determine automatically when one protocol can be
formally viewed as a “subtype” of another [30].

• How can we infer properties of the behaviour of com-
posed applications from the specifications of their com-
ponents? Reasoning about behaviour in a compositional
way is a notoriously difficult problem. So far it is not pos-
sible to prove systems correct from the knowledge that
individual components may be correct, for various tech-
nical reasons (such as aliasing [11]). To have any hope of
proving even partial properties of systems from the spec-
ifications of components, we need to assign formal se-
mantics to compositions.

• What does it mean to compose components from different
hardware and software environments? For a composition
language to act as “glue” between components written in
different languages, or running in different environ-
ments, a common reference model is needed to define
what composition and interaction mean across the
boundaries of different language models.

Technically, there are a number of features that a formal
model should capture:

1. Communication and binding: objects’ behaviour con-
sists in the exchange of messages; components’ func-
tionality is instantiated by binding formal parameters to

values; objects and components may themselves be
ues;

2. Concurrency: an application is a concurrent compositio
of objects (whether or not there may be multiple conc
rent threads active at any time);

3. Choice: an object typically provides an interface consis
ing of a choice of services; a component may be co
posed in a variety of alternative ways;

4. Abstraction: objects and components are abstract en
ties whose behaviour and functionality is only accessib
through their interface;

5. Instantiation: objects can be dynamically instantiated, s
it must be possible to generate new names for objects
their communication channels, and to communica
these names to existing objects.

Considering these requirements, it appears that we ne
formal model that combines features of a process calculus
model objects as processes) and a λ calculus (to model com-
ponents as abstractions). In fact, there has been some su
in modeling objects and inheritance using CCS as a foun
tion [33]. CCS [22] is a process calculus modeled loosely a
the λ calculus, in which functional abstraction is replaced
input guards over process expressions, where guards are
ciated with named channels, application is replaced by out
guards also addressed to named channels, and compositi
by choice (over guarded expressions) and concurrent com
sition. (Non-deterministic) reduction occurs when input a
output guards match, and communication takes place.

The shortcomings of CCS are well-known, the most s
nificant being that, although new processes can be dynami
ly instantiated, channel names cannot be communicated
no new channel names can be dynamically introduced. Fu
tional abstraction cannot be modeled, and it is also not po
ble to pass process expressions as values. These tech
shortcomings where attacked by various researchers [7] [
[25] [36] [39], and have culminated in the π calculus, a calcu-
lus of “mobile processes” in which channel names can
communicated and newly introduced using rules analogou
those for the λ calculus to avoid capture of names. Althoug
the π calculus only allows for the communication of names a
values, it has been shown that both a polyadic π calculus [26]
(allowing the communication of tuples), and a higher-ordeπ
calculus [36] (allowing the communication of process abstra
tions as values) can be faithfully modeled by a mapping to
monadic calculus.

The higher-order π calculus is a close fit to our require
ments and appears to be an excellent basis for developi
formal model of objects and components. Already, there h
been some attempts to develop an “object calculus” based
variants of the π calculus [12] [28], and some researchers ha
experimented with modeling object-oriented language fe
tures in the π calculus [35]. So far, however, there is no stan
ard model of objects as processes, and the relative advant
and disadvantages of the possible mappings have not be
tematically catalogues or evaluated.

Another consideration for a calculus of objects and co
ponents would be the use of names for component abst

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 6

n.
f a
 ab-
om-
od-
uat-
s

nd
o be
eta-
it
ble
tax
age

ble

are
 an
ct
ed-
 to
le

 ef-
tics
can
.

ing
ce
y to
 to
n

. As

ld
m-
nt
eir
 of
-
ed

ons
s,
ect
of

an
tly
uch
L

h
rac-
ith
act
ng-
tions. As demonstrated by Dami [5], a λ calculus with names
not only goes a long way towards modeling object-oriented
features (such as inheritance) more conveniently than a con-
ventional λ calculus (though without addressing concurrency
and communication), it greatly increases flexibility in the
specification and use of abstractions since parameters can be
bound by name in any order. This suggests that a higher-order
π calculus based entirely on names would be a good founda-
tion for a formal model of objects and components.

