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Abstract
To support development tools like debuggers, runtime sys-
tems need to provide a meta-programming interface to al-
ter their semantics and access internal data. Reflective ca-
pabilities are typically fixed by the Virtual Machine (VM).
Unanticipated reflective features must either be simulated by
complex program transformations, or they require the devel-
opment of a specially tailored VM. We propose a novel ap-
proach to behavioral reflection that eliminates the barrier be-
tween applications and the VM by manipulating an explicit
tower of first-class interpreters. PINOCCHIO is a proof-of-
concept implementation of our approach which enables rad-
ical changes to the interpretation of programs by explicitly
instantiating subclasses of the base interpreter. We illustrate
the design of PINOCCHIO through non-trivial examples that
extend runtime semantics to support debugging, parallel de-
bugging, and back-in-time object-flow debugging. Although
performance is not yet addressed, we also discuss numerous
opportunities for optimization, which we believe will lead to
a practical approach to behavioral reflection.

Categories and Subject Descriptors D.3.4 [Programming
Language]: Processors—Interpreters, Runtime environments;
D.3.3 [Programming Language]: Language Constructs and
Features; D.3.2 [Programming Language]: Language Class-
ifications—Very high-level languages

General Terms Reflection, Virtual Machines

Keywords Smalltalk, Behavioral Reflection, Metacircular-
ity, Virtual Machines, Debugging, Object-Flow Analysis

1. Introduction
Debuggers, profilers, sandboxing, support for memory bar-
riers, transactions, the addition of reflective capabilities, and
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many other language extensions, are all common examples
of useful tools and techniques that are conveniently provided
by modifying the runtime of a language.

[Modifying the interpreter] presents the advantage of
having direct access to the internal structure of the
interpreter and therefore provides greater flexibility
and expressiveness for supporting dynamic adapta-
tion. The major disadvantages are the loss of compat-
ibility with standard environments, which often results
in particular tools becoming obsolete quickly, and the
complexity of the implementation. Indeed, modifying
a production virtual machine is not an easy task, and
it is subsequently difficult to keep up-to-date with new
versions and technologies ... [39]

Consider the example of the object-flow debugger [27],
a back-in-time debugger that keeps track of the flow of
objects in an object-oriented runtime. Although this is a very
effective debugging tool for object-oriented languages, the
original Object Flow VM prototype quickly became out of
sync with the rapidly changing Pharo VM that it was based
on [3]. The problem is not related to the choice of modifying
the interpreter definition, but rather to the fact this interpreter
definition cannot be changed from within the language itself.
If the semantics of the interpreter could be changed from
within, the code would be kept in sync with the standard
VM, just like normal applications.
Although high-level languages traditionally support re-

flective programming, they provide only a limited set of ca-
pabilities for introspection and intercession. Normal applica-
tions cannot extend the reflective interface. Hence, applica-
tions that need features that are not supported either cannot
be implemented, must be simulated in a roundabout way, or
have to resort to modifying the VM.
Early research on reflection, rooted in Lisp, proposed

a different approach to reflection in which the interpreter
itself is modeled as a first-class entity [36]. Although such
an approach is extremely powerful, it has not been made
practical and is not implemented in modern VMs.
In this paper we present PINOCCHIO, a runtime that sup-

ports first-class interpreters. PINOCCHIO is based on Small-
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talk, but uses an AST instead of bytecode interpretation. Ap-
plications freely flow from interpreter to interpreter depend-
ing on the required semantics. Applications specify their
own interpreters inside the runtime as subclasses of the de-
fault Interpreter class, a reification of the core inter-
preter.
PINOCCHIO absorbs and exploits three features from

Smalltalk to effectively extend interpreters:

• the object model: PINOCCHIO adopts the object model of
Smalltalk— since specialized interpreters typically make
only modest changes to their base-level semantics, ob-
jects can often flow freely between levels;

• recursion: interpreters are defined as recursive AST visi-
tors instead of as bytecode machines with explicit stacks
— first-class continuations can be used to implement
non-local flow of control;

• garbage collection: interpreters can rely on the garbage
collection provided by their meta-level.

The contributions of this paper include (i) an analysis of
the limits of behavioral reflection as practiced today; (ii) a
novel approach to behavioral reflection inspired by Refci’s
first-class interpreters [36]; (iii) the design and implementa-
tion of PINOCCHIO, a proof-of-concept prototype of the ap-
proach; (iv) the presentation of three non-trivial case studies
demonstrating how PINOCCHIO’s design facilitates behav-
ioral reflection.
This paper is organized as follows: Section 2 reviews

standard approaches to behavioral reflection and summa-
rizes the practical challenges facing these approaches. In
Section 3 we present PINOCCHIO in a nutshell, it explains
how PINOCCHIO bootstraps itself with the help of first-class
interpreters and presents PINOCCHIO’s metaobject protocol.
Section 4 illustrates how a first-class interpreter can easily be
extended to support debugging, and then motivates the de-
sign of multiple interpreters with the help of an example of
a specialized interpreter to support object-flow analysis for
back-in-time debugging and a parallel debugger. Section 5
compares PINOCCHIO to other dynamic languages in terms
of performance, and outlines the further steps required to
turn PINOCCHIO into a fast approach to behavioral reflec-
tion. Section 6 compares PINOCCHIO with related work.
Section 7 concludes with a brief summary of the results.

2. Practical Limits of Behavioral Reflection
We first review basic terminology and history before consid-
ering the challenges and limits of behavioral reflection.
Computational reflection refers to the ability of computer

programs to reason about their own structure and behavior
at runtime [29, 37]. Reflective systems distinguish the base
(application) level from themeta (semantic) level. Reflection
entails the reification of meta-level entities to the base level,
that is, semantic entities are reified as ordinary application

entities. (If we ask a Java object for its class we obtain an
ordinary Java object representing that class.)
Structural reflection is concerned with reification of the

structure of the program, i.e., its data and code. Behavioral
reflection is concerned with reification of the behavior of
the program, i.e., its interpretation. Reflection can be further
refined into introspection and intercession. Introspection is
purely concerned with reifying meta-level concepts to rea-
son about them at the base level. For example, we may ask
an object what fields it has so we can print them all. Interces-
sion, on the other hand, allows us to manipulate reified meta-
level entities and reflect changes back to the meta-level. In
Smalltalk one can change the class of an object at runtime,
immediately causing that object’s behavior to change. Such
changes effect a causal connection between the reified enti-
ties and the meta-level entities they represent [29].
Some typical uses of reflection are found in (i) debugging

tools; (ii) GUIs for object structures; (iii) code instrumenta-
tion and analysis tools; (iv) dynamic code generation; and
(v) language extensions.
In mainstream high-level languages support for reflection

is dictated by whatever is provided by the VM. Short of
building a tailored VM, users of the reflective API are strictly
limited to the capabilities that have been built into the VM.
As a consequence, practical, mainstream uses of reflection
are mostly limited to (structural) introspection, for example,
as offered by the Java reflection API. These systems provide
no means for extending them with reflective capabilities that
were not anticipated. Since extending and shipping a modi-
fied runtime usually is not an option, innovative extensions
are not possible.
Several different approaches to behavioral reflection have

been realized over the years, but each suffers from its own
practical limitations. Smith introduced the notion of compu-
tational reflection and he illustrated his model through the
implementation of a reflective dialect of Lisp, called 3-Lisp
[37]. 3-Lisp applications can contain special reifier functions
that take reifications of aspects of the interpreter as argu-
ments: the current expression, the environment in which the
expression is being executed and the continuation of the ap-
plication. In Smith’s model these reifiers conceptually run in
the scope of the interpreter since they operate on the applica-
tion from the point of view of the interpreter. Adding support
for reifiers to a language thus adds the ability to add lines to
the code of the interpreter from within the application con-
text. It also makes us believe that below every interpreter
there is another interpreter that evaluates the interpreter and
all reifications requested by the application on top. Reflec-
tion is therefore supported by an infinite tower of interpre-
ters.
Starting with Smith’s Tower of Interpreters we will re-

view the practical challenges faced by the different ap-
proaches to behavioral reflection.
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2.1 Continuous behavioral reflection

