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ABSTRACT
Background: Bug prediction helps developers steer maintenance
activities towards the buggy parts of a software. There are many
design aspects to a bug predictor, each of which has several options,
i.e., software metrics, machine learning model, and response vari-
able.
Aims: These design decisions should be judiciously made because
an improper choice in any of them might lead to wrong, misleading,
or even useless results. We argue that bug prediction con�gurations
are intertwined and thus need to be evaluated in their entirety, in
contrast to the common practice in the �eld where each aspect is
investigated in isolation.
Method: We use a cost-aware evaluation scheme to evaluate 60
di�erent bug prediction con�guration combinations on �ve open
source Java projects.
Results:We �nd out that the best choices for building a cost-e�ective
bug predictor are change metrics mixed with source code metrics
as independent variables, Random Forest as the machine learning
model, and the number of bugs as the response variable. Combin-
ing these con�guration options results in the most e�cient bug
predictor across all subject systems.
Conclusions: We demonstrate a strong evidence for the interplay
among bug prediction con�gurations and provide concrete guide-
lines for researchers and practitioners on how to build and evaluate
e�cient bug predictors.
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1 INTRODUCTION
The main promise of bug prediction is to help software engineers
focus their testing and reviewing e�orts on those software parts that
most likely contain bugs. Under this promise, for a bug predictor to
be useful in practice, it must be e�cient, that is, it must be optimized
to locate the maximum number of bugs in the minimum amount of
code [31][32][2].1 Optimizing a bug predictor requires making the
right decisions for (i) the independent variables, (ii) the machine
learning model, and (iii) the response variable.2 We call this triple,
bug prediction con�gurations.

These con�gurations are interconnected. The entire con�gura-
tion should be evaluated in order to provide individual answers
for each aspect reliably. However, the advice found in the litera-
ture focuses on each aspect of bug prediction in isolation and it
is unclear how previous �ndings hold in a holistic setup. In this
paper, we adopt the Cost-E�ectiveness measure (CE), introduced by
Arisholm et al. [2], to empirically evaluate the di�erent options of
each of the bug prediction con�gurations all at once, shedding light
on the interplay among them. Consequently, we pose and answer
the following research questions:

RQ1: What type of so�ware metrics are cost-e�ective? We �nd
that using a mix of source code metrics and change metrics yields
the most cost-e�ective predictors for all subject systems in the
studied dataset. We observe that change metrics alone can be a
good option, but we advise against using source code metrics alone.
These �ndings contradict the advice found in the literature that
object-oriented metrics hinders the cost-e�ectiveness of models
built using change metrics [2]. In fact although source code metrics
are the worst metrics set, it can still be used when necessary, but
with the right con�guration combination.

RQ2: What prediction model is cost-e�ective? In this study we
compare �ve machine learning models: Multilayer Perceptron, Sup-
port Vector Machines, Linear Regression, Random Forest, and K-
Nearest Neighbour. Our results show that Random Forest stands
out as the most cost-e�ective one. Support Vector Machines come
a close second. While some previous studies suggest that Random
Forest performs generally better than other machine learning mod-
els [18], other studies note that Random Forest does not perform as
well [20]. Our �ndings suggest that Random Forest performs the
best with respect to cost-e�ectiveness.

1E�cient bug prediction as we de�ne it, is sometimes referred to as e�ort-aware bug
prediction in the literature
2Also known as the dependent variable or the output variable
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RQ3: What is the most cost-e�ective response variable to predict?
We establish that predicting the number of bugs in a software entity
is the most cost-e�ective approach and predicting bug proneness
is the least cost-e�ective one. To our knowledge, this research
question has not been investigated before in the literature.

RQ4: Is there a configuration combination that consistently pro-
duces highly cost-e�ective bug predictors? Here we evaluate all con-
�gurations at once to provide more reliable guidelines for building
cost-e�ective bug predictors. We conclude that both source code and
change metrics as independent variables mixed, Random Forest as the
prediction model, and bug count as the response variable, form the
con�guration combination of the most cost-e�ective bug predictor
across all subject systems in the studied dataset.

