
Renraku — the One Static Analysis Model
to Rule Them All

Yuriy Tymchuk
SCG @ University of Bern

Switzerland

Mohammad Ghafari
SCG @ University of Bern

Switzerland

Oscar Nierstrasz
SCG @ University of Bern

Switzerland

Abstract
Most static analyzers are monolithic applications that define
their own ways to analyze source code and present the results.
Therefore aggregating multiple static analyzers into a single
tool or integrating a new analyzer into existing tools requires
a significant amount of effort.

Over the last few years, we cultivated Renraku — a static
analysis model that acts as a mediator between the static an-
alyzers and the tools that present the reports. When used by
both analysis and tool developers, this single quality model
can reduce the cost to both introduce a new type of analy-
sis to existing tools and create a tool that relies on existing
analyzers.

CCS Concepts • Software and its engineering → Soft-
ware maintenance tools; Extra-functional properties; Object
oriented architectures; Abstraction, modeling and modularity;

Keywords static analysis, code quality, software design

ACM Reference format:
Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. 2017.
Renraku — the One Static Analysis Model to Rule Them All. In
Proceedings of IWST ’17, Maribor, Slovenia, September 4–8, 2018,
10 pages.
https://doi.org/10.1145/3139903.3139919

1 Introduction
Smalltalk has a long history of development tools that aid pro-
grammers to perform their daily tasks. Some of these tools use
static analysis to reveal additional information about source
code to a developer. Tools such as SmallLint quality checker,
Refactoring Browser and Rewrite Engine [8] played a crucial
role in software maintainability. On the other hand, tools that
aid to maintain code have their own maintainability cost. In
the last decade there were several attempts to harvest useful

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWST ’17, September 4–8, 2018, Maribor, Slovenia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5554-4/17/09. . . $15.00
https://doi.org/10.1145/3139903.3139919

information about source code properties. Such information
includes test coverage [3], usage contracts adherence [7],
code churn, exception stack traces, and IDE interactions [5].
While all the properties may convey useful information, it
cannot be accessed from the development tools. It is expen-
sive to maintain integration of multiple data retrieval engines
in various development frontends. Even if we consider only
SmallLint — the de-facto static analysis engine of Smalltalk,
there is only a single standalone tool (RefactoringBrowser
or CriticBrowser) per Smalltalk dialect that fully supports
SmallLint features. While there are other users of SmallLint
reports such as Continuous Integration (CI) build jobs, they
are rather basic as it is expensive to dig into the SmallLint
architecture and maintain compatibility with future versions.

We hypothesize that a single model that provides informa-
tion about various source code properties may facilitate the
development of analysis engines and their integration into de-
velopment tools. The main goal of such model is to decouple
code analyzers and development tools and thus to reduce the
cost of:

1. providing custom source code analysis reports in exist-
ing development tools;

2. obtaining and reusing the source code properties pro-
vided by available analyzers.

In this paper we describe Renraku [12] — the unified code
quality model of Pharo1 [6]. Renraku was shaped by 3 years
of tool and analysis development, as well as user feedback.
The word “Renraku” is Japanese (連絡) and means commu-
nication, connection, coordination. Renraku is mainly used
by the live static analysis feedback system called QualityAs-
sistant [11], yet other tools such as CriticBrowser, Calypso2

code editor, and ViDI inspector [14] also rely on the same
model. Renraku’s main source of code properties comes from
SmallLint. However, there were experiments of issue tracker
entries integration as well as tests binding and code cover-
age assurance. While Renraku is still mainly used to provide
linting static analysis reports for a live feedback tool, there
are other users of this model that motivate the robustness and
usefulness of Renraku as a generic code property bridge.

The paper is structured the following way: in Section 2
we provide a brief overview of the related work; Section 3
describes the fundamental idea of Renraku; the three main
building blocks of Renraku are described in detail in Section 4,

1http://pharo.org
2https://github.com/dionisiydk/Calypso

https://doi.org/10.1145/3139903.3139919
https://doi.org/10.1145/3139903.3139919
http://pharo.org
https://github.com/dionisiydk/Calypso

IWST ’17, September 4–8, 2018, Maribor, Slovenia Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

Section 5, and Section 6; Section 7 describes the differences
and the simmilarities of SmallLint and Renraku; Section 8 and
Section 9 demonstrate how to use Renraku to create a quality
rule and a quality-aware tool respectively; we mention most
notable Renraku users in Section 10; Section 11 concludes
the paper.

2 Related Work
The code quality rules present in Pharo are similar to those
provided by the most popular static analyzers for other lan-
guages, such as FindBugs [1], Pylint3, JSHint4. These analyz-
ers provide a limited support to define new rules and ourput
the validation results in a plain text. Renraku is designed to be
an object-oriented framework that expects that all the require-
ments such as defining rules, running them and processing the
output are going to follow object-oriented approaches. Thus
a developer will subclass a basic rule class and specialize it
upon a new rule creation. The quality reports will be actual
objects as well and will have an extensible way to provide
feedback or even define special behavior.

Google introduced Tricorder — a static analysis integrated
into their pre-commit review [9]. Tricorder relies on 16 static
analysis tools that can be applied to five programming lan-
guages. Besides having to integrate the output into their code
review tool and invent a strategy to handle false positives,
Google engineers had to build a sophisticated infrastructure
to run all the tools on their codebase and provide a uniform
result. Buckers et al. operated on a much smaller scale by
running 3 static analysis tools on a single Java project and
visualizing the obtained result [4]. And while the main focus
of the authors is a tool that displays visualization of static
analysis, they spend a large amount of time explaining the
design decisions used to run all the analysis together and
unify results. Because of the current design of static analysis
tools, developers have to spend substantial amount of time to
run the analysis and aggregate the reports, while their main
goal is to incorporate static analysis feedback in a tool that
they develop. With Renraku we propose a unified model for
static analysis reports, thus a tool developer has to rely on a
single set of API to work with static analysis.

