An Exploratory Study on the Usage of Gherkin
Features in Open-Source Projects

Adwait Chandorkar*, Nitish Patkar!, Andrea Di Sorbo*, and Oscar Nierstrasz!
*University of Wuppertal, Germany
Email: adwait.chandorkar @uni-wuppertal.de
Software Composition Group, University of Bern, Switzerland
Email: http://scg.unibe.ch/staff
jFUniversity of Sannio, Italy
Email: disorbo@unisannio.it

Abstract—With behavior-driven development (BDD), domain
experts describe system behavior and desired outcomes through
natural language-like sentences, e.g., using the Gherkin language.
BDD frameworks partially convert the content of Gherkin speci-
fications into executable test code. Previous studies have reported
several issues with the current BDD practice, for example long
repetitive Gherkin specifications and slow-running test suites.
Data tables and additional features were added to the Gherkin
syntax to express compactly test inputs (e.g., provide different
combinations of input values and desired outputs to run tests
multiple times) and also to improve the readability of Gherkin
files (henceforth called spec files). However, there is no empirical
evidence about the actual usage of these Gherkin features. To fill
this gap, we analyzed the content of 1,572 spec files extracted
from 23 open-source projects. For each spec file, we collected
a set of metrics modeling the structure and the usage of the
different Gherkin features. We found that only a minority of
the considered spec files (i.e., 590) used data tables that contain
two rows, on average. We also used statistical tests to compare
the contents of spec files with and without data tables and found
significant differences between the two populations, especially for
what concerns the number of lines of code (LoC). On the one
hand, our results shed some light on the discrepancies between
the recommendations for defining Gherkin specifications and
their actual adoption in practice. On the other hand, our findings
demonstrate that the adoption of additional features, such as data
tables, might only partially help to reduce the length of Gherkin
specifications.

Index Terms—BDD, behavior-driven development, collabora-
tive testing, behavior verification

I. INTRODUCTION

BDD is an approach that enables domain experts to specify
“live”, executable, and testable requirements. Within BDD,
domain experts specify application behavior through scenarios
that everybody in a team can understand [1]. Domain experts
and testers often leverage a constrained natural language, i.e.,
Gherkin, to write behavior scenarios. For example, in
we show a scenario that asserts the sum of two numbers
for an arithmetic calculator application to have a particular
value.

| Feature:

2As a user
3 I want to use a calculator to add numbers
4So that I do not need to add them myself

5 Scenario: Add two numbers 2 and 3

6Given I have a Calculator

Basic arithmetic operations

7When I add 2 and 3
s Then the result should be 5

Listing 1: A sample feature description with a scenario

A typical Gherkin template splits a scenario into three core
steps: Given (i.e., a context assumed for this scenario execu-
tion), When (i.e., an action or event that occurs in the given
context), and Then (the expected outcome of the system for
the provided action and context). A step can have additional
context, expressed in the template by the keyword And. Apart
from these four keywords, Gherkin contains several other
keywords, such as Background or Rule. The BDD frameworks
automatically tie the steps in scenarios to acceptance test cases
(also called step definitions, glue code, or fixtures) to verify
the specified functionality. shows the corresponding
glue code for the scenario in The developers need
to fill in the body of glue code methods.

I public class CalculatorRunSteps {

> private int total;

sprivate Calculator calculator;

! @Before

5sprivate

6total =
}

§ @Given ("I have a calculator")

9public void initializeCalculator (

10 calculator = new Calculator();

1}

12 @When ("I add {int} and {int}")

13public void testAdd(int numl, int num2)

14total = calculator.add(numl, num2);

15}

16 @Then ("the result should be {int}")

17public void validateResult (int result) throws Throwable {

18 Assert.assertThat (total, Matchers.equalTo(result));

19}

20 }

void init () {
999;

throws Throwable {

throws Throwable {

Listing 2: Glue code for the scenario from

Next, developers implement the logic for the calculator appli-
cation:

Ipublic class Calculator {
»public int add(int a, int b) {
s return a + b;

4}

5}

Listing 3: Implementation for the functionality from

http://scg.unibe.ch/staff

Finally, when domain experts execute the acceptance tests, the
BDD frameworks present them with the test run status, i.e.,
success or failure.

In a recent survey, software engineers and business analysts
highlighted several shortcomings of current BDD practices [2].
They complained that they must write numerous scenarios
with minor variations in input parameter values. Additionally,
they must also specify the test assertions. They mentioned that
when requirements change, a lot of manual effort is needed to
maintain the textual scenarios and to manually propagate the
changes to acceptance tests, leading them to perceive BDD as
only an additional task to writing unit tests [2], [3]. To reduce
the redundancy in spec files and improve their readability,
keywords, such as Scenario Outline, and features, such as data
tables—to support the strategy known as data-driven testing—
were introduced in 2009 [4]. In Gherkin, a Scenario outline
is parameterized using Examples data tables. In we
see how a data table can be used to test several combinations
of input numbers against the corresponding result.

