
First-class artifacts as building blocks for live
in-IDE documentation

Nitish Patkar∗, Andrei Chis†, Nataliia Stulova∗, and Oscar Nierstrasz∗
∗University of Bern, Switzerland

Email: http://scg.unibe.ch/staff
†Feenk GmbH, Switzerland

Email: chisvasileandrei@gmail.com

Abstract—A traditional round-trip engineering approach
based on model transformations does not scale well to modern
agile development environments where numerous artifacts are
produced using a range of heterogeneous tools and technologies.
To boost artifact connectivity and maintain their consistency,
we propose to create and manage software-related artifacts as
first-class entities directly in an integrated development environ-
ment (IDE). This approach has two advantages: (i) compared
to employing separate tools, creating various artifacts directly
within a development platform eliminates the necessity to recover
trace links, and (ii) first-class artifacts can be composed into
stakeholder-specific live document-artifacts. We detail and exem-
plify our approach in the Glamorous Toolkit IDE (henceforth,
Glamorous toolkit), and discuss the results of a semi-structured
pilot survey we conducted with practitioners and researchers to
evaluate its usefulness in practice.

Index Terms—Requirements engineering, Development Envi-
ronments, Software Artifacts

I. INTRODUCTION

A multitude of artifacts are used for distinct tasks in soft-
ware development, as well as in requirements engineering [1],
[2], [3], [4]. There are, for example, design artifacts [5],
[6], requirements artifacts [7], and software artifacts [8]. In
practice, when the requirements change, due to an abundance
of employed tools for artifact creation, management, and
the source code implementation: (i) establishing traceability
among various artifacts and the source code becomes diffi-
cult [9], [7], and (ii) maintaining project documentation up-
to-date becomes difficult [10], [11].

Kiandl and Glinz independently envisioned representing and
organizing project requirements as run-time objects [12], [13].
With their approach, one classifies and organizes requirements
using classes and enjoys various benefits of object-oriented
design. In this work, we propose that not only requirements,
but also other software-related artifacts should be created as
first-class entities directly in an IDE. This approach has the
following benefits:

1) all project-relevant artifacts are created and maintained
directly within a development platform.No additional
recovery of trace links between artifacts is required; all
necessary artifacts are part of the same development
infrastructure and connected to each other.

2) artifacts can be used to create stakeholder-specific inter-
active and executable document-artifacts.

To support this kind of software development, IDEs need to
provide basic functionality to build interactive visual compo-
nents for artifact representation, which would include both
text and graphics. With our proposed approach, developers
first create appropriate classes for the artifacts and model
artifact behavior in the class methods. For instance, a user
story can be modeled1 with a class UserStory and have
specific behavior implemented in a method setStatus that
will enable users to set the status of a particular user story.
This underlying infrastructure to enable artifact object creation
becomes a part of the software project source code. Other
(non-technical) stakeholders create specific instances of user
stories as first-class entities (i.e., run-time objects) in an IDE.
This workflow applies for any artifact one wishes to model
in an IDE. Depending on the type of artifact, some artifacts
can be connected directly to the project source code. For
example, a particular user story, e.g.,As a user I want
to login can be connected to the the User class so that one
can navigate freely from a user story (i.e., requirement) to the
domain concept (i.e., implementation) and vice versa. Later,
various aspects of the running system, such as requirements
or algorithms, are combined into various live document-
artifacts by composing existing in-IDE artifact objects. Such
live documents can be targeted towards different stakeholders.
Our approach requires developers to invest once in building
artifacts from scratch. Once such infrastructure exists, it can
be used for any future project.

We show the feasibility of our approach by presenting
three artifacts in Glamorous toolkit [14]. Glamorous toolkit
is built using a graphical framework that supports the creation
of customizable graphical interfaces for various types of
objects. An object inspector in Glamorous toolkit allows an
object to define a set of multiple interchangeable graphical
presentations (i.e., views) capturing interesting aspects of that
object in various development contexts [15]. Glamorous toolkit
is a reflective environment that allows its users to query the
run-time system. With such necessary infrastructure already
available, it is the right fit to exemplify our approach. We
will reuse the capabilities of Glamorous toolkit to support
the creation, exploration, and maintenance of a variety of

1Please refer to the supporting material to explore a sample implementation
of a user story model https://figshare.com/s/fdb27fb82544ba07ae6d

http://scg.unibe.ch/staff
https://figshare.com/s/fdb27fb82544ba07ae6d


artifacts. Specifically, we use the object inspector views and
its visualization engine to show specific details of an artifact
to different users. In future, the same views can be used to
facilitate artifact creation.