On the other hand, if one wants to develop a new static
analysis algorithm there is no standard way to do this, and
as a result the author of the algorithm has to also develop
and maintain the reporting mechanism for static analysis
results. This happened to the uContracts Domain Specific
Language (DSL) and validation engine which was developed
to check the most common software design constraints [7].
Together with the analysis engine the authors had to develop
a code editor plugin to run the constraint checking and report
detected violations. uContracts was never used for real tasks
because the code editor was replaced by a successor which

3https://www.pylint.org
4http://jshint.com

worked with a different kind of plugin and the authors of
uContracts did not have time to develop one more plugin for
yet another editor. With Renraku we provide a unified model
that code analyzers can use to provide their feedback and the
tools will pick up and display the information automatically.

3 The Quality Triad
Renraku is based on three basic concepts as depicted in Fig-
ure 1.

Critique

TargetRule

of

has

by

produce
s 11

0..*0..*

validates

Figure 1. The Quality Triad of Renraku

A critique is a single report about code quality. It targets
a single code entity and it is based on a single quality rule.
A critique is the main unit that should be used to commu-
nicate code quality information to a user. Critiques can be
specialized to provide a sophisticated explanation, solution
suggestions, custom tooling for problem resolution and much
more. A critique does not have to be negative, it can just be
a link between a rule and a target that may have information
of a different kind. In this case a system may contain all the
possible links between all the targets and all the rules. Then
a link can be re-evaluated in case the target or the rule were
changed. On the other hand there might be multiple critiques
connecting the same rule and target in case the target violates
the rule multiple times. For example a class may have multi-
ple unused instance variables and each critique will target a
unique instance variable from the same class.

A rule defines a quality issue, it can identify an issue in a
software entity and produce a critiques about it. Potentially
a rule can produce multiple critiques about various targets.
A rule can be viewed as a function that accepts an entity
and returns a critique of it. Although a rule interacts with
a target during the validation process, it does not store any
direct references to the target and thus does not have any
strong dependencies. A rule is also responsible for choosing
a critique that is the most appropriate one for communicating
an issue. For example if a visualization is needed to identify
the cause of an issue the rule should use a critique capable of
displaying visualizations.

A target is the actual piece of code that a critique targets.
Potentially a target can be criticized by many critiques pro-
duced by various rules. A target should provide an interface
to query its quality i.e., return the critiques produced by avail-
able rules about it. The main reason for this functionality is
to simplify the critique query process for potential tools. For
example, when the developer of a code editor wants to add a
quality feedback to his tool, obtaining the quality information
should be as easy as asking the method or class itself what are

https://www.pylint.org
http://jshint.com

Renraku — the One Static Analysis Model to Rule Them All IWST ’17, September 4–8, 2018, Maribor, Slovenia

its critiques. This does not have to be the only way to obtain
critiques about a target, but the simplicity of operation is im-
portant for the adoption of quality feedback in development
tools.

While the Renraku triad envisions three main entities and
their purpose, the system that we have built in reality is much
more complicated as can be seen in Figure 2. In the rest of
this paper we are going to discuss the decisions taken and the
pitfalls that we encountered while implementing the Renraku
model.

4 The Critique
According to the main Renraku vision, a critique should link
a quality rule to a source code target and communicate the
issue discovered by the rule. In our implementation, we also
considered other kinds of reports not related to quality rules.
Source code can have diverse sources of related data such as
code review discussions, bug reports, test coverage, or even
plain text notes. All the mentioned data sources may have
the same or even higher importance than the static analysis
feedback, and not every type of report is going to have some
kind of a rule associated with it. We introduced Property
— a superclass of Critique and other possible external

properties related to a piece of source code. Property defines
a basic interface of a title and an icon that can be used to
display it in a user interface. Then Critique specializes
Property by extracting the title from the rule name, selecting
the icon based on a rule severity and additionally provides
a description based in the rule’s rationale. Currently there
are not many properties used used in practice and thus in the
context of this paper we mostly focus on critiques.

4.1 Source Anchors
While the ideal vision of Renraku suggests that a critique
points directly to a target that violates the rule, in reality our
targets are source code entities that have text as their main
representation. Thus a critique should also specify which code
interval violates the rule. For this reason a critique points to a
source anchor, which knows about the target entity and the
source code interval as can be seen in Figure 2.

1 relationGraphOnReverse: anObject
2 relationGraph := anObject.
3 self relationGraph build.
4 self buildReverseRoots

Listing 1. A method sends a message with a selector that no
methods in the system implement.

