
Implementation of “Generic

Synchronization Policies” in Pict

Patrick Varone
Software Composition Group

IAM-96-005
April 1996

Abstract. This report presents an implementation of McHale’s “Generic Synchroni-
zation Policies” (GSP) in the Pict programming language. Since Pict is defined by map-
ping programming language constructs to the pi calculus, this exercise helps us on the one
hand to assign an operational semantics to GSP, and on the other hand to explore the use
of Pict and the pi calculus as a basis for modelling advanced object-oriented program-
ming constructs.

Keywords: Object-based concurrency, synchronization, π calculus, semantics.

CR Categories and Subject Descriptors: D.1.3 [Programming Techniques]:
Concurrent programming; D.1.5 [Programming Techniques]: Object-Oriented Program-
ming; D.2.m [Software Engineering]: Reusable Software; D.3.1 [Programming Lan-
guages] Semantics; D.3.2 [Programming Languages] Concurrent, distributed and parallel
languages.

Author’s address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse
10, CH-3012 Berne, Switzerland. E-mail: scg@iam.unibe.ch.
WWW: http://iamwww.unibe.ch/~scg.

1 Introduction

This report presents an implementation of the “Generic Synchronization Policies” (abbreviated
as GSP) introduced in [4] using the language Pict. The main goal of this work was to see how
well suited Pict is for implementing higher level abstractions. The remainder of this report is
structured as follows: Section 2 briefly introduces the GSP concept. Pict [6] [7] [8] and a possi-
ble object model are presented in section 3. The implementation of GSP is the heart of section
4. Finally, Section 5 mentions future possible work.

1.1 Typesetting conventions

Throughout this report we use different fonts and styles to express code. Programs in Helvetica
are expressed in a Pascal-like language while programs in Courier represents real Pict code.
The Pascal-like language is used to show examples of GSP as well as the algorithms to imple-
ment it. Programs that can be run by the “extended Pict” compiler will always be written in
Courier. By “extended Pict” we mean the Pict compiler plus the preprocessor presented in the

2. Implementation of “Generic Synchronization Policies”

section 4. In the syntax presentation we use Italic Courier to denote a syntactic category and
normal Courier for keywords, separators and operators.

2 Generic Synchronization Policies

2.1 Definition

This section briefly describes the GSP concept. We will not present the underlying “Service-ob-
ject Synchronization” paradigm (Sos) in detail. For more information on Sos please refer to [4].
In what follows we assume that communication between objects is carried out by Remote Pro-
cedure Calls (RPC), that is a process invoking an operation of an object will be suspended until
the operation is finished (and the possible return value accessible). However, it is important to
note that this assumption does not belong to the Sos paradigm itself but has only been made to
simplify the discussion. GSPs are used to synchronize the different method invocations of a
particular object. In order to show how this mechanism works we first need to describe the se-
quence of events that takes place when one object invokes an operation upon another object.

From the service object’s perspective (which is the only one we will consider), there are three
events of interest: arrival, start and term (short for termination). When an invocation arrives it
may be delayed due to synchronization constraints. Some time later it will start execution; and
finally it will terminate execution. Here we assume that events do not overlap. For example if
two invocations arrive at the same time then we assume that their arrival events will be ordered.
The sequence of events is summarized in the following picture:

GSPs permit an action (user code) to be associated with each possible event. The execution
of an action will always complete before another event can occur. Synchronization constraints
between methods are expressed using the concept of a guard (i.e a boolean expression). An in-
vocation will be delayed until the corresponding guard evaluates to true.

In GSP genericity lies in the fact that actions and guards are not associated directly with a
particular method of a given object. Conceptually, methods are grouped into categories for
which actions and guards are specified. At instantiation time the methods associated with one
category will “inherit” its actions and guards.

In order to express complex synchronizations, we need access to information about the invo-
cations upon the object. In code for actions and guards the following information will be made
available:

• The arrival time of the current invocation (for which the action or guard is executed)

client object service object

1- arrival

2- start

3- term

1- call

2- return

Patrick Varone 3.

• The number of waiting invocations from a given category

• The number of executing invocations from a given category

• A list of all waiting invocations from a given category

• The method’s parameters

(We could add other information like, for example, the number of terminated invocations or
the list of all executing invocations from a given category. In our implementation we restricted
ourselves to the five points mentioned above although it could be trivially extended to include
this information as well).

2.2 Examples

The first example is the well-known Reader-Writer policy where we have two categories of
methods: one category representing methods that only read instance variables of the object and
another category representing methods that change the value of some instance variables. With
GSP, the Reader-Writer policy could be written as follows (the syntax used is the one from [4]).

policy ReadersWriters[ReadOps,WriteOps]

function ReaderAllowed(t:Invocation):Bool
begin

return exec(WriteOps) = 0;
end

function WriterAllowed(t:Invocation):Bool
begin

return exec(ReadOps)+exec(WriteOps) = 0;
end

map guard(ReadOps) -> ReaderAllowed
guard(WriteOps) -> WriterAllowed

end policy

This policy specifies that a Read operation can only take place when there is no executing

Patrick Varone 5.

actions are incReadOps and decReadOps for the category ReadOps, incWriteOps and decWrite-
Ops for the category WriteOps. Of course, the same mechanism can be used to implement the
waiting(WriteOps) counter, but this time the counter will be updated at the events arrival and
start. Note that actions and guards are executed in mutual exclusion which allows a safe update
of the variables execWriteOps and execReadOps.

3 Pict

Pict is a language based on the polyadic π-calculus [5] where the basic entities are processes
and channels. The following paragraphs constitute an informal presentation of the language
that should help the reader to understand section 4. More information can be found in [6].

3.1 Channels and types

A channel is a port over which one process may communicate with another. Every channel must
be created before it can be used. The expression

new x : ^Int

creates a fresh new channel and binds it to the name x. The type of this channel is ^Int where ^
is a channel type constructor. Int specifies that only integer values can be transmitted over this
channel. There exist two other channel type constructors: ! and ?. ! is used for an output-only
channel and ? for an input-only channel. Besides channels Pict defines the following primitive
types: integers, booleans, characters, strings, records and tuples.

A tuple is written in square brackets with values separated by commas:

[1,”coucou”,true]

The type of this tuple is [Int,String,Bool]. To select a value from a tuple we use pattern-
matching. For example the expression

val [a,b,c] = [1,”coucou”,true]

binds a to 1, b to “coucou” and c to true.

A record is a collection of named field separated with commas:

record x=2,y=’a’ end

The type of this record is Record x:Int,y:Char end. To select a field from a record we use
the dot notation.The expression

val z = (record x=2,y=’a’ end).y

binds z to ’a’.

A type can be given a name by using a type declaration of the form

type name = type-definition

We can also define type operators (like ^) using the following syntax

type type-operator = Fun(type-parameter) type-definition

as in the expressions

6. Implementation of “Generic Synchronization Policies”

type Pair = Fun(X) [X,X]
val x : Pair Int = [2,3]

3.2 Processes

A process can be either a sender process or a receiver process.

The syntax of a sender process is

channel-name!value

whereas a receiver process is

channel-name?pattern > process

or

channel-name?*pattern > process

A sender process can only communicate with another receiver process that is ready to accept
a value along the same channel. For the communication to take place the two processes must be
put in parallel, as in

x!3 | (x?y > printi!y)

Here we have one sender process x!3 and one receiver process x?y > printi!y put in par-
allel (the | operator). When the communication takes place, the pattern y will be bound to the
value 3 and the sender process will be discarded. The receiver process will evolve into the proc-
ess printi!3 (where y has been replaced by 3) so that the whole expression reduces to

printi!3

This sender process will in turn communicate with the Pict environment (where the channel
printi is defined) which results in the display of 3. Actually the complete Pict program is

new x
run x!3 | (x?y > printi!y)

because we have to create any channel that we use in the program. Note that it is not necessary
to specify the type of the channel x because it will be inferred by the Pict type system. The run
directive allows a process expression to be put in parallel with the rest of the program, so that
our example could also have been written as

new x
run x!3
run (x?y > printi!y)

As we have seen in 3.1, tuples of values can be used to transmit more than one value at a time

new x
run x![3,4] | (x?[y,z] > printi!y | printi!z)

In this case the values 3 and 4 will be displayed (but in an unspecified order). It is important
to note that the parallel composition of two processes (the | operator) is itself a process.

Consider now the following program:

new x
run x!3 | x!4 | (x?y > printi!y)

Patrick Varone 7.

The result of the program will be the display of either 3 or 4, but not both because the process
x?y > printi!y can only be used (communicate) once. So the whole expression reduces either
to

x!3 | printi!4

or

x!4 | printi!3

If we want both values to be printed, we can use two copies of the same process but actually
there is a better solution that consists in using so-called replicated input processes:

new x
run x!3 | x!4 | (x?*y > printi!y)

The replicated input process x?*y > printi!y behaves exactly as before except that once it
has communicated on the channel x it will immediately create a new copy of itself. The expres-
sion

x!3 | x!4 | (x?*y > printi!y)

will therefore evolve into (assuming that x!3 has been chosen for the first communication)

x!4 | printi!3 | (x?*y > printi!y)

and then into

printi!3 | printi!4 | (x?*y > printi!y)

Here the process x?*y > printi!y acts as a server process that repeatedly accepts a number
on the x channel and prints it.

3.3 Local declarations

So far every channel in the program had a global scope. To create nested scopes we can use
the let ... in ... end construct. The following example shows how a channel can be made
local to a process:

run let new x in x!3 end
| let new x in x?y > printi!y end

This program prints nothing because the name x refers to a different channel in each process.
It is however possible to export a channel outside of its scope of declaration:

new z
run let new x in z!x | x!3 end
| let new x in z?x > x?y > printi!y end

Here we have used a global channel z to transmit the channel x from the first process to the
second one. This program will therefore print 3 as expected. Note that the local channel x in the
second process is not used at all.