Scenario Outline: Sample arithmetic additions
Given I have a Calculator
When I add "<numl>" and "<num2>"

Then the result should be "<result>"
6 Examples: Numbers
| numl | num2 | result |
8 1 |3 | 4 |
9 | 5 | 8 | 13 |
10 |7 |2 9 |

Listing 4: A sample data table

Similarly, data tables can be passed into a step as an input data
structure to improve the readability. Nevertheless, practitioners
still have difficulty maintaining spec files a decade after
these features were introduced. The goal of this exploratory
study is to analyze the characteristics of the spec files and
explore the usage of various features and especially data
tables. Such analysis aims at exploring the actual contents
of Gherkin specifications for better understanding the reason
why practitioners perceive BDD as an overhead. Based on
the aforementioned goal, we outline the following research
questions:

e RQqi: What are the characteristics of the Gherkin

specifications in open-source projects?

e RQo: What are the main differences between specs using
tables and specs without tables?

The original contributions of this paper are as follows:

o To the best of our knowledge, we are the first to analyze
various characteristics of Gherkin specifications from
open-source projects.

« We present comparison results between different types of
Gherkin specifications, i.e., with and without data tables.

Our results should foster discussion on an unexplored research
area. Specifically, they highlight some issues with the current
BDD practice that future research should consider improving.

The remainder of the paper is structured as follows: In

tion I, we present related work in the area of BDD. In

tion TIT} we describe the methodology we followed to conduct
this analysis. In [section TV] and [section V| we report and
discuss our findings, respectively. [section VI summarizes the
threats to the validity. Finally, in we summarize
our main contributions and we outline a plan to extend this
study.

II. RELATED WORK

Several studies in recent years have proposed approaches
and techniques to automate the BDD process. Soeken et
al. proposed a technique to semi-automatically generate step
definitions and code skeletons from scenarios given in natural
language [S]]. Patkar er al. analyzed the features of the current
BDD tools and proposed to specify application behavior
through in-IDE graphical interfaces [6]. With their approach,
they engage non-technical stakeholders in the BDD process
equally. Binamungu et al. presented a dynamic tracing based
approach for detecting duplication in BDD suites [7]].

Apart from these studies, several empirical studies shed light
on various aspects of the BDD. Binamungu et al. surveyed
75 BDD practitioners to understand the extent of BDD use,
its benefits and challenges, and specifically the challenges of
maintaining BDD specifications in practice [2]. Their results
showed that BDD specifications suffer from maintenance
challenges due to the huge size of the BDD suites. They also
conducted another survey with BDD practitioners, to hear their
opinions on the quality criteria for the BDD specifications
established by the authors themselves [8].

Yang et al. from 59,933 open-source Java projects retrieved
133 projects containing at least one .feature file [9]]. They
figure out whether and how accurately could they identify co-
changes between .feature and source code files when either
of those changes. In this study, they used natural language
processing to check both .feature files and the source code
files to detect the occurrences of common keywords. They did
not study the step definitions, and their results are specific to
Cucumber related projects.

Zampetti et al. analyzed 20 Ruby projects shortlisted from
the top 50,000 projects— ranked in terms of several stars—
hosted on GitHub for the five most popular programming
languages, i.e., Java, Javascript, PHP, Python, and Ruby [3].
Their goal was to study the extent to which open-source
projects use BDD-related frameworks, i.e., the percentage of
projects that use one of the several BDD frameworks. They
also surveyed 31 developers to understand how these devel-
opers use BDD frameworks in practice. They observed a co-
evolution between scenarios and fixtures, and source code in
about 37% of the projects. Specifically, the authors discovered
that changes to scenarios and fixtures often happen together
or after changes to source code. Moreover, survey respondents
indicated that, while they understand the intended purpose of
BDD frameworks, most of them write tests while/after coding
rather than strictly applying BDD.

Neither of these studies shed light on the specifics of
the spec files. The data published by Yang er al. contains
repositories with fewer than ten stars and consists of mostly

small personal projects. Zampetti et al. offer to download their
dataset. Regrettably, it consists of only processed data and not
the data from the fetched repositories.

III. STUDY DESIGN

The goal of this study is to investigate the characteristics
of the spec files in open-source projects. The study context
consists of a total of 23 open-source repositories that use
Gherkin to specify application behavior hosted on GitHub.