II. ARTIFACT MODELING

First-class artifacts are live objects that are readily available
for further computation, e.g., they might be passed as an
argument, returned from a function, modified, and assigned to
a variable. This allows artifacts to be seen as building blocks
for creating other, more complex artifacts. For example, live
user story objects can be used to build an in-IDE live Kanban
board. Furthermore, artifacts can be associated with custom
views to provide both implementation details and metadata
at different abstraction levels about the artifact itself: who
created this artifact, when was it created, when was it last
updated, where it is used. Such information could help in
maintaining multiple versions of artifacts, and proves valuable
during project management. In this section, we discuss first-
class implementations of three representative artifacts that
support their users in distinct software development tasks.

A. Running example

Suppose a hospital needs to prepare its roster efficiently, and
its management wants to update or replace its existing shift
scheduling software. Following agile development practice,
the development team needs to discuss requirements with
domain experts from the hospital (who are also the business
stakeholders here), express the requirements in some format,
and then update the scheduling software system in use. After
every development iteration, the developers need to present
new functionality to the business stakeholders. After each such
meeting, the development team gets feedback and proceeds to
update the requirements, which means they need to update
various artifacts, change the implementation, and update the
documentation respectively. Preparing a schedule is a tedious
task as the staff member responsible for preparing a schedule
needs to take into account numerous constraints, such as those
related to permissible working hours, constraints for assigning
medical staff to each shift, etc. The implementation of the
running example and the following artifacts can be explored
by following the instructions provided in the readme file in
the additional supporting material.

B. User stories

To record requirements in a collaborative way, there is a
need for an artifact that can be conveniently edited by technical
and non-technical stakeholders alike and is lightweight to man-
age. User stories are artifacts that serve to record requirements
from the end-user perspective [16]. User stories are a nice
fit for the IT company to collect and specify requirements
together with the hospital staff.

Due to the page limitation, in the supporting material we de-
scribe how to explore two representations of user stories in our
running example implementation. The “Raw” representation
shows raw data about a user story object, while the “Minimal”

representation of the same user story object presented as a
card gives additional details, such as assigned labels and team
members, of a specific user story, which are typically needed
by project managers. A user story object, being a first-class
entity, can be embedded anywhere, in any live document, or
into a live Kanban board.

C. Mindmap

Mindmapping is a visual way of organizing and representing
information within a radial hierarchy [17]. The most important
concept appears at the center of a given diagram and related
concepts are connected via edges. Based on their relevance,
the related concepts appear farther and farther away from the
center of the diagram. Let us consider that a new developer
joins the development team and wants to understand the
hospital management domain. A mindmap of domain concepts
from the scheduling application could assist a new developer
in understanding the main concepts.

In Figure 1, we show a mindmap of all major concepts in the
hospital scheduling domain. Each node represents a domain
concept and nodes are connected with arrows. Each node is a
clickable first-class entity, thereby allowing a user to jump into
the implementation of a specific concept. In Figure 1, a user
has clicked on a node “HospitalSystem,” and an object inspec-
tor window on the right-hand side shows the class comment for
the “HospitalSystem” class, which allows the new developer
to understand the implementation of each domain concept in
an iterative and interactive manner. Note that from the tab
“Related Stories,” it is also possible to explore the related
user stories (i.e., requirements) for a specific domain concept,
which fosters two-way connectivity between two artifacts.

D. Scenario

Scenarios are popular in practice as they exhibit potential
for collaborative construction and review. Unlike test cases, a
scenario contains high-level documentation, which describes
an end-to-end functionality to be tested. Scenarios are created
in various formats. For example, a UML sequence diagram
models a specific interaction scenario. Behavior-driven sce-
narios are written using the Gherkin language. Frameworks
like Cucumber even make scenarios executable [18].

Let us consider that we want to see how our implementation
of the scheduling algorithm assigns a fixed number of doctors
to one day, to a week, and a month. In Figure 2, we show an
executable scenario written in Pharo that prepares a schedule
for one week for the available medical staff. This piece of
source code serves as a test case that asserts a condition and
returns the corresponding object. In the leftmost window, we
see for a specific class, all the related scenarios collected at
one place under the “Related examples” tab. In our example,
we want to observe the resulting hospital management system
with a seven day schedule. The middle window is an object
inspector on an object of type HospitalSystem that lists the
seven days, and when a user clicks on a specific day, the
corresponding schedule for that day can be explored in another
object inspector. By executing different scenarios, a user



Fig. 1: A sample in-IDE mindmap

Fig. 2: A sample in-IDE executable scenario

explores how a system behaves under different conditions.
Note that such scenarios can be fully generated from an in-IDE
user interface [19].

