Implementation of “Generic

Synchronization Policies” in Pict

Patrick Varone
Software Composition Group

| AM-96-005
April 1996

Abstract. Thisreport presents an implementation of McHale' s “ Generic Synchroni-
zation Policies’ (GSP) in the Pict programming language. Since Pict is defined by map-
ping programming language constructsto the pi calculus, thisexercise helpsuson theone
hand to assign an operational semantics to GSP, and on the other hand to explore the use
of Pict and the pi calculus as a basis for modelling advanced object-oriented program-
ming constructs.

Keywords: Object-based concurrency, synchronization, mt calculus, semantics.

CR Categories and Subject Descriptors: D.1.3 [Programming Techniques]:
Concurrent programming; D.1.5 [Programming Techniques]: Object-Oriented Program-
ming; D.2.m [Software Engineering]: Reusable Software; D.3.1 [Programming Lan-
guages] Semantics; D.3.2 [Programming Languages] Concurrent, distributed and parallel
languages.

Author’s address: Institut fir Informatik (IAM), Universitdt Bern, Neubriickstrasse
10, CH-3012 Berne, Switzerland. E-mail: scg@ am uni be. ch.

WWW: htt p://i amww. uni be. ch/ ~scqg.

1 Introduction

Thisreport presentsan implementation of the* Generic Synchronization Policies’ (abbreviated
as GSP) introduced in [4] using the language Pict. The main goal of thiswork was to see how
well suited Pict isfor implementing higher level abstractions. The remainder of this report is
structured asfollows: Section 2 briefly introducesthe GSP concept. Pict [6] [7] [8] and apossi-
ble object model are presented in section 3. The implementation of GSP isthe heart of section
4. Finally, Section 5 mentionsfuture possible work.

1.1 Typesetting conventions

Throughout this report we use different fonts and stylesto express code. Programsin Helvetica
are expressed in a Pascal-like language while programsin Cour i er representsreal Pict code.
The Pascal-like language is used to show examples of GSP aswell asthe agorithmsto imple-
ment it. Programs that can be run by the “extended Pict” compiler will always be written in
Couri er. By “extended Pict” we mean the Pict compiler plusthe preprocessor presented inthe

2. I mplementation of “ Generic Synchronization Policies’

section4. Inthesyntax presentationweusel t al i ¢ Couri er todenoteasyntactic category and
nor mal Couri er for keywords, separators and operators.

2 Generic Synchronization Policies

2.1 Definition

Thissection briefly describesthe GSP concept. Wewill not present the underlying “ Service-ob-
ject Synchronization” paradigm (Sos) in detail. For moreinformation on Sospleaserefer to[4].
In what followswe assume that communi cation between objectsis carried out by Remote Pro-
cedure Calls (RPC), that isaprocessinvoking an operation of an object will be suspended until
the operation isfinished (and the possible return value accessible). However, it isimportant to
note that this assumption does not belong to the Sos paradigm itself but has only been madeto
simplify the discussion. GSPs are used to synchronize the different method invocations of a
particular object. In order to show how this mechanism works wefirst need to describe the se-
guence of eventsthat takes place when one object invokes an operation upon another object.

Fromthe service object’ s perspective (whichistheonly onewewill consider), therearethree
eventsof interest: arrival, start and term (short for termination). When aninvocation arrivesit
may be delayed dueto synchronization constraints. Sometimelater it will start execution; and
finally it will terminate execution. Here we assume that events do not overlap. For example if
twoinvocationsarriveat the sametimethen weassumethat their arrival eventswill beordered.
The sequence of eventsis summarized in the following picture:

client object service object
1- arriva
1- call Y// 2- start
2- return re——_|
\
3-term

y

GSPs permit an action (user code) to be associated with each possible event. The execution
of an action will always complete before another event can occur. Synchronization constraints
between methods are expressed using the concept of aguard (i.e aboolean expression). Anin-
vocation will be delayed until the corresponding guard evaluatesto true.

In GSP genericity liesin the fact that actions and guards are not associated directly with a
particular method of a given object. Conceptually, methods are grouped into categories for
which actions and guards are specified. At instantiation time the methods associated with one
category will “inherit” itsactions and guards.

In order to express complex synchronizations, we need accessto information about theinvo-
cations upon the object. In code for actions and guards the following information will be made
avallable:

» Thearriva time of the current invocation (for which the action or guard is executed)

Patrick Varone 3.

» The number of waiting invocations from a given category

» The number of executing invocations from a given category
* A list of al waiting invocations from a given category

» The method’'s parameters

(We could add other information like, for example, the number of terminated i nvocations or
thelist of al executing invocations from agiven category. In our implementation we restricted
ourselves to the five points mentioned above although it could betrivially extended to include
thisinformation aswell).

2.2 Examples

The first example is the well-known Reader-Writer policy where we have two categories of
methods: one category representing methodsthat only read instance variables of the object and
another category representing methods that change the value of someinstance variables. With
GSP, the Reader-Writer policy could bewritten asfollows (the syntax usedistheonefrom[4]).

policy ReadersWriters[ReadOps,WriteOps]

function ReaderAllowed(t:Invocation):Bool
begin

return exec(WriteOps) = 0;
end

function WriterAllowed(t:Invocation):Bool
begin

return exec(ReadOps)+exec(WriteOps) = 0;
end

map guard(ReadOps) -> ReaderAllowed
guard(WriteOps) -> WriterAllowed

end policy
This policy specifies that a Read operabjuenati

Patrick Varone 5.

actions are incReadOps and decReadOps for the category ReadOps, incWriteOps and decWrite-
Ops for the category WriteOps. Of course, the same mechanism can be used to implement the
waiting(WriteOps) counter, but this time the counter will be updated at the events arrival and
start. Notethat actions and guards are executed in mutual exclusion which allowsasafe update
of the variables execWriteOps and execReadOps.

3 Pict

Pict is alanguage based on the polyadic tecalculus [5] where the basic entities are processes
and channels. The following paragraphs constitute an informal presentation of the language
that should help the reader to understand section 4. More information can befound in [6].

3.1 Channels and types

A channel isaport over which one processmay communi cate with another. Every channel must
be created before it can be used. The expression

new x @ Int

createsafresh new channel and bindsit to thenamex. Thetype of thischannel is~1 nt where»
isachannel type constructor. | nt specifiesthat only integer values can be transmitted over this
channel. There exist two other channel type constructors: ! and?.! isused for an output-only
channel and 2 for an input-only channel. Besides channels Pict definesthe following primitive
types: integers, booleans, characters, strings, records and tuples.

A tupleiswritten in sguare brackets with val ues separated by commas:
[1, " coucou”, true]

Thetypeof thistupleis[I nt, Stri ng, Bool] . To select avaluefrom atuple we use pattern-
matching. For example the expression

val [a,b,c] =[1,"coucou”, true]
bindsato1,bto“coucou” andc totr ue.
A record isacollection of named field separated with commas:
record x=2,y="a’ end

Thetypeof thisrecordisRecor d x: I nt, y: Char end. To select afield fromarecord we use
the dot notation.The expression

val z = (record x=2,y="a end).y
bindsz to’ a’ .
A type can be given aname by using atype declaration of theform
type nanme = type-definition
We can al so define type operators (like~) using the following syntax
type type-operator = Fun(type-paraneter) type-definition

asinthe expressions

6. Implementation of “ Generic Synchronization Policies”’

type Pair = Fun(X) [X, X]
val x : Pair Int =1[2,3]

3.2 Processes

A process can be either asender process or areceiver process.
The syntax of asender processis
channel - nane! val ue
whereas areceiver processis
channel - name?pattern > process
or
channel - name?*pattern > process

A sender process can only communicatewith another receiver processthat isready to accept
avalue aong the same channel. For the communi cation to take place the two processes must be
putinparalel, asin

x!'3 | (x?y > printily)

Here we have one sender processx! 3 and onereceiver processx?y > printi!y putinpar-
ald (the| operator). When the communication takes place, the patterny will be bound to the
value 3 and the sender processwill bediscarded. Thereceiver processwill evolveinto the proc-
essprinti! 3 (wherey hasbeen replaced by 3) so that the whole expression reducesto

printi!3

This sender processwill in turn communicate with the Pict environment (where the channel
printi isdefined) which resultsinthedisplay of 3. Actually the complete Pict programis

new X

run x!'3 | (x?y > printily)
because we have to create any channel that we use in the program. Notethat it is not necessary
to specify thetype of the channel x becauseit will beinferred by the Pict type system. Ther un
directive allows a process expression to be put in parallel with the rest of the program, so that
our example could aso have been written as

new x
run x!3
run (x?y > printily)

Aswehaveseenin 3.1, tuplesof values can be used to transmit morethan onevalue at atime

new x
run x!'[3,4] | (x?[y,z] > printily | printi!z)

Inthiscasethevalues 3 and 4 will be displayed (but in an unspecified order). It isimportant
to note that the parallel composition of two processes (the| operator) isitself aprocess.

Consider now thefollowing program:

new x
run x!'3 | x4 | (x?y > printily)

Patrick Varone 7.

Theresult of the programwill bethe display of either 3 or 4, but not both because the process
x?y > printi!y canonly beused (communicate) once. So thewholeexpression reduceseither
to

x!3 | printil4
or
x!'4 | printi!3

If we want both valuesto be printed, we can use two copies of the same process but actually
thereisabetter solution that consistsin using so-called replicated input processes:

new x
run x!'3 | xt4 | (x?*y > printily)

Thereplicated input processx?*y > printi !y behavesexactly asbefore except that onceit
has communi cated on the channel x it will immediately create anew copy of itself. The expres-
sion

x!'3 | xt4 | (x?*y > printily)

will therefore evolve into (assuming that x! 3 has been chosen for the first communication)
x'4 | printi!3 | (x?*y > printily)

and then into
printi!3 | printild | (x?*y > printily)

Heretheprocessx?*y > printi !y actsasaserver processthat repeatedly acceptsanumber
onthex channel and printsit.

3.3 Local declarations

So far every channel in the program had a global scope. To create nested scopes we can use
thelet ... in ... endconstruct. Thefollowing example showshow achannel can be made
local to aprocess:

run let new x in x!'3 end
| let newx in x?y > printily end
Thisprogram prints nothing becausethe namex refersto adifferent channel in each process.
It ishowever possibleto export achannel outside of its scope of declaration:

new z
run let newx in zlx | x!'3 end
| let newx in z?x > x?y > printily end
Here we have used aglobal channel z to transmit the channel x from thefirst processto the
second one. Thisprogramwill therefore print 3 asexpected. Notethat thelocal channel x inthe
second processisnot used at all.

3.4 Derived forms

The previous definitionsform what isusually called core Pict. We could stop defining new lan-
guage constructs here and start programming with thistiny language. However, it appears that
for most programming tasks the syntax presented so far isat too low alevel to be used conven-

8. Implementation of “ Generic Synchronization Policies”’

iently. For this reason, Pict defines a number of higher-level syntactic constructs that are then
tranglated into core Pict.

