
Tracking Null Checks in Open-Source Java Systems

Haidar Osman
SCG, University of Bern

Switzerland
osman@inf.unibe.ch

Manuel Leuenberger
University of Bern

Switzerland
manuel.leu@students.unibe.ch

Mircea Lungu
University of Groningen

The Netherlands
m.f.lungu@rug.nl

Oscar Nierstrasz
SCG, University of Bern

Switzerland
oscar@inf.unibe.ch

Abstract— It is widely acknowledged that null values should
be avoided if possible or carefully used when necessary in
Java code. The careless use of null has negative effects on
maintainability, code readability, and software performance.
However, a study on understanding null usage is still missing.

In this paper we analyze null checks in 810 open-source
Java systems and manually inspect 100 code samples to
understand when and why developers use null. We find that
35% of all conditional statements contain null checks. A deeper
investigation reveals many questionable practices with respect
to using null. Uninitialized member variables, returning null
in methods, and passing null as a method parameter are
among the most recurrent reasons for introducing null checks.
Developers often return null in methods to signal errors instead
of throwing a proper exception. As a result, 71% of the values
checked for null are returned from method calls.

Our study provides a novel evidence of an overuse of null
checks and of the null value itself in Java, and at the same
time, reveals actionable recommendations to reduce this null
usage.

Keywords-Null Checks; Null Usage; Static Analysis

I. INTRODUCTION

Tony Hoare1 considers null as his “billion-dollar mistake”
[1]. Besides the bugs it introduces in running systems, null
usage hinders performance [2], increases maintenance costs
[3], and decreases code readability.

Recent studies show that a considerable number of bug
fixes are recurrent [4][5][6][7]. Interestingly, the if -related
bug category is dominant [4], and more particularly, missing
null check is the most frequent pattern of bugs in Java
systems [7]. These results suggest that null dereferencing is
a major source of bugs in Java programs, forcing developers
to add guards (null checks) on objects before using them.

Many tools and techniques have been introduced to solve
the null dereferencing problem. However, a study is still
missing on how null is used, why null checks are introduced,
and where the checked-for-null objects come from in the
source code.

In this paper, we aim at understanding when, why, and
how often developers introduce null checks. More con-
cretely, we pose the following three research questions:

IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER) 2016, Osaka, Japan.

1A computing pioneer credited with introducing the concept of a null
pointer in Algol W. https://en.wikipedia.org/wiki/Tony Hoare

RQ1: How common are null checks?
We answer this question by measuring the ratio be-
tween the overall number of conditional statements
and those containing null checks.

RQ2: What kind of objects are checked against null?
We consider whether the checked object is a param-
eter, a member variable, or a local variable.

RQ3: How are the checked-for-null objects initialized?
We analyze the kind of expression that was assigned
to the checked-for-null object.

RQ4: How is null used in Java programs?
We manually investigate 100 samples from our corpus
to understand what null represents in Java programs
(e.g., errors, default values, or other special values).

To answer the posed research questions, we developed a
tool, NullTracker, that statically analyzes Java source code
files and approximates the statistics about null check usage.
Applying our analysis to a large Java software corpus, we
find that 35% of the conditional statements in our corpus
are null checks.

We also find that 24% of the checked objects are member
variables, 23% are parameters, and 50% are local variables.
Unsurprisingly, 71% of the checked objects come from
method calls. In other words, developers insert null checks
mainly when they use methods that may return null. Passing
null values to methods and uninitialized member variables
are recurrent reasons for introducing null checks.

We manually review 100 code samples from our corpus to
understand the contexts and discover patterns of null check
usage. In 76 samples null is used to represent errors, in 15
samples it is a representation of absence of a value, and
in 9 samples null represents a meaningful value. Most of
these instances of null usage can (or should) be replaced
by proper exceptions or special case objects such as a Null
Object [8][9].

The rest of the paper is organized as follows: in Section II,
we explain why using null leads to problems. We explain
the procedure we followed to extract the null checks and the
devised heuristics to analyze the checked-for-null objects
in Section III. Then, we explain the experimental setup,

https://en.wikipedia.org/wiki/Tony_Hoare

the terminology, and the procedure we followed to analyze
null checks and null usage in Section III. In Section IV,
we demonstrate the results and answer the posed research
questions. In Section V, we discuss the research questions
and the implications of the results. We then explain in
Section VI the possible threats to validity in our study and
how we tried to mitigate them. In Section VII, we discuss
the related work and how the null-related problems are
approached. Finally, we conclude this paper in Section VIII.