The rest of the paper is organized as follows: We explain and mo-
tivate the experimental setup of our empirical study in section 2. We
demonstrate the results and answer the posed research questions
in section 3, then we discuss the threats to validity in section 4.
We survey the related work and compare our �ndings with the
literature in section 5. Finally, in section 6, we conclude this study
with speci�c guidelines on building cost-e�ective bug predictors.

2 EMPIRICAL STUDY SETUP
2.1 Evaluation Scheme
There is a strong relationship between what is expected from a
model and how the model is evaluated. In the �eld of bug prediction,
the desired value expected from a bug predictor is to enhance the
e�ciency of the quality assurance procedure by directing it to
the buggy parts of a software system. This is possible only when
the bug predictor can �nd most of the bugs in the least amount
of code. Intuitively, the e�ciency of a predictor increases inverse-
proportionally with the number of lines of code in which it suspects
a bug might appear because writing unit tests for large software
entities or inspecting them requires more e�ort.
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Figure 1: An overview of the CE measure as de�ned by Ar-
isholm et al. [2].

Arisholm et al. state that “... the regular confusion matrix crite-
ria, although popular, are not clearly related to the problem at hand,
namely the cost-e�ectiveness of using fault-proneness prediction mod-
els to focus veri�cation e�orts to deliver software with less faults at
less cost"[2]. Consequently, they proposed a cost-aware evaluation
scheme called Cost-E�ectiveness (CE) [2]. CE measures the bene�t
of using a certain bug prediction model. It summarizes the accuracy
measures and the usefulness of a model by measuring how close the
prediction model is to the optimal model, taking the random order
as the baseline. This scheme assumes the ability of the prediction
model to rank software entities in an ordered list. To demonstrate
CE, we show in Figure 1 an example cumulative lift curves (Alberg
diagrams [37]) of three orderings of software entities:

(1) Optimal Order: The green curve represents the ordering
of the software entities with respect to the bug density from
the highest to the lowest.

(2) RandomOrder: The dashed diagonal line is achieved when
the percentage of bugs is equal to the percentage of lines
of code. This is what one gets, on average, with randomly
ordering the software entities.

(3) Predicted Order: The blue curve represents the ordering
of the software entities based on the predicted dependent
variable.

The area under each of these diagrams is called the Cost-E�ectiveness
(CE) area. The larger theCE area, the more cost-e�ective the model.
However, two things need to be taken into account in this scenario.
First, optimal models are di�erent for di�erent datasets. Second, the
prediction model should perform better than the random ordering
model to be considered valuable. That’s why Arisholm et al. [2] took
the optimal ordering and the random ordering into consideration
in the Cost-E�ectiveness measure as:

CE(model) = AUC(model) �AUC(random)
AUC(optimal) �AUC(random)

where AUC(x) is the area under the curve x.
CE assesses how good the prediction model is in producing a

total order of entities. The value of CE ranges from -1 to +1. The
larger theCE measure is, the more cost-e�ective the model is. There
are three cases:

(1) WhenCE is close to 0, it means that there is no gain in using
the prediction model.

(2) When CE is close to 1, it means that the prediction model is
close to optimal.

(3) WhenCE is between 0 and -1, it means that the cost of using
the model is more than the gain, making the use of the model
actually harmful.

In our experiments, we useCE to compare prediction results and
draw conclusions.

2.2 Dataset
In our study, we use the “Bug Prediction Dataset" provided by
D’Ambros et al. [11] in the form of publicly available software
system metrics at the class level. The purpose of of this dataset
is to provide a benchmark for researchers to run bug prediction
experiments on. It contains source code metrics and change metrics
of �ve popular Java systems (Table 1) and has been used previously
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in many bug prediction studies. The dependent variable is the
number of bugs on the Java class level.