3.4 Derived forms
The previous definitions form what is usually called core Pict. We could stop defining new lan-
guage constructs here and start programming with this tiny language. However, it appears that
for most programming tasks the syntax presented so far is at too low a level to be used conven-

8. Implementation of “Generic Synchronization Policies”

iently. For this reason, Pict defines a number of higher-level syntactic constructs that are then
translated into core Pict.

3.4.1 The def construct

Assume we want to define a set of processes that read a number from a channel (different for
each process) and then print it. All these processes behave in the same way. The only thing that
changes is the name of the input channel. A convenient way to define such a family of processes
is to use the def construct:

def myprint[c] > c?n > printi!n
new x,y,z
run x!1 | y!2 | z!3 | myprint![x] | myprint![y] | myprint![z]

With this definitions myprint![x] is equivalent to x?n > printi!n and myprint![y] is
equivalent to y?n > printi!n. Internally, the expression

def name pattern > process

translates to

new name
run name?*pattern > process

so that the above definition of myprint becomes

new myprint
run myprint?*[c] > c?n > printi!n

3.4.2 Functions as processes

In Pict a function is implemented by a process that expects input values plus a reply channel to
which it can send the computed result. Assume we want to define a function plusone that in-
crements the value of an integer by one. We can write this function as follows:

def plusone[n,r] > r!(n+1)
new r
run plusone![3,r] | (r?x > printi!x)

Here the channel r plays the role of the reply channel upon which the result can be read. This
program just “calls” the function plusone and, in parallel, waits for the result on r and prints it.
This kind of function definition is so common that Pict provides for a special notation:

def function-name [x1,...,xn] = value

which translates to

def function-name [x1,...,xn,r] > r!value

The “type” of this function is in fact the type of the channel function-name which is

![X1,...,Xn,!R]

where Xi represents the type of xi and R the type of the return value. The first ! means that a
function is an output-only channel (although it is used as an input channel in the function defi-
nition). This makes sense because we don’t want to allow another process to input a value on
function-name, which would amount to having two definitions for the same function.

Patrick Varone 9.

Pict also defines a convenient notation to retrieve the value of the function. Whenever a value
is expected (e.g. an integer), a function call of the form

function-name [x1,...,xn]

can be substituted for the value, provided function-name has been defined like this

def function-name [x1,...,xn] = value

and value is of the right type. Note that we drop the ! character in the function call. Using this
notation, we can rewrite our example as follows

def plusone[n] = n+1
run printi!(plusone[3])

Moreover, it is possible to define “anonymous” functions that are used just once

run printi!((abs [n] = n+1 end)[3])

Here the form

abs abstraction end

translates to

let def x abstraction in x end

3.4.3 Infix operators

New infix operators can be introduced in the language. They are defined exactly like functions
but with their name enclosed in parentheses:

def (%%)[n,m] = (m+n)*2
run printi!(5%%4)

An infix operator can also be called using the usual syntax

def (%%)[n,m] = (m+n)*2
run printi!((%%)[5,4])

3.4.4 Sequencing

Assume we want to print the number 3 followed by the number 4 in that order. We cannot use a
program like:

run printi!3 | printi!4

because we cannot tell which process will communicate first. Pict provides a simple way to call
functions in sequence. The only requirement put on the function is that its result must be an
empty tuple. For example, the sequential counterpart to printi is prInt which can be used as
follows (skip is a process that does nothing)

run prInt[3];prInt[4];skip

Here ; serves as a “statement” separator. The general pattern for a sequence is

function-name [x1,...,xn];process

which translates to

10. Implementation of “Generic Synchronization Policies”

let
val [] = function-name [x1,...,xn]

in
process

end

It is important to note that the type of a sequential function will always be of the form

![X1,...,Xn,![]]

where [] is the type of the empty tuple []. The type ![] can be abbreviated as Sig.

3.5 The object model

Currently an object in Pict can simply be modelled as a record . For example, a mutable cell with
two methods set and get can be implemented like this

def ref[init] = let
new current
run current!init

in
record

set = abs [v,c] > current?_ > current!v | c![] end,
get = abs [r]> current?x > current!x | r!x end

end
end

val r = ref[0]

run prInt[r.get[]];r.set[5];prInt[r.get[]];skip

The process current!init acts as the private instance variable holding the cell’s value and
the two fields set and get contain methods to access and set this value. It is important to note
that this very simple object model takes neither inheritance nor self-references in method defi-
nitions into account.

4 Implementation of GSP in Pict

This section describes the implementation of GSP in Pict, which is a more or less straightfor-
ward adaptation of McHale’s own implementation. Although Pict is not really object-oriented,
it provides for a simple object model based on records. Actually one of the main aspects of the
GSP concept (and its underlying paradigm) is that it is not tied to a particular language and can
be fairly easily adapted to any object model. This section is divided into four subsections. The
first part describes the enhanced object model while the three other subsections concentrate
more on the implementation of GSP.

4.1 Synchronization wrappers in Pict

4.1.1 Synchronization wrappers and GSP

As mentioned above, the GSP mechanism is not tied to any object model. In fact the object
model merely depends on the general scheme used to implement synchronization constraints
among methods. Here we have opted, as in McHale’s thesis, for the commonly used synchroni-
zation wrappers. The main idea of the synchronization wrappers is to take a pure unsynchro-

Patrick Varone 11.

nized object and to wrap its methods in a pre- and post-synchronization code. For example a
method like:

method m1()
begin

body;
end

will be transformed (wrapped) into

method m1()
begin

“pre-synchronization code”;
body;
“post-synchronization code”;

end

Let’s assume an RPC mechanism. Then the pre-synchronization code is responsible for ex-
ecuting the actions associated with the arrival and start events described in §2.1. This code is
also responsible for suspending the calling thread until the guard associated with the method
becomes true. The post-synchronization, for his part, executes the action associated with the
term event.

Now consider the ReadersWriters policy described in §2.2 and suppose m1 belongs to the Re-
adOps category. Then m1 will be wrapped as follows:

method m1()
var state:InvocationType;

begin
state := pre_synch_ReadOps();
body;
post_synch_ReadOps(state);

end

The variable state represents information about the current invocation, e.g the arrival time
mentioned in §2.1. pre_synch_ReadOps and post_synch_ReadOps stand for the synchronization
code associated with the ReadOps category. Among other things, this means that those two
functions will be used for every method belonging to the ReadOps category.

4.1.2 Binding a GSP to an object

Before explaining how an object can be bound to a particular policy, it is necessary to introduce
a more convenient notation for objects in Pict. (This is the first extension of the Pict syntax. The
translation to Pict is done via a special-purpose preprocessor.) The syntax of an object defini-
tion becomes

obj
{var var-name : type = initial-value}
{method method-name [[x1,...,xn]] = body end}

endobj

where {text} represents zero or more occurrences of text. This translates to

let
{val var-name = ref[:type:][initial-value]}

in

12. Implementation of “Generic Synchronization Policies”

record
{method-name = makeWrapper[abs [[x1,...,xn]] = body end],}

end
end

For example, the object

obj
var a:Int = 0

method read[[]] =
pr["\nThe value of a is:"];
prInt[_a]

end

method write[[b]] =
a <- _a + b;
pr["\nThe value of a is:"];
prInt[_a]

end
endobj

defines one instance variable and two methods. The value of an instance variable can be re-
trieved by pre-pending an underscore to the variable name and can be set using the <- operator.
This expression translates to

let
val a = ref[:Int:][0]

in
record

read = makeWrapper[
abs [[]] =

pr["\nThe value of a is:"];
prInt[a.deref[]]

end],

writer = makeWrapper[
abs [[b]] =

a <- a.deref[] + b;
pr["\nThe value of a is:"];
prInt[a.deref[]]

end]
end

end

The predefined polymorphic function ref creates a new mutable cell like the one shown in
§3.5. The only difference is that we use deref instead of get. Remark that an instance variable
reference _a-name is transformed into a-name.deref[]. The polymorphic operator <- is de-
fined as follows:

def (<-) [:X:][cell: Ref X, value:X] = cell.set[value]

where Ref X is the type of a mutable cell containing values of type X.

makeWrapper takes a method and wraps it within a synchronization wrapper as described in
§4.1.1. Actually makeWrapper does not simply return a new process abstraction representing
the wrapped method but a record containing 1) a method wrapped in a empty synchronization
wrapper 2) a function to set a new synchronization wrapper. Such an encapsulation is necessary

Patrick Varone 13.

because when we create the object we still do not know which policy it will be bound to (which
is the main difference with McHale’s thesis). On the other hand, this allows us to change the
synchronization of an object at run-time. The type of the value returned by makeWrapper is

type MethodWrapper = Fun (X)
Record

SetWrappers : ![PreWrapperType,PostWrapperType,Sig],
WrappedMethod : ![X,Sig]

end

This definition deserves some explanation: we can see that MethodWrapper is parameterized
by a type X which represents the parameters’ type of the wrapped method. One can wonder why
the type of the wrapped method (which should be the same as the original method) is ![X,Sig]
instead of just !X. The reason is the following: to wrap a method in a pre- and post-synchroni-
zation code we should be able to put it in a sequence. This means that a method has to be sequen-
tial, i.e its type has to be ![X1,...,Xn,Sig] (see 3.4.4) where Xi represents the type of the i-
th parameter. At first sight it seems that the type ![X,Sig] expresses just that kind of method.
Unfortunately, this is not quite true because ![X,Sig] only matches a pair and not a tuple of any
length (i.e. any number of parameters). We circumvent this problem by requiring that the type
of a method be

![[X1,...,Xn],Sig]

instead of

![X1,...,Xn,Sig]

This explains the “special” syntax (i.e. the double brackets) for method parameters.

The function SetWrappers takes a pre-synchronization function PreWrapper and a post-
synchronization function PostWrapper and wraps the method with them. Here are the defini-
tions of PreWrapperType and PostWrapperType

type PreWrapperType = ![!InvocationType,Sig]
type PostWrapperType = ![?InvocationType,Sig]

InvocationType is the type of the state variable mentioned in §4.1.1.

