
Using Dynamic Information for the Iterative Recovery of Collaborations and
Roles

Tamar Richner and St´ephane Ducasse
Software Composition Group, Institut f¨ur Informatik (IAM)

Universität Bern, Neubr¨uckstrasse 10, 3012 Berne, Switzerland
frichner,ducasseg@iam.unibe.ch

http://www.iam.unibe.ch/�frichner,ducasseg

Abstract

Modeling object-oriented applications using collabora-
tions and roles is now well accepted. Collaboration-based
or role-based designs decompose an application into tasks
performed by a subset of the applications’ classes. Collab-
orations provide a larger unit of understanding and reuse
than classes, and are an important aid in the maintenance
and evolution of the software. This kind of design informa-
tion is lost, however, at the implementation level, making it
hard to maintain and evolve an existing software applica-
tion. The extraction of collaborations from code is there-
fore an important issue in design recovery. In this paper we
propose an iterative approach which uses dynamic informa-
tion to support the recovery and understanding of collabo-
rations. We describe a tool we have developed to support
our approach and demonstrate its use on a case study.
Keywords: collaboration-based design, design recovery,
program understanding, object-oriented reverse engineer-
ing, dynamic analysis.

1. Introduction

In contrast to procedural applications, where a specific
functionality is often identified with a subsystem or mod-
ule, the functionality in object-oriented systems comes from
the cooperation of interacting objects and methods[23, 12].
In designing object-oriented applications, the importance of
modeling how objects cooperate to achieve a specific task
is well recognized [24, 15, 19, 3]. Collaboration-based or
role-based design decomposes an object-oriented applica-
tion into a set of collaborations between classes playing
certain roles. Each collaboration encapsulates an aspect of
the application and describes how participants interact to
achieve a specific task.

The recovery of collaborations from existing code is an
important aid for understanding and maintaining object-
oriented applications [23]. However, detecting and deci-
phering interactions of objects in the source code is not
easy: polymorphism makes it difficult to determine which

method is actually executed at runtime, and inheritance
means that each object in a running system exhibits behav-
ior which is defined not only in its class, but also in each of
its superclasses.

To get a better understanding of the dynamic inter-
actions between instances, developers often turn to tools
which display the run-time information as interaction di-
agrams. Designers of such tools are confronted with the
challenge of dealing with a huge amount of trace informa-
tion and presenting it in an understandable form to the de-
veloper. Several visualization techniques, such as informa-
tion murals[9], program animation[22] and execution pat-
tern views[14] have been proposed to reduce the amount of
trace information presented and to facilitate its navigation.

In this paper we propose an approach to the recovery of
collaborations which uses dynamic information, but does
not rely heavily on visualization techniques. Whereas most
visualization tools display an entire trace and give the user a
feel for the overall behavior of an application, our approach
focuses on understanding much smaller chunks of interac-
tions and the roles that classes play in these.

We have developed a tool prototype, theCollaboration
Browser, to demonstrate the validity of our approach. We
illustrate through examples how the Collaboration Browser
is used to query run-time information iteratively to answer
concrete questions about collaborations and interactions in
Smalltalk programs.

The paper is structured as follows: in the next section
we briefly illustrate the concepts of collaboration-based de-
sign. In Section 3 we discuss the challenges of recovering
such design artifacts and give an overview of our approach.
In Section 4 we introduce our approach and present the tool
we have developed to support the recovery process. In Sec-
tion 5 we walk the reader through an example of program
understanding using the tool and in Section 6 we discuss is-
sues arising from our case studies. The implementation is
presented briefly in Section 7. In Section 8 we review re-
lated work. In Section 9 we conclude with a discussion of
the approach and directions for future work.



2. Collaboration-based Design

In this section we illustrate the concepts of collaboration-
based design with a small example. Consider a class model
which describes a bureaucracy [18].

Employee

arrangeBigMeeting
arrangeSmallMeeting
writeReport

arrangeBigMeeting
arrangeSmallMeeting
writeReport

Director

Clerk

writeReport

Manager

addSubordinate
removeSubordinate
arrangeSmallMeeting
writeReport

Figure 1. Class Diagram for Bureaucracy.