Table 1: Details about the systems in the studied dataset, as
reported by D’Ambros et al. [11]

% Buggy classes
% Buggy with more than

System KLOC #Classes classes one bug
Eclipse JDT Core ⇡ 224 997 ⇡ 20% ⇡ 33%
Eclipse PDE UI ⇡ 40 1,497 ⇡ 14% ⇡ 33%
Equinox ⇡ 39 324 ⇡ 40% ⇡ 38%
Mylyn ⇡ 156 1,862 ⇡ 13% ⇡ 28%
Lucene ⇡ 146 691 ⇡ 9% ⇡ 29%

2.3 Independent Variables
Source code metrics3 are the metrics extracted from the source code
itself. The most often-used metrics are the Chidamber and Kemerer
(CK) metrics suite [10]. These more complex metrics are usually
used in conjunction with simpler counting metrics like the number
of lines of code (LOC), number of methods (NOM), or number of
attributes (NOA). Source code metrics try to capture the quality
(e.g., LCOM, CBO) and complexity (e.g., WMC, DIT) of the source
code itself. The rationale behind using the source code metrics as
bug predictors is that there should be a strong relation between
source code features (quality and complexity) and software defects
[47]. In other words, the more complex a software entity is, the
more likely it contains bugs. Also the poorer the software design is,
the more bug-prone it is.

Change metrics4 are extracted from the software versioning sys-
tems like CVS, Subversion, and Git. They capture how and when
software entities (binaries, modules, classes, methods) change and
evolve over time. Change metrics describe software entities with
respect to their age [44][5], past faults [27][55][41], past modi�ca-
tions and �xes [17][41][22][21][26][36], and developer information
[53][54][43][33]. Using software history metrics as bug predictors
is motivated by the following heuristics:

(1) Entities that change more frequently tend to have more bugs.
(2) Entities with a larger number of bugs in the past tend to

have more bugs in the future.
(3) Entities that have been changed by new developers tend to

have more bugs.
(4) Entities that have been changed by many developers tend to

have more bugs.
(5) Bug-�xing activities tend to introduce new bugs.
(6) The older an entity, the more stable it is.
Many researchers argue that source code metrics are good pre-

dictors for future defects [23][42][3][8][48][7], but others show
that change metrics are better than source code metrics at bug
prediction [36][25] [17][26][54][41][54][16]. Moreover, Arisholm
et al. states that models based on object-oriented metrics are no
better than a model based on random class selection [2].

In this study, to take part in this debate, we consider source
code metrics alone, change metrics alone, or both combined, and
evaluate the cost-e�ectiveness of the resulted bug predictors.

3Source code metrics are also known as product metrics.
4Change metrics are also known as process metrics or history metrics

2.4 Response Variable
The chosen dependent variable is an important design decision
because it sometimes determines the di�erence between a usable
and an unusable model. We have to keep in mind that the �nal
goal of the prediction is to prioritize the software entities into an
ordered list to be able to apply the Cost-E�ectiveness (CE) measure.
There are multiple possible schemes to do it:

(1) predict the number of bugs as the response variable then or-
der the software entities based on the calculated bug density.

(2) predict the bug density directly then order the software
entities based on this predicted bug density.

(3) predict the bug proneness and order the software entities
based on it. Small classes come before large ones in case of
ties.

(4) classify software entities into buggy and bug-free, then order
them as follows: buggy entities come before bug-free ones
and small classes come before large ones (with respect to
LOC).

The optimal prediction of number of bugs (�rst scheme) is equiv-
alent to the optimal prediction of bug density (second scheme), since
bug density is calculated from the number of bugs as bu�densit� =
(#bu�s/LOC). Also the optimal prediction of bug proneness (third
scheme) is an optimal classi�cation (fourth scheme). Obviously
the optimal regression in the �rst or second schemes is more
cost-e�ective than the optimal classi�cation in the third or fourth
scheme because it re�ects exactly the optimal solution in the cost-
e�ectiveness (CE) evaluation method. However, we need to verify
whether classi�cation is a valid approach in bug prediction and
whether we should include the third and fourth schemes in the em-
pirical study. In Figure 2, we evaluate the cost-e�ectiveness of the
optimal classi�er following the fourth scheme, for all �ve systems
in our corpus. The cost-e�ectiveness of the fourth scheme is excel-
lent for Equinox and JDT, and almost optimal for Mylyn, Lucene,
and PDE. As shown in Table 1, the percentage of buggy classes
with more than one bug ranges from 28% to 38%. This leads to the
conclusion that in the set of buggy classes, the number of bugs is
proportional to the number of lines of code. This is particularly
interesting because it makes classi�cation as good as predicting
the number of bugs, in the ideal case. We empirically verify which
response variable is better when we train our prediction models.

