
y

ns of
e. This
maxim:

s, but
of the

Are
g on?
ap-

e?

s

Formalizing Composable Software

Systems — A Research Agenda1

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe
Software Composition Group, University of Berne2

Abstract. Flexibility is achieved in open systems by adopting software architectures
that allow software components to be easily plugged in, adapted and exchanged. But open
systems are generally concurrent, distributed and heterogeneous in addition to being
adaptable. Ad hoc approaches to specifying component frameworks can lead to unex-
pected semantic conflicts. We propose, instead, to develop a rigorous foundation for
composable software systems by a series of experiments in modelling concurrent and ob-
ject-based software abstractions as composable, communicating processes. Eventuall
we hope to identify and realize the most useful compositional idioms as acomposition
language for open systems specification.

Keywords. Components, Object-Oriented Programming, Software Composition,π
calculus, PICT.

1 Introduction

Complex software systems are increasingly required to be open, flexible conglomeratio
heterogeneous and distributed software components rather than monolithic heaps of cod
places a strain on old-fashioned software technology and methods that are based on the

Programs = Algorithms + Data

This equation perhaps still has some relevance for well-defined and delimited problem
it tells us nothing about how to coordinate complex systems. We now need an equation
form3:

Open Systems = Components + Coordination

But what do we mean by “components”? How should we understand “coordination”?
components and coordination just glorified data and algorithms, or is something else goin
How can we tell? A rigorous semantic foundation for defining, studying and comparing
proaches would clearly help, but where should we start, and what can we hope to achiev

1. InProceedings 1st IFIP Workshop on Formal Methods for Open Object-based Distributed System
FMOODS’96, Paris, France, Chapmann and Hall, March 1996, pp. 271-282.

2. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012
Berne, Switzerland.Tel: +41 (31) 631.4618.Fax: +41 (31) 631.3965.
E-mail: {oscar, schneidr, lumpe}@iam.unibe.ch.WWW: http://www.iam.unibe.ch/~scg.

3. Or perhaps, as one wag put it: Objects = Objects + Objects

2. Formalizing Composable Software Systems — A Research Agenda

soft-
nted

odel
ping

ts.The
, heter-
but an
com-

o-

not,
e ob-
con-

tive or
nd data.
ding,
tion,
ns at a
om-
osing

ularity
syn-
iffer-
ystem
ir in-
ust be

e must
itional

ould
mod-
e syn-
We present, in section 2, a list of requirements and a research agenda for formalizing
ware composition. In section 3, we outline our observations from modelling object-orie
features in PICT, an experimental programming language based on theπ calculus. In section 4
we discuss various ways in which we may bootstrap from the low-level computational m
of the π calculus to higher-level composition abstractions and idioms useful for develo
open systems. We conclude with some remarks about future work and directions.

2 Requirements

Open systems pose an interesting mix of computational and compositional requiremen
basic requirements for open systems are that they be distributed, (and hence concurrent)
ogeneous and evolving. Clearly some form of computation is the end goal of any system,
open system has the additional constraint that the computations it performs be flexibly
posed from interchangeable components.

Thecomputationalviewpoint of open systems is that of collections of communicating, p
tentially activeobjects. Thecompositionalviewpoint is that of collections of coordinatedcom-
ponents. These two viewpoints are complementary rather than opposing. They are
however, equally well-supported by current software technology and methods. In fact, th
ject viewpoint is often presented and interpreted as if it were a component viewpoint, with
sequent disappointments and failures in software projects.

The object viewpoint is essentially computational. Objects can be seen as (either ac
passive) server processes that encapsulate and manage computational resources a
Composition is provided mainly through programming language features: dynamic bin
inheritance and genericity support, respectively, plug-compatibility, incremental modifica
and parameterization. But only the last of these three allows one to compose specificatio
higher level of abstraction. In general it is not possible to specify new kinds of objects by c
posing library abstractions, just as it is not possible to specify systems of objects by comp
library abstractions alone.

The component view is compositional. Components aredesignedto be plugged together.
Components may be implemented as objects, but they need not necessarily be. The gran
of a component is typically coarser than that of objects, but may also be finer. (Mixins and
chronization policies are good candidates for fine-granularity components.) The main d
ence between the two viewpoints is (or should be) that the component viewpoint makes s
architecture explicit [15]. The kinds of components that may exist in the system, what the
terfaces are, how they can be plugged together, and how they are currently configured, m
explicitly represented if the system is to evolve in a disciplined way [25].

2.1 A Research Agenda

If we are to have any hope in developing a better software technology for open systems w
be precise about our requirements, and we must resolve the computational and compos
(or object and component) viewpoints. A kind of “lambda calculus for open systems” w
help us to formally specify different notions of objects and components, compare object
els, investigate the integration of computational and compositional language features lik

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 3.

y for

ic
tion

o
sive
s and

s
ce [22].
ld ac-

nica-
ems,
per-

for
ring,

e in-
lan-

may

cor-
like
tituent

e ob-
e ar-

have
namic
stems,
chronization and inheritance, explore richer notions of contracts and type compatibilit
concurrent systems, and reason about properties of systems built from components.

