
Makar: A Framework for Multi-source Studies
based on Unstructured Data

Mathias Birrer∗, Pooja Rani∗, Sebastiano Panichella†, Oscar Nierstrasz∗

∗Software Composition Group, University of Bern

Bern, Switzerland

� scg.unibe.ch/staff
† Zurich University of Applied Science (ZHAW)

panc@zhaw.ch

Abstract—To perform various development and maintenance
tasks, developers frequently seek information on various sources
such as mailing lists, Stack Overflow (SO), and Quora. Re-
searchers analyze these sources to understand developer infor-
mation needs in these tasks. However, extracting and prepro-
cessing unstructured data from various sources, building and
maintaining a reusable dataset is often a time-consuming and
iterative process. Additionally, the lack of tools for automating
this data analysis process complicates the task to reproduce
previous results or datasets.

To address these concerns we propose Makar, which provides
various data extraction and preprocessing methods to support
researchers in conducting reproducible multi-source studies. To
evaluate Makar, we conduct a case study that analyzes code
comment related discussions from SO, Quora, and mailing
lists. Our results show that Makar is helpful for preparing
reproducible datasets from multiple sources with little effort,
and for identifying the relevant data to answer specific research
questions in a shorter time compared to state-of-the-art tools,
which is of critical importance for studies based on unstructured
data. Tool webpage: https://github.com/maethub/makar

Index Terms—Mining developer sources, Code comments, Stack
Overflow, Mailing lists

I. INTRODUCTION

As a software system continues to evolve, it becomes bigger

and more complex, and developers need various kinds of

information to perform activities such as adding features, or

performing corrective maintenance [1]. Developers typically

seek information on internal (available within IDE) or exter-

nal sources such as Q&A forums,1 Github2 to satisfy their

information needs as shown in Figure 1 [2].

To support developers in various activities and understand their

information needs, researchers have analyzed these external

sources such as Github, CVS, mailing lists, and CQA sites [3]

(see Figure 1). However, extracting and preprocessing unstruc-

tured data from these sources, and maintaining the data due

We gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Agile Software Assistance” (SNSF project
No. 200020-181973, Feb. 1, 2019 - April 30, 2022).

1www.stackoverflow.com
2https://github.com/

Fig. 1. Developers seek various sources during software development

to lack of automated techniques pose various challenges in

conducting reproducible studies [4], [5], [3]. To gain a deeper

understanding of these challenges, we surveyed the literature

that focuses on studying developers information needs from

different external sources (see section II).

Prior works have raised and identified the crucial factors

affecting the reproducibility of the mining studies such as

data retrieval methodology, data processing steps, or dataset

availability [6], [5], [4]. Chen et al. pointed out that 50% of

articles do not report whether word stemming, a common text

preprocessing step, is used or not [4]. Amann et al. pointed

out that only 29% of the mining studies made their dataset

available [5]. As a consequence, more tools and techniques

are required to enable the preprocessing and analysis of multi-

source studies to facilitate their replicability.

To address these concerns, we propose Makar, a tool that

leverages popular data retrieval, processing, and handling

techniques to support researchers in conducting reproducible

studies. We establish its requirements based on the surveyed

studies. To evaluate Makar, we conduct a case study that

analyzes code comment related discussions from SO, Quora,

and mailing lists. Thus the contribution of this paper is three-

fold:

• We present the challenges researchers face in mining and

analyzing the unstructured data from the external sources.

• We present Makar, a tool to support researchers in con-

ducting multi-source and reproducible empirical studies.

• We report the state-of-art tools comparison to Makar.

577

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-7281-9630-5/21/$31.00 ©2021 European Union
DOI 10.1109/SANER50967.2021.00069

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-7

28
1-

96
30

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

50
96

7.
20

21
.0

00
69

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:40:07 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND STUDY