1 check: aMethod
2 aMethod messages do: [:selector |
3 (SystemNavigation allImplementorsOf: selector)
4 ifEmpty: [self critiqueFor: selector]]

Listing 2. Rule validating a method for sending messages of
unimplemented methods

Consider Listing 1 which presents a method extracted from
one of Smalltalk frameworks. The system has no method
with the selector buildReverseRoots and thus it is highly
suspicious that this method sends such message. There are
different approaches to identify which exact message has a
selector that is not implemented by any method. One can
traverse all the AST nodes, and check whether a node is a
message send and whether it has a selector which does not
match any method in the system. Then the rule will have a
violating AST node which knows its interval in the source
code. This is a good use case for a concrete source anchor
that simply stores the interval itself. However AST traversal
is time consuming and some AST nodes may be in the end
optimized and replaced by a special bytecode. The actual rule
implementation checks only the messages available directly
in the bytecode as is shown in Listing 2. As the result the
rule only knows which message violates it, but does not know
the message’s positions in the source code. For such cases
there is a source anchor that derives the interval based on
the substring location in the entitiy source code. Needless to
say, the substring approach may be not precise given multiple
occurrences of the same substring.

For class-based rules a developer can rely only on sub-
strings, as a class definition has no AST representation and
does not provide a way to easily access the position of the
building blocks such as variable declaration, trait composi-
tion, etc. An example of a class definition is demonstrated in
Listing 3. The class variable is unused and when detecting
its interval in the source code, the first substring match oc-
curs on the subclass: keyword. Such a report will confuse
the developer so to mitigate the matching issue a dedicated
variable-matching source anchor uses special heuristics (such
that the variable name has to be surrounded by a space or
quote) to identify the interval with a higher precision. It is
up to a rule and critique developer to use available source
anchors, or to create special ones to provide the best feedback
possible with the critique and source anchor combination.
One could argue that source anchors could be rendered ob-
solete if in the future all the rules would be based on AST
nodes. We believe that as long as the program implementation
is mainly defined as text, the source anchors are going to be
important, because some rules may check textual features.
For example one of the rules checks if the line breaks are
encoded with the cr control character, and there is no way to
analyze this on the AST level.

1 Model subclass: #RBClassToRename
2 instanceVariableNames: 'rewriteRule class'
3 package: 'Refactoring-Tests-Core-Data'

Listing 3. A class with an unused instance variable class

We discovered that for many critique titles it is enough
to just show the name of the rule that produced the critique
without significant changes. For the rest of critiques usually it
is enough to add a couple of words to reasonably improve the

IWST ’17, September 4–8, 2018, Maribor, Slovenia Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

title()
icon()

Property

act(property, target)

description
icon
action

PropertyAction

0..*

actions

description()
ban()

tinyHint

Critique

checksClass()
checksMethod()
checksPackage()
checksNode()
name()
rationale()
group()
severity()
checkTarget(target)

AbstractRule

interval()

SourceAnchor

Object

interval()

StringMatchSourceAnchor

stringToSearch

interval()

IntervalSourceAnchor

interval

checksNode()

NodeBasedRule

refactoryChange()

TransformationCritique

refactoryChange()
tinyHint()

selector
class
source

MissingMethodCritique

refactoryChange()

oldNode
newNode

NodeReplace

title()
description()

formerMessage
laterMessage

InvocationOrderCritique

checkTarget(target)

NodeMatchRule

checkTarget(target)

NodeTransformRule

checksMethod()
checkTarget(target)

CollectionCopyEmptyRule

sourceAnchor

1

entity

1

rule

1

Figure 2. UML diagram of the main Renraku components

explanation of a critique for a particular case that it addresses.
For this reason we introduced a tiny hint property of the
critique that is represented by a short string and appears at the
beginning if the title before the rule’s name. For example, the
title of a critique about an unused variable will look like this:

[count] Instance variable neither read nor written.

In this case count is the variable’s name, and the rest of the
title is the rule’s name. The tiny hint allows a developer to
quickly identify the problematic piece of code while the rule’s
title briefly explains the issue.

4.2 Custom Actions
Another challenge of a good critique model design arises
when rule developers need a flexible approach to provide a
custom behavior to their client while staying tool-agnostic.
For example a common aid provided by quality violations
before Renraku was to transform the detected issue with
rewrite expressions. To support this, the quality-aware tools
had to check if the rule provides rewrite expressions, and
execute them. Then rules of another type were introduced and
they detected dependency violations. For example a common
feature of many rules is to provide an automatic fix suggestion
based on a source code transformation as shown in Figure 3.

Recently architectural critiques were introduced into Pharo,
and their special feature is to open a dependency browser and
point out the dependency violation. As a result all the tools
had to accommodate the new critique with its new feature.
Ideally we want to give rule developers the freedom to create

new kinds of critiques without having to update all the tools
each time. To solve this problem we introduced a concept
of PropertyAction that has an icon and a description, as well
as a “function” that accepts a property and performs the ac-
tion. A property can have any number of actions, and a tool
can list the actions to a programmer and execute them when
needed. Figure 4 depicts two possible ways to display actions
in the user interface. One of them lists actions as items in a
context menu, another uses buttons with icons and a descrip-
tion popup. Whenever a menu item is selected or a button is
pressed, the action will be executed.

Figure 5 shows the hierarchy of properties with the actions
associated to them. In this case each top-level property intro-
duces one or more actions. The note property opens a text
editor to edit the note text; the issue tracker entry opens the
issue in a web browser, and the critique can show a detailed
description or ban itself, if a developer decides that the report
is incorrect. The subclasses of Critique inherit actions from
their parent and but extend them with the ones specific to
their domain. The dependency violation critique can open a
dependency browser to provide additional information about
dependencies and suggest a solutions. The transformation
critique will start a transformation process by displaying the
changes that are going to take place and asking the user for
approval to execute them.

4.3 Specializing Critiques
It is up to a rule developer to reuse available critiques to create
new ones. Based on the demand of custom critiques we inte-
grated some specialized critiques into the base distribution of

Renraku — the One Static Analysis Model to Rule Them All IWST ’17, September 4–8, 2018, Maribor, Slovenia

Figure 3. A diff suggesting a fix of a critique.

