
PECOS in a Nutshell

Thomas Genssler1 Alexander Christoph1 Benedikt Schulz1

Michael Winter1 Chris M. Stich2 Christian Zeidler2 Peter Müller2

Andreas Stelter2 Oscar Nierstrasz3 Stéphane Ducasse3 Gabriela Arévalo3

Roel Wuyts3 Peng Liang3 Bastiaan Schönhage4

Reinier van den Born4

September 16, 2002

1 {genssler|christo|bschulz|winter}@fzi.de,
Forschungszentrum Informatik (FZI), Germany,
http://www.fzi.de

2 {christian.stich|christian.zeidler|peter.o.mueller|andreas.stelter}@de.abb.com,
ABB Corporate Research, Germany,
http://www.abb.com

3 {oscar|ducasse|arevalo|wuyts|liang.peng}@iam.unibe.ch,
Software Composition Group (SCG), University of Bern, Switzerland,
http://www.iam.uinbe.ch/˜ scg

4 {Bastiaan Schonhage|Reinier van den Born}@oti.com,
Object Technology International (OTI), The Netherlands,
http://www.oti.com

2

Preface

The PECOS Project

Software is more and more becoming the major cost factor for embedded devices. In fact, soft-
ware accounts for more than 50 percent of the development costs of such a device. The PECOS
(PErvasive Component Systems) project seeks to overcome this by providing a component-based
technology for the development of a specific class of embedded systems known as ”field de-
vices”. It takes into account the specific properties of this application area.

Therefore the PECOS project has developed a component model, a composition language,
and tools for field device software development which help to overcome the shortcomings of the
current practice. The PECOS approach covers the whole software life-cycle of a field device. It
defines a detailed software process which coordinates all development steps from requirements
specification to deployment.

The PECOS project consortium consists of four partners: ABB Corporate Research Centre
in Ladenburg, Research Centre for Information Technologies (FZI), the Software Composition
Group at the University of Bern (SCG), and Object Technology International (OTI).

The roles of the partners within the project has been the following. ABB acted as main contrac-
tor, project coordinator and user in the project: ABB’s Instruments Business Unit is developing a
large number of different field devices and aims at introducing component based technology in
their production. In addition, ABB has got expert knowledge in the field device domain and has
carried out a number of case studies within the project. FZI and SCG have been charged with the
research part of the project, which concerned the PECOS component model and the composition
language CoCo. OTI is a tool provider, especially known for their products VisualAge for Java
and Visual Age Micro Edition. They provided the knowledge of building development tools to
support the PECOS methodology, e.g., concerning the Eclipse platform.

The PECOS project has been funded by the European Union (under the IST project number
IST-1999-20398) and the State of Switzerland.

About This Handbook

This Handbook presents the PECOS approach for developing field device software. It has been
written for the developer who wants to apply the method in a realistic setting. The main objective
of this Handbook is thus to provide all the information that is necessary to understand and to
apply the PECOS approach in practice.

In order to meet this objective, it does not only present the fundamental concepts and tech-
niques, the PECOS approach is relying on, but also demonstrates how these principles are ap-
plied. For this purpose a detailed case study is presented which is used to illustrate and discuss
each step of the PECOS software process. Thereby, the reader is provided with a number of
practical recipes which answer all kinds of questions that emerge during the application of the
PECOS method.

To understand this Handbook, no previous knowledge about component-based development
is required. However, as the PECOS component model is mapped to C++ and Java, we assume

3

4

that the reader is familiar with one of these programming languages. Nevertheless, it should be
possible to understand most of this Handbook without knowing these languages.

Besides, it has to be pointed out, that this Handbook could not describe the latest versions of
the tools supporting the PECOS approach, as they will be available at the end of the project. This
is due to the fact that the development of these tools proceeded in parallel to the writing of this
book.

Handbook Structure

Chapter 1 gives a brief introduction to the domain of field devices and motivates the PECOS
approach.

Chapter 2 contains a brief but practical introduction into PECOS. By means of a simple exam-
ple, the chapter will provide the reader with some basic knowledge of the PECOS Run-Time
Environment, the tool environment, the CoCo component language and PECOS schedules.

Chapter 3 gives an overview of the structural and dynamic aspects of the PECOS component
model. It uses the example from Chapter 2 to illustrate the concepts and lighten the explanation.

Chapter 4 explains the CoCo language, which is an implementation of the PECOS component
model introduced in chapter 3. It gives a brief overview of the CoCo language constructs and
shows how CoCo is used to specify PECOS components and complete PECOS field devices.

Chapter 5 is concerned with the behaviour of components and the device as a whole. It starts
by looking at the issues related to local component behaviour, giving hands-on advice on how
to overcome problems. Then it goes on to show how PECOS devices are run, paying special
attention to scheduling and timing.

Chapter 6 presents a detailled PECOS case–study, using C++. It explains, how the available
PECOS tools are applied to model and implement a field device in a real–world setting.

Contents

1 Introduction 9
1.1 What is an Embedded System, what is a Field Device? 9
1.2 Current Field Device Development . 10
1.3 Motivation of the PECOS approach . 11

2 Babysteps with PECOS 13
2.1 Introduction . 13
2.2 The CoCo Clock Example . 13
2.3 Setting up the Project . 14
2.4 My First CoCo . 16
2.5 Implementing the Behaviour . 17
2.6 Get the Clock Going . 18
2.7 Adding a Digital Display Component . 21
2.8 Update the Device to include the Digital Display Component 22
2.9 Wrap up . 24

3 Component Model 25
3.1 Introduction . 25
3.2 Structural Overview . 25

3.2.1 Components . 25
3.2.2 Ports . 26
3.2.3 Connectors . 27
3.2.4 Composite Components . 27
3.2.5 Properties and Properties Bundles . 27
3.2.6 Parent . 28

3.3 Execution Model . 28
3.3.1 Data spaces . 28
3.3.2 Execution and Synchronisation Behaviour 29
3.3.3 Runtime Semantics . 29

3.4 Summary . 30

4 The CoCo Language 31
4.1 Introduction . 31
4.2 Keywords . 31
4.3 Components . 31
4.4 Ports . 32
4.5 Composite Components . 33

4.5.1 Component Instances . 33
4.5.2 Connecting Component Instances by Connectors 33
4.5.3 ’Upward’ Connectors . 33
4.5.4 Semantics of Connectors . 34

4.6 Properties . 35

5

6 CONTENTS

4.6.1 Simple Properties . 35
4.6.2 Property Bundles . 37

4.7 Schedule Specification . 37
4.8 Data Types . 39
4.9 Summary . 40

5 Component Behaviour 43
5.1 Introduction . 43
5.2 Application Structure . 44
5.3 Component Structure . 44

5.3.1 Component Type Base Classes . 45
5.3.2 Component Base Classes . 46
5.3.3 Component classes . 48

5.4 Component Behaviour . 49
5.4.1 Initialisation . 49
5.4.2 Execution . 50
5.4.3 Synchronisation . 51

5.5 Scheduling Behaviour . 53
5.5.1 Priority scheduling . 56

5.6 Main and PecosDevice . 57
5.7 Summary . 58

6 Application building and deployment 59
6.1 Application Structure . 59
6.2 Component and Device Specification . 60
6.3 Embedded Development Environment, M16C and embOS 64
6.4 Implementing Main . 66
6.5 Implementing Component Behavior . 67
6.6 Makefile and Building . 67
6.7 Debugging and Deplyoing . 68
6.8 Summary . 68

A CoCo Grammer 71

List of Figures

1.1 A simple fluid control system . 10

2.1 Model of the Clock Device example . 14
2.2 Create of a new PECOS Java Project . 14
2.3 Adding the PECOS RTE to the classpath . 15
2.4 PECOS Java Project Properties . 15
2.5 Creating a new PECOS component . 16
2.6 Outline view of a PECOS device . 17
2.7 Outline view of a PECOS device schedule . 18
2.8 Launching a PECOS application . 19
2.9 Output of a PECOS application . 20
2.10 Adding the SWT toolkit to the classpath . 21
2.11 Model of the extended Clock Device example . 22
2.12 Setting of VM arguments for SWT library . 23
2.13 Output of the PECOS Clock Device . 24

3.1 Model of the extended Clock Device example . 25
3.2 Tree view of the the Digital Clock example . 28
3.3 Possible Execution trace for the Digital Clock example 29

4.1 Class Diagram of Tasks, Jobs and Activities . 38
4.2 Summary of CoCo’s top–level syntax elements. 41

5.1 Application Structure . 44
5.2 Classes for active component Comp . 45
5.3 Nested Components with their Class Diagram . 46

6.1 A simple valve positioner . 60
6.2 A very simple valve positioner. 61
6.3 Required executing order and timing of our device 61
6.4 Eclipse development environment with opened valve controller project 63
6.5 Adding generated files . 66
6.6 TaskingWorkspace . 67
6.7 Make . 68
6.8 CrossView Debugger . 68

7

8 LIST OF FIGURES

Chapter 1

Introduction

Since computer has become smaller, faster, more reliable and cheaper their range of applications
has been widened. Built initially as equation solvers, their influence has extended into all ar-
eas of life. One of the fastest expanding areas is that of embedded real-time computers. It has
been estimated that 99% of the worldwide production of microprocessors is used in embedded
systems.

This tutorial is concerned with the development of a special class of embedded computers
called field devices. The approach presented here was developed in the PECOS project (Pervasive
Component Systems). By following this tutorial the reader will get a good understanding of
PECOS and will learn how to use PECOS to develop software for embedded real-time systems.

This chapter provides you with an introduction into PECOS. It starts with an overview on
the state of the art in today’s software development for field devices. It presents the domain of
embedded systems and especially field devices which have been used for the PECOS case studies.
The main deficiencies of current embedded software development practice are presented and we
show, how the PECOS approach tackles them.

1.1 What is an Embedded System, what is a Field Device?

Embedded Devices are not just small computers. Before starting, it is worth to define the phrase
real-time systems. The Oxford Dictionary of Computing gives the following definition:

Any system in which the time at which output is produced is significant. This is
usually because the input corresponds to some movement in the physical world, and
the output has to relate to that same movement. The lag from input time to output
time must be sufficiently small for acceptable timeliness.

Timeliness must be taken from the context of the total system. Take a valve controller as an
example. Its output is typically required within a few milliseconds, whereas for a temperature
controller, the response may be required only within a second. A key feature is the role of the
computer as an information processing component within a larger engineering system. It is for
this reason that such applications has become known as embedded computer systems. Most
of the critical properties of embedded systems are non-functional like real-time, fault recovery,
low power consumption, security and robustness [1]. Further down we will see how PECOS
especially supports real-time and robustness properties.

