
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Incremental Dynamic Updates
with First-class Contexts

Erwann Wernlia Mircea Lungua Oscar Nierstrasza

a. Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Abstract Highly available software systems occasionally need to be up-
dated while avoiding downtime. Dynamic software updates reduce down-
time, but still require the system to reach a quiescent state in which a
global update can be performed. This can be difficult for multi-threaded
systems. We present a novel approach to dynamic updates using first-class
contexts, called Theseus. First-class contexts make global updates unnec-
essary: existing threads run to termination in an old context, while new
threads start in a new, updated context; consistency between contexts is
ensured with the help of bidirectional transformations. We show that for
multi-threaded systems with coherent memory, first-class contexts offer
a practical and flexible approach to dynamic updates, with acceptable
overhead.

Keywords dynamic language; dynamic software update; reflection

1 Introduction

Real software systems must be regularly updated to keep up with changing requirements.
Downtime may not be tolerable for highly available systems, which must then be
updated dynamically, e.g., web servers. The key challenge for dynamically updating
such systems is to ensure consistency and correctness while maximizing availability.

The most popular scheme for dynamic updates is to interrupt the application to
perform a global update of both the code and the state of the program [NHSO06,
SHM09, GR83, HSD+12]. Such updates are inherently unsafe if performed at an
arbitrary point in time: running threads might run both old and new code in an
incoherent manner while old methods on the stack might presume type signatures that
are no longer valid, possibly leading to run-time type errors. Quiescent global update
points must be selected to ensure safe updates, but such points may be difficult to
reach for multi-threaded systems [NH09, SHM09]. More generally, a global update
might not be possible due to the nature of the change, for example it would fail to
update anonymous connections to an FTP server that mandates authentication after
the update: the missing information cannot be provided a posteriori [NHSO06].

Erwann Wernli, Mircea Lungu, Oscar Nierstrasz. Incremental Dynamic Updates with First-class
Contexts. In Journal of Object Technology, vol. 12, no. 3, 2013, pages 1:1–27.
doi:10.5381/jot.2013.12.3.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://scg.unibe.ch
http://dx.doi.org/10.5381/jot.2013.12.3.a1
http://dx.doi.org/10.5381/jot.2013.12.3.a1

2 · E. Wernli, M. Lungu, O. Nierstrasz

Instead of global updates, we propose incremental updates. During an incremental
update, clients might see different versions of the system until the update eventually
completes. Each version is represented by a first-class context, which can be manip-
ulated explicitly and enables the update scheme to be tailored to the nature of the
application. For instance, the update of a web application can be rolled out on a
per-thread, or per-session basis. In the latter case, visitors always see a consistent
version of the application. Such a scheme would not be possible with a global update:
one would need to wait until all existing sessions had expired before starting new
ones. The overall consistency of the data is maintained by running bidirectional
transformations to synchronize the representations of objects shared across contexts.
We show that the number of such shared objects is significantly smaller than the
number of objects local to a context, and that this strategy fits well with the nature
of the event-based systems we are interested in.

Bidirectional transformations were used in prior work [CYH+11, Dug01, Cho09]
to achieve dynamic updates, respectively for systems written in C [CYH+11], from
a type-theoretic point of view [Dug01], and for databases [Cho09]. However, neither
of these approaches modeled context explicitly, nor did they tackle object-oriented
systems, taking into consideration type safety, performance, concurrency and garbage
collection all together. This paper is an extended version of previous conference
paper [Wer12]. It contains a stronger validation that assesses all phases of the update
for a multi-threaded system with coherent memory. It has also been extended with
sections detailing language constructs that were obstacles, to provide a more balanced
view on the applicability of our approach. The main contribution of this paper is to
demonstrate that first-class contexts offer a practical means to dynamically update
software.

First, we present our Theseus approach informally with the help of a running
example in section 2. We present our model in detail in section 3 and our implementa-
tion in section 4. We validate our approach in section 5 and demonstrate that it is
practical. We put our approach into perspective in section 6 and we compare it with
related work in section 7 before we conclude in section 8.

2 Running Example

To illustrate our approach let us consider the implementation of one of several available
Smalltalk web servers1. Its architecture is simple; a web server listens to a port, and
dispatches requests to so-called services that accept requests and produce responses.
For the sake of our running example, let us assume that the server keeps count of
the total number of requests that have been served. Figure 1 illustrates the relevant
classes.

2.1 The Problem with Updates

Let us consider the evolution of the Response API, which introduces chunked data
transfer2, also depicted in Figure 1. Assume that instead of sending “Hello World”
over the wire we need to produce a sensible answer that takes some time. Installing
such an update globally raises several challenges. First, both the HelloWorldService

1See http://www.squeaksource.com/WebClient.html (The name is misleading since the project
contains both an HTTP client and server)

2See version 75 of the project.

Journal of Object Technology, vol. 12, no. 3, 2013

http://www.squeaksource.com/WebClient.html
http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 3

handle(req:Request)
HelloWorldService

Response resp :=
req.getResponse();
resp.send(200, "HelloWorld");

send(code,html)
Response start(code)

sendChunk(html)
close()

Response
Response resp :=
req.getResponse();
resp.start(200);
resp.sendChunk("Hello ");
resp.sendChunk("World");
resp.close();

handle(req:Request)
HelloWorldService

start()
stop()

port
numRequests
services

WebServer

handle(req:Request)
server

AbstractService

version 1 version 2

Figure 1 – Design of the web server and a simple behavioral update

and Response classes must be installed together: How can we install multiple related
classes atomically?

Second, the methods impacted by the update can be modified or added only when
no request is being served: When can we guarantee that the installation will not
interfere with the processing of ongoing requests?

Rather than performing a global update, it would be more appealing to do an
incremental update, where ongoing requests continue to be processed according to the
old code, and new requests are served using the new code. Note that the granularity
of the increment might differ depending on the update. We could imagine that the
modification of a check-out process spanning multiple pages would imply that the
increment be the web session rather than the web request. Our solution to enable
incremental updates is to reify the execution context into a first-class entity.

Not only the behavior but also the structure of classes can change. Fields can
be added or removed, and the type of a field can change. As a matter of fact, in
a subsequent version of the project3, the developers added a field siteUrl to the
WebServer class. Unfortunately, the server is an object shared between multiple
requests, and each service holds a reference back to the server. If the object structure
is updated globally while different versions of the code run to serve requests, old
versions of methods might access fields at the wrong index. While the problem for
field addition can be solved easily by ensuring new fields are added at the end, we need
to consider type changes as well. For instance, one could imagine that in the future
newest versions will store the siteUrl as an HttpUrl rather than a String. Therefore,
the general problem remains: How can we ensure consistent access to objects whose
structure (position or type of fields) has changed?

Our solution to ensure consistent access is to keep one representation of the object
per context and to synchronize the representations using bidirectional transformations.
Once there is no reference any longer to a context, it is garbage-collected together
with the corresponding representations of objects in that context.

3See version 82 of the project.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

4 · E. Wernli, M. Lungu, O. Nierstrasz

2.2 Lifecycle of an Incremental Update

Let us consider the addition of the field siteUrl in the WebServer class in more detail.
The following steps describe how an incremental update can be installed with Theseus4,
an implementation of our approach, while avoiding the problems presented above.

First, the application must be adapted so that we can “push” an update to the
system and activate it. Here is how one would typically adapt an event-based server
system, such as a web server.

0. Preparation. First, a global variable latestContext is added to track the latest
execution context to be used. Second, an administrative page is added to the
web server where an administrator can push updates to the system; the uploaded
code will be loaded dynamically. Third, the main loop that listens to incoming
requests is modified so that when a new thread is spawned to handle the incoming
request, the latest execution context is used. Fourth, the thread that listens to
incoming connections in a loop is modified so that it is restarted periodically
in the latest context. Note that the listening socket can be passed to the new
thread without ever being closed.

After these preliminary modifications the system can be started, and now it
supports dynamic updates. The life cycle of an update would be as follows:

1. Bootstrap. After the system bootstraps, the application runs in a default context
named the Root context. The global variable latestContext is initialized to refer
to the Root context. At this stage only one context exists and the system is
similar to a non-contextual system.

2. Offline evolution. During development, the field siteUrl is added to WebServer
and other related changes are installed.