Figure 4. Different user interfaces display actions. On the left the
actions are presented as items of a context menu, on the right — as
buttons with icons.

title()
icon()
actions()

target

Property

description()
ban()

tinyHint
rule

Critique

refactoryChange()

TransformationCritique

package

DependencyCritique

noteText

Note

url

IssueTrackerEntry

Open in web browserEdit note

View description

Ban critique

Automatically resolve Open dependency browser

— critique’s
action

Figure 5. Property hierarchy with the associated actions

the Renraku model. First of all we noticed that many critiques
need a possibility to automatically resolve the issue. Thus
we introduced TransformationCritique, which knows a trans-
formation that has to be applied and has an action to run the
transformation. Then we added more concrete transformation
critiques. For example many rules detect a missing method,
and a dedicated critique can automatically construct it with
a method adding transformation, and communicate which
exact method is missing with tiny hint. We also noticed that a
substantial number of rules detect a wrong order of messages,
thus we created a critique that produces an informative title
based on the messages and the required order.

5 The Rule
The rule model of Renraku is derived from the existing de-
sign of SmallLint — the static analyzer originally available

1 rule resetResult.
2 rule checkMethod: aMethod.
3 rule critics includes: aMethod

Listing 4. Common way to run programmatically a SmallLint
rule. The boolean result represents existence of a violation

1 rule check: aMethod

Listing 5. Checking a method with a Renraku rule. The result
is a collection of critique objects that describe the violations

1 check: aClass forCritiquesDo: aCritiqueBlock
2 aClass instVarNames do: [:varName |
3 varName first isUppercase ifTrue: [
4 aCriticBlock cull: (self critiqueFor:
5 aClass about: varName)]]

Listing 6. The main checking method of a rule detecting
capitalized instance variables

in Smalltalk [8]. Renraku rules share the same properties as
SmallLint rules: name, rationale, group, severity. The funda-
mental difference between SmallLint and Renraku is the ease
of use. SmallLint required substantial knowledge about its
implementation. To validate code with SmallLint rules one
had to use dedicated checkers that had to be reconstructed or
reset and queried every time, or run a rule on a source code
entity and then query the rule for a result as demonstrated in
Listing 4. Various rules had to be queried in a different way
which resulted in poor quality reports integrated in tools, as
the tool developers did not have time to understand how the
rules should be operated. In our case, a rule can be treated as
a black box that accepts a target and produces a collection of
critiques about that target as demonstrated in Listing 5. Then
a tool just has to run a rule and process the obtained critiques.

To achieve the best flexibility and performance we follow
a streaming approach where a rule accepts a target to check
and a callback function to evaluate for each detected critique.
An example of the main checking method taken from the
rule that detects capitalized instance variables5 is shown in
Listing 6. The method receives a class to check, and a block
to evaluate with each detected critique. Then the method
iterates over all the variable names, and in case there is a
variable with a first uppercase character, the method creates a
critique about this and evaluates6 the block with the critique.
This way the block will be evaluated with every critique rep-
resenting a single variable violating the capitalization rule.
Using the “callback block” approach has a few advantages
over returning a collection of critiques. When all the rules

5style conventions of Smalltalk define that instance variable names should
begin with a lower-case letter
6value: is the standard Smalltalk method for evaluating a block with one ar-
gument. For additional flexibility we use cull: in our implementation. Con-
trary to value: it will also evaluate blocks that do not expect any arguments.

IWST ’17, September 4–8, 2018, Maribor, Slovenia Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

are applied to all the methods in Pharo 6 to obtain a single
collection of critiques, the streaming approach provides a
slight speedup of 10% because it does not create a new col-
lection for every method-rule pair. This approach also allows
a tool to run operation-heavy rules in a concurrent process
and update the tool UI whenever a critique is detected. Fur-
thermore by using callbacks a developer can stop the rule
evaluation on first encountering a critique, if she is interested
only in existence of certain critiques and not the detailed re-
port. The rule base class additionally provides convenience
methods check:, check:forCritiquesDo:ifNone: and
check:ifNone: that return a collection of the detected cri-
tiques or accept a block to evaluate if no critiques were de-
tected.

5.1 Specifying a Rule Interest
Another challenge of the rule design is related to distinguish-
ing what type of targets should be checked by a rule. For
example one rule can be implemented to check methods, but
will break while checking a class. SmallLint solved this by
having two empty methods in the root class checkMethod:
and checkClass: and rule runners will only pass a method
to the first method and a class to the second one. Then the
subclasses only override one of the methods depending on
what they want to check. This approach gets more compli-
cated once we have the four checking methods described
previously. Additionally, during the evolution of Renraku
we had to support rules for checking packages and rules for
checking individual AST nodes. For this reason we intro-
duced class-side methods7 checksMethod, checksClass,
checksPackage and checksNode. These methods return
false in the base class and should be overridden to return
true for rules that are designed to check one of the entity
types. A rule may check multiple types of entities, for exam-
ple a rule that checks if code is correctly packaged may check
both methods and classes if they share the same packaging
API. This approach allows rule-runners to group all the rules
by the type of entity that they are checking and select the
appropriate group based on the type of the entity that has to
be checked.