III. LIVE DOCUMENTATION

Various project-related documents in our approach are first-
class entities themselves. One can dynamically create several
documents that consume different artifacts and explain specific
aspects of a running system. Such a document can help explain
library APIs to a developer. For non-technical stakeholders
such documents can aggregate project-related information for

requirements-related entities. With first-class artifacts readily
available, documents can serve as interactive tutorials in ad-
dition to static specifications. In this section, let us see how
we can use the discussed artifacts to compose interactive and
live documentation. We will discuss two situations and a type
of documentation that might help a specific stakeholder to
accomplish a goal in that situation.

A. A Kanban board

Now, let us consider a non-technical stakeholder, such as
a product owner, who needs an overview of the up-to-date



Fig. 3: A sample in-IDE live Kanban board

progress of the project. Traditionally, they will use an existing
project management tool, such as Trello or GitHub projects.
Such tools help to track a lot of development progress-related
data: an overview of accomplished work, types of remaining
tasks in the pipeline etc. With our approach, they will need a
similar overview in an IDE itself.

A Kanban board can serve as project documentation that
helps product owners track the live progress of the project.
In Figure 3, we present a sample Kanban board composed
from existing user stories. Various user stories are grouped
into three columns: Not started, In progress, and Done,
sorted according to their current implementation status. This
representation gives a non-technical stakeholder a quick visual
overview of the current progress status of a particular project.
Each user story is a first-class entity and after clicking on
the card, its details are accessible right next to the card
representation.

B. An interactive tutorial

Tutorials explain various things (e.g., an algorithm, a func-
tionality, even a programming language) step by step to users.
Tutorials that involve programming are largely available as
video tutorials or blog posts that show a similar pattern:
textual documents with static code snippets. There exist online
platforms that provide interactive tutorials where users can
copy-paste small code snippets in their editor and subsequently
explore the execution results. However, such tools and services
are limited in the functionality they provide, and cannot be
used to explain complicated domain-specific details.

In Figure 4, we show an interactive tutorial that explains
an algorithm that assigns medical staff to a schedule for one
day. This document embeds the already created executable
scenarios with supporting text. A user can execute scenarios
inline and explore the results right next to it without losing
the context.

Fig. 4: Interactive in-IDE live tutorial



IV. EVALUATION

To obtain some early feedback on the potential of our idea
to be beneficial for artifact management and, in particular,
being suitable for non-technical stakeholders, we conducted
a semi-structured pilot survey with three practitioners and
researchers. The online survey consisted of the following steps:
a brief introduction to the identified issues with artifact man-
agement, an introduction to the proposed approach, followed
by a short 15 minute demo, and finally, an online survey
for the participants. The survey instrument was prepared and
validated by all the authors collaboratively, and consisted
of questions regarding participants’ background and their
feedback on various aspects of the proposed approach. We
have included the survey instrument and the responses in
the provided additional supporting material, please refer to
both “.xlsx” files. The participants had varying experiences
with software development and agile methodologies, ranging
within 7-20 years. All of the participants agreed that our
approach could help project teams in managing artifacts and
handling artifact traceability, and will reduce the number of
tools employed in a software project. Similarly, all participants
agreed that our approach could reduce the context switches
between various tools to accomplish a single development-
related task and provide more accurate matrices (e.g., pending
workload) for decision making. Notably, all of the participants
strongly agreed that our approach could reduce the manual
effort required in keeping the project documentation up-to-
date.

V. CONCLUSIONS AND FUTURE WORK

To avoid scattering artifacts among separate tools, we
argued that artifacts should be created as first-class entities
directly in an IDE. Our proposed approach helps maintain
various development-related artifacts in one platform, elim-
inating a need to recover trace links. We discussed how can
we compose first-class artifacts into live documents for various
types of stakeholders to accomplish a certain goal. We pre-
sented an advanced prototype implementation of three artifacts
in Glamorous toolkit and a discussion of the advantages of
our approach. We also conducted a semi-structured online
pilot survey with practitioners and researchers to evaluate the
potential of our approach for artifact management. The initial
results are encouraging for us to continue with this research
line and the feedback from the pilot survey participants will
be taken into account before we proceed with a full user study.

