
Interactive Behavior-driven Development: a
Low-code Perspective

Nitish Patkar∗ Andrei Chiş† Nataliia Stulova∗ Oscar Nierstrasz∗
Software Composition Grroup

University of Bern
Switzerland

Email: ∗ https://scg.unibe.ch/staff, † https://feenk.com

Abstract—Within behavior-driven development (BDD), dif-
ferent types of stakeholders collaborate in creating scenarios
that specify application behavior. The current workflow for
BDD expects non-technical stakeholders to use an integrated
development environment (IDE) to write textual scenarios in
the Gherkin language and verify application behavior using test
passed/failed reports. Research to date shows that this approach
leads non-technical stakeholders to perceive BDD as an overhead
in addition to the testing.

In this vision paper, we propose an alternative approach to
specify and verify application behavior visually, interactively,
and collaboratively within an IDE. Instead of writing textual
scenarios, non-technical stakeholders compose, edit, and save
scenarios by using tailored graphical interfaces that allow them
to manipulate involved domain objects. Upon executing such
interactively composed scenarios, all stakeholders verify the ap-
plication behavior by inspecting domain-specific representations
of run-time domain objects instead of a test run report. Such
a low code approach to BDD has the potential to enable non-
technical stakeholders to engage more harmoniously in behavior
specification and validation together with technical stakeholders
within an IDE. There are two main contributions of this work:
(i) we present an analysis of the features of 13 BDD tools, (ii) we
describe a prototype implementation of our approach, and (iii) we
outline our plan to conduct a large-scale developer survey to
evaluate our approach to highlight the perceived benefits over
the existing approach.

Index Terms—bdd, behavior-driven development, collaborative
development, acceptance testing, visual programming, end-user
programming

I. INTRODUCTION

Behavior-driven development (BDD) is an approach that
drives development teams to specify “live”, executable, and
testable requirements. Within BDD, non-technical stakehold-
ers specify application behavior through scenarios that every-
body in a team can understand [1]. Non-technical stakeholders
often leverage a constrained natural language, i.e., Gherkin,
to write scenarios. For example, the scenario in lines 5-8
of Listing 1 asserts the sum of two numbers for an arithmetic
calculator application to have a particular value.
1 Feature: Basic arithmetic operations
2 As a user
3 I want to use a calculator to add numbers
4 So that I don’t need to add them myself
5 Scenario: Add two numbers -2 and 3

6 Given I have a Calculator
7 When I add -2 and 3
8 Then the result should be 1

Listing 1: A sample feature description with a scenario

The BDD frameworks then tie the scenarios to acceptance
test cases (also called step definitions, glue code, or fixtures) to
verify the specified functionality. Listing 2 shows an example
expansion. The developers need to fill in the body of glue code
methods (lines 10,14, and 18).
1 public class CalculatorRunSteps {
2 private int total;
3 private Calculator calculator;
4 @Before
5 private void init() {
6 total = -999;
7 }
8 @Given("I have a calculator")
9 public void initializeCalculator() throws Throwable {

10 calculator = new Calculator();
11 }
12 @When("I add {int} and {int}")
13 public void testAdd(int num1, int num2) throws Throwable {
14 total = calculator.add(num1, num2);
15 }
16 @Then("the result should be {int}")
17 public void validateResult(int result) throws Throwable {
18 Assert.assertThat(total, Matchers.equalTo(result));
19 }
20 }

Listing 2: Glue code for the scenario from Listing 1

Finally, developers implement the logic for the calculator
application:

1 public class Calculator {
2 public int add(int a, int b) {
3 return a + b;
4 }
5 }

Listing 3: Implementation for the functionality from Listing 1

Without any exception, the existing BDD frameworks expect
non-technical stakeholders to use an IDE to write scenarios
and verify behavior through test run reports. An analysis
of 20 open-source Ruby projects revealed that the majority
of the scenario specifications were added with the source
code, or long after it had been written [2]. In another recent
survey, the respondents with software engineer and business
analyst roles highlighted the shortcomings of the current BDD
practices [3]. From both these empirical studies, we learn that
the practitioners do not strictly perform BDD, probably duec© by the author of the paper.

Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

to the workflow supported by the existing BDD frameworks.
Additionally, when the requirements change, a lot of manual
effort is needed to maintain the textual scenarios, to manually
propagate the changes to acceptance tests, leading the practi-
tioners to perceive BDD as only an additional task to writing
unit tests [3], [2]. Furthermore, in our manual inspection
of scenario specification files from 23 open-source GitHub
projects, and after contacting the contributors to these files,
we learned that it was developers who specified the behavior.
We speculate that the current support for behavior specification
and verification in IDEs is the limiting factor for poor accep-
tance of BDD in practice, i.e., pushing developers to specify,
implement, and verify the behavior. Our goal is to propose
an alternative approach to BDD that engages non-technical
stakeholders equally in the BDD process and addresses the
following limitations of the current BDD process:

• behavior specification: the textual format for scenario
specification is poor in conveying information about the
domain, and

• behavior verification: test run reports are provided at a
wrong level of abstraction for non-technical stakeholders,
compared to specifications.

We discuss a LowCode solution for business and technical
stakeholders to specify and verify application behavior. The
main contributions of this work are as follows:

• We survey the documentation of 13 BDD frameworks to
assess their characteristics in support of behavior spec-
ification and verification. We found that existing BDD
frameworks only provide text editors to specify scenarios
and test cases. Likewise, all the frameworks only output
test run reports to verify the specified behavior.