Behavioral reflection in most systems is discrete, which
means that reflective computations are initiated at a dis-
crete point by calling a reflective procedure and only lasting
until this procedure returns [30]. For example, a method
wrapper that makes a method asynchronous only affects
the particular wrapped method not all the methods in the
whole system. Discrete reflection is not well suited for use
cases requiring continuous changes that span the execution
of multiple methods or even of a whole application. Contin-
uous behavioral reflection refers to reflective computations
that are explicitly inserted in the meta-interpreters, thus hav-
ing a continuous effect on the base level computation [30].
Software transactional memory, for example, entails a con-
tinuous change to the semantics of a language which can
benefit from invasive changes to the runtime [19].
Smith’s Tower of Interpreters (ToI) approach is funda-

mentally discrete since the behavior of interpreters can only
be extended, not modified. Existing meta-behavior cannot
be mutated strictly limiting custom reflective behavior to
the base-level code explicitly triggering this custom reflec-
tive behavior. Simmons et al. extended the discrete reflec-
tive tower to a continuous model of reflection by introduc-
ing first-class interpreters in Refci (reflective extension by
first-class interpreters) [36]. In Refci, changes can be applied
to the interpreter by explicitly wrapping around the meta-
interpreter. These wrappers are then used for the interpreta-
tion of all code to which the modified interpreter is applied,
thus having a continuous effect on its interpretation.
Refci extends the interface of reifiers with reifications of

the interpreter itself in the form of a preliminary and a dis-
patch procedure. The preliminary is a function that trans-
forms a dispatch onto another dispatch, and is executed be-
fore executing the actual dispatch. The dispatch itself evalu-
ates expressions and as such is a reification of the actual in-
terpreter. By obtaining first-class access to these procedures
the programmer can extend the semantics of the interpreter
for the duration of the evaluation of the passed expression.
To our knowledge, no further research has taken place

to make first-class interpreters practical. The key research
problem is how to implement extensible first-class interpre-
ters in a VM in a clean and fast way.

2.2 High-level reflective API

Reflection enabled by mechanisms such as method wrappers
[7], proxies [15], or overriding exception handling meth-
ods [15] is used in practice only in limited, idiomatic ways
depending on the host programming language. To enable
widespread use of reflection, a safe and practical reflective
API is needed.
Bracha and Ungar claim as a fundamental design princi-

ple for reflection that “meta-level facilities must encapsulate
their implementation” [6]. McAffer justifies this principle as
follows:

the metalevel has been thought of as a place for mak-
ing small changes requiring small amounts of code
and interaction. We believe that the metalevel should
be viewed as any other potentially large and com-
plex application — it is in great need of management
mechanisms. [32]

In an effort to make it feasible to develop libraries and
applications that rely on reflection, Kiczales et al. proposed
the use of metaobject protocols (MOPs) to implement dis-
crete reflection.

What reflection on its own does not provide, however,
is flexibility, incrementality, or ease of use. This is
where object-oriented techniques come into their own
[25].

Since its definition, all reflective object-oriented languages
have resorted to metaobject protocols to provide discrete
reflection. By providing a clear interface to the language,
metaobject protocols give the user the ability to incremen-
tally customize the language’s behavior and implementation.
Metaobject protocols provide discrete reflection since one
has to install custom metaobjects wherever non-standard be-
havior is required.
Open implementations [24] provide a general design

principle that moves the black box boundary of objects so
that part of their internal implementation strategy becomes
open and customizable to the user. For example a Set class
could allow the user to specify what kind of operations are
most common for a particular instance so that instance can
be optimized towards that use-case. Open implementations
provide discrete customizations, affecting only particular in-
stances rather than the system as a whole.

2.3 Separation of base and meta-level

Typically, discrete reflection is implemented by manipulat-
ing base-level code (e.g., through source or bytecode trans-
formation). This technique brings forth a whole new set of
problems (the same that optimizers introduce for debug-
ging). Most importantly, the application that uses reflection
has to keep track of the meta-level on which it is being evalu-
ated to avoid endless recursion [8, 12]. For instance, the code
that logs a method execution must avoid itself triggering the
logging meta behavior to avoid infinite meta recursion. This
problem arises from the lack of a clean separation between
base and meta behavior.
Bracha and Ungar argue that “meta-level facilities must

be separated from base-level functionality” [6]. McAffer
[31] argues that “The implementation of an object must
be explicitly exposed and clearly distinguished from the
object’s domain-specific behaviour description.”
While towers of interpreters clearly separate the base-

level and meta-level computations, metaobject protocols
generally lack this clear distinction, leading to confusion
between the two levels [8, 12].
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2.4 Summary

Behavioral reflection is most usable in practice when encap-
sulated through a well-designed MOP. “All reflective sys-
tems therefore provide fixed MOPs: as flexible as they may
be, they impose the actual interfaces of metaobjects.” [39]
Despite their practical advantages, MOPs inherently offer
discrete reflection, lead to meta-level confusion, and are thus
limited in their support for extension. These limitations are
also inherent to today’s VM approaches which establish a
rigid barrier between what one may reflect on, and what is
hidden in the guts of the runtime.
The following table summarizes the shortcomings of the

various approaches.

ToI MOP Refci
Discrete reflection � � �

Continuous reflection �
High-level reflective API �

Separation of levels � �

3. PINOCCHIO in a Nutshell
PINOCCHIO eliminates the barrier between applications and
the VM by using first-class interpreters to realize behavioral
reflection. The VM core implements a dialect of Smalltalk-
80 [17]. PINOCCHIO supports the runtime implementation
and use of interpreter extensions.
Instead of interpreting bytecodes, PINOCCHIO directly

interprets abstract syntax trees (ASTs) that more faithfully
represent Smalltalk-80 code. The core interpreter is imple-
mented in C, and is reified in the runtime as a first-class in-
terpreter. The interpreter provides a basic MOP to support
structural reflection. Unlike most interpreters that are based
on the assumption that the VM is a black box isolated from
the runtime system, PINOCCHIO supports behavioral reflec-
tion by opening the interpretation of code to the runtime.
Behavioral reflection is supported by explicitly instantiat-
ing first-class interpreters that subclass the reified core inter-
preter. Extending interpreters is facilitated since AST nodes
are semantically closer to the original source code than byte-
code [11, 13].
To construct a new variant of the PINOCCHIO interpreter

it suffices to subclass the Interpreter class and override
a part of its interface (see Figure 1). The Interpreter

class defines a meta-circular interpreter implemented as an
AST visitor that manages its own environment but relies on
recursion to automatically manage the runtime stack. The
meta-circular interpreter reifies the core interpreter written
in C, so its methods are actually implemented as native
functions that hook into the underlying C interpreter code.
From user’s point of view the Interpreter is fully written
in PINOCCHIO itself.
Application code is evaluated by a new interpreter by

sending the interpret: message to the desired interpreter
class with a closure representing the code as its argument.
For example, the expression

Figure 1. Native methods in the Interpreter and inter-
preter extension through subclassing

Debugger interpret: [ ���� runApplication ].

will cause the closure [ self runApplication ] to be
evaluated by the Debugger interpreter.
As usual, closures encapsulate an environment and an ex-

pression object. When starting up a specialized interpreter
the continuation of the interpreted application is empty. The
interpreter installs the enclosed environment and starts eval-
uating the expression in this environment. Since the passed
expression for the default interpreter is a closure the evalu-
ation is done by sending the message value to the closure
on top of the interpreter:

interpret: aClosure

� ���� send: (Message new selector: #�����)

to: aClosure.