Here are some of the questions we would like to answer:

• What is an appropriate Object Calculus?Theπ calculus [20] seems to support the bas
features we wish to model: concurrency, communication, abstraction, mobility, crea
of processes and names. But theπ calculus is very low level, and we must work hard t
model objects [29][31]. Is there a more suitable formalism with equivalent expres
power but more convenient abstractions for modelling and reasoning about object
components?

• What is a good model of objects and components?One appealing view is that of object
as processes and components as (higher-order) abstractions over the object spa
Should objects and components be unified? Do functions play a special role? Shou
tive and passive objects be distinguished?

• What forms of composition are fundamental?Most forms of composition, including in-
heritance [5], can be reduced to more basic forms. Functional composition, commu
tion and genericity seem to be primitive, but genericity is only an issue in typed syst
and functional composition can be effectively modelled by communication [30], so
haps communication is the root of all forms of composition. What is a good basis
modelling other kinds of composition (such as inheritance, pipes, dataflow, trigge
etc.)?

• Is there a uniform type system that accommodates objects and components?Most ob-
ject-oriented languages do not treat all software entities uniformly. The inheritanc
terface, for example, is typically not typed [14], but is indirectly described by ad hoc
guage constructs to control the visibility of features to clients.

• Can dynamic aspects of contracts be expressed in the type system?Services provided
by objects and components may not be uniformly available. Correct compositions
depend on clients and servers conforming to a common protocol [23].

• Can we reason about correctness in a compositional way?Traditional approaches to
software specification and verification require global knowledge to prove programs
rect. In an open system, global knowledge is by definition not available. We would
to reason about correctness of parts of a system based on known properties of cons
components and their compositions [22].

• How can we explicitly represent software architecture?A “composition language”
would serve the component viewpoint much as object-oriented languages serve th
ject viewpoint. Explicit representations of components, compositions and softwar
chitectures should facilitate the evolution of open systems [15][25].

2.2 Experiments in Formalizing Software Composition

We have been using PICT [29], an experimental programming language based on theπ calculus,
as an executable specification language for modelling compositional abstractions. We
used it to model both traditional object-oriented features, such as inheritance and dy
binding [31], as well as more esoteric abstractions needed for composing concurrent sy

4. Formalizing Composable Software Systems — A Research Agenda

o lead
ge for

ent
y

rit-
tion de-
ng. At
ppli-

cally
cation

tactic

ting
sci-
ol

ut

ethods.
n-

epre-
traction.
ip-

re never
such as generic synchronization policies [16][34]. We expect these modelling exercises t
us to (i) an expressive formal model of objects and components, and (ii) a formal langua
specifying open systems abstractions at a higher level than theπ calculus.

Our goal is to define a formal foundation that we can use to design and implement acompo-
sition languagesuitable for specifying component frameworks for open systems developm
[24]. Such a language would support bothComponent Engineerswho need a means to specif
compositional interfaces, rules and components, i.e.,component frameworks, andApplication
Developers, who will use component frameworks to develop specific applications, i.e.,compo-
sitions.

A systemfor software composition should also support the integration of components w
ten in other systems and languages and it should offer component engineers and applica
velopers an interactive environment that supports design, composition and re-engineeri
present, we are (i) identifying and developing software abstractions for open, distributed a
cations, and (ii) developing experimental tools to support visual composition of graphi
presented software components. These additional efforts provide us with concrete appli
requirements for the design of the composition language.

3 Modelling Objects as Processes

PICT is an experimental programming language [28] whose features are defined by syn
transformation to a core language that implements the miniπ calculus (a reduction of theπ cal-
culus [20] originally proposed by Honda and Tokoro [12]). PICT is as much an attempt to turn
theπ calculus into a full-blown programming language as it is a platform for experimen
with modelling of language features [29] and a platform for experimenting with type di
plines and type inference schemes for theπ calculus [27]. As such, it appears to be an ideal to
for modelling objects and more advanced object features.

A detailed description of PICT is beyond the scope of this paper; for further information abo
its usage, its implementation, and its type system refer either to the PICT tutorial [28], or to
Turner’s thesis on the implementation of PICT [33].

3.1 The Pierce/Turner Basic Object Model

Pierce and Turner [29] have outlined a basic model for object as processes in PICT, in which an
object is modelled as a set of persistent processes representing instance variables and m
The interface of an object is a record1 containing the channels of all exported features. A co
current queue could thus be modelled as shown in figure 1.

