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1 Introduction

This paper presents a domain specific composition
language called CoCo. The CoCo language has been
developed in the context of the PECOS project1

which aims at enabling component–based technol-
ogy for a certain class of embedded systems called
”field devices”.
CoCo is used in PECOS for the specification of
components and for the composition of components
to build entire field device applications. Besides this,
CoCo allows the specification of architectural styles
and system families and it supports compositional
reasoning.
The sequel of the paper is organized as follows: Sec-
tion 2 gives a brief introduction to the application
domain of field devices. In section 3, the PECOS
component model is presented. Section 4 addresses
the different aspects of the CoCo language men-
tioned above. Section 5 summarizes the ideas pre-
sented in this paper and points out future work.

2 Case study description

ABB’s Instruments business unit develops a
large number of different field devices, such as
temperature–, pressure–, and flow–sensors, actua-
tors and positioners. A field device is an embedded
hard real–time system. Field devices use sensors to

1 Funded by the European Commission under IST Program IST-1999-
20398 and by the Swiss government as BBW 00.0170. The partners
are Asea Brown Bovery AG (ABB, Germany), Forschungszentrum In-
formatik (FZI, Germany), Object Technology International (OTI, The
Netherlands), and Institut für Informatik und Angewandte Mathematik,
University of Bern (UNIBE, Switzerland)

continuously gather data, such as temperature, pres-
sure or rate of flow. They process this data, and re-
act by controlling actuators like valves or motors.
A typical field device may contain a 16–bit micro-
processor with only 256KB of ROM and 40KB of
RAM.

Fig. 1. Pneumatic positioner TZID

The software for a typical field device, such as
the TZID pneumatic positioner shown in Fig. 1, is
monolithic, and it has to be developed separately for
each kind of field device. This results in a number
of well–known problems: There is no or little code
reuse and the software is hard to maintain, extend or
customize. This is made even worse by the use of
hard–coded, cyclic execution schedules.
The goal of the PECOS project is to develop a
model-centric CBSE process for embedded compo-
nent software. This includes the definition of a com-
ponent model, composition language and develop-
ment environment, which support reuse of compo-
nents and device architectures and provide support
for (semi–)automatic schedule generation.

2.1 Example Application

We will use the following example throughout this
paper to illustrate the PECOS component model
and composition language. Part of the PECOS case
study is concerned with setting a valve at a specific
position between open and closed. Fig. 2 illustrates
three connected PECOS components that collabo-
rate to set the valve position; the desired position is
determined by other components not shown here. In
order to set and keep the valve at a certain position,
a control loop is used to continuously monitor and
adjust the valve.

– The ModBus component works as an interface
to a piece of hardware called the frequency con-
verter, which determines the speed of the motor.
The frequency to which the motor should be set
is obtained from the ProcessApplication com-
ponent. ModBus outputs this value over a serial



Fig. 2. FQD control loop

line to the frequency converter using the Mod-
Bus protocol.

– The FQD (Fast Quadrature Decoder [2]) com-
ponent is responsible for capturing events from
the motor. This component abstracts from a
micro–controller module that does FQD in
hardware. It provides the ProcessApplication
with both the velocity and the position of the
valve.

– The component ProcessApplication obtains the
desired position of the valve (Set–Point) and
reads the current state of the valve from the
FQD component. This information is then used
to compute a frequency for the motor. Once the
motor has opened the valve sufficiently, ascer-
tained by the next reading from the FQD, the
motor must be slowed or stopped. This repeated
adjustment and monitoring constitutes the con-
trol loop.

Besides the tight resource situation, there are addi-
tional key issues concerning the field device domain:
(1) Cyclic behavior — each component is respon-
sible for a single piece of functionality, which is re-
peatedly executed (with a specified cycle time) and
must not take longer than a specified worst–case ex-
ecution time. (2) Data–flow–oriented interaction
— components communicate by sending or receiv-
ing data. The interface of a component consists of
a set of data ports. (3) Threading — some compo-
nents are passive (i.e., cyclically invoked by a sched-
uler), while others (like FQD) have their own thread
of control in order to react on asynchronous events
or to perform long computations in the background.