During the evolution of Renraku our approach of declar-
ing an interest in a target type worked well. However,
when designing the “interest declaration” we envisioned a
more complex scenario, when we would also have meth-
ods like checksMetaClass and checksMetaClassMethod
that would by default return the value of checksClass and
checksMethod respectively. The concrete rules could over-
ride the methods to specify that they want to check only the
meta or non-meta entities8. We discovered that there is only

7In Smalltalk classes are modeled as objects i.e., they have methods too.
Class-side methods work similarly to static methods or other programming
languages, but can be inherited and overridden.
8since classes are objects too, they are instances of meta classes. Meta classes
define the class-side variables and methods.

a small number of rules that distinguish meta and non-meta
entities. For rule developers it is easier to validate the meta
class details during the checking phase of the rule instead
of specifying a special interest with checksMetaClass and
checksMetaClassMethod. As a result we have never im-
plemented special methods for declaring an interest in meta
entities. We also envisioned another strategy for declaring
entity type interest that may perform better. There could be a
single class method which returns an array of types the rule
checks. This will not change much for classes, methods, and
packages, but can simplify the rules for nodes and introduce
a greater flexibility in general. Based on our experience, most
of the node-based rules check for the node type in their first
operation. For example many rules check something about a
message or a variable. Then instead of doing a type check in
the rule, developers could specify the type of an AST node
they are interested in.

5.2 Specializing Rules
To collect all the rules available in the system we use the
same approach used by SmallLint. We simply collect all the
subclasses of the abstract rule class and then select ones that
check an appropriate target type. Additionally if a certain rule
wants to declare an interest in a target for all its subclasses
but should not perform validation itself, it can override the
isVisible to return false for its class and exclude itself from the
rules that are used to check code. By dynamically querying
the subclasses we can easily add new rules to the existing
arsenal if they are packaged with frameworks and libraries
that a project uses.

Most of the rules subclass directly the base rule. We also
introduced a few custom rules to automate repetitive tasks.
One of them is an invocation order rule used to detect whether
a certain message is preceded of followed by another one. All
such rules traverse an AST and analyze the control flow to
detect violations. We generalized the analysis into a common
abstract rule and require the concrete subclasses to define only
the message pair and the intended invocation order. Another
large group of dedicated rules is specialized to check AST
nodes. Node-based rules automatically declare interest in AST
nodes and override the helper method for constructing source
anchors to use the source interval provided by AST nodes.
The node-checking rules include a large group of rules that
work based on a pattern matching syntax. To create such a
rule a developer specifies a source code pattern that should be
matched and a transformation which can be used for auto-fix.
SmallLint rules based on pattern code traverse the complete
AST of a method and rewrite it at the same time, then they
store the rewritten version, that can be used by tools to suggest
an auto-fix. The Renraku alternative checks a single node and
stores the replacement node which is used to apply changes
by an auto-fix critique action. This not only allows developers
to check a single node, but may speedup code validation by
40%, as an AST does not have to be traversed repeatedly for

Renraku — the One Static Analysis Model to Rule Them All IWST ’17, September 4–8, 2018, Maribor, Slovenia

each rule, but can be traversed only once while applying all
the pattern code rules to every node.

6 The Target
The target has the least responsibilities to fulfill. According
to Renraku any object can be a target. A rule may check a
target and produce a critique about it. Targets play an im-
portant role of providing a simple API to access critiques.
For example all source-code related entities implement a
critiques method that returns all critiques about this entity
by all the active rules in the system. Such a method allows a
tool developer to quickly obtain all the critiques about a code
entity currently used in a tool. A simplified implementation
of such a method is presented in Listing 7. The method is
implemented in Behavior, which is a common superclass
for classes and meta classes thus it knows that it has to check
itself with the rules for classes. The method also includes
pragma <eProperty> because critiques are just one type of
property that can exist for this object. For this reason tools
are encouraged to actually use another dedicated method
externalProperties that collects the results from all the
methods annotated with <eProperty> and aggregates them.
The externalProperties method is implemented in the
root of class hierarchy and thus any object can be asked for
its external properties. Then analysis developers may add a
method9 with the <eProperty> pragma to a certain class, to
make it return their properties together with the others.

1 Behavior>>critiques
2 <eProperty>
3 | rules critiques |
4 rules := ReRuleManager uniqueInstance classRules.
5 critiques := OrderedCollection new.
6
7 rules do: [:rule |
8 rule check: self forCritiquesDo: [:crit |
9 critiques add: crit]]

10 ^ critiques

Listing 7. An implementation of a critiques method

7 Compatibility with SmallLint
SmallLint was the static analysis system of Smalltalk for
many years before the creation of Renraku. As the result,
many rules and tools follow the SmallLint model. To ensure
a good migration from SmallLint to Renraku we maintained
a healthy level of interoperatibility between the two models.
SmallLint rules can be turned into renraku rules with a help
of several extension methods in the root class, while a Ren-
raku rule can be turned into a SmallLint rule with the help
of a wrapper. The main difference between them is in the
checking itself and in the richness of a report. As discussed in
Section 5, Renraku rule accepts a target to check and returns
a collection of critiques about it. A SmallLint rule has an

9Smalltalk allows developers to add methods to classes of other packages.

internal environment where it stores the entities that violate
it. When a SmallLint rule checks a code entity and detects
a violation it stores the entity in the environment. Then the
environment has to be queried for the inclusion of the code
entity. Listing 8 demonstrates a Renraku checking method
added to an existing SmallLint rule. First of all the method
resets the rule’s environment which removes all the previ-
ously detected violations. Then depending on whether the
rule checks classes or methods the corresponding checking
message will be sent with the entity as a parameter. In case
a violation is detected, the resulting environment will not
be empty and thus the method has to produce a critique. To
declare an interest in a class or a method we can rely on the
rule implementing the corresponding method (Listing 9). The
rest of rule properties such as name, rationale, severity, group
have the same API for both SmallLint and Renraku.