II. MOTIVATION

Pominville et al. achieved 2% to 10% performance gain
in Java bytecode when they annotated Java class files with
assumptions about the “nullness” and array bounds [2].
With respect to null, their framework, SOOT [10], performs
intra-procedural null analysis to make assumptions about
variables being null or not to be able to remove unnecessary
null checks in the bytecode level. This means that null
checks impose a non-negligible performance overhead on
Java programs.

In a managed language like Java, null is an unusable value.
Its interpretation depends on the context and when it causes a
problem, its value yields “no useful debugging information”
[11]. For instance, the listFiles() method in the File
class returns an array of the files, File[], in the specified
directory. However, if the directory does not exist, it returns
null. This returned null value might mean that the File
object does not exist, that it is not a directory, or that an I/O
error has occurred. This inherent ambiguity of null leads to
increased difficulties in code comprehension.

Missing null checks are the most recurrent bug pattern
in Java systems [7]. This bug manifests itself as the Java
NullPointerException. Debugging this kind of exception is
particularly hard because the stack traces do not provide
enough information about the source of the null. Acknowl-
edging this problem, Bond et al. introduced Origin Tracking
[11], which records code locations where unused values
(such as null) are assigned. Origin Tracking gathers the
necessary information dynamically at run time so they can
be reported at failure time to aid the debugging activities.
This indirectly means that the overuse of null in program
increases maintenance efforts.

To this end, we establish that the use of null in Java
code often leads to performance degradation, code that
is harder to read, more defective software, and increased
project maintenance efforts. In the following sections we
explore how often null is used in Java code and in what
contexts. This knowledge can help software engineers to
build better static code checkers and develop better practices
for writing and reviewing Java code.

public class CoDriver {
 …

public void join(Driver driver) {
 …

Car car;
 …

 car = driver.getCar();
 …
 …

if (car != null) {
 …
 }
 …

}
 …
}

Null Check

N-Comparand

NC-Def-expression

NC-Def-valueNC-Declaration

Figure 1. A code example showing the definitions of the terms used in
the paper.

III. NULL CHECK ANALYSIS

A. Experimental Corpus

For our experiment, we used the same software corpus
from a previous study [7]. This corpus was built using a
crawler that queries Github2 for Java projects that have more
than 5 stars (popular) and are more than 100KB in size
(relatively large). This corpus contains 810 Java projects,
371,745 Java source files, and 34,894,844 lines of code. We
are making the corpus available for download through the
Pangea infrastructure3 [12].

B. Terminology

Before we explain the analysis, we define the terms used
in this paper as follows (depicted in Figure 1):

• A Conditional: is a binary comparison expression that
evaluates to a boolean value, such as:

– y > 0
– x != null

• A Conditional Statement: is a Java statement that con-
tains a conditional, such as:

– if(y > 0) ...
– isNull = (x != null);

• A Null Check: is a conditional that contains the null
literal as a left hand side or a right hand side operand.
In other words, It is a comparison to null. For instance:

– Person != null
– iterator.next() != null

• An N-Comparand: is the expression that is compared to
null in the null check (Usually an assignable l-value.)

2http://www.github.com/
3http://scg.unibe.ch/research/pangea

http://www.github.com/
http://scg.unibe.ch/research/pangea

• An NC-Declaration: is the declaration expression of the
N-Comparand.

• An NC-Def-expression: is the assignment expression
involving the N-Comparand as the assignable l-value.

• An NC-Def-value: is the value assigned to the com-
parand in an NC-Def-expression (i.e., the right-hand
side operand of the NC-Def-expression).

C. Analysis

We implemented a tool, NullTracker4, to extract null
checks and analyze the kinds and definitions of the N-
Comparands. NullTracker is designed as a pipeline, fol-
lowing a pipes and filters architecture. NullTracker analyzes
each Java source file as follows:

1) Parse the Java source file and extract the null checks.
2) For each null check, extract the N-Comparand.
3) Parse the N-Comparand and determine its kind (e.g.,

name, method call, field access, etc.).
4) When the N-Comparand is a name expression, de-

termine its kind (member variable, local variable, or
parameter) by looking for its NC-Declaration within
the current method for local variables and parameters,
and within the current type declaration for member
variables.

5) When the N-Comparand is assignable (name, array
access, field access), extract all the NC-Def-expressions
that appear lexically (textually) before the null check
and within the same method as the null check itself.
Then, parse them and extract the kind of the NC-Def-
values (method call, null literal, object creation, or any
expression that can evaluate to a reference value).

6) Finally, the resulting data, which conforms to the model
illustrated in Figure 2, is saved in the database for
further analysis.

Null Check N-Comparand

NC-Def-
expressionNC-Def-value

Java Source File
1 0 .. * 1 1

1

0 .. *
11

NC-Declaration

1

0 .. *

Figure 2. The data model of NullTracker analysis.