5 Incrementally Developing a
Composition Language

We propose an experimental and evolutionary approach to de-
veloping and implementing a practical composition language.
There are too many open questions to consider a conventional
approach in which the language is fully specified before a
compiler is implemented and the language is first used:

• What is an appropriate semantic foundation?

• How can objects and components best be modeled within
that foundation?

• What language features are most useful for defining
compositions and component frameworks?

Instead, we propose an approach in which the language
can be used already while it is being formally specified, and so
insight concerning the usefulness of concepts and features can
feed back more quickly into the language design. In fact, the
language itself is not the goal, but the discovery and identifi-
cation of the concepts and mechanisms that will best support
component-oriented development.

A layered approach to language design would proceed as
follows: an abstract machine would be built that implements a
higher-order process calculus, as described above. Language
features to implement objects and components are then de-
signed by specifying a semantic mapping from the syntactic
constructs of the language to the process calculus [22][33].
The mapping will be an executable specification, as will the
target calculus. As a consequence, a running prototype will be
available at all times.

Since the goal is to support component-oriented develop-
ment, is critical that the language be tested on “real” rather
than “toy” examples. If the language is designed “on paper”
before it is used, it will be impossible to experiment with more
than toy examples until an implementation is complete and
available. If the language specification is itself a running pro-
totype, it will be possible to experiment with interesting exam-
ples from the beginning and to have these experiments directly
influence the evolution of the language itself. Experiments
will include existing (object-oriented) frameworks as well as
composition tools. Since compositions may act as glue be-
tween existing components, it will be important to experiment
with existing components as early as possible.

The experiments should serve to answer the questions list-
ed above, namely, what abstractions are most useful for defin-
ing compositions and component frameworks, what basic
model of objects and components best supports these abstrac-
tions, and what formal semantics should serve as a foundation.

Clearly, the most crucial part to fix is the formal foundatio
The first experiments should determine what features o
higher-order process calculus are needed for an adequate
stract machine, and whether there are any technical shortc
ings to be resolved. Next, the different possible ways of m
eling objects and components must be systematically eval
ed. This suggests that a class of possible language design
must in effect be evaluated.

Finally, specific language features must be introduced a
evaluated. This should be the last aspect of the language t
frozen. In fact, since the language should serve as a “m
framework” for defining various component frameworks,
should be as flexible as possible. Ideally, one should be a
to define new language concepts with their associated syn
as new abstractions, analogous to the way that new langu
features can be introduced into CLOS by defining a suita
meta-object protocol [15].

Once the semantic foundation and the object model
stabilized, it may be possible (and desirable) to eliminate
implementation layer by directly implementing the obje
model. The generality of the process calculus will not be ne
ed to implement language features, since they will all map
the level of the object model, and it will certainly be possib
to exploit properties of the object model to achieve a more
ficient prototype. The underlying process calculus seman
will serve, however, as a reference implementation, and
provide formal justification for any optimizations introduced

Although a textual language has the advantage of be
easier to formally specify and implement, a graphical interfa
to software composition has more appeal as a natural wa
view and think of components and compositions. We plan
develop in parallel a framework-driven visual compositio
tool that can act as a front end to a composition language
with the work of de Mey [21], such a tool would differ from
existing commercial visual composition tools in that it wou
be application domain-independent. The tool would be para
eterized by “composition models” for various compone
frameworks that determine what constraints apply to th
composition. In our approach, additionally, the semantics
composition would be directly inherited from that of the com
position language, rather than from a separately provid
model. Moreover, the way that components and compositi
are visualized will also be configurable for different domain
as part of the composition model. In the long term, we exp
that this configuration itself will just be another application
visual composition.