A concurrent queue consists of (1) two exported request channels (put to add a new item to
the queue andget to get a stored item) and (2) a set of internal channels and processes r
senting the state of a queue object. Each request channel is the interface to a process abs
These are defined using the keywordabs and are the only processes able to query and man
ulate the state of an object (since the names of the channels used to realize the state a

1. Records, like tuples, can be encoded as processes in theπ calculus, but are provided as primitives in
PICT.

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 5.

record.
in and
ference

s
eters;
nd (ii)

y the

lation,
el can
es. Ba-
ts, dy-

cts of
tioned
exported). In order to simplify their use, the request channels are packaged together as a
The behaviour of a queue is correct in presence of concurrent clients: both methods obta
release the necessary local sources in a consistent sequence, thus avoiding both inter
and deadlock.

The reader may have noticed (i) the generic type parameterT (one of the major advantage
of the PICT type system is that it is quite easy to define processes with generic type param
the concrete type of an instantiated generic process will be inferred by the type system), a
the explicitly folding and unfolding of recursive types (the type inference algorithm used b
current PICT implementation does not support recursive type resolution).

The essentials of concurrent objects are captured by this basic object model: encapsu
identity, persistence, instantiation, and synchronization. It is less clear whether the mod
be extended to capture other common features of object-oriented programming languag
sic features found in most of the better known languages include self-references of objec
namic binding, inheritance, overriding, genericity, and class variables.

3.2 Modelling Object-Oriented Abstractions in PICT

Let us outline some observations resulting from our experiences modelling objects in PICT. For
details, please refer to the corresponding technical reports [31][34].

The basic object model of Pierce and Turner is a robust basis for modelling many aspe
objects. We have been able to extend this model to support all the basic features men

def queue [:T:][] = {- generic type parameter T -}
let

new head, tail, init {- new, private channels -}
run head!init {- store name of head cell -}
run tail!init {- next available tail -}

in
record

put = abs [value, r] > {- put new value at tail of queue -}
let

new link {- make a new tail channel -}
in

tail?last > {- retrieve last available tail -}
(tail!link {- store new link and value -}
| last![value, (fold (Cell T) link)]
| r![]) {- and reply to client -}

end
end,
get = abs [r] > {- get value from head of queue -}

head?item > item?[value, link] >
(head!(unfold link){- remember the new head -}
| r!value) {- return value to client -}

end
end

end
Figure 1 A Concurrent Queue in PICT

6. Formalizing Composable Software Systems — A Research Agenda

on and

senting
annels
e se-

When
rained
r con-
llows
n type-
access

ly when
iables
chieved
g the

t-ori-
C++

ntro-

for
tions

er the

roles of
es. For
nct no-

(i.e.,
some-

, un-
jects

classes,
on-

n of

. We
above. While we added many features to objects and modified their internal representati
implementation, the interface of objects did not change.

An object is a server process containing a set of local processes and channels repre
methods and instance variables. The interface to an object is a record containing the ch
of all exported features. By modifying the interface record, the visibility of features can b
lectively controlled.

Two mechanisms are used to control feature visibility: scope rules and type system.
finer grained control over a feature is needed, it is moved to an inner scope; for coarse-g
control, it is moved to an outer scope. The type system offers a more sophisticated way fo
trolling visibility: type restriction can be used to hide features whereas type extension a
features to be added or redefined. The use of type restriction may cause problems whe
safe downcasting is possible, because downcasting might be used to obtain uncontrolled
to protected features.

To model class variables, class methods, and self-references, we have introducedmetaob-
jectsto represent classes as run-time entities. The need to use metaobjects arises natural
we want to model correct initialization and controlled access to these features. Class var
and methods are modelled as features of the metaobject, whereas self-references are a
by a combination of a generator and a fixed point process in the metaobject (i.e., mimickin
way self-reference can be modelled using functions and records [5]).

Metaobjects and Metaobject Protocols [13] (MOPs) are a key feature of several objec
ented languages and systems, including CLOS [8], Smalltalk [10], Beta [2] and now even
[4]. Although metaobjects are usually associated with MOPs, we did not find a need to i
duce a full MOP for the purpose of modelling objects in PICT. Metaobjects were useful even
without any application of runtime reflection. Metaobjects provide a general mechanism
modelling various aspects of object creation and composition, in contrast to ad hoc solu
that result in new language features for each new aspect — for example, to model thesuper
feature of Smalltalk, we do not need to introduce a new language feature, but simply alt
metaobject.

We also found that modelling objects and classes as processes clarifies the separate
mechanisms that are merged or confused in most object-oriented programming languag
example, object-oriented languages overload classes to represent four or even five disti
tions: (i) classes as “cookie-cutters” (i.e., intensions) for objects, (ii) classes as extensible
inheritable) software components, (iii) classes as types, (iv) classes as metaobjects, and
times even (v) classes as sets of instances (i.e., extensions). The PICT object model clearly sep-
arates these distinct roles.

Since PICT is statically typed, every abstraction or process is statically typed. Therefore
like those of CLOS or Smalltalk, our metaobjects are also statically typed. Typed metaob
have several advantages: (i) metaobjects are typed first class objects representing plain
(ii) no runtime method lookup is needed, (iii) visibility of features of metaobjects can be c
trolled by the type system, and (iv) genericity is well-typed; it is just a parameterizatio
metaobject features.