A field device is an embedded system often used in the area of process control. Field devices
make use of sensors to continuously gather data, such as temperature, pressure or rate of flow.
They analyse and reconcile this data, and react by controlling actuators, valves or motors. Field
devices must provide high quality and reliability since malfunction may be dangerous or may
involve high financial risk.

9

10 CHAPTER 1. INTRODUCTION

Process
Control
Computer

Input flow reading
Processing
Output valve position

Flow
meter

Valve Positioner

Fieldbus

Pipe Valve

Stem

Figure 1.1: A simple fluid control system

Consider the simple example in figure 1.1. The process control computer performs a single
activity: that of ensuring an even flow of liquid in a pipe by controlling a valve. On detecting
an increase in flow by reading the current flow value from the flow meter, the computer must
respond by altering the valve’s stem position by writing a new valve position to the valve posi-
tioner. This response must occur within a finite period if the equipment at the receiving end of
the pipe is not to become overloaded. Note that the actual response may involve quite a complex
computation in order to calculate the new valve angle. Required response time may be in the
range of seconds. Another example is the valve positioner itself. A valve positioner is a device
used to increase or decrease the air pressure operating the actuator until the valve stem reaches
the position called for by the process control computer. A new output signal must be generated
e.g. every 20ms.

Often field devices are used in hazardous areas like chemical plants. The energy passing into
the hazardous area is therefore limited in a way that regardless of the fault in the hazardous
area, sufficient energy cannot be released to ignite an explosive atmosphere. As a consequence
power consumption per device is limited. This has far reaching consequences on the design of
field devices. Therefore typical field devices still use 8 or 16 bit micro-controllers (e.g. Mitsubishi
M16C with 256k ROM and 20k on-chip RAM) today. This is especially because of their low power
consumption. As a consequence (hardware and software) designs are often totally device specific
to reach the low power requirements.

1.2 Current Field Device Development

How does a typical development look like? In many cases small groups are responsible for the
whole development life-cycle from the product specification over design and development up to
the users manual. Only one or two (senior) developers do understand the device in all its details.
Others only may know a special part of the device like the control loop or the fieldbus commu-

1.3. MOTIVATION OF THE PECOS APPROACH 11

nication interface. People often spend years in maintaining and tuning a developed product.
Usually there is no separate group of people responsible to develop base technology for all de-
vices developed at one location or even business unit wide (e.g. a competence team for a certain
fieldbus protocol). Typically no other software development tools than an Integrated Develop-
ment Environment (IDE) and an In Circuit Emulator (ICE) for real-time debugging are in use.
Rarely one will find an up-to-date software development process or the use of design tools.

1.3 Motivation of the PECOS approach

As a consequence of the things said above many shortcomings exists in the area of embedded
software development. The following list presents the most important ones.

The field device software is hard to maintain and to extend: Based on the monolithic design with
individual architectures, interfaces and scheduling methods, today’s field device software is hard
to maintain and to extend. This is all the more important if code from consultants and external
service providers should be integrated.

Duplicated functionality: ABB Instrumentation is located around the world. Due to the missing
process and (tool) support for a corporate software reuse the same functionality is often imple-
mented at different development locations in different ways for different field devices.

Slightly portable implementations: Most of today’s field device software is developed for the
specific combination of an electronic device and its physical environment. Additionally non
standard real-time operating systems and low level micro-controller routines result in solutions
which are often not portable to other environments.

Most field device projects fail to meet their schedules: The software development is often the rea-
son for this delay! Software for new products is often developed from scratch with little reuse of
well-tried architectures or components.

The effort for Integration and Regression Tests is too high: In today’s field device implementations
the control, state and data dependencies between units are hard to identify. This often leads to
higher efforts for integration and regression tests than needed, after changing small parts of the
system.

To address this shortcomings of the current software development process and the constantly
increasing requirements, ABB’s Business Unit Instrumentation have to find better solutions for a
lot of key issues:

• Training of the current engineering staff to address the much higher demand for methods,
tools and techniques.

• Organization and culture: For a corporate collaboration and a functioning reuse of com-
pleted jobs ABB has to provide the appropriate organization and culture. The point will
become more and more important because the high pressure to reduce cost often comes
along with staff reduction. Cooperation between different development teams will be a
key for success in the future.

• Reuse of technical solutions: As it was already proven from other software domains component-
based software engineering would bring a number of advantages to the embedded systems
world too: faster development times; the ability to secure investments through re-use of
existing, well tried components; the ability for domain experts to interactively compose
embedded systems software and to adapt the software to specific customers needs.

12 CHAPTER 1. INTRODUCTION

• Iterative processes: The most difficult features have to be developed first in the earlier it-
erations and refined in later iterations - risks are effectively mitigated since there are now
several integration periods to identify and resolve problems. Requirement, feature changes
and additions must be handled as the project proceeds through subsequent iterations. The
iterations allow the developers to inspect the results. This will be especially effective with
domain specific tools and development environments. Since the project will have been
tested and integrated several times, the probability of significant errors remaining is low.
This means that the overall quality of the product should be enhanced.

PECOS is the major instrument to address the last two issues, reuse and iterative processes.
The following chapters will present the PECOS approach which enables component-based soft-
ware development for embedded systems, specifically for field devices. The project aims to solve
the major technological deficiencies of current processes by developing a specific component
model for the constraints of field devices. The CoCo language syntacticaly represents this com-
ponent model. A coherent software development process is defined for embedded components
and applications. A development and testing toolkit including editors, code browsers, code gen-
erators suppors target development. Schedule computation and testing is also supported. Most
of these tools are integrated in the PECOS component environment. This handbook enables you
to use PECOS to build your own component-based systems.

Chapter 2

Babysteps with PECOS

By Bastiaan Schönhage

2.1 Introduction

In this chapter you will get a head start in PECOS. Using a simple example, the basics of the CoCo
composition language and the Eclipse-based tool support will be explained. In later chapters a
more detailed discussion of the component model, the process and the tools will be provided.
The goal of this chapter is to get you acquainted with the PECOS Integrated Tool Environment
and give you at least an idea of what is possible with PECOS. Have fun ...

Structure After a short explanation of the CoCo Clock example device in Section 2.2, Section 2.3
explains how to set up a new PECOS Java project in Eclipse 2.0 with the PECOS extensions.
Section 2.4 describes the use of the composition language CoCo to specify the components that
are part of the example. In addition to this, the section briefly describes what files are generated
by the code generator upon a build.

In the next part, Section 2.5 adds the behaviour to the components and Section 2.6 shows how
a CoCo specification of a schedule can get the clock going.

Sections 2.7 and 2.8 show the power of the PECOS component-based approach by adding
two additional components to the system to display the current time graphically. The sections
explain how the device and schedule have to be changed to include the new components. Finally,
Section 2.9 wraps up the chapter and presents a summary of the steps taken to build a simple
PECOS device.

2.2 The CoCo Clock Example

The upcoming sections show how easy it is to build a simple application based on the PECOS
component model. The example application used is a Clock Device that displays the current time
of the day. In the first example, the output is text-based and updated every second. In a later step
the example will be extended with additional components that show the time graphically.

The Clock Device that we are building in this chapter is extremely simple: print the time and
update the output every second. In order to model this in PECOS, we only need three compo-
nents: one to provide the time, one to display the time and one component that models the device
and contains both the Clock and Display component.

Figure 2.1 gives a schematic overview of our example Clock Device. The Clock component on
the left has one output port (msecs) that contains the current time in milliseconds. The Display
component on the right-hand side is used to format the time and print it to standard output. In
order to achieve its goal, it has an input port called time . The third component is the Device

13

14 CHAPTER 2. BABYSTEPS WITH PECOS

Device
(active component, period = 1000msecs)

Clock Displaymsecs time

Figure 2.1: Model of the Clock Device example

component: it contains the clock and the display. The Device is an active component that runs its
passive children every 1000 ms. This ensures us that the current time is displayed every second
as long as the application is running.

2.3 Setting up the Project

Before we can actually develop the components and run the application, we first need to set up
a project that contains our specifications and code. In order to achieve this, start up Eclipse (with
the PECOS tools installed) and select the New Wizard from the menu File-> New-> Other ...
(or press Ctrl-N).

Figure 2.2: Create a new PECOS Java Project

In the project wizard (Figure 2.2) that pops up now, you should select Pecos Java Project .
After pressing Next you should give the project an appropriate name; use clock for our exam-
ple. In the final step of the wizard make sure that you add the Run-Time Environment to the

2.3. SETTING UP THE PROJECT 15

classpath of the newly created project using Add External JAR ... (see Figure 2.3).

Figure 2.3: Make sure that the PECOS RTE is on the classpath

By right-clicking the project (make sure that you are in the Java perspective) you can modify
the properties of the clock project. Most of the properties are Eclipse specific. However, the
Pecos Java Project Properties are added by the PECOS Tools, please select these (see
Figure 2.4. Now we can specify the package into which the automatically generated files are put.
The default org.pecos.generated is fine for this example. Then we have to specify the top
component of our system.

Figure 2.4: PECOS Java Project Properties

16 CHAPTER 2. BABYSTEPS WITH PECOS

In the ”top component” field we can specify the top component of our application. When
nothing has been filled in, the PECOS tooling just picks one. In our example, the top component
is Device . The property filter and generation of (unit) test methods allow more advanced uses
of the code generator but we will ignore them for the moment.

As a final step before we are going to specify and build our components we should create
some packages to contain the components and the main application. The easiest way to do this
is to use the Eclipse Java support. Make sure that you are in the Java perspective and then click
on the Create a Java Package button (or use the following menu item: File-> New->
Package . Now create a package called components and one called main .

2.4 My First CoCo

Now that everything has been set up, we can specify the three components of our Clock exam-
ple. First of all, we are going to add the Clock component. Select the Create new PECOS
Java Component button from the buttonbar (or use the File->New menu again). This brings
up the wizard to add a PECOS Java component to our project. Make sure that you select the
/clock/components folder, type in the name of the component (Clock) and specify that it is
a passive component (see Figure 2.5).