It is now time to present the makeWrapper function

def makeWrapper [:X:][m:![X,Sig],r:!(MethodWrapper X)] >
let

new wrappers: ^[PreWrapperType,PostWrapperType]
in

wrappers![abs [invr] = [] end,abs [invr] = [] end]

| r!record
SetWrappers =

abs [w1:PreWrapperType,w2:PostWrapperType,r:Sig] >
wrappers?[_,_] > (wrappers![w1,w2] | r![])

end,

WrappedMethod =
abs [p:X,r:Sig] >

wrappers?[pre_w,post_w] >
(wrappers![pre_w,post_w]
| let

new invr : ^InvocationType

14. Implementation of “Generic Synchronization Policies”

in
pre_w[invr];m[p];post_w![invr,r]

end
)

end
end

end

The channel wrappers contains the current pre- and post-synchronization functions of the
method. Initially these correspond to abs [invr] = [] end. SetWrappers has been imple-
mented in the same way as the set method of our mutable cell. More interesting is the imple-
mentation of WrappedMethod. It works as follows; first we fetch the two current wrappers (as
in the get method of our mutable cell) and then we call the pre_synchronization pre_w. Once
pre_w has returned we can start executing the method followed by the post-synchronization
code. The channel invr will be bound to an invocation object by pre_w and used by post_w.

To close the discussion on our object model, we introduce an operator that can be used to call
a method of an object:

def (%%)[:X:][mw:MethodWrapper X,p:X] = mw.WrappedMethod[p]

For example if o is bound to the object defined on page 12, then we can call its method write
like this

o.write%%[2]

In summary, the object model we have defined so far simply allows us to associate a synchro-
nization wrapper with a method. Moreover this can be done at run-time. In fact, this model can
be used with any synchronization mechanism as long as it can be implemented with synchroni-
zation wrappers. In the next subsections we will show how a particular synchronization mech-
anism, GSP, can be expressed in Pict and linked to our object model.

4.2 GSP in Pict: a first implementation

This subsection describes a partial implementation of GSP in Pict. The complete implementa-
tion will be presented in §4.3. We hope that this step-by-step presentation will help the reader
to understand it more easily.

4.2.1 The shared data structure

The main goal of a Generic Synchronization Policy is to create a synchronization wrapper for
each method category. Of course these wrappers do not work in isolation and need to access
shared data. Typically, the synchronization counters (e.g. the number of waiting method of a
certain category) belong to the data that will be shared by all synchronization wrappers. In the
current implementation these data are stored in a record whose declaration reads as follows:

type ActionType = ![InvocationType,Sig]
type GuardType = ![InvocationType,!Bool]

type PolicyType = Record
Mutex : ^[],
Clock : ^Int,
ArrivalCount : Array Int,
StartCount : Array Int,

Patrick Varone 15.

TermCount : Array Int,
Start : Array ActionType,
Guard : Array GuardType,
WaitingList : Ref (List InvocationType),
ExecList : Ref (List InvocationType)

end

ActionType is the type of an action while GuardType is the type of a guard. PolicyType
defines all the necessary data needed by the synchronization code:

• Mutex is a semaphore used to put the events in series, i.e. to execute the actions and
guards in an atomic way.

• Clock is the clock local to this policy and is incremented every time a method is called.

• ArrivalCount, StartCount and TermCount represent the different synchronization
counters maintained by the policy. ArrivalCount is the total number of invocation that
have arrived at the object, StartCount is the total number of invocation that have started
execution and TermCount is the total number of invocation that have terminated execu-
tion. These counters are arrays indexed by the method category. For example if the cat-
egory ReadOps of the ReadersWriters policy is associated with 1 then the number of
currently executing invocations from the category ReadOps (i.e exec(ReadOps)) can be
computed by
StartCount[1] - TermCount[1]

• Start contains the actions associated with the start event and Guard contains the guards
of the methods. Both arrays are indexed by the method categories too.

• Finally WaitingList (resp. ExecList) contains a list of all pending (resp. executing) in-
vocations

4.2.2 Generic code for pre- and post- synchronization functions

The code we have to generate in the pre- and post- synchronization functions is almost the same
for every policy. It is only parameterized by the actions and method categories. The specifica-
tion of the synchronization wrappers is as follows (in pseudo-code where the clause generic in-
troduces generic parameters):

type Invocation = record
trigger : semaphore init 0;
ArrivalTime : Int;
Method_Category : Int;

end

generic OPS, ARRIVAL_ACTION, POLICY
pre_synch_OPS()

var inv : Invocation
begin

P(POLICY.mutex);
inv := new Invocation(POLICY.Clock++,OPS);
POLICY.WaitingList.put(inv);
POLICY.ArrivalCount[OPS]++;
ARRIVAL_ACTION(inv);
evaluate_guards(POLICY);

V(POLICY.mutex);

16. Implementation of “Generic Synchronization Policies”

P(inv.trigger);
return inv;

end pre_synch_OPS;

generic TERM_ACTION, POLICY
post_synch_OPS(inv:Invocation)
begin

P(POLICY.mutex);
POLICY.ExecutingList.remove(this_inv);
POLICY.TermCount[this_inv.Method_Category]++;
TERM_ACTION(inv);
evaluate_guards(POLICY);

V(POLICY.mutex);
end post_synch_OPS;

OPS stands for the number associated with the method category, ARRIVAL_ACTION (resp.
TERM_ACTION) is the action associated with the arrival (resp. term) event and finally POLICY
represents the data shared by all synchronization wrappers. The algorithm for pre_synch works
as follows: first we enter a critical section to access the shared data. Then we create a new invo-
cation object initialized with the local time (that we immediately increment) and the method
category. We put this invocation in the list of pending invocations and update the number of ar-
rived invocations. Then we execute the action associated with the arrival event. At this time it
could be that the guard of one of the pending invocation has become true. We therefore call
evaluate_guards() whose purpose is to wake up invocations that are allowed to continue. Finally,
we exit the critical section and wait on the semaphore inv.trigger until the corresponding guard
becomes true. The result of the function is the newly created invocation which will be passed to
the post_synch function. The latter updates the list of executing invocations and the number of
terminated invocation. It then executes the action associated with the term event and finally
calls evaluate_guards(). As guards can only access information local to a given policy, this
means that they need only be re-evaluated when this information has been modified, i.e in the
functions pre_synch and post_synch. The implementation of evaluate_guards() is the following

evaluate_guards(policy:PolicyType)
var inv:Invocation;

begin
while findInvocation(policy,inv) do

V(inv.trigger);
policy.StartCount[inv.Method_Category]++;
policy.WaitingList.remove(inv);
policy.ExecList.put(inv);
policy.Start[inv.Method_Category](inv);

end while;
end evaluate_guards;

findInvocation(policy:PolicyType; VAR inv:Invocation) : Boolean
begin

for i in policy.WaitingList do
if policy.Guard[i.Method_Category](i) then

inv := i;
return true;

end;

Patrick Varone 17.

end;
return false;

end findInvocation;

findInvocation is a function used to retrieve the first pending invocation whose guard evaluates
to true. Given this auxiliary function, the implementation of evaluate_guards is relatively
straightforward: as long as there is an invocation ready to run we remove it from the list of wait-
ing invocations and put it into the list of running invocations, update the number of executing
invocations and finally execute the associated action. It is important to note that each time we
look for another invocation we start from the beginning of the list. This is necessary because the
action of the preceding starting invocation may cause other guards to become true (by updating
some synchronization variables).

The concrete Pict code is a straightforward translation of the above pseudo-code

type InvocationType = Record
Trigger : Sig,
ArrivalTime : Int,
GenMethRef : Int

end

def MakePreWrapper[Pol:PolicyType,GenMethRef:Int,Action:ActionType] =
abs [invr:!InvocationType,r:Sig] >

Pol.Mutex?[] >
Pol.Clock?clock >
Pol.Clock!(clock+1)

| let
val NewInv : InvocationType =

record
Trigger = r,
ArrivalTime = clock,
GenMethRef = GenMethRef

end
in

Pol.WaitingList.set[
cons[NewInv,Pol.WaitingList.deref[]]];

updateArray[Pol.ArrivalCount, GenMethRef,
nthArray[Pol.ArrivalCount,
GenMethRef]+1];

Action[NewInv];EvaluateGuards[Pol];
(Pol.Mutex![] | invr!NewInv)

end
end

def removeInv[l:List InvocationType, time:Int] =
if null[l] then

nil[]
elif (unsafeCar[l]).ArrivalTime == time then

unsafeCdr[l]
else

unsafeCar[l] @@ removeInv[unsafeCdr[l],time]
end

def MakePostWrapper[Pol:PolicyType, Action:ActionType] =
abs [invr:?InvocationType,r:Sig] >

invr?Inv >

18. Implementation of “Generic Synchronization Policies”

Pol.Mutex?[] >
Pol.ExecList.set[removeInv[Pol.ExecList.deref[],

Inv.ArrivalTime]];
updateArray[Pol.TermCount,Inv.GenMethRef,

nthArray[Pol.TermCount,Inv.GenMethRef]+1];
Action[Inv];
EvaluateGuards[Pol];
Pol.Mutex![]

end

Note that the generic parameters have been transformed into the formal parameters of a proc-
ess abstraction. To create a pre-synchronization function we call MakePreWrapper with the
corresponding policy object, method category and action. A semaphore is simply represented
as a channel on which we output an empty tuple. The P operation amounts to reading on this
channel, i.e, consuming the process semaphore-name![] . The V operation is then only a crea-
tion of such a process. Arrays are accessed via the two predefined functions updateArray[ar-
ray,index,newvalue] and nthArray[array,index]. The only subtle point here is the
trigger used to suspend the method. Actually what will be stored as a semaphore in the invoca-
tion object is the “continuation” channel of the pre_synch function. This means that sending
an empty tuple on this channel will allow the statement following the call to pre_synch to start
executing, which corresponds to our method’s body. The function removeInv is used to remove
invocations from the waiting list. The head of the list can be retrieved with unsafeCar and the
tail with unsafeCdr. A new list can be constructed from a head and a tail with the operator @@.
As we cannot use pointers for testing invocation equality we have to use the arrival time of the
invocation.

def EvaluateGuards[Pol:PolicyType, r:Sig] >
let

new inv, found
def findInvocation[l:List InvocationType,

r:!(List InvocationType)] >
if null[l] then

found!false | nil![r]
else

let
val i = unsafeCar[l]

in
if (nthArray[Pol.Guard, i.GenMethRef])[i]
then

found!true | inv!i | unsafeCdr![l,r]
else

cons![i, findInvocation[unsafeCdr[l]],r]
end

end
end

def while[] >
Pol.WaitingList.set[

findInvocation[Pol.WaitingList.deref[]]];
(found?b >
if b then

inv?i > i.Trigger![] |
(updateArray[Pol.StartCount, i.GenMethRef,

Patrick Varone 19.

nthArray[Pol.StartCount, i.GenMethRef]+1];
Pol.ExecList.set[cons[i, Pol.ExecList.deref[]]];
(nthArray[Pol.Start, i.GenMethRef])[i];
(while![]))

else
r![]

end)
in

while![]
end

As in the pseudo-code the function findInvocation retrieves the first invocation for which
the guard evaluates to true. The only difference here is that the invocation is immediately re-
moved when found. This allows us to save a second scan of the list. The function therefore re-
turns the new list and, as a side-effect, updates the variable found which tells if an invocation
has been found or not. It the answer is yes then the invocation is stored in the inv variable (cons
is just a synonym for @@). The while process implements a simple while loop.

