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Abstract

ThePECOSprojectaimsto enablecomponent-

basedsoftware developmentfor embeddedsys-

tems,specificallyfor field devices. Theproject

addressesthe major technological deficiencies

of state-of-the-artcomponenttechnology with

respectto embeddedsystemsby developing(I)

a ComponentModelfor embeddedsystemcom-

ponentsaddressingbehaviorspecificationand

non-functionalpropertiesand constraints, (II)

a ComponentRepositoryutilizing this model,

supportinga compositionenvironmentand in-

terfacingto a componentspecificationenviron-

ment, (III) an interactive CompositionEnvi-

ronmentfor composingembeddedapplications

fromcomponents,validatingfunctional(e.g., in-

terfaces)andnon-functionalcompositionalcon-

straints (e.g., power-consumption,code size),

generating the application executablefor the

embeddeddevice and monitoring their execu-

tion, (IV) an Ultra-light ComponentEnviron-

mentto install, run, test,and tunecomponent-

basedapplicationson resource limited embed-

dedsystemsandenabletheir management.

In this paper, we discussthe requirementsof

field deviceswith focuson resource constrains

and it’ s implicationson the componentmodel,

the compositionenvironment,and the run-time
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environment. PECOSis an EC project start-

ing in September2000. The participants are

ABB, OTI Netherlands,ForschungszentrumIn-

formatikKarlsruhe, andUniversityof Berne.

1 Intr oduction

ABB developsa largenumberof differentfield

devices, e.g. temperature,pressure,and flow

sensors,actuators,positioners,etc. Themarket

demandsfor additionalfunctionalityin field de-

viceslikeassetmanagementsupport,diagnosis,

and seamlessintegration into automationsys-

tems.This alsomeans,thatsoftwarewill dom-

inate the developmentand maintenancecosts

of field devices. However, today’s field de-

vicesoftwareis mostlymonolithicsoftware,de-

velopedspecificallyfor eachfield device type.

Monolithic softwaremakesit hardto serve the

field devicemarketwith value-addedfeaturesin

acost-efficientway:

� Samefunctions neededby different field

devicesareimplementedrepeatedlyat dif-

ferent developmentlocations in different

ways (e.g. adaptersto communication

stacks,persistentmemorymanager, control

algorithms).

� Functionsand modulesare implemented

for a specific environment with no stan-

dardizedinterface.

� Longdevelopmenttime

� Regression-Testsafter software modifica-

tion areoften large scaledbecauseof non

deterministicsideeffects.

� Monolithic softwarehasafixedfunctional-

ity that is hardto maintain,to extend,and

to customize.

Component-basedsoftware engineering can

bring a numberof advantagesto the embed-

ded systemsworld suchas (I) fasterdevelop-

menttimes,(II) theability to secureinvestments

throughre-useof existing, well tried, compo-

nents, (III) the ability for domain experts to

interactively composeembeddedsystemssoft-

wareandto adaptthe softwareto specificcus-

tomersneeds.

The state-of-the-artin software engineering

for embeddedsystemsis farbehindotherIT ap-

plication areas.This is especiallytrue for em-

beddeddevices with hard resourceconstraints

suchasfield devices.

2 Requirementsfor

Field Devices

Therequirementsof field deviceswill beshown

at an example: a pneumaticpositioner(TZID)
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Figure1: PneumaticPositionerTZID

asdevelopedby ABB (seeFigure1). Pneumatic

positionersareusedto controlpneumaticactua-

torsattachedto valves.

The following requirements,resourcecon-

straintsand typical implementationtechniques

have to betakeninto accountwhendiscussinga

component-basedapproachfor the field device

implementation:

� The available power is limited from the

fieldbusphysicallayerspecification.

� Softwarearchitecturehasto fulfill thefield-

bus architecture(e.g., function block con-

cept).

� Partsof thesoftwarerequirereal-timeexe-

cution.

� The implementationlanguagetoday is C;

C++ may becomean option, possiblyin a

specialdialectlike EmbeddedC++. How-

ever, such C++ or EC1++ compilersare

not available today for relevant micro-

controllers.

� Thedevice hasa staticsoftwareconfigura-

tion, i.e. the firmwareis updated/replaced

completely, no dynamicloadablefunction-

ality (thismaychangein future).