A. Data collection procedure

summarizes the data gathering process we fol-
lowed. First, we used the GitHub search API to retrieve a

list of repositories sorted by popularity. The limitation of
this approach is that we must add at least one restriction for
the search API to provide any results. A similar approach is
applied in another study where the authors collected open-
source projects hosted on GitHub ranked in terms of the
number of stars [3]. We decided to retrieve only repositories
with more than 500 stars, which resulted in a total of 54,277
repositories (as of 29 January 2021). A similar strategy has
been used in several recent empirical analysis studies [L1O],
(1], [12], [L3]. This strategy allowed us to include projects
with a certain level of popularity. Furthermore, it allowed us to
reduce the scope of the projects to be processed and allowed
us to respect the permitted quota of API requests for more
in-depth qualitative analysis.

For all the identified repositories, we then fetched the list of
programming languages. We selected only those that contain
the Gherkin language. In this step, we retrieved a total of 318
repositories. If repository languages contain Gherkin, then it
means they contain a spec file with the .feature extension.

Next, we grouped the identified repositories according to
the primary programming language. For our analysis, we
focused on Java as the primary language and selected the
corresponding 37 repositories. From these 37 repositories, we
identified spec files by searching for the .feature extension.
We only selected those repositories that had more than one
file with the .feature extension, as we speculate the projects
with only one spec file probably only tried BDD and did not
practice it rigorously. Consequently, we shortlisted a total of
27 repositories. By manually analyzing the search results, we
found that some repositories contained files with the .feature
extension that were not actual Gherkin files. To reduce the
likelihood of considering false positives, for each repository
we compared the list of files with the .feature extension and
the list of files containing the keyword Given. If at least one
file occurs in both lists, it is very likely that the result is a
true Gherkin file. Eventually, we eliminated a total of four
false positives from 27 repositories. We then manually cross-
verified the obtained results. This process resulted in a total
of 23 repositories for our qualitative analysis. From these 23
repositories, we collected a total of 1,572 spec files. We ran
several scripts to analyze the contents of the identified spec

files. All scripts together with the dataset to reproduce the
results can be found in the replication packageﬂ

B. Data analysis procedure

To answer the research questions, we collected data at two
levels: the repository level and the spec-file level. We collected
data against nine metrics listed below. All values are numeric
unless mentioned in the brackets, and are correct as of June
23, 2021. Each metric is given an identifier starting with m.

1) Repository-level metrics: To provide the community
with meta-level information about the analyzed repositories,
we collected data for the following five metrics:

o mli:
o m2:
o m3:
o m4:
e m5:

number of spec files,

date of the last commit on the repository (a date),
date of the last commit on the spec file (a date),
number of contributors to the repository,

number of contributors to the spec files.

2) Spec file-level metrics: To provide the community with
information regarding the characteristics of Gherkin specifica-
tions, we collected data for the following twelve metrics:

e mb6: LoC,

« m7: whether the spec file contains data table/s (yes, no),
o m8: number of data tables,

« m9: number of occurrences of the Scenario keyword,
o ml0: number of of the Given keyword,

o mll: number of the When keyword,

e ml2: number of the Then keyword,

o mli3: number of the And keyword,

e ml4: number of the Scenario outline keyword,

e ml5: number of the Examples keyword,

e ml6: number of the Background keyword,

o ml7: number of the @ keyword.

Gherkin supports two types of syntactically similar data tables.
They are added to the steps to improve readability, while they
are added together with Scenario outline keyword to reduce
redundancy. We used the resulting values for metrics m6 to
m17 to answer RQ; and RQs.

C. Validity procedure

To answer RQ;, we collected the metrics described in
to have an overview of the content-related
characteristics of spec files in open-source projects.

To answer RQ,, we formulated the following null hypoth-
esis:

For metrics m6 and m17, two distributions, i.e., spec files
with and without tables, are similar.

To test this hypothesis, we divided the selected 1,572 spec
files into two groups: those with and without data tables.
We compared the resulting values for metrics m6 and m9
for these two groups. Specifically, in order to assess if each
considered metric presents different distributions for the two

Uhttps://figshare.com/s/bc390cdcb12c11ce14b4

https://figshare.com/s/bc390cdcb12c11ce14b4

GitHub open-
source projects

Select projects with stars
> 500

Select projects that
contain Gherkin
language

» Extractbp o) ect - Eliminate false
characteristics and ositives
relevant BDD files p

Fig. 1: The data collection procedure

distinct clusters with statistical evidence, we used the Mann-
Whitney test (with the p value fixed to 0.05). This is a widely
used nonparametric test to compare differences between two
independent distributions [14]. In addition, to quantitatively
assess the extent to which these groups are different, we
used Cliff’s delta, a measure of how often the values in one
distribution are larger than the values in a second distribution.
Following the guidelines of Grissom et al., we interpreted
the effect size as negligible for |d| < 0.147, small for
0.147 < |d| < 0.33, medium for 0.33 < |d| < 0.474, and
large for |d| > 0.474 [13]. We used box plots to graphically
visualize the distributions.