We started the migration by implementing Renraku func-
tionality of the core SmallLint rule and then transforming
the available rules one by one. The migration is going to
take a long time as there are some external frameworks with
SmallLint rules and we have no way to ensure that they have
migrated all their rules. The migration could be automated
to some extent, but each rule is unique and may store date in
different formats, require resets, etc. Thus we prefer to have
Renraku functionality on top of the existing API and do a
manual rule conversion, as Renraku rules may have a better
ways of implementation.

1 check: anEntity forCritiquesDo: aCritiqueBlock
2 self resetResult.
3 self checkClass: anEntity.
4 self checkMethod: anEntity.
5 self result isEmpty ifFalse: [aCriticBlock cull:
6 (self critiqueFor: anEntity)]

Listing 8. Renraku checking based on SmallLint functionality

1 checksMethod
2 ^ self theNonMetaClass
3 includesSelector: #checkMethod:

Listing 9. Renraku type interest based on SmallLint
implementation

Compatibility of Renraku with SmallLint is also impor-
tant because while someone may decide to convert rules
to the Renraku model, certain tools (as Pharo CI server)
may still expect SmallLint rules. Because SmallLint is ex-
pected to preserve a certain state, we created a wrapper that
used a Renraku rule to do the checking while pretending
to be a generic SmallLint rule. Because Renraku is explicit
about what it checks, the wrapper rule can easily select an
appropriate environment, or check a code entity as shown
in Listing 10. The challenge arises when a tool asks the
rule’s class for a uniqueIdentifierName, and the wrap-
per rule is a single class which instances act as diverse rules
based on the rule that they wrap. Thus the wrapper rule

IWST ’17, September 4–8, 2018, Maribor, Slovenia Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

1 RBRenrakuWrapperLintRule class>>new: aRule
2 | annotatedClass |
3
4 annotatedClass := self newAnonymousSubclass.
5 annotatedClass class compile:
6 'uniqueIdentifierName ^ ',
7 aRule class uniqueIdentifierName
8 surroundedBySingleQuotes.
9

10 ^ annotatedClass basicNew
11 initialize: aRule;
12 yourself

Listing 11. SmallLint wrapper instantiation

class cannot rely on Renraku rule classes to return a cor-
rect uniqueIdentifierName. For this reason upon a new
wrapper instance creation we also create an anonymous sub-
class that overrides uniqueIdentifierName to return the
value provided by the class of the Renraku rule (Listing 11).

1 RBRenrakuWrapperLintRule>>checkClass: aClass
2 renrakuRule class checksClass ifFalse: [^ self].
3 renrakuRule check: aClass
4 forCritiquesDo: [:crit |
5 result addClass: aClass.
6 ^ self]

Listing 10. SmallLint wrapper class check implementation

8 Creating Rules
In this section we are demonstrating the common workflow
to create Renraku rules. To be realistic we are going to
look at an issue periodically encountered by Pharo devel-
opers. Pharo Catalog10 is a tool for browsing and quickly
installing various projects into Pharo from a dedicated repos-
itory. To add a project to Pharo catalog it is not enough to
commit a configuration Class to a special repository, but
one also must ensure that the configuration has project spe-
cific methods. These methods are catalogDescription,
catalogContactInfo, catalogKeywords and they provide
meta information about the project to be displayed in the cat-
alog. Sometimes developers forget to define these methods
and they cannot understand why their projects do not appear
in the catalog.

We are going to develop a ReCatalogRule which will
check if a catalog project configuration defines the required
methods. The class will subclass the base ReAbstractRule
class and override the checksClass class-side method

to return true. Then we should also comment the class
with the rule’s rationale, and override the name, severity
and group methods to specify important method properties.
For this particular case we will also have a helper method
requiredMethods that returns an array with the selectors of
the required methods. The most important part part of the rule
is the checking method which is presented in Listing 12. On
10http://catalog.pharo.org

the lines 2 and 3 we check if the class is a configuration and
if it is versioned in the catalog repository to guard ourselves
against creating critiques about non-catalog classes. Then we
check if there are the required methods on the class-side, and
for each missing method we create a critique. At this point
the rule has a basic desired functionality. The critiqueFor:
method that we use creates basic critiques by default, which
will report that a class is missing required methods but will
not provide information which method is missing. For this
reason we have a missing method critique that can be created
by implementing a helper method presented in Listing 13.
Then this helper method can be used on the line 8 of List-
ing 12 to produce the critiques that will exactly specify the
missing method and offer to create a stub of it. For more
complicated rules a developer may want to create a custom
critique which can be implemented iteratively once the rule
already has a working check method.

