
IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

1 of 12

© 2001, The PECOS Consortium

Deliverable D 3.3

Report on composition rules

1 Identification

Project Id: IST-1999-20398 PECOS

Deliverable Id: D 3.3-3 (Living document)

Date for delivery: 2001-12-31

Planned date for delivery: 2001-12-31

Classification Public

WP(s) contributing to: WP 2 (“Meta model”), WP 3 (“Composition Environment”)

Author(s): Christoph (FZI), Genssler (FZI)

1.1 Abstract
The PECOS component model together with its composition language provides a powerful way to specify
component software for embedded systems. This document defines and classifies composition rules and the
PECOS rule checking technology together with an example.

Keywords

PECOS, CoCo, composition rules, Architectural Description Language, Architecture

1.2 Version history
Ver Date Editor(s) Status & Notes

3.1 24.09.02 A. Christoph Example rule
3.1 24.09.02 T. Genssler Minor corrections
3.0 23.09.02 A. Christoph Description of rule checker added, document updated
2.2 26.02.02 A. Christoph Updated literature list; added example.
2.1 06.02.02 A. Christoph Included application specific rule examples
2.0 29.01.02 A. Christoph Updated document structure
1.0 10.12.01 A. Christoph First draft

1.3 Classification
The classification of this document is done according to the security / dissemination level categories stated in
Annex I (page 35) of the Pecos contract:

Classification Dissemination level

Public (PU) Public

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

2 of 12

© 2001, The PECOS Consortium

1.4 Disclaimer
The information in this document is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

3 of 12

© 2001, The PECOS Consortium

2 Table of Contents

1 Identification... 1
1.1 Abstract ..1
1.2 Version history ...1
1.3 Classification ..1
1.4 Disclaimer...2

2 Table of Contents.. 3
3 Introduction .. 4
4 Composition rules... 4
5 The general approach .. 5
6 Implementation... 6

6.1 The Prolog-Plugin ..6
6.2 The Prolog fact generator ...7
6.3 The Prolog-Engine..7

7 The Prolog fact-base.. Error! Bookmark not defined.
7.1 Prolog predicates ..8

7.1.1 Components .. 8
7.1.2 Datatypes .. 8
7.1.3 Property sets ... 8
7.1.4 Tasks... 9

7.2 Example fact-base...9
7.3 Example Rules..10

8 Conclusions ... 11
9 References ... 11

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

4 of 12

© 2001, The PECOS Consortium

3 Introduction

Requirements for embedded devices and their software are much higher than for regular desktop programs.
Embedded devices are used in safety-critical environments and therefore have to be designed carefully. Syntactic
language rules alone are not sufficient to guarantee correct programs that fulfill real-time and resource
requirements. Certain design-principles have to be followed to construct software that meets these requirements.
Therefore the CoCo language [COCO01] allows the developer to specify functional and non-functional
properties of their programs and components. The Pecos modeling enviroment provides a rule checking facility
to allow reasoning about these functional and non-functional properties as well as the structural properties of
CoCo programs.

This report explains the approach chosen to support reasoning. It classifies rules which can be checked within
the Pecos environment using the Pecos rule checker. The report briefly sketches the general approach to
reasoning about program properties. It also describes the Pecos rule checker, its Prolog-based implementation as
well as its usage. Examples are provided to show how the generated fact base looks like together with some
example rules.

This document does not give, however, a complete overview on composition rules important in the field of
Pecos. The reason for this is that Pecos technology is currently in the process of being put into practice. This
means that there are only very view practical experiences on how good programming style in CoCo should look
like. We therefore focus on introducing the essentials for specifying future composition rules instead of
providing a set of pre-defined rules.

4 Composition rules

In our understanding, composition rules serve to formalise expert know-how about good programming style on
the level of composition. This means that they describe how entities of an application (such as components,
objects, classes, methods) shall relate to each other in a correct way1. Examples of composition rules are design
heuristics (e.g., [Riel96]), design patterns (e.g., [GHJV95]) and recipes. We distinguish language-specific rules,
paradigm-specific rules and rules imposed by a certain application or application domain.

Language-specific rules

We distinguish syntactic and semantic rules. Syntactic rules define the well-formedness of a composition or of a
part of it. Semantic rules define typing, scoping, definition/use of composition elements. Rules of this type are
usually checked by providing some context-free grammar describing the valid structure of programmes along
with semantic rules (described by context-sensitive grammars). Language-specific rules are usually checked by
the language compiler itself and are thus not in the scope of the composition rule checker.