6 Concluding Remarks

A composition language would function at a higher level th
a programming language by allowing one to specify explici
components, compositions and component frameworks. S
a language would lie somewhere between Smalltalk [8], M
[24] and Perl [41], providing a computational model in whic
one may talk about (concurrent) objects, higher-order abst
tions, and interaction with external components. As w
Smalltalk, one should be able to define frameworks of abstr
components; as with ML, one should be able to specify stro

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 7

d-

n
sis

n-
ng
s

g
f

d
-

r

r-

ss-

or

t-

s-

s-
-

g

it-
ng
-
a

-
l”,

ity

s
85
h,
typed, higher-order abstractions; and as with Perl, one should
be able to compose applications quickly and flexibly from
both newly-defined and existing components.

We have argued in favour of a formal approach to speci-
fying and developing a composition language, but we have
only presented our requirements. The precise natures of the se-
mantic foundation, of the formal object model, and of the lan-
guage itself have not been defined here. Instead, we have pro-
posed an evolutionary approach based on executable language
specification, that will allow us to arrive at a stable language
design by experimentation and incremental refinement. Some
earlier experiments were encouraging [27][28], and we plan
now to embark on a more ambitious experiment.

A number of difficult technical issues remain to be ex-
plored and resolved. Aside from the problem of elaborating
the formal object model, there is an open question of develop-
ing a suitable type model for both objects and components.
“Plug-compatibility” should take not only interfaces into ac-
count, but the fact that objects, to be used correctly, often re-
quire clients to respect a particular protocol. A framework for
specifying protocols as finite state processes has been pro-
posed by one of the authors in a separate paper [30], but it re-
mains unclear how such a framework could be practically in-
corporated into a composition language.

Efficient implementation of a composition language is a
long-term goal, but it is too early to say how flexibility and ac-
ceptable performance can both be provided while respecting
the desired formal semantics. We expect that it will be possi-
ble to partially optimize the implementation of statically ana-
lysed components by techniques that can be justified by the
formal semantics.

Finally, we acknowledge that the most difficult problems
are not so much technological as methodological [29]. Com-
ponent-oriented development is based on a different software
process and software lifecycle from traditional (or event ob-
ject-oriented) development. In particular, the incremental de-
velopment of component frameworks must be explicitly sup-
ported by the methods and by the project management infra-
structure [9]. A composition language only attempts to
provide limited technological support for such methods.

Acknowledgements

We gratefully acknowledge the financial support of the Swiss
National Science Foundation under project no. 21-40610.94.

References

[1] Gregory Abowd, Robert Allen and David Garlan, “Using Style
to Understand Descriptions of Software Architecture,” Pro-
ceedings SIGSOFT 93, ACM Software Engineering Notes, vol.
18, no. 5, Dec 1993, pp. 9-20.

[2] Gilad Bracha, “The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance,” Ph.D. thesis, Dept. of
Computer Science, University of Utah, March 1992.

[3] William Cook and Jens Palsberg, “A Denotational Semantics of
Inheritance and its Correctness,” Proceedings OOPSLA ’89,
ACM SIGPLAN Notices, vol. 24, no. 10, Oct. 1989, pp. 433-
443.

[4] William Cook, “Application Integration, not Application Dis-
tribution,” ACM OOPS Messenger, Addendum to the Procee
ings of OOPSLA 1993, vol. 5, no. 2, April 1994, pp. 70-71.

[5] Laurent Dami, “Software Composition: Towards an Integratio
of Functional and Object-Oriented Approaches,” Ph.D. the
No. 396, University of Geneva, 1994.

[6] Thomas Eggenschwiler and Erich Gamma, “ET++SwapsMa
ager: Using Object Technology in the Financial Engineeri
Domain”, Proceedings OOPSLA ’92, ACM SIGPLAN Notice,
vol. 27, no. 10, Oct. 1992, pp. 166-177.

[7] Uffe Engberg and M. Nielsen, “A Calculus of Communicatin
Systems with Label Passing,” DAIMI PB-208, University o
Aarhus, 1986.