D. Manual Inspection

After the analysis phase, we manually inspect multiple
instances of the null checks belonging to different categories
and types. More concretely, we inspect 10 random samples
of each of the following categories to gain more insight:

1) Method call N-Comparands.
2) Field access N-Comparands.

4https://github.com/haidaros/NullTracker

3) local variable name N-Comparands.
4) Parameter name N-Comparands.
5) Member variable name N-Comparands.
6) Method invocation NC-Def-value.
7) Null literal NC-Def-value.
8) Cast NC-Def-value.
9) Object creation NC-Def-value.

10) Name NC-Def-value.
In this phase we aim at understanding how and why devel-

opers use null values and null checks. We look specifically
at the following:

1) The intended semantics of the null value.
2) Potentially missing null checks (e.g., a member variable

that is sometimes checked against null and sometimes
not before dereferencing it).

3) The type of the checked-for-null object (String, List,
Tree, Number, etc.).

4) The source of the null value. (e.g., uninitialized local
variables, a return null statement in a method body, etc.)

We do not derive any statistics from this phase, as we only
want to gain deeper insights into how null and null checks
are used in the code and for what reasons.

IV. RESULTS

We applied our analysis to the 810 Java projects in our
dataset and we manually reviewed 100 code samples. In
the following subsections which are organized around the
research questions, we explain the results.

A. How Common Are Null Checks?

To our knowledge, only Kimura et al. have measured the
density of null checks in source code [3]. They measured the
ratio between the number of null checks and the number of
lines of code. They found this ratio to be from one to four
per 100 lines of code, depending on the project.

We, on the other hand, go one step further and measure
the ratio of the conditional statements containing null checks
with respect to all conditional statements. This will enable
us in answering the first research question: RQ1: How
Common are Null Checks?

We call the ratio between the null checks and the overall
number of conditional statements the null check ratio. Ana-
lyzing our dataset, we found 2,329,808 conditionals, 818,335
of which contain null checks. This means that a staggering
35% of the conditional statements contain null checks.

As detailed in Table I and Figure 3, the null check ratio
exhibits a bell-shaped distribution around the value of 32%.
In other words, more than half of the projects have a null
check ratio of more than 32%. Our results show evidence
of an existing overuse (or abuse) of null checks by Java
programmers, which indicates the over-use of the “null”
value itself. As discussed in Section II, this practice affects
the readability of code, the maintainability of the project,
and the performance of the running system.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
ul

l C
he

ck
 R

at
io

(a)

Null Check Ratio

N
um

be
r

of
 O

cc
ur

re
nc

es
 (

P
ro

je
ct

s)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

(b)

Figure 3. The distribution of the per-project null check ratio. The boxplot in (a) shows that more than half the projects have null check ratios of more
than 32%. The histogram in (b) shows that the null check ratio distribution demonstrates a bell-shaped curve around the value of 32%.

Table I
A SUMMARY OF THE PER-PROJECT NULL CHECK RATIO.

Number of Number of Null Check
Conditionals Null Checks Ratio

Min 1.0 0.0 0%
1st quartile 117.5 33.0 23%
Median 531.5 138.5 32%
Mean 2,876.3 1,010.3 32%
3rd quartile 2,171.8 671.5 40%
Max 196,812.0 76,609.0 100%

B. What Entities Do Developers Check For Null?

To answer the second research question (RQ2: What
kind of objects are checked against null?), first, we
analyze the kind of the N-Comparand itself. Second, we
look for the NC-Declaration of the N-Comparand when it
is an l-value (i.e., name expression, array, or field access
expression).

We find that N-Comparands are mainly name expressions
(78%) and method call expressions (15%), as Figure 4
shows. Figure 5 shows that 50% of the name N-Comparands
are local variables, 24% are member variables, and 23% are
parameters.

Inspecting 10 code samples where the null check is
against a method call, the method calls are all for get-

ter methods either from the same class or from another
class. This puts field access N-Comparands, method call N-
Comparands, and member variable name N-Comparands in
the same category, which is member variable null check.
Member variables are checked against null because they
might not be initialized. This happens in the manually
inspected code when one or more of the following is true:

• There exists a constructor that does not initialize it.
• There exists a constructor or a setter method that can

accepts null as a parameter and sets it to null.
• There exists a method that explicitly sets to null.
• The member variable is public or is returned by address

in the getter method.

The code in all inspected 10 samples where the N-
Comparand is a member variable can be improved to avoid
having to check for null every time the member variable
needs to be used. In our samples, there is no obvious
reason why member variables are not explicitly initialized
in every constructor. In fact in 5 of the inspected samples,
the member variable should even be final. This suggests
a failure in applying well-established object-oriented design
principles, in particular that of establishing class invariants
[13].