IV. STUDY RESULTS

A. Descriptive statistics

In [Table I we group in descending order the top 10
programming languages of repositories that used BDD (from
a total of 318 repositories). As we can see, projects with Ruby
as the main programming language have used BDD the most,
followed by PHP and Java.

TABLE I: Identified repositories according to programming
languages

Language | # Repositories | Language | # Repositories

Ruby 82 Javascript 33
PHP 38 Go 16
Java 37 | Emacs Lisp 11

Python 36 C# 10
C 17 TypeScript 5

[Table T summarizes the meta information for the selected
repositories. Columns m1-5 present results for the correspond-
ing metrics. It is evident from [Table II] that 11 out of 23 (about
48%) repositories have fewer than 20 spec files, whereas only
three repositories have more than 100. Notably, one of those
repositories is the Cucumber project itself, making the high
number not so surprising. The number of contributors to the
identified repositories is also quite diverse, ranging from 3 to
736. However, the number of contributors to the spec files is
quite low, ranging from 6 to 15, meaning only a small fraction
of all contributors are involved in modifying them. Most
of the repositories (about 83%) have rather recent commits
(in the year 2021), meaning these are actively maintained.
However, only about 39% of the total repositories had last
commits on spec files in 2021. Importantly, a similar number
of repositories have the last commit on spec files before 2019,
which makes us conclude:

Although repositories are maintained actively, teams might
stop using BDD in their project. In these projects, BDD is
perhaps not adopted as the main testing strategy.

B. What are the characteristics of the Gherkin specifications
in open-source projects?

In we report values for various parameters derived
for metrics m6-8. Each spec file, on average, contains about
3.47 scenarios. The average use of the Background (0.25 times
per spec file) and Feature keyword (0.94 times per spec file)
seem reasonable, meaning a negligible number of steps were
common among a very few scenarios present in any spec file,
and each spec file will typically test a single feature. A total of
590 spec files (i.e., about 37.5%) contain tables. On average,
each file contained 11 tables. Notably, each table has a mean
of 2.6 rows and 1.7 columns, a median of 2.0 rows, and 1.0
columns.

further summarizes results for individual reposi-
tories. It is evident from that the average number
of tables per specification is higher than expected because
only four repositories, i.e., R16, R21, R13, and R2, contain
significantly more number of tables per spec file than other
repositories, on average.

The average number of LoC in spec files varies greatly
among selected repositories: from 8.51 to 217. The average
number of scenarios per spec file also varies significantly
across those containing tables. For example, if we compare
repository RO that has on average 21.2 scenarios per spec
file without tables, in fact, has 32 scenarios per spec file
containing tables. Finally, although the average number of
scenarios per spec file is low, i.e., 3.47 times (for the top three
repositories, i.e., R9, R19, R8, with a maximum number of
scenarios per spec file, which is 21.2, 6.03, and 4.39 times),
we expected more use of the @ keyword (i.e., 0, 1.32, and
1 times), meaning that users did not particularly attempt to
optimize the test run time by marking a subset of tests to be
run independently.

Data tables are used in the minority of the analyzed speci-
fications. Although we cannot determine the test objectives
from our analysis, we can still report that data tables are
not heavily used to improve readability and maintenance.

C. What are the main differences between specs using tables
and specs without tables?

summarizes the obtained results for RQy. Cliff’s

TABLE II: The meta-level details of the selected repositories, m/: number of spec files, m2: date of the last commit on the
repository (a date), m3: date of the last commit on the spec file (a date), m4: number of contributors to the repository, m5:

number of contributors to the spec files.