� Field Device hasto provide threemainar-

eas with increasingfunctionality: Local

UserInterface,Fieldbus,Process

3 Component-basedarchitec-

tur e for field devices

This sectionoutlines our first attempthow to

componentizethesoftwarefor afield device. As

statedabove, onemain driver for this software

architectureis thefieldbusarchitecture.Theex-

ampleis basedon a TZID for Profibus PA. In

the following, the main components,their re-

sponsibilities,their compositionrelations,and

themainmotivation,why to packacertainfunc-

tion ascomponent,arediscussed.

1EC++ is a subsetof C++ omitting templates,excep-
tions, RTTI, multiple inheritance,etc. in favor of high
performance,low memoryconsumptionand ROM-able
code;see[EMC++]
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3.1 Block, Sub-Block, and Parame-

ter

From a fieldbus point of view, blocks are the

most natural componentsfor a field device.

They provide the building blocks of the field-

bus application. As an abstactionfor a sim-

ple device we took an Analog Output Func-

tion Block representingtheautomationfunction

of the device within the control systemand a

TransducerBlock representingthe parameters

and functionsof the connectionto the process

(i.e. positionmeasurementandcontrolof pneu-

matic converter). The interface of a block is

definedby its parameters. Parametersrepre-

sent processand configurationdata and have

a numberof attributes like: the actual value,

datatype,storageclass(constant,dynamic,non-

volatile),accessrights,default value,parameter

type(in, out, contained)etc. Block andParam-

etershouldprovide a modelfor the implemen-

tationof Function-andTransducerBlockswith

thefollowing features:

� It is independentof the particular field-

bus. This maybepossiblefor ProfibusPA

andFieldbusFoundation(FF)becauseboth

busseshave a similar block model (they

sharethesameroots).

� It shouldsupporta component-basedim-

plementationof the block algorithm by

sub-blocks.Thisis especiallyimportantfor

transducerblocksbecausethe sametrans-

ducerblock algorithm shouldbe reusable

betweena FF and a Profibus PA device

althoughthe transducerblocksthemselves

may have a different interfacein termsof

parameters.

� It supportsinfrastructurefunctionsthatare

beyond the scopeof the fieldbus applica-

tion like accesscontrol for parametersor

persistentparameterstorage.

� It provides an optimal memory use for

the parametersand their attributes(ROM

andRAM). This requiressupportfrom the

componentmodel to specify and imple-

mentdifferentmemoryclasses.

3.2 Block Container

TheBlock Containerprovidesthe run-timeen-

vironmentfor Blocks. Themainideasare(I) to

provide an architecturefor the field device ap-

plication that is independentof the usedcom-

municationstackand(II) to provide an execu-

tion model for blocks, that relieves the blocks

from dealingwith thedetailsof scheduling,pa-

rametertransferbetweenblocks,andparameter

accesssynchronization.The responsibilitiesof

theBlock Containerare:
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� Schedulingthe executionof blocks. The

schedulingstrategy alsoimpliesa strategy

for synchronizingparameteraccessby dif-

ferent threads(e.g. acyclic parameterac-

cessfrom fieldbus, block execution,sub-

blockshaving anown thread).

� Handling the parametertransferbetween

blocks.

� Interfacingto the fieldbus andhandlingof

cyclic (processdata)andacyclic (configu-

ration data)fieldbus servicesthat result in

parameteraccesses.

� Enforcing an accesspolicy for block pa-

rameters(read,write, passwords,etc.)

3.3 Summary

The proposedarchitecturedividesthe field de-

vice softwareinto two layers: (I) an infrastruc-

ture layerconsistingof Block Container, Block

andParameterconcept,Scheduler, AccessMan-

ager, PersistentStorage,LocalOperation,Field-

bus StackandMapper, and (II) an application

layer containing Function Blocks and Trans-

ducerBlocks.

Table1 summarizesthecomponents,their re-

usability, andvariationpointsto adaptthecom-

ponentsto thespecificfield device.