As we see in Figure 5, a considerable percentage of null
checks are guards on method parameters. In the inspected
code samples, we observe that developers check parameters

against null mainly to validate them. However, we differ-
entiate between two recurring patterns of null checks on
parameters. In the first pattern, a method throws an exception
if a certain parameter is null. Listing 1 shows a real example
of this pattern. The second, and more questionable, pattern
is shown in Listing 2. The method skeletons in Listing 2
are the most recurrent usage scenarios of a parameter null
check. In these scenarios, the method does not accept null
as a parameter. However, instead of throwing a proper
exception, the method does nothing and returns silently
without informing the caller of any problem.

public File writeToFile(final HttpEntity entity
) throws ClientProtocolException,
IOException {

if (entity == null) {
throw new LibRuntimeException(

LibResultCode.E_PARAM_ERROR);
}

.

.

.
}

Listing 1. Throwing a proper exception when the parameter is null.

SOME_TYPE method1(Param p){
if(p==null){
return null;

}
METHOD_BODY

}

void method2(Param p){
if(p==null){
return;

}
METHOD_BODY

}

void method3(Param p){
if(p!=null){
METHOD_BODY

}
}

Listing 2. The most recurrent usage scenarios of a parameter null check.

More often than not, this indicates a poor API design. One
can use, for instance, the specification pattern [14][15] to
extract the validation code, which throws a proper exception,
in a dedicated method or class. In any case, it is widely
acknowledged that passing null as an argument to methods
is a bad practice and “the rational approach is to forbid
passing null by default” [16]. Nevertheless, developers often
add null checks on parameters because they expect null to be
passed as a parameter. Our results show a clear gap between
what is considered a good practice and how software is
implemented in reality.

C. Where Does The Null Come From?
When the N-Comparand is a name expression, we an-

alyze the NC-Def-values assigned to it in all the NC-
Def-expressions preceding the null check within the same

78.46%	

14.68%	

5.42%	

0.79%	
 0.62%	
 0.01%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Name	
 MethodCall	
 FieldAccess	
 Enclosed	
 ArrayAccess	
 Other	

%
	
 o
f	
 O

cc
ur
re
nc
es
	

Type	
 of	
 Comparand	

Figure 4. The immediate kind of the N-Comparands as a parsing
expression.

method. Figure 6 shows the kinds of the assigned NC-Def-
values. As an answer to the third research question (RQ3:
How are the checked-for-null objects initialized?) we
find that 71% of the time the NC-Def-value is a method
call expression, which means that null checks are mostly
applied to values returned from method invocations. In
other words, when methods possibly return null, they tend
to cause NullPointerExceptions in the invoking methods
forcing developers to add null checks.

There is a long debate about whether methods should
return null or not. In a previous study [7], we found that
missing null checks represent the most frequent bug in
Java programs. In this study, we show that null checks are
applied to the results of method invocations. Both studies
combined provide evidence that returning null in methods
is a major cause of bugs. Hence, we side with the opinion
that developers should avoid returning null in their method
implementations and either throw an exception or return a
special case object [16] such as a Null Object [8][9].

Surprisingly, some Java standard libraries exhibit this
questionable design [16]. In our manually inspected code
samples, we find 5 null checks because of methods from
the Java standard API e.g., Map.get(...), List.get(...), Itera-
tor.next().

Another less frequent reason for checking a local variable
for null is when it is initialized within a method call or a
constructor that might throw an exception before completing.
We observe this pattern in our manually-inspected code
samples, as the code skeleton shows in Listing 3. The

70.93%	

10.09%	

6.93%	

4.15%	
 3.15%	
 1.53%	
 1.34%	
 0.86%	
 0.50%	
 0.53%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

MethodCall	
 NullLiteral	
 Cast	
 ObjectCreaAon	
 Name	
 CondiAonal	
 FieldAccess	
 ArrayAccess	
 StringLiteral	
 Other	

%
	
 o
f	
 O

cc
ur
re
nc
es
	

Type	
 of	
 the	
 Def-­‐Value	
 Assigned	
 to	
 the	
 Comparand	
 	

Figure 6. This diagram shows that the checked-for-null objects are mainly set or initialized using method invocations.

49.79%	

24.02%	
 22.84%	

3.36%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

LocalVariable	
 MemberVariable	
 Parameter	
 Undefined	

%
	
 o
f	
 O

cc
ur
re
nc
es
	

Type	
 of	
 Name	
 Comparand	
 (Checked	
 Variables)	

Figure 5. The type of name expression comparands. Undefined indicates
that 3.36% cannot be determined, as explained in Section VI

variable is set to null first, initialized in a try-catch
block, then checked for null to make sure that initialization
completed and no exception was thrown.

