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Abstract—Static and dynamic evolution of software systems
may be described in terms of connection additions and re-
movals in a graph. Due to the inherent complexity of software,
navigating through such a dynamic network is a non-trivial
task and extracting relevant information typically involves
sophisticated queries.

We explore the notion of space-time cube, a well-known 3D
representation of an evolving dynamic graph, to support a set of
software engineering activities. CuboidMatrix is a visualization
tool that offers simple and expressive navigation operations. We
have evaluated our tool against two software comprehension
activities, namely (i) assessing interaction of classes during a
software execution and (ii) exploring the cause of breaking Lint-
like quality rules over a large number of software revisions.

Video companion: https://youtu.be/nOIl788-zGES8
Artifact: http://dx.doi.org/10.5281/zenodo.56469

I. INTRODUCTION

Software is often made of dynamic networks, typically
describing graphs using connected structural elements. For
example an object-oriented application is made of objects
whose connections change during the application execution.
Assessing the evolution of dynamic graphs is a common
problem in the software engineering community [1] and
visualization community [2].

Space-time cube is a classical visualization in 3D where
each data point is visualized in a three-dimensional space,
where the depth (i.e., Z-Axis) indicates time. The color and
size of each data point indicates metrics and properties of
the represented element. Space-time cubes are well known
within the visualization community. For example, they have
been successfully used to analyze large astronomical data
sets [3], and vegetation bush fire [4], to name a few.

The software engineering community has considered using
3D visualization to assist engineering activities [5], [6],
however, space-time cube has received scant attention from
practitioners to explore software-related data.

CuboidMatrix. In this paper we present CuboidMatrix, a

tool using the space-time cube metaphor to represent data.

CuboidMatrix offers a rich set of interactions to facilitate
navigation and exploration of data sets. In particular, it
supports (i) fine control of the camera using an orbital camera
movement, (ii) flexible ways to select slices along each of
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the three axes, (iii) the ability to select a particular data point
and its neighbors.

We used CuboidMatrix to support two software engineer-
ing activities, namely evaluating the interaction between
classes during a program execution and assessing the evo-
lution of Lint-like rules over a large number of software
revisions.

Contributions. The paper makes the following contributions:

« Presentation of CuboidMatrix and its set of navigation
and interaction facilities.

o Evaluation of CuboidMatrix, our implementation of
Space-Time Cube, to solve a software comprehension
task.

« Case study using source code quality rules over a large
system over a long period of time.

Paper outline. Section II briefly describes the notion of space-
time cube and details CuboidMatrix. Section III presents a
controlled experiment we have set up to assess CuboidMatrix
to solve a software comprehension task. Section IV describes
our second experiment on assessing Lint-like quality rules.
Section V presents the work related to our effort. Section VI
concludes and presents our future work.

II. SPACE-TIME CUBE AND CUBOIDMATRIX

This section briefly describes the space-time cube visual
representation (Section II-A) and details CuboidMatrix, our
visualization tool (Section II-B). CuboidMatrix is implemente
in the Pharo language'.

A. Space-time cube

Dynamic networks are networks that change topology
and/or edge weights over time. A space-time cube is a visual
representation that structures matrices along time, where time
is shown as depth. Each slice along the Z-Axis represents
a snapshot of the represented network at a given time. A
space-time cube is obtained by stacking adjacency matrix
representations of the network at each time step. Data points
may be colored and be given a weight (represented as its size)
that represents a property of the data point. The resulting
overall structure is illustrated in Figure 1.

Uhttp://pharo.org/
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Figure 1: Space-time cube principle

The figure is a screenshot of our implementation of space-
time cube. As an illustration, the figure uses a dataset
representing interaction between classes during a program
execution. Each data point, represented as a cube, indicates
an interaction between two classes. Each time unit (mapped
on the Z-Axis) represents a wall-clock time period (a couple
of milliseconds). The size of a cube reflects the amount of
interaction between the two designed classes at a particular
time frame. We represent time using a color scaling from
blue to yellow. Blue indicates the past and yellow the future.
Passing time is indicated by a blue-to-yellow fading.