Repo name | Index | ml m2 m3 m4 | mS
eugenp/tutorials R1 15 08 Jun 2021 | 30 May 2021 | 736 | 06
neodj/neodj R2 26 07 Jun 2021 | 04 Mar 2021 | 207 | 15
geoserver/geoserver R3 04 08 Jun 2021 19 Sep 2017 | 266 | 01
apache/servicecomb-pack R4 30 03 Apr 2021 16 Mar 2021 56 | 04
microservices-patterns/ftgo-application RS 02 02 Jun 2021 10 Jul 2018 3| 01
apache/tinkerpop R6 59 07 Jun 2021 18 Jun 2021 | 142 | 06
iotaledgerfiri R7 05 18 Aug 2020 | 07 May 2020 58 | 04
SmartBear/soapui R8 31 09 Dec 2020 07 Jul 2014 63 | 08
w3c/epubcheck R9 36 15 Mar 2021 26 Feb 2021 11 | 03
aws/aws-sdk-java-v2 R10 53 07 Jun 2021 14 Aug 2018 70 | 01
bugsnag/bugsnag-android R11 48 07 Jun 2021 15 Jun 2021 | 128 | 06
blox/blox R12 10 12 Mar 2018 12 Feb 2018 22 03
ddd-by-examples/factory R13 02 24 Apr 2021 22 Dec 2017 06 | 01
FluentLenium/FluentLenium R14 11 08 Jun 2021 14 Jul 2019 62 | 02
AppiumTestDistribution/AppiumTestDistribution R15 03 08 May 2021 19 Dec 2020 35 | 04
mzheravin/exchange-core R16 02 25 Apr 2021 07 Jun 2020 05 | 02
iriusrisk/bdd-security R17 11 08 Aug 2018 | 24 May 2018 10 | 01
jbangdev/jbang R18 18 07 Jun 2021 | 24 May 2021 56 | 04
SoftInstigate/restheart R19 31 07 Jun 2021 11 Jun 2021 27 | 04
intuit/karate R20 394 | 24 May 2021 16 Mar 2021 54 | 09
cucumber/common R21 439 07 Jun 2021 - | 111 10
cucumber/cucumber-jvm R22 92 06 Jun 2021 -1 225 | 06
JetBrains/intellij-plugins R23 103 07 Jun 2021 09 Apr 2021 | 208 | 06
TABLE III: General statistics across all spec files, a: a total "
number of spec files containing tables, b: an average number of 70 -
LoC in all spec files, c: an average number of LoC in all spec
files with tables, d: an average number of LoC in scenarios 601
in all spec files, e: an average number of LoC in scenarios in g 4
all spec files with tables f: an average number of tables per
spec file, g: an average number of scenarios per spec file, h: 40
an average number of scenarios per spec file with tables. 30 4
a | b [e | 4 [e | £ | g [o
590 | 3853 | 73.41 | 3553 | 71.11 | 11.41 | 3.47 | 5.85
10 4
L 1
delta is large for the LoC and the count of the Examples 01 . :
With tables Without tables

keyword. In we show a box plot for the total number
of LoC for spec files with and without tables. Although the
mean value is around 73 (with tables), the median value is
around 11-12. This result suggests that not all the repositories
that used data tables write descriptive spec files. The mean is
high because only a few repositories have a very high LoC.
In we show a box plot for the count of the Examples
keyword in spec files with and without tables. A large Cliff’s
delta for the Examples keyword seems reasonable as spec files
without data tables most likely did not have the Examples
keyword in them.

Cliff’s delta is medium for the count of the following
keywords: Scenario outline and Given. In we show
a box plot for the count of the Scenario outline keyword in
spec files with and without tables. A medium Cliff’s delta for
the Scenario outline keyword seems reasonable as spec files
without data tables most likely did not have Scenario outline
keyword in them. Looking at these results from a different
perspective, spec files with tables did not extensively use the
Scenario outline keyword, meaning in a small number of spec

Fig. 2: Lines of code in Gherkin spec files

files, tables were used independently of the Scenario outline
keyword. This indicates that they were used in the steps to
improve the readability of the specification. In
[ure 6] and [Figure 7} we show a box plots for the count of the
Given, When, and Then keywords in Gherkin files with and
without tables.

It is evident that the median and mean values for When and
Then keywords are approximately similar for spec files with
and without tables. Ideally, the statistics should be approxi-
mately similar for the Given, When, and Then keywords in
both spec files with and without tables. Although it is true
for spec files without tables, we can see that the mean and
median value for Given is higher than that for the other two
keywords, meaning that When and Then were not always used
with Given. Finally, Cliff’s delta is negligible for the count

TABLE IV: Repository-wise details, a: an average number of LoC per spec file, b: an average number of LoC in scenarios
per spec file, ¢: an average number of LoC per spec file with tables, d: an average number of LoC in scenarios per spec file
with tables, e: an average number of tables per spec file, f: an average number of scenarios per spec file, g: an average count
of the Scenario outline keyword per spec file, 4: an average count of scenarios per spec file with tables, i: an average count of
the Scenario outline keyword per spec file with tables, j: an average count of the Given keyword per spec file, k: an average
count of the When keyword per spec file, /: an average count of the Then keyword per spec file, m: an average count of the
And keyword per spec file, n: an average count of the Feature keyword per spec file, o: an average count of the @ (i.e., tags)
keyword per spec file, p: an average count of the Background keyword per spec file, g: an average count of the Examples

keyword per spec file.