...

Object obj = null;
try{
obj = METHOD_INVOCATION or CONSTRUCTOR_CALL

}catch(...){
....

}
if(obj != null){
...

}
...

Listing 3. When the initialization is in a try-catch block, a null check
usually follows to make sure no exception is thrown.

D. What Does Null Mean?

In the manual inspection phase we find that developers
use null values for three different reasons.

As an answer to the fourth research question (RQ4: How
is null used in Java programs?), the most recurrent usage
of null is to encode or represent an error. 76 of 100 inspected
samples fall into this category. For instance, if a method does
not accept null as a parameter, it returns null or just returns
when it encounters a null parameter. Another example is
when a method returns null in a catch block.

The second usage of null is to represent the absence of
a value (or the nothingness). 15 out of the 100 inspected
samples fall into this category. For example, left and right
branches in a leaf node are null in a binary tree. Another
example is a find(...) method that returns null in case
it cannot find the item.

The third usage of null is when it is a proxy for a
meaningful value. For instance, in many code samples, we

find non-boolean variables used as ones (null means false
and instantiated means true).

We argue that the first and third usage of null are bad
practices as there are other language constructs to represent
the corresponding semantics. For errors and failures, one
should use well-defined exceptions as they are easier to read
and act upon. For the third usage, one can have a dedicated
enum, class, or other data type to represent the semantics
in a more readable and maintainable form. In fact, 19 out of
the 100 inspected classes contain potential bugs in the form
of potentially missing null checks. All of these 19 potential
bugs exist when null represents an error or a meaningful
value.

We also argue that second usage scenario where null
means the absence of a value is only tolerable and not
ideal, as one should use special case object [16] like the
Null Object [8][9] when applicable. Actually, even when
the representation of absence of value is available for free
(such as an empty string for a String variable), developers
tend to not use it. Eight out of the inspected N-Comparands
are of type String and seven are of type List. Carefully
reading the code, we find out that uninitialized strings and
lists are equivalent to empty strings and lists correspondingly
in these samples.

V. DISCUSSION

Null usage often leads to various maintenance problems.
Missing null check bugs, useless NullPointerException stack
traces, and vague null semantics are often the consequences
of the careless use of null value. A disciplined usage of null
is highly recommended [17], and alternatives, like the Null
Object Pattern [8][9], should be considered. However, the
results of this study suggest that null is often misused and
overused in Java code.

To demonstrate how null is often misused, we put the
observations from this study and from our previous study on
bug-fix patterns [7] into a hypothetical story that represents
the most recurrent pattern of wrong null usage.

A developer, A, adds a return null statement in
the method body of m(...) to indicate that a problem
has occurred and the method m(...) cannot continue its
normal execution. Another developer, B, uses the method
m(...) and assigns its result to a local variable obj.
When developer B runs his code, a NullPointerException
is thrown. Developer B looks at the stack traces struggling
to understand the problem and finally identifies the place of
the null dereferencing. It is the local variable obj and the
null comes from the method invocation of m(...). Unable
to understand the meaning of null in this situation, developer
B adds a null check before using the local variable obj.

When such scenarios accumulate in a codebase, the code
starts to get harder to maintain and reason about, leading to
the problems discussed in Section II.

However, our study also reveals some actionable recom-
mendations to reduce null checks and null usage:

1) A method should not return null in case of errors. A
method should always throw a proper exception that
explains the exact reason and even possible solutions
in case of errors.

2) Null should not be passed to public methods and public
methods should not accept null as a parameter. In other
words, public method arguments should be non-null by
default.

3) Member variables should be initialized either in all con-
structors or through the use of the Builder pattern. The
point here is that objects should be fully constructed
before being created and class invariants should be
explicitly established.

4) String instances should be initialized to empty strings
"".

5) List instances should be initialized to empty lists.

Following the aforementioned practices can prevent or
at least mitigate the problems coming from null usage (as
discussed in Section II). These practices can be ensured man-
ually during code review or automatically using static code
analyzers and annotations. An even more radical approach
is to forbid the usage of null altogether in the language and
observe the effects on the code quality, but this is a topic
for further study.

VI. THREATS TO VALIDITY

The internal threats to validity come from the known
limitations of static analysis itself on one hand, and the
limitations of our heuristics on the other hand.

• As can be seen in Figure 5, NullTracker cannot trace
3.36% of the variables back to their declarations, as
can be seen in Figure 5, because we parse and analyze
one Java source file at a time. For instance, inherited
member variables cannot be discovered.

• NullTracker extracts all the NC-Def-expressions that
appear lexically before the null check regardless of
the actual data flow taking all the possible NC-Def-
expressions into account.