Formally, each cube, denoted (C1,C2,T), represents a
relation between two elements C'1 and C?2 at a given time
slice T'. The size of the cube indicates a metric value for
that relation, and the color is a visual support to indicate 7'

B. CuboidMatrix

CuboidMatrix uses a space-time cube to render the set
of data, as previously described. To ease the exploration of
data, CuboidMatrix offers a number of ways to interact with
the data set.

Camera movement. The visible portion of the cube and the
view orientation are given by a camera. The camera can be
moved by using the mouse in an orbital fashion. The camera
movement is perceived as a whole rotation of the cube while
keeping the point of view at the center of the cube. The orbit
follows a trajectory on a sphere.

The radius of the sphere can be increased or decreased,
using the keys W and S. This effect is perceived as zooming
in and out, respectively.
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Figure 2: The CuboidMatrix tool
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Initially, the camera is oriented toward the center of the
space-time cube. The point of view may be modified with
the keys A and D, to move it to the left and to the right,
respectively. The keys O and E move the point of view up and
down, respectively. The camera may be reset to its original
position (button £ in Figure 2).

Tooltip and data point selection. Data about an individual
data point may be obtained by simply locating the mouse
above it. The exact data point is provided as a tool tip,
including its weight, and the three coordinates.

(A . -

~
erwal -

'

v

<

'

v

'

Figure 3: Selection strategies

Clicking on a data point triggers a selection. The selection
highlights some data points that are deduced from a strategy.
We provide 8 selection strategies, as depicted in Figure 3.
Clicking on a data point selects all the data points in (a) the
same time frame; (b) in the same vertical slice, along the
Y-Axis; (c) along the X-Axis; (d) using a combination of
strategies a and b; (d) in the same X-Axis or Y-Axis; (e)
data points in the same X and Y axes; (f) in the same Y
and Z axes; (g) in the same Z or Y axes; (h) select all the
data points sharing two coordinates. A selection is indicated
with a particular color palette and selected data points are
completely opaque.



Slice selection. A control panel is dedicated to selecting
particular slices (8 in Figure 2). The control panel supports
the selection of a particular slice along each of the 3 axes.
Two buttons, < and >, allow for movement of the slice along
an axis.

A drop down menu allows for selecting a slice. This feature
is useful in the presence of a dense space-time cube where
the pointing using the mouse is not effective.

Additive selection. By default, selecting a data point deselects
the previously selected points. A checkbox, marked c in
Figure 2, allows for maintaining previously selected points
in place when selecting a new point.

Figure 4: Additive selection of multiple time slices

Figure 4 illustrates additive selection by having three
selected time slices. This feature helps to ccompare directly
different sets of data points in the visualization.

Alpha channel. Some visual elements may hide other
elements. This effect is called occlusion and is a serious
concern in a 3D visualization. The common way to address
this problem is to use transparency [6]: the hiding effect of
a data point is reduced when transparent.

CuboidMatrix allows the user to manually set the trans-
parency for data points that are not selected. A slider (a
in Figure 2) controls the transparency of data points. Data
points may be completely transparent and therefore not part
of the view.

Projections. The space-time cube may be projected along
each side, as a 2D projection using a control panel marked p
in Figure 2. Figure 5 illustrates the projections of a dataset.
When projected, the space-time cube is rendered using an
orthographic projection from a side, without perspective. A
dataset may be projected along each of the six sides. The
figure shows four of them.

In contrast with the classical projection where distant
objects appear smaller, with the orthographic projection
all data points have the size reflected by their weight,
independently of the distance between the data point and the
camera. For instance, by looking at the space-time cube from
the front (Figure 5, Front), all the time-slices are flattened

and the transparency contributions of each cube are added. In
this way the opacity of the cubes illustrates the persistence
of the entities through time.

The projections offered by CuboidMatrix are inspired by
Cubix [3].

III. CONTROL EXPERIMENT: ASSESSING CLASS
DEPENDENCIES

This section presents a controlled experiment to assess the
performances of CuboidMatrix against a software compre-
hension task.

A. Motivation & Datasets

Object-orientation promotes the use of message sends
(also called “method call”) to model a computation. During
a program execution, objects are created and these objects
are sending messages to each other. Understanding the exact
interaction between objects and classes is known to be a
serious concern among practitioners [7].