To identify the challenges researchers face with various

sources, we surveyed the relevant papers considered in a recent

systematic literature review (SLR) [7]. The SLR includes the

studies in which researchers collected developer information

needs by interviewing people (people-centric) or from online

platforms (technology-centric) for the program comprehension

tasks [7]. We included only technology-centric studies (29

studies) due to our interest in the external sources. Following

the same inclusion and exclusion criteria from the SLR (e.g.,
studies not older than 15 years), we further included 23

additional papers that focus on studying developer information

needs from other sources such as mobile app stores (e.g.,
user reviews) and Quora, resulting in a total of 52 papers. In

particular, we included the study if it focuses in part or whole

on software developer information needs related to software

development and includes empirical evidence. We excluded

the study if is a review, survey, or tool study, older than 15

years, not peer-reviewed, or not in English. As we aim to focus

on the diversity of sources rather than on a deep overview of a

particular source, we excluded the studies analyzing the same

project from the same source. The list of selected papers and

detailed observations are reported in the “Background Study”

file in the Replication Package (RP).3

Challenges in various sources. Table I reports our main

findings, where the column Source represents the source,

and the columns Data Extraction, Data Relevancy, and

Data Preprocessing reports the major challenges associated

with handling data from each source, and the column Makar
reports the sources Makar supports in Data Extraction, Data
Preprocessing currently (�) or those planned for the future

(FW). As the challenges of selecting relevant data given in

Data Relevancy column depends on a research context, Makar

supports exploring and filtering data to select relevant data.

The results show that while a few sources offer convenient

ways for extracting data (e.g., SO), there are other sources

(e.g., Quora) that are more prohibitive and complex to acquire

the required data. Similarly, extracting and processing data

from mailing lists require manual efforts. Therefore, extracting

the data manually is still widely adopted in practice. However,

the use of manual extraction methods can lead to inconsistent

collection and processing of data across sources, which im-

pacts the reproducibility of the studies.

Requirements. Based on the gathered challenges in the

survey, we identified relevant functional and non-functional

requirements for Makar. The tool intends to cover the common

use cases found in the survey while being extensible to support

additional or more specific scenarios encountered in the case

study. It can also be used by developers to manage their

information in development as depicted in Figure 1.

We identified five main functional requirements: data import,

data management, data processing, data querying, and data

3https://doi.org/10.5281/zenodo.4434822

export. Data import focuses on the ways to import the data

into the tool, Data management on building and maintaining

the data, Data processing focuses on the need to preprocess the

data (HTML removal, stop word removal), Data Querying on

searching the data, and Data export focuses on exporting the

data from the tool in order to support further analysis. We also

identified non-functional requirements for Makar. It should be

easily extensible in areas where the projects have different

technical requirements, such as import adapters, preprocessing

steps, or export adapters. The tool should be able to handle

large amounts of data (scale of 100k records) and still have

acceptable usage performance (e.g., for search queries).

III. MAKAR ARCHITECTURE

Makar has been developed as a web application so that it

can be hosted on accessible and possibly powerful servers.

Thus, it allows multiple users to work with the same dataset.

It is a Ruby on Rails (RoR)4 web application with a Post-

gresql5 database in the back end. To have minimal technical

requirements to run the tool, to provide maximal compatibility

and ease of installation on different platforms and operating

system, Makar runs in a Docker container. 6 We provide

instructions to run the tool on the tool repository7 and its

demonstration on Youtube.8 We show its architecture and

features in Figure 2 and the next paragraphs.

Import
Adapters Transformations Data

Management
Export

Adapters

User-defined Data Models

Preprocessing

Web Application

Database
User connects

2 1

3

Fig. 2. Architecture overview of Makar

• Data import: the user can import data from diverse

sources such as CSV and JSON directly. The tool also

supports direct import adapters for the following sources:

Apache Mailing List Archive,9 Github Pull Requests
(via Github Archive),10 Github Issues Via the Github

API,11 and Stack Overflow Search Excerpts.12 The import

4https://rubyonrails.org/
5https://www.postgresql.org/
6https://www.docker.com/
7https://github.com/maethub/makar
8https://youtu.be/Yqj1b4Bv-58
9https://mail-archives.apache.org/mod mbox/
10http://www.gharchive.org/
11https://developer.github.com/v3/search/#search-issues
12https://api.stackexchange.com/docs/excerpt-search

578

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:40:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CHALLENGES FROM EACH DATA SOURCE

Source Data Extraction Data Relevancy Data Preprocessing Makar
SO Public API & Data dumps Selecting relevant and pertinent ques-

tions [2], [8]
Removing noisy data such as HTML
tags, code snippets [2], [3]

�

Quora No official API available to access data
and no publicly available dataset [9]

Finding relevant topics and ques-
tions [9]

Preprocessing data for the study �

Mailing lists MBOX file, if available otherwise the
unstructured text in the mails requires
manual data extraction

