
Hot Clones: a Shotgun Marriage of Search-Driven
Development and Clone Management

Niko Schwarz
University of Bern

Abstract—Code duplication is common in current
programming-practice: programmers search for snippets
of code, incorporate them into their projects and then modify
them to their needs. In today’s practice, no automated scheme
is in place to inform both parties of any distant changes of the
code. As code snippets continue to evolve both on the side of the
user and on the side of the author, both may wish to benefit from
remote bug fixes or refinements — authors may be interested in
the actual usage of their code snippets, and researchers could
gather information on clone usage. We propose to maintain a
link between software clones across repositories and outline how
the links can be created and maintained.

Index Terms—clone detection; software maintenance; correc-
tive clone management

I. INTRODUCTION

Since the rise of internet-scale code search engines, searching
for reusable source code has become a fundamental activity
for developers (e.g., [1], [2]). Developers use search engines
to find and reuse software. The promise of search-driven
development is that developers will save time and resources
by using search results. However, there are perils: the current
practice of manually integrating code search results into a local
code base leads to a proliferation of untracked code clones.
As a side effect, in the authors’ experience, bugs fixed in one
clone typically do not traverse their new environment anymore,
and the same holds true for extensions and code cleanups.

Even if they appear in the same project, software clones
often cannot be eliminated [3]. But oversights in consistently
applying changes to clones may introduce bugs into the
system [4]. Therefore, tools have been proposed to maintain
links between software clones [5], [4], [6], but they fail to link
clones that are beyond project boundaries. Codebook by Begel
et al. [7], is a social network in which people can befriend
both other people and the artifacts they produce. Codebook
is intended to maintain links between clones, it is however
unclear how these links come into being. Begel et al. only
vaguely suggest how that should be done: edges are to be
added between a definition and its likely clones.

In this paper we propose a scheme to initially create and
then maintain such links. A code search engine assists the
developer by integrating its results into the source code. The
IDE then remembers the origin of the code snippet and informs
the repository that a clone was created, thus creating a link
between original and copy. We will refer to clones created in
this way as hot clones. Whenever a hot clone changes, the
linked clones’ developers are informed and offered the option
to update their instance. Also, whenever a method is inspected,

its clones can be inspected too, providing valuable information.
The connections between clone instances are thus proactive
and bidirectional.

In the terminology of Koschke [8], we provide compensative
clone management, i.e., we limit the negative impact of existing
clones, but we also give developers benefits from the software
duplication introduced by clones by providing developers with
information on how their code is used and modified.

This paper is an updated version of previous work [9].
It differs in that it adds Section §V, which outlines our
intermediate results.

II. GOALS

The idea of hot clones scratches two itches. The first is to
let developers benefit from code cloning, and the second is to
provide researchers with more information on how cloning is
used.

We believe that hot clones can ease backporting changes that
occur in a linked clone. We believe that during development,
hot clones will provide important feedback to developers.
Contrasting one’s own code with modified clones will give
hints to bugs in related code, usage patterns, and plain examples
of usage.

The nature of clones within a single software project has
previously been studied (e.g., [10])), but the evolution of code
snippets copied from searches in software projects has not.
A prototypical implementation of hot clones would provide
this opportunity. Being able to track the further evolution of
code snippets after they are copied out of a search engine may
give us great insight into the evolution of code, beyond the
classification provided by Kapser and Godfrey [10]. If used by
only a few developers, hot clones can provide insights from
both a larger set of data than before, and from a wider range
of uses. We plan to provide a prototype of hot clones.

III. SCOPE

In this section, we will discuss which tasks hot clones can
assume and how this suits our goals. Software clones are not
typically exact copies of each other, but rather they start as
exact copies and then evolve in different ways, for a number of
reasons in accordance with the specific needs in their respective
environments [3], [10].