Although it might seem correct to directly evaluate the clo-
sure by invoking aClosure value, this is incorrect as the
closure would be evaluated at the wrong level of interpreta-
tion. It would run at the level of the interpreter (the meta-
level from the application’s point-of-view) rather than at the
application level as desired.
The open design of the meta-circular interpreter lets pro-

grammers extend the runtime with very little effort. More
importantly, the extensions to the interpreter are imple-
mented within the language provided by the interpreter it-
self. As such they can be implemented using any of the
existing tools for the language, including development envi-
ronments, debuggers, test-runners and versioning systems.

3.1 Bootstrapping PINOCCHIO

The bootstrapping C interpreter is the first interpreter used
in the runtime. It is an instance of the MainInterpreter

class, a subclass of the Interpreter class. The main inter-
preter does not override the interpretation implementation
but provides a prelude that decides how to start interpreta-
tion. It uses the command line arguments passed to the exe-
cutable to decide whether to directly interpret an input file or
to start a REPL. As shown in Figure 2, all code passed to the
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Figure 2. Bootstrapping PINOCCHIO

interpreter in either case is parsed, compiled and interpreted
on top of this interpreter instance.
Source code is transformed into the AST using a compiler

that runs on top of our runtime, just like the self-hosted
Smalltalk compilers. This compiler is completely written in
standard Smalltalk code hosted on Pharo [3]. The compiler
is then bootstrapped to PINOCCHIO with the help of a bridge
that performs the following steps:

• a Pharo class is translated to a Pharo object representing
a PINOCCHIO class, and the compiler is used to generate
PINOCCHIO ASTs for the methods of the class;

• the bridge then transforms these Pharo objects to C code
that uses the internal API of the PINOCCHIO runtime;

• the generated C code is statically compiled into the inter-
preter;

• when the runtime boots, the generated C code builds the
PINOCCHIO version of the original class and its associ-
ated ASTs.

The compiler first uses a Parsing Expression Grammar
(PEG) [16] that translates the input source code to a full
Smalltalk AST. We use a PEG since they provide a simple
way of combining parsers into bigger parsers and are well
suited for extensions to existing languages [33]. This parsing
step is followed by one step of simple semantic analysis and
translation to the PINOCCHIO AST.
Once the input source code is loaded it is passed to the

superclass of the MainInterpreter. Since the main inter-
preter does not specialize any of the interpretation methods,
this comes down to executing the code directly on the C in-
terpreter. Its function is merely to provide a location to put
the prelude of an interactive interpreter.

3.2 Minimizing the Interpreter Stack

Our approach of starting new interpreters on top of other
interpreters is similar to, albeit the inverse of, the tower of
first-class interpreters in Refci [36]. This has the advantage
that we can use the same approach to minimize the height
of the tower that is actually running at each point in time.
For example, since the MainInterpreter does not alter
the interpretation behavior of the standard interpreter, the
evaluation of the application can happen fully at the C level,
dropping the MainInterpreter from the active interpreter
stack. It is important to never run on a stack bigger than

necessary, since each extra level of interpretation has a steep
price in terms of performance.
In PINOCCHIO the height of the tower is pragmatically

minimized by making the whole definition of the standard
interpreter available as a fine-grained set of natives installed
on the Interpreter class (see Figure 1). Only the exten-
sions to the interpreter are evaluated meta-circularly.
Since most custom interpreters will only partly alter the

semantics of existing native methods, the default implemen-
tation in charge of invoking natives, invokeNative, allows
interpreters to rely on meta-meta-level implementations of
natives to provide the behavior to the base-level. In other
words, whenever an application ends up in code that invokes
a native, the interpreter can ask its meta-interpreter to per-
form the actual invocation of the native. This temporarily
drops the interpreter from the active stack of interpreters.
Since natives are able to send messages back to the ap-

plication level, every call to invokeNative stores the in-
terpreter that triggered the actual native. To ensure that the
application always runs on the proper level of interpretation,
when the native wants to send a message back to the appli-
cation it first has to restore the stack of interpreters that was
active before invoking the native. An example of such a case
is the native implementation of the at: method installed
on dictionaries. This method needs to be able to request the
hash value of a key, and later compare it with the keys in the
dictionary using the =message. Both methods are within the
control flow of the native evaluation of the at: method. To
evaluate both methods at the right level of interpretation, the
stack of interpreters that was active before the at: was in-
voked needs to be reconstructed before their evaluation is
started.

3.3 PINOCCHIO Metaobject Protocol

Aside from providing access to user-definable and runtime
instantiatable first-class interpreters, PINOCCHIO provides a
default metaobject protocol that is sufficient for many re-
flective use cases. From the point of view of the program-
mer, the main interpreter is written as a meta-circular AST
visitor. New semantics can easily be added to the language
by replacing standard application constructs such as meth-
ods with custom metaobjects following the same metaobject
protocol. The following extension points are noteworthy.

First-class AST nodes. New nodes can be defined by fol-
lowing the visitor protocol. The new nodes could be gener-
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ated by extending the default parser and compiler. This could
for example be used to provide mutable AST nodes or link
objects for partial behavioral reflection (see subsection 6.2).

Does not understand. Following Smalltalk-80, our core
interpreter sends the doesNotUnderstand:message to any
object that does not implement a method corresponding to
the selector of a message sent to it. This is an important
feature to make PINOCCHIO compatible with existing Small-
talk code.

First-class slots. Unlike most Smalltalk systems, which
rely on magic numbers to encode the layout of instances,
PINOCCHIO’s class layouts are described using layout meta-
objects. These metaobjects further rely on slot metaobjects
that define the semantics of instance variables. Whenever a
reference to an instance variable is made in the application’s
source code, the compiler directly inserts the corresponding
slot metaobject into the resulting method’s AST.
Every slot metaobject can override the AST node evalua-

tion protocol to provide custom semantics for retrieving the
instance variable. Custom semantics for the assignment to
instance variables are implemented by overriding the proto-
col provided by the interpretation of the Assign AST node.
By providing explicit layout and slot metaobjects, appli-

cations can easily decide what kind of layout and accessing
semantics to attach to specific classes. Special behavior such
as first-class relationships or singletons can cleanly be fac-
tored out into slot libraries to avoid cluttering of the code
referring to the slots.