Paradigm-specific design rules

Paradigm-specific rules describe design patterns and design heuristics which are characteristic for a certain
programming paradigm. These rules are usually not checked by a language compiler. Examples of paradigm
specific rules in the object-oriented paradigm are: “ A class should never have knowledge about its sub-classes!”
or “ A class should capture one and only one key abstraction” ([Riel96]).

Domain- and application-specific rules

These rules define heuristics or patterns emerging from a particular application domain or a particular
application. Examples can be

• In a layered architecture, there must not be dependencies from lower layers to upper layers.

• An EEPROM controller shall always be connected to the rest of the device via a buffer component.

1 Note that syntactic and semantic rules at the level of statements (such as evaluation order of expressions and the like) are not in the scope
of our understanding of the term ‘composition rules’.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

5 of 12

© 2001, The PECOS Consortium

The Pecos rule checker aims at checking the compliance of an application to the latter two kinds of rules.

5 The general approach

This section describes the general approach to checking composition rules which we have chosen for Pecos. This
approach is based on the use of first-order predicate logic. Although this somewhat limits the expressive power
for specifying rules2, this approach has proven its applicability and practicability in other situations [CIU99],
[CIU01].

The first step is to collect knowledge about the system. The information collected comprises entities defined by
the system according to the entity types given by the meta model of the language under consideration (CoCo in
our case), such as components, ports, connectors, etc. as well as relations between these entities, such as
definesPort, hasPropertySet, etc. Details of the Pecos meta-model can be found in [D-2.2.8] [D-2.2.5].

This knowledge is represented as atomic predicates or facts:

fact(o).

or

fact(O).
fact... the entity or relation type
o... the object
O... a set of objects specifying the objects for which a particular relationship is valid

These set of all facts together form the fact base.

Now inference rules have to be specified to infer new (implicit) knowledge about a system. These inference rules
have the form of:

goal(X) Å pred1((X1 ⊆ X)∪ V1), pred2((X2 ⊆ X)∪ V2), ..., predn((Xn ⊆ X)∪ Vn).

X... a set of variables and/or constants
 predi... facts or other (composite) predicates
 Xi... the sub-set of variables/objects of goal(X)
 Vn... additional variables/objects (can also contain bindings of variables of X

The meaning of such an inference rule is that when all predi hold for X than goal(X) also holds for X. With other
words: from pred1 and pred2 and ... and predn follows goal.

If X contains variables, each defined object in the fact base in each possible combination is bound to these
variables. A valid binding of objects to variables is one for which pred1 and pred2 and ... and predn hold. If X
contains variables and there are several valid bindings for these variable (so-called modells) then goal(X) yields
multiple solutions (one for each valid binding). The predicate goal(X) can again be used to construct more
sophisticated predicates.

Composition rules are either specified using anti-patterns (in order to identify violations of a rules or to make
sure that certain anti-patterns to not exist, negative serach) or in a ’positive’ form (in order to make sure that
certain patterns exist, positive search).

The actual querying is performed using so-called goal clauses or queries. These queries have the form:

 goal1((X1 ⊆ X)∪ V1), goal2((X2 ⊆ X)∪ V2), ..., goaln((Xn ⊆ X)∪ Vn).

goali... a certain predicate for which all possible models (all valid binding of variables in ((Xi ⊆ X)∪
Vi) to objects in the fact base) are computed

Xi ... set of variables used for goali

2 Sometimes, temporal dependencies might be useful. However, employing modal logics is usual expensive and often does not scale. It
shows on the other hand that most theoretical problems (if the can represented in an axiomatic way at all) can be represented using first-
order predicate logic.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

6 of 12

© 2001, The PECOS Consortium

V1... set of addition variables/objects used for goali

X... solution variables. These variables are bound to objects which form a solution of the given
query

Each solution X of a query represents an occurence (a set of objects) of the pattern (or anti-pattern respectively)
specified by the conjunction of the clauses goal1(X), goal2(X), ..., goaln(X).

In a final step, these occurences have to be analyzed and potential violations of patterns have to be fixed.

In the following we give an example of how such rules look like and how the compliance to, or violation of such
rules can be checked using queries.

Two example rules are used to show the approach in practice. The first example rule tests, if there is at least one
active component in the project. The second example rule tests, if the given component is active and has a task
definition.

hasActiveComponent:-component(_, ’active’).
isMainComponent(X):-component(X, ’active’), task(_, X, _, _, _).

For a detailed description of the generated predicates, see chapter Error! Reference source not found..