3.4.1 The def construct

Assume we want to define a set of processes that read a number from a channel (different for
each process) and then print it. All these processes behave in the sameway. The only thing that
changesisthename of theinput channel. A convenient way to define such afamily of processes
isto usethedef construct:

def nyprint[c] > c?n > printi!n
new x,y, z
run x!'1 | y!'2 | z!'3 | nyprint![x] | myprint![y] | nyprint![Zz]

With this definitions nypri nt ! [x] isequivalenttox?n > printi!nandnyprint![y] is
equivalenttoy?n > printi! n. Internally, the expression

def nane pattern > process
trandatesto

new name
run name?*pattern > process

so that the above definition of nypri nt becomes
new nypri nt

run nmyprint?*[c] > c?n > printiln

3.4.2 Functions as processes

In Pict afunction isimplemented by a processthat expectsinput values plusareply channel to
which it can send the computed result. Assume we want to define afunction pl usone that in-
crementsthe value of an integer by one. We can write thisfunction asfollows:

def plusone[n,r] > r!(n+l)
new r
run plusone![3,r] | (r?x > printilx)

Herethechannel r playstheroleof thereply channel upon whichtheresult can beread. This
programjust “calls’ thefunctionpl usone and, inparallel, waitsfor theresult onr and printsit.
Thiskind of function definition is so common that Pict providesfor aspecial notation:

def function-name [Xq,..., Xyl = val ue
which translatesto
def function-name [Xq,..., Xp r] > rlval ue
The“type” of thisfunctionisin fact thetype of the channel f unct i on- nane whichis
[Xqg, ey X ' Rl

where X; represents the type of x; and R the type of the return value. Thefirst! meansthat a
function isan output-only channel (although it isused as an input channel in the function defi-
nition). This makes sense because we don’t want to allow another process to input avalue on
f unct i on- name, which would amount to having two definitions for the same function.

Patrick Varone 9.
Pict al so definesaconvenient notation to retrieve the value of thefunction. Whenever avalue
isexpected (e.g. aninteger), afunction call of theform
function-name [xq,..., Xnl
can be substituted for the value, provided f unct i on- name has been defined like this
def function-name [Xq,..., Xn] = val ue

andval ue isof theright type. Notethat wedrop the! character inthefunction call. Using this
notation, we can rewrite our example asfollows

def plusone[n] = n+1
run printi!(plusone[3])

Moreover, it ispossibleto define “anonymous’ functionsthat are used just once
run printi!((abs [n] = n+l end)[3])
Heretheform
abs abstraction end
trandatesto

| et def x abstraction in x end

3.4.3 Infix operators

New infix operators can beintroduced in the language. They are defined exactly like functions
but with their name enclosed in parentheses:

def (%9 [n,mM = (mn)*2
run printi! (5%%#)

Aninfix operator can also be called using the usual syntax
def (%®9[n, M = (mtn)*2
run printi! ((9%®9[5,4])
3.4.4 Sequencing

Assume we want to print the number 3 followed by the number 4 in that order. We cannot usea
program like:

run printi!3 | printil4

because we cannot tell which processwill communicatefirst. Pict providesasimpleway to call
functions in sequence. The only requirement put on the function is that its result must be an
empty tuple. For example, the sequential counterparttopri nti ispr1nt which canbeused as
follows (ski p isaprocessthat does nothing)

run print[3];print[4];skip
Here; servesasa“statement” separator. The general pattern for asequenceis
function-nanme [xq,..., Xnl ; process

which trand atesto

10. I mplementation of “ Generic Synchronization Policies’

| et
val [] = function-name [xq,..., Xnl
in
process
end
It isimportant to note that the type of a sequential function will always be of theform
X, Xp 111

where[] isthetypeof theempty tuple[]. Thetype! [] canbeabbreviated asSi g.

3.5 The object model

Currently an objectinPict can simply bemodelled asarecord . For example, amutablecell with
two methodsset and get can beimplemented likethis

def ref[init] = let
new current
run current!init

record
set = abs [v,c] > current?_ > current!v | c¢c![] end,
get = abs [r]> current?x > current!x | r!x end
end
end
val r = ref[0]
run print[r.get[]];r.set[5];print[r.get[]];skip

Theprocesscurrent !'ini t actsasthe private instance variable holding the cell’svalue and
thetwo fieldsset and get contain methods to access and set thisvalue. It isimportant to note
that this very simple object model takes neither inheritance nor self-referencesin method defi-
nitionsinto account.

4 Implementation of GSP in Pict

This section describes the implementation of GSP in Pict, which isamore or less straightfor-
ward adaptation of McHale'sown implementation. Although Pict isnot really object-oriented,
it providesfor asimple object model based on records. Actually one of the main aspects of the
GSP concept (and itsunderlying paradigm) isthat it isnot tied to aparticular language and can
befairly easily adapted to any object model. This section isdivided into four subsections. The
first part describes the enhanced object model while the three other subsections concentrate
more on the implementation of GSP.

4.1 Synchronization wrappers in Pict

4.1.1 Synchronization wrappers and GSP

As mentioned above, the GSP mechanism is not tied to any object model. In fact the object
model merely depends on the general scheme used to implement synchronization constraints
among methods. Herewe have opted, asin McHal€e'sthesis, for the commonly used synchroni-
zation wrappers. The main idea of the synchronization wrappers is to take a pure unsynchro-

Patrick Varone 11.

nized object and to wrap its methods in a pre- and post-synchronization code. For example a
method like:

method m1()
begin

body;
end

will be transformed (wrapped) into

method m1()
begin
“pre-synchronization code”;
body;
“post-synchronization code”;
end

L et’s assume an RPC mechanism. Then the pre-synchronization code is responsible for ex-
ecuting the actions associated with the arrival and start events described in 82.1. Thiscodeis
also responsible for suspending the calling thread until the guard associated with the method
becomes true. The post-synchronization, for his part, executes the action associated with the
termevent.

Now consider the ReadersWriters policy described in 82.2 and supposem1 belongsto the Re-
adOps category. Then m1 will be wrapped asfollows:

method m1()
var state:InvocationType;
begin
state := pre_synch_ReadOps();
body;
post_synch_ReadOps(state);
end

The variable state represents information about the current invocation, e.g the arrival time
mentioned in 82.1. pre_synch_ReadOps and post_synch_ReadOps stand for the synchronization
code associated with the ReadOps category. Among other things, this means that those two
functionswill be used for every method belonging to the ReadOps category.

4.1.2 Binding a GSP to an object

Before explaining how an object can be bound to aparticular policy, itisnecessary tointroduce
amore convenient notation for objectsin Pict. (Thisisthefirst extension of the Pict syntax. The
trandation to Pict is done via a special-purpose preprocessor.) The syntax of an object defini-
tion becomes

obj

{var var-nanme : type = initial-value}

{met hod net hod-name [[Xq,..., Xnl] = body end}
endobj

where{t ext} representszero or more occurrencesof t ext . Thistranslatesto

| et
{val var-nane = ref[:type:][initial-value]}
in

12. I mplementation of “ Generic Synchronization Policies’

record
{met hod- nane = nmakeW apper[abs [[Xq,...,X,]] = body end],}
end
end

For exampl e, the object

obj
var a:lnt =0
met hod read[[]] =
pr["\nThe value of a is:"];
print[_a]
end
met hod wite[[b]] =
a<- _a+b;
pr["\nThe value of a is:"];
print[_a]
end
endobj

defines one instance variable and two methods. The value of an instance variable can be re-
trieved by pre-pending an underscoreto the variable name and can be set using the <- operator.
Thisexpression tranglatesto

| et
val a =ref[:Int:][0]
in
record
read = makeW apper [
abs [[]] =
pr["\nThe value of a is:"];
print[a.deref[]]
end] ,
witer = makeW apper [
abs [[b]] =
a <- a.deref[] + b;
pr["\nThe value of a is:"];
print[a.deref[]]
end]
end
end

The predefined polymorphic function r ef creates anew mutable cell like the one shown in
83.5. Theonly differenceisthat we useder ef instead of get . Remark that aninstance variable
reference _a- nane istransformed into a- nane. der ef [] . The polymorphic operator <- isde-
fined asfollows:

def (<-) [: X][cell: Ref X, value:X] = cell.set[val ue]
whereRef Xisthetype of amutable cell containing values of type X.

makeW apper takesamethod and wrapsit within asynchronization wrapper asdescribed in
84.1.1. Actually makeW apper does not simply return a new process abstraction representing
the wrapped method but arecord containing 1) amethod wrapped in aempty synchronization
wrapper 2) afunction to set anew synchronization wrapper. Such an encapsulation isnecessary

Patrick Varone 13.

because when we create the object we still do not know which policy it will be bound to (which
isthe main difference with McHale's thesis). On the other hand, this allows us to change the
synchronization of an object at run-time. Thetype of the value returned by makeWw apper is

type Met hodW apper = Fun (X)

Record
Set Wappers : ![PreWapper Type, Post W apper Type, Si d],
W appedMet hod : !'[X Sig]

end

Thisdefinition deserves some explanation: we can seethat Met hodW apper iSparameterized
by atype X which representsthe parameters’ type of thewrapped method. One can wonder why
thetype of thewrapped method (which should bethe sameasthe original method) is! [X, Si g]
instead of just ! X. Thereason isthe following: to wrap amethod in a pre- and post-synchroni-
zation codeweshould beableto put itin asequence. Thismeansthat amethod hasto be sequen-
tial, i.eitstypehastobe! [Xy, . .., X, Si g] (see3.4.4) whereX; representsthetype of thei -
th parameter. At first sight it seemsthat thetype! [X, Si g] expressesjust that kind of method.
Unfortunately, thisisnot quitetruebecause! [X, Si g] only matchesapair and not atupleof any
length (i.e. any number of parameters). We circumvent this problem by requiring that the type
of amethod be

PII X, e Xnl , Si 0]
instead of
P Xq, oo Xn, Si 0]

Thisexplainsthe* special” syntax (i.e. the doubl e brackets) for method parameters.

The function Set W apper s takes a pre-synchronization function Prew apper and a post-
synchronization function Post W apper and wraps the method with them. Here are the defini-
tionsof Prew apper Type and Post W apper Type

type PreWapper Type = ![!lnvocationType, Si g]
type Post Wapper Type = ![?I nvocati onType, Si g]

I nvocat i onType isthetype of the state variable mentioned in 84.1.1.