Figure 2.5: Add a new component using the PECOS Component Wizard

When Finish is selected, the wizard creates two files: Clock.cm and Clock.java . The
first one contains the specification of the Clock in CoCo whereas the latter file is used to specify
the behaviour of the component in Java. To complete the specification of the Clock component
we will have to add its output port in the CoCo file. To achieve this, open the Clock.cm file and
complete the specification until it matches the one given below:

component Clock {
output long msecs;

}

The same series of steps should be done for the Display component. Add a PECOS Java
component using the wizard, make sure that it is passive and open the Display.cm file. Now
specify the input port of the Display component as follows:

2.5. IMPLEMENTING THE BEHAVIOUR 17

component Display {
input long time;

}

Finally, we have to create the CoCo specification of the Device component. We will use the
same PECOS Java Wizard again, but this time the type of the component has to be set to active.
After this, the Device.cm CoCo specification has to be updated to:

active component Device {
Clock clock;
Display display;

connector time (clock.msecs, display.time);
}

The CoCo specification above describes our Clock device (see also Figure 2.6). It consists of
two instances of subcomponents: clock and display . Additionally, the Display component
contains a connector that links the msecs output port of clock to the time input port of display.
This exactly matches the model of Figure 2.1.

Figure 2.6: The outline view of the Device component

During the “build” of a project, which by default happens every time you save a file, the CoCo
code generator generates a couple of classes. You can look into the org.pecos.generated
package to see what has been generated after specifying these three components. For the mo-
ment, it is sufficient to only understand the very basics of what has been generated.

First of all, all components have a generated base class, e.g. the Clock component has a
ClockBase.java class that serves as the base class for Clock.java in our components pack-
age. These base classes contain the utility getter-setter methods to access the input and output
ports from Java. For example, to represent the msecs output port of Clock the CoCo builder
generates public void put msecs(long val) in ClockBase.java .

In addition to the generated base classes there is the DataStore.java . This class contains
all data that is passed between the components by means of the connector mechanism. As a
user you will never have to access or use the DataStore directly. Another generated class is the
PecosDevice utility class. This class comes in handy, as we will see later, when we are going to
initialise and run our device and set it running.

2.5 Implementing the Behaviour

Before we can actually use our components, the behaviour has to be implemented first. This
should be done in the files created by the PECOS Java Wizard in the components package. Every
passive component has two extension points that can be filled in to specify how the component

18 CHAPTER 2. BABYSTEPS WITH PECOS

should behave at run-time: initialize and execute. For our current purposes we only need to specify
the executional behaviour of the Clock and Display components. The execute() method in
Clock.java should ask the system the current time in milliseconds and subsequently put this
value on its output port using the msecs setter method:

public void execute() {
long time = System.currentTimeMillis();
put_msecs(time);

}

The behaviour of the Display component is also not too complicated. It gets the time from its
input port, formats it and prints it to standard out:

public void execute() {
long time = get_time();
java.util.Date date = new java.util.Date(time);
System.out.println("Date = "+date);

}

2.6 Get the Clock Going

The Device component itself has no specific behaviour. It more or less serves as an empty con-
tainer that holds the Clock and Display components. However, since the Device component
is an active component it does need a schedule that specifies how the Device component and
its passive children run. In order to get the Clock going we therefore have to add a sched-
ule to the project. Add a new file in the main package using File-> New-> File and call it
schedule.cm . Edit the file until it looks like below:

schedule sched of Device every 1000 at 10 {
{

exec clock;
exec display;

} at 0;
}

The schedule specification given above (see also Figure 2.7) specifies a schedule named sched
for the Device component (schedule sched of Device). The schedule is periodic and runs
every 1000 millisecs (every 1000) at a priority of 10 (at 10). The schedule contains one Job
that subsequently executes clock and display. The at 0 means that the Job is started without
any additional delay (relative start time is 0).

Figure 2.7: The outline view of the Device schedule

2.6. GET THE CLOCK GOING 19

The only thing we are currently missing to get the application running is a main class. To
overcome this small issue create ClockDevice.java in the main package. The implementation
of this class should look as follows:

package main;

import org.pecos.generated.PecosDevice;

public class ClockDevice {

public static void main(String [] args) {
PecosDevice._initialize();
PecosDevice.start();

// only run for five seconds
try {

Thread.sleep(5000);
} catch (Exception e) {}
System.exit(0);

}
}

The ClockDevice class makes use of the generated utility class PecosDevice . We can
initialise and run the device by calling the static methods initialize() and start() respec-
tively.

Figure 2.8: The launch configuration that starts the Clock Device

20 CHAPTER 2. BABYSTEPS WITH PECOS

To run our newly created ClockDevice in Eclipse, you click on the small black triangle next
to the running man in the toolbar and select Run Select Java Application and press
New. Make sure that the new launch configuration looks like Figure 2.8 and press Run. The Clock
Device gets started and prints the current time at standard output as shown in Figure 2.9.

Figure 2.9: The output of the running Clock Device

2.7. ADDING A DIGITAL DISPLAY COMPONENT 21

2.7 Adding a Digital Display Component

After we have built the simple text-based Clock Device we are now going to extend it with some
additional features. The goal of this example is to illustrate how an existing application can be
extended by adding components.

To build a Clock Device that shows the time digitally, we have to make use of a widget toolkit.
In this example we are using the Standard Widget Toolkit (SWT) from OTI/IBM [3]. SWT is cur-
rently available for Windows, Linux/Unix (both Motif and GTK2.0) and QNX Photon. A subset
of SWT is available for Palm and PocketPC. SWT is the widget toolkit that is used in Eclipse as
well. To be able to use SWT in our sample, we will have to add it to the classpath: right-click the
project (in the Java perspective) and select Properties . Go to the Java Build Path property
and select Add Variable ... Now add swt.jar to the classpath as shown in Figure 2.10.

Figure 2.10: Adding the SWT toolkit to the classpath

Every graphical application using SWT needs to have an eventloop that handles graphical
events such as mouse clicks and repaint events. The eventloop is a good candidate for reuse in
multiple applications. The EventLoop component that we are going to use in the digital clock
for example comes from another graphical sample that displays mandelbrot images.

In addition to the EventLoop component, our graphical clock needs to be extended with a
component that displays the time using SWT. We will call this component DigitalDisplay .
Figure 2.11 shows how the model of Figure 2.1 is extended with the EventLoop and DigitalDis-
play components. The DigitalDisplay component has, just like the original Display component,
an input port time in msecs . Additionally, it needs to know whether it can draw onto the
Canvas provided by the graphical EventLoop component. Therefore it has a boolean input port
can draw that is connected to the boolean output port started of EventLoop that specifies that
the eventloop has been started and is ready to receive graphical events. The CoCo specification
of the EventLoop and DigitalDisplay components is given below:

active component EventLoop {
output bool started;

}

22 CHAPTER 2. BABYSTEPS WITH PECOS

Device
(active component, period = 1000msecs)

Clock Display
msecs time

time_in_msecs
Digital
Display

EventLoop
(active component)

(aperiodic)

started can_draw

Figure 2.11: Model of the extended Clock Device example

component DigitalDisplay {
input long time_in_msecs;
input bool can_draw;

}

The implementation and specification of the EventLoop and DigitalDisplay components is al-
ready available on the accompanying CD. Please use File-> Import... to import the EventLoop.cm ,
EventLoop.java , DigitalDisplay.cm and DigitalDisplay.java files into the components
package.

2.8 Update the Device to include the Digital Display Compo-
nent

As Figure 2.11 shows, the updated Device contains the two new components as sub-components
and has a connector to connect them. Additionally, the time connector should be extended to
connect to the DigitalDisplay component as well. The updated Device.cm file should look as
follows:

active component Device {
Clock clock;
Display display;
DigitalDisplay digitalDisplay;
EventLoop eventLoop;

connector time (clock.msecs, display.time,
digitalDisplay.time_in_msecs);

connector eventLoop_started (eventLoop.started,
digitalDisplay.can_draw);

}

Since we have changed the Device component, and we have added an active component to
our system, we also have to update the schedule in schedule.cm . The fact that the EventLoop
is an active component has two important implications for the schedule of our Clock Device.
First of all, we will have to call synchronize to synchronise the connector between the started

2.8. UPDATE THE DEVICE TO INCLUDE THE DIGITAL DISPLAY COMPONENT 23

and can draw ports. For the moment it suffices to say that this synchronisation makes sure
that connected ports between an active and another component have the same value. IN later
chapters the notion of synchronisation will be described more extensively.

A second consequence of EventLoop being active is that it needs its own schedule. Since
EventLoop is a leaf component, i.e. it does not have subcomponents, the schedule only consists
of one activity that runs the component itself. The updated schedule is shown below:

schedule sched of Device every 1000 at 10 {
{

sync eventLoop;
exec clock;
exec display;
exec digitalDisplay;

} at 0;
}

schedule eventTask of Device.eventLoop at 5 {
{

exec ;
} at 0;

}

In the updated schedule, we have added a sync eventLoop to the main schedule to syn-
chronise the components. Additionally there is a new schedule eventTask that runs aperiodi-
cally at a lower priority. This task runs the SWT eventloop.

Figure 2.12: Set the VM arguments so that it can find the SWT library

24 CHAPTER 2. BABYSTEPS WITH PECOS

When we would run the application as it is now, we would see the error that the Java VM
cannot find the SWT run-time library. Therefore we have to update the “Launch Configuration”
to set the Java library path in the VM arguments (see Figure 2.12). When we have done this
successfully, running our Clock Device results in both textual and graphical output of the current
time of the day (Figure 2.13);

Figure 2.13: Graphical output of the Clock Device

2.9 Wrap up

This chapter introduced the basic knowledge about PECOS and the available tools and technolo-
gies. By means of the Clock Device example we have seen the basic aspects of how to create a
simple PECOS application (see also Table 2.1. In particular this chapter demonstrated the use of
the Eclipse tooling and the CoCo language. The following chapters will discuss these issues and
more in a lot more detail.

Table 2.1: Steps to build a simple CoCo Java application

1. Create a PECOS Java Project.

2. Build your component specification in CoCo (component.cm).

3. Implement the behaviour in Java (component.java).

4. Add a CoCo schedule for every active component.

5. Build the project (creates the base and utility classes).

6. Write a main class that uses the PecosDevice utility class.

7. Create a launch configuration and run the application.

Chapter 3

Component Model

3.1 Introduction

In this chapter, we present the PECOS Component Model. It is a specific component model that
addresses the constraints of field devices and is the foundations for ABB Component Develop-
ment. To make the user familiar with the introduced terminology, we explain the concepts using
the example presented in the Chapter 2.