3. Update preparation. The developer creates a class called UpdatedContext, which
specifies the variations in the program to be rolled out dynamically. This is done
by implementing a bidirectional transformation that converts the program state
between the Root context and the Updated context. Objects will be transformed
one at a time. By default, the identity transformation is assumed, and only a
custom transformation for the WebServer class is necessary in our case.

4. Update push. Using the administrative web interface, the developer uploads
the class UpdatedContext as well as the other classes that will be required by
the context. The application loads the code dynamically. It detects that one
class is a context and instantiates it. Contexts are related to each other by a
ancestor-successor relationship. The ancestor of the newly created context is the
active context at the time of code loading. The global variable latestContext is
updated to refer to the newly created instance of the Updated context.

5. Update activation. When a new incoming request is accepted, the application
spawns a new thread to serve the request in the latestContext (which is now
the Updated context) while existing threads terminate in the Root context.

6. Incremental update. When the web server is accessed in the Updated context
for the first time, the new version of the class is dynamically loaded, and the

4In reference to Theseus’ paradox: if every part of a ship is replaced, is it still the same ship?

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 5

Class resolve(String:className)
Object migrateTo(Object:newState)
Object migrateFrom(Object:oldState)
synchronizeTo(Object:newState,Object:oldState)
synchronizeFrom(Object:newState,Object:oldState)

ancestor
Context

Figure 2 – The Context class.

instance is migrated. Migration is triggered when the object is accessed from
a different context for the first time. In our case, this results in the fields port
and services being copied, and the field siteUrl being initialized with a default
value. Fields can be accessed safely from either the Root or Updated context, as
each context has its own representation of the object. To ensure that the count
of requests processed so far, numRequests, remains consistent in both contexts,
bidirectional transformations between the representations are used. They are
executed lazily : writing a new value in a field in one context only invalidates the
representation of the object in the other context. The representation in the other
context will be synchronized only when it is accessed again. Synchronization
is performed lazily when changes happen to objects that have already been
migrated.

7. Garbage collection. Eventually the listener thread is restarted, and all requests
in the old context terminate. A context only holds weakly onto its ancestor so
when no code runs in the old context any longer, the context is finalized. The
finalization forces the migration of all objects in the old context that have not
been migrated yet. The old context and its object representations can then be
garbage-collected. It must be noted that at the conceptual level, all objects in
memory are migrated. In practice, only objects that are shared between contexts
need to be migrated.

3 First-class Context

Our approach relies on a simple, yet fundamental, language change: the state of an
object is contextual. We assume throughout the rest of the paper that at most two
contexts exist at a time, which we refer to as the “old” and “new” contexts. The
model can be easily generalized to support any number of co-existing contexts, but the
implementation would need to be revised since it takes advantage of this assumption.

3.1 User-defined Update Strategy

Contexts are first-class entities in our system. Programmers have complete control over
the dynamic update of objects and classes. Contexts are ordinary instances of the class
Context, shown in Figure 2. A context is responsible for maintaining the consistency of
the representations of the objects belonging to it. Methods Context.migrate{To|From}
and Context.synchronize{To|From} define the update strategy.

An object is initially local to the context in which it was created. When the object
is first accessed in the “other” context (the context that isn’t the one it was created

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

6 · E. Wernli, M. Lungu, O. Nierstrasz

Old Local Shared New Local

new access

old access /
new access

reclaim

reclaim

Shared New Local

old access /
new access

old access

reclaim

Figure 3 – Objects are originally local to a context. Depending on its access patterns, the
object might become shared between contexts. Eventually, the object is reclaimed
when the update completes and the object is local again.

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate To

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize To

"localhost"

Figure 4 – The effects of the various methods that class Context mandates. Note that the
arrow means a field copy operation and the method always applies to the new context.

in), the system triggers the migration of the object, after which the object is shared
(see Figure 3). The migration creates the initial representation of the object in the
“other” context. It is implemented in methods Context.migrate{To|From}. In our case,
the migration of the web server from the old context to the new context would copy
the existing fields as is and initialize the new field siteUrl with a predefined value
(see Figure 4). By construction, either migrateTo or migrateFrom will be fired for an
object, depending on whether it was originally created in the old or new context.

Methods Context.synchronize{To|From} are responsible for subsequent updates of
the state when the object is shared. In the case of our example, the field siteUrl must
not be initialized again. Both methods synchronize{To|From} can be fired multiple
times for a given object depending on its access patterns from the old and new contexts.
In the rest of the paper, we use the term “transformations” for both migrations and
synchronizations.

Each context has an ancestor. Since the contexts are loaded dynamically in an
unanticipated fashion the update strategy is encoded in the newest context and ex-
pressed in terms of its ancestor, never in terms of its successor: methods Context.*From
use the old representation to update or create the new representation (new from old),
and methods Context.*To use the new representation to create or update the old
representation (old to new). The Root context is the only context that does not encode
any transformation and has no ancestor.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 7

3.2 Object Representations

Let us explain the semantics of our approach by considering how it could be imple-
mented with a meta-circular interpreter. At the application level, an object has a
unique identity and its state differs depending on the active context. An application
thread will implicitly impact either the old or the new representation of an object, but
cannot explicitly refer to either one. At the interpreter level, an application object is
implemented by several representations. Transformations are reflective hooks that run
at the interpreter level outside of any context. They can access simultaneously the
old and new representations of an application object. From within a transformation,
arbitrary messages cannot be sent to representations since the absence of context
makes their behavior ill-defined. Representations must be manipulated with reflec-
tive state accesses that operate correctly. Listing 1 shows for instance the identity
transformation.

Context>>synchronize: newState from: oldState
"copy all instance variables one-to-one"
newState instVarsDo: [:idx |
newState instVarAt: idx put: (oldState instVarAt: idx) other

]

Listing 1 – Identity Transformation

The message other returns the representation in the “other” context. Certain
objects in the system are primitive. They have a unique state in the system. This is
notably the case for contexts, scalar values (string, numbers, etc.), and semaphores.
Primitive objects can be used from the application and from the interpreter (i.e.,
within transformations). Listing 2 shows a transformation between two states where
the address and domain instance variables are concatenated. The transformation is
allowed because strings are primitive.

| address domain |
address := newState instVar: #address.
domain := newState instVar: #domain.
"store the concatenation of address @ email in variable email"
oldState instVar: #email put: (address , ’@’ , domain)

Listing 2 – Concatenation of two fields

Listing 3 shows the inverse transformation that splits the string into two parts.
The method split returns an array, which isn’t a primitive object. The manipulation
of an array from within a transformation is possible with an explicit context switch
which restores the existence of a context. Within a transformation, self represents
the new context, and self ancestor the old context.

| address domain |
"perform a context switch"
self ancestor do: [

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

8 · E. Wernli, M. Lungu, O. Nierstrasz

| email |
email := oldState instVar: #email.
"extract the address and domain of the email"
address := (email split: ’@’) first.
domain := (email split: ’@’) second.

].
newState instVar: #address put: address.
newState instVar: #domain put: domain.

Listing 3 – Splitting a field into two

3.3 First-class Classes

Application

Implementation

a

a1 a2

Object

A1

A

A2 Class Object

Class

Instance of
Representation of
Subclass of

Figure 5 – Object a is an instance of class A. Both a and A are contextual objects since
classes are first-class. At the interpreter level, contextual objects have multiple repre-
sentations. Classes Object and Class are primitive and have a unique representation.

Classes are also objects in our approach. At the application level, a contextual object
a is an instance of the contextual class A. At the interpreter level, contextual objects
and classes have multiple representations, as depicted in Figure 5. A representation
of a contextual object is an instance of the representation of the corresponding
contextual class. For example, the object representation a1 is an instance of the class
representation A1.

When an object is migrated, its original representation is passed as a parameter to
migrate{To|From}. The method creates and returns a second representation for the
given context. For instance, the migration of a1, which is an instance of A1, results in
a2, which is an instance of A2. The class can change only during migration. Indeed,
methods synchronize{From|to} take as arguments two representations, but are not
able to change the class they correspond to.

Classes are migrated similarly to regular objects. A specific representation of a class
is passed as parameter to migrate{To|From}, which must return a second representation.
For instance, the migration of A1, which is an instance of Class, returns A2, which is

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 9

also an instance of Class. Note that Class is a primitive in the system. Names of
classes are literals in the source that resolve at run time to first-class classes. This
binding is also contextual to support class renaming. Contexts are responsible for
class name resolution and must implement the method Context.resolve(String).