Contains unstructured text (i.e., no tags
or assigned topics)

Consists of heterogeneous types of in-
formation (stack traces, simple text,
footers)

�

Bug Reports Data extraction is performed manu-
ally [10]

Information overload and it requires
human interpretation to select relevant
data [10]

Contains stack traces, simple text, and
code snippets

�

User Reviews No public API to access and extract user
review data [11], [12]

Require human interpretation to select
relevant data [12], suffers from a sam-
pling bias [13]

lack of source code artifacts makes the
preprocessing straightforward

FW

Combining
Sources

Extracting data from multiple
sources [14]

Require human interpretation to map
data across sources [14]

Consistent preprocessing of data [3] �

adapters can be extended easily using ImportAdapter
component for other sources shown in Table I.

• Data management: Makar provides schemas, collec-
tions, filters and records to manage datasets as shown

in Figure 2. Schemas define the structure of a dataset and

its records, and records are rows of the dataset (similar

to schemas and records in databases). Collections are

arbitrary selections of records, which can be used to

manage various subsets of the data. A record can belong

to multiple collections. Filters are the search queries

that help one to filter data from existing collections or

schemas, and can be saved to provide efficient querying

and rebuilding of the dataset. For example, a study ana-

lyzing SO questions imports the SO dataset into Makar.

The study design requires only questions having the word

“javadoc” in the question title. To fulfill this requirement,

the user can create a filter (e.g., “All Questions with

Javadoc in Title” filter) by searching the question titles

for “javadoc” as shown in Figure 3. The user can create

a collection that uses this filter and use the collection

as their dataset for further analysis. In the case, the user

add more data from SO to update her dataset (collection),

Makar facilitates syncing the collection using the Auto-
filter option (reapplying the same filter) as shown in

Figure 4.

• Data processing. The user can preprocess the data in

Makar through transformation steps. A transformation
step is a single operation that is applied to all records

in a collection. Currently, the tool supports operations

such as text cleaning, natural language processing, data
restructuring, and arithmetic and counting.

– In text cleaning, the user can strip all HTML tags, or

selected HTML tags, or replace records with custom

values e.g., remove HTML tags from questions in SO.

– In natural language processing, the user can apply

Fig. 3. Search Interface of Makar

Fig. 4. Dataset Preparation Interface of Makar

word stemming,13 remove all stop words,14 or remove

all punctuation.

– In data restructuring, the user can merge records hav-

ing same value, create new records, remove duplicates,

split text on defined substring, add a static value.

In addition, the user can create a new dataset with

13https://snowballstem.org/algorithms/porter/stemmer.html
14http://snowball.tartarus.org/algorithms/english/stop.txt

579

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:40:07 UTC from IEEE Xplore. Restrictions apply.

a randomized sample, which is widely performed in

manual analysis studies.

– In arithmetic and counting, the user can also perform

simple arithmetic steps e.g., counting frequent occur-

rences of a particular value or a word.

• Data export. The user can select which attributes are to

be selected for the export, and then export the data in

the required format as shown in Figure 4. Currently, the

tool supports CSV, JSON, and .txt (file) formats. Makar

also supports adding more complicated export formats via

ExportAdapter. To perform LDA (Latent Dirichlet

Allocation) analysis using Mallet, we added the Mallet

adapter (custom export adapter).15

IV. MULTI-SOURCE ANALYSIS USING MAKAR

Code comments play a crucial role in program comprehension

and maintenance [15]. However, their semi-structured nature

and the availability of multiple commenting conventions con-

front developers with numerous ways to write them. Conse-

quently, developers often post questions to learn about differ-

ent conventions on various sources such as Q&A websites [2].

To identify such concerns, we conducted an empirical study

on SO, Quora, and mailing lists using Makar.

Methodology. We manually identified ten relevant tags from

SO by searching comment and convention keywords on its

tag page.16 The selected tags are: comments, commenting,

code-comments, block-comments, autocommenting, comment-
conventions, convention, conventions, coding-style. Based on

a heuristics-based approach proposed by Ying et al., we

added five more relevant tags: documentation, todo, code-
documentation, naming, readability [8]. We used the relevant

tags from SO as keywords to find relevant topics on Quora. As

a result, we obtained five topics from Quora: Code Comments,

Source Code, Coding Style, Programming Languages, Com-
ment (computer programming)]. We mined mailing lists of five

Apache projects that we selected based on the top program-

ming languages, Line Of Code, and number of commits from

the Apache statistics report.17 Thus, we considered Lucene
(Java), Ambari (JS), OpenOffice (C++), Cloudstack (Python),

and Subversion (C). From these projects, we mined @dev,

@users and @docs mailing lists. The resulting data from each

source is shown in Table II.