Index a b c d e f g h i j k 1 m n o p q
R1 13.93 11.6 19.6 15.8 2 233 | 0.07 2.6 0.2 1.8 2.4 2.4 0.8 1 0.2 | 0.13 | 0.07
R2 217.15 | 215.11 | 217.15 | 215.11 | 13.04 12 | 0.22 12 | 0.22 7.67 | 12.89 12.3 | 22.59 1] 033 | 033 | 022
R3 62 58.75 - - 0 4.25 0 - - 4.25 4.25 425 | 16.25 1] 0.65 0 0
R4 25.97 24.97 25.97 24.97 3.63 1.17 0 1.17 0 1.63 1.17 2.57 4.47 1 0 0 0
R5 15 12 - - 0 1.5 0 - - 4.5 1.5 2.5 2 1 0 0 0
R6 157.39 | 156.39 160.5 159.5 | 10.81 | 11.95 0 | 1243 0| 1195 | 11.64 | 11.93 | 1947 1 0 0 0
R7 75.4 71.6 118.5 116.5 5.5 4.8 0 7.5 0 4.8 3.4 6.6 6.4 1 0 0 0
R8 31.87 29.45 29 26.67 2 439 | 045 1| 1.67 3.1 2.97 3.16 | 12.03 | 0.94 1| 0.03 | 045
R9 97.69 89.58 | 14538 | 137.54 1.54 | 21.22 0 32 0 1.89 | 21.22 | 21.75 | 23.69 1 0 1 0
R10 10.51 8.42 10.51 8.42 1.17 2 0 2 0 0 2 2 0.23 1 1 0 0
R11 38.2 37.04 50.17 49 2.17 2.49 0 4 0 0 2.55 229 | 28.94 1] 033 0 0
R12 23.4 19.1 29.8 24.8 44 29 0 3 0 2.4 3 3 32 1 2.2 0.3 0
R13 84.5 58.5 84.5 58.5 16.5 4.5 0 4.5 0 7 6 16.5 0.5 1 0 0 0
R14 8.82 7.82 - - 0 1.91 0 - - 1.55 1.91 1.91 0.36 1] 018 0 0
R15 12.67 7.67 17 12 1 133 | 033 1 1 1 1.67 1.33 0.67 1 1 0| 033
R16 89 82.5 89 82.5 24 1.5 0.5 1.5 0.5 35 10.5 10.5 18.5 1 2 0.5 0.5
R17 42.09 37.18 234 18.8 1.4 3.82 | 0.64 1.2 1 2.09 3.64 473 | 13.36 1] 527 | 027 | 0.64
R18 14.83 13.22 - - 0 3.17 0 - - 0 2.94 3 0.28 1] 0.06 | 0.28 0
R19 101.87 90.16 - - 0 6.03 0 - - 12.1 | 11.61 | 11.42 | 26.13 1] 1.32 1 0
R20 19.02 16.04 45.47 41.34 2.07 192 | 0.19 2.87 | 1.18 0.81 0.88 1 1.74 1] 044 | 044 | 022
R21 39.78 36.6 80.55 78.72 | 21.04 3.11 | 043 592 | 0.94 3.54 0.06 0.05 871 | 0.85 | 0.66 | 0.19 | 0.48
R22 11.48 9.06 21.38 18.88 2.31 1.49 | 0.27 2.16 | 0.78 1.62 1.16 1.28 03] 095 | 035 | 0.13 | 0.39
R23 8.51 7.07 15.17 14.06 1.2 1.39 | 0.29 243 | 0.74 2.1 0.54 0.22 044 | 096 | 0.15 | 0.04 0.3

TABLE V: Mann-Whitney U test results

Metric U-statistic p-value | Cliff’s delta
Total LoC 427753.0 5.727e-57 0.478
Count keyword “Scenario” 306273.0 0.0416 0.058
Count keyword “Scenario outline” 416816.0 | 1.357e-103 0.440
Count keyword “Given” 388831.0 4.864e-33 0.343
Count keyword “When” 320212.5 5.665e-05 0.106
Count keyword “Then” 330898.0 5.835e-08 0.143
Count keyword “And” 315600.0 0.000 0.090
Count keyword “@” 304969.0 0.019 0.054
Count keyword “Feature” 316044.5 7.034e-14 0.092
Count keyword “Background” 263536.0 5.817e-05 -0.089
Count keyword “Examples” 439738.0 | 2.56%e-135 0.519

of the following keywords: Scenario, When, Then, And, @,
Feature, and Background. From these statistical results we
reject our null hypothesis and conclude that:

The characteristics of the Gherkin specifications with and
without data tables are different for all the considered
metrics.