Modelling inheritance and dynamic binding requires a more sophisticated solution
found that we needed to define so-calledintermediate objectsthat define all the methods and

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 7.

nce is
delled

osely

ation
-
o on,
h, we

a
e
struc-
is often
pera-
cre-

t
rrent

essary
ppar-

medi-
ystem

-
” that
for-
charac-
these

ient-

r
ategy
om-

ld
instance variables of a class, while leaving self-reference unbound. Binding of self-refere
established by the metaobject when an object is actually created. Inheritance can be mo
by copying and modifying intermediate objects of superclasses. This approach follows cl
that used by Cook and Palsberg to propagate self-reference to a modified client [5].

As an extension to our object model, we have modelled McHale’s “generic synchroniz
policies” (GSP) [16] as composable concurrent abstraction in PICT. GSPs are reusable specifi
cations of synchronisation policies, such as “mutual exclusion”, “readers/writers” and s
that may be bound to the implementation of different object classes. In our first approac
used a preprocessor to translate GSP abstractions into PICT code. After a few iterations, we
found we were able to omit the preprocessing phase and implement GSPs directly in PICT.

4 Compositional Idioms

Modelling object-oriented features in theπ calculus is tedious work, akin to programming in
“concurrent assembler.” PICT simplifies this work somewhat by providing syntax for a larg
number of common, basic programming abstractions, like Booleans and integers, control
tures, functions, expressions and statements. Still, to model objects as processes, one
obliged to forsake natural abstractions and explicitly describe behavioural in low-level, o
tional terms. For example, to specify the concurrent queue in figure 1, we had to explicitly
ate and manipulate the reply channel used to deliverput andget results to clients. This is not
inherently a problem of either theπ calculus or PICT, but is rather symptomatic of the fact tha
we have not yet been able to identify the right compositional idioms for specifying concu
objects.

In fact, it is possible to specify the concurrent queue in PICT without explicitly mentioning
reply channels, but the abstractions needed to do so are not immediately obvious. It is nec
to model a range of different kinds of objects before such compositional idioms become a
ent and can be factored out as useful software abstractions.

A number of questions then suggest themselves: Can we identify a less primitive, inter
ate calculus that is more convenient for modelling objects and components? Can a type s
be developed, perhaps based on that currently used for PICT, that is more convenient for char
acterizing the kinds of abstractions we need? Can we identify a set of “kernel abstractions
simplify the task of modelling higher-level components? Can we use our modelling tools to
mal characterize reusable design abstractions, i.e., design patterns? Can we adequately
terize the compositional rules of a component framework? Let us briefly consider each of
questions in turn.

Several authors have already proposed various “object calculi” for modelling object-or
ed concepts [6][12][18][21][26]. So far none of these calculi providesbotha good basis for
modelling concurrent object abstractionsanda formal foundation as mature as that of theπ cal-
culus (while acknowledging that theπ calculus is still far from being well-understood!). Rathe
than trying to define yet another original object calculus, it would seem to be a better str
to look for an intermediate calculus that (i) provides the “right” abstractions for modelling c
ponent frameworks, and (ii) can be easily specified by a mapping to theπ calculus, just like PICT

constructs are defined by a mapping to the miniπ core language. The difference is that we wou

8. Formalizing Composable Software Systems — A Research Agenda

e the

a so-
can
he
bda”:
input
itrary
e-
rim-
om to

lan-
a-
ages of
ad, our
e
k fur-

d are
le
like to be able to work exclusively at the higher level of the intermediate calculus, and hid
π core.

As a hypothetical example, consider the respecification of our concurrent queue in
called “guarded object calculus” (figure 2). With only some minor syntactic variation, we
write this specification directly in PICT. The key difference is that we restrict ourselves to t
guarded object calculus (GOC) idiom, which can be summarized as “Linda meets Lam
terms are lambda expressions (abstractions or applications), possibly decorated with
guards or output triggers relative to a local tuple space. Instead of being able to specify arb
π calculus processes, as is possible in PICT, we are now forced to specify components exclusiv
ly in the GOC style. On the one hand, this liberates us from having to explicitly represent p
itive notions such as reply channels, on the other hand it takes away from us the freed
represent these notions, should we need them.

By analogy, consider the difference between programming in a pure object-oriented
guage like Eiffel, in which wemustprogram with objects, or programming in C++, which en
bles, but does not enforce the object paradigm. The relative advantages and disadvant
the two approaches are clear in both cases, and are not the subject of our debate. Inste
question is, given that we want to enforce acomponent-oriented paradigm, what should be th
core abstractions that we provide? Is the GOC idiom a good basis, or do we need to loo
ther?