Similarly to reflective state accesses with instVar: and instVar:put, the method
class can be used from within transformations to obtain the class of a representation.
Methods Context.migrate{To|From} and Context.synchronize{To|From} can thus apply
custom transformations for specific objects and default to the identity transformation
for objects without structural changes. The code below applies a custom transformation
to instances of the Contact class:

UpdatedContext>>synchronize: newState to: oldState
(newState class instVar: #name) = #Contact ifTrue: [
"custom transformation for instances of class Contact"
| address domain |
address := newState instVar: #address.
domain := newState instVar: #domain.
oldState instVar: #email put: (address , ’@’ , domain).
^ self.

]
"default transformation (identity) for instances of other classes"
^ super synchronize: newState to: oldState.

Listing 4 – Custom transformation

3.4 Threads and Contexts

A thread can have one active context at a time. The runtime must be extended with
a mechanism to query the active context, and to switch the current context. When a
thread is forked, it will inherit the context of its parent thread. For convenience, a
thread can be forked and change its context right after (initially it is the Root context).
This way, code executed by the thread runs entirely in the given target context.

4 Implementation

We have implemented our approach in Pharo Smalltalk5 using bytecode transformation
to avoid changes to the virtual machine. A unique aspect of our implementation is that
it does not rely on proxies or wrappers, which do not properly support self-reference,
do not support adding or changing public method signature, and break reflection
[PKS08, ORH02].

During an incremental update, a contextual object corresponds concretely to two
objects in memory, one per context. To maintain the illusion that the old and new
representations of an object have the same identity, we adapt the references when
necessary: for instance, if b1 is assigned to a field of a1 in the old context, this results
in b2 being assigned to the corresponding field of a2 in the newest context. Figure 6
depicts such a setting.

5http://www.pharo-project.org

Journal of Object Technology, vol. 12, no. 3, 2013

http://www.pharo-project.org
http://dx.doi.org/10.5381/jot.2013.12.3.a1

10 · E. Wernli, M. Lungu, O. Nierstrasz

shared & clean

shared & dirtyb2

a2

b1

a1

new
old

new
old

localc1

b2

a2

b1

a1

new
old

new
old

c1 c2new
old

d1 d1

new
context

old
context

Object b is
accessed in the
new context.

b

a

c

d

Application View Implementation View

new
context

old
context

Figure 6 – From the application view, four contextual objects a,b,c,d and form a list.
From the implementation view, shared objects have one representation per context,
which can be either “clean” or “dirty”. Objects are migrated lazily. When object b is
accessed in the new context for the first time, the representation b2 is synchronized.
Since b refers to c, this triggers the migration of c and the representation c2 is cre-
ated, originally considered “dirty”. An access to c in the new context would create the
representation d2, etc. Dashed lines represent relationships visible only to the imple-
mentation, not the application.

Objects are migrated lazily, and can be either flagged as “clean” or “dirty”. Dirty
objects are out-of-date, and need to be synchronized upon the next access. Figure 6
shows the effect of an access to the dirty representation b2, which triggers the mi-
gration of the representation c2 it references directly. After the synchronization, the
two representations b1 and b2 of object b are clean. Subsequent writes to either
representation would however result in the other one to be flagged as dirty. In the
case of Figure 6, if b2 is modified, b1 would be marked as dirty.

We use bytecode rewriting to alter accesses to state and the way classes are resolved.
Concretely, an extra check is added before each state read and state write to determine
whether the object is shared between contexts. For state reads, if the object is shared
and “dirty” it is first synchronized and then marked as “clean”. Algorithm 1 shows in
pseudo code what happens upon state reads in case of the identity transformation.
For state writes, the new value is written and the other representation is invalidated
and flagged as “dirty”. We maintain the correspondence between representations using
synthetic fields added during the program transformation.

We must ensure that all objects reachable from the old context have been migrated
and are up-to-date before old representations are garbage-collected. Therefore, when
the old context becomes eligible for garbage collection, the system traverses the
object graph and forces the migration or synchronization of objects if necessary. This
corresponds to the transitions labelled “reclaim” in Figure 3. In the case of Figure 6,
the system would force the migration of d1 before garbage collection. If the graph
of reachable objects is big, the traversal can take long but can be conducted in the
background with low priority.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 11

1 if self is dirty and global then
// synchronization

2 for field ← fields of self do
// migration

3 if self.other.field is local then
4 migrate(self.other.field) ;
5 end

// synchronization
6 self.field = self.other.field.other;
7 end
8 mark self as clean;
9 end

10 read field self.name;

Algorithm 1: Pseudo-code for state reads in the case of the identity transformation

4.1 Concurrency and Garbage Collection

We assume that the system has a coherent memory, as is the case for the Cog VM for
Pharo. With a coherent memory, state reads and writes are atomic and side-effects
are immediately visibile to all threads.

Since our implementation instruments state accesses with additional logic, it does
not automatically preserve thread safety. A trivial way to preserve it would be to
acquire a per-object lock for each state access. Migrations and synchronizations of an
object would therefore never conflict. This would however lead to an unacceptable
performance penalty.

Instead, we use a relaxed locking scheme where state accesses to objects that are
local to a context do not require the acquisition of a lock. This scheme relies on the
use of per-field dirty flags instead of per-object dirty flags. It also assumes that the
original program is correctly synchronized and that reads and writes to a given field
never happen concurrently. This should be the case for any program, since developers
should never rely on the atomicity of state reads and writes even if memory is coherent.

Algorithm 2 adapts the pseudo code of the previous section to reflect this strategy.
It assumes that two representations of a contextual object have the same lock, i.e.,
self.lock = self.other.lock. An object is originally local to the context that created it.
The object might later become shared between contexts. The object does not become
shared at the moment it is accessed from another context, but when a reference to
it is obtained (lines 7-13 in algorithm 2). For instance, in Figure 6, the old state b1
is migrated when a new thread accesses a2.f and obtains a reference to b2. After
migration, the migrated state is considered dirty. This corresponds to the mechanism
of lazy propagation explained in the previous section.

Before we discuss the validity of our strategy, let us introduce some terminology:
we use the term old threads for threads running in the old context, and new threads for
threads running in the new context. Similarly, we use the terminology old local object
and new local object for local objects created originally in the old or new context.
The synthetic thread that forces the update of the reachable objects before garbage
collection is referred to as the background thread. We assume that before it forces the
update of an object, it acquires first its lock. As stated previously, concurrent reads
and writes to the same field are excluded, since we assume the program is correctly

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

12 · E. Wernli, M. Lungu, O. Nierstrasz

1 if self is local then
2 read field self.name;
3 else
4 acquire self.lock do
5 if self is not local then
6 if self.name is dirty then

// migration
7 if self.other.name is local then
8 acquire self.other.name.lock do
9 if self.other.name is local then

10 migrate(self.other.name) ;
11 end
12 release
13 end

// synchronization
14 self.name = self.other.name.other;
15 mark self.name as clean;
16 end
17 end
18 read field self.name;
19 release
20 end
Algorithm 2: Pseudo-code for state reads using a per-field dirty flag and locks for
mutual exclusion.

synchronized. Let us use the variables f and g to refer to distinct fields of an object.
We can informally list all possible cases and show that the strategy effectively

prevents lost updates:

Case 1: an old thread reads field f of an old local object. We consider three
sub-cases: 1) Concurrent reads and writes to g by old threads. This doesn’t lead to
conflicts since fields are independent. 2) Concurrent reads and writes to g by new
threads. This will trigger the migration of the object. After the migration, all fields of
the new representation are considered dirty, except g. If it was a read, g holds the
value of the old context; if it was a write it holds the updated value and the field
in the old context is marked as dirty. In both cases, there is no conflict. 3) Forced
updates by the background thread. By definition, this thread runs when there are no
old threads any longer, so this case is not possible.

Case 2: an old thread writes into field f of an old local object. We consider
three sub-cases: 1) Concurrent reads and writes to g by old threads. This doesn’t
lead to conflicts since fields are independent. 2) Concurrent reads and writes to g by
new threads. This will trigger the migration of the object. If it is a read, all fields of
the new representation except g will be dirty. The update to f is not lost and will
be reflected if it is later accessed in the new context. The situation is identical for a
write. 3) Forced updates by the background thread. By definition, this thread runs
when there are no old threads any longer, so this case is not possible.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 13

Case 3: old and new threads access an object shared between contexts.
We consider two sub-cases: 1) The background thread isn’t running. If the background
thread is not running, there is no way for a shared object to become local again. All
accesses will be mutually exclusive. 2) The background thread is running. If only new
threads exist, the background thread can force the update of an object after which
it will be local again. Lock acquisitions follow an idiom similar to double-checked
locking [BBB+] where the condition is local/is not local is tested twice. If an object
transitions from context-shared to context-local when a thread awaits for a lock, this
change will be detected when the lock is acquired and won’t lead to conflicts.