3.2 Structural Overview

As we saw in the example described in the Chapter 2, we can identify three main entities in the
PECOS Component Model: components , ports and connectors. We will see the main features of
these entities and how we can map them based on the example of the Clock Device . In the
next section we then discuss the runtime semantics of the model.

3.2.1 Components

Device
(active component, period = 1000msecs)

Clock Display
msecs time

time_in_msecs
Digital
Display

EventLoop
(active component)

(aperiodic)

started can_draw

Figure 3.1: Model of the extended Clock Device example

A component is the core entity in this model. Components are used to organise the compu-
tation and data into parts that have well-defined semantics and behaviour. Figure 3.1 shows the
component model again for the Digitial Clock example from section 2.7. We see five components:

25

26 CHAPTER 3. COMPONENT MODEL

the Clock , the Display , the DigitalDisplay , the EventLoop and the Device . This last one
is a kind of container for the rest of the components.

Every component has a name, a number of property bundles (used to store meta information of
components, such as worst-case execution times or scheduling information), a set of ports, and a
behaviour. The behavior of a component can be seen as a function or an algorithm that takes data
available on the component ports or represented by some internal component data and produces
some data on the component ports. Depending on how the action is triggered and where it is
run, we distinguish different kinds of components.

Passive Component A passive component does not have its own thread of control. Passive
components are typically used to encapsulate a piece of behaviour that executes synchronously
and completes in a short time-cycle. In our example, the components Clock , Display and
DigitalDisplay are all passive components.

Active Component An active component is a component with its own thread of control. Active
components are typically used to model either very fast or very slow activities (such as reading
out hardware registers or writing to slow memory). In our example, the component Device and
EventLoop are active components.

Event Component An event component is like an active component, but the execution of the
behaviour is triggered by an event. Certain pieces of hardware frequently emit events, such
as motors that give their rotation speed. Whenever the event fires, the behaviour is executed
immediately. This is for example used to make timers that have to fire at a certain moment.

The Digital Clock example uses active components (Device and EventLoop) and passive
components (all the other ones). There is no event component in that example.

3.2.2 Ports

The ports of a component can be connected to ports of other peer components. Ports offer the
sole mechanism for a component to interact with other components (the outside world). Looking
more closely, a port is a reference to data than can be read and written by a component and
enables a component to be connected to another component (through a connector). A port is
specified with the following information:

• the name of the port, which has to be unique within the component;

• the type of the data passed over the port;

• the range of values (i.e., between a minimum and maximum value) that can be passed on
this port; and

• the direction of the port: ports can be unidirectional (in or out) or bi-directional (inout).
A port can only be connected to another port having the same type and complementary
direction.

In the Digital Clock example, we identify the following ports:

• msecs for the component Clock : This port contains the current time in miliseconds. It is
an out port (because it provides the time of the component), and has as type long .

• time for the component Display : This port formats the time and prints it to standard
output. Its direction is in , because it receives the time for the component, and has as type
long .

• started for the component EventLoop : This port specifies that the eventloop has been
started. It has as type bool and it is an out port that sends a signal to activate the
DigitalDisplay .

3.2. STRUCTURAL OVERVIEW 27

• can draw for the component DigitalDisplay : This port is used to indicate that the
display is ready to receive graphical events. It is an in port of type bool that receives a
signal to indicate that the display is ready to receive graphical events.

• time in msecs for the component DigitalDisplay : This port receives the time to dis-
play it. Its direction is in , and its type is long .

3.2.3 Connectors

It is clear that the ports act as providers and receivers of data. To fulfill this characteristic, we
need to connect them. A connector describes a data-sharing relationship between ports. It is
described with the following features:

• a name,

• a type (that has to be compatible with the port types), and

• a list of ports it connects.

In the example, the ports of the components are connected using the connector time that con-
nects the ports clock.msecs and display.time of the components Clock and Display re-
spectively. In the extended example to include the DigitalDisplay component, the connector
is extended to connect also the digitalDisplay.time in secs . There is also another connec-
tion made using the connector eventLoop started that connects the ports eventLoop.started
and digitalDisplay.can draw .

Note that connections can only exist between ports that are on a component (on its inside)
and/or any of its direct subcomponents (on their outsides).

3.2.4 Composite Components

Every component can contain (connected) subcomponents. When it contains subcomponents, we
call it a composite component. When it has no children, we call it a leaf component. The subcompo-
nents of a composite component are not visible outside the composite component. A composite
component can have external ports that are connected to selected ports of its subcomponents.
In the Digital Clock example, the composite component is the component called Device and
the subcomponents are the components Clock , Display , DigitalDisplay and EventLoop .
Note that the composite component Device has no external ports because it represents the ap-
plication to be run.

A composite component is responsible to provide a schedule that specifies the order in which
its own behaviour and the behaviour of the subcomponents is run. In the example only the
Device component has to do this, since it is the only composite component (see Sections 2.8 for
the description of the schedule).

3.2.5 Properties and Properties Bundles

Meta information of a component, such as memory consumption or worst-case execution time,
is expressed using properties and property bundles. A property is a tagged value, where the tag is
used as an identifier. For example, we could specify the cycletime of a component with the tag
cycletime and the value 100 .

A property bundle is a named group of properties. Typically, sets of properties are used, for
example to give all the information for some aspects of a component, such as timing or memory
consumption. For example, scheduling information is expressed using cycle time and worst-case
execution time.

Properties bundles are used by different PECOS tools, such as the Composition Rule Checker,
the Schedule Generation tool and the Schedule Verification Tool.

28 CHAPTER 3. COMPONENT MODEL

3.2.6 Parent

The component structure implied by the model is always hierarchical. The top is an active com-
posite component (the device) that contains a number of subcomponents . Every one of these
subcomponents can again contain components, with or without subcomponents. Because of this
hierarchical structure we introduce a scope for components.

The parent of a component X is the immediate composite component within which X is nested.
In the example the parent for the components Clock , Display , DigitalDisplay and EventLoop
is the Device component.

3.3 Execution Model

The previous section explained the structural part of the model (components, ports and connec-
tors), but does not talk about its execution semantics. The goal of this section is to make clear
what happens at runtime. We first explain how data gets synchronised between components
running in different threads and then describe the actual runtime semantics.

3.3.1 Data spaces

Before we look at the complete runtime semantics we need to discuss how data gets synchronised
between components. Remember that a field device has always a hierarchical structure. The top
is the field device itself, that is an active composite component containing a number of compo-
nents. Every one of these components can contain subcomponents, and so forth. The result is a
tree of components.

In this tree of components, some components are passive, while other ones are active or event
components. Like we have seen in Section 3.2.1, active and event components have behaviour
that runs in their own thread of control. When two active components provide ports that are
connected by a connector, they can both read and write to the data residing in the ports all the
time. Hence the model needs to assure that data cannot get corrupted due to two simultaneous
write operations from components in different threads.

Device
(active)

data space

Clock Display
Digital
Display

EventLoop
(active)

data space

Figure 3.2: Tree view of the component model of the Digital Clock example. It shows the com-
ponents and the private data spaces of the two active components in the example (Device and
EventLoop).

To solve this problem every active and event component is equipped with its own private data
space in which it can work, separate from the rest of the world. At specific intervals, this private

3.3. EXECUTION MODEL 29

data space is then synchronised with the one of the parent. During this synchronisation the con-
tents of the private data space are brought in sync with the data space of the parent, so that at
the end of the synchronisation phase both data spaces contain the latest data. The private data
space is used by the execution method of an active component, and by all of its subcomponents
(unless they are active, in which case they work and synchronise their own data space again).
Figure 3.2 shows the tree for the Digital Clock example of Section 2.7. It shows the Device as the
root of a tree with four leaves (one for each subcomponent): Clock , Display , EventLoop and
DigitalDisplay . All subcomponents but Eventloop are passive, and they use the data space
provided by Device . The EventLoop component uses its own data space. Any passive subcom-
ponents of EventLoop would use the data space of EventLoop . Any passive subcomponents
of Display would use the data space provided by Device .

3.3.2 Execution and Synchronisation Behaviour

We just said that active and event components need to be able to synchronise their data space
with the data space of their parents. So from an execution point of view there are two different
behaviours associated with active and event components: execution behaviour and synchronisation
behaviour. Execution behaviour determines the action that is performed when the component is
executed. Synchronisation behaviour is responsible for synchronising the data space of the active
or event component with that of the parent. Note that the root component is an exception to this
since it only has subcomponents and no execution nor synchronisation behaviour.

3.3.3 Runtime Semantics

Now that we know how the data synchronisation is handled, we see that the runtime semantics
of the model are governed by simple rules:

• The behaviour of a passive component is executed in the thread of its parent component.

• Synchronisation behaviour for active and event components is executed in the thread of the
parent component.

• Active and event components execute their subcomponents and their own execution be-
haviour in their own thread of control.

• Every composite component has to provide a schedule for its children.

Task 1
EventLoop (sync) Clock Display DigitialDisplay EventLoop (sync) Clock Display DigitialDisplay

0s 1s 2s

Task 2
EventLoop (behaviour)

0s 1s 2s

Figure 3.3: Possible Execution trace for the Digital Clock example.

Figure 3.3 shows an example of 2 seconds in a possible execution of the component model
from Section 2.7. Because there are two active components in the Digitial Clock example, we
see two tasks: one associated with the Device component (task 1), and one associated with the
EventLoop component (task 2). Since the period of the device is 1000 ms, this means two periods
in this device. In the first period of task 1, the synchronisation behaviour of the EventLoop
is executed, followed by the behaviours for the passive components. When they are finished

30 CHAPTER 3. COMPONENT MODEL

executing, the lower priority task2 executes the behaviour of the EventLoop component, that
initializes the eventloop to handle graphical events. In the second period of the device more or
less the same happens for task 1: the synchronisation and behaviours are executed. Nothing
happens in task 2 in this run.

3.4 Summary

In this chapter, we explained the main concepts related to PECOS Component Model. Firstly,
we have shown the different entities comprised in the model and how they are identified in the
example presented in the Chapter 2. We also explained the foundations of the execution model
of the model and how the different components -according to their features- are synchronised.
In the next chapter we see how to use the component description language CoCo to write down
component specifications.

1. The structural elements of a model are Components, Ports and
Connectors.

2. There are 3 kinds of components: Passive, Active and Event.

3. Every component (regardless of its type) is either a composite
(when it has subcomponents) or a leaf (when it has no subcom-
ponents).