The Pict code presented so far constitutes the run-time support for GSP and is provided as a
file that must be included in every program using this synchronization mechanism. The remain-
der of the section introduces the syntax chosen to express the policy itself, the pre-processing
done to this syntax, and the way to bind such a policy to an object.

4.2.3 Syntax of GSP in Pict

The syntax of a Generic Synchronization Policy expressed in Pict is the following (again this
syntax will be treated by the preprocessor):

policy [method-category1,...,method-categoryN]
local-pict-declarations
map {event-name-or-guard // [method-category,function-name]; }

end

The local-pict-declarations part define the synchronization variables, actions and
guards that will be used in the map section. This latter corresponds to the map section intro-
duced in §2.2. event-name-or-guard stands for one of the four following names: Arrival,
Start, Term and Guard. For example, the Reader-Writer policy example is expressed as fol-
lows

val ReadersWriters = policy [ReadOps,WriteOps]
def ReaderAllowed[t:InvocationType] =

exec[WriteOps] == 0
def WriterAllowed[t:InvocationType] =

exec[ReadOps]+exec[WriteOps] == 0
map Guard//[ReadOps,ReaderAllowed];

Guard//[WriteOps,WriterAllowed]
end

ReadersWriters will then be instantiated to yield a synchronization policy that can be
bound to an object

val mypolicy = ReadersWriters[]
run BindPolicy[p.ReadOps**o.read + p.WriteOps**o.write]

20. Implementation of “Generic Synchronization Policies”

Here o corresponds to the object defined in §4.2.1. The expression BindPolicy[p.Rea-

dOps**o.read + p.WriteOps**o.write] binds the read method to the ReadOps category
and the method write to the WritOps category. Actually, mypolicy is a record with two fields
ReadOps and WritOps containing the synchronization wrappers. More generally, the result of
instantiating a policy of the form

policy [method-category1,...,method-categoryN]

end

is a record of type

Record
method-category1: PrePostWrappers,
...
method-categoryN: PrePostWrappers

end

with PrePostWrappers defined as

type PrePostWrappers = Record
preWrapper : PreWrapperType,
postWrapper: PostWrapperType

end

It follows that the ** and BindPolicy functions are trivially defined as

def BindPolicy[n:Int] = []
def (**)[:X:][ppWrapper:PrePostWrappers,

mWrapper:MethodWrapper X,r:!Int] >
mWrapper.SetWrappers[ppWrapper.preWrapper,

ppWrapper.postWrapper];
r!0

Thus, the goal of the preprocessing phase is to produce a function that return such a record
using the run-time functions introduced in §4.2.2. Here it is:

policy [method-category1,...,method-categoryN]
local-pict-declarations
map mapping-declarations
end

translates to

let
val nbmeth=makeCounter[0]
val method-category1 = nbmeth.incr[]
...
val method-categoryN = nbmeth.incr[]

in
abs[] = let

val Start = makeArray[EmptyAction,nbmeth.value[]]
val Arrival = makeArray[EmptyAction,nbmeth.value[]]
val Term = makeArray[EmptyAction,nbmeth.value[]]
val Guard = makeArray[EmptyGuard,nbmeth.value[]]
val pol = makePolicy[Start,Guard,nbmeth.value[]]
def exec[n:Int] =

Patrick Varone 21.

nthArray[pol.StartCount,n]-nthArray[pol.TermCount,n]
def waiting[n:Int] =

nthArray[pol.ArrivalCount,n]-
nthArray[pol.StartCount,n]

def waitingList[n:Int]=
extractInvocation[pol.WaitingList.deref[],n]

local-pict-declarations
val [] = mapping-declarations

in
record
method-category1 =

makeSynchWrappers[Arrival,Term,pol,method-category1],
...

method-categoryN =
makeSynchWrappers[Arrival,Term,pol,method-categoryN]
end

end
end

end

Basically, the only thing we do is to include the policy definitions, i.e. the local-pict-dec-
larations and mapping-declarations parts, into some definitions. These are actually the
so-called “predefined” names (or keywords) of the GSP concept: Start, Arrival, Term,
Guard, exec, waiting, and waitingList. The first four keywords are references to arrays that
contains the actions and guards associated with each method category. This allows us to treat a
mapping declaration of the form

event-name-or-guard // [method-category,function-name];

as an already correct Pict expression. The trick here is to define // as follows

def (//)[:X:][a:Array X,[n:Int,x:X]] = updateArray[a,n,x]

Of course, method-category must refer to a natural number. This binding is done in the out-
ermost let construct:

val nbmeth=makeCounter[0]
val method-category1 = nbmeth.incr[]
...
val method-categoryN = nbmeth.incr[]

The function makeCounter simply returns a counter that can be read and incremented

def makeCounter[n:Int] =
let new c

run c!n
in

record
incr = abs [r:!Int] > c?n > (c!(n+1) | r!n) end,
value = abs [r:!Int] > c?n > (c!n | r!n) end

end
end

Instead of using a counter, we could have directly bound a fixed number to a method category
during the preprocessing phase but we wanted to keep this phase as simple as possible.

22. Implementation of “Generic Synchronization Policies”

Finally, once the different arrays have been updated, we can build the record containing the
synchronization wrappers. For this purpose, we first have to create a new record pol of type
PolicyType that we then pass as a parameter to the makeSynchWrappers function defined as
follows:

def makeSynchWrappers[Arrival:Array ActionType,
Term:Array ActionType,
pol:PolicyType,n:Int] =

record
preWrapper=MakePreWrapper[pol,n,nthArray[Arrival,n]],
postWrapper=MakePostWrapper[pol,nthArray[Term,n]]

end

For the sake of completeness, here are the remaining definitions of EmptyAction,
EmptyGuard, makePolicy and extractInvocation:

def EmptyAction[inv:InvocationType] = []
def EmptyGuard[inv:InvocationType] = true

def makePolicy[Start:Array ActionType,Guard:Array GuardType,n:Int] =
let

new Mutex : ^[], Clock : ^Int
run Clock!0 | Mutex![]

in
record

Mutex = Mutex,
Clock = Clock,
ArrivalCount = makeArray[0,n],
StartCount = makeArray[0,n],
TermCount = makeArray[0,n],
Start = Start,
Guard = Guard,
WaitingList = ref[nil[]],
ExecList = ref[nil[]]

end
end

def extractInvocation[l:List InvocationType,GenMethRef:Int] =
if null[l] then

nil[]
elif (unsafeCar[l]).GenMethRef <> GenMethRef then

extractInvocation[unsafeCdr[l],GenMethRef]
else

unsafeCar[l] @@ extractInvocation[unsafeCdr[l],GenMethRef]
end

4.3 Accessing the parameters of a method

The code shown so far is not a complete implementation of the GSP mechanism. Actually, to
be able to express some interesting synchronizations we also need access to the parameters of
the method. Consider for example the Reader-Writer policy of section 2.2 and assume we want
the writers to be scheduled according to their jobs’ size, that is we want to schedule the shortest
job first. We suppose that the job’s size is a parameter of the methods associated with WriteOps.
An implementation of this policy could look this

Patrick Varone 23.

policy ReadersWriters[ReadOps,WriteOps[len:Int]]

function ReaderAllowed(t:Invocation):Bool
begin

return exec(WriteOps) = 0;
end

function ShortestJob(len:Int):Bool
begin

for p in waiting(WriteOps) do
if p.len < len then

return false;
end

end
return true;

end

function WriterAllowed(t:LenInvocation):Bool
begin

return exec(ReadOps)+exec(WriteOps) = 0 and
ShortestJob(t.len);

end

map guard(ReadOps) -> ReaderAllowed
guard(WriteOps) -> WriterAllowed

end policy

The name and type of the parameters are specified in the policy’s signature. The value of the
corresponding actual parameters are stored in fields of the invocation object and can then be re-
trieved using the dot notation. Note that we now have two classes of invocations: one for the Re-
adOps category with a len field and one for the WriteOps with no additional field. This raises an
interesting type question that will be dealt with in the next subsections together with the neces-
sary modifications to our current implementation. We will also explain how to specify the cor-
respondence between the formal parameters of a method category and the associated methods.