2.5 Machine Learning Models
We investigate the following machine learning models: Random
Forest (RF), Support Vector Machine (SVM), Multilayer Percep-
tron (MLP), an implementation of the K-nearest neighbours algo-
rithm called IBK, and Linear Regression (LinR) / Logistic Regression
(LogR)5. We choose these machine learning models for two reasons:
First, they are extensively used in the bug prediction literature [29].
Second, each one of them can be used as a regressor and as a classi-
�er, making comparisons across di�erent con�gurations possible.
Classi�ers are used to predict the bug proneness or the class (buggy,
bug-free) and regressors are used to predict the bug count and

5Linear Regression and Logistic Regression are equivalent, but with di�erent types
of response variables. Linear Regression is a regressor and Logistic Regression is a
classi�er.
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Figure 2: Commutative lift curves (Alberg diagrams [37])
comparing the optimal regressor (bug density predictor) and
the optimal classi�er with ranking based on LOC (smallest
to largest). These diagrams show that optimal classi�cation
performs almost as well as optimal regression.
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bug density. We use the Weka data mining tool [19] to build these
prediction models.

2.6 Hyperparameter Optimization
Machine learning models may have con�gurable parameters that
should be set before starting the training phase. This process is
called hyperparameter optimization or model tuning, and can have
a positive e�ect on the prediction accuracy of the models. How-
ever, di�erent models have di�erent sensitivities to this process.
While model tuning improves IBK and MLP substantially, it has a
negligible e�ect on SVM and RF [49][39]. In this study, we follow
the same procedure proposed by Osman et al. for hyperparame-
ter optimization [39]. The used model parameters are detailed in
Table 2.

Table 2: The tuning results for the hyperparameters

RF Number of Trees= 100

SVM Kernel= RBF {Gamma=0.1}
Complexity=10

MLP
Learning Rate=0.6
Momentum=0.6
Hidden Layer Size= 32

IBK
#Neighbours=5
Search Algorithm= Linear Search
Evaluation Criterion=Mean Squared Error

LinR/LogR No parameters to tune

2.7 Feature Selection
The prediction accuracy of machine learning models is highly af-
fected by the quality of the features used for prediction. Irrele-
vant and correlated features can increase prediction error, increase
model complexity, and decrease model stability. Feature selection is
a method that identi�es the relevant features to feed into machine
learning models. We apply wrapper feature selection for SVM, MLP,
and IBK as it has been shown that it leads to higher prediction
accuracy [40]. We do not apply feature selection for RF because it
performs feature selection internally. Following the guidelines by
Osman et al. [38], we apply l2 regularization (Ridge) on LinR/LogR
as the feature selection method.

2.8 Data Pre-Processing
Bug datasets are inherently imbalanced where most software en-
tities are bug-free. This is called the class-imbalance problem and
can negatively a�ect the performance of machine learning mod-
els [52][1]. To cope with this problem, we divide the data set for
each project into two sets: test set (25%) and training set (75%). The
samples in each set are taken at random but maintain the distri-
bution of buggy classes similar to the one in the full data set. We
then balance the training set by oversampling. This is important
for training and for evaluating the prediction models. The machine
learning models are then trained using the balanced training set
and evaluated on the unseen test set.
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3 RESULTS
In this study, we consider the following con�gurations:

(1) Independent Variables:
(a) source code metrics (src)
(b) change metrics (chg)
(c) both of them combined (both).