Case 4: a new thread reads field f of a new local object. We consider three
sub-cases: 1) Concurrent reads and writes to g by new threads. This doesn’t lead
to conflicts since fields are independent. 2) Concurrent reads and writes to g by old
threads. This will trigger the migration of the object. After the migration, all fields
of the old representation are considered dirty, except g. If it was a read, g holds the
value of the new context; if it was a write it holds the updated value and the field
in the new context is marked as dirty. In both cases, there is no conflict. 3) Forced
updates by the background thread. By definition, this thread does not mutate any
data so it cannot lead to lost updates.

Case 5: a new thread writes into field f of a new local object. We consider
three sub-cases: 1) Concurrent reads and writes to g by new threads. This doesn’t
lead to conflicts since fields are independent. 2) Concurrent reads and writes to g by
old threads. This will trigger the migration of the object. If it is a read, all fields of
the old representation expect g will be dirty. The update to f is not lost and will be
reflected if it is later accessed in the old context. The situation is identical for a write.
3) Forced updates by the background thread. By definition, the background thread
skips new local objects since they are by definition up-to-date. No update can be lost.

4.2 State Relocation

Transformations can be more complex than one-to-one mappings. For instance, instead
of keeping track of the number of requests in numRequests using a primitive numeric
type, the developer might introduce and use a class Counter for better encapsulation6.
During the transformation, the actual count would be “relocated” from the web server
object to the counter object that is now used. However, in this case, when the counter
is incremented, the old representation of the web server with field numRequests needs
to be invalidated. So far we have assumed that a write would invalidate only the
representation of the object written to, which is not the case any longer. To support
such transformations, the full interface enables custom invalidation on a per-field basis
with Context.invalidate{To|From}(Object oldState,Object newState,String field).

4.3 Special Language Constructs

The implementation described so far assumes a uniform language where state is
accessible solely via instance variables, and object instantiation is realized with
message sends to classes. Pharo Smalltalk is very close to this ideal language, with a
few peculiarities nevertheless.

6This would be the refactoring “Replace Data Value with Object”. See http://www.refactoring.
com

Journal of Object Technology, vol. 12, no. 3, 2013

http://www.refactoring.com
http://www.refactoring.com
http://dx.doi.org/10.5381/jot.2013.12.3.a1

14 · E. Wernli, M. Lungu, O. Nierstrasz

Closures Closures are first-class in Smalltak. Closures are instances of BlockClosure
and encode offsets of bytecode in the CompiledMethod they belong to. They are treated
analogously to other objects. After migration, they reference the newest version of the
corresponding CompiledMethod. Offsets are copied as is, assuming the same syntactic
position of the closure in both versions of the sources. If this assumptions turns out
wrong, it would be possible to write a custom transformation that corrects offsets
during transformation.

Primitive Methods Our approach cannot intercept state changes from primitive
methods. Primitive methods that operate on contextual objects must be adapted
to work according to our model. Since primitive methods are specified with the
primitive pragma, they can be renamed, and a wrapper method working correctly
can be provided with the original name. The majority of primitive methods operate
on primitive objects though, and do not need to be modified.

Cloning One special primitive method used pervasively is copy (and its variant
copyFrom:). The correctly working wrapper must first ensure that if the object is
shared, it is fully up-to-date. It can then be copied to produce a local clone.

Syntactic Sugar Pharo Smalltak has syntactic sugar for arrays {...}, literal arrays
#(...), and class variables that are visible to instances of a class and the class
itself. These constructs are first desugared, then processed through our regular
transformation.

Hashcode Comparing objects based on their identity works correctly with our
approach: in Figure 6, code comparing a == b would consistently compare either a1
with b1, or a2 with b2 depending on the context. The hash code of a would however
be different depending on the context, breaking notably the collection classes that use
hash codes to position elements in internal data structures. To ensure that different
versions of an object have the same hash code, we keep a unique identity in an
additional synthetic field.

Continuations The stack is a sequence of activation frames. Continuations can
capture context switches or ignore them. In the first case, the continuation would
be a primitive object that would not be modified when exchanged across contexts;
calling a continuation would restore the corresponding context switches along the
way. In the second case, the continuation would be contextual and its corresponding
activation frames would be adjusted when exchanged across contexts. Activation
frames could be migrated similarly to closures, assuming that methods on the stack
have not been modified between versions. If activated methods would have been
modified, the adjustment of the continuation would require a mapping that might be
difficult to achieve, as shown by Makris and Bazzi [MB09]. We have not implemented
support for continuations.

Exceptions In our approach, threads run consistently in one context (see subsec-
tion 3.4). An exception is an object that is thrown and caught within the same
context. If a thread can switch temporarily its context, objects flowing in and out of
the boundary of the temporary context must be migrated accordingly, which includes
exceptions. The migration of the stack frames the exception refers to would lead in
this case to issues similar to those with continuations.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 15

4.4 Further Details

We used a custom compiler to rewrite the bytecode of contextual classes. We instru-
mented copies of kernel classes (array, dictionary, etc.) to avoid metacircularity issues
during development. Also, the Object class cannot be extended with the necessary
information for our model (namely the synthetic fields to related versions with each
other) and we instead extended the subclasses of Object. Primitive classes (see sub-
section 3.2) do not require any bytecode rewriting. This design requires methods of
primitive classes like String»split to be trapped: invoked from the environment, an
instance of the uninstrumented collection class is returned; invoked from our applica-
tion, an instance of the instrumented collection class is returned. The complete set of
such methods has not been identified and trapped, which can lead to minor bugs.

The active context is stored in a thread-local variable and we add a new method
to fork a closure in a specific context, e.g.,[. . .] forkInContext: aContext. When
a closure is forked, it becomes a shared contextual object and is migrated. As
the program proceeds, objects referenced by the closure are migrated lazily when
accessed. Contexts hold only weak references to their ancestor and implement the
method Object»#finalize, which forces the migration of all reachable objects before
the context becomes eligible for garbage collection.

5 Validation

5.1 Evolution

We conducted a first experiment whose goal was to assess whether our model could
support long-term evolution, that is, whether it could sustain successive updates.
We considered the small web server of section 2, which despite its simplicity cannot
be updated easily with global updates. The sever has a simple architecture and
is comprised of 7 classes: WebServer, WebRequest, WebResponse, WebMessage, WebUtils,
WebCookie, WebSocket. We selected the 4 last versions with effective changes: version
75 introduced chunked data transfer, version 78 fixed a bug in the encoding of URL,
version 82 introduced siteUrl, and version 84 fixed a bug in MIME multipart support.

To restart periodically, the listener thread executing WebServer»runListener was
adapted to accept incoming connections only during 1 second, after which a new
listener thread is restarted (see Listing 5). It required only a couple of lines to be
changed. The method WebServer»asyncHandleConnectionFrom: spawns a new thread
per connection. It was simply modified to spawn the thread in the latest context.

WebServer>>runListener
| connectionSocket startTime |
startTime := Time now.
[(Time millisecondsSince: startTime) < 1000] whileTrue: [
connectionSocket := listenerSocket waitForAcceptFor: 5.
self asyncHandleConnectionFrom: connectionSocket.

].
"the listener restarts itself in the latest context"
[self runListener] forkInContext: CurrentContext lastest

Listing 5 – Modified listener thread. It omits error handling code for readability.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

16 · E. Wernli, M. Lungu, O. Nierstrasz

We implemented the hello world service of section 2. Only one update required us
to write a custom transformation: the one that introduced the siteUrl field, which we
initialized to a default value.

UpdatedContext>>migrateFrom: oldState
(oldState class instVar: #name) = #WebServer ifTrue: [
| newState |
newState := oldState class other new.
newState instVar: #port put: (oldState instVar: #port).
newState instVar: #nbReq put: (oldState instVar: #nbReq)
newState instVar: #services put: (oldState instVar: #services)
"initialize the new field"
newState instVar: #siteUrl put: ’http//localhost’.
^ newState.