V. DISCUSSION

Our results show that although Gherkin is syntactically
equipped with keywords and features to reduce the length of
the specifications, those features are not yet fully exploited
by the users. The most prominent feature is data tables.
The primary motivation of using data tables is to provide
different combinations of input values and desired outputs
to run scenarios multiple times. However, they can also be

used to improve the readability and the maintainability of

the Gherkin specifications. The average number of rows and
columns in data tables indicates that tables were not used to
reduce redundancy. We speculate that data tables could be
hard to specify inputs and outputs when they grow in size.
The shift to support Gherkin in Markdown format indicates
the same [16]. Nevertheless, this shift is very recent, and
with Markdown being the de-facto format to write Gherkin
scenarios, we might see an increase in using various features
of Gherkin.

Furthermore, using data tables to specify various combina-
tions of input values and desired outputs make us wonder about
the cognitive effort required when a scenario needs several
inputs. If domain experts need to create a table with numerous
columns and specify the corresponding outputs for each row,
we can speculate that they need to put considerable effort into

2.00 4
1.75 1
1.50
1.25
1.00 1
0.75 4
0.50

0'25 | ﬁ
A

T
With tables

0.00

T
Without tables

Fig. 3: Examples keyword count in Gherkin spec files

B

T
Without tables

2.00

1.75 1

1.50 4

1.25 1

1.00

0.75

0.50

0.25 1

0.00

T
With tables

Fig. 4: Scenario outline keyword count in Gherkin spec files

.
.
.
.
.
]
|

With tables

Without tables

Fig. 5: Given keyword count in Gherkin spec files

writing long tables. There is also a high risk of specifying the
wrong desired output when several input values are involved.
To the best of our knowledge, no empirical study has looked
into quantifying the cognitive effort yet.

Finally, there are two main implications of our results. First,
it motivates us to explore the practitioners’ view on the various

5 - —
4 -
3 A
2 -
l -
0 -
With tables Without tables
Fig. 6: When keyword count in Gherkin spec files

5 - —
4 .

A
3 .
2 .
1 .
0 .

T T
With tables Without tables

Fig. 7: Then keyword count in Gherkin spec files

feature of Gherkin. We intend to report their experience with
features, such as data tables, to validate our speculations
concerning the required effort. Second, our results make us
curious to investigate the implications of Gherkin features on
maintaining the glue code. We intend to undertake a large-
scale commit analysis to study the co-evolution of Gherkin
specifications and the corresponding glue code.

V1. THREATS TO THE VALIDITY

Several factors may have influenced the results of this study.
These factors may have influenced the search, the repository
selection, and the extraction of the data from the selected spec
files. The four threats to the validity that apply in our case are
discussed below.

Construct validity. Construct validity is used to determine how
well the collected metrics measure what it is supposed to
measure. Binamungu et al. proposed 14 aspects to determine
the quality of BDD specifications. These 14 aspects could help
determine the quality of BDD specifications in open-source
projects, and may represent a threat to construct validity.
However, these aspects require investigating the semantics

of the content and manually reading Gherkin specifications
may help a little to understand the overall context of the
project under consideration. With seventeen metrics presented
in |subsection III-B| we alleviate this threat as they help us
collect data for all possible usage patterns concerning the
syntax.

Internal validity. This type of validity concerns whether the
study results follow from the data [[17]. The accuracy of the
results and conclusions suffers from the fact that we collected
data for all metrics until 23 June 2021. However, given the
time required to design the study, collect data, interpret the
results, and report them, our results are still very recent and
relevant.

Conclusion validity. This type of validity focuses on how
sure we are that the treatment one used in an experiment
is related to the actual outcome observed. We studied two
distributions (spec files with data tables and without data
tables, respectively). To alleviate this threat, we compared
the values for distribution of each metric in the two groups,
through the Mann-Whitney test and Cliff’s delta effect size,
reporting and discussing the differences which resulted statis-
tically significant (p-value < 0.05) and exhibiting at least a
small effect size (|d| > 0.147).