This is a hierarchy of Director, Managers and Clerks
which operates as described by the Bureaucracy pattern
[18]. In effect, four of the GOF design patterns [7] govern
the interaction of the objects. A Manager or Director who
receives a request, delegates work to its subordinates, as in
the Composite pattern: the Clerk plays the role of Compo-
nent and the Manager the role of Composite. A Manager
or Clerk receiving a request it can not handle forwards the
request up the hierarchy, as in Chain of Responsibility: the
Manager and Clerks play the Predecessor role and the Di-
rector the Successor role. Clerks or Managers who want to
interact with each other first address their superior to coor-
dinate them, as in the Mediator pattern: at the same hier-
archy level the objects are Colleagues, whereas the supe-
rior acts as Mediator. Finally, when a subordinate changes
state, such as completing some work, or being absent, it re-
ports this change of state to its superior: thus the superior
acts as Observer of its subordinate Subjects, as in the Ob-
server pattern. Figure 2 summarizes this information in a
class/collaboration matrix [21]. It illustrates that an instance
of a class participates in several collaborations, playing a
distinct role in each.

Here we have described the collaborations and roles in
terms of the design patterns they instantiate. Roles de-
scribes the responsibilities of objects in a collaboration, but
how a role is actually modeled or specified is often left open
[19]. Some design techniques model roles using interfaces
[15], or as part of a behavioral contract between participants

Observer

Composite

Mediator

Chain of 
Responsibility

Clerk DirectorManager

Predecessor Predecessor

ObserverSubject

Successor

Component Composite

Colleague Mediator

Figure 2. Class-collaboration matrix for Bu-
reaucracy. Each row represents a collaboration and
each cell describes the role the class plays in the col-
laboration.

[8]. Collaborations are usually modeled using UML inter-
action diagrams. These show how participants interact to
achieve a task: they are usually succinct and show only one
instance of each kind of participant.

3. Challenges to Recovering Collaborations

Since standard object-oriented languages do not provide
language constructs to capture collaborations, design infor-
mation about collaborations is lost in the implementation.
In a collaboration, objects interact according to a protocol
describing the set of allowed behaviors. At the implemen-
tation level the description of this behavior protocol is dis-
tributed throughout the code as two basic elements:partic-
ipantsandroles. The role of each participant is the part of
the participant which enforces the interaction protocol.

In order to reverse engineer collaborations from code we
must first recover interactions of instances from the code.
Which class instances interact with each other? Which
methods are invoked in an interaction? Second, since
object-oriented code is full of interactions the challenge is to
find thesignificantinteractions – the design collaborations
are those which capture important behavioral concepts.

3.1. Recovering Interactions

As argued in the introduction, static information does
not provide us with the information necessary for identify-
ing interactions of classes. To identify these we need con-
trol flow information; this is difficult to obtain purely from
static analysis, due to polymorphism, inheritance and dy-
namic binding.

Recording information about message exchanges be-
tween instances as the program executes provides us with
control flow information required for deriving interactions
and with information about the context in which methods of
specific instances are invoked. Program tracing, however,



results in a great volume of information about the interac-
tions of objects, where much of this information is dupli-
cated many times over in an execution trace.

The main argument against the use of dynamic informa-
tion is its incomplete coverage of the code. But this very
property is also its advantage [1]. In the context of reverse
engineering we do not always need complete information:
a program trace provides information about the behavior of
the system exercising a certain functionality, and so helps
us to tie functionality to behavior.

Our Approach. To obtain control flow information we use
dynamic informationrecorded from program execution. To
reduce the volume of information, while still maintaining
the informationcontent, we use pattern matching to group
similar sequences of method invocations in a pattern. This
allows us to abstract from a particular execution sequence to
a pattern of execution which occurs repeatedly in the trace.

3.2. Finding the Important Collaborations

Once we have obtained information about interactions
- which instances interact with each other and the meth-
ods invoked in these interactions - the challenge remains
to identify theimportantinteractions - these will be the col-
laborations we are interested in.

It has been observed that without guidance from a user
the process of design recovery gives poor results [13]. Our
own experience with reverse engineering tools corroborates
this observation. We do not believe, therefore, in the auto-
matic extraction of collaborations and roles, but rather in an
iterative process steered by the engineer. Typically, an en-
gineer approaching the code has a specific question in mind
- asking something like “How is this task achieved?” rather
than “how does everything work in this application?” - and
this question steers the recovery process.

Since we are not interested in all collaborations, nor in all
the details of a collaboration, choosing the right interactions
to look at and the right level of detail is important.

Our Approach. In order to allow the engineer to focus on
the details relevant for his or her investigation we support
an iterative recoveryprocess throughquerying.

3.3. Overview of Our Approach

The approach we propose for recovering collaborations
and roles is:

Based on dynamic information. To obtain control flow
information our approach uses dynamic information
recorded from program execution. For each method
invocation event we record the sender class, sender
identity, receiver class, receiver identity, and name of
invoked method.