1 AbstractRule>>check: aClass
2 forCritiquesDo: aCritiqueBlock
3 (self testIsConfiguration: aClass)
4 ifFalse: [^ self].
5 (self testIsInCatalogRepo: aClass)
6 ifFalse: [^ self].
7
8 self requiredMethods do: [:sel |
9 (aClass theMetaClass includesSelector: sel)

10 ifFalse: [aCritiqueBlock cull: (
11 self critiqueFor: aClass)]]

Listing 12. The catalog rule checking method

1 AbstractRule>>critiqueFor: aClass missing: aSelector
2 ^ ReMissingMethodCritique
3 for: aClass
4 by: self
5 class: aClass theMetaClass
6 selector: aSelector)
7 beShouldBeImplemented

Listing 13. Missing method critique creation for the catalog
rule

9 Creating Tools
As mentioned before, the convenient API to obtain critiques
greatly simplifies the adoption of static analysis in tools. De-
signing and building a user interface is a non-trivial task that
requires a substantial amount of time and various software
components. To simplify the explanation we are going to ex-
emplify the usage of critiques by using them in a software
visualization. A standard demonstration of the Roassal [2]
visualization framework often includes a script for building
a polymetric visualization of a class hierarchy. The visual-
ization depicts classes as rectangles with their width mapped
to the number of attributes, height — number of methods
and brightness — number of lines of code. The rectangles
are connected with edges that represent inheritance between
classes and are laid out to form the inheritance tree. Source

http://catalog.pharo.org

Renraku — the One Static Analysis Model to Rule Them All IWST ’17, September 4–8, 2018, Maribor, Slovenia

code for the visualization together with some features added
by us can be seen in Listing 14.

1 b := RTMondrian new.
2 b shape box
3 height: #numberOfMethods;
4 width: #numberOfVariables.
5
6 b interaction popupView: [:group :el |
7 group add: (RTLabel elementOn: el model name).
8 group addAll: (
9 el model critiques collect: [:crit |

10 crit icon asRTElement]).
11 RTHorizontalLineLayout on: group].
12
13 b nodes: RBProgramNode withAllSubclasses.
14 b edges connectFrom: #superclass.
15 b layout tree.
16
17 b normalizer normalizeColor: [:class |
18 class critiques size].

Listing 14. Roassal script to build a polymetric view for a class
hierarchy

We introduced two features into this visualization. First of
all, instead of mapping the color of the rectangles to the num-
ber of lines of code, we mapped it to the number of critiques.
To do this we used a color normalizer on lines 17-18 and spec-
ified that the normalization has to be based on the number
of critiques11 of each class. We also updated the popup that
appears when a user hovers over an element. Now addition-
ally to showing the name of the class, the popup also contains
icons for critiques and their severity. To do this we collect all
the icons of the critiques and convert them into Roassal ele-
ments, then we add all the resulting elements into the popup
group on the lines 8-10. The resulting visualization can be
seen on the left-hand side of Figure 6. By using the number
of critiques to highlight the classes in red, we can easily draw
attention to classes with a high number of critiques. Addition-
ally a user may hover over a class to see its name, the exact
number of critiques and their severity. The right-hand side of
the figure displays an inspector on the selected object, which
is in our case a class that was clicked in the visualization.
This is the default behavior, as well as the critiques tab that
displays the list of detected critiques. In a tool a developer
may implement a similar functionality by obtaining critiques
from the object and rendering their icons and descriptions,
implementing interactions with them, etc. Our main goal is
to show that using the static analysis information in tools can
be easy, obtaining the number of critiques with only two mes-
sages. The tool author can inspect the properties of critiques
and use them to provide even more information with a still
low implementation cost.

11In this example we use critiques to avoid complication that comes from
the concept of external properties. In reality most of the tools including
QualityAssistant use externalProperties to include also information of
other property engines.

Figure 6. Roassal class hierarchy visualization enhanced with code
critiques

Figure 7. Critique browser suggests a solution to a critique.

10 Notable Users
Renraku is mainly used in QualityAssistant and CriticBrowser
which are present in Pharo. Inline critiques of Renraku are
also present in the message browser and in the debugger.12

Renraku was also used in ViDI — the visual design inspector
augmented with code quality information [14], but the tool is
not being developed for the last two years anymore.

Originally CriticBrowser used SmallLint and the move
to Renraku brought a few benefits. Figure 7 shows the Cri-
tiqueBrowser suggesting a fix to a missing method critique.
SmallLint could not suggest such fix because it could do only
method transformations and not a more complicated refactor-
ing. Thus in the original CritiqueBrowser a user would see
only a message “Method defined in all subclasses, but not in
superclass” and the definition of the class where the method
is missing without any suggestion which exact method is
missing. This example demonstrates how advanced critiques
improve all the tools that use Renraku.

Renraku is also used by the Calypso13 code browser to
create a dynamic critiques group that displays critiques for
all the methods in a class as can be seen in Figure 8. This use
case is very important for Renraku, as the Calypso developer
implemented this functionality himself while being an expert
in Calypso and not knowing about the rule present in the
system, but just relying on the Renraku API.

12Debugger critiques are available as a separate loadable plugin.
13https://github.com/dionisiydk/Calypso

https://github.com/dionisiydk/Calypso

IWST ’17, September 4–8, 2018, Maribor, Slovenia Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

Figure 8. The Calypso browser with a critique method group.

Figure 9. Issue tracker entries displayed in QualityAssistant

Figure 9 depicts a prototype of displaying an issue tracker
information related to a code entity in QualityAssistant. While
this software was not released to the public, the feasibility
of this prototype is an important use case for Renraku. The
author of the issue tracker linking engine did not have to learn
how to extend a code browser with a plugin, but simply had
to return Renraku properties by his engine. Then the tool
would automatically pick up and display the properties as
they follow the Renraku model.

11 Conclusion
In this paper we presented Renraku — an extensible static
analysis model designed to conveniently connect automated
software analysis and development tools. The implementa-
tion of Renraku was shaped by the requirements that we
encountered during our studies. There are prototypes built to
demonstrate the flexibility of the framework in combination
with various tools. There are also prototypes demonstrating
non-rule-based critiques (also known as external properties)
and their compatibility with the existing tools. Nonetheless
the only setup tested by a substantial amount of real devel-
opers during a reasonable amount of time, was the live static
analysis feedback performed by QualityAssistant. The model
works well and we did not encounter any serious issues dur-
ing its evolution and operation, and in our previous work we
investigated its impact [10, 13].

