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Abstract

Real software systems change and become more com-
plex over time. But which parts change and which parts re-
main stable? Common wisdom, for example, states that in
a well-designed object-oriented system, the more popular
a class is, the less likely it is to change from one version
to the next, since changes to this class are likely to impact
its clients. We have studied consecutive releases of several
public domain, object-oriented software systems and ana-
lyzed a number of measures indicative of size, popularity,
and complexity of classes and interfaces. As it turns out, the
distributions of these measures are remarkably stable as an
application evolves. The distribution of class size and com-
plexity retains its shape over time. Relatively little code is
modified over time. Classes that tend to be modified, how-
ever, are also the more popular ones, that is, those with
greater Fan-In. In general, the more “complex” a class or
interface becomes, the more likely it is to change from one
version to the next.

1. Introduction

It is well-established that software systems must change
and become more complex over time as they are used in
practice [15]. However what is less well-understood is how
change and complexity are distributed over time, particu-
larly in object-oriented systems.

In order to effectively manage the evolution of com-
plex software systems, we would like to know where we
can expect growth and change to occur. To avoid trigger-
ing a series of further changes and bug fixes, for example,
it seems wise to make new classes depend on stable, reli-
able parts of the system, rather than on those that are con-
stantly changing. As a consequence, it seems logical that
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new code should depend on existing, proven parts of the
system.

We therefore ask the following questions: How do
size, complexity and “popularity” (i.e., Fan-In) of classes
evolve over time? Which classes tend to grow and be-
come more complex over time? Which classes are most
likely to change?

We have analyzed a number of open source applications
that have evolved over at least 15 releases during a period of
at least 24 months. For each of these applications we have
collected various established size and complexity measures,
and analyzed how they have evolved over time. In particu-
lar, we have studied how these measures vary for all classes,
for modified classed and for newly created classes.

The key results of our studies show that:

1. We have observed that relatively little code is changed
in a software project as it evolves. Code is even less
likely to be removed than changed.

2. The profile of size and complexity measures for any
given application rapidly stabilizes and does not
change over time. As a consequence, barring a ma-
jor structural change to an application, average class
size or complexity will not change in the long term.

3. Fan-In for modified classes is significantly higher than
the average for all classes. In other words, popular
classes are more likely to change.

4. Fan-In for new classes is generally lower than the av-
erage, but tends towards the typical profile over time.
This suggest that new classes start out as clients, rather
than suppliers, but become more popular over time.

5. Classes with high Branch Count tend to be modified
more than those with low Branch Count. That is, large
and complex classes tend to be changed more than
small and simple classes.

Our results suggest that, in the absence of a major ar-
chitectural shift or a rewrite of the code base, nothing will
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perturb the average size and complexity of classes. Further-
more, efforts to base new code on stable components will
inevitably make those components less stable.

The rest of this paper is organized as follows: in Sec-
tion 2 we provide an overview of our experimental method,
and we justify the selection of the case studies. Section 3
presents the results of our studies. In Section 4 we suggest
possible interpretations and consequences of our observa-
tions. Section 5 provides a brief overview of related work.
We conclude in Section 6 with some remarks about future
work.

2. Experimental Method

In this section we first present our criteria for selecting
the systems to be studied. Next we briefly discuss the se-
lected measures, followed by a review of the notion of a type
dependency graph used to define in particular Fan-In and
Fan-Out. Finally, we briefly describe the means by which
measurements were performed.

2.1. Input Data Set Selection

For the purpose of our study, we have restricted our in-
put to free open-source software developed using the Java
programming language.

The rationale for using open source software is the avail-
ability of the systems, access to change logs (such as devel-
oper release notes or change logs), as well as non-restrictive
licensing that gives us free access to both source and object
code. The choice of the programming language was influ-
enced by our interest in understanding software developed
using Java as it is used in a variety of application domains,
as well as by the availability of a suitable infrastructure to
implement a metrics tool.

In order to identify suitable systems for our study, we
define a number of selection criteria that ensure the sys-
tems have a sufficiently long development history to pro-
vide meaningful data. Our selection criteria are as follows:

1. At least 10 releases of the system must be available.
Only complete builds are considered to be releases.
Branches and releases not derived from the main sys-
tem tree are ignored.

2. The system has been in active development and in use
for at least 12 months.

3. The system comprises at least 200 classes' at some
point in its lifetime and consists of no less than 7100
classes when analyzed in order to eliminate trivial sys-
tems.