Uses pattern matching.We use pattern matching to find
similar execution sequences in the execution trace.
This condenses the amount of dynamic information
from information about interactions of instances to in-
formation about patterns of interactions.

Supports iterative recovery through querying. We
enable the developer to identify the significant col-
laborations by specifying what kind of information
he or see is interested in. This is done through two
operations: specifying the desired pattern matching
criteria and querying the dynamic information in
terms of classes and interactions of interest.

4. Supporting the Recovery of Collaborations

The Collaboration Browser is a tool we have developed
which supports such an iterative recovery process. In this
section we first explain some of the underlying terminology
and concepts, then introduce the Collaboration Browser.

4.1. Terminology and Concepts

Our starting point for the recovery of collaborations is
the execution trace - a record of all method invocation
events for the instrumented classes. A short sample of such
a trace is given below.

1 EventDispatcher,5604,DrawingController,3548,handleEvent:
2 DrawingController,3548,DrawingController,3548,currentTool
3 DrawingController,3548,Tool,14970,handleEvent:
4 Tool,14970,ToolState,13668,nextStateForEvent:tool:

This trace sample consists of four method invocation
events. For each event we record five items of information,
which we illustrate with the values for event 1: the class
of the sender (EventDispatcher), the identity of the sender
(5604), the class of the receiver (DrawingController), the
identity of the receiver (3538) and the method invoked on
the receiver (handleEvent:).

From the execution trace we aim to recover collabora-
tions and roles approaching those used in design. We re-
serve the termcollaborationandrole to talk about the high-
level design concepts introduced in Section 2. Each method
invocation recorded in the execution trace gives rise to a se-
quence of method invocations, an interaction which we call
a collaboration instance. We then identifycollaboration
patternsby comparing similar collaboration instances.

Collaboration instance.A collaboration instance is the se-
quence of message sends between objects, ordered as
a call tree, which results from a method invocation (all
message sends up to the return).

Collaboration pattern.A collaboration pattern is an equiv-
alence class of several collaboration instances.



In the trace sample above there are four collaboration
instances: the first one includes all four events and corre-
sponds to the invocation ofhandleEvent: on DrawingCon-
troller. The second one consists of event 2 only, the third of
events 3 and 4, and the fourth of event 4.

high-level concepts

intermediate abstractions

low-level artifacts

role

collaboration pattern
querying

class interface

collaboration instance

collaboration

pattern matching

execution trace

in collaboration pattern

class interface

querying

Figure 3. From an execution trace to collabo-
rations and roles

A collaboration pattern is an approximation to the
higher-level design concept of collaboration. The corre-
sponding approximation to the high-level notion of role is
the set of (public) methods that a class presents in the con-
text of a collaboration pattern. We can obtain this informa-
tion by querying about a collaboration pattern.

Figure 3 above illustrates how pattern matching and
querying support the recovery of collaborations. Pattern
matching allows us to create the abstractions ofcollabora-
tion patterns. These are indications for collaborations. The
execution trace can be queried to obtain the interface of a
class in the whole execution trace or in the context of a col-
laboration pattern. The interface of a class in a collaboration
pattern is an indication for the role of the class in the col-
laboration. Below we explain the pattern matching settings
and the querying facility available to an engineer using this
approach.

4.2. Pattern Matching Settings

In an execution trace there are many collaboration in-
stances which are variations on the same prototype (design)
collaboration. We use pattern matching to group collabora-
tion instances intocollaboration patterns. The settings for
the pattern matching criteria specify what it means for two
collaboration instances to be considered equivalent - they
reflect what the engineer considers important about a col-
laboration.

The pattern matching settings can be modulated along
three independent axes:

Information about an event. An event in the trace con-
tains basically three items of information: the sender,
the receiver and the invoked method. For each of these
three items we can include or omit information in the

matching scheme. For example, senders and receivers
can be ignored, or matched on the identity of the ob-
ject or the class. The invoked method can be ignored,
or matched on method name or method category name.

Events to exclude.The matching scheme allow us to ig-
nore certain events in the trace: we can ignore events
in which an object sends a message to itself, events
whose depth of invocation in the trace is above a given
limit, or events whose depth of invocation in the col-
laboration pattern is above a given limit.

Structure of the collaboration instance. A collaboration
instance is a tree of events. However, similar collab-
oration instances may differ in their tree structure and
still have the same ’meaning’. Therefore, in the match-
ing scheme it is also possible to treat collaboration in-
stances as sets of events, thus ignoring all ordering and
nesting relationships between method invocations. In
this scheme collaboration instances are treated as iden-
tical if they have the same method invocation events in
their set.