To assess CuboidMatrix, we will use two software compre-
hension tasks, based on class interactions during a program
execution. Each of the tasks uses a particular dataset. Each
dataset is obtained by monitoring the execution of a program.
Figure 6 illustrates CuboidMatrix on one of the datasets.

B. Data sets

As we will use two comparable tasks in our experiment,
we have produced two datasets obtained from the execution
of two different applications:

D, — The first dataset is composed of 621 data points. It
shows the interaction of 101 different classes along a
time frame of 19 periods. The space-time cube has a
dimension of 56 x 45 x 19.

Dy — The second dataset is composed of 652 data points. It
is divided into 19 time periods and contains interaction
between 60 classes. The size of the space-time cube is
34 x 26 x 19.

In both data sets, all the data points have a weight of 1.
This means that all the cubes have the same size. D and D»
are comparable, albeit not identical. D, is dense compared
to Dy since it has more data points and the space-time cube
is smaller. These datasets have the particularity of having
persistence in time, which means that two classes interacting
at a time ¢ have a likelihood of interacting at ¢ + 1.

The two datasets are represented within the CuboidMatrix
as follows: a data point (c1, ¢2,t) indicates that during the
time slice ¢, instances of the class c¢; sent messages toward
instances of the class co. The data sets were obtained using
the Spy profiling framework [8].

C. Excel as the baseline

A baseline is necessary to compare CuboidMatrix against.
Such a baseline has to be carefully chosen as it represents
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Figure 6: CuboidMatrix with the class dependency dataset

the control of our experiment. Two criteria are relevant when
identifying the baseline:

o Fairness — The baseline has to be impartially selected
without supporting an approach that will naturally favor
CuboidMatrix for a particular set of tasks.

e Representative — The baseline has to represent current

practices to solve situations in which we plan to use
CuboidMatrix. Moreover, the baseline has to provide a
typical and natural solution for the problem to solve.

Excel. We have opted for the use of Excel as the baseline to
compare CuboidMatrix. Excel is often regarded as a natural
choice to manipulate tabular data. At first, this choice seems
unfair: Excel presents numerical values in a possibly long
textual list which makes little use of the cognitive ability
of a programmer. However, Excel offers a large range of
operations to manipulate data: one can filter, order, transform,
and create charts. Macros can also be defined by using
a large set of predefined functions. Excel also supports
macros written in VisualBasic, which is a full generic-purpose
programming language. Excel has a complete built-in help
support.

Excel also has the advantage of being known by a large
population. We therefore expect basic operations in Excel,
such as defining simple macros, transforming, filtering, and
ordering data to be known by the participants. Solving
specific problems using Excel is also largely discussed
online. Excel has been used as a baseline in another similar
experiment [5].



Discarded baselines. A large range of solutions have been
proposed by the software and data visualization community.
However, none of the proposed solutions have gained enough
attraction to be considered a “standard solution” to solve
the tasks we defined (Section III-A). Using a non-standard
and/or little known approach may therefore be unfit for our
experience and may invalidate our results.

Having our datasets in an SQL database may appear as
a reliable alternative baseline. SQL is a rich language to
transform tables and compute non-trivial queries. There is
a risk however, that many participants are unfamiliar with
SQL. We may therefore introduce a significant advantage
for CuboidMatrix if non-SQL experts participate in our
experiment. Since we wish to run our experiment on what
may be perceived as “average software engineers”’, we opted
out of SQL in favor of Excel.

D. Experiment design

Generic work session. The activity of a participant is
structured as follows:

1) Excel learning material: Participants are expected to
have a minimal command of Excel. This learning
material provides screenshots that summarize the
ordering and filtering features of Excel.

2) CuboidMatrix learning material: A concise description
of CuboidMatrix is provided. The different interactions
are also presented. This material is a condensed version
of Section II.

3) Exercise I: Answering the set of questions for a given
exploration tool (CuboidMatrix or Excel) and data set
(D1 or DQ)

4) Exercise 2: Answering the set of questions for the other
exploration tool and the other data set.

5) Open retrospective: We ask some open questions
regarding the experiment. We also informally and orally
get the impression of the participant.