To obtain the high-level overview for SO questions, we used

the popular topic analysis method, LDA [4]. To obtain a more

detailed view of each source, we extracted a statistically sig-

nificant sample set of discussions from each source (reaching

95% confidence level and an error margin of 5%) to analyze

manually. Makar supported us in preparing the dataset suitable

for the LDA analysis and manual analysis.

15http://mallet.cs.umass.edu/
16https://stackoverflow.com/tagsverifiedon20Nov2020
17https://projects.apache.org/statistics.html

TABLE II
DATA EXTRACTED FROM VARIOUS SOURCES

Source Fields extracted Candidate
posts

Manually
analyzed

SO id, title,x body, tags,
creation date, view
count

11 931 373

Quora url, title, body, topics,
answers

689 689

Mailing lists all 140 667 385

• Data import: We imported the SO data using the CSV

import adapter, Quora data with the JSON adapter,

and mailing lists with the Apache Mailing List Archive
adapter. The CSV files of the dataset are provided in the

RP.18

• Data processing: The data from SO contains HTML,

code snippets, links and natural language text. To get

meaningful results from LDA analysis, the data need to

be cleaned, with text cleaning and language cleaning
steps. All preprocessing steps such as removing code,

HTML, punctuations, and stop words,19 and stemming

words20 are performed by Makar using its built-in trans-

formations as shown in Figure 5. In the figure, the

Transformation as described in section III, shows various

built-in transformations of Makar and Attributes shows

the list of selected fields (e.g., Title, Body) from the

sources. Each transformation is designed to produce a

new attribute (a column) in the data records, allowing

us to retrace the changes applied to the data. As it is

generally uncertain in the beginning of a study which

combination of preprocessing steps would lead to the best

results, the flexible approach of Makar supported us in

trying several scenarios efficiently.

Code HTML Punctuation Stop Word Word
Stemming

Transformation extract_code strip_html string_replace remove_stopwords word_stemming

Attributes - Question | Body - Question | Body - Question | Body
- Question | Title

- Question | Body
- Question | Title

- Question | Body
- Question | Title

Fig. 5. Preprocessing steps with the transformation in the tool

• Data export: The dataset from the case study has been

exported as CSV and provided in the RP.21

V. TOOL COMPARISON

We compare similar state-of-art tools reported in Table III

based on the functionality defined in section III: extract-

ing(Data import), preprocessing(Data processing), and man-

aging data (Data management) from multiple sources in a

18https://doi.org/10.5281/zenodo.4434822
19http://snowball.tartarus.org/algorithms/english/stop.txt
20https://snowballstem.org/algorithms/porter/stemmer.html
21“Data” folder in https://doi.org/10.5281/zenodo.4434822

580

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:40:07 UTC from IEEE Xplore. Restrictions apply.

TABLE III
TOOLS COMPARISON

Tool Costs Extract Process Manage
Octoparse Commercial � � �

Knime Free Extension � �

Rapidminer Commercial � Limited Limited

ELKI Free � � �

Keel Free � � �

WEKA Free � � �

TrifactaWrangler Commercial � � �

Boa Free Limited � �

OpenRefine Free � � �

Makar Free � � �

reproducible way. In Table III, the column Extract focuses

on mining data from various sources such as mailing lists,

or Q&A forums, the column Process focuses on various

preprocessing operations on the data, such as removing noisy

HTML tags, and stop words, and the column Manage focuses

on importing, exploring, and filtering the multi-source data

into the tool. The links to access the tools are provided in the

RP and the tool page due to space constraints.22 Our direct

comparison shows that the majority of previous tools (except

OpenRefine, TrifactaWrangler, Octoparse) provide pipelines

facilitating the process of building machine-learning based

data analysis and visualizing their results. However, they lack

the ability to manually explore, extract, and map the data

from various sources as well as to investigate small samples,

or perform ad-hoc searches on intermediate data. Researchers

interested in using new sources of data or combining multiple

sources using various heuristics to map the sources [14] with

state-of-art-tools are limited in their decision making. Human

interpretation, ad-hoc testing of simple hypotheses, rescaling

a dataset, or the assessment of data quality is often required to

determine the plausible approach or methodology for using the

new data sources and combining the multiple sources. Com-

pared to data cleaning tools (OpenRefine, TrifactaWrangler),

Makar focuses on tailoring specific use cases for software

engineering researchers, allowing them to perform a wide

range of feasibility analyses or quality assessment steps on

the data in a reproducible way.