4.3.1 Storing and retrieving the parameters

In McHale’s thesis, an invocation’s class associated with a method category like WriteOps is
just defined as a subclass of InvocationType with a new field for each formal parameter. We
decided, in our implementation, to store all the parameters in one field, in the form of a tuple of
values (or as a single value if there is only one parameter). This gives us the following type def-
initions:

type InvocationType = Record
Trigger : Sig,
ArrivalTime : Int,
GenMethRef : Int,

end

type Invocation = Fun(X) InvocationType
with parameters : X end

The base type is InvocationType defined as before. Invocation is a type operator that
takes a type X and returns an extended InvocationType record with a field parameters of type
X. For example the type of invocations associated with WriteOps would be:

type WriteOpsInvocation = Invocation Int

24. Implementation of “Generic Synchronization Policies”

We can then use this additional field to retrieve the parameter’s value in the code for actions
and guards. This implies that if a method category defines parameters of type X then the actions
and guard associated with it must take as parameter a value of type Invocation X. This appar-
ently harmless constraint raises an interesting type problem. To see it consider the lifetime of
an invocation: when created, an invocation of type Invocation X is passed to the arrival ac-
tion, then put into a list of waiting invocations. Once its guard evaluates to true it is passed to the
start action and finally, after the method’s completion, to the term action. Now the question is:
what is the type of the list of waiting invocations? The type of its elements must be a supertype
of all possible invocation types in order for them to be stored in the same data structure, which
means that our list will have the same type as before, i.e. List InvocationType. Unfortunate-
ly, this implies that when we extract an invocation from the list its field parameters cannot be
accessed any more because this would require a “downcasting” to the actual type of the invoca-
tion, which is not possible in Pict. Thus, we cannot pass an invocation of the right type to the
guard and the start and term actions.

One solution to this problem is to give up the idea of a unique list of invocations. Thus, we
would keep a separate list of invocations for each method category, so that we could define it
with a more precise type. For example the type of the list associated with WriteOps would be
List (Invocation Int). In this way we do not lose any type information at all, which means
that no downcasting is necessary. But this also means that we have to manage these different
lists in our generic code. For example a new PolicyType should be defined for each policy be-
cause another policy would typically have a different number of waiting lists with different
types. The same would be true for the EvaluateGuards function. In other words, this means
that a big part of the generic code would not be generic any more and should be included in the
preprocessing phase of our implementation, which is exactly what we are trying to avoid.
Therefore, we gave up this solution although we will see in the next section that we still need to
keep local copies to implement the waitingList function.

To see how we can solve this problem while keeping a unique list, we need to point out ex-
actly where the problem lies. Reconsidering the lifetime of an invocation, we immediately see
that the difficulty comes from the fact that the binding of an action (or a guard) to its actual pa-
rameter (which is an invocation object) occurs when we have already lost information about the
parameter. Therefore, the solution is simply to do this binding before any information gets lost,
in other words before the invocation is put in the waiting list. In order to do this we need to sep-
arate the binding of an action to its actual parameter from the call of the action itself (these two
events usually take place at the same time) because, for example, we do not want to call the term
action before the invocation is put in the list. Therefore, we will transform a function call of the
form

Action[InvocationRecord]

into

def ActionTrigger[] = Action[InvocationRecord]
... and some time later ...
ActionTrigger[]

The binding of the function to its parameter is done during the definition of ActionTrigger
while the actual call is done by ActionTrigger[]. Of course, now for each pair (Action,Invo-
cationRecord) we have a different ActionTrigger that we need to remember. The obvious so-

Patrick Varone 25.

lution is to put those triggers in the invocation record itself so that we come to following and
final type definitions (the modified code is written in underlined Courier)

type SimpleAction = ![Sig]
type SimpleGuard = ![!Bool]

type InvocationType = Record
Trigger : Sig,
ArrivalTime : Int,
GenMethRef : Int,
StartAction : SimpleAction,
TermAction : SimpleAction,
Guard : SimpleGuard

end

type Invocation = Fun(X) InvocationType
with parameters : X end

where the field StartAction holds the trigger for the start action (idem for TermAction and
Guard). The triggers are created together with the invocation object in the pre-synchronization
code of the method:

type ActionType = Fun(X) ![Invocation X,Sig]
type GuardType = Fun(X) ![Invocation X,!Bool]

def MakePreWrapper [:X:][Pol:PolicyType,GenMethRef:Int,
ArrivalAction:ActionType X,
StartAction:ActionType X,
TermAction:ActionType X,
Guard:GuardType X] =

abs [invr:!InvocationType,param:X,r:Sig] >
Pol.Mutex?[] >
Pol.Clock?clock >
Pol.Clock!(clock+1) |

let
val self = emptyRef[:Invocation X:][]
val NewInv : Invocation X =

record
Trigger = r,
ArrivalTime = clock,
GenMethRef = GenMethRef,
StartAction =

abs[] = StartAction[self.deref[]] end,
TermAction =

abs[] = TermAction[self.deref[]] end,
Guard = abs[] = Guard[self.deref[]] end,
parameters = param

end
in

self.set[NewInv];
Pol.WaitingList.set[cons[:InvocationType:]

[NewInv, Pol.WaitingList.deref[]]
];

updateArray[Pol.ArrivalCount,GenMethRef,
nthArray[Pol.ArrivalCount,GenMethRef]+1];

ArrivalAction[NewInv];
EvaluateGuards[Pol];

26. Implementation of “Generic Synchronization Policies”

(Pol.Mutex![] | invr!NewInv)
end

end

This function is the one on page 13 modified as follows:

• it accepts three more parameters StartAction, TermAction, Guard necessary to create
the triggers. Moreover, it has been made polymorphic to take the different invocation
types into account.

• the generated pre-synchronization function takes one more parameter param which cor-
responds to the parameters of the associated method category. More will be said about it
in the next sub-section.

• the invocation record is of type Invocation X and not InvocationType and is initial-
ized accordingly. Here we need to use an additional indirection self to reference the in-
vocation record in the triggers because we cannot directly write something like:
val x = record

ActionTrigger = abs [] = Action[x] end
end

Actually, we can do it without any indirection but then the syntax is less readable. The idea
is simply to come back to the core Pict where an abstraction like:

abs [] = Action[x] end

translates to

let
new a
run a?*[] = Action[x]

in
a

end

We can then transform

val x = record
ActionTrigger = abs [] = Action[x] end

end

into

new a
val x = record

ActionTrigger = a
end

run a?*[] = Action[x]

The other two functions EvaluateGuards and MakePostWrapper are modified as follows

def EvaluateGuards[Pol:PolicyType,r:Sig] >
let

new inv, found

def findInvocation[l:List InvocationType,
r:!(List InvocationType)] >

if null[l] then
found!false | nil![r]

Patrick Varone 27.

else
let

val i = unsafeCar[l]
in

if i.Guard[] then
found!true | inv!i | unsafeCdr![l,r]

else
cons![i,findInvocation[unsafeCdr[l]],r]

end
end

end

def while[] >
Pol.WaitingList.set[

findInvocation[Pol.WaitingList.deref[]]];
(found?b >
if b then

inv?i > i.Trigger![] |
(updateArray[Pol.StartCount,i.GenMethRef,

nthArray[Pol.StartCount,i.GenMethRef]+1];
Pol.ExecList.set[cons[i,Pol.ExecList.deref[]]];
i.StartAction[];
(while![]))

else
r![]

end)
in

while![]
end

def MakePostWrapper[Pol:PolicyType] =
abs [invr:?InvocationType,r:Sig] >

invr?Inv >
Pol.Mutex?[] >
Pol.ExecList.set[removeInv[Pol.ExecList.deref[],

Inv.ArrivalTime]];
updateArray[Pol.TermCount,Inv.GenMethRef,

nthArray[Pol.TermCount,Inv.GenMethRef]+1];
Inv.TermAction[];EvaluateGuards[Pol];Pol.Mutex![]

end

Here we just changed the way actions and guards are called. As a consequence we can sim-
plify the definition of PolicyType to

type PolicyType = Record
Mutex : ^[],
Clock : ^Int,
ArrivalCount : Array Int,
StartCount : Array Int,
TermCount : Array Int,
WaitingList : Ref (List InvocationType),
ExecList : Ref (List InvocationType)

end

that is, we can drop the fields Start and Guard (makePolicy is changed accordingly)

28. Implementation of “Generic Synchronization Policies”

4.3.2 Mapping method parameters

Until now we have only concentrated on the modification of the policy’s functions. From the
synchronized object’s point of view the situation also gets more complicated. To see this, con-
sider the following object definition

obj
var a:Int = 0
method read[[]] =

pr["\nThe value of a is:"];
prInt[_a]

end
method write[[b,c]] =

a <- _a + b + c;
pr["\nThe value of a is:"];
prInt[_a]

end
endobj

and assume we want to synchronize this object with the policy on page 23, binding read to Re-
adOps and write to WriteOps. For the second method we have to specify which of the two pa-
rameters b and c will be mapped to the formal parameter of WriteOps. We cannot do it when
we create the wrapped method (using makeWrapper) because at that time we still don’t know to
which policy the object will be bound. So we do it when calling the BindPolicy function. We
opted for a solution where we specify this mapping by a function called an extractor. An extrac-
tor simply returns a subset of the parameters of a method as a tuple of values (or as a single value
if there is only one parameter). For example if we want to bind the first parameter b to the formal
parameter of WriteOps we write it like this:

BindPolicy[p.ReadOps**[o.read,abs [[]] =[] end]
+ p.WriteOps**[o.write,abs [[b,c]] = b end]]

The abstraction abs [[]] =[] end represents the extractor for the read method (i.e an emp-
ty tuple is used for a parameterless method category) and abs [[b,c]] = b end the extractor
for the write method. Had we decided to bind c to the formal parameter of WriteOps, then we
would have written it as follows

BindPolicy[p.ReadOps**[o.read,abs [[]] =[] end]
+ p.WriteOps**[o.write,abs [[b,c]] = c end]]

To take this parameter’s mapping into account we need to slightly modify the function make-
Wrapper and the related type definitions:

type PreWrapperType = Fun(X) ![!InvocationType,X,Sig]
type PostWrapperType = ![?InvocationType,Sig]
type ParamExtractorType = Fun(X) Fun(Y) ![X,!Y]

type MethodWrapper =Fun (X) Record
SetWrappers : ![:Y:][PreWrapperType Y,PostWrapperType,

ParamExtractorType X Y,Sig],
WrappedMethod : ![X,Sig]
end

Patrick Varone 29.