3 A Component Model for Embedded
Software

In order to apply component–based software devel-
opment to embedded systems software, we must be

precise about what we mean by a component. In par-
ticular, we must take care to specify how compo-
nents are structured and composed, which proper-
ties of components are important to capture and rea-
son about, and how a composition of components
can be interpreted at run–time.

Fig. 3. A Component Model for Embedded Software

Here we briefly present a meta–model that reflects
an architectural style [10] for embedded systems
software. We also sketch how compositions of com-
ponents can be interpreted by means of Petri nets.

3.1 Model Elements

Fig. 3 illustrates the key elements of the compo-
nent model. Components have interfaces defined
by a number of ports, and may be hierarchically
composed. So–called leaf components are treated
as black boxes, and are directly implemented in
some host programming language. Composite com-
ponents, on the other hand, are built by connect-
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ing the ports of other, existing components (leaf
or composite), and expressing which ports of the
constituent components are exported as ports of the
composite (See Fig. 4.)
Ports are shared variables that allow components to
communicate with each other. Connected ports and
exported ports therefore represent the same variable.
Connectors may only connect ports of compatible
type, direction and range.
The model expresses three kinds of components rel-
evant for embedded systems.

Active Components (e.g., ModBus in figure 2)
have their own thread of control. Active compo-
nents are used to model ongoing or long–lived
activities that cannot complete in a short cycle–
time. A complete system composed of com-
ponents is always modeled as a composite ac-
tive component. Composite active components
schedule their constituent components in order
to meet the deadlines imposed by the real–time
constraints.

Passive Components (e.g., ProcessApplication)
have no own thread of control. They are used
to encapsulate a piece of behavior that executes
synchronously and completes in a short cycle
time. Passive components are scheduled by the
nearest active parent that contains them.

Event Components (e.g., FQD) are components
whose functionality is triggered by an event.
They are typically used to model hardware el-
ements that periodically generate events. Typi-
cal examples are timers, used to keep track of
deadlines, or devices that emit events encoding
status information, such as the current rotation
speed of a motor, the current temperature, and
so on.

All three kinds of components can be composite.
Components are characterized by their properties,
which encode information such as timing and mem-
ory usage.

3.2 Execution model

In addition to the static structure described above,
the PECOS model has an execution model that de-
scribes the behavior of a Field Device. By using
Petri nets [12] to represent the execution model, we
intend to reason about real–time constraints and au-
tomatically generate real–time schedules for soft-
ware components.
The execution model deals with the following two
issues: Synchronization — how to synchronize

leaf components

connected ports

exported port

composite component

Fig. 4. A Composite Component

data–flow between components (esp. between com-
ponents that live in different threads of control) and
Timing — how to make sure that component’s func-
tionality is executed according to cycle times and re-
quired deadlines.
A composition of components has as many threads
of control as there are active components. Each ac-
tive component is responsible for scheduling the
passive components under its control. We formalize
the execution semantics by means of a Petri net in-
terpretation. The details of this formalization, how-
ever, are beyond the scope of this paper. They are
described in [7, 5].

4 The CoCo Language

In this section we introduce the component compo-
sition language CoCo. It is the syntactical represen-
tation of the component model described in section
3, enhanced with additional features.
The language is intended to be used for 1) the speci-
fication of components, 2) the specification of entire
field device applications as compositions of compo-
nents 3) the specification of architectures and sys-
tem families. In addition, CoCo supports reuse of
components and architectures and supports compo-
sitional reasoning. Last but not least, CoCo serves
as input for scheduler computation and code gener-
ation.
In the sequel, we present these different aspects
of the language. First, we describe how develop-
ers can specify components in terms of their in-
terfaces. Then, we describe how components are
composed to build composite components and show
how CoCo supports the specification of system fam-
ilies. Finally, we sketch how CoCo specifications
can be used for reasoning about functional and non–
functional properties of a system.
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4.1 Specifying Components in CoCo