4.3 The Query Model

Once pattern matching has been performed with the set-
tings the engineer has specified, the dynamic information is
presented to the engineer in terms of classes, methods and
collaboration patterns. A developer focuses on the relevant
collaboration patterns by querying this information. The
query model supports multi-way queries about the two ba-
sic relations which are of interest to us in recovering collab-
orations: method invocations in the executed scenario, and
method invocations in the context of a collaboration pattern.

send(Sender,Receiver,Method): this relation holds when
there is an instance of the classSender which invokes
Method on an instance of the classReceiver, in the con-
text of the whole execution trace.

sendInCollab(Sender,Receive,Method,Collab): this re-
lation holds when there is at least one collaboration in-
stance in the collaboration patternCollab in which an
instance ofSender invokesMethod on an instance of
Receiver.

4.4. The Collaboration Browser

The Collaboration Browser presents the dynamic infor-
mation to the user through four basic elements of informa-
tion: sender classes, receiver classes, invoked methods and
collaboration patterns. Each of these four elements is dis-
played on the screen in a separate panel as seen in Figure 4.
Panelsa, b andc list the sender classes, the receiver classes
and the invoked methods respectively. Panelsd ande both
list collaboration patterns. The distinction between these



a b

c d e

f

Figure 4. Collaboration Browser window. Panelsa b andc list the sender classes, the receiver classes and the
invoked methods respectively. Panelsd ande both list collaboration patterns. Panelf provides functionality for filtering
out information.

two collaboration pattern lists is explained further below, as
is the function of the button panelf.

The Collaboration Browser supports the two key opera-
tions for the recovery of collaborations: pattern matching
and querying. Querying is done through the browser win-
dow, whereas the pattern matching criteria are currently set
by hand. In addition, the Collaboration Browser enables the
developer to filter out dynamic information, and to display
interaction diagrams.

In this section we explain the functionality of the Collab-
oration Browser, giving some small examples. The screen
shots which provide the examples are from an analysis of
the HotDraw application, which will be presented in greater
detail in Section 5.

Querying about senders, receivers and methods in the
context of the whole scenario.The “query trace” button
(at the top of the Collaboration Browser window) is used
to query the relationships of sender classes, receiver classes
and invoked methods in the context of the complete execu-
tion scenario.

Example:in Figure 4, a sender class,DrawingController

and a receiver class,Tool, have been chosen. Querying the
trace with these selected sender and receiver classes resulted
in panelc being updated to list the methods of classTool
which are invoked by an instance ofDrawingController.

Querying about senders, receivers and methods in the
context of a collaboration pattern. The “query collab.”
button (at the top of the Collaboration Browser window) is
used to query the relationships of sender classes, receiver
classes, invoked methods and collaboration patterns.

Example: in Figure 4 three methods of classTool have
been selected in panelc: controller:, cursor and selected.
Paneld lists the collaboration patterns resulting from the
invocation of each one of the methods selected:Toolcon-
troller:, Toolcursor and twoToolselected collaboration pat-
terns. In contrast, panele lists the (shortest) collabora-
tion patterns in which ALL these three methods of class
Tool come into play. The list shows four collaboration pat-
terns, three with the nameDrawingControllerchangedTool,
but each with a different identity number, and one named
DrawingControllertool. The first three collaboration patterns
result from the invocation ofchangedTool on an instance of



DrawingController, the last one from the invocation oftool
on an instance ofDrawingController.

Note that the answer to the query about which collabo-
ration patterns include particular participants and methods
always provides theshortest(in terms of number of method
invocation events) collaboration pattern which meets the
criteria. It is clear that there are many longer collaboration
patterns which contain these shortest patterns and there is
no interest in exhaustively listing all of them. Paneld lists
the shortest collaboration patterns in whichoneof the se-
lected participants occurs, whereas panele lists the shortest
collaboration patterns in whichall the selected participants
occur.

First, we can ask which collaboration patterns include
particular receivers and invoked methods. Second, selecting
a collaboration pattern either from paneld or from panele,
we can ask about the senders, receivers and invoked meth-
ods in the pattern, again using the ’query collab.’ button.
If senders, receivers or invoked methods are also specified,
the missing (unselected) elements will be returned as a re-
sponse to the query. Three queries are here of particular
interest:

collaboration pattern for given participants: Selecting a
list of participant classes, we ask in which collabora-
tion patterns instances of these classes occur together.

role of a class: selecting a collaboration pattern and a re-
ceiver class we ask about the role (a set of methods)
this class plays in the collaboration pattern.

role equivalence: selecting a collaboration pattern and a
role (a set of methods), we ask which classes play this
role in the collaboration pattern.