4. Implementing Custom Interpreters
In this section we present three different customized inter-
preters implemented in PINOCCHIO. We first introduce a
simple debugger that absorbs garbage collection and the
object model, and relies on straightforward recursion to
manage control flow. The alias interpreter shows how in-
terpreters with custom object models are implemented. Fi-
nally we outline how interpreters relying on access to the
runtime stack are supported in PINOCCHIO through modi-
fiable interpreters and the availability of first-class continu-
ations. The full sources of these use cases are available under
http://scg.unibe.ch/download/pinocchio/pinocchio_svn1397_mc196.zip.

4.1 A Simple Debugger

To show how extensions to existing interpreters are imple-
mented and used we first describe the implementation of a
simple debugger. It executes a program while allowing the
user to pause evaluation at the level of message sends. In or-
der to start evaluating code using a debugger the user passes
the code to the debugger in the form of a closure:

Debugger interpret: [ ���� runApplication ].

The debugger takes control over the evaluation of the block.
At each message send it allows the user to decide to step

Figure 3. Specializing a Pinocchio interpreter

to the next message send, to inspect the current receiver, to
step over the evaluation of the message send or to evaluate
PINOCCHIO statements. This is a typical subset of actions
available in any debugger.
As shown in Figure 3, to implement the debugger in

PINOCCHIO, we start by creating the stepping interpreter
class as a subclass of the standard Interpreter. The step-
ping interpreter overrides the methods in charge of evaluat-
ing message sends. Rather than directly executing a send,
the stepping interpreter delays this behavior and first gives
control to a stepBlock installed on the interpreter instance:

send: message to: receiver class: class

� stepBlock value: receiver

value: class

value: message

value: [ ����	

send: message

to: receiver

class: class ].

The stepBlock of the interpreter can be used to flexi-
bly modify the message send semantics of the running in-
terpreter. Subclasses of the stepping interpreter can define a
custom default stepBlock and replace the stepBlock at
runtime.
The debugger itself is implemented by providing differ-

ent kinds of blocks to the stepping interpreter. The default
stepBlock of the debugger is implemented as follows:

defaultStepBlock

� [ :receiver :class :message :action |

���� print: receiver class name, ’>>’, message.

���� debugShellWithAction: action ].

It first displays information about the current message send
by printing out the receiver’s class and the message including
the selector and arguments. Then the debug shell is launched
a simple read-eval-print-loop (REPL) that accepts certain
debug actions, as well as PINOCCHIO statements as input.
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Since this REPL runs within the execution context of the
interpreter, the current execution of the application is tem-
porarily halted until the REPL eventually returns and decides
to evaluate the action.
Other types of debug actions can be implemented using

different stepping blocks. The follow method implements
the step over behavior. It lets the debugger execute an entire
application-level recursive call without prompting the user
about its evaluation.

stepOver: overAction

|result previousBlock|

previousBlock := stepBlock.

stepBlock := [ :receiver :class :message :action |

action value ].

result := overAction value.

stepBlock := previousBlock.

� result

It locally stores the previous stepping strategy and installs a
block that skips all steps. Whenever the application finishes
the recursive call that triggered the current step the control
flow will automatically end up back in this method restoring
the block to the previous version and continuing.

Evaluation This way of implementing a debugger is straight-
forward and only requires very little code to add new flexible
features. The whole implementation of the debugger adds
around 50 lines of code to the stepping interpreter, which
adds another 30 to the default interpreter. Since the debug-
ger is just another interpreter it can be passed in at any level
of interpretation. As such it can be used not only debug a
user program, but also the interpreter running it. Naturally
this allows for the debugger to debug itself.

4.2 Alias Interpreter

As second use case we show how to implement Object Flow
Analysis [27] in PINOCCHIO. Object Flow Analysis is a dy-
namic analysis that tracks the transfer of object references at
runtime. It has been employed for various reverse engineer-
ing approaches and for the implementation of an efficient
back-in-time debugger [28].
The problem tackled by Object Flow Analysis is the fact

that in code with assignments it is hard to track where a
certain value comes from. A debugger only shows the cur-
rent call stack and hence often does not reveal the context in
which a field was assigned. While execution traces show ex-
actly how the interpreter goes through the code they do not
show how the values are stored and retrieved. For example,
to understand where a certain value of an instance variable
comes from, we need to look at all the source code that might
have triggered a store. In an alias interpreter (the back-end
used by Object Flow Analysis) object references are repre-
sented by real objects on the heap. These objects, referred
to as aliases, keep track of the origin of each reference in
memory.

To know where each value comes from the alias inter-
preter alters the semantics of the interactions so that it gen-
erates aliases for:

• allocation of objects and their instance variables,

• reading and writing of fields,

• passing of arguments,

• returning of return values, and

• evaluation of literals (constants).

Rather than directly passing around actual values, in the
interpreter objects are wrapped into alias objects.
We chose Object Flow Analysis as second use case be-

cause it requires deep changes in the interpreter and its ob-
ject model. This case lets us evaluate how flexible our ap-
proach is for extending low-level details of the runtime and
how much less effort is required to realise these changes
compared to the original implementation.

An Alias Example Suppose we have a class Person with
one instance variable name and simple accessors for name,
consider for example the following code:

testMethod

� AliasInterpreter interpret: [ |person|

person := Person new.

person name: ’John’.

person name: ’Doe’.

person ].

In this excerpt, the block is evaluated in the context of an
alias interpreter. All the values used by the alias interpreter
are aliased. When the result is returned from the alias inter-
preter it is not unwrapped so we can inspect the aliasing in
the instance. The resulting alias graph, as shown in Figure 4,
contains the following information:

return2 := ���� testMethod.

���� assert: (return2 isKindOf: ReturnAlias).

���� assert: (return2 environment selector = #
��
��
��).

person := return2 value.

���� assert: (person isKindOf: Person).

return1 := return2 origin.

���� assert: (return1 isKindOf: ReturnAlias).

���� assert: (return1 environment selector = #���).

fieldWrite2 := person name.

���� assert: (fieldWrite2 isKindOf: FieldWriteAlias).

���� assert: (fieldWrite2 value = ’Doe’).

fieldWrite1 := fieldWrite2 predecessor.

���� assert: (fieldWrite1 isKindOf: FieldWriteAlias).

���� assert: (fieldWrite1 value = ’John’).

allocation1 := fieldWrite1 predecessor.

���� assert: (allocation1 isKindOf: AllocationAlias).

parameter1 := fieldWrite1 origin.

���� assert: (parameter1 isKindOf: ParameterAlias).

���� assert: (parameter1 value = ’John’).
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Figure 4. Alias Graph (origin denotes where an alias comes
from, predecessor of a field write alias is the alias that was
previously stored in this field)

literal1 := parameter1 origin.

���� assert: (literal1 isKindOf: LiteralAlias).

���� assert: (literal1 value = ’John’).

parameter2 := fieldWrite2 origin.

���� assert: (parameter2 isKindOf: ParameterAlias).

���� assert: (parameter2 value = ’Doe’).

literal2 := parameter2 origin.

���� assert: (literal2 isKindOf: LiteralAlias).

���� assert: (literal2 value = ’Doe’).

All the gathered information can be used by a debugger
to provide means to navigate through the tracked flow of
objects. This can easily be used to track for example where
null-pointers come from, since all objects are accounted for
by aliases.