Components represent units of computation and
are the major means of structuring a CoCo sys-
tem. CoCo supports all component types of the
component model. For example, Figures 5 and 6
show a CoCo specification of our recurring example.
There we see an active component (marked with the
keyword active), an event component (keyword
event) and two passive components.
In analogy to the OO model, components play the
role of classes. That means, they define a type and
scope in the same sense as OO classes do. Compo-
nents can be instantiated that is, one can create an
instances of a component with a unique identity. But
in contrary to object instances, components can not
be instantiated dynamically at run–time, but all in-
stances are statically known.

event component FQD f
output float actualPosition;
output float velocity;
property cycleTime = 100;
property execTime = 10;

g

active component ModBus f
input float setFrequency;
property cycleTime = 100;
property execTime = 10;

g

component ProcessApplication f
input float setPoint;
input float actualPosition;
input float velocity;
output float setFrequency;
property cycleTime = 100;
property execTime = 20;

g

Fig. 5. The FQD control loop components specified in CoCo

Programming in CoCo is data–flow–oriented. Ports
(e.g., setPoint) denote data flow into or out of a
component and are the only means of using a com-
ponent. Ports are assigned both a data flow direc-
tion (input, output, or in–/output) and a data type.
A component’s interface does not contain any func-
tions that my be called, but one may think of a com-
ponent as a piece of functionality that is executed
cyclically (passive component) or in response to a
certain event (event component) in order to compute
output values depending on the current input values
and/or the internal state of the component. The ac-
tual behavior, however, is not specified at the level
of CoCo specifications but hidden in the implemen-
tation of the component.

The only information available about this imple-
mentation is the worst–case execution time it takes
to perform the computation (property execTime)
and the interval between these computations (prop-
erty cycleTime). These values are specified in
CoCo as component properties.
Properties serve to attach functional and non–
functional features to a component, such as init val-
ues for ports, memory consumption and worst–case
execution time. They can be structured in so–called
property bundles. These bundles group properties
that semantically belong together, such as schedul-
ing information (worst–case execution time, cycle
time). Properties can be used by tools to inspect the
component in different phases of the development
process (e.g., when generating a scheduler). Prop-
erties can be set on a per–component basis and a
per–instance basis.

4.2 Composing Components with CoCo

Components are composite when they contain in-
stances of other components (see for example
the component PositionValve in Fig. 6). In
PECOS, an entire application, such as a field device,
is modeled as a composite component. Instances of
components have a component type and a unique
name within the scope of the enclosing component.
All instances are created at system start–up, that is
there is no ”new” statement to dynamically create
instances during run–time but all possible instances
are known at compile–time. This allows for a num-
ber of checks at compile–time as well as for auto-
mated scheduler generation.

component PositionValvef
ModBus mb;
FQD fqd;
ProcessApplication pa;

input float setPoint;

connector c1 (setPoint, pa.setPoint);
connector c2 (fqd.actualPosition,

pa.actualPosition);
connector c3 (fqd.velocity, pa.velocity);
connector c4 (pa.setFrequency, mb.setFrequency);

g

Fig. 6. The FQD (Fig. 2) control loop itself specified in CoCo

Connection of components is achieved through the
use of connectors (e.g., connector c1 in component
PositionValve). Connectors connect a list of
ports defined either in the current component (like
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port setPoint in connector c1) or by one of the
contained instances (that is, instances in the same
scope). Different connectors that share a common
port represent the same connection. A special case
of this rule is at the border of composite event and
active components: as theses components execute in
their own thread of control, data only bypasses their
borders during a synchronization step.