Filtering out dynamic information. To focus the investi-
gation on the events of interest the developer can filter out
method invocation events for selected senders, receivers and
methods, or focus on an instance of a selected collaboration
pattern. This is done using the buttons in panelf.

Displaying an instance of a collaboration pattern. The
interaction diagram window displays an instance of the se-
lected collaboration pattern as a sequence diagram.

Example: In Figure 4 the collaboration pattern called
DrawingcontrollerchangedTool#1643 is listed in at the top of
panele. When this collaboration pattern is selected, an in-
stance of the pattern is displayed as an interaction diagram,
shown in Figure 5.

5. Understanding Tools in HotDraw

In this section we demonstrate how our approach sup-
ports the understanding and recovery of collaborations by
applying it on the HotDraw framework [2][4].

Figure 5. Interaction Diagram window. The
interaction diagram corresponds to an instance of the
collaboration pattern at the top of panele in Figure 4.

HotDraw is a framework for semantic graphic editors
which allows for the creation of graphical editors which
associate the picture with a data structure. The HotDraw
framework comes with several sample editors. From the
documentation we learn that HotDraw is based on the
Model-View-Controller triad: these roles are played by the
classesDrawing, DrawingEditor and DrawingController re-
spectively. Furthermore, it has a few other basic elements:
toolsare used to manipulate the drawing which consists of
figuresaccessed throughhandles. Constraintsare used to
ensure that certain invariants are met, for example, that two
figures connected with a line remain connected if one of the
figures is moved.

Formulating questions. From browsing the code we see
that the documentation available describes an earlier version
of HotDraw. We are interested in particular in the imple-
mentation of tools. Tools are used to manipulate the draw-
ing: create new figures or manipulate the existing figures.
On the drawing editor tools are represented by icons on the
top panel (see Figure 6). In a previous version tool responsi-
bilities were handled by the classesReader, Command and
Tool, whereas in the current version different tools are im-
plemented through states.

In order to understand how tools are implemented in this
version of HotDraw we formulate several questions:

� with which classes does the classTool collaborate?

� what role does the classTool have in different collabo-
rations?



� how are user events handled (e.g. selecting a tool and
pressing a mouse button) ?

Collecting Dynamic Information. We instrument all
methods in the HotDraw classes, then run a short scenario
on the sample HotDraw editor in which we make use of dif-
ferent tools from the editor’s upper panel.

Pattern Matching. We create collaboration patterns by
running the pattern matching with the following options: (i)
information about an event: sender: none, receiver: name
of class defining method, method: method name, (ii) events
to exclude: depth of invocation: 20, relative depth of in-
vocation: 3, self-sends: to be ignored, (iii) structure of the
collaboration instance: a set of events.

The scenario executed generated 53,735 method invoca-
tion events. The pattern matching resulted in 183 collabo-
ration patterns.

Figure 6. HotDraw sample editor

Looking at the collaborations ofTool. We look for collab-
oration patterns in which instances ofTool participate. As
discussed in Section 4, each method invocation recorded in
the trace is a collaboration instance, and each collaboration
instance is mapped to a collaboration pattern. Thus many
collaboration patterns correspond to a trivial interaction of
just one method invocation. In general, then, to arrive at
more interesting collaboration patterns, we identify patterns
in which several classes participate or in which a subset of
the methods of a class are involved.

For each class in the execution trace (listed in the re-
ceivers panel) we query to obtain the shortest collaboration
patterns in which bothTool and this class participate. All the
collaboration patterns obtained in this way are summarized
in Table 1. The name of each collaboration pattern corre-
sponds to the event information specified in the matching
scheme - in this case the name of the invoked method and

the name of the class which implements the method. We
have listed each collaboration pattern only once, though in
some cases there are actually several collaboration patterns,
variations on the execution of the method in question.

Collaboration Pattern Name
DrawingController changedTool
DrawingController tool:
DrawingController handleEvent:
Drawing handleForMouseEvent:
Tool handleEvent:
Tool figureAtEvent:
Tool startState:
Tool selected
ToolState nextStateForEvent:tool:
EndToolState evaluateIn:Event:
FigureTransitionTable nextStateForTool:event:
ToolbarController redButtonReleasedEvent:

Table 1. Collaborations involving Tool

Some of the collaboration patterns listed in the table are
nested in each other. We query each collaboration pattern
about its participants (senders, receivers and methods), and
so deduce the nesting relationship betweenDrawingCon-
troller handleEvent: and some of the other collaboration pat-
terns.