4. Ports indicate data sharing points. They are typed, and have as
direction in, out or inout.

5. Connectors connects ports to express data sharing relationships.

6. Active and event components have two kinds of behaviour: exe-
cution behaviour and synchronization behaviour.

7. The execution semantics are given by the following rules:

• The behaviour of a passive component is executed in the
thread of its parent component.

• Synchronisation behaviour for active and event components
is executed in the thread of the parent component.

• active and event components execute their subcomponents
and their execution behaviour in their own thread of control.

• Every composite component has to provide a schedule for its
children.

Chapter 4

The CoCo Language

By Michael Winter

4.1 Introduction

CoCo stands for Component Composition Language. It is an implementation of the PECOS
component model which has been introduced in the previous chapter. This chapter gives a brief
overview of the CoCo language constructs and shows how CoCo is used to specify PECOS com-
ponents and whole PECOS field devices. Therefore, the Clock example from chapter 2 is revisited
and new language constructs, not present in the example, are introduced.

4.2 Keywords

The CoCo language has got the following reserved keywords:

active, at, component, connector, exec, extends, event, every, has,
input, inout, of, output, passive, port, properties, schedule, sync,
type

The following words are additionally reserved words for CoCo base types:

byte, bool, char, short, int, long, float, double, void

Keywords and reserved words cannot be used for identifiers. The purpose of the different key-
words will be explained in the sequel of this chapter.

4.3 Components

The most important purpose CoCo is used for is the specification of PECOS components. A very
simple example of a PECOS component is the Display component taken from chapter 2, which
is specified in CoCo as

component Display {
input long time in msecs;

}

A component specification in CoCo always starts with the keyword component followed by
the component’s name. This name has to be unique within a PECOS project. The body of the com-
ponent specification follows the component’s name and is enclosed in braces. In the above exam-
ple, this component body contains only the declaration of an input port called time in msecs ;

More generally, a component’s declaration can look like the following:

31

32 CHAPTER 4. THE COCO LANGUAGE

[passive | active | event] component componentName
[has propertySetNames, ...] {

// Properties Section (optional)
properties {... };

// Ports
[in | out | inout] dataType portName;

// Component Instances
componentName instanceName;

// Connectors
connector (instanceName.portName, ...)

}

As we have already seen in 3.2.1, the PECOS component model defines three different types
of components: active, passive and event components. Active and Event components are dis-
tinguished from passive components, like e.g.the Display component above, by putting the
active or event keywords in front of the component specification, respectively.

Next, a component can specify a list of property sets following the has keyword. Property sets
will be examined in detail in sections 4.6.2. Note, that property sets are sometimes also called
property bundles. In addition to property bundles, one may specify properties in the properties
section of a component. This section starts with the properties keyword and is the first thing
that may appear in a component’s body. Properties will be looked at in section 4.6.

Besides that, a component’s body may contain ports declarations, explained in section 4.4,
component instances, explained in section 4.5.1, as well as connectors which will be looked at in
section 4.5.2.

4.4 Ports

Let us begin with the ports. As already known from chapter 3, the PECOS component model
is data–flow oriented: components exchange data with their environment through ports. More
precisely, a component’s ports are the only means of a component to communicate with it’s en-
vironment (that means with other components). Thus a component’s interface is given by the set
of ports it provides.

Data ports can be declared in a component’s body. For instance, the Display component
declares one single port:

input long time in msecs;

This port has name time in msecs — which has to be unique within the components body.
The keyword input indicates the dataflow direction of the port, which in this case is a data flow
from the component’s environment into the component.

Besides its name and data flow direction, every port has got a data type assigned, like long
in this case. The specified data type restricts the data which may flow through the port to be of
that type. For details about CoCo’s data types please have a look at section 4.8.

Besides input ports, there is also output ports (keyword output , through which data can flow
out of a component. We have already encountered an output port in the introductory example in
the Clock component:

component Clock {
output long msecs;

}

In addition to input and output ports, there are also inout ports (keyword inout), which
allow data–flow in both directions, into and out of a the component through the same port.

4.5. COMPOSITE COMPONENTS 33

4.5 Composite Components

The two components (Clock and Display) we have seen so far are so–called leaf components.
They do not contain other components, but are directly implemented in Java or C++. How this is
done has been presented in the introductory example. In contrast, composite components are not
implemented that way but are build form other components. In particular, every PECOS field
device application is modelled as a composite component.

4.5.1 Component Instances

Composite components contain instances of other components. For instance, the Device com-
ponent shown below is a composite component containing the two component instances clock
and display of type Clock and Display , respectively.

active component Device {
Clock clock;
Display display;

connector time (clock.msecs, display.time in msecs);
}

4.5.2 Connecting Component Instances by Connectors

In order to let these components exchange data, their ports (declared in the respective component
specifications) have to be connected. In our example, the msecs port of component(–instance)
clock and the time in msecs port of component(–instance) display are connected by a con-
nector named time .

Note, that msecs is an out–port while time in msecs is an in–port. This information is not
visible within the connector declaration:

connector time (clock.msecs, display.time in msecs);

Note also that the order of specification is of no importance. This stems from the fact, that
CoCo allows to connect more than two ports by one connector. We will see this in more detail in
section 4.8, but for the moment we stay with only two ports for simplicity.

A connector may only connect two ports, if the date type of the in–port is compatible with
the data type of the out–port. In our example, both ports are of type long and are therefore
compatible, of course. More on data types in CoCo is presented in section 4.8 below.

More importantly, ports of components can only connected, if they reside within the same
enclosing component. Connectors may not cross component boundaries!

Connectors in CoCo have got a name which is unique within the enclosing component. This
name is not referenced from within CoCo, but merely simplifies arguing about CoCo specifica-
tions for the developer.

4.5.3 ’Upward’ Connectors

Besides connecting component instances within a composite component, connectors server an-
other purpose in CoCo. For instance, imagine you want to reuse Device itself as a sub–component
within some other component — let us call it Bigger Device — and that in Bigger Device you
need access to the msecs port of component clock in Device .

But this is not possible! CoCo only allows access to the ports of direct sub–components in
Device . For instance, no access to msecs from Bigger Device is possible. Thus the intended
reuse is not possible with the actual specification of component Device !

A solution to this problem would be, to define a new Device component — let us call it
New Device — and to introduce an additional port (let us also call it exported msecs) into

34 CHAPTER 4. THE COCO LANGUAGE

this component which is connected to the msecs port of component clock . Thus, New Device
would look like the following:

active component New Device {
// new port msecs
output long exported msecs;

Clock clock;
Display display;

connector time (clock.msecs, display.time_in_msecs);

// new connector export msecs
connector export msecs (clock.msecs, exported msecs);

}

Now, by using New Device instead of Device , access to the port of sub–component Clock
is possible by accessing the exported msecs port of component New Device .

4.5.4 Semantics of Connectors

Let us have a closer look at what it means to connect two ports by a connector.

Shared Variable Semantics

The (informal) semantics of CoCo connectors is the one of a data variable. A port being part of a
connector declaration denotes access to this variable.

Access to the shared variable is purely synchronous. That means, there is no risk of conflicts
due to concurrent access to the variable by several tasks.

A CoCo connector holds exactly one data item at any point in time — it does not have a buffer
semantics! Thus, writing to or reading from a port has got the following effects:

• If a component writes a value onto an out–port, it actually writes this value to the associated
shared variable.

• If a component reads from an in–port, it actually reads the value stored in the shard vari-
able.

• If a component reads from an in–port multiple times, it will read the same value — assum-
ing that no other component has changed the value in the meantime.

• If a component writes to an out–port several time, it will override the value stored there
each time.

Connecting Multiple Ports

Connectors are not limited to connect only two ports, but may connect an arbitrary number of
ports that lie in the same scope. This results in more than two ports being associated with the
same shared variable. Access to any of the connected ports will access this shared variable.

In this case, the data type of each in–port has to be compatible to the data types of all out–ports
in the connector. Otherwise type safety could not be guaranteed.

4.6. PROPERTIES 35

Connectors Sharing Ports

Different connectors that share a common port represent the same shared variable. For instance,
the connector

connector time (clock.msecs, display.time, digitalDisplay.time in msecs);

from section 2.8 could also have been written in the following way:

connector time (clock.msecs, display.time);
connector time 2 (clock.msecs, digitalDisplay.time in msecs);

as they have got the port clock.msecs in common.
Note that this rule is not only true for connectors residing inside the same composite com-

ponent but is valid globally for the entire device — as long as no border of an active or event
component has to be passed (these are synchronisation borders — see following section for this
exception!).

Synchronisation Boundaries

There is one more important thing one has to know about connectors. This issue has to do with
the fact that active and event components run in their own thread of control and thus in parallel.
As a consequence, synchronisation has to be taken into account at the borders of active and event
components.

In PECOS, this is done by decoupling the connectors connecting to an active (or event) com-
ponent from the inside from those connecting from the outside. This is thus an exception to the
last paragraph: connectors connecting form the inside to the port of an active component denote
a different shared variable than connectors connecting from the outside to this port! Data only
can cross this border within the synchronize() handler of the active (or event) component!

For the programmer this has got the effect, that data is not propagated immediately over syn-
chronisation borders, but is only available after the synchronisation action of the involved active
or event component has been performed.

4.6 Properties

Properties serve to specify functional and non–functional features of components, like e.g. de-
fault settings for port values or the memory consumption of a component. Properties pro-
vide Meta–Information to development tools (Timing Verification, Schedule Generation, Testing
Tools) which can inspect the component model of a device for different purposes during the
development process.

Properties can be attached to almost all elements of the PECOS component model: compo-
nents, component instances, ports, connectors, data types and schedules. The following two
sections present the CoCo syntax used for that.

4.6.1 Simple Properties

The following code–snippet shows how properties can be attached to components (using our
Clock example):

// properties for a component
component Clock {

properties {
memSize = 32;
description = "This is my first clock component.";

}
}

36 CHAPTER 4. THE COCO LANGUAGE

The keyword properties marks the section in the body of the component declaration,
where properties can be declared. Note: If a component defines a properties section, then this has
to be the first thing to be declared within the component body. In the above example, component
Clock defines two properties attached, namely memSize and description . At the same time,
values are specified for these two properties.

These values are used as default values for all component instances of this component type.
But these default values can be overridden on a per–instance basis, as shown in the example
below. In component Device the description property is set to a different value.

// changing default values & declaring properties on component instances
active component Device {

Clock clock {
description = "This is the first use of my first clock!";
some specific value = 3;

}
Display display;
connector time (clock.msecs, display.time in msecs);

}

This example also demonstrates, how properties can be directly attached to component in-
stances. some specific value in component instance Device is only attached to this specific
instance, while other component instances of type Device will not have this property.