(2) Machine Learning Model:
(a) Support Vector Machines (SVM)
(b) Random Forest (RF)
(c) Multilayer Perceptron (MLP)
(d) K-Nearest Neighbours (IBK)
(e) Linear Regression (LinR) or Logistic Regression (LogR)

(3) Response Variable:
(a) bug count (cnt)
(b) bug density (dns)
(c) bug proneness (prs)
(d) classi�cation (cls)

There are 60 possible con�guration combinations. For each one,
we pre-process the data, train the model on the training set, perform
the predictions on the test data, and calculate the Cost E�ectiveness
measure (CE). We repeat this process 50 times to mitigate the threat
of having outliers because of the random division of the dataset
into a training set and a test set. We do not perform k-fold cross-
validation method because calculatingCE over a small set of classes
can be misleading. Instead, we perform the repeated hold-out vali-
dation because it is known to have lower variance than k-fold cross
validation making it more suitable for small datasets [4].

In this experiment, statistically speaking, the treatment is the
con�guration combination and the outcome is theCE score. Hence,
we have 60 di�erent treatments and one outcome measure. To
answer the posed research questions, we need to compare theCE of
di�erent con�guration combinations. Since there is a large number
of treatments, traditional parametric tests (e.g., ANOVA) or non-
parametric tests (e.g., Friedman) have the overlapping problem,
i.e., the clusters of treatment overlap. Therefore, we use the Scott-
Knott (SK) cluster analysis for grouping of means [45], which is a
clustering algorithm used as a multiple comparison method for the
analysis of variance. SK clusters the treatments into statistically
distinct non-overlapping groups (i.e., ranks), whichmakes it suitable
for this study. We apply SK with 95% con�dence interval to cluster
the con�guration combinations for each project in the dataset.

Figure 3 shows box plots of the CE outcomes for each con�g-
uration combination. Each box plot represents the population of
the 100 runs of the corresponding con�guration. The box plots are
sorted in an increasing order of the means ofCE, represented by the
red points. Alternating background colors indicate the Scott-Knott
statistically distinct groups (i.e., clusters or ranks).

The results in Figure 3 clearly demonstrate the interplay be-
tween the design choices in bug prediction. Changing one value
in the con�guration can transform a bug predictor from being
highly cost-e�ective, to being actually harmful. For instance, while
both-RF-cnt is the most cost-e�ective con�guration in Figure 3(a),
both-RF-dns is in the least cost-e�ective cluster. This means that
although RF is the best machine learning model and both is the
best choice of metrics, using them with the wrong response vari-
able renders a bug predictor useless. There are many examples

where changing one con�guration parameter brings the bug pre-
dictor from one cluster to another. Examples for each con�guration
variable include:

(1) In Figure 3(a), both-RF-cnt is ranked 1st whereas
both-RF-dns is ranked 7th .

(2) In Figure 3(b), both-SVM-cnt is ranked 2nd whereas
both-MLP-cnt is ranked 6th .

(3) In Figure 3(e), chg-SVM-cls is ranked 2nd where as
src-SVM-cls is ranked 6th .

These examples constitute a compelling evidence that bug predic-
tion con�gurations are interconnected.

To answer the �rst research question (RQ1) regarding the choice
of independent variables, we analyze the top cluster of con�gura-
tions in Figure 3. We observe that for Eclipse PDE UI, Equinox, and
Mylyn, the software metrics value in the top rank is either both or
chg. In Eclipse JDT Core, src appears in one con�guration out of
three in the top rank. In Lucene, src appears in one con�guration
out of 27 in the top rank. These results suggest that the use of both
source code and change metrics together is the most cost-e�ective
option for the independent variables. Using only change metrics
is also a good choice, but using only source code metrics rarely is.
It was shown in the literature that adding source code metrics to
change metrics hinders the cost-e�ectiveness and using source code
alone is not better than random guessing [2]. Our results show that
although less cost-e�ective, source code metrics can be used alone
when necessary (e.g., change metrics cannot be computed). There is
always a cost-e�ective con�guration combination with the source
code metrics as the independent variables (e.g., src-RF-cnt).