This example presents preliminary ideas using the GOC idiom. The constructs illustrate
very closely related to those currently available in PICT. But the process of developing a suitab

concQueue () = -- concurrent queue abstraction
let

new head, tail, item -- local tuple space
head!item -- name of head item in queue
tail!item -- next available tail slot

in { -- record with two fields
put val = -- put new value at tail

let
tail?item -- get next available tail slot
new link -- make a new slot name
item!(val, link) -- link value into queue
tail!link -- remember new tail slot

in
() -- confirm completion

end
get () = -- get value from head of queue

let
head?item -- get name of head item
item?(val, link) -- retrieve value and next item lin k
head!link -- remember the next head

in
val -- return the value

end
}

Figure 2 The Concurrent Queue in the GOC Idiom

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 9.

e, we
to es-

ro-

n can
a-
oint
r re-

ware
guag-
or even
tional
stood
el ab-
as syn-
ework

ather

ongst
are not
s have

e in or-
atterns
but the
s into
re ar-
cal-

ment

could

po-

ner,
intermediate calculus is an incremental one. We are continuing with our PICT object modelling
experiments, and hope to discover useful compositional idioms in this fashion. Therefor
hope that by evaluating our results and refining the intermediate calculus we will be able
tablish the foundations for a compositional programming environment.

The current type system of PICT is very rich, but it also has some drawbacks. First, the p
grammer has to explicitlyfoldandunfoldvalues of recursive types (unfold transforms a val-
ue with a recursive type into one with a non-recursive type,fold is used for the inverse
transformation). In the queue implementation, the types of all internal channels (head , tail ,
init , link) are recursive. Second, in the presence of recursive types no subtype relatio
be established. In the current version of PICT, two recursive types are either equal or incomp
rable1, which is problematic when one wants to use polymorphic data structures. At this p
it is not clear how the PICT type system can be consistently extended to support subtypes fo
cursive types. (Subtyping of recursive types is still an active research area.)

An important task will be to discover what kind of abstractions are necessary for soft
composition. Do we really need all the abstractions common to most object-oriented lan
es, or are there abstractions which should be avoided? Is it, on the other hand, possible (
desirable) to incorporate abstractions from other programming paradigms (such as func
or logic programming)? One possible approach is to define a small number of well-under
and orthogonal kernel abstractions and to provide mechanisms for defining higher lev
stractions in terms of the kernel abstractions. These higher level abstractions can be seen
tactic sugar on top of the kernel abstractions and be used to define domain-specific fram
abstractions. (PICT already goes a long way in this direction.)

Design patterns [9] are specifications of compositional idioms at the level of design r
than as concrete software abstractions. Design patterns provide specificdesignguidelines for
building flexible object-oriented systems given certain requirements. They provide, am
others, guidelines for setting-up and adapting class structures. So far design patterns
available as reusable generic abstractions that are realized in software. No approache
been presented that transform these guidelines into rules that can be enforced in softwar
der to make adaptation and extension of class structures easier. One may apply design p
in the implementation of a system, and one may recognize where they have been used,
possibility to reuse these patterns in software is rather restricted. Turning design pattern
reusable software abstractions would be one step towards explicitly representing softwa
chitecture in the implementation of open systems [15][17]. A good test of a formal object
culus is how well it can be used to express design patterns as components.

In [7], a knowledge-based parallel programming environment is presented. The environ
assists an application programmer in finding analgorithmic skeletonwell-suited for solving a
particular problem, which can then be completed by the programmer. A similar approach
be used for design patterns: the composition language can be used to specifydesign-pattern
component templates, which only need to be bound to application-specific classes and com
nents.

Before we define a component model forsoftware, it is natural to have a closer look how
hardwareis built. A stereo system, for example, may consist of an amplifier, CD-player, tu

1. According to Pierce, this is likely to change in a future version ofPICT.

10. Formalizing Composable Software Systems — A Research Agenda

maller
s). All
. Before
ach of
ed to

ts are
noise
from

ware
mpo-
nts.

on and
dware
-

nica-

mple,
eth-

ur
-
void-
d and

po-
mon

ere are
le in-

g and
rsive
ds,

pt some

ram-
e pre-

are
as the
hro-
tape deck, and other components. Each of these stereo components is built up from s
components (e.g., circuits), which again use even smaller components (e.g., transistor
stereo components have a well-defined basic behaviour and support standard interfaces
they can be used, they have to be connected to a power supply. Although in principle e
these components would function by itself, their real value lies in the way they are design
be plugged together.

A customer composing a stereo system is usually not interested in how the componen
built, but is interested in the services they deliver (a tape deck should support a specific
reduction system) and their composability (it should be possible to connect components
different vendors). The producers on the other hand have a different view of their hard
components: they know the internal architecture (design and implementation) of their co
nents, and often reuse existing layouts and pieces of hardware to develop new compone

We would like to adapt the concepts and standard mechanisms of hardware compositi
use them in software development. If we hope to compose software in the same way har
is composed, a (software)component frameworkmust support the specification of (i) exact be
haviour of components, (ii) standard interfaces, (iii) protocols for intercomponent commu
tion, and (iv) rules for component substitutability.