• We propose an approach that, through tailored graphical
interfaces, enables non-technical stakeholders to create
scenarios, and through custom visual representation of
the domain objects, enables non-technical stakeholders
to verify behavior collaboratively with developers.

• We present an advanced prototype implementation of our
approach in the Glamorous Toolkit IDE,1 to demonstrate
the feasibility of our approach. We are currently conduct-
ing a comprehensive usability evaluation of our approach
with a large-scale developer survey.

The remainder of the paper is structured as follows: sec-
tion II describes a typical BDD process using a running
example, and section III presents a discussion concerning the
characteristics of existing BDD frameworks to engage multiple
stakeholders in the BDD process. Next, in section IV, we
present the underlying idea and main building blocks of our
approach, and finally, in section VII we summarize the main
contributions and planned future work.

II. BACKGROUND AND MOTIVATION

BDD builds on a combination of multiple existing method-
ologies and concepts, such as test-driven development (TDD)
and ubiquitous languages from domain-driven design (DDD),

1https://gtoolkit.com/

which enable teams to develop software systems collabora-
tively [4], [5], [6], [7]. The term ubiquitous language refers
to the practice of building and using a common language
between business and technical stakeholders [7]. This language
consists of terms from the application domain that are used
consistently in all aspects of a project, e.g., in conversations,
in requirements, and in the source code. Within the classical
BDD workflow, non-technical stakeholders specify the desired
application behavior through textual scenarios that make use
of such a ubiquitous language [1].

A. BDD workflow

BDD supports an agile software development process in
which requirements are commonly structured into epics (a
set of requirements that together deliver greater business
value and touch the same portion of the product, whether
functional or logical, typically split into several user stories),
user stories (informal, natural language descriptions of one or
more functionalities of a software system), and corresponding
scenarios (instances of stories with concrete values) [8].
Figure 1 summarizes the approach proposed by most avail-
able BDD frameworks that automate the BDD process. The
boxes represent the main steps, while the arrows indicate the
direction of the workflow.

Specify Gherkin
Scenarios

(non-technical
stakeholder)

Write
application
source code

(technical
stakeholder)

Finish auto-
generated test

cases

(technical
stakeholder)

Run test cases to
verify behavior

(non-technical
stakeholder)

Fig. 1: Typical BDD process

First, non-technical stakeholders specify requirements as
a number of scenarios in Gherkin, a domain-specific lan-
guage [1]. They describe application behavior in the terms
agreed upon by the project team, i.e., using the ubiquitous
language [7]. A typical Gherkin template splits a scenario into
three core elements: Given (i.e., a context assumed for this
scenario execution), When (i.e., an action or event that occurs
in the given context), and Then (the expected outcome of the
system for the provided action and context). An element can
have additional context, expressed in the template by the word
And.

Next, developers implement the desired functionality as the
application source code. The BDD frameworks then generate
step definitions, i.e., code snippets that connect each scenario
step to the corresponding executable test code. Developers map
appropriate input parameters from the Given...When...Then
statements to the step definitions, and also implement the
requirements specified in scenarios. The names of classes and
methods conform to the vocabulary (nouns and verbs) of the
ubiquitous language defined for the project.

Finally, when non-technical stakeholders execute the accep-
tance tests, the BDD frameworks present them with the test
run status, i.e., success or failure. Non-technical stakeholders

https://gtoolkit.com/

are required to specify the input parameters for tests and also
the expected output values, see Listing 1.

B. Motivating example and issues with the workflow

We introduce a running example to illustrate a few critical
issues with the commonly-followed BDD workflow. Let us
consider that we need to update an existing invoicing system
for a restaurant and consequently verify if the new invoices
are calculated correctly. The invoicing system allows its users
to add menu items to an order, and indicate if those items
were consumed inside the restaurant or were ordered for take
away. The new invoices should correctly reflect a change in
VAT calculation. A different value added tax (VAT) should
apply for the same menu item depending on whether it is for
take away or on-site consumption.2

Menu item On site VAT Takeaway VAT %
Black coffee 19 19
Cappuccino 19 7
Pizza Margherita 19 7

The invoice contains the total cost of ordered menu items and
a VAT. The invoicing example is a little more complicated than
a calculator application and involves complex domain objects,
such as of type Invoice and Order. To verify the user story
“As a waiter, I want to be able to view the total price before
printing the invoice,” one can write scenarios3 such as:
1 Scenario 1: Customers place an order to take away
2 (only milk products)
3 Given an empty order
4 When the waiter adds Cappuccino to the empty order
5 And a cup of Cappuccino costs 4 EUR
6 And a cup of Cappuccino is taxed at 7%
7 And the waiter generates the Invoice for the order
8 Then the total invoice price is 7.28 EUR
9

10 Scenario 2: Customers place an order to take away
11 (combination of non-milk and milk products)
12 Given an empty order
13 When the waiter adds a Cappuccino and a black coffee
14 to the empty order
15 And a cup of Cappuccino costs 4 EUR
16 And a cup of black coffee costs 3 EUR
17 And a cup of Cappuccino is taxed at 7%
18 And a cup of black coffee is taxed at 19%
19 And the waiter generates the Invoice for the order
20 Then the total invoice price is 7.85 EUR

Listing 4: Sample scenarios for invoicing application

The final price in the Then statement in the first scenario is
voluntarily incorrect.