4 Implications on component

technology

While componenttechnologypromisesan es-

capefrom monolithicsoftwarethatis expensive

andhardto maintainfor commonpurposeIT so-

lutions, it is questionableif it doestoo for pro-

grammingof embeddeddevices. Moreover it

is unlikely thatstate-of-the-artcomponenttech-

nology like COM, Corba,JavaBeans/EJBand

componenttechnologyas it is currently dis-

cussedin literature(e.g.,[4], [1]) canbeapplied

asis to field devices.In thefollowing,aspectsof

componenttechnologyarediscussedin thecon-

text of the requirementsfor field devices. We

start with the componentdefinition postulated

by Szyperski[4]:

"A softwarecomponentis a unit of

compositionwith contractuallyspeci-

fiedinterfacesandexplicit context de-

pendenciesonly. A software compo-

nent can be deployedindependently

and is subjectto compositionby third

parties."

4.1 Contractually specified inter-

faces

State-of-the-artcomponenttechnologiesspecify

interfacesaspurecollectionof methods(events
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Component Reusability Variation Points

Block Container Throughall field devices UsedScheduler, AcessManager
Block (concept
andinterface)

Throughall field devices -

FunctionBlocks Throughall field devices -
Transducer
Blocks

Within onefamily of devices Implementationof transducerblock al-
gorithm composedof sub-blocks. Same
transducerblock algorithmcomposedof
sub-blockscanbepackedinto FF andPA
TransducerBlockshaving differentinter-
facein termsof parameters.

LocalOperation Throughall field devices DisplayType,Conneciton(local, remote)
Persistent Stor-
age

Throughall field devices Variationsbecauseof differentpersistent
memorytypes

Communication
Stack and Map-
per

Throughall field devicesus-
ing onebustype

-

Table1: Componentsandtheir expectedre-usability.

and attributesare finally modeledas interface

methodsaswell). However, for embeddedsoft-

ware and especiallyembeddedreal-time soft-

ware,non-functionalspecificationslikememory

consumptionof a component,worst-caseexe-

cution time of a method,and expectedpower

consumptionof acomponentunderacertainex-

ecutionschedulearean equally importantpart

of the contract. The first declarewhich func-

tionality is providedthelaterhow it is provided,

which expressthenon-functionalpartof these-

manticbehavior of this methodexecution. The

currentlyprogressingUML profile for schedul-

ing, performance,and time [2] may provide a

specificationmeans,which doesthe first step

towardsexpressive interfacedeclarations.For

example,having specifiedtheworst-caseexecu-

tion timeof functionblockswouldallow thever-

ification thattheoverallscheduleof all function

blockscanbemet.

Component interfaces are usually imple-

mentedasobjectinterfacessupportingpolymor-

phism by late binding. While late binding al-

lows connectingof componentsthat are com-

pletely unaware of eachother besidethe con-

nectinginterface, this flexibility comeswith a

performancepenalty. A componentmodel for

embeddeddevices should allow for procedu-
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ral interfaces,object interfaceswith and with-

out polymorphism. Proceduralinterfacescan

be usedfor statelesscomponentinstancesand

componentsingletons. Object interfaceswith-

out polymorphismcan be appliedif the target

componentimplementationcan alreadybe de-

terminedatdesigntime. Suchoptimizationgain

in a lower calling overheadthatsumsup in the

caseof fine-grainedcomponents.

Semanticspecification like pre- and post-

conditionsare of great value for the software

quality especially if they are checked during

run-time.However, for embeddeddevicesthese

additionalrun-timechecksmay turn out not to

be feasibledue to the limited CPU resources.

An approachcould be to distinguishbetween

debugandreleaseversionsof acomponent(sim-

ilar to C++ assertions). The releaseversion

runswithout run-timechecksmeetingthe per-

formanceandpowerconsumptionrequirements.

The debug version runs with run-time checks

enabledrequiring higher CPU clock (= higher

power consumption). Alternatively, design-

timecheckingusingacompositionenvironment

whicheithersimulatesor calculatesthecorrect-

nessof connectedcomponentswith given pre-

andpost-conditionscouldbeaviableway.