def makeWrapper [:X:][m:![X,Sig],r:!(MethodWrapper X)] >
let new wrappers: ^[PreWrapperType X,PostWrapperType] in

wrappers![abs [invr,X] = [] end,abs [invr] = [] end]
| r!

record

SetWrappers =
abs[:Y:][new_pre_w:PreWrapperType Y,

new_post_w:PostWrapperType,
paramExtractor:ParamExtractorType X Y,r:Sig] >
wrappers?[_,_] >
(wrappers![abs [invr,X] =

new_pre_w[invr,paramExtractor[X]]
end,
new_post_w] | r![])

end,

WrappedMethod =
abs [p:X,r:Sig] >

wrappers?[pre_w,post_w] >
(wrappers![pre_w,post_w]
| let

new invr : ^InvocationType
in

pre_w[invr,p];m[p];post_w![invr,r]
end

)
end

end
end

This definition deserves some comments: PreWrapperType has been modified to reflect the
fact that a pre-synchronization wrapper generated bymakeWrapper expects one more argument
corresponding to the formal parameters of the method category. SetWrappers has also been
modified and now expects two wrappers and one extractor. The type parameter X stands for the
type of the method’s arguments while Y stands for the type of the method category’s parameters.
More interesting is the implementation of WrappedMethod. At first one could think of imple-
menting it like this:

abs [p:X,r:Sig] >
wrappers?[pre_w,post_w,extractor] >

(wrappers![pre_w,post_w,extractor]
| let

new invr : ^InvocationType
in

pre_w[invr,extractor[p]];m[p];post_w![invr,r]
end

)

But this solution does not work because this would imply that the type Y is already known
when the wrapped method is built, which is in contradiction with the fact that a policy is bound
to an object later on. We therefore have to hide this type with a wrapper’s wrapper that will be
generated by the expression

abs [invr,X] = new_pre_w[invr,paramExtractor[X]] end

30. Implementation of “Generic Synchronization Policies”

whenever the SetWrappers function is called.

4.3.3 Preprocessing

In the preprocessing phase described on page 20 we used four arrays to hold the actions and
guard associated with the different method categories. This solution is no longer possible be-
cause actions and guards do not have the same type for all method categories. Therefore, we
chose to group the three actions and the guard of a method category in a record of the following
type:

type CategoryInfo = Fun (X)
Record

GenMethRef : Int,
ArrivalAction : Ref (ActionType X),
StartAction : Ref (ActionType X),
TermAction : Ref (ActionType X),
Guard : Ref (GuardType X)

end

Because the Arrival, Start, Term and Guard names do not refer to arrays any more we have
to find another definition for them. Actually we decided to make a slight change to the syntax,
transforming

event-name-or-guard // [method-category,function-name]

into

event-name-or-guard [method-category,function-name]

that is, we just dropped the // operator that is no longer necessary. This gave us the following
definitions for our four names

def Arrival[:X:][cat:CategoryInfo X,Action : ActionType X] =
cat.ArrivalAction.set[Action]

def Start[:X:][cat:CategoryInfo X,Action : ActionType X] =
cat.StartAction.set[Action]

def Term[:X:][cat:CategoryInfo X,Action : ActionType X] =
cat.TermAction.set[Action]

def Guard[:X:][cat:CategoryInfo X,Guard: GuardType X] =
cat.Guard.set[Guard]

From the type of these functions we can infer that a method category name will not be bound
to a number but to a record of type CategoryInfo X where X is the type of the method catego-
ry’s formal parameters. The other difference with the previous preprocessing phase is that Ar-
rival, Start, Term and Guard are now globally defined. Given these definitions a policy
declaration of the form

policy [method-category1,...,method-categoryN]
local-pict-declarations
map mapping-declarations
end

translates to

abs[] =
let

val nbmeth=makeCounter[0]

Patrick Varone 31.

val method-category1 = makeCategoryInfo[nbmeth.incr[]]
...
val method-categoryN = makeCategoryInfo[nbmeth.incr[]]

val pol = makePolicy[nbmeth.value[]]
def exec[:X:][cat:CategoryInfo X] =

nthArray[pol.StartCount,cat.GenMethRef]-
nthArray[pol.TermCount,cat.GenMethRef]

def waiting[:X:][cat:CategoryInfo X] =
nthArray[pol.ArrivalCount,cat.GenMethRef]-
nthArray[pol.StartCount,cat.GenMethRef]

def waitingList[:X:][cat:CategoryInfo X]=
extractInvocation[pol.WaitingList.deref[],

cat.GenMethRef]
local-pict-declarations

val [] = mapping-declarations
in

record
method-category1 =

makeSynchWrappers[pol,method-category1],
...

method-categoryN =
makeSynchWrappers[pol,method-categoryN]

end
end

 end

The exec, waiting and waitingList functions have changed accordingly. Here are the remain-
ing definitions:

def makeCategoryInfo[:X:][n:Int] =
let

val emptyAction = abs [i:X] = [] end
in

record
GenMethRef = n,
ArrivalAction = ref[emptyAction],
StartAction = ref[emptyAction],
TermAction = ref[emptyAction],
Guard = ref[abs [i:X] = true end]

end
end

def makeSynchWrappers[:X:][pol:PolicyType,cat:CategoryInfo X] =
record

preWrapper=MakePreWrapper[pol,
cat.GenMethRef,
cat.ArrivalAction.deref[],
cat.StartAction.deref[],
cat.TermAction.deref[],
cat.Guard.deref[]],

postWrapper=MakePostWrapper[pol]
end

32. Implementation of “Generic Synchronization Policies”

4.3.4 Getting it right

Consider the policy on page 23 and its translation into Pict

policy [Reader,Writer]

def shortestJob[l: List (Invocation Int),len:Int] =
inFoldList[l,abs[x,res] = res && (x.parameters >= len) end,true]

def ReaderAllowed[i:SimpleInvocation] = exec[Writer]==0

def WriterAllowed[i:Invocation Int] =
exec[Reader]+exec[Writer]==0 &&

shortestJob[waitingList[Writer],i.parameters]

map Guard[Reader,ReaderAllowed];
Guard[Writer,WriterAllowed]

end

The function inFoldList takes a list (x1,x2,...,xn), a function f and an initial value v.
The result is f(xn,f(.....f(x2,f(x1,v)))). Thus, shortestJob returns true if len is the
length of the shortest job in l.

At first sight, this program seems correct, but in fact it is not. The problem lies in the type of
the list returned by the expression waitingList[Writer] which is List (InvocationType)
instead of List (Invocation Int). This is due to the fact that waitingList builds its result
from the waiting list stored in the policy and whose type is List (InvocationType). The
problem here is always the same: we cannot recover the field parameters from a record of type
InvocationType. Although it may seem that we haven’t really solved the problem yet, this im-
pression is not true. The above program can be transformed as follows:

policy [Reader,Writer]

val jobList = ref[nil[]]
def putJob[len:Int] = jobList.set[len @@ jobList.deref[]]

def remove[l: List Int,x:Int] =
if unsafeCar[l] == x then

unsafeCdr[l]
else

unsafeCar[l] @@ remove[unsafeCdr[l],x]
end

def removeJob[len:Int] = jobList.set[remove[jobList.deref[],len]]

def shortestJob[len:Int] = inFoldList[jobList.deref[],
abs[x,res] = res && (x >= len) end,
true

]

def ReaderAllowed[i:SimpleInvocation] = exec[Writer]==0

def WriterAllowed[i:Invocation Int] =
exec[Reader]+exec[Writer]==0 && shortestJob[i.parameters]

def WriterArrival[i:Invocation Int] = putJob[i.parameters]

def WriterStart[i:Invocation Int] = removeJob[i.parameters]

map Guard[Reader,ReaderAllowed];
Arrival[Writer,WriterArrival];
Start[Writer,WriterStart];
Guard[Writer,WriterAllowed]

end

Patrick Varone 33.

Here the main idea is to keep a separate list of jobs and update it at the events arrival and
start. Having to maintain such a list seems to be a drawback, but in fact we could take advantage
of it, for example by keeping the list sorted which would speed up the evaluation of the guards.

Fortunately, it is easy to modify our implementation to allow the waitingList to return a
value of the right type. For this we need to keep one separate list for each method category that
will be update at the same time as the main waiting list in the policy record. Here are the modi-
fied functions and types:

type InvocationType = Record
Trigger : Sig,
ArrivalTime : Int,
GenMethRef : Int,
StartAction : SimpleAction,
TermAction : SimpleAction,
RemoveYourSelf : SimpleAction,
Guard : SimpleGuard

end

def removeInv[:X<:InvocationType:][l:List X, time:Int] =
if null[l] then

nil[]
elif (unsafeCar[l]).ArrivalTime == time then

unsafeCdr[l]
else

unsafeCar[l] @@ removeInv[unsafeCdr[l],time]
end

def EvaluateGuards[Pol:PolicyType,r:Sig] >
let

new inv, found
def findInvocation[l:List InvocationType,

r:!(List InvocationType)] >
if null[l] then

found!false | nil![r]
else

let
val i = unsafeCar[l]

in
if i.Guard[] then

i.RemoveYourSelf[];
(found!true | inv!i | unsafeCdr![l,r])

else
cons![i,findInvocation[unsafeCdr[l]],r]

end
end

end

def while[] >
Pol.WaitingList.set[

findInvocation[Pol.WaitingList.deref[]]];
(found?b >
if b then

inv?i > i.Trigger![] |
(updateArray[Pol.StartCount,i.GenMethRef,

nthArray[Pol.StartCount,i.GenMethRef]+1];

34. Implementation of “Generic Synchronization Policies”

Pol.ExecList.set[cons[i,Pol.ExecList.deref[]]];
i.StartAction[];
(while![]))

else
r![]

end)
in

while![]
end

def MakePreWrapper [:X:][Pol:PolicyType,GenMethRef:Int,
ArrivalAction:ActionType X,
StartAction:ActionType X,
TermAction:ActionType X,
Guard:GuardType X,
waitingList:Ref (List (Invocation X))] =

abs [invr:!InvocationType,param:X,r:Sig] >
Pol.Mutex?[] >
Pol.Clock?clock >
Pol.Clock!(clock+1) |

let
val self = emptyRef[:Invocation X:][]
val NewInv : Invocation X =

record
Trigger = r,
ArrivalTime = clock,
GenMethRef = GenMethRef,
StartAction =

abs[] = StartAction[self.deref[]] end,
TermAction =

abs[] = TermAction[self.deref[]] end,
RemoveYourSelf =

abs [] =
waitingList.set[

removeInv[waitingList.deref[],
clock]]

end,
Guard = abs[] = Guard[self.deref[]] end,
parameters = param

end
in

self.set[NewInv];
Pol.WaitingList.set[cons[:InvocationType:][NewInv,

Pol.WaitingList.deref[]]];
waitingList.set[cons[NewInv,waitingList.deref[]]];
updateArray[Pol.ArrivalCount,GenMethRef,

nthArray[Pol.ArrivalCount,GenMethRef]+1];
ArrivalAction[NewInv];EvaluateGuards[Pol];
(Pol.Mutex![] | invr!NewInv)
end

end

type CategoryInfo = Fun (X)
Record

GenMethRef : Int,

Patrick Varone 35.