6 Implementation

The PECOS rule checker is implemented using Prolog. Prolog provides the expressivness of first-order predicate
logic in the form of Horn clauses. Horn3 clauses have the form of:

 P Å Q1, Q2, ..., Qn.

with the right side of the clause being the conjunction of all Qi and each Q1 contains at most one positive literal.
Horn clauses can also be represented as a conjunction of implications:

 P Å ((p1Æ q1) ∧ (p2Æ q2) ∧ ... ∧(pnÆ qn)).

The meaning of this is that P follows iff for all pi follows qi. For a more detailed introduction to logic
programming with Prolog see for example [SWI].

The rule checker consists of three parts: the Prolog plugin, the fact generator, and the Prolog engine. The first is
the user interface to the rule checker. The fact generator serves to extract knowledge from a CoCo project. These
facts along with rules are loaded into the Prolog engine which does the actual rule checking. All parts of the rule
checker are fully integrated with Eclipse.

6.1 The Prolog-Plugin
The Prolog-Plugin is the main entry point for rule checking purposes in the Pecos modelling environment. It
offers a user interface to trigger the fact generation, load already defined rules and issue queries about the
current project. Figure 1 shows a screen-shot of the Prolog-Plugin.

3 Named after the logician Alfred Horn.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

7 of 12

© 2001, The PECOS Consortium

Figure 1, User interface of the Prolog plug-in

6.2 The Prolog fact generator
The fact generator generates a set of Prolog facts describing a Pecos project. The generator uses all information
available to describe all aspects of the project. The code example shows a fragment of a fact base.

component(’DigitalDisplay’, ’passive’).
port(’DigitalDisplay’, ’optional’, ’input’, ’long’, ’time_in_msecs’).
port(’DigitalDisplay’, ’optional’, ’input’, ’bool’, ’can_draw’).

See chapter Error! Reference source not found. for further details on the generated facts.

6.3 The Prolog-Engine
The Prolog engine is responsible for executing (solving) queries against the fact base of the current project. It
consults the generated fact base and the composition rules. It then allows the user to issue queries about the
current project and returns the found answers. We use SWI-Prolog [SWI] as an open source prolog engine.

6.4 Usage
The Prolog-Plugin is the user interface to the PECOS rule checker. The user opens the dialog window by
clicking on a toolbar button. The window consitis of four parts: a list of queries, a button section, a textfield for
defining new queries and a textarea for displaying the results of the Prolog engine.

When the user wants to verify, that a PECOS application conforms to a set of rules, he has to select the project in
the resource navigator window of the eclipse IDE. He then starts the dialog of the Prolog plug-in by clicking on
the plug-in’ s toolbar button.

Generate facts

In order to verify the project, Prolog facts have to be generated, that represent all entities and relationships in the
project. The fact generator is started by pressing the Generate button in the button section of the dialog. If the
user selected a project in the navigator, facts for this project are generated. Otherwise, the user is asked to select
one of the available projects. The generated facts are automatically consulted by the Prolog engine.

Load or edit rules

After generating facts, the user can now load and edit a set of rules. By pressing the Load button, the user is
asked to select a rule file. With Edit, the user can edit these rules and/or enter new rules. Save saves the rule set
and lets the Prolog engine reconsult the new rules.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

8 of 12

© 2001, The PECOS Consortium

Issuing queries

Queries can be loaded and saved just like rules. After loading queries, they are listed in the query list in the top
section of the dialog. A query can be selected and executed by pressing Submit. New queries can be entered in
the list through the query textfield in the middle of the dialog. The results of a query are displayed in the lower
textarea of the dialog.

7 Prolog facts and rules

This chapter describes the generated Prolog fact-base, together with the used predicates. Section 7.1 explains the
predicates in detail, while section 7.2 shows an example fact-base generated from an example PECOS project.

7.1 Prolog predicates
This section describes the generated Prolog predicates in detail. See [D-2.2.8]] for details about the Pecos meta
model.

7.1.1 Components
Predicate Description
component(name, type) name is a component with the given type; type can be ’ active’ , ’ passive’

or ’ event’

implements(name,
list_of_names)

component name implements the listed abstract components

port(cname, modifier,
direction, datatype,
name)

the port name is defined with the given modifier (’ optional’ ,
’ mandatory’), datatype and direction (’ input’ , ’ output’ , ’ inout’); the
owning component is cname

instance(cname, type,
name, role)

the instance name has the given type, binds the given role and is defined
in cname

connector(cname, name) connector name is defined in component cname

connect(name, port) port is connected to connector name

abstractcomponent(name) name is an abstract component

extends(name,
list_of_names)

abstract component name extends the listed abstract components

role(cname, type, name) defines the role name with the given type in the abstract component
cname