• NullTracker cannot detect whether an N-Comparand is
changed by passing it as a parameter to other methods.
Only NC-Def-expressions are considered.

• When an N-Comparand appears within the same
method in multiple null checks, every time it is con-
sidered a different N-Comparand leading to possible
duplicates in the analysis of the N-Comparand kinds.

The external threats to validity come from the fact that we
only analyzed 810 Java open-source projects. The results
might not generalize to all open source projects or to
industrial closed-source projects

VII. RELATED WORK

A closely related work is a study on the maintainability
burden imposed by the “return null” statement [3]. Kimura
et al. found that return null statements are modified more
frequently than other return statements but null conditionals
are not. This indicates that the presence of return null is
costly to maintain. They also found that the density of null
checks are from one to four per 100 lines of code [3]. Our
definition of null check ratio expresses null check usage
better than null checks per LOC because it quantifies the
added complexity null checks have on the code.

Null-related bugs attract the attention of many researchers
and practitioners who propose various approaches to detect
them as early as possible.

The first family of solutions incorporates data flow
analysis techniques to detect possible null values.
Some techniques are simple, fast, and intra-procedural
[18][19][20][21][22] and some are more complex,
thorough, and inter-procedural [23][24][25][26]. For
instance, Hovemeyer and Pugh [22] perform intra-
procedural forward data flow analysis to approximate the
static single assignment for the values of variables. Then
they analyze the dereferences as a backward data flow
over the SSA approximation. This algorithm replaces the
previous basic forward data flow analysis approach [27]
and is now part of FindBugs [28], a static analysis tool for
finding bugs in Java.

An interesting study by Ayewah and Pugh [29] compares
several null dereference analysis tools and observes that,
besides the reported false positives, many of the reported
null dereferences (true positives) do not manifest themselves
as bugs at run time. The authors claim that when the
null dereference passes the initial software testing, it rarely
causes bugs and “reviewing all potential null dereferences is
often not as important as many other undone software quality
tasks”[29]. We argue that Ayewah and Pugh underestimate
the frequency of the bugs caused by dereferencing null as
we show in our previous study [7].

The second family of solutions proposes to annotate the
“nullness” in code. Fähndrich and Leino propose to distin-
guish the non-null references from the possibly-null ones at
the type level (using annotations) to detect null-related bugs
[30]. Papi and Ernst introduced the @NonNull annotation on
types [31]. Loginov et al. [23], beside their inter-procedural
null dereference analysis, propose null-related annotations
to ensure the soundness and safety of the analysis. The idea
of annotations made it to widely-used Java libraries like
Checker Framework5 and Guava6. Also some programming
languages introduce the idea of reference declarations that
are not null. For instance the Spec# programming system
extends the C# programming language with the support of

5http://types.cs.washington.edu/checker-framework/
6https://github.com/google/guava

contracts (like non-null types), allowing the Spec# compiler
to statically enforce these contracts [32].

The third family of solutions tries to solve the problem
by introducing language constructs. Haskell [33] and Scala
[34] have the “Maybe” and the “Option” types, which are
object containers. In a similar fashion, Oracle introduced
the “Optional” type in Java 8 recently [35]. Groovy and C#
have the safe navigation “?.” to safely invoke a method on
a possibly-null object.

None of the above solutions deals with null usage problem
thoroughly. The first family of solutions does not reduce null
usage but points out potential null dereferencing locations
in the code, encouraging developers to add even more null
checks. The second family of solutions can mainly ensure
that method parameters are not null, but cannot, for instance,
prevent methods from returning null. The third family of
solutions just encapsulates the problem with syntactic sugar
rather than solving it. We argue that more research is needed
to solve the problems associated with null usage by dealing
with the cause of the problems instead of dealing with the
symptoms. A good solution should foster good programming
practices and a disciplined usage of null.

VIII. CONCLUSIONS

Null-related problems are very common in Java. The
overuse of the null value may introduce more bugs, hinder
performance, and lead to maintenance difficulties.

In this paper, we study null checks as a proxy to under-
stand null usage. We conduct a census of the null checks in
Java systems showing that 35% of the conditionals are null
checks. Our analysis reveals many bad practices in terms
of null usage. Returning null in methods, passing null as
arguments, and uninitialized member variables are the most
frequent, and questionable, null usage patterns causing the
high null check density. Finding out the root causes behind
improper null usage, we provide actionable recommenda-
tions to avoid null-related problems. These recommendations
can be checked using static code analyzers to ensure a
disciplined use of null and increase the quality of the code.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the funding of the
Swiss National Science Foundations for the project Agile
Software Assessment (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015)7.

The authors also acknowledge the financial support
of the Swiss Object-Oriented Systems and Environments
(CHOOSE)8 for the presentation of this research.