]
^ super migrateFrom: oldState.

Listing 6 – Migration that initializes field siteUrl

We ran the 4 successive dynamic updates, and verified that once it was no longer
used, the old context would be garbage-collected. Since web browsers keep one
connection alive for multiple requests, we could observe different versions of the
services in two browsers.

5.2 Run-time Characteristics

For the second experiment, we picked a typical technology stack with two well-known
production projects: the Swazoo7 web server and the Seaside8 web framework. This
corresponds to several hundred classes. Similarly to the previous experiment, the web
server was adapted to periodically restart its listener thread and process requests in the
latest context. We were interested in the run-time characteristics and in assessing (1)
whether our assumptions about object sharing hold, (2) what is the memory overhead,
and (3) what is the time overhead.

As a case study, we considered the counter component example that comes with
the Seaside distribution. During maintenance, only few classes change. Most objects
are migrated with the identity transformation, and only certain objects require custom
transformations. The exact nature of the transformation is not significant. Therefore,
for the sake of simplicity, we artificially updated the system and used the identity
transformation for all objects.

We were interested to assess the overhead of our implementation during the five
following phases:

(i) with only the old context when no object is shared,

(ii) during the incremental update when objects are shared and migrated lazily,

(iii) after objects have been migrated but are still considered shared,
7http://www.swazoo.org
8http://www.seaside.st

Journal of Object Technology, vol. 12, no. 3, 2013

http://www.swazoo.org
http://www.seaside.st
http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 17

Table 1 – Read/write ratios and heap size per phase. The star (*) indicates phases with
increasing memory consumption, for which we considered the peak.

i ii* / iii iv* v
reads 59’908 60’952 62’021 61’568
shared reads 0 29’278 29’666 0
% shared 0.00 46.80 46.63 0.00

writes 3’773 3’749 3’777 3’745
shared writes 0 174 174 0
% shared 0.00 4.64 4.61 0.00

objects 48’905 49’390 49’829 49’961
shared objects 0 1’118 36’591 0
% shared 0.00 2.26 73.43 0.00

Heap size 1’063’492 1’078’494 1’087’065 1’085’704
Shared heap size 0 30’160 858’695 0
% shared 0.00 2.80 78.99 0.00

(iv) when the old context is finalized and the system forces the migration/update of
all objects reachable in the old context, and

(v) after the old context has been garbage-collected and the system runs as in (i).

5.2.1 Object Sharing and Memory Overhead

We studied object sharing and memory overhead by manually incrementing the counter
from one browser session. We tracked the number of reads and writes to objects shared
between contexts, and to objects local to a context. To account for “sharable” objects
in the heap, we tracked all objects reachable from classes and all objects reachable
from variables captured by forked closures. To account for the “local” objects in the
heap, we tracked all objects that were receivers or return values of message sends.

We measured first the memory after 5 increments of the counter, before any update.
This corresponds to phase (i). We reset the tracking, installed the update, incremented
the counter 5 more times and then measured memory again. This corresponds to
phase (iii) which itself corresponds to the peak of memory of phase (ii). We then
measured the memory at the peak of consumption for phase (iv), when the complete
graph of objects has been traversed but no object has been reclaimed yet. Finally, we
reset the tracking, incremented the counter 5 times, and measured again the memory.
This corresponds to phase (v), after memory has been reclaimed.

Since our implementation uses a copy of the kernel classes, we observe only the
effects of our application in isolation from the Smalltalk environment. We track
receivers and return values at call sites, which correctly considers primitive objects
whose classes haven’t been instrumented (see section 4). Since transient objects are
tracked, they will not be garbage-collected. Our approach does not measure the
effective size of the heap, but estimates the upper bound. This upper bound is thus
the sum of the sizes of the individual objects. The size of an object was computed with

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

18 · E. Wernli, M. Lungu, O. Nierstrasz

17:33:40 17:33:50 17:34:00 17:34:10 17:34:20 17:34:30 17:34:40 17:34:50
0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

90 ms

100 ms

110 ms

120 ms

130 ms

75% 50% 25%

i ii iii iv v

50% original 50% baseline

Figure 7 – Response time quantiles for a typical run of the load test. Quantiles are com-
puted using measures within a window of 1 second. The various phases (i) to (v) of the
dynamic update are highlighted with different background colors.

a known algorithm that considers its structure9, then it was doubled in the case the
object is shared. When an object is shared between contexts, we need to keep for each
object representation the following information: a semaphore (see subsection 4.1), a
unique identifier (see subsection 4.3), dirty flags (see subsection 4.1), and one reference
to the “other” representation (see subsection 4.1). Table 1 does not account for this
overhead that is very implementation-specific.

We make the following observations from the results presented in Table 1:

• There are an order of magnitude more reads than writes.

• The percentage of objects effectively shared (2.26%) during phase (iii) is smaller
than the percentage of objects that are shareable (73.43%) and thus migrated in
phase (iv).

• Shared reads represent 46% of all reads. Shared writes are mostly neglectable
(4.6% in phases (iii) and (iv)). This supports the idea that an overhead for
accesses to shared objects is tolerable.

• The heap is composed mostly of shareable objects (73.43%, phase (iv)) and
only few transient, local objects. This might be related to the stateful nature of
the Seaside framework. This means however that our approach might entail an
important memory overhead in the case study.

5.2.2 Time Overhead

We studied the time overhead in a multi-threaded scenario. We conducted load tests10
with the following setting: 10 concurrent visitors connect to the website and start a

9See Seaside’s internal memory profiler, and the method WAMemoryItem»sizeOfObject
10http://jmeter.apache.org

Journal of Object Technology, vol. 12, no. 3, 2013

http://jmeter.apache.org
http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 19

web session each. They go to the counter page. From there, they keep incrementing
the counter as quickly as possible. The system had been modified to install updates
per request. The server and the load testing tool ran both on the same machine (a 2.3
GHz Intel Core i7 laptop), to minimize the effect of the network. We ran the server
on the CogVM 6.0.

The results for the time overhead are presented in Figure 7, which shows the
quantiles in response time for the various phases. The dashed and dotted lines
represent the median of the response time for the original system, and the baseline
system. The baseline system is the original system with one level of indirection for
state accesses that go through synthetic accessors. This helps one to compare the
overhead of the approach instead of the cost of the indirection mechanism, which
could be aggressively inlined if necessary. We make the following observations from
the results of Figure 7:

• The sole use of synthetic getters and setters (without additional logic) entails
a 30% overhead, as can be seen in the difference between the original system
and the baseline (10ms vs 13ms). Other virtual machines might be able to
aggressively optimize this case. The overhead between the baseline and phases
(i) and (iv) is 15% (13ms vs. 15ms), supporting the idea that our approach is
attractive at “steady state”.

• The five phases are clearly visible. Phase (ii) corresponds to a peak when the
majority of objects are first migrated. Phase (iii) corresponds to a plateau
where performance is degraded due to lock acquisition, checks for “dirtiness” of
object representations, and resulting synchronizations. Phase (iv) shows further
degradation when the system operates in background the synchronization of all
objects reachable in the new context. Eventually, the system reverts back to its
original performance (iv).

• The performance degradation between phases (i) and (iii) is of factor 2.6, which
is tolerable for a short period of time.

• Giving a lower priority to the background task during phase (iv) would make
the update take longer to complete, but lower the performance degradation.

Overall, the benchmark shows the expected profile, and suggest our approach can
be made practical for realistic production systems.

6 Discussion

We discuss in this section the applicability of our approach and its implementation
from three different perspectives:

6.1 Portability

Our approach and implementation technique are portable to other object-oriented
languages. The approach can notably be ported to a statically typed language.
Particular language constructs of the target language might however pose obstacles,
specifically those we listed in subsection 4.3. Experiments porting the approach to
Java showed it is feasible [WLN12] with the following language constructs as obstacles:
constructors, nested classes, arrays, concurrency control in the language semantics.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

20 · E. Wernli, M. Lungu, O. Nierstrasz

Our locking scheme resembles the double-checked locking [BBB+] idiom which is
correct only for systems with a coherent memory. Java has for instance a relaxed
memory model (JSR-133) where the double-checked locking is correct only if the field
that is tested is declared volatile [BBB+]. Our locking scheme would need to be
revised accordingly for a full port to Java.