Linguistic Symbiosis To track aliasing the interpreter
wraps all objects into alias objects. This makes the object
model of the alias interpreter differ significantly from the
default interpreter.
PINOCCHIO’s object model provides structural reflection

similar to that of Smalltalk. This feature is a requirement for
symbiotic reflection [18, 43]: applications have to be able to
start a new interpreter and pass themselves as applications.
The new interpreter starts by running at the base-level of
the application, but as the application passes itself to the
new interpreter it becomes part of the meta-level of the
application. The new interpreter makes use of base-level
structural reflection to interpret the code of the application.
Symbiotic reflection is typically used when the language

of the meta-level differs from that of the base-level, for
example, when Java is used to interpret a dynamic language.

Objects from the meta-level (e.g., Java) typically need to
be wrapped before they can be used at the base-level, and
unwrapped to be manipulated at the meta-level. This process
is known, respectively, as upping and downing.
In PINOCCHIO the base- and the meta-languages gen-

erally differ only in limited ways at the meta-level leav-
ing most of the base-level semantics unaltered. This allows
many of the user-defined interpreters to let objects flow
freely from the meta-level to the base-level and back, trans-
ferring or sharing ownership of the same object without any
wrapping or unwrapping. This is the case for the debugger
in the previous section.
In case that the base- and meta-levels of a PINOCCHIO

interpreter diverge significantly however, it is entirely up to
the interpreter to correctly realize the required upping and
downing. The alias interpreter is such an example. Rather
than directly passing objects from the meta-level to the base-
level, all objects passed around in the alias interpreter have
to be wrapped into alias objects. When the base-level appli-
cation performs native actions on aliased objects they first
need to be unwrapped by the interpreter.

Aliasing in PINOCCHIO The implementation of an alias
interpreter using PINOCCHIO is fairly straightforward. First
all interpreter methods that are related to one of the tracked
actions (object allocation, reading and writing of fields, pass-
ing as argument, evaluation of literals (constants) and return-
ing from method) are overridden to generate the aliases. For
example, the method that interprets methods is overridden
so that it returns a ReturnAlias instance wrapped around
the result:

interpretMethod: aMethod

| result |

result := ����	 interpretMethod: aMethod.

� (ReturnAlias alias: result)

environment: environment.

Notice that the actual semantics of the interpretation of
methods is just inherited from the standard interpreter.
All methods that need the actual values inside the aliases

are overridden to first unwrap the aliases. Aside from meth-
ods related to the evaluation of natives, all interpreter meth-
ods only need the value of the current self. This is shown
in the following method that is invoked by the interpreter
whenever it evaluates an assignment to a slot. It assigns the
actual value to the slot of the current self by first unwrap-
ping the aliased self and then wrapping the value in a
FieldWriteAlias:

assignSlot: aSlot to: anAlias

| alias unwrappedSelf |

unwrappedSelf := ���� currentSelf value.

alias := (FieldWriteAlias alias: anAlias)

environment: environment.

alias predecessor: (aSlot readFrom: unwrappedSelf).

� aSlot assign: alias on: unwrappedSelf

The alias interpreter uses a different object model for the
base-level than for the meta-level. As explained in the previ-
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ous paragraph this requires the alias interpreter to realize the
upping and downing by itself. Every time an object moves
from the meta-level to the base-level it needs to be wrapped
to look like the other objects in the runtime (like aliases, in
this case).
There are two places where objects potentially flow from

the meta-level to the base-level. The first is the initial closure
passed to the interpreter. The closure is linked to an environ-
ment that contains objects possibly referred to by the code
of the closure. Rather than directly sending value to the
closure, we first have to pre-process it:

interpret: aClosure

� ���� send: (Message new selector: #�����)

to: aClosure asAliased

The asAliased message will deep-clone the closure,
and wrap the closure as well as all the values referred to
by its environment into allocation aliases. We use allocation
aliases since we are unsure of the origin of the objects. As it
is the initial state of the alias interpreter, from the perspective
of the alias interpreter it is as if the objects were allocated
at that point in time. This indicates that users of interpreters
that rely on a modified object model have to be careful not to
pass a closure along that has references to huge object graphs
or ensure that deep-cloning is not required by the interpreter.
The second place where objects flow from the base-level

to the meta-level and back is the evaluation of natives. To
support the interpretation of natives, the original alias inter-
preter overrides most of the supported methods and performs
the correct action. Since not all natives have the same se-
mantics, no single implementation can properly support the
evaluation of all of them. To complete our implementation
we would also have to provide new implementations for the
subset of operations we support. For this experiment, how-
ever, we limited ourselves to the general solution that works
for most examples. Whenever a native is called the receiver
as well as the arguments are downed and passed to the imple-
mentation of the meta-interpreter. The result returned from
this native is upped by wrapping it into an allocation alias
and passed to the application.

Evaluation The original Object Flow Analysis has been
implemented by directly extending the Pharo VM [3]. It
required changes of a large amount of the VM code and took
several weeks to implement. The PINOCCHIO version on the
other hand was implemented in less than one day. It is spread
over 20 methods and 12 alias data classes.
One of the main ideas behind the alias interpreter is that

it allocates the aliases on the heap so they are automatically
garbage collected when their state becomes irrelevant to the
state of the application. Because the extension is at the VM
level new objects have to be manually instantiated at that
level. Since referring to specific Smalltalk classes is cumber-
some from within the interpreter, the original interpreter just
provides one class fitting all types of aliases. This class has
a special field designated to indicate the actual alias type. In

PINOCCHIO, the alias interpreter is implemented in a stan-
dard Smalltalk environment. This allows the programmer to
rely on the full expressiveness of the language: all aliases are
instances of classes representing their specific type. Since
PINOCCHIO interpreters absorb garbage collection from the
main runtime it is also automatically used for collecting the
aliases.
In contrast to the original alias debugger the PINOCCHIO

version is fully hosted within the language itself. This allows
us to use the standard tools for implementing, and more im-
portantly, for debugging the alias interpreter. Now that the
alias interpreter is functional new tools or even alias inter-
preters can be debugged using the current alias interpreter.
This is not possible in the original Smalltalk version, since
their alias interpreter extensions are written in C, and are
thus not subject to the (modified) Smalltalk interpreter.

4.3 Recursive Interpreters

Behavioral reflection in Smalltalk entails manipulation of
the (reified) runtime stack. In Smalltalk-80, the state of the
computation is fully captured by the runtime stack. As a con-
sequence, the Smalltalk bytecode interpreter does not need
to keep track of any control flow itself and automatically
adapts to reflective changes to the runtime stack. The dis-
advantage of this approach is that to be able to adapt to such
reflective changes easily, the evaluation of the interpreter is
completely decoupled from the evaluation of the application.
Not only must bytecodes explicitly manipulate the stack, but
code that passes control from the meta-level to the base-level
must be “ripped” into event handlers that can run to comple-
tion without blocking [2]. Since base-level code in Small-
talk-80 can make arbitrary changes to the runtime stack, the
bytecode interpreter must be prepared to resume execution in
any arbitrary context. If the interpreter wants to keep track
of state related to the evaluation of the application other than
what is available in the standard stack frames it also has to
manually keep track of this data and keep it in sync with the
application’s execution.
PINOCCHIO’s use of first-class interpreters with auto-

matic stack management [2] greatly simplifies the expres-
sion of behavioral reflection. Code that passes control from
the meta-level to the base-level can be straightforwardly im-
plemented by relying on recursive calls. PINOCCHIO inter-
preters can simply rely on recursion to keep track of any
state related to the application’s control flow just like any
other Smalltalk application.
The disadvantage of this approach is that it becomes im-

possible to directly perform operations normally requiring
explicit stack manipulations since there is no explicit stack.
We identify two types of direct stack manipulation in Small-
talk: applications need to be able to (i) capture a certain state
of the stack and later restore it, and (ii) capture a stack and
pass it to another program, a meta-circular interpreter, for
reflective evaluation of the application. In this section we
show that PINOCCHIO supports these two requirements re-
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spectively through first-class continuations [9] and modifi-
able first-class interpreters.