It isnow timeto present the makeW apper function

def makeWapper [: X][m![X Sig],r:!(MethodWapper X)] >
| et

new w appers: [PreW apper Type, Post W apper Type]
in

wrappers![abs [invr] =[] end,abs [invr] =[] end]
| rirecord
Set W appers =
abs [wl: PreW apper Type, w2: Post W apper Type, r: Sig] >
wrappers?[_,] > (wappers![wl,w2] | r!'[])
end,

W appedMet hod =
abs [p: X, r:Sig] >
W appers?[pre_w, post_w >
(wr appers! [pre_w, post_w
| | et
new i nvr : “~lnvocationType

14. Implementation of “ Generic Synchronization Policies”’

in
pre Winvr];nip];post_ W[invr,r]
end

end
end
end

The channel wr apper s contains the current pre- and post-synchronization functions of the
method. Initially these correspondto abs [invr] = [] end. Set W apper s has been imple-
mented in the same way astheset method of our mutable cell. More interesting is the imple-
mentation of W appedMet hod. It works as follows; first we fetch the two current wrappers (as
inthe get method of our mutable cell) and then we call the pre_synchronization pr e_w. Once
pre_w has returned we can start executing the method followed by the post-synchronization
code. Thechannel i nvr will be bound to an invocation object by pr e_wand used by post _w.

To closethediscussion on our object model, weintroduce an operator that can be used to call
amethod of an object:

def (989 [: X][v Met hodW apper X, p: X] = nw. W appedMet hod[p]

For exampleif o isbound to the object defined on page 12, thenwe can call itsmethodwri t e
likethis

0. Wited%f 2]

In summary, the object model we havedefined so far simply allowsusto associate asynchro-
nization wrapper with amethod. Moreover this can be done at run-time. In fact, thismodel can
be used with any synchronization mechanism aslong asit can beimplemented with synchroni-
zation wrappers. In the next subsectionswe will show how aparticular synchronization mech-
anism, GSP, can be expressed in Pict and linked to our object model.

4.2 GSP in Pict: a first implementation

This subsection describes apartial implementation of GSPin Pict. The completeimplementa-
tion will be presented in 84.3. We hope that this step-by-step presentation will help the reader
to understand it more easily.

4.2.1 The shared data structure

The main goal of a Generic Synchronization Policy isto create a synchronization wrapper for
each method category. Of course these wrappers do not work in isolation and need to access
shared data. Typically, the synchronization counters (e.g. the number of waiting method of a
certain category) belong to the datathat will be shared by all synchronization wrappers. Inthe
current implementation these dataare stored in arecord whose declaration reads asfollows:

type ActionType [l nvocati onType, Si g]
type GuardType I'[InvocationType, ! Bool]

type PolicyType = Record
Mutex : “[],
Clock : ~Int,
Arrival Count : Array Int,
StartCount : Array Int,

Patrick Varone 15.

TermCount : Array Int,
Start : Array ActionType,
Guard : Array GuardType,
WaitingList : Ref (List InvocationType),
ExecLi st : Ref (List InvocationType)
end

Acti onType isthetype of an action while Guar dType isthetype of aguard. Pol i cyType
defines all the necessary data needed by the synchronization code:

* Mitex is asemaphore used to put the events in series, i.e. to execute the actions and
guards in an atomic way.

* C ock istheclock local to this policy and isincremented every time amethod is called.

e Arrival Count, StartCount and TernmCount represent the different synchronization
counters maintained by the policy. Arri val Count isthe total number of invocation that
have arrived at the object, St ar t Count isthetotal number of invocation that have started
execution and Ter nCount isthe total number of invocation that have terminated execu-
tion. These counters are arrays indexed by the method category. For example if the cat-
egory ReadOps oOf the Reader swWi t ers policy is associated with 1 then the number of
currently executing invocations from the category ReadQps (i.€ exec(ReadOps)) can be
computed by

StartCount[1] - TermCount[1]

e Start containsthe actions associated with the start event and Guar d contains the guards
of the methods. Both arrays are indexed by the method categories too.

» Finally wai ti ngLi st (resp. ExecLi st) containsalist of all pending (resp. executing) in-
vocations

4.2.2 Generic code for pre- and post- synchronization functions

Thecodewehaveto generatein the pre- and post- synchronization functionsisa most the same
for every policy. It isonly parameterized by the actions and method categories. The specifica-
tion of the synchronization wrappersisasfollows (in pseudo-code where the clause generic in-
troduces generic parameters):

type Invocation = record
trigger : semaphore init O;
ArrivalTime : Int;
Method_Category : Int;
end

generic OPS, ARRIVAL_ACTION, POLICY
pre_synch_OPS()
var inv : Invocation
begin
P(POLICY.mutex);
inv := new Invocation(POLICY.Clock++,0PS);
POLICY.WaitingList.put(inv);
POLICY.ArrivalCount[OPS]++;
ARRIVAL_ACTION(inv);
evaluate_guards(POLICY);
V(POLICY.mutex);

16. I mplementation of “ Generic Synchronization Policies’

P(inv.trigger);
return inv;
end pre_synch_OPS;

generic TERM_ACTION, POLICY
post_synch_OPS(inv:Invocation)
begin
P(POLICY.mutex);
POLICY.ExecutingList.remove(this_inv);
POLICY.TermCount[this_inv.Method_Category]++;
TERM_ACTION(inv);
evaluate_guards(POLICY);
V(POLICY.mutex);
end post_synch_OPS;

OPS stands for the number associated with the method category, ARRIVAL_ACTION (resp.
TERM_ACTION) isthe action associated with the arrival (resp. term) event and finally POLICY
representsthe datashared by all synchronization wrappers. The agorithmfor pre_synch works
asfollows: first we enter acritical section to accessthe shared data. Then we create anew invo-
cation object initialized with the local time (that we immediately increment) and the method
category. We put thisinvocation in thelist of pending invocations and update the number of ar-
rived invocations. Then we execute the action associated with the arrival event. At thistime it
could be that the guard of one of the pending invocation has become true. We therefore call
evaluate_guards() whose purposeisto wake up invocationsthat are allowed to continue. Finaly,
we exit the critical section and wait on the semaphore inv.trigger until the corresponding guard
becomestrue. Theresult of thefunctionisthe newly created invocation whichwill be passedto
the post_synch function. The latter updatesthelist of executing invocations and the number of
terminated invocation. It then executes the action associated with the term event and finally
calls evaluate_guards(). As guards can only access information local to a given policy, this
means that they need only be re-evaluated when this information has been modified, i.ein the
functionspre_synch and post_synch. The implementation of evaluate_guards() isthefollowing

evaluate_guards(policy:PolicyType)
var inv:Invocation;
begin
while findlnvocation(policy,inv) do
V(inv.trigger);
policy.StartCount[inv.Method_Category]++;
policy.WaitingList.remove(inv);
policy.ExecList.put(inv);
policy.Start[inv.Method_Category](inv);
end while;
end evaluate_guards;

findinvocation(policy:PolicyType; VAR inv:lnvocation) : Boolean
begin
for i in policy.WaitingList do
if policy.Guard[i.Method_Category](i) then
inv =i
return true;
end;

Patrick Varone 17.

end;
return false;
end findInvocation;

findinvocation isafunction used to retrieve thefirst pending invocation whose guard eval uates
to true. Given this auxiliary function, the implementation of evaluate_guards is relatively
straightforward: aslong asthereisan invocation ready to runweremoveit fromthelist of wait-
ing invocations and put it into the list of running invocations, update the number of executing
invocations and finally execute the associated action. It isimportant to note that each time we
look for another invocation we start from the beginning of thelist. Thisisnecessary becausethe
action of the preceding starting invocation may cause other guardsto becometrue (by updating
some synchronization variables).

The concrete Pict codeisastraightforward tranglation of the above pseudo-code

type Invocati onType = Record
Trigger : Sig,
Arrival Tinme : Int,

GenMet hRef : Int
end

def MakePreW apper[Pol : PolicyType, GenMet hRef : I nt, Acti on: Acti onType] =
abs [invr:!lInvocationType, r:Sig] >
Pol . Mutex?[] >
Pol . d ock?cl ock >
Pol . d ock! (cl ock+1)

| | et
val Newlnv : InvocationType =
record
Trigger =r,
Arrival Time = cl ock,
GenMet hRef = GenMet hRef
end
in
Pol . Wi ti ngLi st. set]|
cons[Newl nv, Pol . Wi tingList.deref[]]];
updat eArray[Pol . Arrival Count, GenMet hRef,
nt hArray[Pol . Arri val Count,
GenMet hRef] +1] ;
Acti on[Newl nv] ; Eval uat eGuar ds[Pol] ;
(Pol . Mutex![] | invr!New nv)
end

end

def renovelnv[l:List InvocationType, tine:Int] =
if null[I] then
nil[]

elif (unsafeCar[l]).ArrivalTime == tinme then
unsafeCdr[|]
el se
unsafeCar[I] @@renovel nv[unsafeCdr[I],tine]
end

def MakePost W apper|[Pol : Pol i cyType, Action: ActionType] =
abs [invr:?lnvocationType, r:Sig] >
invr?lnv >

18. I mplementation of “ Generic Synchronization Policies’

Pol . Mut ex?[] >
Pol . ExecLi st . set[rempvel nv[Pol . ExecLi st. deref[],
Inv. Arrival Tinme]];
updat eArray|[Pol . Ter mCount, | nv. GenMet hRef ,
nt hArray[Pol . Ter nCount, | nv. GenMet hRef] +1] ;
Action[lnv];
Eval uat eGuar ds[Pol];
Pol . Mut ex! []
end

Notethat the generic parametershave been transformed into theformal parametersof aproc-
ess abstraction. To create a pre-synchronization function we call MakePr ew apper with the
corresponding policy object, method category and action. A semaphore is simply represented
as achannel on which we output an empty tuple. The P operation amounts to reading on this
channel, i.e, consuming the processsemaphor e- nane! [] . TheV operationisthen only acrea-
tion of such aprocess. Arraysare accessed viathetwo predefined functionsupdat eAr r ay|[ar -
ray, i ndex, newal ue] and nthArray[array,index]. The only subtle point here is the
trigger used to suspend the method. Actually what will be stored as a semaphorein the invoca-
tion object isthe “ continuation” channel of the pr e_synch function. This means that sending
an empty tuple onthischannel will alow the statement following thecall topr e_synch to start
executing, which correspondsto our method’ sbody. Thefunctionr enovel nv isusedto remove
invocations from the waiting list. The head of thelist can beretrieved with unsaf eCar and the
tail with unsaf eCdr. A new list can be constructed from ahead and atail with the operator @@
Aswe cannot use pointersfor testing invocation equality we have to use the arrival time of the
invocation.

def Eval uat eGuards[Pol: PolicyType, r:Sig] >
| et
new i nv, found
def findlnvocation[l:List |InvocationType,
r:1(List InvocationType)] >
if null[I] then
found!false | nil![r]

el se
| et
val i = unsafeCar[l]
in
if (nthArray[Pol. Guard, i.GenMethRef])[i]
t hen
found!'true | invli | unsafeCdr![l,r]
el se
cons![i, findlnvocation[unsafeCdr[l]],r]
end
end
end

def while[] >
Pol . Wi ti ngLi st. set]|
findl nvocation[Pol.WitingList.deref[]]];
(found?b >
if b then
inv?i > i.Trigger![] |
(updat eArray[Pol . Start Count, i.GenMet hRef,

Patrick Varone 19.

nt hArray[Pol . Start Count, i.GenMethRef]+1];

Pol . ExecLi st.set[cons[i, Pol.ExecList.deref[]]];
(nthArray[Pol . Start, i.GenMethRef])[i];
(whilell]))
el se
ri[]
end)
in
whil el []
end

Asinthe pseudo-codethefunctionf i ndl nvocat i on retrievesthefirst invocation for which
the guard evaluates to true. The only difference here isthat the invocation isimmediately re-
moved when found. This alows usto save asecond scan of thelist. The function therefore re-
turnsthe new list and, as aside-effect, updates the variable f ound which tellsif an invocation
hasbeen found or not. It theanswer isyesthen theinvocationisstoredinthei nv variable (cons
isjust asynonymfor @@ . Thewhi | e processimplementsasimplewhileloop.