CONCLUSION

In this paper, we presented Makar, a tool supporting and en-

abling multi-source empirical studies. The performance of the

tool has been assessed through an empirical study involving

11 931 questions from Stack Overflow, 140 667 mails from

mailing lists, and 700 from Quora. Makar helped us to process

the multi-source data in a uniform way and to investigate

various combinations of features for both LDA analysis and

manual analysis. Moreover, Makar provides an extensible

framework to support custom requirements, so further textual

analysis techniques can be integrated to perform advanced text

operations.

22https://github.com/maethub/makar/Similar-Tools.md

REFERENCES

[1] M. Lehman, D. Perry, J. Ramil, W. Turski, and P. Wernick, “Metrics
and laws of software evolution–the nineties view,” in Proceedings
IEEE International Software Metrics Symposium (METRICS’97). Los
Alamitos CA: IEEE Computer Society Press, 1997, pp. 20–32.

[2] H. Gujral, A. Sharma, S. Lal, A. Kaur, A. Kumar, and A. Sureka,
“Empirical analysis of the logging questions on the Stack Overflow
website,” in 2018 Conference On Software Engineering & Data Sciences
(CoSEDS)(in-press), 2018.

[3] G. Bavota, “Mining unstructured data in software repositories: Current
and future trends,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 5.
IEEE, 2016, pp. 1–12.

[4] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use
of topic models when mining software repositories,” Empirical Softw.
Engg., vol. 21, no. 5, pp. 1843–1919, oct 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9402-8

[5] S. Amann, S. Beyer, K. Kevic, and H. Gall, Software Mining
Studies: Goals, Approaches, Artifacts, and Replicability. Springer
International Publishing, 2015, pp. 121–158. [Online]. Available:
https://doi.org/10.1007/978-3-319-28406-4 5

[6] J. M. González-Barahona and G. Robles, “On the reproducibility of
empirical software engineering studies based on data retrieved from
development repositories,” Empirical Software Engineering, vol. 17,
no. 1, pp. 75–89, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s10664-011-9181-9

[7] J. Richner, “Software developers’ information needs,” University
of Bern, Bachelor’s thesis, Feb. 2019. [Online]. Available: http:
//scg.unibe.ch/archive/projects/Rich19a.pdf

[8] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What
security questions do developers ask? a large-scale study of Stack
Overflow posts,” Journal of Computer Science and Technology,
vol. 31, no. 5, pp. 910–924, 2016. [Online]. Available: https:
//doi.org/10.1007/s11390-016-1672-0

[9] S. Patil and K. Lee, “Detecting experts on quora: by their activity, quality
of answers, linguistic characteristics and temporal behaviors,” Social
network analysis and mining, vol. 6, no. 1, p. 5, 2016.

[10] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: improving cooperation between developers and users,”
in Proceedings of the 2010 ACM conference on Computer supported
cooperative work. ACM, 2010, pp. 301–310.

[11] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2013, pp. 1276–1284.

[12] D. Pagano and W. Maalej, “User feedback in the appstore: An empir-
ical study,” in 2013 21st IEEE international requirements engineering
conference (RE). IEEE, 2013, pp. 125–134.

[13] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015,
pp. 123–133.

[14] A. Zagalsky, C. G. Teshima, D. M. German, M.-A. Storey, and G. Poo-
Caamaño, “How the R community creates and curates knowledge: A
comparative study of Stack Overflow and mailing lists,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 441–451.
[Online]. Available: http://doi.acm.org/10.1145/2901739.2901772

[15] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, ser. SIGDOC ’05.
New York, NY, USA: ACM, 2005, pp. 68–75.

581

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:40:07 UTC from IEEE Xplore. Restrictions apply.

		2021-05-09T08:10:29-0400
	Preflight Ticket Signature