1 To improve readability we will refer to “classes” when we mean
“classes or interfaces”. We will only refer to “types” in the context
of the formal measures.

4. Change logs exist that document modifications made
to the software. This data provides the invaluable infor-
mation to understand major changes made to a given
system.

Using these selection criteria, we have been able to iden-
tify over 100 candidate systems. However, due to time and
resource constraints, we have selected 12 representative
systems (cf. Table 1) for this study, each having at least 15
releases over a time span of more than 24 months, with a to-
tal of 292 releases analyzed.

For each of systems under investigation, we use a Re-
lease Sequence Number (RSN) [5] as the pseudo-time mea-
sure. RSNs are universally applicable and independent of
any release numbering schedule and/or scheme. An RSN is
a sequential number allocated based on release dates, where
the first version is 1 and then each subsequent version in-
creases by one.

2.2. Software Measures

Software systems exhibit two broad quantitative aspects
that are captured by a wide range of software measures [6]:
size and complexity. These measures provide an objective
view for both the process being used to create the software
system and its internal structure. By collecting and analyz-
ing these measures over time, we can distill a temporal di-
mension, which is capable of revealing new, valuable infor-
mation such as the rate of size growth [14, 16] and evolu-
tionary jumps in the complexity of a software system [10],
respectively. Moreover, previous work shows that evolution
measures can be used to detect architectural shifts automat-
ically [21, 23].

We have extracted 25 different measures for each class in
each system analyzed. The measures that turn out to be par-
ticularly interesting are Fan-In, Fan-Out and Branch Count
(i.e., the number of branch instructions in the Java Byte-
code). We measure Branch Count instead of McCabe cy-
clomatic complexity [18] since we are analyzing changes at
a class-level, and not at a method-level. Some of the other
measures we extracted are Method Count, Field Count,
Load Instruction Count (i.e., the number of load instruc-
tions), and Store Instruction Count (i.e., the number of store
instructions). We then used a type dependency graph (see
Section 2.3) to compute the Fan-In for each class.

Only if all measures under consideration are equal from
one version of a system to the next for a given class do we
consider this class as being unchanged. Although it is pos-
sible that some distinctly smaller subset of measures would
suffice to assess whether a class has changed without sig-
nificant loss of precision, we adopted the more conservative
approach for our analysis and used the full set.



Name | Releases | Time Span | Initial Size | Current Size | Description

Acegi 17 32 mo. 135 368 Role-based security framework
Active MQ 26 27 mo. 205 2295 Message queue framework

Axis 23 65 mo. 166 636 Apache SOAP server

Azureus 21 41 mo. 103 2526 Bittorent Client

Castor 27 48 mo. 483 691 Data binding framework

Findbugs 15 34 mo. 223 567 Automated bug finding application
Hibernate 46 73 mo. 120 1055 Object-relational mapping framework
Saxon 15 64 mo. 459 786 XML transforming library

Spring 41 43 mo. 386 1570 Light-weight container

Velocity 17 72 mo. 230 214 Template engine

Webwork 19 36 mo. 75 473 Web application framework
Wicket 25 30 mo. 181 631 Web application framework

Table 1. Systems under analysis for this study. Size is the number of classes and interfaces.

2.3. Type Dependency Graphs

We capture Fan-In and Fan-Out by defining a type depen-
dency graph [21] as an ordered pair GT = (V, E), where
V' is a finite, nonempty set of types (i.e., classes and inter-
faces) and F is a finite, possibly empty, set of directed links
between types (i.e., E C V x V). N = |V| denotes the
number of nodes and L = |E| denotes the total number
of directed links of a given type dependency graph. Note
that some other studies of software graphs (e.g., [20]) have
treated dependencies as undirected.

To capture both Fan-In and Fan-Out of a given type, rep-
resented by a node n € V, we use l;,(n) to denote the
in-degree and l,,;(n) to denote the out-degree of node n,

where:
def

Lin(n) [{{ni,n) € E}|
lout (1) [{{n,n;) € E}|

The in-degree is a measure of the “popularity” of node n in

9, ¢

the graph G, whereas the out-degree is node n’s “usage”
of other types in the graph G7 [19].

def

2.4. Extracting Measures

In order to perform the analysis, we have developed a
metrics extraction tool [23], which analyzes Java Bytecode
and extracts data to capture the degree of change of a sys-
tem with respect to its size and complexity. This tool takes
as input the core JAR files for each release of a system be-
ing investigated and generates the desired metric data.