The typical current BDD workflow faces two issues here.
First, this workflow leads non-technical stakeholders to write
numerous scenarios with minor variations, such as in input
parameter values, and requires them to specify the test asser-
tions. The latest version of Gherkin supports background and
data tables, which allow non-technical stakeholders to specify
various combinations of input and corresponding expected

2The German federal government recently proposed changes to the value-
added tax (VAT) system: accessed November 12, 2020, https://www.hellotax.
com/blog/new-vat-rates-germany/

3In subsection A and subsection B, we list the complete requirements for
such an application decomposed into epics, user stories, and corresponding
scenarios.

outputs that can be provided to a single scenario.4 Background
and data tables help to reduce redundancy in textual scenarios.
However, our manual inspection of 23 open-source projects on
GitHub (with more than 500 stars and primary language Java)
that use Gherkin specifications lead us to conclude that data
tables are rather moderately used in scenario specifications.
For instance, from 23 repositories, we analyzed around 1509
feature files of which only 568 used tables. There were on
average about 1.7 columns per table, whereas there were on
average about 2.6 rows per table, i.e., quite tiny tables that may
not be very helpful in reducing the redundancy in scenarios.

Second, using the test run status as a means to verify
behavior obscures details of logical mistakes made in the
scenario specification. A non-technical stakeholder manually
had to calculate the expected results during specification.
Although it is a common practice in testing in general, it can
lead to software run-time errors that are difficult to locate in
the textual specifications.

We analyzed 13 BDD frameworks to provide documented
proof of our claims of the currently adopted BDD workflow
shortcomings in section III. Our analysis is solely based on
the features of the tools and not on their actual use in practice
— we are currently conducting a large-scale developer survey
to obtain the data on it.

III. BDD TOOL ANALYSIS

Only a few prior studies have evaluated BDD tools. Lenka et
al. analyzed five BDD tools and classified them either as test-
ing tools or test automation frameworks, essentially supporting
the view of BDD tools as being testing tools [9]. Solis et al.
analysed seven BDD tools according to six parameters, such as
the supported programming languages and supported software
development phases [10]. They observed poor support for
BDD in the planning phase, i.e., the analysed tools did
not support the creation of features or user stories. Finally,
Okolnychyi et al. analyzed five BDD tools to characterize their
support for BDD in terms of ubiquitous language creation and
automated scenario execution [11]. They compared the tools
based on their primary target users and specific tool features,
such as support for mocking third-party libraries. Like Solis et
al., they observed that the support for ubiquitous language
definition is limited.

These studies do not establish criteria to measure to what
degree BDD tools enable collaboration among both technical
and non-technical stakeholders.

A. Tool comparison

Previously analyzed tools such as StoryQ [12], JDave [13],
NBehave [14], Easyb [15], and BDDfy [16] are either obsolete
or no longer maintained [11], [9]. We analyzed 13 BDD
tools that are currently actively maintained by their creators to
observe to what degree they enable collaboration among stake-
holders. In particular, we studied how the IDE integration en-
ables behavior specification and verification for non-technical

4“Gherkin reference,” https://github.com/cucumber/common/blob/main/
gherkin/CHANGELOG.md

https://www.hellotax.com/blog/new-vat-rates-germany/
https://www.hellotax.com/blog/new-vat-rates-germany/
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md

TABLE I: BDD tool comparison

Tool Input type Parameter type Specification interface Output type

Plain text Markdown Table Code Primitive Object Textual Graphical Run Status Report
Cucumber X - X - X X X - X X

JBehave X - - - nc nc X - X -
Concordion X X X - X X X - X -

SpecFlow X - X - X X X - X X
Spock - - - X X X X - X -

RSpeck - - - X X nc X - X nc
MSpec - - - X X nc X - X -

LightBDD - - - X X nc X - X X
ScalaTest - - - X X X X - X -

Specs2 - - - X X nc X - X X
JGiven - - - X X nc X - X X

phpspec - - - X nc X X - X X
Gauge - X X - X nc X - X X

stakeholders. We analysed Cucumber [17], JBehave [18],
Concordion [19], SpecFlow [20], Spock [21], RSpec [22],
MSpec [23], LightBDD [24], ScalaTest [25], Specs2 [26],
JGiven [27], phpspec [28], and Gauge [29]. All analyzed tools
are open-source and are actively maintained on GitHub. We
define our assessment parameters in subsection III-B. The
results of our tool comparison are summarized in Table I. The
symbol “X” denotes that the value is “true,” whereas “nc”
means “not clear from the documentation.”

B. Comparison parameters

The aforementioned 13 BDD tools are available as IDE
plugins. We evaluated the IDE plugins according to six param-
eters to understand how these plugins enable specification and
verification of the behavior, in other words, what opportunities
non-technical stakeholders have in IDE plugins to specify and
verify the application behavior.

• Input type for specifying the scenario. (i) “Plain text,”
which means a specification is written as a natural lan-
guage text, (ii) “Markdown text,” which means a spec-
ification is written in a Markdown format, (iii) “Table,”
which means a specification accepts input values in a
tabular format, or (iv) “Code,” meaning a specification is
written in some programming language but is enhanced
with annotations.