7http://p3.snf.ch/Project-144126
8http://www.choose.s-i.ch

http://types.cs.washington.edu/checker-framework/
https://github.com/google/guava
http://p3.snf.ch/Project-144126
http://www.choose.s-i.ch

REFERENCES

[1] T. Hoare, “Null references: The billion dollar mistake,” Pre-
sentation at QCon London, 2009.

[2] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Ver-
brugge, “A framework for optimizing Java using attributes,”
in Proceedings of the 2000 conference of the Centre for
Advanced Studies on Collaborative research. IBM Press,
2000, p. 8.

[3] S. Kimura, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,
“Does return null matter?” in Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), 2014 Soft-
ware Evolution Week - IEEE Conference on, Feb. 2014, pp.
244–253.

[4] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an
understanding of bug fix patterns,” Empirical Softw. Engg.,
vol. 14, no. 3, pp. 286–315, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9077-5

[5] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen, “Recurring bug fixes in object-
oriented programs,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010,
pp. 315–324. [Online]. Available: http://doi.acm.org/10.1145/
1806799.1806847

[6] M. Martinez, L. Duchien, and M. Monperrus, “Automati-
cally extracting instances of code change patterns with AST
analysis,” in Proceedings of the 29th IEEE International
Conference on Software Maintenance, 2013, eRA Track.

[7] H. Osman, M. Lungu, and O. Nierstrasz, “Mining
frequent bug-fix code changes,” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week - IEEE Conference on, Feb.
2014, pp. 343–347. [Online]. Available: http://scg.unibe.ch/
archive/papers/Osma14aMiningBugFixChanges.pdf

[8] B. Woolf, “The null object pattern,” in Design Patterns, PLoP
1996. Robert Allerton Park and Conference Center, Uni-
versity of Illinois at Urbana-Champaign, Monticello, Illinois,
1996.

[9] ——, “Null object,” in Pattern Languages of Program Design
3, R. Martin, D. Riehle, and F. Buschmann, Eds. Addison
Wesley, 1998, pp. 5–18.

[10] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot — a Java bytecode optimization frame-
work,” in Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research. IBM Press,
1999, p. 13.

[11] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley, “Tracking bad apples: reporting the origin
of null and undefined value errors,” in Proceedings of the
22nd annual ACM SIGPLAN conference on Object oriented
programming systems and applications (OOPSLA’07). New
York, NY, USA: ACM, 2007, pp. 405–422.

[12] A. Caracciolo, A. Chiş, B. Spasojević, and M. Lungu,
“Pangea: A workbench for statically analyzing multi-language
software corpora,” in Source Code Analysis and Manipulation
(SCAM), 2014 IEEE 14th International Working Conference
on. IEEE, Sep. 2014, pp. 71–76. [Online]. Available:
http://scg.unibe.ch/archive/papers/Cara14c.pdf

[13] B. Meyer, “Applying design by contract,” IEEE Computer
(Special Issue on Inheritance & Classification), vol. 25,
no. 10, pp. 40–52, Oct. 1992. [Online]. Available: http:
//se.ethz.ch/∼meyer/publications/computer/contract.pdf

[14] E. Evans and M. Fowler, “Specifications,” in Proceedings of
the 1997 Conference on Pattern Languages of Programming,
1997, pp. 97–34.

[15] E. Evans, Domain-Driven Design: Tacking Complexity In the
Heart of Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[16] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2008.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[18] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A
static analyzer for finding dynamic programming errors,”
Softw. Pract. Exper., vol. 30, no. 7, pp. 775–802, Jun.
2000. [Online]. Available: http://dx.doi.org/10.1002/(SICI)
1097-024X(200006)30:7〈775::AID-SPE309〉3.0.CO;2-H

[19] I. Dillig, T. Dillig, and A. Aiken, “Static error detection using
semantic inconsistency inference,” in Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’07. New York,
NY, USA: ACM, 2007, pp. 435–445. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250784

[20] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: A general approach to inferring
errors in systems code,” in Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, ser. SOSP
’01. New York, NY, USA: ACM, 2001, pp. 57–72. [Online].
Available: http://doi.acm.org/10.1145/502034.502041

[21] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata, “Extended static checking for Java,”
in Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, ser.
PLDI ’02. New York, NY, USA: ACM, 2002, pp. 234–
245. [Online]. Available: http://doi.acm.org/10.1145/512529.
512558