Parallel Debugging An example of a situation where a
user would like to capture and restore the state of a stack is a
parallel debugger. Unlike the normal debugger, which only
evaluates one block at a time this special kind of debugger
takes two blocks and interprets them in parallel comparing
the state of evaluation at each step.
Consider the following failing test case that we encoun-

tered during the development of PINOCCHIO:

dict := SetBucket new.

dict at: #��� put: ’value’.

���� assert: (dict includes: #���).

���� assert: (dict includes: ’key’).

The second assertion (last line) fails. This test was docu-
menting a bug that we had difficulties to track down. Sym-
bols and strings are considered equal ( #key = ’key’) in
Smalltalk and hence the second assertion should pass too.
Using the basic debugger described in subsection 4.1 to

find the difference in execution of the two assertions is cum-
bersome. The manual approach would be to launch a sepa-
rate debugger for each of the assertions and step through the
code until the states of the tests differ.
Since we had difficulties tracking down the root cause of

this bug we implemented a specialized debugger that we call
parallel debugger. The use of the parallel debugger for the
previously mentioned test case looks as follows:

ParallelDebugger interpret:

(Array

with: [ dict includes: #��� ]

with: [ dict includes: ’key’ ])

The debugger runs the given blocks in parallel up to the point
where the executions start to differ:

SetBucket>>#includes:

SetBucket>>#do:

SmallInt(1)>>#to:do:

BlockClosure>>#whileTrue:

SmallInt(1)>>#<=

SmallInt(1)>>#>

--> false

false>>#not

--> true

true>>#ifTrue:

SetBucket>>#at:

--> #’key’

Symbol(#’key’)>>#==

1) (#’key’)--> true

2) (’key’) --> false

Listing 1. Parallel debugger trace

Looking at this trace immediately reveals that both traces
differ upon a strict equality check on a symbol. In the
first case the comparison returns true, in the second case
false. SetBucket incorrectly uses == (pointer equality)
rather than = to compare keys, rendering strings and sym-
bols distinct. The parallel debugger provides the minimal

Figure 5. Thread-based parallel execution of two code parts
in the parallel debugger.

output needed to quickly identify the root cause of the prob-
lem.
To implement the parallel debugger we need to be able

to evaluate multiple closures at once. In an interpreter with
manual stack management this is straightforward. Rather
than interpreting the code of one interpreter in a loop, one
lets all interpreters do one step of evaluation before com-
paring their states. PINOCCHIO however relies on automatic
stack management and thus relies on recursion to evaluate
the closures. This implies that the parallel debugger needs
to be able to jump out of, and back into a certain recursion
state. This problem is similar to implementing coroutines in
a recursive language. The only difference is that the paral-
lel debugger itself handles thread-switching before and after
each message send. Coroutines and threads can easily be ac-
commodated in recursive languages through the use of first-
class continuations [20].
Just like the debugger described in subsection 4.1, the

parallel debugger is built as a subclass of the stepping in-
terpreter. The main difference is that the stepping block is
not used to control a single execution trace but to handle the
interleaved execution of the given number of closures. Be-
fore and after each message send we store the state of the
current green thread by capturing its continuation and the
application’s environment, and resume the next thread by
restoring its application’s environment continuing its con-
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tinuation. Whenever we resume the first thread we compare
the state of all the routines and continue with the first thread.
The parallel debugger, like the serial debugger presented

in Section 3, directly reuses the object model of the under-
lying base-level interpreter. As a consequence, no upping or
downing is required, and objects can freely flow between the
base- and meta-levels.
Even though interpreters are defined recursively as AST

visitors, this poses no problem for expressing non-local
flow of control. Threads are easily simulated by capturing
the needed continuations and explicitly transferring control
when needed. The parallel debugger is only possible due to
the support for continuations in PINOCCHIO. Without con-
tinuations we could not switch between the execution of
multiple closures. It would only be possible to continue the
execution of the next closure from inside the current one.

Runtime Modifiable Interpreters Meta-circular interpre-
ters such as the Smalltalk debugger are a second type of
application that require direct access to an explicit stack.
The Smalltalk interpreter can pass control over the evalu-
ation of an application to a debugger by passing its run-
time stack to the debugger. The Smalltalk debugger how-
ever is fully meta-circular and has to manually manage this
runtime stack for the evaluation of the application. The ad-
vantage of this approach is that since the meta-circular as
well as the core interpreter are both decoupled from the
state of the application’s stack the meta-circular interpreter
is given full control over the evaluation of the application.
While PINOCCHIO’s first-class interpreters only have con-
tinuous behavioral impact on the evaluation until the closure
finishes, meta-circular interpreters with manual stack man-
agement can evaluate the program beyond the continuation
where the interpreter was started. This is a useful feature as
is obvious from the Smalltalk debugger. Whenever an error
occurs, the Smalltalk debugger can take over the evaluation
as if it had been running the application all along, although
the core interpreter has mostly executed the program up to
that point.
If in PINOCCHIO we would like to start a new interpreter

to change the interpretation semantics, the change would be
limited to the scope of the control flow in which they were
activated. This is undesirable for debugging purposes since
we would not be able to step through more of the program
than the recursion of the message send that caused the error.
We rather want to change the semantics of an interpreter
while it is running.
In PINOCCHIO modifiable interpreters are accommo-

dated by letting the user specify which parts of an inter-
preter are mutable. The stepping interpreter discussed in
subsection 4.1 is an example of an interpreter whose se-
mantics can partly be modified while it is running. Its
stepBlock influencing the semantics of message sends
is orthogonal to the control flow of the application, leav-
ing it unaffected by the interpreter exiting the control flow

where the stepBlock was installed. The semantics of the
stepBlock is only bound to the scope in which its host
interpreter is active.
The following example is an extension method to the

debugger described in subsection 4.1. It temporarily replaces
the current stepping semantics for the duration of a variable
number of message sends. It allows a user to specify a
specific number of steps to be skipped.

skipBlock: count

|skips previousBlock|

skips := 0.

previousBlock := ���� stepBlock.

� [ :receiver :class :message :action |

skips := skips + 1.

(skips >= count)

���	��: [ ���� stepBlock: previousBlock ].

���� executeAction: action ].

For the duration of the given number of message sends the
user is not prompted concerning the evaluation. Once the
steps are over, control is returned to the previously active
stepping style.
The skipBlock: method is a clear example of how the

stepBlock can be used to apply changes that potentially
surpass the control flow in which they were activated. Even
if the number of skipped steps is larger than the number of
steps needed for the application-level recursive call before
which the block was installed, the block will stay active until
the requested number of steps are over.