Properties cannot only be attached to components, but also to ports and connectors. The
following example demonstrates how the two properties minValue and maxValue are attached
to port exported msecs of component Device . Also an example of setting properties on a
connector are given.

component New Device {
// properties on a port
output long exported msecs {

minValue = 0;
maxValue = 32000;

}

Clock clock;
Display display;

// properties on a connector
connector exported msecs (clock.msecs, exported msecs) {

prop 1 = 0;
prop 2 = 8;

}

In order to being able to change the default values of property settings of ports and connectors
on a per–instance level as this is possible for component instances, the following syntax is used:

component Some other Device {
// change port and connector properties on a per-instance level
New Device newDevice {

newDevice.exported msecs.minValue = 2;
newDevice.exported msecs.maxValue = 15;
newDevice.exported msecs.prop 1 = 3;

}
}

This changes the port and connector properties of component instance newDevice . Alterna-
tively, these settings can also be performed in the properties section.

4.7. SCHEDULE SPECIFICATION 37

4.6.2 Property Bundles

Properties can be structured in so–called property bundles. These bundles group properties that
semantically belong together. An example of such properties are the minimal and maximal values
of a port. These properties can be bundled together into a property bundle PortValueProperties
as follows

properties PortValueProperties {
minValue;
maxValue;

}

With this definition, the specification of port exported msecs above can be written more
elegantly in the following way:

output long exported msecs has PortValueProperties {
PortValueProperties.minValue = 0;
PortValueProperties.maxValue = 32000;

}

Property bundles can be attached to components, ports and connectors using the has key-
word. Setting the values of properties being grouped in a property bundle is done by stating
the property bundle name followed by the property settings in braces as shown in the following
example with the exported msecs example.

component New Device {
output long exported msecs has PortValueProperties {

PortValueProperties {
minValue = 0;
maxValue = 17;

}
}

In the same way, property bundles can be attached to components, connectors, etc. using the
has keyword.

Note: When declaring properties in components and property bundles, one may or may not
provide a default value for a property. Properties, without a default value (like in the PortValueProperties
example), which are not set later on a per–instance basis are skipped by CoCo and are not visible
to any tools.

4.7 Schedule Specification

As we know from chapter 3, every active component in a PECOS device runs in it’s own task and
has to specify a schedule for it’s subcomponents. An example for a schedule has already been
shown in the introductory example in section 2.6. Here it is again:

schedule sched of Device every 1000 at 10 {
{

exec clock;
exec display;

} at 0;
}

38 CHAPTER 4. THE COCO LANGUAGE

Here, sched is the name of the schedule and Device is the name of the (only) active com-
ponent to which the schedule belongs. The every keyword is followed by the cycletime of the
schedule in milliseconds, which means that the whole schedule is executed every 1000 millisec-
onds. Schedules which do not execute cyclically but only once, omit the every keyword. Finally,
the at keyword is followed by the priority at which the schedule is executed.

Within the body of a schedule, one can now define a number of jobs and when these jobs are
executed. A job consists of a list of activities. An activity stands for the execution of an action on
a component. There are two possible actions: either the execution of the exec() or the sync()
handler of a component. Figure 4.1 shows the dependency between tasks, jobs, activities as a
class diagram.

Figure 4.1: Class Diagram of Tasks, Jobs and Activities

For instance, the above example contains a single job (enclosed in braces), which consists of
the two activities exec clock and exec display — say, the consecutive execution of the exec
handler of component clock and the exec handler of the component display .

Finally, the at keyword behind the job states that this job is executed at the relative starting
time 0 within the cycletime of the schedule.

Normally, a schedule will consist of more than one job. E.g., if one wants to execute the exec
handler of component clock at relative staring time 0, while the exec handler of component
display is invoked at relative starting time 200, one would need to specify two jobs in the
following way:

schedule sched of Device every 1000 at 10 {
{

exec clock;
} at 0;

{
exec display;

} at 200;
}

Also it may be the case, that identical jobs are executed at different points in time (that means
at different relative starting times within the same schedule). In order to avoid writing the same
code over and over again, one can explicitly name jobs.

For instance, assume one wants to execute the job from our first example two times within
one schedule, say at relative starting times 0 and 500. This can be done in the following way:

4.8. DATA TYPES 39

schedule sched of Device every 1000 at 10 {
// job definition
job 1 = {

exec clock;
exec display;

};

//job execution
job 1 at 0;
job 1 at 500;

}

The solution was thus, to give the job the name job 1 and to use this name to execute the job
at the two relative starting times 0 and 500.

Note, that CoCo does not allow to mix job declarations and execution. But all job declarations
have to stand before the execution list.

Moreover, schedules can also have properties. Like with components, one has to use the
properties keyword inside the body in order to specify properties. Property bundles are at-
tached with the well known has keyword.

4.8 Data Types

Data types define data structures which can be transferred between components. Data types in
CoCo are distinguished into base data types (also called built–in types) and user data types. The
following built–in types are supported:

byte, bool, char, short, int, long, float, double, void

The meaning of these base–types is not specified in CoCo, but is deferred to the implementa-
tion language used, which can be either Java or C++ at the moment.

CoCo supports arrays built from these base types (as well as user–types presented below).
For example, the following declaration specifies an array of length 50 with element type char:

char [50]

Base types and arrays can be used to build more complex user types in the manner of C++
structs. The following example shows a simple user data type for a person:

type Person {
char [50] forename;
char [50] surname;
short age;

}

User types can be extended with fields by use of the extends mechanism. For instance, the
following user type definition extends the Person data type with the new field officenumber:

type Worker extends Person {
int officenumber;

}

The semantics of the extends construct is a simple inclusion of the fields declared in the data
type being extended to the extending data type. Overriding of earlier defined fields with the
same name is not possible.

40 CHAPTER 4. THE COCO LANGUAGE

4.9 Summary

In this chapter we have presented the different language constructs of the CoCo language. It
has been shown, how CoCo is used to specify PECOS components and how to build composite
components from component instances and connectors. Then, we have introduced component
properties and data types. A brief summary of the language features presented here is given in
Figure 4.9.

After having read this chapter, you should be able to understand arbitrary CoCo specifications
and be prepared to write your own ones. Nevertheless, this chapter could not give an exhaustive
presentation of the language syntax but concentrated on the most important aspects. For any
additional information, please refer to the complete CoCo Grammar in Appendix A and to the
CoCo Deliverable [2].

4.9. SUMMARY 41

1. Components

[PASSIVE | ACTIVE | EVENT] COMPONENTcomponentName
[HAS propertySetNames, ...] {

// Properties Section (optional)
PROPERTIES{... };

// Ports
[IN | OUT | INOUT] dataType portName;

// Component Instances
componentName instanceName;

// Connectors
CONNECTOR(instanceName.portName, ...)

}

2. Schedule Specifications

SCHEDULEscheduleName OF activeComponentName
[EVERY cycleTime AT relativeStartingTime] {

// Job Definitions
jobName = {

EXEC activity;
...

}
// Job Executions
jobName AT relativeStartingTime;
...

}

3. Property Bundles

PROPERTIES propertySetName {
propertyName [= defaultValue];
...

}

4. User Data Types

TYPE typeName [EXTENDStypeName] {
baseType identifier;
baseType[integer];
...

}

Figure 4.2: Summary of CoCo’s top–level syntax elements.

42 CHAPTER 4. THE COCO LANGUAGE

Chapter 5

Component Behaviour

By Reinier van den Born

5.1 Introduction

In the previous chapters we have learnt about the PECOS model and how components can be
specified in CoCo. But that specification is actually only half the story. It only allows the descrip-
tion of a component’s interface and its composition. It does not specify what the component is to
do, its behaviour.

This behaviour can have two origins: according to the model a component can have its own
”local” behaviour and a composite component can have behaviour through its subcomponents.
The one doesn’t exclude the other. However, as there are no compositional rules for behaviour
this combined behaviour is more or less undefined. Therefore it is actually easier to see an appli-
cation as an unstructured collection of bits of local behaviour that are orchestrated separately to
perform the desired function. The composition found in composite components then just serves
to specify communication channels (ports and connectors) and set synchronisation boundaries
(at active and event components).

In this chapter we will look at how local behaviour is specified and how it can be coordinated
into performing more complicated tasks. This will not be an exhaustive treatment but it should
give you a good feeling for what makes PECOS applications tick.

Language Before we start we should mention that the PECOS system actually allows a choice
of programming languages to use for your application. This language will be referred to as
the implementation or in the context of code generation the target language. Currently both Java
and C++ are supported. Although the languages have their obvious differences there is nothing
special about either of them in the PECOS context. Applications are built the same way in C++
as in Java. The CoCo is the same; the structure of the application is the same; it is only the
specification of behaviour in the implementation language that is different. In this chapter the
examples will be in C++.

During our discussions we will often refer to the system. By this we mean that part of the
application that is not written directly by you. So this does not just include something like the
operating system, but also any code that is generated. Even code generated from CoCo specifi-
cations that are provided by you. What is meant is basically the environment in which you do
your programming.

Structure This chapter is organised as follows. Section 5.2 first gives a quick look at the general
structure of a PECOS application. Then Section 5.3 explains how components are implemented
in the target language and how behaviour fits in. This is followed by 5.4 where the different kinds

43

44 CHAPTER 5. COMPONENT BEHAVIOUR

of behaviour are examined in depth. Section 5.5 looks at the problem of getting all these bits of
functionality to run together correctly. Finally 5.6 describes the last bits that need to be done to
get an application to run. And finally in Section 5.7 the story is wrapped up.

5.2 Application Structure

We have seen in the introductory example in Chapter 2 that an application can be specified by a
combination of CoCo descriptions and target language classes. The CoCo parts were translated
into classes that, together with the ones provided directly, were compiled into a runnable appli-
cation. What may have been less obvious from the example is that to run them these classes are
linked with a library that is called the Run-Time Environment (RTE).

This RTE is a standard library that comes with PECOS. It has three purposes:

• to provide an abstraction level over the Real-Time Operation System (RTOS).

• to provide some base classes for the generated code

• to provide some standard functionality to run and internally synchronise applications.

Note that while the RTE interface is standard its implementation isn’t. So for a given hard- and
software platform, you will need a specialised version. On the other hand the RTE is application
independent: once you have one for a given platform, you can build any PECOS application on
top of it.