4.3 Specifying software families with CoCo

Components serve to specify concrete pieces of a
system. But it is often desirable to be able to spec-
ify architectural styles or families of components or
families of entire applications (devices). CoCo pro-
vides the concept of abstract components for this
purpose. By means of abstract components one can
specify a template of a system that can later be filled
in with concrete components. Abstract components
do not have a representation in the model as they do
not contribute to the run–time behavior of field de-
vice software. They are merely a technique to sim-
plify specification and to enable the reuse of designs.

abstract component PecosControlLoopf
role AbstractProcessApplication PecosPA;
role AbstractControlDevice PecosCtrl;
role AbstractFeedBackDevice PecosFdbck;
input float setPoint;

connector setPoint(setPoint, PecosPA.setPoint);
connector feedback1(PecosPA.actualPosition,

PecosFdbck.actualPosition);
connector feedback2(PecosPA.velocity,

PecosFdbck.velocity);
connector control(PecosPA.setFrequency,

PecosCtrl.setFrequency);
g
[...]
component PositionValve is PecosControlLoopf
ProcessApplication pa is PecosPA;
ModBus mb is PecosCtrl;
FQD fqd is PecosFdbck;

g

Fig. 7. Using abstract components to specify system families

Besides the elements known from normal com-
ponents, abstract components can define so–called
roles. Roles are typed variation points or holes in a
(micro–)architecture. Fig. 7 shows the specification
of an architectural style for control loops.
We assume that a PecosControlLoop should
always have an instance of sub–type of Ab-
stractProcessApplication that plays the
role PecosPA in our valve controller architecture.

AbstractProcessApplication again is an
abstract component that defines a certain interface
(i.e., ports, properties) every process application
component has to conform to. Thus, roles serve as
placeholders for instances. These placeholders can
also be connected by connectors as if they were
normal instances. This way a developer is able to
specify an entire family of applications that share
a common architecture in terms of the components
involved and their data–flow dependencies. To cre-
ate a specific member of this family, a component
has to implement the respective abstract compo-
nent. Implementing an abstract component means
that all roles defined by this abstract component
have to be bound to suitable instances and that all
connectors, instances, ports, and properties defined
in this abstract component become now part of the
implementing component. In our example the role
PecosPA is bound to an instance of component
ProcessApplication. The component Pro-
cessApplication on the other hand is required
to implement the abstract component Abstract-
ProcessApplication.

4.4 Composition checking

In this section we briefly sketch how compositions
can be reasoned about.
In order to make a composition valid, certain rules
must be followed. There are simple syntactic rules
and rules originating from the static semantics of
CoCo which are checked by the composition lan-
guage compiler.These rules express requirements,
that emerge from the component model. Examples
for such rules are “if a component implements an
abstract component, it must bind all roles” or “all
mandatory ports must be bound”, etc.
In addition we allow the specifaction and checking
of company-, product-line- or product-specific se-
mantic rules. We employ first-order predicate logic
for this purpose. The PECOS composition tool is
able to generate a database of Prolog facts out of a
composition specification. These facts describe the
whole system, together with all included compo-
nents, their ports, properties, and connections. Se-
mantic rules are formulated as Prolog queries (or in
the form of Horn clauses) and are checked against
the generated facts.
For example, Fig. 8 shows the Prolog facts, which
have been generated for the CoCo specifications
of Fig. 5. An example query is shown in Fig. 9.
It defines the Prolog rule validScheduleInfo
which checks, if every component has got the ex-
ecTime and cycleTime properties specified.
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% Component FQD
component(’FQD’, ’event’).
property(’FQD’, ’optional’, ’cycleTime’, ’100’).
property(’FQD’, ’optional’, ’execTime’, ’10’).
port(’FQD’, ’optional’, ’output’, ’float’,
’actualPosition’).

port(’FQD’, ’optional’, ’output’, ’float’,
’velocity’).

% Component ModBus
component(’ModBus’, ’active’).
property(’ModBus’, ’optional’, ’cycleTime’, ’100’).
property(’ModBus’, ’optional’, ’execTime’, ’10’).
port(’ModBus’, ’optional’, ’input’, ’float’,
’setFrequency’).

% Component ProcessApplication
component(’ProcessApplication’, ’passive’).
property(’ProcessApplication’, ’optional’,
’cycleTime’, ’100’).

property(’ProcessApplication’, ’optional’,
’execTime’, ’10’).

port(’ProcessApplication’, ’optional’, ’input’,
’float’, ’setPoint’).

port(’ProcessApplication’, ’optional’, ’input’,
’float’, ’actualPosition’).

port(’ProcessApplication’, ’optional’, ’input’,
’float’, ’velocity’).

port(’ProcessApplication’, ’optional’, ’output’,
’float’, ’setFrequency’).