5. Performance
The current implementation of the PINOCCHIO interpreter1

is only slightly optimized, but most optimization opportuni-
ties are left open. The interpreter only implements the evalu-
ation of constants, variables, instance variables, assignment,
closures and message sends with monomorphic inline caches
[21]. All boolean operations for example are implemented
in high-level Smalltalk style as message sends to boolean
objects with closures as arguments. None of these messages
are currently optimized away by the compiler. Figure 6 com-
pares PINOCCHIO to other high-level language VMs in terms
of message sends by running a Fibonacci benchmark. The
results are presented relative to the speed of the standard
implementation of Fibonacci in Pharo 3.10-3. Since most
of the other VMs have dedicated support for conditionals
we created a second Fibonacci test (marked with all sends
in Figure 6) enforcing message sends even for condition-
als. Since Python prohibits the addition of new behavior to
built-in types we were unable to modify the benchmark ac-
cordingly. With this test we provide a fair comparison to
the current implementation of PINOCCHIO which does not
yet feature any of these optimizations. Based on this test
PINOCCHIO is slightly faster than Ruby 1.9 (with all mes-
sage sends) and magnitudes faster than the older Ruby 1.8.7.

1 Revision r1397, http://pinocchio.unibe.ch/svn/pinocchio
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Figure 6. Fibonacci benchmark testing the speed of mes-
sage sends. Values are given relative to Pharo 3.10-3.

Every added level of interpretation in PINOCCHIO causes
a constant overhead. Our Interpreter class should have
the same speed as the C interpreter since it is a direct reifi-
cation of the C interpreter without any changed semantics.
At this time, however, this interpreter is still mostly meta-
circular making it around 160 times slower than the C inter-
preter since all application-level actions including constant
evaluation require at least 3 message sends. Where the C
interpreter performs 89 messages to calculate the sixth Fi-
bonacci number, the meta-circular interpreter internally per-
forms 9, 665 message sends to perform those 89 sends, that
is, around 108 times more message sends.

5.1 Inline Caching

The overhead of the meta-circular interpreter can be amor-
tized by linking all interpretation methods back to the C
code. This would make the meta-circular interpreter exactly
as fast as the C interpreter. To let custom interpreters ben-
efit from the same speedup the C-level interpretation code
should only meta-circularly evaluate the custom extensions
to the interpreter. The C-level interpreter can be made aware
of such extensions by using C-level polymorphic inline
caches at reified functions that map classes of interpreters to
their concrete implementation of the reified method. If the
method is not overridden, the C-level interpreter continues
evaluation at the C-level. Only when a custom implemen-
tation is provided is the interpreter popped from the meta-
continuation and reactivated. This limits the interpretation
overhead of custom interpreters to their custom features.
The stepping interpreter for example needs 10, 995 mes-

sage sends to evaluate the sixth Fibonacci number. This is
1, 330 sends more than the normal meta-circular interpreter,
or 15 message sends per application-level message send.
The number of extra message sends is not surprising

given that even all boolean operations are currently imple-
mented as message sends. General language optimizations
such as avoiding message sends whenever possible dramat-
ically decreases the number of sends on both the appli-
cation level as well as the interpreter level. The message
ifTrue:ifFalse: in combination with value sent to the

closure accounts for 30 of the 89 application-level messages.
In most Smalltalk implementations these messages are opti-
mized away, thus already removing 34% of the steps. The
same is true for the messages used in the implementation of
the stepping interpreter itself.

5.2 JIT Compilation

Unlike the core interpreter, PINOCCHIO’s interpreter exten-
sions are interpreted. It is interesting to look into dynamic
optimization techniques that can combine compiled versions
of the extensions with the native version of the interpreter
into one fast customized interpreter.
One can imagine running a JIT compiling interpreter that

is hosting another instance of the same class. This second in-
terpreter then runs the application. The first interpreter will
turn all extension methods of the second into native methods
that are embedded into the native interpreter definition. This
makes the second interpreter a native JIT compiling inter-
preter. This interpreter would then evaluate the actual appli-
cation and JIT compile the relevant parts.
Customized interpreters would however not be able to

directly benefit from JIT compilation of the application. All
the custom interpreters would have to provide their own
JIT compiler plug-ins so that the embedded semantics are
correct. This would call for another type of JIT strategy.
Bolz et al. propose JIT compilation of the meta-level [5]. In
their approach, the meta-interpreter applies a tracing JIT to
the interpreter between looping constructs of the interpreter
definition. This automatically embeds the semantics of the
interpreter into the application, since the meta-interpreter is
evaluating both at once.

6. Related Work
We summarize several of the key approaches to reflection
and elaborate the differences to PINOCCHIO.

6.1 AOP

Aspect-Oriented Programming (AOP) [26] targets modular-
ization of crosscutting concerns. It consists of two main
parts, a set of advices that change the behavior of programs
and a pointcut language that declaratively defines where the
aspect system has to weave in the advices.
The power of AOP mainly comes from the pointcut lan-

guage that makes the way shadow points are selected for lo-
cal modifications easier and more understandable by being
declarative.
Since reflection provides support for changing the struc-

ture and behavior of programs, AOP can be seen as a princi-
pled, structured, and language-supported way of doing meta-
and reflective programming [34]. AOP can be implemented
by providing a pointcut language as a declarative front-end
to reflection [38].
The main difference between PINOCCHIO and AOP

is that AOP is designed towards discrete reflection while
PINOCCHIO handles continuous reflection.
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6.2 Partial Behavioral Reflection

During a workshop on reflection Smith mentioned that in
the wide spectrum of reflective applications most applica-
tions only need a fragment of the information that can be
provided by the interpreter [22]. Since reification of infor-
mation is expensive due to wrapping into special objects,
partial behavioral reflection tries to limit the number of rei-
fied objects and message sends needed during the execution
of a program.
Partial behavioral reflection provides a reflective model

that enables local extensions to the code by attaching me-
taobjects to operations through links. A link conditionally
lets the metaobject decide over the evaluation of the opera-
tion that activated the link [40]. In the original model links
are installed in the code at class-loading time. Unanticipated
partial behavioral reflection extended the model by allowing
dynamic installation and retraction of links [35]. The model
was also further refined to hook into the high-level AST rep-
resentations of the code rather than low-level bytecodes [10].
Both partial behavioral reflection and AOP essentially ap-

ply structural intercession to the base-level code: they do not
alter the evaluation of the base-level code but rather change
the code to incorporate the new behavior. The developers of
AspectJ even take pains to distinguish the implementation of
AspectJ from classical computational reflection [26].
As explained in subsection 3.3, PINOCCHIO’s first-class

interpreters and partial behavioral reflection are not mutually
exclusive, on the contrary. Whenever a reflective change
only locally affects code the change should only have a local
overhead. PINOCCHIO does however cleanly solve problems
that arise in pure partial behavioral reflection by avoiding
meta-confusion in the first place and by providing a model
for global modifications.