• Type of parameters in the glue code. (i) “Primitive,”
such as strings, numbers, or boolean values as input
parameters, or (ii) “Object,” which means a scenario can
take domain objects as inputs.

• Specification interface. (i) “Textual,” which means spec-
ifications can be written only as text, or (ii) “Graphical,”
which means specifications can be composed by using
graphical elements.

• Output type. (i) “Test run status,” which means the
tool only indicates a pass or fail status for tests, or
(ii) “Report,” which means the tool provides alternatives
to customize test run reports so that the output is readable
by non-technical stakeholders.

C. Results

Type of input. Specifications are written either textually (5
tools) or as test cases enhanced with annotations, such as
[Given] (8 tools). The textual specifications are written
either with Gherkin syntax, in a Markdown format, or a
combination of both. Data tables with input and expected
output values for behavior tests are supported in a total of
4 tools, which means data tables are not supported universally
across all tools.

Support for parameterized scenarios. We observed that only
primitive types, such as strings or numbers, are allowed as
inputs to the scenarios. Data tables help to specify input
parameters concisely. However, how much helpful are the
data tables to specify complex domain objects with numerous
attributes has not yet been studied.

Specification interface. All the analyzed tools support textual
specification only; no tool allows specifications to be com-
posed in any other way, e.g., graphically.

Type of output. All analyzed tools provide two ways to output
their results: (i) test results that indicate how many tests are
passing and failing, and (ii) test reports that can be customized
with formats (i.e., charts and graphs) and color schemes (i.e.,
indicating passed and failed tests in different colors).

IV. OUR APPROACH IN A NUTSHELL

Create classes
and GUI

(technical
stakeholder)

Create views

(technical
stakeholder)

Create objects

(non-technical
stakeholder)

Generate and run
tests, save as

scenarios

(non-technical
stakeholder)

Fig. 2: Proposed BDD process

Different stakeholders have different goals, therefore an
IDE should be adapted to support distinct stakeholders, i.e.,
depending on the context of the task within a BDD process.
Developers need appropriate support for creating and editing

classes and methods. Non-technical stakeholders need custom
interfaces (e.g., graphical) so that they can create and use run-
time objects to invoke operations on them, i.e., to compose,
run, and save scenarios.

Glamorous Toolkit is an advanced IDE that pioneered the
idea of adapting tools, such as object inspector or debugger,
to a specific development context. For example, an object
inspector in Glamorous Toolkit allows an object to define
a set of multiple interchangeable presentations (i.e., views)
capturing interesting aspects of that object in various develop-
ment contexts [30]. Likewise, Glamorous Toolkit extends the
concept of test cases to examples that return a domain object
instead of the test assertion status. For the scenario in Listing 4,
in addition to the test assertions, with examples, one could
return the resulting object of type Invoice, and subsequently
explore it using a dedicated graphical representation (details
in section V).

To improve the BDD workflow for both technical and
non-technical stakeholders, we reuse the functionalities of
Glamorous Toolkit IDE and adapt those as specific building
blocks of the IDE-based BDD process. In Figure 2, we outline
our proposed BDD workflow. Developers will create classes
and implement the behavior of those classes in the methods as
before. However, instead of specifying behavior and updating
test cases, they only need to insert the assertions in the fully-
generated test cases. Developers will also create graphical
interfaces for object creation and views to explore details of
run-time objects visually. Non-technical stakeholders, on the
other hand, will use graphical interfaces to compose and save
scenarios. If they wish, they can also insert the assertions in
the fully-generated test cases. In other words, non-technical
stakeholders do not need to write textual scenarios. Instead of
test run status, they will use a domain-specific representation
of the involved objects to verify the implemented behavior.
Technical stakeholders, on the other hand, need to implement
a GUI for object creation and object representation. Our
suggested approach, in principle, can be adapted to any IDE
with a rich-enough object inspector and the possibility to
have Glamorous Toolkit IDE-like examples or in any testing
framework that would allow tests to return objects, and not
just the success or failure status.

A. Building blocks

Below we explain the main building blocks of our approach:
views, graphical interfaces, and examples.

Views. A view is a domain-specific representation of an object.
Any number of views can be attached to an object. The right
hand windows in Figure 6 and Figure 7 show different views
of an Invoice object. A printable view (see, Figure 6) shows
the Invoice object in its final printable version, whereas
a composition view (see, Figure 7) shows the composition
of several domain objects that compose an Invoice. It is
primarily the developer’s responsibility to create views that
are useful for other stakeholders. Creating views does not
require much effort, e.g., on an average 12 lines of code

for a view in Glamorous Toolkit IDE. To verify this claim,
kindly refer to the replication package.5 The readme file in
the replication package provides instructions to verify this
number. Such domain-specific representations of the resulting
domain objects offer a different way of inspecting the results
of running examples compared to simply analyzing the test
run reports.