7.1.2 Datatypes
Predicate Description
datatype(name, type) defines name as datatype; type can be ’ extension’ or ’ definition’

builtintype(name) defines name as built-in type

basetype(name, btname) datatype btname is the base type of name

field(dtname, type,
name)

field name with the given type is member of datatype dtname

7.1.3 Property sets
Predicate Description
propertyset(name) defines name as property set

property(pname,
modifier, name, value)

defines property name with modifier (’ optional’ or ’ mandatory’) and

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

9 of 12

© 2001, The PECOS Consortium

modifier, name, value) value; parent is pname

propertysetref(pname,
name)

defines a reference from pname to property set name

7.1.4 Tasks
Predicate Description
task(name, instance,
base, cycletime,
priority)

defines task name of instance, inheriting from base with cycletime and
priority

job(pname, name) defines job name of task pname

jobScheduled(pname,
name, time)

job name of task pname is scheduled at time

activity(name,
instance, type)

defines activity type (’ execute’ or ’ syncronize’) on instance of job name

7.2 Example fact-base
This chapter shows an example fact-base, generated from the example application, described in chapter 2 of the
PECOS handbook [HB02]. The different sections of the file are commented. Figure 2 shows the structure of the
example application.

Figure 2, Example application

Built-in datatypes of the CoCo language.
% List of built-in types.
datatype(’bool’, ’’).
builtintype(’bool’).
datatype(’byte’, ’’).
builtintype(’byte’).
datatype(’char’, ’’).
builtintype(’char’).
datatype(’double’, ’’).
builtintype(’double’).
datatype(’float’, ’’).
builtintype(’float’).
datatype(’int’, ’’).
builtintype(’int’).
datatype(’long’, ’’).
builtintype(’long’).
datatype(’short’, ’’).
builtintype(’short’).
datatype(’void’, ’’).
builtintype(’void’).

Component Clock with output port msecs.
component(’Clock’, ’passive’).
property(’Clock’, ’optional’, ’wcMemUsage’, ’32’).
% port msecs [2-2]
port(’Clock’, ’optional’, ’output’, ’long’, ’msecs’).

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

10 of 12

© 2001, The PECOS Consortium

Component DigitalDisplay.
% component DigitalDisplay [1-4]
component(’DigitalDisplay’, ’passive’).
property(’DigitalDisplay’, ’optional’, ’wcMemUsage’, ’128’).
% port time_in_msecs [2-2]
port(’DigitalDisplay’, ’optional’, ’input’, ’long’, ’time_in_msecs’).
% port can_draw [3-3]
port(’DigitalDisplay’, ’optional’, ’input’, ’bool’, ’can_draw’).

Component Display.
% component Display [1-3]
component(’Display’, ’passive’).
property(’Display’, ’optional’, ’wcMemUsage’, ’24’).
% port time [2-2]
port(’Display’, ’optional’, ’input’, ’long’, ’time’).

Component EventLoop.
% component EventLoop [1-3]
component(’EventLoop’, ’active’).
property(’EventLoop’, ’optional’, ’wcMemUsage’, ’17’).
% port started [2-2]
port(’EventLoop’, ’optional’, ’output’, ’bool’, ’started’).

Component Device with instances and connectors forms the whole application.
% component Device [1-10]
component(’Device’, ’active’).
property(’Device’, ’optional’, ’wcMemUsage’, ’192’).
property(’Device’, ’optional’, ’memAvail’, ’3000’).
% instance clock [2-2]
instance(’Device’, ’Clock’, ’clock’, ’’).
% instance display [3-3]
instance(’Device’, ’Display’, ’display’, ’’).
% instance digitalDisplay [4-4]
instance(’Device’, ’DigitalDisplay’, ’digitalDisplay’, ’’).
% instance eventLoop [5-5]
instance(’Device’, ’EventLoop’, ’eventLoop’, ’’).
% - connectors
connector(’Device’, ’time’).
connect(’time’, ’clock.msecs’, []).
connect(’time’, ’display.time’, []).
connect(’time’, ’digitalDisplay.time_in_msecs’, []).
connector(’Device’, ’eventLoop_started’).
connect(’eventLoop_started’, ’eventLoop.started’, []).
connect(’eventLoop_started’, ’digitalDisplay.can_draw’, []).