Generated Classes

RTE

RTOS

User classes

Figure 5.1: Application Structure

One advantage of this RTE is of course
is that it allows components to be kept plat-
form independent. Meaning that they can
be shared more easily between projects. Of
course this may not always be possible for
components that interface with some specific
hardware.

Coming back to our application we find
that, together with the operating system it
consists of four layers: the RTOS, the RTE, the
generated and the user provided code. This is
depicted in Figure 5.1.

Other details of the RTE are not really im-
portant here. For the interested an extensive

description can be found in [5]. Likewise [7] provides a comprehensive specification of the code
generation.

5.3 Component Structure

Components are built from a three level class hierarchy. Figure 5.2 below shows the relation
between the classes and their most important members. The classes are the following:

• the top level is the component type base class which is provided by the RTE. As the name
suggests there is one such class for each component type (passive, active, and event).

• the intermediate level, the component base class, is generated from the CoCo specification of
the component.

• at the bottom level there is the component class. This is the one that is provided by the
designer (you). For instance by completing the class generated by the new component
wizard.

5.3. COMPONENT STRUCTURE 45

 PecosActiveComponent
+initialize()
+execute()
+synchronize()

#put_port()
#get_port()
#import_port()
#export_port()

 Comp

 synchronize()

 initialize()
 execute()

Base Comp

RTE:

Generated:

Designer:

Figure 5.2: Classes for active component Comp

5.3.1 Component Type Base Classes

The component type base classes are provided by the Run-Time Environment (RTE) class library.
They define the interface needed to run components, that is, to execute their behaviour. This
interface consists, depending on the type of the component, of two or three abstract methods.
Together these methods, once implemented, constitute the local behaviour of a component. As
we have seen, the actual implementation of these methods is to be given in the component class,
and is therefore specified by the component designer.

There are many things to be said about these methods and especially what can and what
cannot be done in them. We will see much of that later. But let us start with looking at the
system’s view, which is their abstract, external side. For it is the system that will invoke these
methods and thus in a way determines what they can be used for.

The three methods are

initialize()
This method is called when the system is initialised. Not surprisingly it is intended to
initialise the component.

execute()
For passive components this method simply contains the function or executional behaviour
of the component. Once the system is running this is executed whenever the component
is scheduled to run. For an event component this will be on the arrival of the associated
event.

For active and event components this method often has the additional task of taking part
in implementing the synchronisation between the component and its environment (see
synchronize right below).

synchronize()
This method is not present in passive components. It is, usually in interaction with the
execute method, used for synchronising an active or event component with its environ-
ment.

To the system an application simply looks like a tree of component instances, each having
these two or three methods. And running the application is just a matter of invoking these meth-

46 CHAPTER 5. COMPONENT BEHAVIOUR

ods in some, generally cyclic and often concurrent, order. It is a bit like playing a piece on a
piano, where each key represents a component method, and pressing it invokes the function.

Note that as much as keys don’t press other keys, components do not invoke other compo-
nents’ methods. To be more specific: a composite component does not invoke its subcomponents’
methods. All behaviour invocations are one way or another done directly by the system.

5.3.2 Component Base Classes

The component base classes are generated from the CoCo component specification. Most of what
happens inside these classes is considered to be private to the system and is made inaccessible
for its subclass, the component class, i.e., user written code.

The primary task of the base classes is to implement the structural aspects of the component
as they are found in the CoCo specification. Even though all this is hidden it is useful (especially
when debugging or testing) to have some idea of what is going on. So let us take a glance.

The first thing to look at is the instantiation of components. If a component has subcompo-
nents then instances of their classes will be incorporated in the component’s base class. So an
instance tree given in CoCo will result in an object tree in the generated code.

Figure 5.3 shows a CoCo specification of a simple component composition and the class dia-
gram for its implementation. It is important to realise that component classes are being instan-

}

 Comp2 inst;
}

component

component

Comp1 {

Com2 {

CoCo specification Comp1Base
−inst: Comp2

 Comp2Base

 Comp2

 Comp1

Figure 5.3: Nested Components with their Class Diagram

tiated but that it is done in the component base classes. And that these instantiations are made
private to those base classes, effectively hiding the entire object tree for all behaviour code. This is
done to avoid accidental (or intentional) abuse like directly accessing subcomponent’s methods
or data members.

Component base classes also partially implement ports and connectors (the remainder of the
implementation is found in a DataStore class that we won’t go into here). Again most of this is
hidden. But ports need to be accessed from behaviour code and therefore the base class provides
special methods1.

Depending on its type the following methods are provided for each port:

put port (type arg)
Writes arg to port and thus all ports it is connected to. The type of arg is the value type
of port . In case type is structured arg will be a reference (type &arg) to avoid needless
copying. This method is provided for output and inout ports.

get port (type * arg)
Gets the last value that was written to any of the ports connected to port (or port itself if
it is an inout) and copies it into whatever arg points to. The type of arg is the value type
of port . This method is provided for input and inout ports.

1 Having all this hide and seek around ports may suggest their implementation is inefficient. In fact the contrary is
true. An access amounts to no more than one or two memory read/write operations. See [7] for details.

5.3. COMPONENT STRUCTURE 47

As we know from the model active and event components have their own data space that
needs to be synchronised with the data space of their environment. This is of course only nec-
essary for ”shared” data, so it is restricted to the component’s ports. In the implementation this
means that for every port value there exist two copies, one in the private data space of the ac-
tive component and one in the data space outside. During synchronisation (execution of the
synchronize method) these values can be brought up to date.

The base component class provides methods to perform these updates. Since in general you
don’t always want to update all values at the same time a copy method is provided for each port
separately:

export port ()
Copies the internal value of the port to the external value, making it available to the compo-
nent’s environment. This method is provided only for output and inout ports of active
or event components.

import port ()
Copies the external value of the port to the internal value, making it available to the com-
ponent itself and its subcomponents. This method is provided only for input and inout
ports of active or event components.

These methods do not return a value in any way, they only perform the copy. This means
that to actually make a new port value visible to components on the outside you first have to
call put port to set the value and then export port to copy it out. Similarly you have to call
import port before get port to retrieve an external value.

According to the model these updates may only done while a component is synchronising.
This means in practise that the import and export methods should only be called from a com-
ponent’s synchronize method2. And that passive component base classes do not have these
methods.

Timer Components

Timer components are event components that have a special Timer property set. For example:

event component Timered {
properties { Timer = "timer"; }

}

This property has two effects:
First, the component will be equipped with a timer (named timer). A timer is a sort of alarm

that produces an event when it times out. Since a timer component is an event component this
event will trigger its execution. Since the alarms go off with great precision, this allows execution
of behaviour with very accurate timing.

But what makes timer components really special is that they can be controlled from the out-
side, by their parents. This is the only case in which components can communicate other than
through ports. The reason for this is that communication through ports, as we just have seen, re-
quires synchronisation, which cannot be done immediately. Making it impossible to do accurate
timing, the reason what timers are for in the first place.

The access a parent gets is however indirect. It can only manipulate the timer and thereby
triggering the execution of the component. So it is not really communication as in transferring
data. It can only give it an precisely(!) delayed kick.

To manipulate the timer the following timer methods are provided to the parent:

setAbolute timer (long time)
Sets the time-out to an absolute time. Timer is started

2 This is a restriction that unfortunately cannot be enforced.

48 CHAPTER 5. COMPONENT BEHAVIOUR

setRelative timer (long time)
Sets the time-out to a time relative to the current time. Timer is started.

reset timer ()
Resets and restarts a timer that has a relative time-out.

cancel timer ()
Disables the timer. Needs a new time-out to be set to be used again.

In the method names timer stands for the pattern inst name, where inst is the name of
the instance and name the name of the timer (as given in the Timer property)

It is possible to have more than one timer by specifying a list of space separated timer names
for the property. You should remember though that they will all execute the same behaviour and
that no means are provided to distinguish which timer went off.

5.3.3 Component classes

Component classes are the ones you have to provide (when using the IDE templates will be
created automatically for you). What they need to contain is the component’s behaviour. We can
distinguish three kinds of behaviour: initialisation, function, and, if applicable, synchronisation.
Behaviour is given by implementing the three abstract methods from the component type base
class: initialize , execute , and synchronize .

Because component classes are specified in the implementation language there are very few
restrictions on what you can do. This is intentional, so that you won’t be unnecessarily limited by
the system. But this freedom comes with a responsibility: there are some rules about things you
shouldn’t do. These rules make, if complied with, a component well-behaved. Which means that
it can more easily be reused and interchanged with other components. Furthermore it will allow
the application of verification and analysis methods that are being developed for PECOS. And
finally there are also benefits in the area of debugging and testing. In short such a component
will be much more useful.

Before we go into the details of the different kinds of behaviour let us look at some of those
rules we should submit ourselves to:

Rules for Behaviour

Rule 1 Keep behaviour local
This most important rule relates to the essence of component based design. It was touched

upon by the adjective ”local” when we started talking about behaviour. It means that in principle
a computation taking place in a component should only have effect within the component itself.
It should not need to be aware of or influence its environment (the remainder of the system,
including its subcomponents) other than through the means provided, i.e., it’s ports.

Rule 2 Stay within the system
Staying within the system means not using your own ways of achieving something for which

mechanisms are already provided by the model. For example:

• don’t instantiate other components: use instances in CoCo

• don’t start your own threads or processes: use active components

• don’t try to implement your own scheduling using timer components

• don’t communicate with other components for instance using global or class variables
(static member variables in C++): use ports and connectors

In short, don’t use any back-doors. Use the system as it is meant to be.

5.4. COMPONENT BEHAVIOUR 49

Rule 3 Avoid keeping the processor longer than necessary
As we will see later one of the biggest complications is to get all pieces of behaviour to be run

in time. This is greatly complicated if components hold on longer to the processor longer than
strictly necessary. Beware of unbounded loops, or indefinite blocking, or other ways of keeping
other components from getting their go.

The system passes control to a component in good faith, under the assumption that it will get
it back in due time. There is no preemption within a thread so the system has no way of taking
back control from a component that doesn’t finish.

In general it is good practise to keep urgent tasks as short as possible and run long calculations
at a lower priority so they don’t interfere too much.

Rule 4 Do not allocate heap memory
A final thing to look out for is that tight memory systems like field devices often have not

much of a heap. Therefore memory allocation can easily overrun the limit and fail. To avoid
any risk of this happening (quite disastrous in real-time systems) memory allocation should be
avoided completely at run-time (i.e., directly or indirectly from execute or synchronize meth-
ods). This puts a ban on the use of new, malloc, and related functions. Of course, objects can still
be created on the stack (not in Java, but the real-time extensions provide ways around this prob-
lem).