The Pict code presented so far constitutes the run-time support for GSP and isprovided asa
filethat must beincludedin every program using thissynchronization mechanism. Theremain-
der of the section introduces the syntax chosen to expressthe policy itself, the pre-processing
doneto this syntax, and the way to bind such a policy to an object.

4.2.3 Syntax of GSP in Pict

The syntax of a Generic Synchronization Policy expressed in Pict is the following (again this
syntax will betreated by the preprocessor):

policy [nmethod-categoryl, ..., nmethod-categoryN|

| ocal - pi ct-decl arati ons

map {event-name-or-guard // [nethod-category, function-nane]; }
end

The I ocal - pi ct - decl ar ati ons part define the synchronization variables, actions and
guards that will be used in the map section. This latter corresponds to the map section intro-
duced in 82.2. event - nane- or - guar d stands for one of the four following names: Arri val ,
Start, Termand Guar d. For example, the Reader-Writer policy exampleis expressed as fol-
lows

val ReadersWiters = policy [ReadOps, WiteOps]

def Reader Al l owed[t: | nvocationType] =
exec[WiteQps] ==

def WiterAllowed[t:|nvocationType] =

exec[ReadOps] +texec[WiteQps] ==

map QGuard//[ReadQps, Reader Al | owed] ;
Guard//[WiteQps, WiterAll owed]

end

Reader sWit ers will then be instantiated to yield a synchronization policy that can be
bound to an object

val nypolicy = ReadersWiters[]
run Bi ndPolicy[p. ReadOps**o.read + p. WiteQps**o. wite]

20. I mplementation of “ Generic Synchronization Policies’

Here o corresponds to the object defined in 84.2.1. The expression Bi ndPol i cy[p. Rea-
dOps**o.read + p. WiteQps**o.wite] bindstheread method to the Readps category
andthemethodwr i t e tothew i t Ops category. Actually, nypol i cy isarecord with two fields
ReadOps and Wi t Qps containing the synchronization wrappers. More generally, the result of
instantiating apolicy of theform

policy [nmethod-categoryl, ..., nmethod-categoryN|

isarecord of type

Record
met hod- cat egoryl: PrePost W appers,

met hod- cat egor yN: PrePost W apper s
end

with Pr ePost W apper s defined as

type PrePost Wappers = Record
preW apper : PreW apper Type,
post W apper: Post W apper Type
end

It followsthat the** and Bi ndPol i cy functionsaretrivialy defined as

def BindPolicy[n:Int] =]
def (**)[: X][ppW apper: PrePost Wappers,
mN apper: Met hodW apper X, r:!Int] >
mWN apper . Set W apper s[ppW apper . preW apper,
ppW apper . post W apper] ;
rto

Thus, the goal of the preprocessing phaseis to produce a function that return such arecord
using the run-time functionsintroduced in 84.2.2. Hereitis:

policy [nethod-categoryl, ..., nmethod-categoryN|
| ocal - pi ct-decl arati ons

map mappi ng- decl arati ons

end

trandatesto

| et
val nbnet h=nakeCount er [0]
val met hod-categoryl = nbreth.incr[]

val met hod-categoryN = nbret h.incr[]

in
abs[] = let
val Start = nmakeArray[Enpt yActi on, nbret h. val ue[]]
val Arrival = makeArray[EnptyAction, nbneth. val ue[]]

val Term = nakeArray[Enpt yActi on, nbnet h. val ue[]]
val Guard = nmakeArray[Enpt yGuar d, nbnet h. val ue[]]
val pol = makePolicy[Start, Guard, nbnet h. val ue[]]
def exec[n:Int] =

Patrick Varone 21.

nt hArray[pol . St art Count, n] - nt hArray|[pol . Ter mCount , n]
def waiting[n:Int] =

nt hArray|[pol . Arri val Count, n] -

nt hArray[pol . St art Count , n]
def waitingList[n:Int]=
extractlnvocation[pol . WaitingList.deref[], n]

| ocal - pi ct-decl arati ons
val [] = mapping-decl arations

record
met hod- cat egoryl =
makeSynchW apper s[Arrival , Term pol , net hod- cat egory1],

met hod- cat egoryN =
makeSynchW apper s[Arri val , Term pol , net hod- cat egor yN|
end

end
end
end

Basically, theonly thingwedoistoincludethepolicy definitions, i.e. thel ocal - pi ct - dec-
| ar ati ons and mappi ng- decl ar at i ons parts, into some definitions. These are actually the
so-called “predefined” names (or keywords) of the GSP concept: Start, Arrival , Term
Quar d, exec,wai ti ng, andwai t i ngLi st . Thefirst four keywordsarereferencesto arraysthat
containsthe actions and guards associated with each method category. Thisallowsusto treat a
mapping declaration of theform

event - nanme-or-guard // [nethod-category, function-nane];
asan aready correct Pict expression. Thetrick hereisto define/ / asfollows
def (//)[:X][a:Array X, [n:Int,x:X]] = updateArray[a,n, x]

Of course, met hod- cat egor y must refer toanatural number. Thisbindingisdoneintheout-
ermost | et construct:

val nbnet h=nakeCount er [0]
val met hod-categoryl = nbreth.incr[]

val met hod-cat egoryN = nbret h.incr[]
Thefunction makeCount er sSimply returnsacounter that can be read and incremented

def makeCounter[n:Int] =

l et new c
run c!n
in
record
i ncr = abs [r:!Int] > c¢?n > (c!(n+1) | r!n) end,
val ue = abs [r:!Int] > c¢c?n > (c!n | rln) end
end
end

Instead of using acounter, we could havedirectly bound afixed number to amethod category
during the preprocessing phase but we wanted to keep this phase as simple as possible.

22. I mplementation of “ Generic Synchronization Policies’

Finally, once the different arrays have been updated, we can build the record containing the
synchronization wrappers. For this purpose, we first have to create a new record pol of type
Pol i cyType that we then pass as a parameter to the nakeSynchw apper s function defined as
follows:

def nakeSynchW appers[Arrival:Array ActionType,
Term Array ActionType,
pol : Pol i cyType, n:Int] =
record
preW apper =MakePr eW apper [pol ,n, nthArray[Arrival,n]],
post W apper =MakePost W apper [pol , nt hArray[Term n]]
end

For the sake of completeness, here are the remaining definitions of EnptyActi on,
Enpt yQuar d, makePol i cy andext ract | nvocat i on:

def EnptyAction[inv:InvocationType] = []
def EnptyGuard[inv:Invocati onType] = true

def nmakePolicy[Start: Array ActionType, Guard: Array GuardType, n:Int] =

| et
new Mutex : ~[], Cock : ~lInt
run Cock!0 | Mutex![]
in
record
Miut ex = Mit ex,
Cl ock = d ock,
Arrival Count = makeArray[O0, n],
Start Count = makeArray[O0, n],
Ter mCount = nakeArray[O, n],
Start = Start,
Guard = Quard,
WaitingList =ref[nil[]],
ExecList =ref[nil[]]
end
end

def extractlnvocation[l:List InvocationType, GenMethRef:Int] =

if null[I] then
nil[]

elif (unsafeCar[l]).GenMet hRef <> GenMet hRef then
extractlnvocation[unsafeCdr[]], GenMet hRef]

el se
unsafeCar[I] @@extractlnvocation[unsafeCdr[I|], GenMet hRef]

end

4.3 Accessing the parameters of a method

The code shown so far is not a compl ete implementation of the GSP mechanism. Actualy, to
be able to express some interesting synchronizations we al so need access to the parameters of
the method. Consider for examplethe Reader-Writer policy of section 2.2 and assume we want
thewritersto be scheduled according to their jobs’ size, that iswewant to schedul e the shortest
jobfirst. We supposethat thejob’s sizeisaparameter of the methods associated with WriteOps.
Animplementation of thispolicy could look this

Patrick Varone 23.

policy ReadersWriters[ReadOps,WriteOps|[len:Int]]
function ReaderAllowed(t:Invocation):Bool
begin
return exec(WriteOps) = 0;
end
function ShortestJob(len:Int):Bool
begin
for p in waiting(WriteOps) do
if p.len <len then
return false;
end
end
return true;
end
function WriterAllowed(t:Lenlnvocation):Bool
begin
return exec(ReadOps)+exec(WriteOps) = 0 and
ShortestJob(t.len);
end

map guard(ReadOps) -> ReaderAllowed
guard(WriteOps) -> WriterAllowed
end policy

The name and type of the parameters are specified in the policy’s signature. The value of the
corresponding actual parametersare stored infields of theinvocation object and can then bere-
trieved using the dot notation. Notethat we now havetwo classesof invocations: onefor theRe-
adOps category with alen field and onefor the WriteOps with no additional field. Thisraisesan
interesting type question that will be dealt with in the next subsectionstogether with the neces-
sary modificationsto our current implementation. We will aso explain how to specify the cor-
respondence between theformal parameters of amethod category and the associated methods.