4.2 Unit of compositionand

independentdeployment

State-of-the-artcomponenttechnologiesallow

for componentcompositionat design-timeand

at run-time. Both [4] and [1] take the posi-

tion thatcomponentsarebinaryunitsof deploy-

ment that should be deployable to a compo-

nentsystemat run-time.To fulfill theserequire-

ments,supportfrom thecomponentmodel(e.g.

late binding), supportfrom the run-time envi-

ronment(e.g.,life-cycle management,dynamic

loading,garbagecollectionor referencecount-

ing), anddynamiccommunicationmechanisms

like the JavaBeans’eventsor COM connection

pointsareneeded.

Having the low resourcesof field devices in

mind, we argue that such a run-time infras-

tructure is too expensive in terms of process-

ing power. Embeddeddevicesof the discussed

classcan not afford the overheadof garbage

collection or referencecounting, the overhead

of late binding for every interfacemethodes-

pecially for fine-grainedcomponents,and the

memoryoverheadrequiredfor theinfrastructure

itself andfor eachcomponentneededto support

theinfrastructure.Thereforecompletestripping

of this functionality or sensibledegradationis

required.

In addition, design-timecompositionallows

for optimization: in a static componentcom-
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positionknown at design-time,connectionsbe-

tweencomponentscould be translatedinto di-

rect function calls insteadof using dynamic

event notifications. Suchoptimizationsproba-

bly requirecomponentsto beavailablein source

codeor at leastintrospectionabilitiesat design-

time. Compositiontools are requiredthat can

inspectand adaptsuch components. On the

other hand, sourcecodecomponentscan pro-

vide supportfor compositiontools in form of

meta-informationandscriptsto be executedby

thecompositiontool.

Finally, design-timecompositioncouldbethe

instanceof specific adaptationof components

andgeneratedcodetowardsspecificmicrocon-

troller familiesandRTOSAPIs [3].

4.3 Explicit contextdependencies

Beside other interfacesand componentsthat

are required for a componentto work, con-

text dependenciesalsoincludetherequiredrun-

time environment such as CPU, real-time op-

eratingsystem,andcomponentimplementation

language(with respectto the binary interface).

Fromtheviewpointof astate-of-the-artcompo-

nenttechnology, this run-timeenvironmentcan

becomequite basicfor embeddeddevices due

to the resourceand real-timeconstraints. Be-

sideJavaBeans,componentmodelsprovidepro-

gramminglanguageindependenceby a binary

objectmodelor by differentlanguagebindings.

We argue that abandoningprogramminglan-

guageindependencein favor of higher perfor-

manceis acceptablefor embeddeddevices. In

thecaseof sourcelanguagecomponentsasdis-

cussedin 4.2, the compositionsupportin form

of meta-informationandscriptsto be executed

in thecompositionenvironmentcomesin asad-

ditional context dependency.

4.4 Reuse

Black-boxcomponentreuseseemsto bethebest

solutionsinceit hidescomponentimplementa-

tion completely from the client. Sourcelan-

guagecomponentsas discussedin 4.2 require

to open parts of their implementationleading

to grey-box or even white-box reuse. Accord-

ing the [4], grey-box andwhite-boxreusevery

likely prevents the substitutionof the reused

componentby othercomponents.However, es-

tablishingclearconventionsabouttheavailable

knowledge of the implementationand the al-

lowed changesof the implementationshould

help to overcomethis problem. If this knowl-

edgecanbecapturedcompletelyin architectural

styles(e.g.componentconnectors)or in compo-

sition scriptsbelongingto the component,one

couldreachagrey-boxreusefrom thecomposi-

tionenvironment’spointof view but ablack-box

reusefrom thecomponentuser’s point of view.
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Only thecompositionenvironmentwouldbeal-

lowedto useknowledgeaboutthecomponent’s

implementation.

4.5 Portability , platform

independence

The demandfor reusablesoftwarecomponents

directly leads to the requirementof platform

independenceandportability becausesoftware

componentsasabstractionsof applicationfunc-

tions will have a longer lifetime thanthe hard-

ware and the usedmicrocontroller. But that

leadsdirectly to aneitherconceptuallyprovided

abstractionlayerin termsof programmingstan-

dardsor an implementationbasedsolutionlike

virtual machine.

We argue that sourcelevel portability will

be sufficient (or better: must be sufficient).