There are other properties which a component framework must guarantee. As an exa
let us consider dynamically bound local method calls in object-oriented programming: a m
od foo calls another methodbar . If the methodbar is redefined in a subclass, its behavio
is changed. As a side effect, the behaviour offoo will also change, although the implementa
tion of foo has not changed. We argue that any kind of implicit dependencies have to be a
ed in a component framework: all allowable dependencies should be explicitly represente
documented.

5 Future Work

Although it is our long-term goal to define an object model suitable for specifying the com
sition of open, concurrent systems, so far we have mainly concentrated on modelling com
features of object-oriented languages that do not necessarily address concurrency. Th
still a few abstractions we did not incorporate into our first object models, such as multip
heritance, binary methods, type-safe downcasting, and constrained genericity.

Modelling binary methods is a challenging task, especially in the context of subclassin
polymorphic data structures, since the definition of binary methods naturally leads to recu
type definitions. Bruceet al. [3] have surveyed the sources of problems with binary metho
and have presented a comparison of various solutions to these problems. We plan to ada
of these solutions to ourπ calculus object models.

One of the next steps will be to model abstractions for concurrent and distributed prog
ming and to define a concurrent object model. As mentioned above, we already have som
liminary results in modelling McHale’s “generic synchronization policies.” There
numerous other interesting approaches concurrent objects worth investigating, such
“composition filters” approach of Sina [1], the state variable unification approach to sync
nization of Oz [32], or theseparateextension to Eiffel [19].

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 11.

P for
om-
To our
. It is
e sys-
ction

nents
on, we

im-
uire-
s for

mpo-
terms
viour.

an add
wever,
arable
ld be

k. In
to be
ents
sing
e to be

te,

TA
nd

eav-
b-

rect-
-

Although metaobjects are usually associated with MOPs, we only defined a basic MO
our PICT object models. Two major questions arise: what kind of MOPs do we need in a c
position language, and what are the consequences for the underlying type system?
knowledge, most of the languages supporting run-time MOPs are not statically typed
therefore a challenging task to see what kind of MOP can be defined with the current typ
tem of PICT, or how the type system should be extended in order to support run-time refle
using metaobjects.

A general-purpose software composition system must support the integration of compo
developed using other systems or languages. As a first step towards such an integrati
have implemented a simple interpreter for a subset of the PICT programming language with an
additional possibility to integrate C++ objects [35]. Although this first prototype has only l
ited applicability, it has helped us to obtain further insight in how to define precisely the req
ments for such integrations. An important step will be to study already existing standard
intercomponent communication (e.g., COM and CORBA).

Ultimately we are targeting the development of open, hence distributed systems. A co
sition language for open systems should not only have its formal semantics specified in
of communicating processes, but should really support concurrent and distributed beha
The prototype mentioned in the paragraph above is first step in this direction, since one c
components that support communication between distributed nodes. What we need, ho
is a distributed abstract machine as run-time system for the composition language, comp
to that used for Java [11]. A distributed abstract machine for software composition cou
built on top of an existing intercomponent communication system.

The development of an environment for software composition will be an iterative tas
each iteration step, the usability of the composition environment for real applications has
validated by (i) programming components within the environment, (ii) integrating compon
written in other systems and languages, (iii) building up component libraries, and (iv) u
components to build larger applications. After each step, the benefits and drawbacks hav
carefully evaluated in order to improve the environment.

References

Further references may be found at: http://iamwww.unibe.ch/~scg.

[1] Lodewijk Bergmans, “Composing Concurrent Objects,” PhD thesis, University of Twen
1994.

[2] Søren Brandt and René W. Schmidt, “The Design of a Meta-Level Architecture for the BE
Language,”Proceedings of META ’95: Workshop on Advances in Metaobject Protocols a
Reflection at ECOOP ’95, August 1995.

[3] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. L
ens and Benjamin Pierce,On Binary Methods, 1996, To appear in Theory and Practice of O
ject Systems.

[4] Shigru Chiba, “A Metaobject Protocol for C++,”Proceedings of OOPSLA ’95, ACM SIGP-
LAN Notices, vol. 30, no. 10, October 1995, pp. 285—299.

[5] William Cook and Jens Palsberg, “A Denotational Semantics of Inheritance and its Cor
ness,”Proceedings OOPSLA ’89, ACM SIGPLAN Notices, vol. 24, no. 10, Oct. 1989, pp. 433
443.

12. Formalizing Composable Software Systems — A Research Agenda

5,

llel
trib-

er-
,

n,”
it-

-

tec-
ture

ve
inity

e-
,

ent-
ci-

rt I/

p.
[6] Laurent Dami, “Functions, Records and Compatibility in the Lambda N Calculus,”Object-
Oriented Software Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 199
pp. 153-174.

[7] Karsten M. Decker, Jiri J. Dvorak and René M. Rehmann, “A tool environment for para
programming — User-driven development of a novel programming environment for dis
uted memory parallel processor systems,”Priority Programme Informatics Research, Infor-
mation Conference Module 3 on Massively parallel systems, November 1994, pp. 40—47.