4.3.1 Storing and retrieving the parameters

In McHal€e' sthesis, an invocation’s class associated with a method category likew i t eQps is
just defined asa subclass of | nvocat i onType with anew field for each formal parameter. We
decided, in our implementation, to store all the parametersin onefield, intheform of atuple of
values (or asasinglevalueif thereisonly one parameter). Thisgivesusthefollowing type def-
initions:

type I nvocationType = Record
Trigger : Sig,
Arrival Tine : Int,
GCenMet hRef : Int,
end
type Invocation = Fun(X) InvocationType

with paraneters : X end

The base type is | nvocat i onType defined as before. | nvocat i on is atype operator that
takesatypeXandreturnsan extended | nvocat i onType record with afield par anet er s of type
X. For example the type of invocations associated with W i t eQps would be:

type WiteQpslnvocation = I nvocation Int

24. Implementation of “ Generic Synchronization Policies”’

We can then use this additional field to retrieve the parameter’s value in the code for actions
and guards. Thisimpliesthat if amethod category defines parameters of type X then the actions
and guard associated with it must take as parameter avalue of typel nvocat i on X. Thisappar-
ently harmless constraint raises an interesting type problem. To see it consider the lifetime of
an invocation: when created, an invocation of typel nvocati on Xispassed tothearrival ac-
tion, then put into alist of waiting invocations. Onceitsguard evaluatestotrueit ispassed tothe
start action and finally, after the method’s compl etion, to the termaction. Now the questionis:
what isthetype of thelist of waiting invocations? Thetype of its elements must be asupertype
of all possibleinvocation typesin order for them to be stored in the same data structure, which
meansthat our list will havethe sametypeasbefore, i.e. Li st | nvocat i onType. Unfortunate-
ly, thisimpliesthat when we extract an invocation from thelist itsfield par anet er s cannot be
accessed any more because thiswould requirea” downcasting” to the actual type of theinvoca-
tion, which is not possible in Pict. Thus, we cannot pass an invocation of the right type to the
guard and the start and termactions.

One solution to this problem isto give up the idea of aunique list of invocations. Thus, we
would keep a separate list of invocations for each method category, so that we could define it
with amore precise type. For example the type of the list associated with w i t eOps would be
Li st (I nvocation Int).Inthisway wedo notloseany typeinformation at all, which means
that no downcasting is necessary. But this al'so means that we have to manage these different
listsin our generic code. For exampleanew Pol i cy Type should be defined for each policy be-
cause another policy would typically have a different number of waiting lists with different
types. The same would be true for the Eval uat eGuar ds function. In other words, this means
that abig part of the generic code would not be generic any more and should beincluded in the
preprocessing phase of our implementation, which is exactly what we are trying to avoid.
Therefore, we gave up this solution although wewill seein the next section that we still need to
keep local copiestoimplement thewai t i ngLi st function.

To see how we can solve this problem while keeping a unique list, we need to point out ex-
actly where the problem lies. Reconsidering the lifetime of an invocation, we immediately see
that the difficulty comesfrom the fact that the binding of an action (or aguard) to itsactual pa-
rameter (whichisaninvocation object) occurswhenwe have already lost information about the
parameter. Therefore, the solutionissimply to do thisbinding before any information getslost,
in other words beforetheinvocationis put in thewaiting list. In order to do thiswe need to sep-
aratethe binding of an actiontoitsactual parameter from the call of the action itself (thesetwo
eventsusually take place at the sametime) because, for example, wedo not want to call theterm
action beforetheinvocationisput inthelist. Therefore, wewill transform afunction call of the
form

Action[lnvocati onRecord]
into

def ActionTrigger[] = Action[lnvocati onRecord]
and sone time later ...
ActionTrigger[]

The binding of the function to its parameter isdone during the definition of Act i onTri gger
whilethe actual call isdoneby Acti onTri gger[] . Of course, now for each pair (Action,Invo-
cationRecord) we haveadifferent Act i onTri gger that we need to remember. The obvious so-

Patrick Varone 25,
lution isto put those triggers in the invocation record itself so that we come to following and
final type definitions (the modified codeiswritteninunder i ned Couri er)

type SinpleAction = ![Sig]
type SinpleGuard = ![!Bool]

type I nvocationType Record
Trigger : Sig,
Arrival Tine : Int,

GenMet hRef : Int,

Start Action : SinpleAction,
TermAction : SinpleAction,
Guard : SinpleQuard

end

type Invocation = Fun(X) |nvocationType
with parameters : X end

wherethefield st ar t Act i on holdsthe trigger for the start action (idem for Ter mAct i on and
cuar d). Thetriggersare created together with the invocation object in the pre-synchronization
code of the method:

type ActionType Fun(X) ![lnvocation X, Sig]
type GuardType Fun(X) ![lnvocation X !Bool]

def MakePreWapper [: X:][Pol: PolicyType, GenMet hRef: I nt,
Arrival Action: ActionType X,
Start Acti on: ActionType X,
Ter mActi on: Acti onType X,
Guard: GuardType X] =
abs [invr:!InvocationType, param X, r:Sig] >

Pol . Mutex?[] >

Pol . d ock?cl ock >

Pol . d ock! (cl ock+1) |

| et
val self = enptyRef[:Invocation X][]
val Newinv : |nvocation X =
record
Trigger =r,
Arrival Time = cl ock,
GenMet hRef = GenMet hRef
StartAction =
abs[] = StartAction[self.deref[]] end,
TermAction =
abs[] = TermAction[self.deref[]] end,
Guard = abs[] = Quard[self.deref[]] end,
paranmeters = param
end
in

sel f.set[Newl nv]:
Pol . Wi tinglLi st.set[cons[:InvocationType:]
[New nv, Pol . WaitingList.deref[]]

1
updat eArray|[Pol . Arri val Count, GenMet hRef
nt hArray[Pol . Arrival Count, GenMet hRef] +1] ;
Arrival Action[New nv];
Eval uat eGuar ds[Pol];

26. I mplementation of “ Generic Synchronization Policies’

(Pol . Mutex![] | invr!New nv)
end
end

Thisfunction isthe one on page 13 modified asfollows:

* it acceptsthree more parameters St ar t Act i on, Ter mAct i on, Guar d necessary to create
the triggers. Moreover, it has been made polymorphic to take the different invocation
types into account.

* the generated pre-synchronization function takes one more parameter par amwhich cor-
responds to the parameters of the associated method category. More will be said about it
in the next sub-section.

« theinvocation record is of type | nvocati on X and not I nvocati onType and isinitial-
ized accordingly. Here we need to use an additional indirection sel f to referencethein-
vocation record in the triggers because we cannot directly write something like:

val x = record
ActionTrigger = abs [] = Action[x] end

end

Actually, wecandoit without any indirection but then the syntax islessreadable. Theidea
issimply to come back to the core Pict where an abstraction like:

abs [] = Action[x] end
trandatesto
| et
new a
run a?*[] = Action[x]
in
a
end
We can then transform
val x = record
ActionTrigger = abs [] = Action[x] end
end
into
new a
val x = record
ActionTrigger = a
end
run a?*[] = Action[x]

The other two functionsEval uat eGuar ds and MakePost W apper are modified asfollows

def Eval uateGuards[Pol: PolicyType, r:Sig] >
| et
new i nv, found
def findlnvocation[l:List |InvocationType,
r:!(List InvocationType)] >
if null[I] then
found!false | nil![r]

Patrick Varone 27.

el se
| et
val i = unsafeCar[l]
in
if i.Guard[] then
found!true | invli | unsafeCdr![Il,r]
el se
cons![i,findlnvocation[unsafeCdr[1]],r]
end
end
end

def while[] >
Pol . Wi ti ngLi st. set]|
findl nvocation[Pol.WitingList.deref[]]];
(found?b >
if b then
inv?i > i.Trigger![] |
(updat eArray[Pol . St art Count , i . GenMet hRef ,
nt hArray[Pol . Start Count,i.GenMet hRef] +1] ;
Pol . ExecLi st.set[cons[i, Pol . ExecLi st.deref[]]];
i.StartAction[];

(whilell]))
el se
ri[]
end)
in
whi l el []
end

def MakePost W apper [Pol : Pol i cyType] =
abs [invr:?lnvocationType, r:Sig] >
invr?lnv >
Pol . Mutex?[] >
Pol . ExecLi st. set[renpvel nv[Pol . ExecLi st. deref[],
Inv. Arrival Tine]];
updat eArray[Pol . Ter mCount, | nv. GenMet hRef ,
nt hArray[Pol . Ter nCount , | nv. GenMet hRef] +1] ;

Inv. TermAct i on[]; Eval uat eGuar ds[Pol] ; Pol . Mut ex! []

end

Here we just changed the way actions and guards are called. As a consequence we can sim-
plify the definition of Pol i cyType to

type PolicyType = Record
Miutex : "],
Clock : “~Int,
Arrival Count : Array Int,
StartCount : Array Int,
TermCount : Array Int,
WaitingList : Ref (List InvocationType),
ExecLi st : Ref (List InvocationType)
end

that is, we can drop thefields st art and Guar d (makePol i cy ischanged accordingly)

28. I mplementation of “ Generic Synchronization Policies’
4.3.2 Mapping method parameters

Until now we have only concentrated on the modification of the policy’s functions. From the
synchronized object’s point of view the situation also gets more complicated. To seethis, con-
sider thefollowing object definition

obj
var a:lnt =0
met hod read[[]] =
pr["\nThe value of a is:"];
print[_a]
end
met hod wite[[b,c]] =
a<- _a+b+c;
pr["\nThe value of a is:"];
print[_a]
end
endobj

and assume we want to synchronize this object with the policy on page 23, bindingr ead to Re-

adops andwr i t e toW i t eOps. For the second method we have to specify which of the two pa-
rametersb and ¢ will be mapped to the formal parameter of wi t eOps. We cannot do it when
we createthewrapped method (using makeW apper) because at that timewestill don’t know to
which policy the object will be bound. So we do it when calling the Bi ndPol i cy function. We
opted for asolution wherewe specify thismapping by afunction called an extractor. An extrac-
tor simply returnsasubset of the parameters of amethod asatupleof values(or asasinglevalue
if thereisonly one parameter). For exampleif wewant to bind thefirst parameter b to theformal
parameter of Wi t eQps wewriteit likethis:

Bi ndPol i cy[p. ReadOps**[o0.read, abs [[]] =[] end]
+ p.WiteOps**[o.wite,abs [[b,c]] = b end]]
Theabstractionabs [[]] =[] end representstheextractor for ther ead method (i.e an emp-
ty tupleisused for aparameterless method category) andabs [[b, c]] = b end theextractor

for thewr i t e method. Had we decided to bind ¢ to theformal parameter of Wi t eQps, thenwe
would have written it asfollows

Bi ndPol i cy[p. ReadOps**[o0.read, abs [[]] =[] end]
+ p.WiteOps**[o.wite,abs [[b,c]] = c end]]

Totakethisparameter’smapping into account we need to slightly modify thefunction nake-
W apper andtherelated type definitions:

type PreWapper Type = Fun(X) ![!lnvocationType, X, Si g]
type Post Wapper Type = !'[?I nvocati onType, Si g]
type ParanmExtractor Type = Fun(X) Fun(Y) !'[X Y]

type Met hodW apper =Fun (X) Record
Set Wappers : !'[:Y:][PreWapperType Y, Post W apper Type,
Par anExt ract or Type X Y, Sig],
W appedMet hod : ![X Sig]
end

Patrick Varone 29.