6.2 Performance

A drawback of our implementation is that shared objects need two representations, even
if they are structurally identical and will use the identity transformation. Wrappers
would make it possible to keep only one representation in such cases, but pose problems
of self-reference, do not support adding or changing method signatures, and break
reflection [PKS08, ORH02, PC12]. The benefit of our implementation is that it
avoids such problems. Our implementation entails a performance degradation due to
internal locking when shared objects are accessed. These locks are however typically
uncontended. Their impact on performance depends on how well uncontended locking
is optimized by the virtual machine. Two directions could be explored to reduce
locking: 1) synchronize groups of fields at precise locations, instead of each individual
field (e.g., synchronize all fields a method uses at once at the beginning and end of
the method), and 2) emulate safepoints and run the pre-garbage collection thread
exclusively from application threads, making migration the only operation that requires
locking.

6.3 Development Effort

The impact on development is small. Developers must modify the application’s thread
management to make the application updatable. Essentially, long-running loops must
be modified to restart periodically and requests must be processed in the desired
context. Threads executing long-running loops can usually be aborted and restarted
without problem. Adapting request dispatching is also usually easy and entails only
few local changes. In our first experiment, these changes represent about 10 lines of
code. The use of thread pools might complicate the adaptation of the application
in which case the pool must be adapted to renew its threads periodically [WLN12].
Reflective code doesn’t need to be adapted since object representations are really
instances of their respective classes and reflective code works correctly.

Writing transformations to transfer the application state requires additional ef-
fort. Compared to other dynamic update mechanisms, there must exist a state
mapping only for shared entities (not all entities), but the mapping must be bidi-
rectional (not unidirectional). Transformations are usually simple (field addition,
renaming, suppression, type conversion) and complex transformations are very occa-
sional [SHM09, MPG+00, BLS+03]. In our first experiment, only one update required
a transformation, which was simple. Recent works showed that static [POMS09]
and dynamic analysis [MHSM12] can generate most of the needed transformations
automatically. It would be interesting to assess whether we can extend these techniques
for bidirectional transformations as well.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 21

7 Related Work

A common technique to achieve hot updates is to use redundant hardware [HN05],
possibly using “session affinity” to ensure that the traffic of a given client is always
routed to the same server. Our approach is more lightweight and enables the migration
of the state shared across contexts, notably persistent objects. Also, an advantage
of being reflective is that the software can “patch itself” as soon as patches become
available.

A large body of research has tackled the dynamic update of applications. The
main challenge is to reconcile safety and practicality. Systems that support immediate
code changes are very practical but subject to limitations or safety issues. Dynamic
languages, including Smalltalk, belong to this category. If an object attempts to invoke
a method that was suppressed, an error is raised. Several approaches of this kind have
also been devised for Java [Dmi01, ORH02, KV12, GJ09, CPG11, WWS11, PKC+11],
with various levels of flexibility (a good comparison can be found in [GJ09]). To be
type-safe, HotSwap [Dmi01] imposes restrictions and only method bodies can be
updated. The most recent approaches (JavAdaptor [PKC+12], DCEVM [WWS11],
Javaleon [GJ09]) overcame most of these restrictions, and provide a similar flexibility
as dynamic languages. Some approaches use bytecode transformation (JavAdaptor
[PKC+12], Javaleon [GJ09]) or custom virtual machines (DCEVM [WWS11]).

Systems that impose constraints on the timing of updates are safe, but less practical
since temporal update points must first be identified. Such systems have been devised
for C (Ginseng [HN05, NHSO06], UpStare [MB09], Kitsune [HSD+12]), and Java
(JVolve [SHM09], DVM [MPG+00]). Update points might be hard to reach, especially
in multi-threaded applications [NH09, SHM09], and this compromises the timely
installation of updates. Our approach entails the identification of context switch points,
but relaxes the need for threads to reach the points simultaneously.

Some mechanisms diverge from a global update and enable different versions of
the code or entities to coexist. In the most simple scheme, old entities are simply
not migrated at all and only new entities use the updated type definition [HG98], or
this burden might be left to the developer who must request the migration explicitly
[Gem07]. The granularity of the update for such approaches is the object; it is hard
to guarantee version consistency and to ensure that mutually compatible versions
of objects will always be used. When leveraged, transactions [BLS+03, PC12] pro-
vide version consistency but impede mutations of shared entities. Contexts enable
mutations of shared entities and can be long-lived, thanks to the use of bidirectional
transformations. With asynchronous communication between objects, the update of
an object can wait until dependent objects have been upgraded in order to remain
type-safe [JKY09].

To the best of our knowledge, only three approaches rely on bidirectional trans-
formations to ease dynamic updates. POLUS is a dynamic updating system for
C [CYH+11] which maintains coherence between versions by running synchronizations
on writes. We synchronize lazily on read, operate at the level of objects, and take
garbage collection into account. Duggan [Dug01] formalized a type system that adapts
objects back and forth: when the run-time version tag of an object doesn’t match
the version expected statically, the system converts the object with an adapter. We
do not rely on static typing but on dynamic scoping with first-class contexts, we ad-
dress garbage collection, concurrency, and provide a working implementation. Oracle
enables a table to have two versions that are kept consistent thanks to bidirectional
“cross-edition triggers” [Cho09].

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

22 · E. Wernli, M. Lungu, O. Nierstrasz

Schema evolution addresses the update of persistent object stores, which closely
relates to dynamic updates. To cope with the volume of data, migrations should
happen lazily. To be type-safe, objects should be migrated in a valid order (e.g., points
of a rectangle must be migrated before the rectangle itself) [BLS+03, PC12]. Our
approach migrates objects lazily, and avoids the problem of ordering by keeping both
versions as long as necessary.

Class loaders [LB98] allow classes to be loaded dynamically in Java. Types seen
within a class loader never change, which ensures type safety and version consistency,
similarly to our notion of context. Two versions of a class loaded by two different
class loaders are different types, which makes sharing objects between class loaders
complicated. This is unlike our approach which supports the migration of classes and
objects between contexts.

Context-oriented programming [HCN08] enables fine-grained variations based on
dynamic attributes, e.g., dynamically activated “layers”. It focuses on behavioral
changes with multi-dimensional dispatch, and does not address changing the structure
and state of objects as is necessary for dynamic updates. There exist many mechanisms
to scope changes statically, e.g., Classboxes [Ber05], but they are not used to adapt
software at run time.

How to keep two corresponding data structures synchronized is related both to
the view-update problem [Kel85] and lenses [BPV06, FPP08, HPW11, WGW11]. We
need in our approach to define a pair of transformations to map the source to the
view, and the view to the source. Lenses are bidirectional programs that specify both
a view definition and update policy. Lenses can be state-based or operation-based.
State-based lenses synchronize structures as a whole, without knowing where the
changes occurred, whereas operation-based lenses propagate local changes (or edits).
Using lenses to express transformations would make their expression more compact
and less error-prone. Since we synchronize lazily, edits are lost and we would need to
use state-based lenses.

8 Conclusion

Existing approaches to dynamically update software systems entail trade-offs in terms
of safety, practicality, and timeliness. We propose a novel, incremental approach to
dynamic software updates. During an incremental update, clients might see different
versions of the system, which avoids the need for the system to reach a quiescent,
global update point.

Each version of the system is reified into a first-class context. Existing objects are
gradually migrated to the new context, and objects that are shared between old and
new contexts are kept consistent with the help of bidirectional transformations. We
have implemented our approach in a dynamic language with a strong memory model
and conducted experiments on two existing web servers. Results indicate that only a
fraction of accesses concern objects shared between contexts which makes the cost of
bidirectional transformations tolerable. Only few modifications to the original web
servers were required to make them updatable, and simple transformations can be
easily expressed in our approach.

This work opens up several research directions: exploring different granularity of
increments, further improving the performance, and adapting the design for weak
memory models.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 23

References

[BBB+] David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr, Doug
Lea, Tom May, Jan-Willem Maessen, Jeremy Manson, John D. Mitchell,
Kelvin Nilsen, Bill Pugh, and Emin Gun Sirer. The “double-checked
locking is broken” declaration.

[Ber05] Alexandre Bergel. Classboxes — Controlling Visibility of Class Exten-
sions. PhD thesis, University of Bern, November 2005. Available from:
http://scg.unibe.ch/archive/phd/bergel-phd.pdf.