DrawingController handleEvent:
Tool handleEvent:

ToolState nextStateForEvent:tool:
FigureTransitionTable OR

SimpleTransitionTable nextStateForTool:event:
Tool changedToState:event:

EndToolState evaluateIn:Event:
EndToolState OR ToolState isEndState

Investigating Tool handleEvent:. From the nesting relation-
ship illustrated above, we understand that when a tool han-
dles an event it first asks the current state of the tool,Tool-
State, for the next state to go to (depending on the event).
It then asks the next state to take over by invokingevalu-
ateIn:Event:. It is this state object which does the rest of the
work of handling the event.

We would like to understand which classes participate in
the collaborationTool handleEvent: and what role they play,
and also to understand the different variations of this collab-
oration. We therefore query to obtain collaboration patterns
resulting from the invocation ofhandleEvent: on Tool. The
result of this query are four collaboration patterns. The dif-
ferences between these is illustrated in Table 2: since the
pattern matching criteria matched only to relative depth of
3, only differences in the method invocations up to a rela-
tive depth of 3 are seen in the collaboration pattern. The
differences are due to different methods executed. The ta-
ble lists the four variations, each one in a separate row. For



handleEvent: nextStateForTool:event: evaluateIn:event: nextStateForEvent:tool: isEndState
1 Tool SimpleTransitionTable EndToolState ToolState ToolState
2 Tool SimpleTransitionTable EndToolState ToolState EndToolState
3 Tool ToolState
4 Tool FigureTransitionTable EndToolState: ToolState ToolState

Table 2. Different collaboration patterns for Tool handleEvent:.

Class name handleEvent #1+#2 handle Event #3 handleEvent #4

Tool handleEvent handleEvent
handleEvent:
figureAtEvent:

ToolState
nextStateForEvent:tool
evaluateIn:event:
isEndState

nextStateForEvent:tool:
nextStateForEvent:tool
evaluateIn:event:
isEndState

EndToolState
evaluateIn:event:
isEndState

evaluateIn:event:
isEndState

SimpleTransitionTable nextStateForTool:event:
FigureTransitionTable nextStateForTool:event:

Drawing figureAt:

Table 3. Class-Collaboration description for collaboration Tool handleEvent: Each column corresponds to a
collaboration, each row to a class. The table cells give the role of the class in the collaboration. The methods in bold
represent unexpanded collaborations which result in variations on the collaboration patterns.

each variation, the name of the class which implements the
executed method is listed under the column of the method.

Looking more closely at an instance of each one of these
patterns using the interaction diagram display we see that
there are principally three variations, since collaboration
pattern 1 and 2 are similar. In contrast, collaboration pat-
tern 4 in which aFigureTransitionTable participates, differs
considerably from the three others. For each one of these
collaboration patterns we query about the participants of the
collaboration pattern and their role. From these queries we
learn that when thenextStateForTool:event: is invoked on an
instance ofFigureTransitionTable, rather than on aSimple-
TransitionTable, then it in turn requestsTool to provide the
figure associated with an event by invokingfigureAtEvent:.

Characterizing a collaboration. By querying about each
of these four collaboration patterns we extract the role that
the participant classes play in each collaboration. This
information is not straightforward to present, since we
see that there are two collaborationsEndToolState evalu-
ateIn:event: andDrawing figureAt:, whose participants are
not predictable - they depend on the user event, and on the
figures which are in the drawing. We therefore choose to
characterize the predictable elements of the collaboration
patterns and to leave the variable elements open. This can
be seen in Table 3, where the variable collaborations have
been denoted by bold faced method names.

6. Discussion and Evaluation

The case study presented shows how querying with the
Collaboration Browser is used to investigate interactions in

HotDraw, and to recover some important collaborations.
We continued in the vein of the investigation described
above to discover the role ofTool in other collaborations as
well. Each collaboration recovered represents an important
task in whichTool interacts with other classes. By character-
izing the collaboration and their variations we gain a better
understanding of how the functionality of the software is
carried out through the interaction of instances.

Experience with the Collaboration Browser. We also
used the Collaboration Browser to decompose an execution
trace into a class/collaboration matrix and to understand the
function of a class by partitioning its interface into several
roles and identifying the collaborations in which it plays
these roles [16]. The case studies demonstrated that the
queries aid us in locating interesting collaborations and in
understanding the role of a class in a collaboration. They
also show that the task is not simple: we cannot automati-
cally obtain enlightening information – rather we must work
in interpreting the information obtained and in deciding on
the best way to explore collaboration patterns. It is also a
challenge to find the right pattern matching criteria for each
case study so that we are not presented with too many varia-
tions on a method execution, while at the same time getting
some information about important variations.