ArrivalAction : Ref (ActionType X),
StartAction : Ref (ActionType X),
TermAction : Ref (ActionType X),
Guard : Ref (GuardType X),
waitingList : Ref (List (Invocation X))

end

def makeCategoryInfo[:X:][n:Int] =
let

val emptyAction = abs [i:X] = [] end
in

record
GenMethRef = n,
ArrivalAction = ref[emptyAction],
StartAction = ref[emptyAction],
TermAction = ref[emptyAction],
Guard = ref[abs [i:X] = true end],
waitingList = ref[nil[:X:][]]

end
end

def waitingList[:X:][cat:CategoryInfo X] = cat.waitingList.deref[]

def makeSynchWrappers[:X:][pol:PolicyType,cat:CategoryInfo X] =
record

preWrapper=MakePreWrapper[pol,
cat.GenMethRef,
cat.ArrivalAction.deref[],
cat.StartAction.deref[],
cat.TermAction.deref[],
cat.Guard.deref[],
cat.waitingList],

postWrapper=MakePostWrapper[pol]
end

We extended the CategoryInfo record with a field holding the waiting list. This allows us to
use a global definition for waitingList (which is therefore removed from the preprocessor).
The other modifications in the code are only used to update this list. Note that we had to apply
the same idea as in 4.3.1 to remove an invocation from the list (the field RemoveYourSelf in In-
vocationType).

4.4 Removing the preprocessing phase

The careful reader will have noticed that, from the first implementation to the last, the preproc-
essing phase has been constantly reduced. The ultimate question is then: can we completely re-
move it? The next subsections will show that the answer is yes.

4.4.1 The new syntax

The current syntax used for a policy definition does not totally correspond to the Pict syntax.
But it looks more or less like a function definition, so that we can try to turn it into a real Pict
function. We explored more than one possible syntactic form (each having its advantages and
disadvantages) and finally chose the following one:

36. Implementation of “Generic Synchronization Policies”

abs [Policy,[method-category1,...,method-categoryN]] =
let

local-pict-declarations
in

Map[Policy,method-category1,
[ArrivalAction,StartAction,TermAction,Guard]];

...
Map[Policy,method-categoryN,

[ArrivalAction,StartAction,TermAction,Guard]]
end

end

For example, the policy on page 30 becomes

abs [Policy,[Reader,Writer]] =
let

def shortestJob[l: List (Invocation Int),len:Int] =
inFoldList[l,abs[x,res] = res && (x.parameters >= len)

end,true]

def ReaderAllowed[i:SimpleInvocation] = exec[Writer]==0

def WriterAllowed[i:Invocation Int] =
exec[Reader]+exec[Writer]==0 &&

shortestJob[waitingList[Writer],i.parameters]
in

Map[Policy,Reader,
[EmptyAction[], EmptyAction[],

EmptyAction[], ReaderAllowed]];
Map[Policy,Writer,

[EmptyAction[], EmptyAction[],
EmptyAction[], WriterAllowed]];

end

We also need a new syntactic form for binding a policy to an object. However, we first need
to introduce the idea behind the policy’s new syntax.

4.4.2 Policies as functions

Consider a policy definition after the preprocessing phase (page 30). We basically do four
things:

1. bind the method categories to records of type CategoryInfo

2. create the local functions exec and waiting (remember that now waitingList is glo-
bal)

3. evaluate local-pict-declarations and mapping-declarations
4. return a record with the synchronization wrappers

The main idea behind the new syntax is to put i) and ii) outside of the policy’s definition and
to merge iii) and iv). More precisely, we will create one PolicyType record plus one Catego-
ryInfo record for each method category and pass them as parameters to the policy (which is
now a function). The result of the function call will not be a record with synchronization wrap-
pers because we have no possibility to extract the parameters’ name to generate the record
fields. Actually, this record is only there because we separate the creation of the synchroniza-
tion wrappers from their binding to the object’s methods. But if we bring those two things to-

Patrick Varone 37.

gether then we do not need any return value. This means that a call to a policy will not only
create new synchronization wrappers but will also attach them to the object’s methods. There-
fore, we need to pass a reference to the wrapped methods as well. This leads us to the following
type definitions:

type SynchCounterType = Record
incr : ![Sig],
value : ![!Int]

end

type SynchCountersType = [SynchCounterType,SynchCounterType,
SynchCounterType]

type InvocationType = Record
Trigger : Sig,
ArrivalTime : Int,
SynchCounters : SynchCountersType,
StartAction : SimpleAction,
TermAction : SimpleAction,
RemoveYourSelf : SimpleAction,
Guard : SimpleGuard

end

type PolicyType = Record
Mutex : ^[],
Clock : ^Int,
WaitingList : Ref (List InvocationType),
ExecList : Ref (List InvocationType)

end

type SetWrappersType = Fun(X)
![[PreWrapperType X,PostWrapperType],Sig]

type CategoryInfo = Fun (X)
Record

SynchCounters : [SynchCounterType,
SynchCounterType,
SynchCounterType],

waitingList : Ref (List (Invocation X)),
SetWrappersList : List

(SetWrappersType X)
end

The main change here concerns the synchronization counters. They have been removed from
the PolicyType record and spread over the different CategoryInfo records. This was neces-
sary in order to make the functions exec and waiting global

def exec[:X:][cat:CategoryInfo X] =
let

val [_,StartCounter,TermCounter] = cat.SynchCounters
in

StartCounter.value[]-TermCounter.value[]
end

def waiting[:X:][cat:CategoryInfo X] =
let

val [ArrivalCounter,StartCounter,_] = cat.SynchCounters

38. Implementation of “Generic Synchronization Policies”

in
ArrivalCounter.value[]-StartCounter.value[]

end

Note that InvocationType has changed accordingly. We have simply replaced GenMethRef
with the three synchronization counters of the corresponding method category. SynchCoun-
terType represents a reference to a counter that can be incremented by incr and read by val-

ue. The change to the synchronization counters location is also propagated into the code for
pre- and post-synchronization wrappers. We will only list the new definition for MakePost-
Wrapper (EvaluateGuards and MakePreWrapper are modified in the same way)

def MakePostWrapper[Pol:PolicyType] =
abs [invr:?InvocationType,r:Sig] >

invr?Inv >
Pol.Mutex?[] >
Pol.ExecList.set[removeInv[Pol.ExecList.deref[],

Inv.ArrivalTime]];
let

val [_,_,TermCounter] = Inv.SynchCounters
in

TermCounter.incr[]
end;
Inv.TermAction[];EvaluateGuards[Pol];Pol.Mutex![]

end

Two other changes have occurred in CategoryInfo. First, we removed the references to ac-
tions and guards because these are now treated as a block in the Map function and thus, do not
need to be stored separately any more. Secondly, we added a set of references to methods in the
form of a list of functions. Each function allows us to set the synchronization wrappers of one
of the methods associated with this method category. They are called in Map as follows:

def Map[:X:][Pol:PolicyType,cat:CategoryInfo X,
[ArrivalAction : ActionType X,
StartAction : ActionType X,
TermAction : ActionType X,
Guard: GuardType X]] =

let
val Wrappers = [MakePreWrapper[Pol,cat.SynchCounters,

ArrivalAction,
StartAction,
TermAction,
Guard,
cat.waitingList],

MakePostWrapper[Pol]]
in

inApplyList[cat.SetWrappersList,abs[f] = f[Wrappers] end]
end

inApplyList applies a function to every element of a list. Map simply creates the synchroniza-
tion wrappers and binds them to the methods.

Patrick Varone 39.