[8] Linda G. DeMichiel and Richard P. Gabriel, “The Common Lisp Object System: An Ov
view,” Proceedings ECOOP ’87, J. Bézivin, J-M. Hullot, P. Cointe and H. Lieberman (Ed.)
LNCS 276, Springer-Verlag, Paris, France, June 15-17, 1987, pp. 151-170.

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,Design Patterns, Addison
Wesley, Reading, MA, 1995.

[10] Adele Goldberg and David Robson,Smalltalk 80: the Language and its Implementation, Ad-
dison-Wesley, Reading, Mass., May 1983.

[11] James Gosling and H. McGilton,The Java Language Environment, Sun Microsystems Com-
puter Company, May 1995.

[12] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communicatio
Proceedings ECOOP ’91, Pierre America (Ed.), LNCS 512, Springer-Verlag, Geneva, Sw
zerland, July 15-19, 1991, pp. 133-147.

[13] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow,The Art of the Metaobject Protocol,
MIT Press, 1991.

[14] John Lamping, “Typing the Specialization Interface,”Proceedings OOPSLA ’93, ACM SIG
PLAN Notices, vol. 28, no. 10, Oct. 1993, pp. 201-214.

[15] Jeff Magee, Naranker Dulay and Jeffrey Kramer, “Specifying Distributed Software Archi
tures,” Proceedings European Software Engineering Conference, Springer Verlag, Lec
Notes in Computer Science, 1995.

[16] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressi
Power, Genericity and Inheritance,” Ph.D. thesis, Department of Computer Science, Tr
College, Dublin, 1994.

[17] Theo Dirk Meijler and Robert Engel, “Making Design Patterns Explicit in FACE, a Fram
work Adaptive Composition Environment,” draft manuscript, IAM, U. Berne, April 1996
Submitted for publication.

[18] Tom Mens, Kim Mens and Patrick Steyaert, “OPUS: a Calculus for Modelling Object-Ori
ed Concepts,” Technical Report, No. VUB-TINF-TR-94-04, Department of Computer S
ence, Vrije Universiteit Brussel, Belgium, 1994.

[19] Bertrand Meyer, “Systematic Concurrent Object-Oriented Programming,”Communications
of the ACM, vol. 36, no. 9, September 1993, pp. 56—80.

[20] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Pa
II,” Information and Computation, vol. 100, 1992, pp. 1–77.

[21] Oscar Nierstrasz, “Towards an Object Calculus,”Proceedings of the ECOOP ’91 Workshop
on Object-Based Concurrent Computing, M. Tokoro, O. Nierstrasz and P. Wegner (Ed.),
LNCS 612, Springer-Verlag, 1992, pp. 1-20.

[22] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” inObject-
Oriented Software Composition, ed. O. Nierstrasz and D. Tsichritzis, Prentice Hall, 1995, p
3-28.

Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe 13.

,”

ct-

n-
ay

rder
ept.,

, no.
s,

e

sis,

al

bora-
rch
[23] Oscar Nierstrasz, “Regular Types for Active Objects,”Object-Oriented Software Composi-
tion, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 99-121.

[24] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,”Pro-
ceedings of the ECOOP ’94 Workshop on Coordination Languages, ed. P. Ciancarini, O.
Nierstrasz, A. Yonezawa, Springer-Verlag, LNCS 924, 1995, pp. 147-161.

[25] Oscar Nierstrasz and Theo Dirk Meijler, “Research Directions in Software Composition
ACM Computing Surveys, vol. 27, no. 2, June 1995, pp. 262-264.

[26] Else K. Nordhagen, “Omicron, An Object-Oriented Calculus,”Proceedings FMOODS’96,
IFIP WG 6.1 (Ed.), Paris, France, March 1996.

[27] Benjamin C. Pierce and David N. Turner, “Simple Type-Theoretic Foundations for Obje
Oriented Programming,”Journal of Functional Programming, vol. 4, no. 2, April 1994, pp.
207-247.

[28] Benjamin C. Pierce, “Programming in the Pi-Calculus: An Experiment in Concurrent La
guage Design,” Technical Report, Computer Laboratory, University of Cambridge, UK, M
1995, Tutorial Notes for PICT Version 3.6a.

[29] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,”Pro-
ceedings Theory and Practice of Parallel Programming(TPPP 94), Takayasu Ito and Akinori
Yonezawa (Ed.), Springer LNCS 907, Sendai, Japan, 1995, pp. 187-215.

[30] Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-O
Paradigms,” Ph.D. thesis, CST-99-93 (also: ECS-LFCS-93-266), Computer Science D
University of Edinburgh, May 1993.

[31] Jean-Guy Schneider and Markus Lumpe, “Modelling Objects in PICT,” Technical Report
IAM-96-004, University of Bern, Institute of Computer Science and Applied Mathematic
January 1996.

[32] Gert Smolka, “A Survey of Oz,” Draft, German Research Center for Artificial Intelligenc
(DFKI), January 24, 1995.