[BLS+03] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue
Moh, and Steven Richman. Lazy modular upgrades in persistent object
stores. SIGPLAN Not., 38(11):403–417, 2003. Available from: 10.1145/
949343.949341, doi:10.1145/949343.949341.

[BPV06] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Re-
lational lenses: a language for updatable views. In Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’06, pages 338–347, New York,
NY, USA, 2006. ACM. Available from: 10.1145/1142351.1142399,
doi:10.1145/1142351.1142399.

[Cho09] Alan Choi. Online application upgrade using edition-based redefinition.
In Proceedings of the 2nd International Workshop on Hot Topics in
Software Upgrades, HotSWUp ’09, pages 4:1–4:5, New York, NY, USA,
2009. ACM. doi:10.1145/1656437.1656443.

[CPG11] Susanne Cech Previtali and Thomas R. Gross. Aspect-based dynamic
software updating: a model and its empirical evaluation. In Proceedings
of the tenth international conference on Aspect-oriented software devel-
opment, AOSD ’11, pages 105–116, New York, NY, USA, 2011. ACM.
doi:10.1145/1960275.1960289.

[CYH+11] Haibo Chen, Jie Yu, Chengqun Hang, Binyu Zang, and Pen-Chung Yew.
Dynamic software updating using a relaxed consistency model. IEEE
Trans. Softw. Eng., 37(5):679–694, September 2011. Available from: http:
//dx.doi.org/10.1109/TSE.2010.79, doi:10.1109/TSE.2010.79.

[Dmi01] M. Dmitriev. Towards flexible and safe technology for runtime evolution
of Java language applications. In Proceedings of the Workshop on Engi-
neering Complex Object-Oriented Systems for Evolution, in association
with OOPSLA 2001, October 2001.

[Dug01] Dominic Duggan. Type-based hot swapping of running modules (ex-
tended abstract). In Proceedings of the sixth ACM SIGPLAN interna-
tional conference on Functional programming, ICFP ’01, pages 62–73,
New York, NY, USA, 2001. ACM. Available from: http://doi.acm.org/
10.1145/507635.507645, doi:10.1145/507635.507645.

[FPP08] J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quo-
tient lenses. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN in-
ternational conference on Functional programming, pages 383–396, New
York, NY, USA, 2008. ACM. doi:10.1145/1411204.1411257.

[Gem07] Gemstone/s programming guide, 2007. Available from: http://seaside.
gemstone.com/docs/GS64-ProgGuide-2.2.pdf.

Journal of Object Technology, vol. 12, no. 3, 2013

http://scg.unibe.ch/archive/phd/bergel-phd.pdf
10.1145/949343.949341
10.1145/949343.949341
http://dx.doi.org/10.1145/949343.949341
10.1145/1142351.1142399
http://dx.doi.org/10.1145/1142351.1142399
http://dx.doi.org/10.1145/1656437.1656443
http://dx.doi.org/10.1145/1960275.1960289
http://dx.doi.org/10.1109/TSE.2010.79
http://dx.doi.org/10.1109/TSE.2010.79
http://dx.doi.org/10.1109/TSE.2010.79
http://doi.acm.org/10.1145/507635.507645
http://doi.acm.org/10.1145/507635.507645
http://dx.doi.org/10.1145/507635.507645
http://dx.doi.org/10.1145/1411204.1411257
http://seaside.gemstone.com/docs/GS64-ProgGuide-2.2.pdf
http://seaside.gemstone.com/docs/GS64-ProgGuide-2.2.pdf
http://dx.doi.org/10.5381/jot.2013.12.3.a1

24 · E. Wernli, M. Lungu, O. Nierstrasz

[GJ09] Allan Raundahl Gregersen and Bo Norregaard Jorgensen. Dynamic up-
date of Java applications — balancing change flexibility vs programming
transparency. J. Softw. Maint. Evol., 21:81–112, mar 2009. Available
from: http://portal.acm.org/citation.cfm?id=1526497.1526501,
doi:10.1002/smr.v21:2.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and
its Implementation. Addison Wesley, Reading, Mass., May 1983. Avail-
able from: http://stephane.ducasse.free.fr/FreeBooks/BlueBook/
Bluebook.pdf.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3), March
2008. Available from: http://www.jot.fm/contents/issue_2008_03/
article4.htmlhttp://www.jot.fm/issues/issue_2008_03/article4.
pdf, doi:10.5381/jot.2008.7.3.a4.

[HG98] Gísli Hjálmtýsson and Robert Gray. Dynamic C++ classes: a lightweight
mechanism to update code in a running program. In Proceedings of the
annual conference on USENIX Annual Technical Conference, ATEC ’98,
pages 6–6, Berkeley, CA, USA, 1998. USENIX Association. Available
from: http://portal.acm.org/citation.cfm?id=1268256.1268262.

[HN05] Michael Hicks and Scott Nettles. Dynamic software updating. ACM
Transactions on Programming Languages and Systems, 27(6):1049–1096,
nov 2005. doi:10.1145/1108970.1108971.

[HPW11] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmetric
lenses. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’11, pages
371–384, New York, NY, USA, 2011. ACM. Available from: 10.1145/
1926385.1926428, doi:10.1145/1926385.1926428.

[HSD+12] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael
Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-purpose dynamic
software updating for c, 2012. Available from: http://doi.acm.org/10.
1145/2384616.2384635, doi:10.1145/2384616.2384635.

[JKY09] Einar Broch Johnsen, Marcel Kyas, and Ingrid Chieh Yu. Dynamic
classes: Modular asynchronous evolution of distributed concurrent
objects. In Proceedings of the 2nd World Congress on Formal Meth-
ods, FM ’09, pages 596–611, Berlin, Heidelberg, 2009. Springer-Verlag.
Available from: http://dx.doi.org/10.1007/978-3-642-05089-3_38,
doi:/10.1007/978-3-642-05089-3_38.

[Kel85] Arthur M. Keller. Algorithms for translating view updates to database
updates for views involving selections, projections, and joins. In Proceed-
ings of the fourth ACM SIGACT-SIGMOD symposium on Principles of
database systems, PODS ’85, pages 154–163, New York, NY, USA, 1985.
ACM. Available from: http://doi.acm.org/10.1145/325405.325423,
doi:10.1145/325405.325423.

[KV12] Jevgeni Kabanov and Varmo Vene. A thousand years of productivity:
the jrebel story. Software: Practice and Experience, pages n/a–n/a,
2012. Available from: http://dx.doi.org/10.1002/spe.2158, doi:
10.1002/spe.2158.

Journal of Object Technology, vol. 12, no. 3, 2013

http://portal.acm.org/citation.cfm?id=1526497.1526501
http://dx.doi.org/10.1002/smr.v21:2
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://portal.acm.org/citation.cfm?id=1268256.1268262
http://dx.doi.org/10.1145/1108970.1108971
10.1145/1926385.1926428
10.1145/1926385.1926428
http://dx.doi.org/10.1145/1926385.1926428
http://doi.acm.org/10.1145/2384616.2384635
http://doi.acm.org/10.1145/2384616.2384635
http://dx.doi.org/10.1145/2384616.2384635
http://dx.doi.org/10.1007/978-3-642-05089-3_38
http://dx.doi.org//10.1007/978-3-642-05089-3_38
http://doi.acm.org/10.1145/325405.325423
http://dx.doi.org/10.1145/325405.325423
http://dx.doi.org/10.1002/spe.2158
http://dx.doi.org/10.1002/spe.2158
http://dx.doi.org/10.1002/spe.2158
http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 25

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual
machine. In Proceedings of OOPSLA ’98, ACM SIGPLAN Notices, pages
36–44, 1998. doi:10.1145/286936.286945.

[MB09] Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic
software updates using stack reconstruction. In Proceedings of the 2009
conference on USENIX Annual technical conference, USENIX’09, pages
31–31, Berkeley, CA, USA, 2009. USENIX Association. Available from:
http://portal.acm.org/citation.cfm?id=1855807.1855838.

[MHSM12] Stephen Magill, Michael Hicks, Suriya Subramanian, and Kathryn S.
McKinley. Automating object transformations for dynamic software
updating. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, OOPSLA ’12,
pages 265–280, New York, NY, USA, 2012. ACM. Available from: http:
//doi.acm.org/10.1145/2384616.2384636, doi:10.1145/2384616.
2384636.

[MPG+00] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz
Barnes. Runtime support for type-safe dynamic Java classes. In Proceed-
ings of the 14th European Conference on Object-Oriented Programming,
pages 337–361. Springer-Verlag, 2000. doi:10.1007/3-540-45102-1_17.