The iterative process. The process of extracting collabo-
rations using the Collaboration Browser is an iterative one
- the result of one query leads to another query, and so the
user focuses on classes and collaborations of interest. Be-
low we sketch the process, giving a rough ordering of dif-
ferent kinds of queries.



1. Creating collaboration patterns.We start by setting
the pattern matching criteria and launching the pattern
matching to create the collaboration patterns which
form a base for the querying.

2. Querying about interfaces.In querying we generally
start by finding out which classes communicate with
each other. For this we query to find the interface a
class presents to other classes.

3. Looking for a collaboration pattern.We query about
collaboration patterns in which certain classes partici-
pate, or ones in which certain methods come into play.

4. Looking at all the participants for a collaboration pat-
tern. Once we have obtained several collaboration pat-
terns which are of interest, we want to know which
classes participate in a given collaboration pattern, and
what role each class plays.

5. Understanding a collaboration.The interaction dia-
gram displays aid us in understanding a collaboration.
We can also load an instance of a collaboration pattern
as the current base of dynamic information, and begin
at step 2. again, this time working with a smaller base
of dynamic information.

Limitations. We treat a collaboration instance as the execu-
tion sequence ofall the events which result from a method
invocation, rather than looking at an arbitrary sequence of
events within a method invocation. This has simplified
the implementation of pattern matching as an operation on
trees. But we could also consider a broader definition of
collaboration instance, and as a result a broader notion of
collaboration.

In our characterization of collaborations we represent the
role of a class in a collaboration as a set of all the methods
invoked on instances of that class in the collaboration. That
is, in a single collaboration, we do not consider that differ-
ent instances of the same class play different roles, or that
a single instance could switch roles. A finer analysis of a
particular collaboration pattern could yield a more refined
partitioning of different roles.

Finally, we have argued in the introduction that although
dynamic information is valid only for the particular scenario
executed, it provides focus in the investigation: it acts as
a program slice with respect to control flow and is always
precise with respect to the executed scenario.

7. Implementation

The Collaboration Browser is implemented in Smalltalk
and currently handles single-threaded Smalltalk applica-
tions. We instrument the application to be investigated us-
ing Method Wrappers[5]. This allows selective instrumen-

tation at the method level. The visualization of collabora-
tion instances as sequence diagrams is based on the Inter-
action Diagram tool[5]. Pattern matching is implemented
using hashing.

8. Related Work

Our work on recovering collaborations in intended as
a part of a query-based approach for iterative understand-
ing of object-oriented applications. The recovery of col-
laborations provides us with low-level views of a software
application, and as such is most useful when integrated
in an approach which can also provide us with high-level
views showing the interaction of components or subsystems
[17][16].

Most of the work on understanding interactions in
object-oriented applications has focused on visualization,
where the challenge is to develop techniques for visualiz-
ing the large amount of information generated by program
tracing [10, 11, 22, 20]. For a more thorough survey of
these and other reverse engineering approaches we refer the
reader to [16]. Here we compare our work with two visu-
alization approaches which use pattern matching [14][9] to
identify design abstractions.

The work of DePauw et al. [14], now integrated in Jin-
sight1, experiments with a range of displays which allow an
engineer to visually recognize patterns in the interactions of
classes and objects. ISVis [9] is a visualization tool which
displays interaction diagrams using a mural technique and
also offers pattern matching capabilities. Our work is simi-
lar to these two approaches, both of which identify recurring
patterns in a trace as an aid to recognizing important design
concepts. In contrast to these, however, our work is not ori-
ented primarily towards program visualization. We use only
a simple sequence diagram visualization to display the col-
laboration pattern chosen. Our main focus is on querying
the dynamic information to help in the recovery of collab-
orations and the understanding of the roles different classes
play in these. We see our work as complementary to the
visualizations proposed in [9] and [14]: whereas these tools
display an entire trace and give the user a feel for the over-
all behavior of an application and the repeated occurrence
of patterns in order to identify different phases of execution,
our approach focuses on the roles of classes in much smaller
chunks of interaction.

We know of only one other approach which explic-
itly tries to reverse engineer collaborations[6]. The ap-
proach uses static information to arrive at a description of
participant-roles in a collaboration and relies heavily on the
input of a user who must select the initial participants and
their roles in the collaboration and determine appropriate
acquaintances to include in the collaboration.

1http://www.alphaworks.ibm.com/tech/jinsight



9. Conclusions

In this paper we have presented an approach to the re-
covery of collaborations which is general enough to be ap-
plied to software applications implemented in any class-
based object-oriented language. The approach begins with
an execution trace and condenses this information by repre-
senting program behavior in terms of collaboration patterns.
It presents this information to developers in terms of sender
classes, receiver classes, invoked methods and collaboration
patterns and allows developers to query each of these items
in terms of the others. In this way it lets a developer focus
on the aspect of the application of interest without wading
through a lot of trace information.