To cope with the changes that search-driven development
introduces between clone instances, the connections between
clone instances should be aware of the semantics of their
differences. To retain an active connection between instances

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.67

507

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.67

507

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.67

513

Source Code Repository
(www.squeaksource.com)

Clone
Repository

Code Search
Engine

Client
Method

with Clone ID

Creates clone
from search result

Hook triggers upon
commit of methods

with a clone ID

Subscribes
to RSS feed

some other
Code Repository

Figure 1 – Proposed architecture of the “hot clone” prototype.
It extends MONTICELLO, a distributed version control system
for Smalltalk, with two components: a code search engine and
a clone repository.

of a hot clone, it is paramount that the clones not only be
aware of the lexical but also the semantic changes between
their instances [11]. For example, a renamed method call in
two different instances may be due to adherence to coding
conventions, but may also be due to a deliberate change in
one of the instances. So when owners of clones are informed
about an incoming change, the semantics of the change should
be taken into account. We propose to capture each change in
a Changebox [12] annotated with the semantics of a change.

Whenever an incoming change is presented to the developer,
the semantic change history of all involved clones has to be
taken into account. To consider an example, if the code search
engine initially renamed all variable names from camel case to
underscore (in order to fit the search result to the local naming
convention) when the clone was created, this adaption should
be applied to any incoming change as well.

Search results need to be adapted in order to fit into the
target code. Integrating code search results into a local code
base is, by its nature, unanticipated code reuse and will thus
naturally require adaptions to the external search results so that
they fit into the local code base. Search-driven development
refers to this as suitability of search results [2].

IV. TECHNICAL FEASIBILITY

In this section, we discuss how hot clones can be recorded
upon creation and how they should be presented to the user.
A key challenge is tracking code snippets while they evolve
to become increasingly distinct. The versioning system can be
informed of the original cloning and henceforth try to keep
track of the clone automatically, even if it is not marked in
the source code.

Figure 1 illustrates a sketch of the proposed prototype. We
plan to extend MONTICELLO, a distributed version control
system for Smalltalk code, with two components: a code search
engine and a clone repository.

The code search engine provides access to the full content
of the http://www.squeaksource.com installation of Monticello,

some 7.5 GB of Smalltalk source code1. On the client side,
the search engine allows the developers to create semantically
transformed clones that suit the local code base. Each method
that belongs to the clone is tagged with the unique identifier
of the clone.

The clone repository adds a commit hook to the MON-
TICELLO version control system that is triggered whenever
someone commits a new version of a method that has (or
previously had) a clone id. The hook adds the client to the list
of linked clones (if not already present) and informs all linked
clones of the update through an RSS feed. Clients that are
subscribed to the RSS feed can present their developers with
an option to update their instances of the clone in question.
Also, the Pharo IDE can be extended to show all clones of a
method from the context menu of that method.

V. OBTAINED RESULTS

Since our use case suggests large amounts of source code
to deal with, we proposed a set of lightweight techniques that
may scale up to very large amounts of source code in the
presence of multiple versions. The common idea behind these
techniques is to use bad hashing to get a quick answer. By
bad hashes we mean those that map different — but similar
— code snippets to the same hash. Bad hashing can be used
to detect cloning events simply by searching for identical bad
hashes in any observed repository.

We store all hashes found in the entire software ecosystem
in one big table in a relational Postgresql database. We have
built up a service that continuously scans the Squeaksource
code repository, and updates our repository of hashes of source
code.

Once similar snippets have been detected in two projects,
the snippet needs to be tracked. Currently, we use a very
simple metric: if the same snippet is discovered in two different
repositories, then a hot clone is created. All methods that
contain the snippet are added to the hot clone. All future
versions of the method, whether or not they contain the original
snippet, are now tracked in the hot clone. Since this is possibly
too inclusive, it is vital to give the user the option to cut off
the tracking of hot clones.

As a side effect of having built up a large repository of
bad hashes on an entire repository, we are able to assess how
how many clones are duplicated across different projects for
different types of software clones. For type-1, type-2 and type-
3 clones, we have estimated the prevalence of software cloning
as shown in Table I [13].