[22] D. Hovemeyer and W. Pugh, “Finding more null pointer
bugs, but not too many,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, ser. PASTE ’07. New
York, NY, USA: ACM, 2007, pp. 9–14. [Online]. Available:
http://doi.acm.org/10.1145/1251535.1251537

http://dx.doi.org/10.1007/s10664-008-9077-5
http://doi.acm.org/10.1145/1806799.1806847
http://doi.acm.org/10.1145/1806799.1806847
http://scg.unibe.ch/archive/papers/Osma14aMiningBugFixChanges.pdf
http://scg.unibe.ch/archive/papers/Osma14aMiningBugFixChanges.pdf
http://scg.unibe.ch/archive/papers/Cara14c.pdf
http://se.ethz.ch/~meyer/publications/computer/contract.pdf
http://se.ethz.ch/~meyer/publications/computer/contract.pdf
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://doi.acm.org/10.1145/1250734.1250784
http://doi.acm.org/10.1145/502034.502041
http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/1251535.1251537

[23] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky,
and M. Nanda, “Verifying dereference safety via expanding-
scope analysis,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ser. ISSTA ’08.
New York, NY, USA: ACM, 2008, pp. 213–224. [Online].
Available: http://doi.acm.org/10.1145/1390630.1390657

[24] A. Tomb, G. Brat, and W. Visser, “Variably interprocedural
program analysis for runtime error detection,” in Proceedings
of the 2007 International Symposium on Software Testing
and Analysis, ser. ISSTA ’07. New York, NY, USA: ACM,
2007, pp. 97–107. [Online]. Available: http://doi.acm.org/10.
1145/1273463.1273478

[25] M. G. Nanda and S. Sinha, “Accurate interprocedural
null-dereference analysis for Java,” in Proceedings of the
31st International Conference on Software Engineering,
ser. ICSE ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 133–143. [Online]. Available: http:
//dx.doi.org/10.1109/ICSE.2009.5070515

[26] T. Ekman and G. Hedin, “Pluggable checking and inferencing
of non-null types for Java,” Journal of Object Technology,
vol. 6, no. 9, pp. 455–475, 2007.

[27] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and
tuning a static analysis to find null pointer bugs,” in
Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,
ser. PASTE ’05. New York, NY, USA: ACM, 2005,
pp. 13–19. [Online]. Available: http://doi.acm.org/10.1145/
1108792.1108798

[28] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM
SIGPLAN Notices, vol. 39, no. 12, pp. 92–106, 2004.

[29] N. Ayewah and W. Pugh, “Null dereference analysis in
practice,” in Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, ser. PASTE ’10. New York,
NY, USA: ACM, 2010, pp. 65–72. [Online]. Available:
http://doi.acm.org/10.1145/1806672.1806686

[30] M. Fähndrich and R. Leino, “Declaring and checking non-
null types in an object-oriented language,” in Proceedings of
OOPSLA ’03, ACM SIGPLAN Notices, 2003. [Online]. Avail-
able: http://research.microsoft.com/∼maf/Papers/non-null.pdf

[31] M. M. Papi and M. D. Ernst, “Compile-time type-checking
for custom type qualifiers in Java,” in Companion to the 22Nd
ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications Companion, ser. OOPSLA ’07.
New York, NY, USA: ACM, 2007, pp. 809–810. [Online].
Available: http://doi.acm.org/10.1145/1297846.1297911

[32] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec#
programming system: An overview,” in Construction and
analysis of safe, secure, and interoperable smart devices.
Springer, 2005, pp. 49–69.

[33] “Haskel 98 Report.” [Online]. Available: https://www.haskell.
org/onlinereport/index98.html

[34] M. Odersky, “Scala language specification v. 2.4,” École Poly-
technique Fédérale de Lausanne, 1015 Lausanne, Switzerland,
Tech. Rep., Mar. 2007.

[35] R.-G. Urma, “Tired of null pointer exceptions? Consider
using Java SE 8’s optional!” Oracle, Tech. Rep.,
Mar. 2014. [Online]. Available: http://www.oracle.com/
technetwork/articles/java/java8-optional-2175753.html

http://doi.acm.org/10.1145/1390630.1390657
http://doi.acm.org/10.1145/1273463.1273478
http://doi.acm.org/10.1145/1273463.1273478
http://dx.doi.org/10.1109/ICSE.2009.5070515
http://dx.doi.org/10.1109/ICSE.2009.5070515
http://doi.acm.org/10.1145/1108792.1108798
http://doi.acm.org/10.1145/1108792.1108798
http://doi.acm.org/10.1145/1806672.1806686
http://research.microsoft.com/~maf/Papers/non-null.pdf
http://doi.acm.org/10.1145/1297846.1297911
https://www.haskell.org/onlinereport/index98.html
https://www.haskell.org/onlinereport/index98.html
http://www.oracle.com/technetwork/articles/java/java8-optional-2175753.html
http://www.oracle.com/technetwork/articles/java/java8-optional-2175753.html