def makeWapper [: X][m![X Sig],r:!(MethodWapper X)] >
| et new wrappers: [PreWapperType X, Post Wapper Type] in

wrappers![abs [invr,X] =[] end,abs [invr] =[] end]
| r!
record
Set W appers =

abs[:Y:][new pre_w PreWapper Type Y,
new_post _w Post W apper Type,
par anExt ract or : Par anExtract or Type X Y, r:Sig] >
wrappers?[_,] >
(wrappers![abs [invr,X =
new pre_wW i nvr, paranExtractor[X]]
end,

new post_ wW | r![])

end,

W appedMet hod =
abs [p: X, r:Sig] >
W appers?[pre_w, post_w >
(wr appers! [pre_w, post_w
| | et
new i nvr : “~lnvocationType
in
pre wWinvr,p];nmp];post W [invr,r]
end

end
end
end

This definition deserves some comments. Pr eW apper Type has been modified to reflect the
fact that apre-synchronization wrapper generated by makeWw apper expectsonemoreargument
corresponding to the formal parameters of the method category. Set W apper s has also been
modified and now expects two wrappers and one extractor. Thetype parameter X standsfor the
typeof themethod’ sargumentswhiley standsfor thetype of themethod category’ s parameters.
More interesting is the implementation of W appedMet hod. At first one could think of imple-
menting it likethis:

abs [p: X, r:Sig] >
wr appers?[pre_w, post _w, extractor] >
(wr appers! [pre_w, post _w, extractor]
| | et
new i nvr : “~lnvocationType
in
pre_wlinvr,extractor[p]];nfp];post_w [invr,r]
end

)

But this solution does not work because this would imply that the type Y is already known
when the wrapped method isbuilt, which isin contradiction with the fact that apolicy isbound
to an object later on. We therefore have to hide thistype with awrapper’s wrapper that will be
generated by the expression

abs [invr,X] = new pre W invr, parankExtractor[X]] end

30. Implementation of “ Generic Synchronization Policies”’

whenever the Set W apper s functioniscalled.

4.3.3 Preprocessing

In the preprocessing phase described on page 20 we used four arrays to hold the actions and
guard associated with the different method categories. This solution is no longer possible be-
cause actions and guards do not have the same type for all method categories. Therefore, we
choseto group thethree actions and the guard of amethod category in arecord of thefollowing
type:

type Categorylnfo = Fun (X)

Record
GenMet hRef : Int,
Arrival Action : Ref (ActionType X),
StartAction : Ref (ActionType X),
TermAction : Ref (ActionType X),
Guard : Ref (GuardType X)

end

BecausetheArri val , St art, Ter mand Guar d namesdo not refer to arraysany morewe have
to find another definition for them. Actually we decided to make a slight change to the syntax,
transforming

event - name-or-guard // [method-category, functi on-nane]
into
event - name- or-guard [net hod-cat egory, functi on- name]

that is, wejust dropped the/ / operator that isno longer necessary. This gave us the following
definitionsfor our four names

def Arrival[: X][cat: Categorylnfo X Action : ActionType X =
cat. Arrival Action. set[Action]

def Start[: X][cat:Categorylnfo X Action : ActionType X] =
cat. StartAction. set[Acti on]

def Terni:X:][cat:Categorylnfo X, Action : ActionType X =
cat. TermActi on. set[Acti on]

def Quard[: X:][cat: Categorylnfo X Guard: GuardType X =
cat. Guard. set [Guar d]

From the type of these functionswe can infer that amethod category namewill not be bound
to anumber but to arecord of type Cat egor yI nf o X where X isthe type of the method catego-
ry’sformal parameters. The other difference with the previous preprocessing phaseisthat Ar -
rival, Start, Termand Guard are now globally defined. Given these definitions a policy
declaration of theform

policy [rmethod-categoryl, ..., method-categoryN|
| ocal - pi ct-decl arati ons

map mappi ng- decl arati ons

end

trandatesto

abs[] =
| et
val nbnet h=nakeCount er [0]

Patrick Varone 31

val met hod-categoryl makeCat egor yl nf o[nbrret h. i ncr[]]

val net hod-cat egoryN = makeCat egoryl nfo[nbneth.incr[]]

val pol = makePolicy[nbreth.val ue[]]

def exec[: X][cat:Categorylnfo X =
nt hArray[pol . St art Count, cat. GenMet hRef] -
nt hArray[pol . Ter mCount , cat . GenMet hRef]

def waiting[: X][cat:Categorylnfo X =
nt hArray[pol . Arrival Count, cat. GenMet hRef] -
nt hArray[pol . Start Count, cat. GenMet hRef]

def waitingList[:X][cat:Categorylnfo X] =
extractlnvocation[pol.WitingList.deref[],

cat . GenMet hRef]
| ocal - pi ct-decl arati ons
val [] = mapping-decl arations

in
record
met hod- cat egoryl =
makeSynchW apper s[pol , net hod- cat egory1],
met hod- cat egoryN =
makeSynchW apper s[pol , net hod- cat egor yN|
end
end

end

Theexec, waiting and waitingL ist functions have changed accordingly. Here aretheremain-
ing definitions:

def makeCategorylnfo[: X][n:Int] =

| et
val enptyAction = abs [i:X] =[] end
in
record
GenMet hRef = n,
Arrival Action = ref[enptyAction],
StartAction = ref[enptyAction],
TermAction = ref[enptyAction],
Guard = ref[abs [i:X] = true end]
end
end

def nmakeSynchW appers[: X:][pol: PolicyType, cat: Categorylnfo X] =
record

pr eW apper =MakePr eW apper [pol .
cat . GenMet hRef ,
cat. Arrival Action.deref[],
cat. StartAction. deref[],
cat. TermAction. deref[],
cat.Quard. deref[]],

post W apper =MakePost W apper [pol]

end

32. I mplementation of “ Generic Synchronization Policies’

4.3.4 Getting it right
Consider the policy on page 23 and itstranslation into Pict

policy [Reader,Witer]
def shortestJob[l: List (lnvocation Int),len:Int] =
inFoldList[l,abs[x,res] = res && (x.paranmeters >= |l en) end,true]
def Reader Al l owed[i: Sinpl el nvocation] = exec[Witer]==
def WiterAlowed[i:lnvocation Int] =
exec[Reader] +exec[Witer]==0 &&
shortestJob[waitingList[Witer],i.paraneters]

map Cuar d[Reader, Reader Al | owed] ;
Guard[Witer, WiterAll owed]

end
The function i nFol dLi st takesalist (x4, x5, .. ., x,,), afunctionf and an initial valuev.
Theresultisf (xp, f(..... f (x5, f(xq1,V)))). Thus, shortest Job returnstrueif | en isthe

length of the shortest jobin .

Atfirst sight, this program seems correct, but infact it isnot. The problem liesin the type of
thelist returned by the expressionwai t i ngLi st [Wi ter] whichisLi st (1 nvocationType)
instead of Li st (1 nvocation Int).Thisisdueto thefact that wai ti ngLi st buildsitsresult
from the waiting list stored in the policy and whose type isLi st (1 nvocationType). The
problem hereisalwaysthe same: we cannot recover thefield par anet er s fromarecord of type
I nvocat i onType. Althoughit may seemthat we haven’t really solved the problemyet, thisim-
pression isnot true. The above program can be transformed asfollows:

policy [Reader,Witer]
val jobList = ref[nil[]]

def putJob[len:Int] = jobList.set[len @®@jobList.deref[]]
def renove[l: List Int,x:Int] =
if unsafeCar[I] == x then
unsaf eCdr[|]
el se
unsafeCar[I] @@renove[unsafeCdr[l], x]
end
def renovedob[len:Int] = jobList.set[renove[jobList.deref[],len]]
def shortestJob[len:Int] = inFoldList[jobList.deref[],
abs[x,res] = res && (x >= len) end,
true

]

def Reader Al l owed[i: Sinpl el nvocation] = exec[Witer]==
def WiterAllowed[i:lnvocation Int] =

exec[Reader] texec[Witer]==0 && shortestJob[i. paraneters]
def WiterArrival[i:lnvocation Int] = putJob[i.paraneters]
def WiterStart[i:Invocation Int] = renoveJdob[i. paraneters]
map Quar d[Reader, Reader Al | owed] ;

Arrival [Witer WiterArrival]:

Start[Witer,WiterStart];

Guard[Witer WiterAl |l owed]
end

Patrick Varone 33.

Here the main ideais to keep a separate list of jobs and update it at the events arrival and
start. Having to maintain such alist seemsto beadrawback, but in fact we could take advantage
of it, for example by keeping thelist sorted which would speed up the evaluation of the guards.

Fortunately, it is easy to modify our implementation to allow the wai ti ngLi st to return a
value of theright type. For thiswe need to keep one separate list for each method category that
will be update at the sametime asthe main waiting list in the policy record. Here are the modi-
fied functions and types:

type I nvocati onType = Record
Trigger : Sig,
Arrival Tinme : Int,

GenMet hRef : Int,

StartAction : SinpleAction,
TermAction : SinpleAction,
RenpoveYourSelf : Sinpl eAction,
Guard : SinpleQuard

end

def renovel nv[:X<:lnvocationType:][l:List X, time:Int] =
if null[I] then
nil[]

elif (unsafeCar[l]).ArrivalTime == tinme then
unsafeCdr[|]
el se
unsafeCar[I] @@renovel nv[unsafeCdr[I],tine]
end
def Eval uat eGuards[Pol: PolicyType,r:Sig] >
| et

new i nv, found
def findlnvocation[l:List |InvocationType,
r:!(List InvocationType)] >
if null[I] then
found!false | nil![r]

el se
| et
val i = unsafeCar[l]
in
if i.Guard[] then
i . RemoveYour Sel f[]:
(found!'true | invli | unsafeCdr![l,r])
el se
cons![i,findlnvocation[unsafeCdr[1]],r]
end
end
end

def while[] >
Pol . Wi ti ngLi st. set]|
findl nvocation[Pol.WitingList.deref[]]];

(found?b >
if b then

inv?i > i.Trigger![] |

(updat eArray[Pol . Start Count , i . GenMet hRef ,

nt hArray[Pol . Start Count, i.GenMet hRef] +1] ;

def

Implementation of “ Generic Synchronization Policies”’

Pol . ExecLi st. set[cons[i, Pol . ExecLi st.deref[]]];
i.StartAction[];

(whilell]))
el se
ri[]
end)
in
whil el []
end

MakePreW apper [: X:][Pol: PolicyType, GenMet hRef: I nt,
Arrival Action: Acti onType X,
Start Acti on: ActionType X,
Ter mActi on: Acti onType X,
Guar d: GuardType X,
wai tinglist:Ref (List (Invocation X))] =
abs [invr:!lnvocationType, param X, r: Sig] >
Pol . Mut ex?[] >
Pol . d ock?cl ock >
Pol . d ock! (cl ock+1) |

| et
val self = enptyRef[:Invocation X][]
val Newl nv : Invocation X =
record
Trigger =r,
Arrival Tine = cl ock,
GenMet hRef = GenMet hRef,
StartAction =
abs[] = StartAction[self.deref[]] end,
TermAction =
abs[] = TermAction[self.deref[]] end,
RenoveYour Sel f =
abs [] =
wai ti ngLi st. set|
removel nv[wai ti ngLi st. deref[],
cl ock]]
end,
Guard = abs[] = Quard[sel f.deref[]] end,
paraneters = param
end
in
sel f.set[Newl nv];
Pol . WAi ti ngLi st. set[cons[:|nvocationType:][New nv,
Pol . Wai tingList.deref[]]];
wai tinglist.set[cons[New nv, waitingList.deref[]]]:
updat eArray|[Pol . Arri val Count, GenMet hRef,
nt hArray[Pol . Arri val Count, GenMet hRef] +1] ;
Arrival Action[New nv]; Eval uat eGuar ds[Pol];
(Pol . Mutex![] | invr!New nv)
end
end

type Categorylnfo = Fun (X)

Record
GCenMet hRef : Int,

Patrick Varone 35.