For the second research question (RQ2) regarding the choice of
the machine learning model, we observe that RF is the only option in
the top rank in Eclipse JDT Core, Eclipse PDE UI, and Equinox, and
it is in the top rank of Lucene and Mylyn. SVM also performs well.
It appears in the top rank in Lucene and Mylyn, and in the second
rank in the rest of the projects. These results indicate the superiority
of Random Forest and Support Vector Machines in producing cost-
e�ective bug predictors. On the other hand, MLP and IBK made it
to the top two clusters only in Lucene, suggesting that Multilayer
Perceptron and K-Nearest Neighbour do not �t the bug prediction
problem well.

For the third research question (RQ3) regarding the most cost-
e�ective response variable, we observe that cnt is in the top rank
in Lucene and is the only response variable in the top rank in the
other projects. It is clear that predicting the bug count results in
the most cost-e�ective bug predictors. Another observation is that
the response variable con�guration in the bottom two clusters is
almost conclusively either dns or prs. This means that predicting
bug density or bug proneness actually hinders the cost-e�ectiveness
of the bug prediction.

Overall, one result that stands out is that the con�guration
both-RF-cnt is in the top cluster across projects (RQ4). In fact, it
is the most cost-e�ective con�guration in Eclipse JDT Core, Eclipse
PDE UI, and Equinox and it is in the top cluster in Lucene and
Mylyn. This �nding suggests that this con�guration seems to be
the best from the cost-e�ectiveness point of view.

Software projects di�er in their domains, development meth-
ods, used frameworks, and developer experiences. Consequently,
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Figure 3: Boxplots of the CE outcome. Each box plot represents the CE obtained by 100 runs of the corresponding con�g-
uration combination on the x-axis. Di�erent background colors indicate the statistically distinct groups obtained by ap-
plying the Scott-Knott clustering method with 95% con�dence interval. The con�gurations on the x-axis are of the form
Metrics-Model-Response.
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(a) Eclipse JDT Core
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(b) Eclipse PDE UI
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(c) Equinox
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(d) Lucene
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(e) Mylyn

Figure 4: The max mean values of CE obtained for each
project
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software metrics di�er in the correlation with the number of bugs
among projects. This is the reason why using both metrics came out
as the best choice of independent variable. However, to deal with
the inevitable noise and redundancy in using both metrics, the best
con�gurations includes Random Forest as the machine learning
model. Random Forest is an ensemble of decision trees created by
using bootstrap samples of the training data and random feature
selection in tree induction [6]. This gives RF the ability to work
well with high-dimensional data and sift the noise away. This is
the reason why feeding both types of metrics into Random Forest
actually makes sense. Also bug count came out as the best option
for response variable because it re�ects the “gain" inCE better than
classi�cation or proneness. Bug density also re�ects the “gain" but
it is better to calculate it from bug count than to leave it to the pre-
diction model to deduce. Therefore, bug count is a simpler and more
appropriate response variable than bug density. All these factors
contribute to the fact that both-RF-cnt is the most cost-e�ective
con�guration for bug prediction.
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Finally, the results in Figure 4 also show that the cost-e�ectiveness
of the best bug predictor varies among projects. Although the best
bug predictor is never harmful to use (no negativeCE) in our exper-
iments, it can still be of little value for some projects, e.g.,CE = 0.32
for Eclipse PDE UI. This means that bug prediction should be eval-
uated as a technique in the context of a software project before
putting it in use in that speci�c project.

4 THREATS TO VALIDITY
To minimize the threats to validity in our empirical study, we follow
the guidelines of Mende [30] by

• using a large dataset to avoid large variance of performance
measures,

• maintaining the same fault distribution in the test set and
training set as the original set, to minimize bias,

• repeating the experiment 50 times to minimize the e�ect of
outliers,

• and reporting on the dataset, data preprocessing procedure,
and model con�gurations to enable replication.