Since we use two datasets and two exercises, we have
defined four specific work sessions:

Work Exercise 1 Exercise 2
session | Dataset | tool | Dataset | tool
Wy D EX Doy CM
Wo Dy CM Dy EX
W3 Do EX D; CcM
Wy Dy CcM Do EX

We refer to the use of Excel as EX and the use of
CuboidMatrix as CM. Work sessions Wy / Wy, W3 /
W, reverse the order of the exercises. This is useful for
minimizing a bias that may be due to a learning effect
against a particular configuration.

The measured and tested dependent variable is the pro-
ductivity of solving an exercise and the independent variable
reflects the tool used.

Questionary. Each exercise consists of five questions:

Q1 - Which classes cl interact with ¢2 only during the
three first time periods? We are therefore looking
for ¢l and ¢2 for which we have a relation at
(c1,¢2,1),(cl,e2,2), and (cl,c2,3).

Q2 - Which classes interact at the end of the execution,
only during the last three time periods?

Q3 - Which are the two classes that interact during the
overall execution?

Q4 - Which classes c1 interact with c2 only at time periods
that are even (2, 4, 6, ..., 18)?

Q5 - Can you identify some interactions that are identical,
along time, between groups of classes? We are looking
for groups of classes {(cl,c2),(c3,c4)} for which
we have data points (cl,¢2,T}), ..., (c1,¢2,T,) and
(c3,c4,T1), ..., (c3,c4,T),)

We use the exact same set of questions for the two datasets.
Questions Q1, Q2, Q3, Q4 are about the interaction between
two classes along the execution. Answering Q5 involves
identifying groups of classes. We therefore expect this last
question to require more effort to answer than the others.

Oracle. We have algorithmically computed the exact answer
of each of the questions for both data sets to be able to
quantitatively evaluate the results. Questions Q1, Q2, Q3,
and Q4 have exactly one answer. Question Q5 has 9 groups
of interacting classes using dataset D; and 27 groups using
Ds.

Scoring. A participant is free to provide many answers per
question. The exercise description and the question phrasing
do not let the participant guess the amount of correct results
per question.

For questions Q1, Q2, Q3, and Q4, we will use the
following scoring function:

e Score = 1 if the provided result is exactly the one

provided by the oracle;

e Score = 0.5 if the provided result contains the exact

answer from the oracle, but contains some false-positive;

e Score = 0 otherwise.

The question Q5 requires looking for a different and more
complex pattern than for the other questions. We therefore
use a different scoring, as follows:

e Score = 1 if all the provided results for Q5 are correct,

but not all the correct answers are required;

e Score = (.5 if at least one of the provided results is

correct

e Score = 0 otherwise

We could have used the standard precision and recall
metrics to score each answer. However, this would have
made the analysis more complex. Giving a score of 0, 0.5, or
1 to each answer simplifies the way each participant output
is analyzed.

For each exercise and each participant p, a score S(p) =
Zizl Score(Qn,p) is given, ranging from 0 to 5. A score



Part. Exercise 1 Exercise 2 EX CM
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Figure 7: Raw result of the controlled experiment (Excel
result in gray , EX refers to Excel and CM to CuboidMatrix)

of 5 indicates that the participant has correctly answered all
the questions. A score of 0 means that none of the answers
is correct.

E. Pilot study

Prior to running the full experiment, we ran a pilot study
on two participants. This pilot study enabled us to fine tune
the experiment. In particular, the pilot helped us on the
following points:

« The pilot showed that the two exercises can be solved
by both Excel and CuboidMatrix.

o The two participants have answered each exercise ques-
tion in slightly less than 30 minutes. We therefore set
30 minutes as the maximum allowed time to complete
an exercise.

e One of the participants felt the need to look for
documentation online. We therefore let the participants
to seek online for help for the full experiment.

o Our original presentation of CuboidMatrix, given in the
learning material, was longer. We therefore shortened it
to help the participant to fully read it and understand it.

o In our original formulation the questions contained
some ambiguities and were not clear. We therefore have
improved the question formulation.

F. Results

Participant profile. We ran our experiment on 8 participants.
Among these participants, there were 3 professional software
engineers, 2 PhD students, 2 master students, and 1 undergrad
student.