Measures needed for our research efforts were extracted
by processing the raw Java Bytecode. This approach allows
us to avoid running a (sometimes quite complex) build pro-
cess for each release under investigation and we only ana-
lyze “code” that has actually been compiled. The Java Byte-
code generally reveals almost as much about a system as
its source code (unless a Bytecode obfuscator is used), and

only some subtle changes to a software system cannot be
detected using this approach (e.g., renaming of local vari-
ables).

Our extraction tool uses ASM, a Java Bytecode manipu-
lation framework,? to collect static dependency information
from the classes contained within the core JARs. For each
class, the set of dependencies are extracted and recorded.
However, the following types are ignored, as they do not
add any specific value to the analysis process [23]:

1. All primitive Java types such as int,

2. The class java.lang.String,

3. The root class java.lang.Object, and
4.

sel f-references (i.e., all occurrences of this).

2.5. Analysis method

In this paper, we have focused our attention on the key
complexity measures of Fan-In, Fan-Out and Branch Count.
In order to understand if these measures tend to exhibit
an inherent structural pattern, we plot them as a relative
frequency distribution for each version under study and
compute the similarity between successive versions using
the Bhattacharya measure [1]. This similarity measure is a
value between 0 and 1; the closer to 1 the value is, the more
similar the distributions of successive versions are to each
other. Statistical outliers in the similarity measure high-
light structural changes in the frequency distributions. Simi-
larly, Fan-Out distribution changes highlight global changes
in the way classes are defined. Branch Count distribution
changes highlight a change in the cyclomatic complexity of
the corresponding classes.

In order to understand the way software evolves, we need
to look at the various measures that new classes as well as
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Figure 1. Evolution of types in Hibernate (left) and Spring (right)

modified classes in a system tend to posses. We have fo-
cused our attention on classes that can be considered popu-
lar and hence should remain stable in order to minimize the
ripple impact of any change. We define a class to be pop-
ular if it has a Fan-In of 5 or more. The value 5 was se-
lected since, on average, only 20% of the classes (applying
the Pareto principle) in a system have this level of Fan-In.

3. Observations

We now summarize our observations from analyzing the
12 systems listed in Table 1. First we analyze the evolution
of the rate of change in each system. We then draw some
observations concerning the evolution of the profile of size
and complexity over time. Finally we consider the evolu-
tion of Fan-In, Fan-Out, Branch Count and Method Count
for changed and new classes, respectively.

3.1. Probability of Change

What is the likelihood that a class will change from a
given version to the next? Does this probability change over
time? Is it project-specific?

As a system evolves incrementally, software entities are
added, removed, adapted and otherwise modified. To assess
the likelihood of a class changing from version v to version
v—+1, we gather the following statistics:

u, percentage of classes that are unchanged
cy,  percentage of classes that are changed
d, percentage of classes that are removed
a, percentage of classes that are added

In our input data set where we studied over 275 unique
changed versions across 12 systems, we determined that for
any given version v, the following property holds in 85% of
the versions:

Uy > Cy > dy

and the following property holds for 80% of versions:
Uy > Cy > Gy

When we look ahead one version, on average across all
systems that we studied, we observe that 75% of the classes
are unchanged, 20% are modified and 5% are removed.
When we look back one version to detect new classes, on
average we note that 72% of the classes are unchanged, 20%
are modified and around 8% are new classes. Figure 1 high-
lights our observations for two of the systems under inves-
tigation.

3.2. Evolution of Complexity Measures

How do measures of size and complexity evolve over
time? Do they tend to grow with time? Are the tendencies
project-specific?

Figure 2 presents the boundaries of the histograms based
on the minimum and maximum values of Fan-In and Branch
Count attained across all versions of the Spring? case study.
One can clearly see that the relative frequency distributions
of these measures have a distinct profile that is bounded in
a small range.

This same phenomenon was observed across all projects
and for all size and complexity measures that we collected.
The profile of the relative frequency distribution of the com-
plexity measures Fan-In, Fan-Out and Branch Count holds
its broad shape across the evolutionary history of any given
software system. So, if 20% of the classes in a system have
a Fan-In of 5 or greater in Version 1, the probability that
this value will change by more than a few percent is very
low over the evolutionary history of the product. This holds
for all of the various values of the Fan-In measure in the his-
togram.
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Figure 2. Spring evolution profiles showing the upper and lower boundaries on the relative frequency
distributions. All metric values during the entire evolution fall within the boundaries shown

The only exceptions to this rule seem to coincide with
structural shifts from one major release to another. In Hi-
bernate*, one of the systems in our study, we noticed the
profile of the Fan-In, Fan-Out, and Branch Count distribu-
tions has shifted significantly, twice during its evolutionary
history. We detect the significance by observing the Bhat-
tacharya measure of similarity. In most cases, this mea-
sure changes by less than 0.5% between consecutive re-
leases. However, for Hibernate, we detected changes in the
Bhattacharya measure to be between 1.5% and 2.5%, corre-
sponding to known changes between major releases.