[NH09] Iulian Neamtiu and Michael Hicks. Safe and timely updates to
multi-threaded programs. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implemen-
tation, PLDI ’09, pages 13–24, New York, NY, USA, 2009. ACM.
doi:10.1145/1543135.1542479.

[NHSO06] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Prac-
tical dynamic software updating for C. In Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’06, pages 72–83, New York, NY, USA, 2006. ACM.
Available from: http://doi.acm.org/10.1145/1133981.1133991,
doi:10.1145/1133981.1133991.

[ORH02] Alessandro Orso, Anup Rao, and Mary Jean Harrold. A Technique
for Dynamic Updating of Java Software. Software Maintenance, IEEE
International Conference on, 0:0649+, 2002. Available from: http:
//dx.doi.org/10.1109/ICSM.2002.1167829, doi:10.1109/ICSM.2002.
1167829.

[PC12] Luís Pina and João P. Cachopo. Atomic dynamic upgrades using software
transactional memory. In HotSWUp, pages 21–25, 2012. doi:dx.doi.
org/10.1109/HotSWUp.2012.6226612.

[PKC+11] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz,
Alexander Grebhahn, Reimar Schröter, and Gunter Saake. Flexible
dynamic software updates of java applications: Tool support and case
study. Technical Report 04, School of Computer Science, University of
Magdeburg, 2011. Available from: http://wwwiti.cs.uni-magdeburg.
de/iti_db/publikationen/ps/auto/FIN-04-2011.pdf.

[PKC+12] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz,
Alexander Grebhahn, Reimar Schröter, and Gunter Saake. JavAdaptor—
flexible runtime updates of Java applications. Software: Practice and

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.1145/286936.286945
http://portal.acm.org/citation.cfm?id=1855807.1855838
http://doi.acm.org/10.1145/2384616.2384636
http://doi.acm.org/10.1145/2384616.2384636
http://dx.doi.org/10.1145/2384616.2384636
http://dx.doi.org/10.1145/2384616.2384636
http://dx.doi.org/10.1007/3-540-45102-1_17
http://dx.doi.org/10.1145/1543135.1542479
http://doi.acm.org/10.1145/1133981.1133991
http://dx.doi.org/10.1145/1133981.1133991
http://dx.doi.org/10.1109/ICSM.2002.1167829
http://dx.doi.org/10.1109/ICSM.2002.1167829
http://dx.doi.org/10.1109/ICSM.2002.1167829
http://dx.doi.org/10.1109/ICSM.2002.1167829
http://dx.doi.org/dx.doi.org/10.1109/HotSWUp.2012.6226612
http://dx.doi.org/dx.doi.org/10.1109/HotSWUp.2012.6226612
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/FIN-04-2011.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/FIN-04-2011.pdf
http://dx.doi.org/10.5381/jot.2013.12.3.a1

26 · E. Wernli, M. Lungu, O. Nierstrasz

Experience, pages n/a–n/a, 2012. Available from: http://dx.doi.org/
10.1002/spe.2107, doi:10.1002/spe.2107.

[PKS08] Mario Pukall, Christian Kästner, and Gunter Saake. Towards unantic-
ipated runtime adaptation of java applications. In APSEC ’08: Pro-
ceedings of the 2008 15th Asia-Pacific Software Engineering Conference,
pages 85–92, Washington, DC, USA, 2008. IEEE Computer Society.
doi:10.1109/APSEC.2008.66.

[POMS09] Marco Piccioni, Manuel Orioly, Bertrand Meyer, and Teseo Schnei-
der. An ide-based, integrated solution to schema evolution of object-
oriented software. In Proceedings of the 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’09,
pages 650–654, Washington, DC, USA, 2009. IEEE Computer Soci-
ety. Available from: http://dx.doi.org/10.1109/ASE.2009.100,
doi:10.1109/ASE.2009.100.

[SHM09] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic
software updates: a VM-centric approach. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’09, pages 1–12, New York, NY, USA, 2009. ACM.
Available from: http://doi.acm.org/10.1145/1542476.1542478,
doi:10.1145/1542476.1542478.

[Wer12] Erwann Wernli. Theseus: Whole updates of Java server applications.
In Proceedings of HotSWUp 2012 (Fourth Workshop on Hot Topics in
Software Upgrades), pages 41–45, June 2012. Available from: http://scg.
unibe.ch/archive/papers/Wern12b.pdf, doi:10.1109/HotSWUp.2012.
6226616.

[WGW11] Meng Wang, Jeremy Gibbons, and Nicolas Wu. Incremental updates
for efficient bidirectional transformations. SIGPLAN Not., 46:392–403,
sep 2011. Available from: 10.1145/2034574.2034825, doi:10.1145/
2034574.2034825.

[WLN12] Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental dy-
namic updates with first-class contexts. In Objects, Components, Models
and Patterns, Proceedings of TOOLS Europe 2012, pages 304–319, 2012.
Available from: http://scg.unibe.ch/archive/papers/Wern12a.pdf,
doi:10.1007/978-3-642-30561-0_21.

[WWS11] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Unrestricted
and safe dynamic code evolution for Java. Science of Computer Pro-
gramming, July 2011. Available from: http://dx.doi.org/10.1016/j.
scico.2011.06.005, doi:10.1016/j.scico.2011.06.005.

Journal of Object Technology, vol. 12, no. 3, 2013

http://dx.doi.org/10.1002/spe.2107
http://dx.doi.org/10.1002/spe.2107
http://dx.doi.org/10.1002/spe.2107
http://dx.doi.org/10.1109/APSEC.2008.66
http://dx.doi.org/10.1109/ASE.2009.100
http://dx.doi.org/10.1109/ASE.2009.100
http://doi.acm.org/10.1145/1542476.1542478
http://dx.doi.org/10.1145/1542476.1542478
http://scg.unibe.ch/archive/papers/Wern12b.pdf
http://scg.unibe.ch/archive/papers/Wern12b.pdf
http://dx.doi.org/10.1109/HotSWUp.2012.6226616
http://dx.doi.org/10.1109/HotSWUp.2012.6226616
10.1145/2034574.2034825
http://dx.doi.org/10.1145/2034574.2034825
http://dx.doi.org/10.1145/2034574.2034825
http://scg.unibe.ch/archive/papers/Wern12a.pdf
http://dx.doi.org/10.1007/978-3-642-30561-0_21
http://dx.doi.org/10.1016/j.scico.2011.06.005
http://dx.doi.org/10.1016/j.scico.2011.06.005
http://dx.doi.org/10.1016/j.scico.2011.06.005
http://dx.doi.org/10.5381/jot.2013.12.3.a1

Incremental Dynamic Updates with First-class Contexts · 27

About the authors

Erwann Wernli is a PhD student at SCG, where he conducts
research into run-time adaptations and object-oriented languages.
Visit him at http://scg.unibe.ch/staff/ewernli.

Mircea Lungu is a PhD researcher at the Institute of Computer
Science (IAM) of the University of Bern. His interests range from
software evolution analysis to programming languages and mobile
computing. Visit him at http://scg.unibe.ch/staff/mircea

Oscar Nierstrasz is a professor of computer science at the In-
stitute of Computer Science (IAM) of the University of Bern,
where he founded the Software Composition Group in 1994. See:
http://scg.unibe.ch/oscar.

Acknowledgments We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the projects “Synchronizing Models and Code” (SNF
Project No. 200020-131827, Oct. 2010 - Sept. 2012) and “Agile Software Assessment”
(SNSF project Np. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

Journal of Object Technology, vol. 12, no. 3, 2013

http://scg.unibe.ch/staff/ewernli
http://scg.unibe.ch/staff/mircea
http://scg.unibe.ch/oscar
http://dx.doi.org/10.5381/jot.2013.12.3.a1

	Introduction
	Running Example
	The Problem with Updates
	Lifecycle of an Incremental Update

	First-class Context
	User-defined Update Strategy
	Object Representations
	First-class Classes
	Threads and Contexts

	Implementation
	Concurrency and Garbage Collection
	State Relocation
	Special Language Constructs
	Further Details

	Validation
	Evolution
	Run-time Characteristics
	Object Sharing and Memory Overhead
	Time Overhead

	Discussion
	Portability
	Performance
	Development Effort

	Related Work
	Conclusion
	About the authors