4.4.3 Calling a policy

As we have seen in the previous subsection, binding a policy to an object amounts to calling the
policy with a PolicyType and a tuple of CategoryInfo records. The new syntactic form for
doing this is:

BindPolicy[policy-name,
[Category[list-of-methods],

...,
Category[list-of-methods]]]

where list-of-methods is:

object.method-name -- extractor @@ ... @@ nil[]

Thus, the example on page 28 becomes

BindPolicy[ReaderWriterPolicy,
[Category[o.read--abs [[]] =[] end @@ nil[]],
Category[o.write--abs [[b,c]] = b end @@ nil[]]]]

with ReaderWriterPolicy equal to the policy on page 36. The operator -- returns a function
to set the synchronization wrappers of the method

def (--)[:X,Y:][mWrapper:MethodWrapper X,
extractor:ParamExtractorType X Y] =

abs[[preWrapper:PreWrapperType Y,postWrapper:PostWrapperType]] =
mWrapper.SetWrappers[preWrapper,postWrapper,extractor]

end

Its purpose is to hide the type X, i.e. the type of the method’s parameters. The function Cat-

egory creates a CategoryInfo record

def Category[:X:][l:List (SetWrappersType X)] =
record

SynchCounters = [makeSynchCounter[],
makeSynchCounter[],
makeSynchCounter[]],

waitingList = ref[nil[:Invocation X:][]],
SetWrappersList = l

end

while BindPolicy calls the policy to wrap the methods

def BindPolicy[:X:][PolAbs:PolicyAbs X,par:X] =
PolAbs[makePolicy[],par]

where PolicyAbs is

type PolicyAbs = Fun(X) ![PolicyType,X,Sig]

4.4.4 Variations on the syntax: the row operator

It does not seem very natural to have to declare a parameter Policy and pass it to the Map func-
tion. Thus, we would like to write the example on page 36 as follows:

40. Implementation of “Generic Synchronization Policies”

abs [Reader,Writer] =
let

def shortestJob[l: List (Invocation Int),len:Int] =
inFoldList[l,abs[x,res] = res && (x.parameters >= len)

end,true]

def ReaderAllowed[i:SimpleInvocation] = exec[Writer]==0

def WriterAllowed[i:Invocation Int] =
exec[Reader]+exec[Writer]==0 &&

shortestJob[waitingList[Writer],i.parameters]

in
Map[Reader,

[EmptyAction[],EmptyAction[],
EmptyAction[],ReaderAllowed]];

Map[Writer,
[EmptyAction[],EmptyAction[],
EmptyAction[],WriterAllowed]];

end

Actually, it is possible to define a Map function in such a way that this syntactic form works.
The idea is to extend CategoryInfo with a field policy, which is a reference to a PolicyType
record. Map is then modified as follows:

def Map[:X:][cat:CategoryInfo X,
[ArrivalAction : ActionType X,
StartAction : ActionType X,
TermAction : ActionType X,
Guard: GuardType X]] =

let
val Wrappers = [MakePreWrapper[cat.policy.deref[],

cat.SynchCounters,
ArrivalAction,
StartAction,
TermAction,
Guard,
cat.waitingList],

MakePostWrapper[Pol]]
in

inApplyList[cat.SetWrappersList,abs[f] = f[Wrappers] end]
end

Now, the problem is to set this field for each method category.

One possibility is to explicitly create the record before calling BindPolicy and to pass it as
an additional parameter to Category:

val pol=makePolicy[]
BindPolicy[ReaderWriterPolicy,

[Category[pol,o.read--abs [[]] =[] end @@ nil[]],
Category[pol,o.write--abs [[b,c]] = b end @@ nil[]]]]

This solution is not very safe because one could use pol for two different objects that would
then share the same data.

Patrick Varone 41.

Ideally, we would like to keep the syntax of page 39. This means that we have to scan the tu-
ple of CategoryInfo records to initialize their policy field. Thus, we would write BindPoli-
cy as follows:

def BindPolicy[:X:][PolAbs:PolicyAbs X,par:tuple-of-CategoryInfo] =
let

pol = makePolicy[]
def setpol[:X:][cat:CategoryInfo X] =

cat.policy.set[pol]
in

inApplyTuple[par,setpol];
PolAbs[par]

end

Here tuple-of-CategoryInfo is a type representing a tuple of any length of CategoryInfo
records. inApplyTuple is the tuple’s counterpart of inApplyList introduced on page 38. Such
a generic tuple type (and its associated function inApplyTuple) does not currently exist in the
Pict type system but would be a useful extension. However, its introduction raises some typing
issues that first need to be solved, which is beyond the scope of this paper. In the following par-
agraphs we will just state more clearly what we really understand by “generic tuple type”.

This idea of “generic tuple type” comes from LISP where we can define functions with an
undefined number of parameters. This features turns out to be very useful when writing generic
code and we would like to be able to do the same thing in Pict. For this reason we introduce a
new type operator row that can only be used inside a tuple type. For example the following type

[Int, row String, Sig]

stands for any of these types

[Int,Sig]
[Int,String,Sig]
[Int,String,String,Sig]
[Int,String,String,String,Sig]
...

Thus, at first row seems to be a type operator of kind Type -> Type. But in fact this is not
sufficient to express the BindPolicy function because par stands for a tuple of CategoryInfo
record of different types (e.g., CategoryInfo Int and CategoryInfo []). In that case par has
the type

[row CategoryInfo]

which means that this time row is of kind (Type -> Type) -> Type. This can also be seen in
the polymorphic function setpol. Those two examples show that row should be viewed as a
polymorphic type operator of the form

type row = Fun[:K:](X:K)

where K represents a kind. It is not yet quite clear (at least for the author) how to integrate such
an operator in the Pict type system. Actually, other problems occur with this operator. Consider
for example a function that takes a tuple of values and returns a tuple of reference cells initial-
ized with those values (mapTuple is the tuple’s counterpart of mapList)

42. Implementation of “Generic Synchronization Policies”

type Dummy = Fun(X) X
def makeCells[r:row Dummy] : [row Ref] =

[mapTuple[r,ref]]

The type of makeCells is

![row Dummy,![row Ref]]

but this is not sufficient. Actually, we would like to express the fact that makeCells returns a
tuple with exactly the same number of elements as its argument and with the corresponding ref-
erence types. Given the type above, the result of

makeCells[1,’a’,true]

can be any tuple made of reference cells like

[ref[1],ref[‘a’],ref[true],ref[2]]

or

[ref[‘a’],ref[true],ref[1]]

This means that with the signature of makeCells one cannot typecheck the following pro-
gram:

val [a,b,c] = makeCells[1,’a’,true]
val d = a.deref[] + 3

although it seems pretty reasonable. To solve this problem, we have to relate the argument to
the result in some way, for example by providing a new kind of bound:

def makeCells[:X ∈ row Dummy:][r:X] : [Ref X] =
[inMapTuple[r,ref]]

Here X ∈ row Dummy means that X is an “instance” of type row Dummy and Ref X is the type
we get by applying the Ref operator to each element of X. There are certainly other related is-
sues that remain to be explored but we will stop here by just giving two type equivalences about
the row operator

[...,row Y,row Y,...] is equivalent to [...,row Y,...]
[...,row (row Y),...] is equivalent to [...,row Y,...]

To see why the second equivalence should hold, consider the unfolding of [...,row (row
Y),...], that is

[...,row Y,row Y,...,row Y,...]

which is equivalent to [...,row Y,...] by the first equivalence.

5 Conclusion

We have shown an implementation of the “Generic Synchronization Policies” in Pict using a
step-by-step approach. The final implementation does not rely on preprocessing any more,
which is the goal that we pursued. However, we didn’t really answer the question: Are Pict’s
records the right abstraction on which to build an object model ? We just proposed a more con-
venient syntax (page 11) that should be considered as a syntactic sugar and nothing else. The
reason why we did not answer the question is that we did not need to, due to the fact that the GSP

Patrick Varone 43.

concept is quite independent from the underlying object model. This also means that other ex-
periments are required to bring a satisfying answer. For example, we could imagine implement-
ing a MetaObject Protocol like that of CLOS [3] or the Sina’s object model [1]. In those two
cases it seems that treating methods’ names as first-class values is an essential feature which is
not present in current Pict’s records. What is also missing is object identity. It could be imple-
mented using channels but then we would need an operator to test the equality of channels.

Another interesting question is to see how the work of Laurent Dami [2] on the lambda-cal-
culus can be applied to the polyadic π-calculus.

6 Acknowledgements

The author would like to thank Benjamin Pierce, Jean-Guy Schneider, Markus Lumpe and Os-
car Nierstrasz for commenting and correcting earlier versions of this report.

References

[1] Mehmet Aksit, “On the Design of the Object-Oriented Language Sina,” Ph.D. thesis, Univer-
sity of Twente, 1989.

[2] Laurent Dami, “Software Composition: Towards an Integration of Functional and Object-Ori-
ented Approaches,” Ph.D. thesis No. 396, University of Geneva, 1994.

[3] Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow, The Art of the Metaobject Protocol,
MIT Press (Ed.), 1991.

[4] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance,” Ph.D. Dissertation, Department of Computer Science,
Trinity College, Dublin, 1994.

[5] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Parts I
and II,” Reports ECS-LFCS-89-85 and -86, Computer Science Dept., University of Edin-
burgh, March 1989.

[6] Benjamin C. Pierce, “PICT: An Experiment in Concurrent Language Design,” PICT Version
3.6 tutorial, University of Edinburgh, March, 1994.

[7] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,” Pro-
ceedings Theory and Practice of Parallel Programming (TPPP 94), Springer LNCS 907,
Sendai, Japan, 1995, pp. 187-215.

[8] David N. Turner, “The Polymorphic Pi-calculus: Theory and Implementation,” Ph.D. thesis,
University of Edinburgh, 1995, in preparation.

Implementation of “Generic
Synchronization Policies” in Pict

Patrick Varone

IAM-96-005
April 1996

1. Introduction. 1
1.1. Typesetting conventions . 1

2. Generic Synchronization Policies . 2
2.1. Definition . 2
2.2. Examples. 3

3. Pict . 5
3.1. Channels and types . 5
3.2. Processes . 6
3.3. Local declarations . 7
3.4. Derived forms . 7

3.4.1. The def construct . 8
3.4.2. Functions as processes . 8
3.4.3. Infix operators . 9
3.4.4. Sequencing . 9

3.5. The object model. 10
4. Implementation of GSP in Pict . 10

4.1. Synchronization wrappers in Pict . 10
4.1.1. Synchronization wrappers and GSP. 10
4.1.2. Binding a GSP to an object . 11

4.2. GSP in Pict: a first implementation . 14
4.2.1. The shared data structure . 14
4.2.2. Generic code for pre- and post- synchronization functions 15
4.2.3. Syntax of GSP in Pict. 19

4.3. Accessing the parameters of a method . 22
4.3.1. Storing and retrieving the parameters . 23
4.3.2. Mapping method parameters . 28
4.3.3. Preprocessing . 30
4.3.4. Getting it right . 32

4.4. Removing the preprocessing phase. 35
4.4.1. The new syntax. 35
4.4.2. Policies as functions . 36
4.4.3. Calling a policy . 39
4.4.4. Variations on the syntax: the row operator . 39

5. Conclusion . 42
6. Acknowledgements. 43