When we computed the amount of change, we noticed
that the probability of change in the distribution profile is
slightly higher in earlier versions than later. So, as a soft-
ware system ages, its distribution profile tends to stabilize
and becomes highly predictable. Figure 3 shows profile sta-
bilizing over time; this chart plots the Bhattacharya similar-
ity metric that measures the similarity between consecutive
frequency histograms for Fan-In, Fan-Out, Branch Count
and Method Count measures for the Spring framework.
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3.3. Fan-In of Modified Classes

What characterizes the classes that do change? In partic-
ular, is it true that the most popular classes are indeed the
most stable ones?

In Figure 3.5 we see histograms for both Spring and
Azureus’ showing the proportion of classes that have a Fan-
In value greater than 4 over the entire evolutionary history.
We can see that the proportion of modified classes with
high Fan-In is consistently greater than the proportion of
all classes. (This is in spite of the fact that the overall pro-
file of Fan-In is stable over time.) The same observation
holds across all 12 case studies.

Developers would approach a class with high Fan-In
with care due to the associated risk of impacting other
classes that rely on the services provided. However, our ob-
servations show that on average, classes with a higher Fan-
In tend to be modified more than those with lower Fan-In.

In order to ensure that we are not observing a size-related
effect, i.e., larger classes tend to be modified more because
they have more overall code volume, we have run a corre-
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lation measure between Fan-In count and the overall raw
size of the class. The correlation coefficient measure is be-
tween —0.2 and 40.2 across all of the versions in our data
set, which suggests that there is little evidence that size is
directly correlated with Fan-In.

3.4. Fan-In of New Classes

What characterizes new classes? How do new classes
compare with existing and modified classes?

We have seen that the profile of class size is stable
over time. As a consequence we know that system growth
is mainly due to the addition of new classes, rather than
growth within existing classes. The number of classes in all
of the systems under study has increased over their evolu-
tionary history.

We observed that the Fan-In profile of the new classes is
very different from the profile of existing code. New classes
tend to start with a lower Fan-In, and as they are modified
over time move towards the overall trend. If we compare the
proportion of new classes with Fan-In greater than 4 (see
Figure 3.5), with that of all classes, we can clearly see that
this proportion is consistently lower than the norm (Gaps in
the Azureus Fan-In evolution are due to the absence of new
classes in selected revisions).

New classes, therefore, tend to start out with low popu-
larity. But we also know that the profile of Fan-In distribu-
tion is stable over time, so this suggests that, as they evolve,
Fan-In of the new classes will tend towards the typical pro-
file.

3.5. Branch Count of modified classes

How does the size or complexity of a class impact the
likelihood that it will be modified?

When a class is modified, there is a certain probabil-
ity that the branching statements are altered. To appreci-

ate if the number of branching instructions has an impact
on the probability of change, we observed the evolution of
the Branch Count of the classes that have been changed.
On average, classes with a higher Branch Count are mod-
ified more than those with lower Branch Count. However,
larger classes strongly correlate (coefficient is on average
over 0.9) with higher Branch Count. We also observe that
Branch Count does not strongly correlate with Fan-In (coef-
ficient is on average around 0.2), which suggests that classes
with complex code need not be more popular than simpler
classes.

Again, to ensure that any size related effects are elimi-
nated, we have normalized the Branch Count for each class
based on its size and re-computed our profile. Even after
normalization, we have observed that classes with higher
number of branch instructions will tend to be modified more
than those with fewer branch instructions.

4. Discussion

In the previous section, we summarized our observations
from analyzing popular open-source software systems. We
discuss these findings and offer possible interpretations of
the results.

Probability of Change: We have observed that relatively
little code is changed in a software project as it evolves.
This reflects not only the small number of classes that
change, but also the small amount of change within mod-
ified classes.

Our data also reveals that code is even less likely to be re-
moved than changed. This suggests that developers tend to
resist making substantial changes to the existing code once
it has been released. We can conclude that any code that is
released in early versions of a software system is likely to
stay.