Task sched of component Device and activities for enclosed instances.
% task sched [12-19]
task(’sched’, ’Device’, ’’, ’1000’, ’10’).
jobScheduled(’sched’, ’jobAt_0’, ’0’).
activity(’jobAt_0’, ’eventLoop’, ’synchronize’).
activity(’jobAt_0’, ’clock’, ’execute’).
activity(’jobAt_0’, ’display’, ’execute’).
activity(’jobAt_0’, ’digitalDisplay’, ’execute’).
% task eventTask [21-25]
task(’eventTask’, ’Device.eventLoop’, ’’, ’0’, ’5’).
jobScheduled(’eventTask’, ’jobAt_0’, ’0’).
activity(’jobAt_0’, ’’, ’execute’).

7.3 Example Rules
This example presents a set of rules, to verify the correctness of a component composition regarding the memory
consumption. Therefore every component defines a property wcMemUsage, which defines its maximum memory
footprint. The enclosing active top-level component, which models the root of the PECOS application additional
specifies the property memAvail, which defines the maximum availabe space in memory. A component
composition is considered correct, if the sum of all memory amounts of all child components is less or equal the
maximum of available memory space.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

11 of 12

© 2001, The PECOS Consortium

The first rule extracts the memAvail property of the given top-level component and compares it to the sum of the
requested memory of all child components.

checkMemConsumption(D):-
 component(D,’active’),
 property(D, _, ’memAvail’, M1),
 findall(I, instance(D,I,_,_), InstList),
 sumMemConsumption(InstList, R),
 string_to_int(M1, M),
 R=<M.

The second rule sums the values of all wcMemUsage properties of a given set of components. The rule is called
on the list of child components of the device component.

sumMemConsumption([],R):-R=0.
sumMemConsumption([H|T], R):-
 sumMemConsumption(T, R1),
 component(H,_),
 property(H,_,’wcMemUsage’,U),
 string_to_int(U,I),
 plus(R1,I,R).

The rules are defined by the user in a seperate editing window, or loaded from an external file. The user can then
ask the system to verify the memory consumption of the current application. He issues the following command in
the manual query text field.

checkMemConsumption(’Device’).

The systems responds with ” Yes” or ” No” , depending on the values of the component properties.

8 Conclusions

This report defined and classified composition rules from the perspective of CBSE. It was explained, that the
scope of this report is beyond syntacitic and semantic language definitions, that can be checked by standard
language tools, like parsers. Paradigm-, as well as domain- and application-specific composition rules are
required to build reliable and secure software for critical embedded applications. The report described the
PECOS approach to support reasoning on these rule classes, its theoretical background and ist implementation.
Examples were provided, that explain generated facts as well as example rules.

9 References

[COCO01] T. Genssler, The CoCo Grammar, Code Document, 2001

[D-2.2.5] A. Christoph, T. Genssler. Description of the CoCo architectural description language and
composition environment, Pecos-Deliverable 2.2.5

[D-2.2.8] R. Wuyts et al. Specification of the model for embedded components, Pecos-Deliverable 2.2.8

[GZ01] T. Genssler, C. Zeidler. Rule-driven component composition, Proceedings of the 4th ICSE
Workshop on Component-Based Software Engineering, Component Certification and System
Prediction, 2001.

[PRO02] M. Winter. Pecos Process Summary, Achievement Report, 2002.

[HB02] T. Genssler, A. Christoph, B. Schulz, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts, G.
Arevalo, P. Liang, P. Müller, C. Stich, C. Zeidler, A. Stelter, B. Schönhage, R. v.d. Born. PECOS
in a nutshell.

[LCTES] T. Genssler, A. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arevalo, P. Müller, C. Stich,
B. Schönhage. Components for Embedded Software – The PECOS Approach.

IST-1999-20398 PECOS D 3.3 FZI
Last Revision: 25.09.2002 Report on composition rules Editor: A. Christoph

Document File / Identification

D33-3.doc

Classification

Public

Status

Draft

Page

12 of 12

© 2001, The PECOS Consortium

[SWI] Homepage of SWI-Prolog. http://www.swi-prolog.org

[Riel96] A.J. Riel. Object-oriented Design Heuristics. Addison-Wesley, 1996.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[CIU99] O. Ciupke. Automatic Detection of Design Problems in Object-Oriented Reengineering. In D.
Firesmith , R. Riehle, G. Pour, B. Meyer (editors): Technology of Object-Oriented Languages
and Systems - TOOLS 30, 18–32. IEEE Computer Society, 1999.

[CIU01] O. Ciupke. Problemidentifikation in objektorientierten Softwarestrukturen. Phd Dissertation,
Institut für Programmstrukturen und Datenorganisation, University of Karlsruhe, FZI Karlsruhe,
2001.