Graphical interfaces. Most IDEs support creation and ma-
nipulation of objects programmatically. Very few IDEs, such
as BluJ,6 enable non-technical stakeholders to create and
manipulate objects interactively, i.e., objects can be dynam-
ically created, the contents of fields are displayed and their
methods can be invoked through provided graphical interfaces.
However, these graphical interfaces are generic and cannot
be customized to adapt to a particular application domain.
Glamorous Toolkit IDE is built using a graphical framework
(i.e., Bloc) that enables the creation of customizable graphical
interfaces for various types of objects. To support BDD,
developers can build tailored graphical interfaces to enable
object creation and manipulation for non-technical stakehold-
ers. Non-technical stakeholders can also use these interfaces
to: (1) provide run-time objects to test cases and execute
those test cases, and (2) save the current selection of input
domain objects and results of example execution as individual
scenarios.

Examples. Examples are individually executable pieces of
source code just like test cases except that instead of simply
reporting success or failure, they return a domain object as
a result. For instance, an example method may create and
return an object of type Cappuccino or create an Order with
two Cappuccino instances, check whether the Order object
contains two Cappuccino instances, and return the resulting
Order object for further inspection.

1 orderWithCoffee
2 <gtExample>
3 <label: ’create order with coffee’>
4 <description: ’Create an order’>
5 |order coffee|
6 coffee := Coffee new.
7 order := self emptyOrder add: coffee.
8 self assert: order size equals: 1.
9 ˆ order

Listing 5: An example that creates an order with coffee

Examples can be chained together so that domain objects flow
through a series of examples emulating complex scenarios.
For instance, Listing 5 creates an Order with a Coffee by
first calling Listing 6 that creates an empty Order object.
This makes examples reusable. In other words, such chained
examples represent a concrete scenario. By using graphical
interfaces, non-technical stakeholders can create and save
several examples by providing appropriate domain objects,
i.e.,Order and Coffee. Examples are useful to create both
simple domain objects, i.e., domain objects that do not contain

5https://figshare.com/s/1ab8123e66845f50ffb2
6https://www.bluej.org/

https://figshare.com/s/1ab8123e66845f50ffb2
https://www.bluej.org/

Fig. 3: Custom requirements hierarchy and a user story view

or require other domain objects (e.g., an empty Order object),
and complex domain objects, i.e., domain objects that contain
other domain objects (e.g., an Order with a Coffee object).

1 emptyOrder
2 <gtExample>
3 <label: ’create an empty order’>
4 <description: ’Create an empty order’>
5 | order |
6 order := Order new.
7 self assert: order size equals: 0.
8 ˆ order

Listing 6: An example that creates an empty order

Additionally, examples can be given a description that is
understandable by all the stakeholders, see line 4 of Listing 6.

V. OUR PROPOSED BDD WORKFLOW

Existing literature discussed the benefits of creating re-
quirements as first-class citizens in an IDE [31]. The authors
demonstrated how one should create several requirements
formats (e.g., epics and user stories) as classes and concrete
requirements as objects of those classes. In this case, they
leveraged the has-relationship to model epics to have several
user stories.

We follow a similar approach and we adapt here in Figure 3
a list view (i.e., a view for an object of type MyProject

built by developers), which displays the titles of epics for
our invoicing example. When users click on a particular
MyEpic object, they can see corresponding MyUserStory

objects in the second window. When they click on a specific
MyUserStory object in the second window, among other
things, they can see in the third window a “raw” view
that displays internal representation details, such as status
and story points, about that user story. All three windows
in Figure 3 are object inspectors with several dedicated views
built by developers. In other words, we have reused an object
inspector to visually inspect requirements, while at the same
time the requirements are directly tied to code. To verify the
implementation for the included screenshots, kindly refer to
the replication package. In this vision paper, we extend the
same idea for user stories to have several scenarios.

Let us consider that we have two stakeholders, Bob, who is
a non-technical domain expert, and Melinda, the developer. As

scenarios elaborate a specific user story, by using the discussed
building blocks, i.e., graphical interfaces, examples, and views,
Bob can interactively create scenarios as first-class citizens
in an IDE as described next. Note that except for the test
case generation, no other step in the workflow is automated
— each step still requires manual effort from the concerned
stakeholders, however the type of interaction with the system
is different compared to the existing BDD workflow. Our
proposed workflow divides the process of scenario creation
and verification into the following four steps: (1) create classes
and graphical user interface (GUI), (2) create domain objects,
(3) generate test cases and save as scenarios, and (4) create
views. We detail below each step.

A. Create classes and GUI

The user story “As a waiter, I want to add menu items to
prepare an order” contains domain concepts, such as Waiter,
MenuItem, and Order. This user story also specifies ex-
pected behavior, i.e., an order is created by adding menu items
to it. Melinda creates classes for the domain concepts involved
in a particular user story and builds graphical interfaces that
would enable Bob to create objects for these classes. For
instance, the graphical interface in Figure 4 enables creating
objects of type MenuItem. This interface enables Bob to
create a Cappuccino object, and provide details, such as the
price and VAT.7 Melinda also implements the methods that
define behavior for each class.

B. Create domain objects

Now, Bob can create several instances of concerned classes
by using the provided graphical interfaces. When he clicks on
the “Generate” button in Figure 4, the corresponding example
method is created, see the right hand window. When anyone
executes this newly created example method, it always returns
the same Cappuccino object with selected price and tax.
Once the basic domain objects are created, they can be used to
create more complex domain objects. For example, an Order

7 Pawson explored a similar idea in the Naked Object approach, in which
complete core business objects are exposed behaviorally to a user. The Naked
object framework automatically creates a user interface that supports CRUD
(create, read, update, delete) operations for domain objects to bootstrap a
business application [32].