As future work, we plan to extend the current implemen-
tation of our running example, among other things, providing
user interfaces for non-technical users. To evaluate the actual
potential of our approach, we plan to conduct a controlled
experiment with a mix of practitioners and researchers. We
are interested in observing how the participants interact with
our example implementation, and recording values of various
task-related metrics, such as time to complete one task or the
number of context switches required to accomplish assigned
tasks.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile Soft-
ware Assistance” (SNSF project no. 200020-181973, Feb. 1,
2019 - April 30, 2022). We acknowledge Aliaksei Syrel for his
contribution in the implementation, and Pooja Rani, Alexandre
Bergel, and Norbert Seyff for reviewing the manuscript.

REFERENCES

[1] O. Liskin, “How artifacts support and impede requirements communi-
cation,” in Requirements Engineering: Foundation for Software Quality,
S. A. Fricker and K. Schneider, Eds. Cham: Springer International
Publishing, 2015, pp. 132–147.

[2] T. R. Silva, J.-L. Hak, and M. Winckler, “Testing prototypes and
final user interfaces through an ontological perspective for behavior-
driven development,” in Human-Centered and Error-Resilient Systems
Development. Springer, 2016, pp. 86–107.

[3] A. Garcia, T. S. da Silva, and M. Selbach Silveira, “Artifacts for agile
user-centered design: a systematic mapping,” Proceedings of the 50th
Hawaii International Conference on System Sciences, 2017.

[4] P. Ghazi and M. Glinz, “Challenges of working with artifacts in
requirements engineering and software engineering,” Requirements En-
gineering, vol. 22, no. 3, pp. 359–385, 2017.

[5] R. Damaševičius, “Analysis of software design artifacts for socio-
technical aspects,” INFOCOMP Journal of Computer Science, vol. 6,
no. 4, pp. 7–16, 2007.

[6] L. Carvajal, A. M. Moreno, M.-I. Sanchez-Segura, and A. Seffah,
“Usability through software design,” IEEE Transactions on Software
Engineering, vol. 39, no. 11, pp. 1582–1596, 2013.

[7] O. Gotel and A. Finkelstein, “Contribution structures [requirements
artifacts],” in Proceedings of 1995 IEEE International Symposium on
Requirements Engineering (RE’95). IEEE, 1995, pp. 100–107.

[8] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, pp. 131–183, 1992.

[9] O. C. Gotel and C. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings of IEEE International Conference
on Requirements Engineering. IEEE, 1994, pp. 94–101.

[10] C. J. Stettina and E. Kroon, “Is there an agile handover? an empirical
study of documentation and project handover practices across agile
software teams,” in 2013 International Conference on Engineering,
Technology and Innovation (ICE) & IEEE International Technology
Management Conference. IEEE, 2013, pp. 1–12.

[11] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1199–1210.

[12] M. Glinz, “Should requirements be objects?” in Tutorial Position Paper,
14th Annual International Symposium on Systems Engineering. Cite-
seer, 2004.

[13] H. Kaindl, “The missing link in requirements engineering,” ACM SIG-
SOFT Software Engineering Notes, vol. 18, no. 2, pp. 30–39, 1993.

[14] “Glamorous toolkit,” http://gtoolkit.com/, accessed: 2021-04-03.
[15] A. Chiş, O. Nierstrasz, A. Syrel, and T. Gı̂rba, “The moldable inspector,”

in 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!), 2015, pp.
44–60.

[16] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“The use and effectiveness of user stories in practice,” in International
working conference on requirements engineering: Foundation for soft-
ware quality. Springer, 2016, pp. 205–222.

[17] I. Mahmud and V. Veneziano, “Mind-mapping: An effective technique
to facilitate requirements engineering in agile software development,” in
14th International Conference on Computer and Information Technology
(ICCIT 2011). IEEE, 2011, pp. 157–162.

[18] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf,
2017.

[19] N. Patkar, A. Chis, N. Stulova, and O. Nierstrasz, “Interactive behavior-
driven development: a low-code perspective,” 2021.

http://gtoolkit.com/

	Introduction
	Artifact Modeling
	Running example
	User stories
	Mindmap
	Scenario

	Live documentation
	A Kanban board
	An interactive tutorial

	Evaluation
	Conclusions and future work
	References