Evolution of Complexity Measures: Our observa-
tions show that the distribution profile of complexity mea-
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sures does not change over time. On the other hand, we
can clearly see that the systems we analyzed grew over
time, but existing classes did not grow. Hence, we can con-
clude that system growth is by addition, and not by exten-
sion (of existing classes).

We can also see that Lehman’s law of increasing com-
plexity [15] does not apply to individual classes. Average
size and complexity of individual classes rapidly stabilizes
over time. Our data shows that most classes do not become
more complex over time. This indicates that system com-
plexity is mainly due to growth in general (new classes),
not growth or increasing complexity of the individual parts.

The stability of the distribution profile of complexity
measures indicates that a system generally keeps its char-
acter over time. We see that the size and complexity profile
only changes when there is an architectural shift. This sug-
gests that the underlying architecture plays a major role in
determining the relative distribution of size and complex-
ity for all time.

Fan-In of Modified Classes: Classes that are modified
tend to have high Fan-In. This is suggestive of Lehman
and Belady’s first Law of Software Evolution which states
that systems that are used will undergo continuing change
[15, 16]. In this case we see that classes that are heavily
used, i.e., that have high Fan-In, are more likely to undergo
change.

This observation does not square well, however, with
Martin’s Stable Dependencies Principle [17] which states
that: “The dependencies between packages in a de-
sign should be in the direction of the stability of the
packages. A package should only depend upon pack-
ages that are more stable that it is.” On the surface, the
principle appears sound: to improve the overall stabil-
ity of our system, we should make new things depend on
stable and mature components. Unfortunately, our new in-
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terpretation of Lehman’s Law of Continuing Change
suggests that the very fact of depending on a stable compo-
nent will make it less stable.

This leads us to question Martin’s popular Instability
measure, which essentially considers a package to be max-
imally stable when it has only incoming dependencies and
no outgoing dependencies, and maximally unstable when
it has only outgoing dependencies. Martin’s reasoning is
based on “stable” meaning “not easily moved” [17]. We
feel that this measure confuses stable with inflexible (“un-
willing to change or compromise™®). A more usual defini-
tion of stable is “not likely to change or fail” (op. cit.). In
this case what Martin calls stable we consider to be unsta-
ble, and vice versa.

Note that Martin is interested in package dependencies,
which we have not considered in this present work. A se-
rious investigation of the implications of our work on Mar-
tin’s Instability measure in the context of package depen-
dencies remains to be done.

We have also not investigated why changing classes have
higher than normal Fan-In. We speculate that the intro-
duction of new clients creates the need for adaptations.
Other possibilities are that (i) new clients introduce new re-
quirements, but that would suggest new growth in existing
classes, which we did not find, or (ii) new clients exercise
existing classes in new ways, thus uncovering previous un-
known defects. Further work is needed to discover which, if
any of these hypotheses is correct.

Fan-In of New Classes: We have seen that, since the pro-
file of size and complexity remains constant, it cannot be
that growth mainly occurs in existing classes, but rather in
the creation of new classes. But where does this growth oc-
cur — at the top or at the bottom of the system?

6  Oxford American Dictionary, 2005



Since new classes have lower than average Fan-In but
normal Fan-Out, it seems clear that growth is on top of ex-
isting classes. It is highly unusual for a new class to have
high Fan-In, so there must be little growth below classes of
the existing system.

However, we have also seen that the overall profile of
Fan-In over time is constant, so even new classes will even-
tually become part of the infrastructure, and tend towards
average levels of Fan-In.

Since open-source projects are known to be developed
in an incremental and iterative fashion, our observations
are consistent with the notion that these systems are built
bottom-up, rather than top-down.

Branch Count of modified classes: We have observed that
classes that are modified tend to have a higher Branch Count
than the ones that remain unchanged. Why is this the case?

Earlier research [24] suggests that a complex class will
tend to have more defects. Our observation that complex
classes attract a higher proportion of modification is con-
sistent with the fact that complex classes tend to have more
defects and, therefore, will tend to undergo more modifica-
tions to correct the defects.

Our observations are incomplete, however, since we do
not have access to defect data to allow us to state that
changes to complex classes are principally concerned with
correcting defects. Furthermore, it is reported that correc-
tive changes account to only 21% of changes [2], so we can-
not conclude that defects are the main reason for change.

A class that changes is likely to have higher Fan-In and
higher Branch Count. Simply put, complex classes have a
higher probability of change.

5. Related Work

Lehman and Belady pioneered the study of evolution of
large-scale procedural systems, and established the well-
known “laws of software evolution” [15]. Until recently,
however, there have been few empirical studies focusing on
a micro-level in order to gain insight into where and how
present-day object-oriented systems evolve.