Arrival Action : Ref (ActionType X),
StartAction : Ref (ActionType X),
TermAction : Ref (ActionType X),

GQuard : Ref (GuardType X),

wai tinglist : Ref (List (lnvocation X))

end
def nmakeCategorylnfo[: X][n:Int] =
| et
val enptyAction = abs [i:X] =[] end
in
record
GenMet hRef = n,
Arrival Action = ref[enptyAction],
StartAction = ref[enptyAction],
TermAction = ref[enptyAction],
Guard = ref[abs [i:X] = true end],
waitinglist = ref[nil[:X][]]
end
end

def waitingList[:X][cat:Categorylnfo X] = cat.waitingList.deref[]

def nakeSynchW appers[: X:][pol: PolicyType, cat: Categorylnfo X =
record

pr eW apper =MakePr eW apper [pol ,
cat . GenMet hRef ,
cat. Arrival Action.deref[],
cat. StartAction. deref[],
cat. TermAction. deref[],
cat. Guard. deref[],
cat.waitinglist],

post W apper =MakePost W apper [pol]

end

We extended theCat egor yI nf o record with afield holding thewaiting list. Thisallowsusto
use aglobal definition for wai ti ngLi st (which istherefore removed from the preprocessor).
The other modificationsin the code are only used to update thislist. Note that we had to apply
thesameideaasin4.3.1toremoveaninvocationfromthelist (thefield RenoveYour Sel f ini n-
vocat i onType).

4.4 Removing the preprocessing phase

The careful reader will have noticed that, from thefirst implementation to the last, the preproc-
ng phase has been constantly reduced. The ultimate question isthen: can we completely re-
moveit? The next subsections will show that the answer isyes.

4.4.1 The new syntax

The current syntax used for a policy definition does not totally correspond to the Pict syntax.
But it looks more or less like a function definition, so that we can try to turnit into areal Pict
function. We explored more than one possibl e syntactic form (each having its advantages and
disadvantages) and finally chose the following one:

36. Implementation of “ Generic Synchronization Policies”’

abs [Policy, [method-categoryl, ..., method-categoryN] =
| et
| ocal - pi ct-decl arati ons
in
Map[Pol i cy, met hod- cat egoryl,
[Arrival Action, Start Acti on, TermActi on, Guard]];

Map[Pol i cy, met hod- cat egor yN,
[Arrival Action, Start Acti on, Ter mActi on, Guard]]
end
end

For exampl e, the policy on page 30 becomes
abs [Policy, [Reader, Witer]] =

| et
def shortestJob[l: List (lInvocation Int),len:Int] =
i nFol dLi st[Il,abs[x,res] = res && (x.paranmeters >= | en)
end, true]
def Reader Al'l owed[i: Si npl el nvocation] = exec[Witer]==0
def WiterAlowed[i:lnvocation Int] =
exec[Reader] +exec[Witer]==0 &&
shortestJob[waitingList[Witer],i.paraneters]
in
Map[Pol i cy, Reader,
[EnptyAction[], EnptyAction[],
Enpt yAction[], ReaderAll owed]];
Map[Policy, Witer,
[EnptyAction[], EnptyAction[],
Enpt yAction[], WiterAllowed]];
end

We also need anew syntactic form for binding apolicy to an object. However, wefirst need
to introduce the idea behind the policy’s new syntax.

4.4.2 Policies as functions

Consider a policy definition after the preprocessing phase (page 30). We basically do four
things:

1. bind the method categories to records of type Cat egor yI nf o

2. createthelocal functionsexec andwai t i ng (remember that now wai t i ngLi st isglo-
bal)

3. evauate local-pict-declarations and mapping-declarations

4. return arecord with the synchronization wrappers

The mainideabehind the new syntax isto put i) and ii) outside of the policy’s definition and
to mergeiii) andiv). More precisely, we will create one Pol i cy Type record plus one Cat ego-
ryl nf o record for each method category and pass them as parameters to the policy (whichis
now afunction). Theresult of thefunction call will not be arecord with synchronization wrap-
pers because we have no possibility to extract the parameters name to generate the record
fields. Actually, thisrecord is only there because we separate the creation of the synchroniza-
tion wrappers from their binding to the object’s methods. But if we bring those two things to-

Patrick Varone 37.

gether then we do not need any return value. This means that a call to a policy will not only
create new synchronization wrappers but will also attach them to the object’s methods. There-
fore, we need to passareferenceto thewrapped methodsaswell. Thisleadsusto thefollowing
type definitions:

type SynchCount er Type = Record
incr : ![Siqg],
value : I[!Int]
end

type SynchCountersType = [SynchCount er Type, SynchCount er Type,
SynchCount er Type]

type InvocationType = Record
Trigger : Sig,
Arrival Tinme : Int,

SynchCounters : SynchCount er sType,
StartAction : SinpleAction,
TermAction : SinpleAction,
RenoveYour Sel f : Si npl eActi on,
Guard : SinpleCuard

end
type PolicyType = Record
Mitex : ~[],
Clock : ~Int,
WaitingList : Ref (List InvocationType),
ExecLi st : Ref (List InvocationType)
end

type Set WappersType = Fun(X)
'[[PreWapper Type X, Post Wapper Type], Si g]

type Categorylnfo = Fun (X)
Record
SynchCounters : [SynchCount er Type,
SynchCount er Type,
SynchCount er Type] ,
wai tingList : Ref (List (lnvocation X)),
Set W appersList : List
(Set W appersType X)

end

Themain change here concernsthe synchronization counters. They have been removed from
thePol i cyType record and spread over the different Cat egor yI nf o records. Thiswas neces-
sary in order to makethefunctionsexec andwai t i ng global

def exec[: X][cat:Categorylnfo X =
| et
val [_, StartCounter, TermCounter] = cat.SynchCounters
in
St art Count er. val ue[] - Ter mCount er. val ue[]
end

def waiting[: X][cat: Categorylnfo X =
| et
val [Arrival Counter, StartCounter,] = cat.SynchCounters

38. Implementation of “ Generic Synchronization Policies”’

in
Arrival Counter.val ue[]-Start Counter.val ue[]
end

Notethat | nvocat i onType haschanged accordingly. We have simply replaced GenMet hRef
with the three synchronization counters of the corresponding method category. SynchCoun-
t er Type represents areferenceto acounter that can beincremented by i ncr and read by val -
ue. The change to the synchronization counters location is also propagated into the code for
pre- and post-synchronization wrappers. We will only list the new definition for MakePost -
W apper (Eval uat eGuar ds and MakePr eW apper are modified in the same way)

def MakePost W apper [Pol : Pol i cyType] =
abs [invr:?lnvocationType, r:Sig] >
invr?lnv >
Pol . Mut ex?[] >
Pol . ExecLi st. set[renpvel nv[Pol . ExecLi st. deref[],
Inv. Arrival Tine]];
Let
val [_,_, TermCounter] = Inv.SynchCounters
in
TermCounter.incr[]
end;
I nv. TermActi on[]; Eval uat eGuards[Pol]; Pol . Mut ex! []
end

Two other changes have occurred in Cat egor yI nf o. First, we removed the referencesto ac-
tions and guards because these are now treated as a block in the Map function and thus, do not
need to be stored separately any more. Secondly, we added a set of referencesto methodsinthe
form of alist of functions. Each function allows us to set the synchronization wrappers of one
of the methods associated with thismethod category. They arecalled in Map asfollows:

def Map[: X][Pol: PolicyType, cat: Categorylnfo X
[Arrival Action : ActionType X,
StartAction : ActionType X
TermAction : ActionType X
GQuard: GQuardType X]] =
| et
val Wappers = [MakePreW apper [Pol, cat. SynchCount ers,
Arrival Action,
Start Action,
Ter mActi on,
Guar d,
cat.waitingList],
MakePost W apper [Pol]]
in
i nAppl yLi st[cat. Set WappersList,abs[f] = f[Wappers] end]
end

i nAppl yLi st appliesafunctionto every element of alist. Map Simply createsthe synchroniza-
tion wrappers and binds them to the methods.

Patrick Varone 39.

4.4.3 Calling a policy

Aswehave seen in the previous subsection, binding apolicy to an object amountsto calling the
policy with aPol i cyType and atuple of Cat egor yI nf o records. The new syntactic form for
doing thisis:

Bi ndPol i cy[pol i cy- nane,
[Cat egory][|i st -of - net hods],

Cat egoryt I | ,st -of - net hods]]]
wherel i st - of - met hods IS:
obj ect. met hod-nanme -- extractor @@... @nil[]
Thus, the exampl e on page 28 becomes

Bi ndPol i cy[Reader Wi terPolicy,
[Category[o.read--abs [[]] =[] end @nil[]],
Category[o.wite--abs [[b,c]] = b end @nil[]]]]

with Reader Wi t er Pol i cy equal to the policy on page 36. The operator - - returnsafunction
to set the synchronization wrappers of the method

def (--)[:X Y:][mWapper: Met hodW apper X,
extractor: ParanExtractor Type X Y] =
abs[[preW apper : PreW apper Type Y, post W apper : Post W apper Type]] =
MmN apper . Set W apper s[pr eW apper, post W apper, extract or]
end

Its purposeisto hidethetype X, i.e. the type of the method’ s parameters. The function Cat -
egory createsacat egor yl nf o record

def Category[: X][l:List (SetWappersType X)] =
record
SynchCounters = [makeSynchCounter[],
makeSynchCounter|[],
makeSynchCounter[]],
wai tingList = ref[nil[:Invocation X:][]],
Set W appersList = |
end

whileBi ndPol i cy callsthe policy to wrap the methods

def BindPolicy[: X][Pol Abs: Pol i cyAbs X par: X =
Pol Abs[makePol i cy[], par]

wherePol i cyAbs is

type PolicyAbs = Fun(X) ![PolicyType, X, Sig]

4.4.4 Variations on the syntax: the row operator

It does not seem very natural to haveto declare aparameter Pol i cy and passit to the Map func-
tion. Thus, wewould like to write the exampl e on page 36 asfollows:

40. Implementation of “ Generic Synchronization Policies”’

abs [Reader,Witer] =
| et
def shortestJob[l: List (Invocation Int),len:Int] =
i nFol dLi st[Il,abs[x,res] = res && (x.paranmeters >= | en)
end, t rue]

def Reader Al l owed[i: Sinpl el nvocation] = exec[Witer]==

def WiterAllowed[i:lnvocation Int] =
exec[Reader] +exec[Witer]==0 &&
shortestJob[waitingList[Witer],i.paraneters]

Map[Reader,
[Empt yAction[], EnptyAction[],
Enpt yAction[], Reader Al | owed]] ;

Map[Wi ter,
[Enpt yAction[], EnptyAction[],
Empt yAction[], Witer Al owed]];
end

Actually, itispossibleto define amap function in such away that this syntactic form works.
Theideaisto extend Cat egor yI nf o withafield pol i cy, whichisareferencetoaPol i cyType
record. Map isthen modified asfollows:

def Map[: X:][cat: Categorylnfo X,

[Arrival Action : ActionType X

StartAction : ActionType X,

TermAction : ActionType X

Guard: GQuardType X]] =

| et
val Wappers = [MakePreW apper[cat.policy.deref[],
cat. SynchCounters,
Arrival Acti on,
Start Acti on,
Ter mAct i on,
Guar d,
cat.waitingList],
MakePost W apper [Pol]]

in
i nAppl yLi st[cat. Set WappersList,abs[f] = f[Wappers] end]
end

Now, the problemisto set thisfield for each method category.