Fig. 4: A GUI to create a simple domain object and save the example as an operation

Fig. 5: A GUI to select simple domain objects

could be composed from various MenuItems. To enable Bob
to create such complex domain objects, Melinda creates a tai-
lored graphical interface. For instance, the graphical interface
in Figure 5 is populated with various already created simple
objects, i.e.,Cappuccino and Coffee, that appear as a list in
a drop-down menu. Bob uses this interface to create complex
objects and save the selection as another example method
(see Figure 6). Here, Bob creates an Invoice object for an
Order with two menu items (i.e.,Cappuccino and Coffee).
However, instead of “Generate,” now he clicks on the “Run”
button to explore the resulting Invoice object visually.

C. Create test cases and save as a scenario

The tailored graphical interfaces, shown in Figure 4 and Fig-
ure 6, essentially enable Bob to create both simple and
complex domain objects and also generate an example method
that when executed returns a specific domain object. Examples
represent a concrete scenario. To save an example method as a
scenario, Bob clicks on the “X” button in the right hand side
window of Figure 4. This saves the newly created scenario for
a particular user story, and Bob can always access it from one
of the views for a MyUserStory (see Figure 8). Melinda or
Bob add assertions to this newly generated example method
to test the specified behavior in the respective methods of the
domain classes.

With this approach, instead of writing scenarios textu-
ally, Bob could interactively create simple domain objects
(e.g.,Cappuccino and Coffee) and use those to create
complex domain objects (e.g.,Order). He could save the
selection of Cappuccino and Coffee to an Order as an
example method, which will return the same Order instance
with Cappuccino and Coffee when executed. This example
method is attached to MyScenario object.

D. Create views

Both Bob and Melinda need different representations of
domain objects to accomplish distinct tasks. For instance, Bob
needs to determine whether the correct number of menu items
are added to an Order object, whether correct prices and
tax rates are applied to each MenuItem object, and whether
the final price is accurately calculated in Invoice object.
He uses the printable representation of the Invoice object
in Figure 6 that fulfills his needs. Likewise, Melinda needs
to understand how an Invoice object is constructed. She
uses the composition presentation of the Invoice object
in Figure 7 to explore how it is made up of other objects, such
as of type Cappuccino, with their corresponding properties,
such as applied tax rates. Note that the process of creating

Fig. 6: A GUI to create complex domain object and explore the resulting object with printable view

Fig. 7: A GUI to create complex domain object and explore the resulting object with composition view

objects and views is iterative and incremental— views can
be designed as the necessity arises to explore some specific
details of a specific domain object. Theoretically, Melinda
could create the printable invoice view when she first created
the class Invoice.

With this approach the application behavior becomes veri-
fiable by stakeholders by inspecting domain objects instead of
reading a test report. Notably, this approach does not eliminate
the need for test cases. The example methods serve as test
cases, but augments them with domain-specific representations
of the involved run-time objects.

E. Support in IDE for multiple stakeholders

Both Bob and Melinda are supported in creating and explor-
ing various scenarios. To engage different types of stakehold-
ers in the BDD process, the IDE must provide suitable navi-
gation mechanisms and interfaces that are appropriate for the
needs of distinct stakeholders. A model navigation mechanism
that enables Melinda to navigate between numerous scenarios
is shown in Figure 8. Here, scenarios (i.e., description of a

Fig. 8: Scenarios are attached to a user story

Scenario object) corresponding to a specific user story are
collected and displayed in one of the views. On the other
hand, Melinda explores scenarios pertaining to a specific class
(see Figure 9).

Earlier we saw how Bob can compose and run examples
using graphical interfaces. Melinda, on the other hand, can call
example methods like any other method. An object inspector
allows Melinda to inspect a specific representation of a domain
object using a view suitable for her needs. The example

Fig. 9: Scenarios are attached to a class for efficient navigation

method in Listing 7, when executed returns an Invoice

object. Melinda can decide to explore other representations
of an Invoice, for instance, with a composition view, such
as the one in Figure 7.

1 self
2 invoiceForOrderItemsReducedTax: {
3 self cappuccinoOrderItem }
4 regularTax: {
5 self cappuccinoOrderItem.
6 self coffeeOrderItem }
7 atTimestamp: ’2020-11-17T18:53:50’ asDateAndTime.

Listing 7: Invoking an example method

F. Summary

The custom graphical interfaces to support non-technical
stakeholders to create and manipulate domain objects can
help us to improve the current BDD workflow support in
an IDE. Our building blocks align with the idea of low
code development platforms (LCDPs) that, to engage multiple
stakeholders in software development process, leverage model-
driven engineering principles and provide infrastructure, such
as graphical interfaces, and automatic code generation to
develop entirely functioning applications [33]. Our approach
pushes the idea of LCDP to complement BDD and solve
the identified issues with the current workflow. Note that,
we did not present a tool in this vision paper, but rather
demonstrated how to adapt an IDE to better support non-
technical stakeholders to do BDD with our proposed building
blocks. The screenshots included are specific to the running
example and will vary greatly depending on the context of
other applications.