We believe that Renraku still has a long way to go and
many challenges to face. While the concept of a single static
analysis model worked for several diverse prototypes, it may
include shortcomings that can be revealed only when tested
by a reasonable number of real users. We will not know

much about its usefulness until more analysis engines start to
provide their feedback using the model, and more tools will
embed the Renraku external properties into their interface.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018).

References
[1] Nathaniel Ayewah and William Pugh. 2008. A Report on a Survey and

Study of Static Analysis Users. In Proceedings of the 2008 Workshop on
Defects in Large Software Systems (DEFECTS ’08). ACM, New York,
NY, USA, 1–5. DOI:http://dx.doi.org/10.1145/1390817.1390819

[2] A. Bergel. 2016. Agile Visualization. LULU Press. https://books.
google.ch/books?id=lEk7vgAACAAJ

[3] Alexandre Bergel and Vanessa Pe na. 2012. Increasing test coverage
with Hapao. Science of Computer Programming 79, 1 (2012), 86–100.
DOI:http://dx.doi.org/10.1016/j.scico.2012.04.006

[4] Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei
Wang, Moritz Beller, and Andy Zaidman. 2017. UAV: Warnings from
Multiple Automated Static Analysis Tools at a Glance. In 2017 IEEE
24th International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 472–476.

[5] Tommaso dal Sasso, Roberto Minelli, Andrea Mocci, and Michele
Lanza. 2015. Blended, Not Stirred: Multi-concern Visualization of
Large Software Systems. In Proceedings of VISSOFT 2015 (3rd IEEE
Working Conference on Software Visualization). 106–115. DOI:http:
//dx.doi.org/10.1109/VISSOFT.2015.7332420

[6] Stéphane Ducasse, Dmitri Zagidulin, Nicolai Hess, and Dimitris
Chloupis. 2017. Pharo by Example 5.0. Square Bracket Associates.
http://files.pharo.org/books/updated-pharo-by-example/

[7] Angela Lozano, Kim Mens, and Andy Kellens. 2015. Usage contracts:
Offering immediate feedback on violations of structural source-code
regularities. Science of Computer Programming 105 (2015), 73 – 91.
DOI:http://dx.doi.org/10.1016/j.scico.2015.01.004

[8] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. 1996. An
Automated Refactoring Tool. In Proceedings of ICAST ’96, Chicago,
IL.

[9] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg,
and Collin Winter. 2015. Tricorder: Building a Program Analysis
Ecosystem. In Proceedings of the 37th International Conference on Soft-
ware Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ,
USA, 598–608. http://dl.acm.org/citation.cfm?id=2818754.2818828

[10] Yuriy Tymchuk. 2015. What if Clippy Would Criticize Your Code?.
In BENEVOL’15: Proceedings of the 14th edition of the Belgian-
Netherlands software evoLution seminar. http://yuriy.tymch.uk/papers/
benevol15.pdf

[11] Yuriy Tymchuk. 2017. QualityAssistant v3.3.1. (June 2017). DOI:
http://dx.doi.org/10.5281/zenodo.809410

[12] Yuriy Tymchuk. 2017. Renraku v0.15.2. (May 2017). DOI:http:
//dx.doi.org/10.5281/zenodo.800676

[13] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. 2016.
When QualityAssistant Meets Pharo: Enforced Code Critiques Mo-
tivate More Valuable Rules. In IWST ’16: Proceedings of International
Workshop on Smalltalk Technologies. 5:1–5:6. DOI:http://dx.doi.org/
10.1145/2991041.2991046

[14] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2014. Collabora-
tion in open-source projects: myth or reality?. In MSR’14: Proceedings
of the 11th Working Conference on Mining Software Repositories. ACM,
304–307. DOI:http://dx.doi.org/10.1145/2597073.2597093

http://dx.doi.org/10.1145/1390817.1390819
https://books.google.ch/books?id=lEk7vgAACAAJ
https://books.google.ch/books?id=lEk7vgAACAAJ
http://dx.doi.org/10.1016/j.scico.2012.04.006
http://dx.doi.org/10.1109/VISSOFT.2015.7332420
http://dx.doi.org/10.1109/VISSOFT.2015.7332420
http://files.pharo.org/books/updated-pharo-by-example/
http://dx.doi.org/10.1016/j.scico.2015.01.004
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://yuriy.tymch.uk/papers/benevol15.pdf
http://yuriy.tymch.uk/papers/benevol15.pdf
http://dx.doi.org/10.5281/zenodo.809410
http://dx.doi.org/10.5281/zenodo.800676
http://dx.doi.org/10.5281/zenodo.800676
http://dx.doi.org/10.1145/2991041.2991046
http://dx.doi.org/10.1145/2991041.2991046
http://dx.doi.org/10.1145/2597073.2597093

	Abstract
	1 Introduction
	2 Related Work
	3 The Quality Triad
	4 The Critique
	4.1 Source Anchors
	4.2 Custom Actions
	4.3 Specializing Critiques

	5 The Rule
	5.1 Specifying a Rule Interest
	5.2 Specializing Rules

	6 The Target
	7 Compatibility with SmallLint
	8 Creating Rules
	9 Creating Tools
	10 Notable Users
	11 Conclusion
	References