Raw data. Figure 7 details the answers and overall results
for each participant. The first column gives the participant
identifier. The following 10 columns give the scores for each
question of Exercise 1, followed by those of Exercise 2. The
last two columns sum the individual scores for Excel and
for CuboidMatrix. Values referring to the Excel scoring is
marked in gray to ease the reading.

Analysis. According to the number of participants, we use
the Mann-Whitney test (two-tailed, with a confidence interval
of 95%) to analyze the last two columns of Figure 7. This

test is a nonparametric test useful when no assumption can
be made on the normality of the data (which is our case).
We apply this test to measure the effect of the tool on the
participant score.

Excel vs CuboidMatrix
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Figure 8: Result analysis

Figure 8 gives the distribution of the scores for the two
tools we are considering. The boxplot indicates that the score
for Excel has a mean of 1.1 and a median of 0.5. The standard
deviation is 1.6. The score of CuboidMatrix has a mean of
3.8, a median of 4.5, and a standard deviation of 1.6.

The Mann-Whitney test on the exercise scores indicate that
the scores obtained for Excel and CuboidMatrix significantly
differ (with a p value of 0.0057), in favor of our tool.

Observing the use of Excel. We observed the participants
while they perform the experiment. We report here the most
notable development aspects of the experiment.

All but one participant used macros: four participants
defined macros using the Excel functions COUNTIF and
SUMIF, two participants defined the macros in VisualBasic.
An interesting aspect of using macros is that nearly all
the participants spent a significant portion of the allowed
30 minutes searching for documentation online. Almost
no one used the inline Excel help. Participant P4 did not
use macros and obtained the highest score. Instead, the
participant answered the questions only by filtering and
ordering columns. P4 is experienced retrieving data using
Excel functionalities. He also did not use macros since he
feels uncomfortable using them.

Participant P2 transformed two columns into an adjacency
matrix (Excel supports this transformation using a dynamic
table). However, such an adjacency matrix did not produce
a useful result. Instead, P2 had to fall back on using macros
and manually searching.

All of the participants, except P4, looked for information
online. Here are some of the online queries: “How to find
and select duplicate rows in a range in Excel”, “How to get
distinct or unique values in a column in Excel”, “Help in
defining VisualBasic macros to concatenate columns of data



in Excel”, “Accessing worksheet cells from VisualBasic”,
“How to loop through a list of data on a worksheet by using
macros in Excel”.

Observing the use of CuboidMatrix. Overall, the usages of
CuboidMatrix were generally in line with what we expected:
participants have used the features described in the learning
material. Questions Q1 and Q2 were answered using the
additive slice selection. Question Q3 required the additive
selections with a low alpha color value for non-selected time
lines. Question Q4 was answered using the additive slice
selection: participants selected time slices 2, 4, 6, ... 18, to
get the relevant result.

Q5 was probably the most complex question. Most of
the participants were unstructured when trying to answer
it (note that being unstructured does not imply providing a
wrong answer). Interestingly, P4 used slice selections along
the Y-Axis to answer P5.

Open retrospective. After the experiment, we questioned
the participants about the exercises. Their answers were not
graded in front of the participants to make sure that each
participant was not pressured to answer.

When using CuboidMatrix, P1 strongly felt that the occlu-
sion was a problem, particularly when analyzing data points
located at the center of the space-time cube. Nevertheless,
this perceived problem did not prevent the participant from
getting the best score.

No participant felt that the CuboidMatrix or Excel were
inadequate to answer the questions. Also, the set of questions
were perceived as representative tasks a software engineer
may have to face.

All the participants expressed a positive feeling toward
CuboidMatrix. P5 was the most enthusiastic about it. The
participant found the visualization very intuitive. Interestingly,
the participant happens to be a fan of 3D games.

Conclusion. The controlled experiment measures the ability
of the participants to solve two comparable exercises using
two different tools: Excel and CuboidMatrix.

We took great care to be fair when designing our ex-
periment. We provided all the necessary help participants
requested regarding the questions and the tools. Participants
were also free to look for information online.

Our experiment shows that participants performed sig-
nificantly better using CuboidMatrix than using Excel. We
therefore conclude that for the provided set of datasets and
questions, CuboidMatrix significantly outperforms Excel.