A. Future work

We will evaluate our definition of bad hashing and type-
1, type-2 and type-3 clones against Bellon’s benchmark [14].
Furthermore, we plan to put our techniques to the test by
applying them to other large ecosystems such as the Maven

1From a tweet by Lukas Renggli, project lead of Squeaksource:
“http://www.squeaksource.com hosts 7.5 GB of Monticello versions,” posted
on Jan 7, 2010, http://twitter.com/renggli/status/7473119028

508508514

Table I – Percentage of cloned methods and classes out of
560,842 methods and 74,026 classes on SqueakSource.

Type 1 type-2 Type 3
Percentage of cloned methods 14.55 % 16.33 % 17.85 %

Percentage of cloned classes 0.16 % 0.19 % 0.21 %

repository. We have already generalized our clone detector to
the Java programming language.

Even though bad hashing is a good starting point to limit
the amount of work necessary to detect and track hot clones,
a better way to store our data will be necessary. Our analysis
and work with large amounts of data requires queries to be
able to run in parallel. Thus, we are evaluating alternatives to
storing our data in Postgresql.

Acknowledgments: We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for
the project “Bringing Models Closer to Code” (SNF Project
No. 200020-121594, Oct. 2008 - Sept. 2010). We thank Oscar
Nierstrasz and Edouard Tavinor for their ideas and corrections.

REFERENCES

[1] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: finding and
leveraging implicit references in a web search interface for programmers,”
in UIST ’07. New York, NY, USA: ACM, 2007, pp. 13–22. [Online].
Available: http://dx.doi.org/10.1145/1294211.1294216

[2] S. P. Reiss, “Semantics-based code search,” in ICSE Companion, vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 243–253.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070525

[3] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical
study of code clone genealogies,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 5, pp. 187–196, September 2005. [Online]. Available:
http://dx.doi.org/10.1145/1095430.1081737

[4] E. D. Ekoko and M. P. Robillard, “Clonetracker: tool support for code
clone management,” in ICSE ’08. New York, NY, USA: ACM, 2008, pp.
843–846. [Online]. Available: http://dx.doi.org/10.1145/1368088.1368218

[5] D. Hou, P. Jablonski, and F. Jacob, “Cnp: Towards an environment for
the proactive management of copy-and-paste programming,” in 2009
IEEE 17th ICPC. IEEE, May 2009, pp. 238–242. [Online]. Available:
http://dx.doi.org/10.1109/ICPC.2009.5090049

[6] M. Toomim, A. Begel, and S. L. Graham, “Managing duplicated code with
linked editing,” in VLHCC ’04. Washington, DC, USA: IEEE, 2004, pp.
173–180. [Online]. Available: http://dx.doi.org/10.1109/VLHCC.2004.35

[7] A. Begel and R. DeLine, “Codebook: Social networking over code,” in
ICSE Companion, 2009, pp. 263–266.

[8] R. Koschke, “Identifying and removing software clones,” in Software
Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
ch. 2, pp. 15–36. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-76440-3_2

[9] N. E. Schwarz, E. Wernli, and A. Kuhn, “Hot clones, maintaining a
link between software clones across repositories,” in Proceedings of
the 4th International Workshop on Software Clones, ser. IWSC ’10.
New York, NY, USA: ACM, 2010, pp. 81–82. [Online]. Available:
http://dx.doi.org/10.1145/1808901.1808915

[10] C. Kapser and M. W. Godfrey, “"cloning considered harmful" considered
harmful,” WCRE ’06, vol. 0, pp. 19–28, 2006. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2006.1

[11] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen,
“Semantic patches considered helpful,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 3, pp. 90–92, 2006. [Online]. Available: http:
//dx.doi.org/10.1145/1151374.1151392

[12] M. Denker, T. Gîrba, A. Lienhard, O. Nierstrasz, L. Renggli, and
P. Zumkehr, “Encapsulating and exploiting change with changeboxes,”
in ICDL ’07. New York, NY, USA: ACM, 2007, pp. 25–49. [Online].
Available: http://dx.doi.org/10.1145/1352678.1352681

[13] N. Schwarz, M. Lungu, and R. Robbes, “On how often code is cloned
across repositories,” Manuscript submitted for publication, 2011.

[14] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 577–591, Sep. 2007.

509509515