[33] David N. Turner, “The Polymorphic Pi-Calculus: Theory and Implementation,” Ph.D. the
Department of Computer Science, University of Edinburgh, UK, 1996.

[34] Patrick Varone, “Implementation of ‘Generic Synchronization Policies’ in PICT,” Technic
Report, no. IAM-96-005, University of Bern, Institute of Computer Science and Applied
Mathematics, March 1996.

[35] Pierre Viret, “Viewing C++ Objects as Communicating Processes,” Master’s thesis, La
toire de Téléinformatique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH, Ma
1996.

	Formalizing Composable Software Systems — A Research Agenda
	Oscar Nierstrasz, Jean-Guy Schneider, Markus Lumpe
	Software Composition Group, University of Berne
	1 Introduction
	2 Requirements
	2.1 A Research Agenda
	• What is an appropriate Object Calculus?
	• What is a good model of objects and components?
	• What forms of composition are fundamental?
	• Is there a uniform type system that accommodates objects and components?
	• Can dynamic aspects of contracts be expressed in the type system?
	• Can we reason about correctness in a compositional way?
	• How can we explicitly represent software architecture?

	2.2 Experiments in Formalizing Software Composition

	3 Modelling Objects as Processes
	3.1 The Pierce/Turner Basic Object Model
	Figure 1 A Concurrent Queue in PICT

	3.2 Modelling Object-Oriented Abstractions in PICT

	4 Compositional Idioms
	Figure 2 The Concurrent Queue in the GOC Idiom

	5 Future Work
	References
	[1] Lodewijk Bergmans, “Composing Concurrent Objects,” PhD thesis, University of Twente, 1994.
	[2] Søren Brandt and René W. Schmidt, “The Design of a Meta-Level Architecture for the BETA Langu...
	[3] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens an...
	[4] Shigru Chiba, “A Metaobject Protocol for C++,” Proceedings of OOPSLA ’95, ACM SIGPLAN Notices...
	[5] William Cook and Jens Palsberg, “A Denotational Semantics of Inheritance and its Correctness,...
	[6] Laurent Dami, “Functions, Records and Compatibility in the Lambda N Calculus,” Object- Orient...
	[7] Karsten M. Decker, Jiri J. Dvorak and René M. Rehmann, “A tool environment for parallel progr...
	[8] Linda G. DeMichiel and Richard P. Gabriel, “The Common Lisp Object System: An Overview,” Proc...
	[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison Wesley,...
	[10] Adele Goldberg and David Robson, Smalltalk 80: the Language and its Implementation, Addison-...
	[11] James Gosling and H. McGilton, The Java Language Environment, Sun Microsystems Computer Comp...
	[12] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication,” Proceedin...
	[13] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow, The Art of the Metaobject Protocol, ...
	[14] John Lamping, “Typing the Specialization Interface,” Proceedings OOPSLA ’93, ACM SIGPLAN Not...
	[15] Jeff Magee, Naranker Dulay and Jeffrey Kramer, “Specifying Distributed Software Architecture...
	[16] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive Power, ...
	[17] Theo Dirk Meijler and Robert Engel, “Making Design Patterns Explicit in FACE, a Framework Ad...
	[18] Tom Mens, Kim Mens and Patrick Steyaert, “OPUS: a Calculus for Modelling Object-Oriented Con...
	[19] Bertrand Meyer, “Systematic Concurrent Object-Oriented Programming,” Communications of the A...
	[20] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Part I/ II,”...
	[21] Oscar Nierstrasz, “Towards an Object Calculus,” Proceedings of the ECOOP ’91 Workshop on Obj...
	[22] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” in Object- Orie...
	[23] Oscar Nierstrasz, “Regular Types for Active Objects,” Object-Oriented Software Composition, ...
	[24] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,” Proceedin...
	[25] Oscar Nierstrasz and Theo Dirk Meijler, “Research Directions in Software Composition,” ACM C...
	[26] Else K. Nordhagen, “Omicron, An Object-Oriented Calculus,” Proceedings FMOODS’96, IFIP WG 6....
	[27] Benjamin C. Pierce and David N. Turner, “Simple Type-Theoretic Foundations for Object- Orien...
	[28] Benjamin C. Pierce, “Programming in the Pi-Calculus: An Experiment in Concurrent Language De...
	[29] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,” Proceedi...
	[30] Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-Order Par...
	[31] Jean-Guy Schneider and Markus Lumpe, “Modelling Objects in PICT,” Technical Report, no. IAM-...
	[32] Gert Smolka, “A Survey of Oz,” Draft, German Research Center for Artificial Intelligence (DF...
	[33] David N. Turner, “The Polymorphic Pi-Calculus: Theory and Implementation,” Ph.D. thesis, Dep...
	[34] Patrick Varone, “Implementation of ‘Generic Synchronization Policies’ in PICT,” Technical Re...
	[35] Pierre Viret, “Viewing C++ Objects as Communicating Processes,” Master’s thesis, Laboratoire...