Fig. 8. The Prolog facts for the components of Fig.5

hasProperty(X, Y):-
component(X, Z1),
property(X, Z2, Y, Z3).
hasExecTime(X):-
hasProperty(X, execTime).
hasCycleTime(X):-
hasProperty(X, cycleTime).
scheduleInfo(X):-
hasExecTime(X),
hasCycleTime(X).
validScheduleInfo:-
forall(component(X), scheduleInfo(X)).

Fig. 9. Example Prolog query

Other examples for this type of rules are fulfill-
ment test of specific requirements for debugging,
release versions of the software, dependencies be-
tween components, platform specific property set-
tings, such as in “...in this product line, a particular
type of components must always be used together
with another particular component type...´´.

4.5 Code Generation: from CoCo to C++ and
Java

As already mentioned, the behaviour of a PECOS
component is not specified in CoCo, but it is di-
rectly implemented in a target language. Therefore,
a system specified in CoCo is mapped into a class
hirarchy in the target language. This hirarchy corre-
sponds directly to the hirarchical component struc-
ture of the CoCo specification: Components map to

classes, component instances map to statically ini-
tialized instance variables, and connectors represent
shared instance variables in the enclosing object.
Ports map to set– and get–methods that read from
or write to these shared instance variables, as deter-
mined by the connectors.
This code generation from CoCo specifications
needs to pay special attention to efficiency — mea-
sured both in execution time and in memory con-
sumption, because of the requirements imposed by
the field device domain. More information on these
issues can be found in the relevant PECOS deliver-
able [9].

5 Related work

Several approaches to the composition of software
from components have been proposed in the litera-
ture. An important contribution to this topic stems
from the field of software architecture systems [3,
10, 4]. A recent survey is given in [6]. Architecture
systems introduce the notion of components, ports,
and connectors as first class representations. How-
ever, most of the approaches proposed in the litera-
ture do not take into account the specific properties
of software systems for embedded devices.
In [8] van Ommering et.al. introduce a component
model that is used for embedded software in con-
sumer electronic devices. Koala components may
have several ”provides” and ”requires” interfaces.
Each of this interfaces defines ”ports” in the sense
of methods. In order to generate efficient code from
Koala specifications, partial evaluation techniques
are employed. However, Koala does not take into
account non-functional requirements such as timing
and memory consumption. Koala lacks a formal ex-
ecution model and automated scheduler generation
is not supported.
In [11] a framework for dynamically reconfigurable
real-time software is presented. It is based on the
concept of so called Port Based Objects. The frame-
work provides only a limited form of specifying a
component (e.g., only rudimentary scheduling infor-
mation is given, predefined port types). Furthermore
the architecture is limited i.e., there is no support for
composite components. The verification of a com-
position regarding non-functional properties such as
memory consumption and schedulability is lacking
too.

6 Summary

In this paper, we have presented the domain specific
composition language CoCo as part of the PECOS
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project. The two main characteristics of the lan-
guage are its data–flow oriented composition style
and the support for non–functional properties (most
importantly timing information as input for schedule
generation).
The different purposes of CoCo have been pre-
sented: it serves for defining component interfaces
and composite2 components. Furthermore, it has
been shown, how CoCo allows to define system
architectures in the form of abstract components.
Finally, it has been indicated, how compositional
reasoning is supported and how the mapping from
CoCo to C++ and Java is handled.
In order to prove the usefulness of the CoCo lan-
guage, ABB is currently carrying out a number of
case–studies. One of these has been sketched in sec-
tion 2.
In order to facilitate the application of the PECOS
approach, tool support for CoCo has been devel-
oped. A first prototypical implementation of a de-
velopment environment has been carried out which
groups together a CoCo editor, the code generator
for C++ and Java as well as the Prologe fact genera-
tor. Currently, a more sophisticated implementation
in form of an Eclipse [1] plug–in is under develp-
ment which will integrate further project manage-
ment facilities like ressource and version control.
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