In our study we use the “Bug Prediction Dataset" provided by
D’Ambros et al. [11] as a benchmark. Although it is a well-known
and studied dataset, the quality of our results is very dependent on
the quality of that dataset.

Our dependence on WEKA [19] for building the arti�cial intelli-
gence models, makes the quality of the models dependent solely
on the quality of WEKA itself.

The fact that this dataset contains metrics only from open source
software systems makes it hard to generalize to all Java systems. In
the future, we plan to apply our study on more datasets and to use
other data mining tools.

Another threat to validity comes from the use of LOC as a proxy
for cost. As we explained before, reviewing code and writing unit
tests take much more e�ort for large modules than small ones. How-
ever, we are aware of the fact that this proxy might introduce some
bias. We use it because it has been used in several previous studies
as such (e.g., [31][2]) and it is widely accepted in the community as
a good measure of e�ort.

Our study is on the Java-class level. Hence, our �ndings may not
apply on other granularity levels such as method level or commit
level.

Finally, in this study, we assume that the purpose of bug pre-
diction is to locate the maximum number of bugs in the minimum
amount of code in order to be a useful support to quality assurance
activities. However, defect prediction models can be used for other
purposes. For example, they can be used as tools for understanding
common pitfalls and analyzing factors that a�ect the quality of
software. In these cases, our �ndings do not necessarily apply. In
the future, we plan to extend this study to the broader context of
several defect prediction use cases.

5 RELATEDWORK
Most studies comparing di�erent machine learning models in bug
prediction show no di�erence in performance [12][28] [51][35].
Menzies et al. [35] evaluate many models using the area under the
curve of a probability of false alarm versus probability of detection
“AUC(pd, pf)". They conclude that better prediction models do not

yield better results. Similarly, Vandecruys et al. [51] compare the
accuracy, speci�city (true negative rate), and sensitivity (recall
or true positive rate) between seven classi�ers. Using the non-
parametric Friedman test, as recommended in this type of problem
[12], it is shown that there is no statistically signi�cant di�erence
at the 5% signi�cance level. Lessmann et al. [28] study 22 classi�ers
and conclude that the classi�cation model is less important than
generally assumed, giving researchers more freedom in choosing
models when building bug predictors. Actually simple models like
naïve Bayes or C4.5 classi�ers perform as well as more complicated
models [13][34]. Other studies suggest that there are certain models
which perform better than others in predicting bugs. Elish and
Elish [14] compare SVM against 8 machine learning and statistical
models and show that SVM performs classi�cation generally better.
Guo et al. [18] compare Random Forest with other classi�ers and
show how it generally achieves better prediction. Ghotra et al. [15]
show that there are four statistically distinct groups of classi�cation
techniques suggesting that the choice of the classi�cation model
has a signi�cant impact on the performance of bug prediction.
Our �ndings con�rm the superiority of certain models over others.
Speci�cally, we show that Random Forest is indeed the best machine
learning model, followed by Support Vector Machines.

Mende and Koschke [32] studied the concept of e�ort-aware
defect prediction. They compared models with predicting defect
density using only Random Forest trained only on source code met-
rics. They took the e�ort into account during the training phase by
predicting bug density as a response variable. Although we agree
withMende and Koschke on the importance of building e�ort-aware
prediction models, our results actually advise against using source
code metrics and bug density as independent and dependent vari-
ables respectively. Canfora et al. also consider cost in the training
phase [9]. Using genetic algorithms, they trained a multi-objective
logistic regressor that, based on developer preferences, is either
highly e�ective, with low cost, or balanced. They treated bug pre-
diction as a classi�cation problem and they used only source code
metrics as independent variables. We agree with Canfora et al. that
bug predictors should be tuned to be cost-e�ective, but our study
shows that source code metrics are rarely a good choice of inde-
pendent variables, and predicting bug count is more cost-e�ective
than predicting bug proneness.