Sourcelevel portability requiresagreementon

the implementationlanguage(e.g. ANSI C or

C++). Microcontrollerspecificlanguageexten-

sionsprovided by many compilersfor the em-

beddeddomainpreventsourcelevel portability,

requiremanualportingeffort, andfinally leadto

a versionexplosionof the component.Source

level portability alsorequiresagreementon the

availablelibrarieslikeANSI C run-timelibrary,

operatingsystemAPI, hardwareaccess,device

driversetc.Onewayto achievethis is to provide

properabstractionse.g. for theRTOSAPI, that

arespecifiedaccordingto the usedcomponent

model.

Binary platform independenceas provided

e.g.by theJavaplatformis notarequirementfor

the discussedclassof field devices. However,

thismaychangein thefutureif run-timecompo-

nentcompositionanddeploymentwill becomea

requirement.Also, from adevelopmentproduc-

tivity perspective, it would bevery desirableto

haveaJavaplatformavailable.

4.6 Componentwiring (scripts,

connections)

Componentwiring gets an emphasizedrole.

Oncethe componentsarepresent,efficient and

flexible composition of new application out

of existing componentsgets the first priority.

Therefore,composingan applicationin drag&

drop manner, while preservingthe consistency

of thenew composedapplicationpopsupasone

of the most challengingthings. On one hand

it requestsan advancedcomponentmodel and

at the sametime supportfor expressionof ar-

chitecturalstyles in order to provide prescrip-

tion how to constructaccordingto given do-

main rules. On theotherhandit givestheabil-

ity to optimizecomponentinteractionby source

codeadaptationor interweaving of component
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glue code. For performancereasons,we argue

thatcomponentgluecodehasto begeneratedin

the implementationlanguage(e.g. C or C++).

Scriptlanguagesasgluecodeknown form state-

of-the-artcomponenttechnologieswon’t beaf-

fordable.

4.7 Conclusionand dir ection

In this paperwe have discussedat the exam-

ple of a pneumaticpositionerthe requirements

of field devices with focus on resourcecon-

strains, a possiblecomponent-basedarchitec-

ture for field devices, and it’ s implicationson

the componenttechnology. In order to make

component-basedsoftwareengineeringhappen

for field devices and to achieve a reductionof

developmentcostand time by reuseof proven

components,it is not enoughto solve only one

of thepresentedobstacles.An overall approach

for the developmentof component-basedem-

beddedsoftware is needed.We believe this ap-

proachhave to compriseseveral main features

asdepictedin Figure4, which we have catego-

rizedin fife groupsanddescribebelow.

Componentmodel that (I) addressesnon-

functional propertiesand constraintssuch as

worst-caseexecution time and memory con-

sumption,(II) allows to specify efficient func-

tional interfaces(e.g. proceduralinterfaces),

(III) allows to specify architecturalstyles that

describecomponentsconnectionsandcontain-

mentrelationand(IV) allows for codegenera-

tion andcontrolledcomponentadaptationwhen

architecturalstylesare applied to components

(sourcelanguageor generativecomponents).

Component-basedarchitecture for field de-

vicesexpressedin a framework specifyingstan-

dard interfaces,components,and architectural

styles.

Repository for (I) storageand retrieval of

componentsduringanalysis,design,andimple-

mentation,(II) storingcomponentsandarchitec-

tural stylesaccordingto the componentmodel

including interfacedescriptions,non-functional

properties,implementation,supportscriptsfor

compositionenvironment, test casesand (III)

supportfor componentversioning.

CompositionEnvironmentsupporting(I) vi-

sual compositiontechniques,(II) checkscom-

positionrulesattachedto architecturalstylesin

orderto verify thata componentconfigurations

meetstheir constraintsand(III) performscom-

ponentadaptationand codegenerationfor the

application.

Run-timeEnvironmentproviding (I) an ef-

ficient implementationmodel for components,

(II) addressingthe constraintsfor field devices

stemmingfrom low-powerdesignandreal-time

execution and (III) support the approachto

compile a component-baseddesign into a
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Figure2: Componenttechnologyfor embeddeddevices

monolithic firmware for the embeddeddevice,

thushaving no run-timeenvironmentbesidethe

RTOS.

PECOS, a 2 year EC project starting in

September2000,addressestheseissuesandwill

prove thisconceptby acasestudy.
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