[8] Adele Goldberg and David Robson, Smalltalk 80: the Lan-
guage and its Implementation, Addison-Wesley, May 1983.

[9] Adele Goldberg and Kenneth S. Rubin, Succeeding With Ob-
jects: Decision Frameworks for Project Management, Addison
Wesley, 1995, forthcoming.

[10] Carl A. Gunter and John C. Mitchell, Theoretical Aspects of
Object-Oriented Programming, The MIT Press, 1994.

[11] John Hogg, “Islands: Aliasing Protection in Object-Oriente
Languages,” Proceedings OOPSLA ’91, ACM SIGPLAN No
tices, vol. 26, no. 11, Nov 1991, pp. 271-285.

[12] Kohei Honda and Mario Tokoro, “An Object Calculus fo
Asynchronous Communication,” Proceedings ECOOP ’91, P.
America (Ed.), LNCS 512, Springer-Verlag, Geneva, Switze
land, July 15-19, 1991, pp. 133-147.

[13] Ralph E. Johnson and Brian Foote, “Designing Reusable Cla
es,” Journal of Object-Oriented Programming, vol. 1, no. 2,
1988, pp. 22-35.

[14] Dennis G. Kafura and Keung Hae Lee, “Inheritance in Act
Based Concurrent Object-Oriented Languages,” Proceedings
ECOOP ’89, S. Cook (Ed.), Cambridge University Press, No
tingham, July 10-14, 1989, pp. 131-145.

[15] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow, The
Art of the Metaobject Protocol, MIT Press (Ed.), 1991.

[16] Mark a. Linton, John M. Vlissides and Paul r. Calder, “Compo
ing user interfaces with InterViews”, Computer, Vol. 22, no. 2,
1989, pp. 8-22.

[17] Peter W. Madany, “An Object-Oriented Framework for Filesy
tems, Ph.D. Thesis University of Illinois at Urbana-Cham
paign, 1992

[18] Jeff Magee, Naranker Dulay and Jeffrey Kramer, ‘‘Structurin
Parallel and Distributed Programs,’’ Proceedings of the Inter-
national Workshop on Configurable Distributed Systems, Lon-
don, March 1992.

[19] Satoshi Matsuoka and Akinori Yonezawa, “Analysis of Inher
ance Anomaly in Object-Oriented Concurrent Programmi
Languages,” Research Directions in Concurrent Object-Ori
ented Programming, G. Agha, P. Wegner and A. Yonezaw
(Ed.), MIT Press, 1993, pp. 107-150.

[20] Theo Dirk Meijler, “User-level Integration of Data and Opera
tion Resources by means of a Self-descriptive Data Mode
Ph.D. Thesis, Erasmus University Rotterdam, Sept. 1993

[21] Vicki de Mey, “Visual Composition of Software Applications,”
Ph.D. thesis (no. 2660), Dept. of Computer Science, Univers
of Geneva, 1994.

[22] Robin Milner, Communication and Concurrency, Prentice-
Hall, 1989.

[23] Robin Milner, Joachim Parrow and David Walker, “A Calculu
of Mobile Processes, Parts I and II,” Reports ECS-LFCS-89-
and -86, Computer Science Dept., University of Edinburg
March 1989.

[24] Robin Milner, M. Tofte and R. Harper, The definition of stan-
dard ML., MIT Press, Cambridge, 1990.

Requirements for a Composition Language — Oscar Nierstrasz and Theo Dirk Meijler 8

l-
s,”
ed
r

Se-
-

ni-

n
n

r-

s:
T-
t.,

t-
o-

g

SLA
[25] Robin Milner, “Functions as Processes,” Proceedings ICALP
’90, M.S. Paterson (Ed.), LNCS 443, Springer-Verlag, War-
wick U., July 1990, pp. 167-180.

[26] Robin Milner, “The Polyadic pi Calculus: a tutorial,” ECS-
LFCS-91-180, Computer Science Dept., University of Edin-
burgh, Oct. 1991.