VI. EVALUATION

To evaluate whether our approach to LowCode BDD is
usable and effective compared to the existing BDD workflows

supported by most available tools (i.e., write textual scenarios,
complete test cases, write the source code, execute test cases,
and repeat), we have designed a controlled experiment. In the
experiment, we will compare a baseline development process
(e.g., a typical BDD workflow supported in Cucumber) with
our proposed low-code workflow, and ask the participants
about their feedback on various factors, such as perceived
usefulness and perceived benefits of our approach. We have
identified about 96 contributors to feature files from 23 open
source repositories mentioned earlier. Interested candidates
from these 96 contributors will become subjects in our con-
trolled experiment. We believe that these candidates having
previous experience with BDD in reputed projects will be a
perfect fit to experiment with our novel approach to BDD.

VII. CONCLUSION

In this paper, we argued that the current tool support for
BDD, specifically in the available IDE plugins, lacks essential
features to efficiently engage non-technical stakeholders in
the BDD process. Current tools have limited opportunities
for scenario specification, as well as to process the output of
running tests. We have proposed an alternative BDD process to
engage both technical and non-technical stakeholders in spec-
ifying and verifying the application behavior. We demonstrate
through a running example of invoicing system for restaurants
how non-technical stakeholders can visually compose behavior
tests and discover inconsistencies in the underlying domain
model through an inspectable output. Our proposed building
blocks for an IDE allow to better integrate both technical
and non-technical stakeholders in the BDD process. We are
actively pursuing the evaluation of our approach through a
controlled experiment with experienced contributors in reputed
open source projects using BDD.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assistance” (SNSF project no. 200020-181973, Feb.
1, 2019 - April 30, 2022). We thank Norbert Seyff, Sebastiano
Panichella, and Andrea de Sorbo for reviewing the manuscript.
We thank Adwait Chandorkar for providing statistical insights
into the usage of BDD tools in open-source BDD projects.

REFERENCES

[1] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf,
2017.

[2] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora, and M. Di Penta,
“Demystifying the adoption of behavior-driven development in open
source projects,” Information and Software Technology, p. 106311, 2020.

[3] L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Maintaining
behaviour driven development specifications: Challenges and opportuni-
ties,” in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018, pp. 175–184.

[4] T. R. Silva, J.-L. Hak, and M. Winckler, “Testing prototypes and
final user interfaces through an ontological perspective for behavior-
driven development,” in Human-Centered and Error-Resilient Systems
Development. Springer, 2016, pp. 86–107.

[5] N. Nascimento, A. R. Santos, A. Sales, and R. Chanin, “Behavior-driven
development: A case study on its impacts on agile development teams,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 109–116.

[6] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[7] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[8] N. Bik, G. Lucassen, and S. Brinkkemper, “A reference method for user
story requirements in agile systems development,” in 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW).
IEEE, 2017, pp. 292–298.

[9] R. K. Lenka, S. Kumar, and S. Mamgain, “Behavior driven development:
Tools and challenges,” in 2018 International Conference on Advances
in Computing, Communication Control and Networking (ICACCCN).
IEEE, 2018, pp. 1032–1037.

[10] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2011, pp. 383–387.

[11] A. Okolnychyi and K. Fögen, “A study of tools for behavior-driven de-
velopment,” Full-scale Software Engineering/Current Trends in Release
Engineering, p. 7, 2016.

[12] S. (https://archive.codeplex.com/?p=storyq). Accessed: 2020-06-19.
[13] JDave. Tool repository at https://github.com/jdave/JDave. Accessed:

2020-06-19.
[14] NBehave. Tool repository at https://github.com/nbehave/NBehave. Ac-

cessed: 2020-06-19.
[15] E. (http://easyb.io/v1/index.html). Accessed: 2020-06-19.
[16] B. (https://teststackbddfy.readthedocs.io/en/latest/). Accessed: 2020-06-

19.
[17] C. (https://cucumber.io/). Tool repository at https://github.com/

cucumber/cucumber. Accessed: 2020-06-19.
[18] J. (https://jbehave.org). Tool repository at https://github.com/jbehave/

jbehave-core. Accessed: 2020-06-19.
[19] C. (https://concordion.org). Accessed: 2020-06-19.
[20] S. (https://specflow.org). Tool repository at https://github.com/

SpecFlowOSS/SpecFlow. Accessed: 2020-06-19.
[21] S. (http://spockframework.org/). Tool repository at https://github.com/

spockframework/spock. Accessed: 2020-06-19.
[22] R. (http://rspec.info). Tool repository at https://github.com/rspec. Ac-

cessed: 2020-06-19.
[23] MSpec. Tool repository at https://github.com/machine/machine.

specifications. Accessed: 2020-06-19.
[24] LightBDD. Tool repository at https://github.com/LightBDD/LightBDD.

Accessed: 2020-06-19.
[25] S. (http://www.scalatest.org/). Tool repository at https://github.com/

scalatest/scalatest. Accessed: 2020-06-19.
[26] Specs2. Tool repository at https://etorreborre.github.io/specs2/. Ac-

cessed: 2020-06-19.
[27] J. (http://jgiven.org). Tool repository at https://github.com/TNG/JGiven.

Accessed: 2020-06-19.
[28] phpspec (http://www.phpspec.net/en/stable/). Tool repository at https://

github.com/phpspec/phpspec. Accessed: 2020-06-19.
[29] G. (https://gauge.org). Tool repository at https://github.com/getgauge/

gauge. Accessed: 2020-06-19.
[30] A. Chiş, O. Nierstrasz, A. Syrel, and T. Gı̂rba, “The moldable inspector,”

in 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!), 2015, pp.
44–60.