We have previously presented empirical evidence that
cyclomatic complexity of classes essentially does not vary
over time and that, in general, more than 50% of all meth-
ods have a cyclomatic complexity of 1 [22]. We have pre-
sented a simple growth estimation model built on top of an
observed power-scaling relationship between the total num-
ber of nodes and the total number of links in a software de-
pendency graph [23].

We have also studied typical growth patterns in open-
source software and shown that although software grows
over time, the structure and scope of growth is in general
not erratic, but is predictable using a power-scaling rela-
tionship [21]. For example, we have observed that the per-
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centage of derived classes in a given software system does
not change significantly over time. Hence, if our estimation
models fail to accurately predict the growth and the associ-
ated changes in a software system, this means that signif-
icant architectural shifts have occurred that require special
analysis and documentation.

Girba et al. have tested the hypothesis that classes that
have changed in the past are likely to change in the future
[8]. The reliability of this measure of “yesterday’s weather”
seems to vary according to the “climate” of a software
project. Girba et al. have also studied the relationship be-
tween change and developers [9]. Rather than predicting
change, the goal here is to understand which developers
are most knowledgeable about different parts of an evolv-
ing system.

Similar to our work, Capiluppi et al. have analyzed the
evolution history of a number of open source systems [3, 4].
However, their studies mainly focused at a macro-level, in
particular on relative changes in the code size and on com-
plexity at a module level [4] as well as the influence of the
number of developers on the release frequency [3].

Lanza and Ducasse have introduced the Evolution Ma-
trix [13] as a means to visualize the evolution of object-
oriented software. Here the emphasis is on detecting pat-
terns of change, rather than to establish which parts of the
system are likely to change. Gall et al. have analyzed the
history of changes in order to detect hidden dependencies
between modules [7]. Grosser et al. have applied case-based
reasoning to versions of object-oriented software systems
to predict the preservation of class interfaces [11]. Zimmer-
man et al. analyzed relationships between changes to pre-
dict when certain classes are changed which other classes
are also likely to change [25]. Finally, Hassan and Holt
have also analyzed numerous open source projects and con-
cluded that historical co-change is a better predictor of
change propagation than structural dependencies [12]. None
of these approaches, however, are directly applicable to the
question of understanding how and where contemporary
object-oriented software systems change over time.

6. Conclusions

Although the long-term effects of evolution on software
systems have been studied now for over three decades, there
has been little research into understanding how change is
distributed over the parts of software systems. We have an-
alyzed 12 open-source Java systems that have evolved over
at least 15 releases and over a period of at least 2 years to
evaluate which size and complexity measures are indicative
of high rates of change.

Our study shows that most of the code base in a soft-
ware system is unchanged as it evolves over time. On aver-
age around 20% of the classes are modified and around 8%



of the classes are newly added. Furthermore, the probabil-
ity that a class is removed is very low.

The distribution of all studied measures tends to retain a
remarkably uniform profile over time. So, for example, the
relative percentage of classes with high Fan-In or low Fan-
In will normally not change during the course of a project,
except at points where a major restructuring or rewriting of
the code base takes place.

We also show that the classes with the highest rates of
change tend to be the most popular ones, i.e., those with
high Fan-In. On the other hand, new classes tend to start out
with low Fan-In. Nevertheless, as new classes evolve, their
profile tends towards the norm for the code base. Growth
tends to occur in new classes, not old ones, which is con-
sistent with the observation that the distribution of size and
complexity measures remains constant over time.

Common wisdom states that one should build new soft-
ware on top of stable components, that is, on mature classes
with low rates of change. This leads, however, to the para-
dox that by relying on stable components, we increase their
popularity, and thus cause them to become less stable. On
the one hand, this suggests that Lehman and Belady’s Laws
of Software Evolution also apply to some degree at a micro
scale: a class that is used will undergo continuing change or
become progressively less useful. On the other hand, since
the profile of size and complexity measures stays constant,
we cannot conclude that the classes of an evolving soft-
ware system necessarily become more complex on average.
Complexity at the system level is not a consequence of com-
plexity of the parts, but rather of the sheer size of the system
as a whole.

This work opens up a series of further questions which
we plan to explore. In our current study we have noted
change, but not computed the amount of change. We are in-
vestigating the use of a distance measure to indicate how
much change a class undergoes. Our early results suggest
that most classes do not undergo a significant amount of
change; we intend to collect detailed data and report our
findings.
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