One possibility isto explicitly create the record before calling Bi ndPol i cy and to passit as
an additional parameter to Cat egor y:

val pol =makePol i cy][]

Bi ndPol i cy[Reader Wi t er Poli cy,
[Category[pol ,0.read--abs [[]] =[] end @@nil[]],
Cat egory[pol ,0o.wite--abs [[b,c]] = b end @nil[]]]]

Thissolution isnot very safe because one could usepol for two different objectsthat would
then share the same data.

Patrick Varone 41.

Ideally, we would like to keep the syntax of page 39. This meansthat we have to scan thetu-
pleof Cat egor yI nf o recordstoinitializetheir pol i cy field. Thus, wewould writeBi ndPol i -
cy asfollows:

def BindPolicy[: X][Pol Abs: Pol i cyAbs X, par:tupl e-of -Categorylnfo] =
| et
pol = makePol i cy[]
def setpol[: X][cat:Categorylnfo X =
cat.policy.set[pol]

i nAppl yTupl e[par, set pol];
Pol Abs[par]
end

Here tuple-of-Categorylnfo is a type representing a tuple of any length of Cat egoryl nfo
records. inApplyTupleisthetuple's counterpart of i nAppl yLi st introduced on page 38. Such
ageneric tuple type (and its associated function inApplyTuple) does not currently exist in the
Pict type system but would be auseful extension. However, itsintroduction raises sometyping
issuesthat first need to be solved, which isbeyond the scope of this paper. In thefollowing par-
agraphswe will just state more clearly what we really understand by “generic tupletype”.

Thisideaof “generic tuple type’” comes from LISP where we can define functions with an
undefined number of parameters. Thisfeaturesturnsout to be very useful whenwriting generic
code and we would like to be able to do the same thing in Pict. For this reason we introduce a
new type operator r owthat can only be used inside atupletype. For examplethefollowing type

[Int, row String, Sig]
standsfor any of thesetypes

[Int,Sig]

[Int,String, Sig]

[Int,String, String, Sig]
[Int,String, String, String, Si g]

Thus, at first r ow seemsto be atype operator of kind Type -> Type. But in fact thisis not
sufficient to expresstheBi ndPol i cy function becausepar standsfor atupleof Cat egoryl nf o
record of different types(e.g., Cat egoryl nf oI nt andCat egoryl nfo[]). Inthat casepar has
thetype

[row Cat egoryl nf 0]

which meansthat thistimer owisof kind (Type -> Type) -> Type. Thiscanalsobeseenin
the polymorphic function set pol . Those two examples show that r ow should be viewed as a
polymor phic type operator of theform

type row = Fun[: K] (X K)

whereK representsakind. Itisnot yet quite clear (at least for the author) how to integrate such
an operator inthe Pict type system. Actually, other problems occur with thisoperator. Consider
for example afunction that takes atuple of values and returns atuple of reference cellsinitial-
ized with those values (mapTupl e isthetuple's counterpart of mapLi st)

42. Implementation of “ Generic Synchronization Policies”’

type Dumy = Fun(X) X
def makeCells[r:row Dunmmy] : [row Ref] =
[mapTupl e[r,ref]]
Thetypeof nakeCel | s is
!'[row Dummy, ![row Ref]]

but thisis not sufficient. Actually, we would like to express the fact that makeCel | s returnsa
tuplewith exactly the same number of elementsasitsargument and with the corresponding ref-
erencetypes. Given the type above, the result of

makeCel I s[1, a’ ,true]
can be any tuple made of reference cellslike
[ref[1],ref["a], ref[true],ref[2]]
or
[ref[*a],ref[true],ref[1]]

This means that with the signature of makeCel | s one cannot typecheck the following pro-
gram:

val [a,b,c] = nmakeCells[1,’a ,true]
val d = a.deref[] + 3

although it seems pretty reasonable. To solve this problem, we have to relate the argument to
theresult in some way, for example by providing anew kind of bound:

def makeCells[: X Orow Dumy:][r:X] : [Ref X =
[i nMapTupl e[r, ref]]

HereX Orow Dunmy meansthat Xisan “instance’ of typer ow Dummy and Ref Xisthetype
we get by applying the Ref operator to each element of X. There are certainly other related is-
suesthat remain to be explored but wewill stop here by just giving two type equival ences about
ther owoperator

[...,row Y, row Y,...] is equivalent to [...,rowY,...]
[...,row (row Y),...] is equivalent to [...,rowY,...]
To see why the second equivalence should hold, consider the unfolding of [. . ., row (row
Y),...],thatis
[...,row Y, row Y, ..., rowy,...]
whichisequivalentto[...,row Y, ...] bythefirst equivalence.

5 Conclusion

We have shown an implementation of the “Generic Synchronization Policies’ in Pict using a
step-by-step approach. The final implementation does not rely on preprocessing any more,
which isthe goal that we pursued. However, we didn’'t really answer the question: Are Pict’'s
records the right abstraction on which to build an object model ?Wejust proposed amore con-
venient syntax (page 11) that should be considered as a syntactic sugar and nothing else. The
reason why wedid not answer the questionisthat we did not need to, dueto thefact that the GSP

Patrick Varone 43,

concept is quite independent from the underlying object model. This aso meansthat other ex-
perimentsarerequiredto bring asatisfying answer. For example, we could imagineimplement-
ing a MetaObject Protocol like that of CLOS [3] or the Sina’'s object model [1]. In those two
casesit seemsthat treating methods' names asfirst-class valuesisan essential featurewhichis
not present in current Pict’srecords. What isaso missing is object identity. It could beimple-
mented using channels but then we would need an operator to test the equality of channels.

Another interesting question isto see how the work of Laurent Dami [2] on thelambda-cal-
culus can be applied to the polyadic te-calculus.

6 Acknowledgements

Theauthor would liketo thank Benjamin Pierce, Jean-Guy Schneider, Markus Lumpe and Os-
car Nierstrasz for commenting and correcting earlier versions of thisreport.

References

[1] Mehmet Aksit, “ On the Design of the Object-Oriented Language Sina,” Ph.D. thesis, Univer-
sity of Twente, 1989.

[2] Laurent Dami, “ Software Composition: Towards an Integration of Functional and Object-Ori-
ented Approaches,” Ph.D. thesis No. 396, University of Geneva, 1994.

[3] Gregor Kiczales, Jim desRivieresand Daniel G. Bobrow, The Art of the Metaobject Protocol,
MIT Press (Ed.), 1991.

[4] Ciaran McHale, “ Synchronisation in Concurrent, Object-oriented Languages. Expressive
Power, Genericity and Inheritance,” Ph.D. Dissertation, Department of Computer Science,
Trinity College, Dublin, 1994.

[5] Robin Milner, Joachim Parrow and David Walker, “ A Calculus of Mobile Processes, Parts |
and I1,” Reports ECS-LFCS-89-85 and -86, Computer Science Dept., University of Edin-
burgh, March 1989.

[6] Benjamin C. Pierce, “PICT: An Experiment in Concurrent Language Design,” PICT Version
3.6 tutorial, University of Edinburgh, March, 1994.

[7] Benjamin C. Pierce and David N. Turner, “Concurrent Objectsin a Process Calculus,” Pro-
ceedings Theory and Practice of Parallel Programming (TPPP 94), Springer LNCS 907,
Sendai, Japan, 1995, pp. 187-215.

[8] David N. Turner, “The Polymorphic Pi-calculus: Theory and Implementation,” Ph.D. thesis,
University of Edinburgh, 1995, in preparation.

Implementation of “Generic
Synchronization Policies” in Pict

Patrick Varone

|AM-96-005
April 1996

L INtrOdUCHION. . . . e 1
1.1, Typesetting CONVENLIONS.o\ o ittt et et 1

2. Generic Synchronization POlICIES. e 2
2.1, DeEfiNitioN e 2
2.2, EXaMples. . .o 3

S PO L 5
3.1 Channelsand typeS. . .o vt e 5
32, PrOCESSES. . o o ittt 6
3.3. Local declarations.o 7
3. Derived fOrmMS. . .o 7
34.1. Thedef CONSLIUCEt e e e 8

3.4.2. FUNCHIONS BSPrOCESSES . . . vt vttt et et ettt e 8

343 INfiX OPEIalOrS . ..ot e 9

B4, SEOUENCING . . o v ittt ettt e 9

35. Theobject model. 10

4. Implementation of GSPINPICt. i e 10
4.1. SynchronizationwrapperSinPict. i 10
4.1.1. Synchronizationwrappersand GSP. 10

4.1.2. BindingaGSPtoanobject i 11

4.2. GSPinPict: afirstimplementation i, 14
4.21. Theshareddatastructureii i 14

4.2.2. Generic code for pre- and post- synchronization functions. 15

4.2.3. Syntax of GSPINPICL.o 19

4.3. Accessing the parametersof amethod, 22
4.3.1. Storing and retrievingtheparameters 23

4.3.2. Mapping method parameters 28

4.3.3. PreproCESSING . . o v v vt e e ettt e 30

434, Gettingitright e 32

4.4, Removing the preprocessing phase.ot 35
4.4.1. TRENEW SYNEBX. « .« v ettt ettt e e e e e et 35

4.4.2. PoliciesasfunClions.t 36

4.4.3. CalingapoliCycovii e 39

4.4.4. Variationson the syntax: therow operator 39

B, CONCIUSION .ttt e 42

6. AcKnowledgements. i e 43