IV. CASE STUDY: QUALITY RULES

As a second evaluation, we conducted a case study on
assessing the evolution of Lint-like code quality rules over
several versions of a large software system.

A. Motivation

Lint is a utility that flags a source code portion according
to a set of source code pattern matching rules. Each rule

looks for source code anomalies. These rules, when applied
on a software system, produce critics. A critic indicates a
rule violation on a particular piece of code.

In the Pharo ecosystem [9], SmallLint and QualityAs-
sistant [10] are used to catch defects and possible bug
introduction early on at each release of Pharo. One essential
question the Pharo community has is whether the overall
source code quality has evolved since the introduction of
these two tools.

In particular for this case study, we considered the
following questions:

1) Which packages have the most variations in critics?

2) Quality based on which critics have changed the most:
Are there any rules with a constant ascending or
descending critics production? Are there any rules
variation of the amount of produced critics?

3) Are there any rules with similar patterns of critic
production variation?

The original data set consists of critics generated by 120
rules about 240 packages for 680 versions.

B. Analysis & Conclusion

First of all, the dataset to analyze is large, which produce
a visualization composed of tiny elements. The size of the
elements is so small that we are not able to assess the
difference between them. Reducing the size of the matrix
was therefore an important step to comfortably conduct our
analysis.

We extracted a subset composed of 10 rules (we selected
the one with an “error” severity level), 20 packages (we
selected the packages that are the most frequently modified),
and 100 versions that contained the greatest variations in
the generated critics. As CuboidMatrix does not support
strategies to compact a dataset, we had to manually extract
this subset. The obtained visualization is shown in Figure 9.

Although we greatly reduced our dataset, it remained
challenging to detect the differences between data points since
the produced visual elements looks similar. The maximum
number of critics is 40 and most of the changes between
adjacent data points are equal to 1 or 2 critics. Since
CuboidMatrix uses a linear interpolation for the data point
weight, variations of 1 or 2 units are not easily perceptible.
The orthographic projections helped us understand the amount
of critic variations since comparisons are easier to carry out
without a perspective.

Figure 10 illustrates the bottom projection where the Y-
Axis represents the packages while the X-Axis represents
time. While we cannot identify any trends, we can determine
which packages have the most critics. Translucent overlay
allows us to identify not only the biggest number of critics
from a single rule, but also the other ones as concentric data
points (i.e., data points sharing the same center) of a darker
shade. However it is harder to detect this kind of data on



the yellow spectrum of the visualization as it tends to blend
more.

Figure 11 represents the frontal projection, where the Y-
Axis represents the quality rules and the X-Axis represents
the packages. This projection highlights which packages are
not affected by any rules, and which rules produced critics
about most of the packages. This projection also allows us
to see which critics have changed over the timespan. These
critics can be selected to highlight changes. Figure 12 shows
a selected sequence where the data point sizes are decreasing
from left to right. However, Figure 13 shows exactly the same
view but without selection, and in this case, it is difficult to
see the decreasing trend because of the translucency of the
cubes and the perspective.

We ran into issues with scalability and were not able to
analyze the whole dataset. We had problems with change’
detection on the subset that we were trying to analyze, but
with the help of projections and selections we were able to
partially overcome these issues.

V. RELATED WORK

The related work is structured along two complementary
axes: visualization tools for software and data. Representing
the evolution of networks has received a significant effort
from the research community. For example, the visual survey
http://dynamicgraphs.fbeck.com provides a significant list of
related work. This section presents the most relevant piece
of work related to this paper.

A. Software engineering tools

Software as cities. Software visualized as a city is probably
the most popular 3D software visualization.

CodeCity [11] uses a city metaphor where each package
is a district, visually represented as a flat rectangular square.
On top of a district, buildings are located. Each building
represents a class for which the height is the number of
methods, and the width is the number of attributes. The
color of a building indicates the number of lines of code
of the represented class. CodeCity has been evaluated using
an experiment similar to the one we have set up. Designed
tasks are carried out by some participants using CodeCity
and Excel.

EvoStreets [12] uses a three-staged representation chain.
The geographic landscape is collected from a primary model.
Aspects of the landscape are obtained from a secondary
model. Tertiary models define the colors and superposed
diagrams. Contrary to CodeCity, EvoStreets combines de-
composition hierarchy, element properties and development
time.