Kamei et al. [25] also evaluated the predictive power of history
and source code metrics in an e�ort-sensitive manner. They used
regression model, regression tree, and Random Forest as models.
They found that history metrics signi�cantly outperform source
code metrics with respect to predictive power when e�ort is taken
into consideration. Our results con�rm their �ndings but also add
that the use of both metrics is even more cost-e�ective.

Arisholm et al. [2] studied several prediction models using his-
tory and source code metrics in bug prediction. They also dealt with
the class imbalance problem and performed e�ort-aware evalua-
tion. They found that I) history metrics perform better than source
code metrics and II) source code metrics are no better than random
class selection. Our results con�rm their �rst �nding but contra-
dict the second. We show that indeed using source code metrics
is less cost-e�ective than using change metrics or a mix of both.
However, using source code metrics with the right options of other
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con�gurations is certainly better than random class selection. This
contradiction with our �ndings comes from the fact that the depen-
dent variable in their study is bug proneness and, as opposed to
our study, they did not consider other dependent variables.

Jiang et al. [24] surveyed many evaluation techniques for bug
prediction models and concluded that the system cost character-
istics should be taken into account to �nd the best model for that
system. The cost Jiang et al. considered is the cost of misclassi�-
cation because they dealt with the bug prediction problem as a
classi�cation problem. In our study, we treat bug prediction as a
regression problem (i.e., bug count and bug density) and as a classi-
�cation problem (bug proneness and entity class) and the cost of
the model is the actual cost of maintenance using LOC as a proxy.

Finally, there are many other studies that look into the e�ect of
experimental setup on bug prediction studies. Tantithamthavorn
et al. show how di�erent evaluation schemes can lead to di�erent
outcome in bug prediction research [50]. In this study we focus on
con�guring bug predictors to be cost-e�ective. Thus, we �x the
evaluation scheme to the one the re�ects our purpose (i.e., CE). In
a systematic literature review, Hall et al. [20] de�ne some criteria
that makes a bug prediction paper and its results reproducible.
Surprisingly, out of 208 surveyed papers, only 36 were selected. In
this paper we adhere to these criteria by extensively describing
our empirical setup. Shepperd et al. [46] raised concerns about
the con�icting results in previous bug prediction studies. They
surveyed 42 primary studies. They found out that the choice of the
classi�cation technique, the metric family, and the data set have
small impact on the variability of the results. The variability comes
mainly from the research group conducting the study. Shepperd et
al. conclude that who is doing the work matters more than what
is done, meaning that there is a high level of researcher bias. We
agree with the authors that there are many factors that might a�ect
the outcome of a bug prediction study. In fact this is the main
motivation behind our study. However, Shepperd et al. looked at
studies that treat bug prediction as a classi�cation problem, ignoring
the fact that the response variable is itself a factor that a�ects the
outcome. In our study we include more factors and emphasize on
the interplay among them.

6 CONCLUSIONS & FUTUREWORK
Bug prediction is used to reduce the costs of testing and code review-
ing by directing maintenance e�orts towards the software entities
that most likely contain bugs. From this point of view, a successful
bug predictor �nds the largest number of bugs in the least amount
of code. Using the cost e�ectiveness evaluation scheme, we carry
out a large-scale empirical study to �nd the most e�cient bug pre-
diction con�gurations, as building a bug predictor entails many
design decisions, each of which has many options. We summarize
the �ndings of this study as follows:

(1) Using a mix of source code and change metrics is the most
cost-e�ective option for the independent variables. Change
metrics alone is a good option.

(2) Random Forest results is the best machine learning model,
followed by Support Vector Machines.

(3) Bug count is the most cost-e�ective option for the response
variable. Bug density and bug proneness are the least cost-
e�ective and should be avoided.

(4) The combination of the above con�gurations results in the
most cost-e�ective bug predictor in all systems in the used
dataset.

Finally, our �ndings reveal a compelling evidence that bug predic-
tion con�gurations are interconnected. Changing one con�guration
can render a bug predictor useless. Hence, we advise that future
bug prediction studies take this factor into account.
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