We have shown through an example how the Collabo-
ration Browser is used to discover important collaborations
in an application and to understand the roles that classes
play in these collaborations. Our initial experience with the
Collaboration Browser on three case studies showed that the
approach is promising, but it also demonstrated the limits of
automatic recovery of design artifacts. To be successful the
use of the tool must be embedded in an iterative recovery
process steered by a particular question or hypothesis.

Our approach demonstrates the feasibility and utility of
using dynamic information to extract collaboration abstrac-
tions without reliance on visualization techniques. There
are tradeoffs to be made between our approach for ex-
tracting compact representations of collaborations and ap-
proaches which use visualization techniques to display in-
teraction patterns over the low-level interactions in the
whole trace. We therefore consider our approach as com-
plementary to other reverse engineering techniques: no sin-
gle tool can satisfy all the requirements for design recov-
ery, rather guidance is needed as to which tools are best for
which maintenance tasks.

Acknowledgments.Thanks to Matthias Rieger for his help
and for his comments on the manuscript. We also thank
Roel Wuyts for his helpful comments.

References

[1] T. Ball. The concept of dynamic analysis. InProceedings
of ESEC/FSE’99, number 1687 in LNCS, pages 216–234,
1999.

[2] K. Beck and R. Johnson. Patterns generate architectures.
In Proceedings ECOOP’94, LNCS 821, pages 139–149.
Springer-Verlag, July 1994.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language User Guide. Addison Wesley, 1999.

[4] J. Brant. Hotdraw. Master’s thesis, University of Illinois at
Urbana-Chanpaign, 1995.

[5] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the Rescue. InProceedings ECOOP’98, LNCS 1445, pages
396–417. Springer-Verlag, 1998.

[6] K. DeHondt.A Novel Approach to Architectural Recovery in
Evolving Object-Oriented Systems. PhD thesis, Vrije Uni-
versiteit Brussel, 1998.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[8] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented sys-
tems. In Proceedings OOPSLA/ECOOP’90, volume 25,
pages 169–180, Oct. 1990.

[9] D. Jerding and S. Rugaber. Using Visualization for Archi-
tectural Localization and Extraction. InProceedings WCRE,
pages 56 – 65. IEEE, 1997.

[10] K. Koskimies and H. M¨ossenb¨ock. Automatic synthesis of
state machines from trace diagrams.Software Practice and
Experience, 24(7):643–658, July 1994.

[11] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA’95, pages 342–357. ACM Press,
1995.

[12] S. Lauesen. Real life object-oriented systems.IEEE Soft-
ware, pages 76–83, March 1998.

[13] G. C. Murphy and D. Notkin. Reengineering with reflexion
models: A case study.IEEE Computer, 8:29–36, 1997.

[14] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. InProceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[15] T. Reenskaug.Working with Objects: The OORAM Software
Engineering Method. Manning, 1996.

[16] T. Richner.Recovering Behavioral Design Views: a Query-
Based Approach. PhD thesis, University of Berne, May
2002.

[17] T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In H. Yang and L. White, editors,Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 13–22. IEEE, Sept. 1999.

[18] D. Riehle. Bureaucracy. In R. Martin, D. Riehle, and
F. Buschmann, editors,Pattern Languages of Program De-
sign 3, pages 163–185. Addison Wesley, 1998.

[19] D. Riehle and T. Gross. Role model based framework design
and integration. InProceedings OOPSLA ’98 ACM SIG-
PLAN Notices, pages 117–133, Oct. 1998.

[20] T. Systä, K. Koskimies, and H. M¨uller. Shimba – an envi-
ronment for reverse engineering java software systems.Soft-
ware – Practice and Experience, 1(1), January 2001.

[21] M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. InProceedings
OOPSLA’96, pages 359–369. ACM Press, 1996.

[22] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProc. OOP-
SLA’98, pages 271–283, 1998.

[23] N. Wilde, P. Matthews, and R. Hutt. Maintaining object-
oriented software.IEEE Software (Special Issue on ”Mak-
ing O-O Work”), 10(1):75–80, Jan. 1993.

[24] R. Wirfs-Brock and B. Wilkerson. Object-oriented design:
A responsibility-driven approach. InProceedings OOPSLA
’89, pages 71–76, Oct. 1989. ACM SIGPLAN Notices, vol-
ume 24, number 10.