Verso. Langelier et al. [13], [14] proposed Verso, a 3D
visualization of evolving systems. In their approach, classes
are represented as 3D boxes, arranged over a flat 2D plan.
Java interfaces are rendered using a cylinder. A set of
graphical characteristics are mapped to metrics: color, height,

width, and rotation. A kind of treemap algorithm is used
as layout. The camera follows an orbital movement, as in
CuboidMatrix. Animation is used to show evolution of the
data set.

Software Dynamicity. Verso [13] has been extended with a
heatmap. The heatmap represents basic properties related to
time or a combination of such properties [15].

sv3D. Marcus et al. [16] explored the use of 3D to visualize
lines of source code. The sv3D tool [6] uses a box to represent
a line of code. The box color indicates its control structure
type (e.g., a loop, a conditional statement). The size of the
box indicates its nesting level. Deeply nested structures, such
as algorithms, appear composed of large boxes.

sv3D authors compared their visualization against the ac-
tual source code. The authors have formulated two hypotheses
regarding the accuracy and the task completion time and three
groups of students were used in a controlled experiment.

B. Data visualizations

The space-time cube metaphor is intensively employed
in the field of data visualization. The website http://
spacetimecubevis.com covers popular uses of that
metaphor.

Cubix. Bach et al. [3] designed Cubix, a 3D representation
of space-time cube, in which slices may be unfolded into
adjacency matrices. Cubix inspired CuboidMatrix in many
aspects (e.g., orthographic projections). However, Cuboid-
Matrix offers original interactions such as the slice selection
and support additional selection that are key to complete the
comprehension tasks we have designed.

ExTraVis. Cornelissen et al. [17], [18] proposed ExTraVis
a sequence of circular bundle views to represent execution
traces and allows one to navigate through trace elements.

Animation. Animation is a common technique to represent
dynamic networks. In fact, any static network visualization
can be used to generate one image per time step. These
visualizations are then displayed one after the other in an
animation. In this context the main challenge is to highlight
and show the differences in an effective coherent way [19],
[20], [21], [22], [23], [24].

snapshots. The alternative to animation consist of laying
out the different snapshots one after the other [25], [26],
[27], [28]. An interesting exception consists of laying the
snapshots along the depth, creating a 2.5D visualization [29].
Time dependent cubes may be effectively represented using
adjacency matrices. Small MultiPiles [30] is a technique that
consists in piling adjacency matrices. Such matrices can be
aggregated and a small widget, called flipbook, allows one
to select a matrix within the aggregation.

VI. CONCLUSION AND FUTURE WORK

Due to the difficulty is finding reliable metaphors, 3D soft-
ware visualization has had little impact within the software
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Figure 9: Evolution of SmallLint rules over multiple revisions of Pharo (time goes from blue to yellow)

Figure 10: Bottom orthographic projection

Figure 11: Orthographic projection illustrating the irregulari-
ties in considering the rules

PPy o crecee

Figure 12: Visible changes in a selected sequence

Figure 13: No visible changes when nothing is selected

engineering community. This paper presents CuboidMatrix, a
visualization tool that employs the space-time cube metaphor
to navigate within a dataset and interact with it. CuboidMatrix
was used in a controlled experiment involving two software
comprehensions tasks. Our results show that our tool is
significantly better than Excel to solve the two exercises we
defined related to software execution analysis. We conducted
a case study that highlights some of the limitations of our
current implementation of CuboidMatrix.

As future work, we plan to address the following two

points:

e Element ordering — Despite our effort to provide
interactive options to avoid occlusion, some participants
in our experiment complained about the occlusion. In
particular, data points contained in the center of a
visualization are difficult to relate from other points.
As future work, we will investigate the use of ordering
along both axes to ease the reading of data points located
at the center of the visualization.

e 2D vs 3D — The relevance of using a three-dimensional
visualization has long been debated [6], [31] in the
software visualization community. As far as we are
aware, it has not been demonstrated that using three
dimensions is a significant improvement over using
two dimensions. In the future, we will compare our
visualization against 2D adjacency matrices.
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