[31] N. Patkar, “Moldable requirements,” in Benevol 2020: Proceedings of
the 19th Belgium-Netherlands software evolution workshop, 2020, p. To
appear.

[32] R. Pawson and R. Matthews, “Naked objects: a technique for designing
more expressive systems,” ACM SIGPLAN Notices, vol. 36, no. 12, pp.
61–67, 2001.

[33] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the understanding and comparison of low-code development platforms,”
in 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2020, pp. 171–178.

APPENDIX

A. Model requirements for an invoicing system
• Epic 1: Placing an online order

– User story 1: As a registered or unregistered user, I want to
explore the online menu.

– User story 2: As a registered or unregistered user, I want to
add the menu items to the shopping cart.

– User story 3: As a registered user, I want to do one click
payment.

– User story 4: As an unregistered user, I want to enter my
delivery and payment details to make the payment.

• Epic 2: Placing an order in a restaurant
– User story 5: As a waiter, I want to enter the selected menu

items by guests to prepare an order.
– User story 6: As a waiter, I want to be able to forward the

received order to the chef.
– User story 7: As a waiter, I want to be able to customize the

order by modifying the default menu items.
• Epic 3: Invoicing

– User story 8: As a restaurant owner, I want to update the tax
values for both online and offline orders, in case they legally
change.

– User story 9: As a restaurant owner, I want to update the tax
values for individual menu items.

– User story 10: As a waiter, I want to be able to view the
invoice before printing it to check if the correct prices and
tax is applied.

– User story 11: As a waiter, I want to be able to view the
total price before printing the invoice.

B. Model BDD scenarios

Let us consider the following scenarios for User story 11:

1 Scenario 1: Customers place an order to take away
2 (only milk products)
3 Given an empty order
4 When the waiter adds Cappuccino to the empty order
5 And a cup of Cappuccino costs 4 EUR
6 And a cup of Cappuccino is taxed at 7%
7 And the waiter generates the Invoice for the order
8 Then the total invoice price is 7.28 EUR
9

10 Scenario 2: Customers place an order to take away
11 (combination of non-milk and milk products)
12 Given an empty order
13 When the waiter adds a Cappuccino and a black coffee
14 to the empty order
15 And a cup of Cappuccino costs 4 EUR
16 And a cup of black coffee costs 3 EUR
17 And a cup of Cappuccino is taxed at 7%
18 And a cup of black coffee is taxed at 19%
19 And the waiter generates the Invoice for the order
20 Then the total invoice price is 7.85 EUR
21

22 Scenario 3: Customer place an order to take away
23 (no milk products)
24 Given an empty order
25 When the waiter adds black coffee to the empty order
26 And a cup of black coffee costs 3 EUR
27 And a cup of black coffee is taxed at 19%
28 And the waiter generates the Invoice for the order
29 Then the total invoice price is 3.57 EUR
30

31 Scenario 4: Customer place an order to to take away
32 (combination of no-milk drink and food)
33 Given an empty order
34 When the waiter adds a black coffee and a pizza
35 margherita to the empty order
36 And a cup of black coffee costs 3 EUR
37 And pizza margherita costs 5 EUR
38 And a cup of black coffee is taxed at 19%
39 And pizza margherita is taxed at 7%
40 And the waiter generates the Invoice for the order
41 Then the total invoice price is 5.92 EUR

Listing 8: A sample feature description with a scenario

https://archive.codeplex.com/?p=storyq
https://github.com/jdave/JDave
https://github.com/nbehave/NBehave
http://easyb.io/v1/index.html
https://teststackbddfy.readthedocs.io/en/latest/
https://cucumber.io/
https://github.com/cucumber/cucumber
https://github.com/cucumber/cucumber
https://jbehave.org
https://github.com/jbehave/jbehave-core
https://github.com/jbehave/jbehave-core
https://concordion.org
https://specflow.org
https://github.com/SpecFlowOSS/SpecFlow
https://github.com/SpecFlowOSS/SpecFlow
http://spockframework.org/
https://github.com/spockframework/spock
https://github.com/spockframework/spock
http://rspec.info
https://github.com/rspec
https://github.com/machine/machine.specifications
https://github.com/machine/machine.specifications
https://github.com/LightBDD/LightBDD
http://www.scalatest.org/
https://github.com/scalatest/scalatest
https://github.com/scalatest/scalatest
https://etorreborre.github.io/specs2/
http://jgiven.org
https://github.com/TNG/JGiven
http://www.phpspec.net/en/stable/
https://github.com/phpspec/phpspec
https://github.com/phpspec/phpspec
https://gauge.org
https://github.com/getgauge/gauge
https://github.com/getgauge/gauge

	Introduction
	Background and Motivation
	BDD workflow
	Motivating example and issues with the workflow

	BDD tool analysis
	Tool comparison
	Comparison parameters
	Results

	Our approach in a nutshell
	Building blocks

	Our proposed BDD workflow
	Create classes and GUI
	Create domain objects
	Create test cases and save as a scenario
	Create views
	Support in IDE for multiple stakeholders
	Summary

	Evaluation
	Conclusion
	References
	Appendix
	Model requirements for an invoicing system
	Model BDD scenarios