External validity. This type of validity concerns whether
claims for the generality of the results are justified. We
analyzed the contents of 1,572 spec files from 23 open-source
projects that use Java as a primary programming language.
We are aware that several other projects with the primary pro-
gramming language other than Java exist. However, the choice
of primary programming language does not compromise our
results as our primary interest was the Gherkin specifications.
The number of projects we selected might appear to be small.
However, the selection criteria allowed us to include the
projects with a certain level of popularity and enabled us to
exclude the projects that are not maintained, which makes our
findings reliable. Finally, we are aware that our results may not
be generalizable to the private repositories. We can imagine
that industrial projects have established standards for writing
Gherkin specifications. To mitigate this threat, we intend to
analyze proprietary projects in the future and compare our
current results to paint a more realistic picture.

VII. CONCLUSION AND FUTURE WORK

We analyzed 1,572 Gherkin specification files from 23 open-
source projects that use BDD. The average number of LoC in
spec files varies greatly among selected repositories, meaning
BDD is likely used as main testing strategy only in the mi-
nority of cases. We found that data tables, which improve the
readability and reduce the length of the Gherkin specifications,
are not widely used yet. We applied the Mann-Whitney test
and Cliff’s delta to characterize two types of specifications:
those with and without tables. We report that both the distri-
butions are different for all the considered metrics. Notably,
Cliff’s delta is large for the LoC and the count of the Examples

keyword. Our results shed light on the discrepancies between
the recommendations for Gherkin specification and the actual
usage in practice, fostering discussion on this unexplored area
of research. We are currently conducting a practitioner survey
to understand their viewpoint on the pros and cons of using
Gherkin for behavior specification. In the future, we plan
to investigate whether the usage of data tables could have
negative effects on the maintenance of Gherkin specifications
and glue code.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assistance” (SNSF project no. 200020-181973, Feb.
1, 2019 - April 30, 2022). We thank Pooja Rani and Nataliia
Stulova for their support during brainstorming.

REFERENCES

[11] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf,
2017.

[2] L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Maintaining
behaviour driven development specifications: Challenges and opportuni-
ties,” in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 1EEE, 2018, pp. 175-184.

[3] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora, and M. Di Penta,
“Demystifying the adoption of behavior-driven development in open
source projects,” Information and Software Technology, p. 106311, 2020.

[4] “Gherkin reference,” https://github.com/cucumber/common/blob/main/
gherkin/CHANGELOG.md, accessed: 2021-04-03.

[5] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in International Con-
ference on Modelling Techniques and Tools for Computer Performance
Evaluation. Springer, 2012, pp. 269-287.

[6] N. Patkar, A. Chis, N. Stulova, and O. Nierstrasz, “Interactive behavior-
driven development: a low-code perspective,” 2021.

[71 L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Detecting
duplicate examples in behaviour driven development specifications,” in
2018 IEEE Workshop on Validation, Analysis and Evolution of Software
Tests (VST). 1EEE, 2018, pp. 6-10.

, “Characterising the quality of behaviour driven development spec-
ifications,” in International Conference on Agile Software Development.
Springer, Cham, 2020, pp. 87-102.

[91 A. Z. Yang, D. A. da Costa, and Y. Zou, “Predicting co-changes
between functionality specifications and source code in behavior driven
development,” in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). 1EEE, 2019, pp. 534-544.

[10] M. Altherwi and A. M. Gravell, “A large-scale dataset of popular open
source projects.” J. Comput., vol. 14, no. 4, pp. 240-246, 2019.

[11] H. Ruan, B. Chen, X. Peng, and W. Zhao, “Deeplink: Recovering issue-
commit links based on deep learning,” Journal of Systems and Software,
vol. 158, p. 110406, 2019.

[12] D. Favato, D. Ishitani, J. Oliveira, and E. Figueiredo, “Linus’s law: More
eyes fewer flaws in open source projects,” in Proceedings of the XVIII
Brazilian Symposium on Software Quality, 2019, pp. 69-78.

[13] A. Muna, “Assessing programming language impact on software devel-
opment productivity based on mining oss repositories,” ACM SIGSOFT
Software Engineering Notes, vol. 44, no. 1, pp. 36-37, 2019.

[14] W. J. Conover, Practical nonparametric statistics. john wiley & sons,
1999, vol. 350.

[15] R.J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[16] “Gherkin changelog,” https://github.com/cucumber/common/blob/main/
gherkin/CHANGELOG.md, accessed: 2021-04-03.

[17] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285—
311.

[8]

https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md
https://github.com/cucumber/common/blob/main/gherkin/CHANGELOG.md

	Introduction
	Related work
	Study design
	Data collection procedure
	Data analysis procedure
	Repository-level metrics
	Spec file-level metrics

	Validity procedure

	Study results
	Descriptive statistics
	What are the characteristics of the Gherkin specifications in open-source projects?
	What are the main differences between specs using tables and specs without tables?

	Discussion
	Threats to the validity
	Conclusion and future work
	References