6.3 Generating Interpreters

Douance et al. [14] state it is useful to build new interpreters
that embed new reflective capabilities in an effort to opti-
mize the amount of information that is actually reified. They
propose to implement specific changes by modifying a meta-
circular interpreter that is compiled to a new interpreter for
each specific metaobject protocol.
The idea of generating real-world VMs from meta-

circular definitions has been explored to a greater extent in
several projects [4, 23, 41]. They split their energy into build-
ing a meta-circular VM and building a compiler toolchain
that can optimize the high-level meta-circular interpreter to
be at least as fast as (and potentially faster than) a manually
written interpreter. The difference in the various projects lies
in the language being implemented by the VM, and more
importantly the expressiveness of the actual subset of the
language used in the definition of the meta-circular VM.
While this approach provides programmers with the abil-

ity to change a high-level version of the interpreter to incor-
porate new language features, these changes have to be ap-

plied at compile-time. The semantics of the resulting inter-
preter cannot be changed anymore from within applications
running on them. This again results in multiple interpreter
sources and applications are unable to use different versions
of the interpreter for different subparts of the applications.
The expressiveness of the language accepted by the compiler
has a great impact on the ease of development.
Since also for PINOCCHIO a first interpreter that reifies

itself needs to be bootstrapped, the technique of compil-
ing meta-circular interpreters to standalone optimized in-
terpreters could be reused. In PINOCCHIO however all ex-
tensions to the interpreter are applied at runtime, avoid-
ing the problems exhibited by the compile-time modifica-
tion approaches. Modifications are easily implemented and
tested through use of the complete expressiveness of the
host-language. The modifications can be used in combina-
tion with other custom interpreters since they live in different
subparts of the same runtime. This setup does have impli-
cations on the direct performance of the extensions, which
are hopefully alleviated by the optimizations discussed in
Section 5.

6.4 Meta-circular Interpreters

Meta-circular interpreters [1] such as the Smalltalk debugger
and all uncompiled versions of the interpreters described in
subsection 6.3 are a way of easily allowing changes to the
semantics of a language at runtime from within the language
itself. They generally reify a subset of features from the host-
language, and absorb the complementary set of features.
The first problem with meta-circular interpreters is that

to modify their semantics one generally needs to directly
modify the source code. No extension mechanisms are pro-
vided by the interpreters themselves. PINOCCHIO on the
other hand provides a clear protocol for extension through
subclassing.
The second problem is that meta-circular interpreters im-

pose a large runtime overhead in comparison with standard
interpreters. This problems is partly solved by compilation
of the full interpreter, as discussed in subsection 6.3, but this
results in a compile-time rather than runtime change, result-
ing in immutable interpretation semantics at runtime.
While in the current implementation of PINOCCHIO the

Interpreter class is still mostly meta-circular a clear strat-
egy of how performance can be greatly increased has been
outlined. We explained how to rely as much as possible
on the existing C-level interpreter, essentially removing the
meta-circular layer for all code except for the custom inter-
preter extensions. Then we explained how these extensions
to the interpreter can also be optimized at runtime through
JIT compilation.

6.5 Tower Approach to First-Class Interpreters

Of all reflective interpreters, PINOCCHIO is most similar to
the model proposed by Simmons et al. in their prototype
Refci [36]. Just like PINOCCHIO, Refci provides access to
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first-class extensible interpreters. Rather than starting new
extended interpreters the model proposed by Refci follows
the interpreter-model of reflection. In Refci interpreters are
extended at runtime with new features.
The interface provided by PINOCCHIO for the extension

of interpreters is much more fine-grained and practical. Our
interpreters follow the standard object-oriented extension
strategy of subclassing. An advantage of a more fine-grained
extension protocol is that smaller changes to the semantics
can be more easily scoped without impacting the perfor-
mance of the natively provided system. In Refci all code
has to go through all extension points before ending up in
the native code that handles it, even if no extensions to the
semantics of that particular node were planned by the inter-
preter extension in question.
Unlike Refci interpreters, PINOCCHIO’s interpreters are

not tail-recursive continuation passing interpreters (by de-
fault). Instead they are normal recursive interpreters that rely
on the continuation of the interpreter below to maintain its
continuation. This greatly simplifies the final definition of
the actual interpreter since control flow is handled implicitly.
It however does not restrict the power of the interpreter since
continuations can be captured and restored. In Refci such an
implementation would be unpractical since tail-recursion is
used to ensure that the theoretically infinite tower of inter-
preters can be cut off to a finite stack of actually running
interpreters and an infinite meta-continuation of waiting in-
terpreters.
In Section 4.3 we showed how PINOCCHIO interpreters

can be made modifiable just like Refci’s interpreters. In
PINOCCHIO the first-class interpreters themselves can de-
cide what is made modifiable while in the case of Refci the
extensions themselves are in control. The modifications ap-
plied to an interpreter in PINOCCHIO can have further extent
than the recursion in which it was created. In Refci this no-
tion of extended continuations was merely noted as future
work.
Refci provides no model to share extensions between

different interpreters in the stack. Duplicate changes need to
be installed manually in the levels where they are required.
In PINOCCHIO subclassing takes care of the sharing of code.
Since in PINOCCHIO interpreters are manually stacked these
interpreters can be instances of the same interpreter thus
automatically sharing extensions.
No effort was made to outline how Refci can be made

into a practical runtime. Since all interpreters in Refci are
meta-circular it thus suffers from the problems explained in
subsection 6.4.

6.6 Dealing with Infinity

Brown [42] is an extension of 3-Lisp that first introduced the
meta-continuation as an explicit representation of the infi-

Figure 7. Finite Scope of the Infinite Tower of Interpreters

nite tower of interpreters. As shown in Figure 72, the theo-
retically infinite tower of interpreters can be implemented as
a finite stack of interpreters running on top of a level-shifting
processor—a non-reflective processor that is able to shift up
a level whenever a reification occurs in the application. To
stay efficient the processor is also able to shift down when-
ever a level of interpretation is not needed anymore. An ap-
plication should ultimately never run at a level higher than
is necessary. Shifting up is implemented in Brown by pop-
ping an interpreter from the meta-continuation, a lazy infi-
nite stack of interpreters. Shifting down pushes the unneeded
interpreter back onto the meta-continuation.
As explained in subsection 3.2, PINOCCHIO uses this

technique to minimize its finite stack of interpreters.

7. Conclusion
PINOCCHIO is a runtime for Smalltalk based on AST in-
terpreters rather than bytecode interpretation. PINOCCHIO
eliminates the barrier between VM and runtime by fully
reifying the core interpreter. Instead of providing only a
MOP for structural reflection, PINOCCHIO provides behav-
ioral reflection by specializing first-class interpreters.
PINOCCHIO inherits its object model from Smalltalk ex-

cept for “compiled” methods which are represented as ASTs
rather than bytecode. Objects can freely flow between base-
and meta-levels provided their structural representation re-
mains the same. Otherwise the interpreter is responsible for
upping and downing objects between levels. Interpreters are
defined recursively, but have a fine degree of control over
program flow due to their ability to capture and transfer
control to first-class continuations. Garbage collection, and
other native features provided by the core interpreter can be
simply reused by specialized interpreters.
We have shown through several examples how behavioral

reflection provided by PINOCCHIO allows sophisticated be-
havioral adaptations to be easily implemented. In addition
to a serial and a parallel debugger we demonstrated how an
alias interpreter, which tracks object flow for back-in-time
debugging, can be easily implemented by a specialized in-
terpreter. This stands in contrast to a conventional approach

2We turned the tower upside-down since it better matches the mental model
that we have of applications and interpreters: applications run on top of
interpreters, not the other way around.
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in Smalltalk which required invasive changes to create a spe-
cialized VM.
PINOCCHIO is presently a proof-of-concept prototype.

Although the core interpreter has acceptable performance,
no serious optimization effort has been undertaken yet. We
have outlined a number of promising tracks that we believe
will significantly reduce the overhead introduced by special-
izing an interpreter.
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