[27] Oscar Nierstrasz, “A Guide to Specifying Concurrent Behav-
iour with Abacus,” Object Management, D. Tsichritzis (Ed.),
Centre Universitaire d’Informatique, University of Geneva,
July 1990, pp. 267-293.

[28] Oscar Nierstrasz, “Towards an Object Calculus,” Proceedings
of the ECOOP ’91 Workshop on Object-Based Concurrent
Computing, M. Tokoro, O. Nierstrasz, P. Wegner (Ed.), LNCS
612, Springer-Verlag, 1992, pp. 1-20.

[29] Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis, “Com-
ponent-Oriented Software Development,” Communications of
the ACM, vol. 35, no. 9, Sept 1992, pp. 160-165.

[30] Oscar Nierstrasz, “Regular Types for Active Objects,” Proceed-
ings OOPSLA ’93, ACM SIGPLAN Notices, vol. 28, no. 10,
Oct. 1993, pp. 1-15.

[31] Oscar Nierstrasz, “Composing Active Objects,” Research Di-
rections in Concurrent Object-Oriented Programming, G.
Agha, P. Wegner and A. Yonezawa (Ed.), MIT Press, 1993, pp.
151-171.

[32] Oscar Nierstrasz and Laurent Dami, ‘‘Component-Oriented
Software Technology,’’ Object-Oriented Software Composi-
tion, O. Nierstrasz, D. Tsichritzis (Ed.), Prentice-Hall, 1995, to
appear.

[33] Michael Papathomas, “A Unifying Framework for Process Ca
culus Semantics of Concurrent Object-Oriented Language
Proceedings of the ECOOP ’91 Workshop on Object-Bas
Concurrent Computing, M. Tokoro, O. Nierstrasz, P. Wegne
(Ed.), LNCS 612, Springer-Verlag, 1992, pp. 53-79.

[34] Michael Papathomas, “Language Design Rationale and
mantic Framework for Concurrent Object-Oriented Program
ming,” Ph.D. thesis No. 2522, Dept. of Computer Science, U
versity of Geneva, 1992.

[35] Benjamin C. Pierce, “Programming in the Pi-Calculus — A
Experiment in Concurrent Language Design,” PICT Versio
3.4c tutorial, ftp://ftp.dcs.ed.ac.uk/pub/bcp/pict.tar.Z, Unive
sity of Edinburgh, March, 1994.

[36] Davide Sangiorgi, “Expressing Mobility in Process Algebra
First-Order and Higher-Order Paradigms,” Ph.D. thesis, CS
99-93 (also: ECS-LFCS-93-266), Computer Science Dep
University of Edinburgh, May 1993.

[37] Richard Soley (Ed.), Object Management Architecture Guide,
Object Management Group, Frameington, MA, Nov. 1990.

[38] Alan Snyder, “Open Systems for Software: An Object-Orien
ed Solution,” ACM OOPS Messenger, Addendum to the Pr
ceedings of OOPSLA 1993, vol. 5, no. 2, April 1994, pp. 67-68.

[39] Bent Thomsen, “Calculi for Higher Order Communicatin
Systems,” Ph.D. thesis, Imperial College, London, 1990.

[40] Jon Udell, “Componentware,” in Byte, Vol. 19, No 5, May
1994, pp 46-56.

[41] Larry Wall and Randal L. Schwartz, Programming Perl,
O’Reilly & Associates, Inc., 1990.

[42] Antony S. Williams, “The OLE 2.0 Object Model,” ACM
OOPS Messenger, Addendum to the Proceedings of OOP
1993, vol. 5, no. 2, April 1994, pp. 68-70.

	Requirements for a Composition Language
	1 Introduction
	2 Compositional Development of Open Systems
	3 Requirements for a Composition Language
	4 Formal Models of Objects and Components
	5 Incrementally Developing a Composition Language
	6 Concluding Remarks
	References