This rule can be loosened for initialisation. In principle it is not bad to allocate memory at that
time. But especially if the initialize methods are also used to reset the system you should
take care to reuse any memory allocated before.

For each of these rules probably exceptions can be found. In those special cases they may need
to be broken. However, this should only be done after careful consideration of all options and
finding that the feature cannot be implemented in any other, more appropriate way. Any such
deviation should be marked and documented very well. And reported so that future versions of
the system can provide a proper solution.

5.4 Component Behaviour

We distinguished three categories of behaviour. Here we will take a closer look at each one of
them.

5.4.1 Initialisation

There are two opportunities to initialise a component: from within the constructor and from the
initialize method.

The natural candidate for component initialisation is of course its constructor. However a
problem is that at the time it is called it is uncertain how much of the remainder of the system is
already in existence. So certain initialisations (like assigning port values) simply cannot be safely
done. Furthermore, initialisation (as opposed to construction), is started under your control. So
in principle this can also be used to bring a system completely back to its initial state without
having to restart it. But of course this only works if the constructor is not used to set initial
values. In short, the constructor should only be used to construct the component’s parent class
(the component base class) and any additional member variables it may have.

At the moment initialize gets called, everything is present and there are no restrictions
anymore on what can be done (other than the rules mentioned before). So this is the preferred
time to give member variables and ports their initial values. Of course, initialisation should
follow the rules and therefore should do no more than local initialisations. So setting up member
variables (other than instantiating) would be the main task.

50 CHAPTER 5. COMPONENT BEHAVIOUR

Component in CoCo Component Class in C++

component Switch {
input byte select;
input long value;
output long out1;
output long out2;

}

class Switch: public SwitchBase {
public Switch(int id): SwitchBase(id) {}

void execute() {
int select;
long value;

get_select(&select);
get_value(&value);
if (select == 0) {

put_out1(value);
} else {

put_out2(value);
}

}
}

Table 5.1: A switch component

Regarding setting port values you should be aware that if another component has a port
connected to your port, it may override the value you set if it happens to be initialised after
yours. In other words it depends on the order in which components are initialised.

This order depends on the component hierarchy and the order in which components are in-
stantiated in the CoCo specification. The rule is that for a given composite component first the
initialize s of its subcomponents are called, in the order of instantiation in CoCo, and then its
own. So this means that components are initialised depth-first and post order. The process starts
at the top-level component (so its initialize will be called last).

You should also know that this process runs before any threads are running. So for initial-
isation no distinction is made between passive, active, or event components. The component
hierarchy is strictly followed.

5.4.2 Execution

With execution behaviour we mean performing any computation other than synchronisation. So
for instance for the Clock component from the introductory example it means getting the current
time from the system and for a PID component it means computing a new control signal based on
its desired state, measured inputs, and some stored, historical values. In general it entails reading
input ports as needed, performing some calculation possibly with the use of local variables, and
writing the results to one or more output ports.

Leaf (non-composite) components can be expected to always have some function (or else they
have no purpose in the system and they might as well be left out). Composite components may
or may not do anything. Often they will function purely as a connection box for their subcompo-
nents.

The function of a component will always be located in the execute method of the compo-
nent.

Table 5.1 shows an example of a simple switch component, that, depending on the value
found on its select port, copies the value on its other input to one of its output ports. The CoCo
specification and the component class are shown next to each other (only the relevant parts are
shown).

5.4. COMPONENT BEHAVIOUR 51

5.4.3 Synchronisation

The following requires a good understanding of the execution model as described in Section 3.3.
Some concepts will be explained again, but this time from a more implementation oriented point
of view.

Active and event components run asynchronously from their environment, i.e., the composi-
tion they are part of. In practise the active components run usually in their own thread while the
event components are executed in the high priority system thread. But whichever way they are
run, to communicate with their environment they need to synchronise.

For synchronisation the special method synchronize is provided. This method will actually
be run synchronously with the component’s environment (its active parent), which allows it to
freely access external port values without interference from sibling or parent components. It is
important to understand that since the execute method runs within the active component’s
own thread, synchronize and execute are actually run asynchronously from each other.

Synchronisation within a component typically entails bringing the external and internal port
values up to date. As we have seen this is done using the import and export methods. But you
cannot use them arbitrarily since you are dealing with concurrency and data can be trashed if
two threads write/write or even write/read simultaneously.

Ways to deal with this are many and it is beyond the scope of this chapter to go deeply into
this. So here we will restrict ourselves to a few typical examples. But before we do so it is good
to realise some features of the PECOS model that will make our life easier.

First of all, let us look at the port values of an active component. As we saw in Section 5.3.2
they have external and internal copies. The external ones are accessible only from the compo-
nent’s synchronize method that runs synchronously with the component’s external world. So
there is no problem there: everything is synchronous. For the internal ports values the same is
true but with one exception: this same synchronize method has access to them as well. So we
can conclude that synchronisation problems can only exist between the synchronize method
and whatever is done inside the active component (through its own behaviour or that of its sub-
components). And also that possible conflicts are restricted to accessing (directly or through a
connection) ports of the active component.

Furthermore since this synchronize method run synchronously with possible other synchronize
methods in the external environment, this environment will never be involved in more than one
synchronisation at a time. In other words there will never be three or more way synchronisations.

And finally, because of reasons of separation of concern you don’t really want subcomponents
to be aware of the fact that they need to synchronise just because they happen to be connected
to a port of an active parent component. So in general all we need to focus on is synchronisation
between the synchronize and the execute methods of one active component.

Having it narrowed down this far, now let us look at a few synchronisation examples. Please
be aware that the examples are simplified and stripped of all code that is not essential for the
explanation.

A simple case A simple and quite general case is where the two parties use locking to keep
each other from interfering with each other.

Take for instance (see Figure 5.2) a highly simplified valve controller that has only a human
interface (HMI), i.e. a display and keyboard through which it can be controlled. The control
algorithm runs frequently, say every 20 ms, while the HMI runs only every 100 ms. The controller
has a set-point, the desired state of the valve, measures the actual state, and tries through the
actuator to get the two to match. The HMI displays both the desired and actual state and allows
the user to key in a new value for the desired state. Running the control loop has absolute priority
and should not be delayed by the HMI.

We can implement this by using an active component for the HMI and giving it the synchro-
nisation mechanism as shown.

As you can see, the two methods use a Mutex (provided by the RTE) to ensure exclusive
access to the ports. Once one side has acquired the Mutex a call of acquire on the other side

52 CHAPTER 5. COMPONENT BEHAVIOUR

Component in CoCo Component Class in C++

active component HMI {
input float desired;
input float measured;
output float newSetPoint;

}

class HMI: public HMIBase {
private: boolean haveNewSetPoint;
private: Mutex lock;

void execute() {
float in1, in2, out;

lock.acquire();
get_desired &in1);
get_measured &in2);
lock.release();

// display in1 and in2 and
// possibly get new out value here

if (haveNewSetPoint) {
lock.acquire();
put_newSetPoint(out);
lock.release();

}
}

void synchronize() {

lock.acquire();
if (haveNewSetPoint) {

export_newSetPoint();
haveNewSetPoint = false;

}
import_desired();
import_measured();
lock.release();

}
}

Table 5.2: A simple locking example

5.5. SCHEDULING BEHAVIOUR 53

will block until release is called and vice versa.
In this particular example the locking times are very short so everything works fine. But in

general a time critical component, like the controller, should not be blocked. Without loss of
functionality it could simply skip the data exchange and perform it in the next cycle when it can
expect free reign due to the difference in cycle time.

To allow this the Mutex should provide a non-blocking version of the acquire method. The
current implementation unfortunately lacks this feature.

Triggering Action A second example is an implementation of a Non-Volatile RAM component,
that is for instance used to write the state of your controller to, so it can restart where it left off.

Writing to this NVRAM takes very long and while this is taking place you generally cannot
afford to halt the application. So a better implementation is to take a snapshot of the state, i.e., a
copy of a consistent set of values, to a separate buffer, and then write the buffer contents to the
NVRAM using some low priority background process.

The simplified component in Table 5.3 implements this behaviour. Its execute waits for
synchronize to tell it that it can start to write. When told so, it does the writing and when
done sets a flag (busy) to signal it is ready for another go. Synchronize on the other hand,
won’t accept outside requests to save the data as long as the writing is still going on. But if the
component is ready it imports the data and sets off execute . To synchronise (wait, release)
between the two methods a guard is used, a mechanism provided by the RTE.

With the outside world a simple flag protocol is used. To request data to be saved, the
request port should be switched to true Once the component is done it will switch the flag
back to false to indicate it is ready to accept new requests. Before that it will not look at the
external value of the port and thus ignore any value changes. Since synchronize runs syn-
chronously with the outside world no guards or similar machanisms are necessary3.

No synchronisation is needed In some simple cases no special synchronisation is needed at all.
A simple example can be found in the EventLoop component of Chapter 2. It only needs to export
a single, 1-byte value. Since this an atomic action for the processor this cannot be preempted and
there is no need for locking.

Note that this can only be done for simple, sufficiently small values, or, under very specific
conditions, for a collection of them. Small is here related to the processor word size: even copying
a 32-bit float or integer on a 16-bit processor may be a two instruction operation, that can actually
be preempted.

5.5 Scheduling Behaviour

Now our components have behaviour it is time to turn our attention to how to actually make
them run. The chapter on the model already prepared us for this.

We said before that an application can be seen as a collection of execute and synchronize
methods. Let’s call these bits of behaviour actions. According to the model every such action is
associated with one specific active or event component and will run in that component’s thread
or event handler. So these components actually impose a partition, a separation into disjunct
subsets, on this collection. And within each of these subsets actions are run in some sequence,
synchronously with respect to each other.

The difference between active and event components is that the former are usually cyclic and
run at varying priorities, while the latter are triggered and run at top priority. Because event
components need to handle events quickly they will also rarely have more than one action.

Irrespective of this, however, what needs to be done is to define these sequences for every
subset. There are two ways to do this. The first is indirectly, through specifying properties that
contain timing constraints on components. A synthesis tool will then convert these into valid

3 Or possible without violating Rule 2

54 CHAPTER 5. COMPONENT BEHAVIOUR

Component in CoCo Component Class in C++

active component NVRAM {
inout bool request;
input Data data;

}

class NVRAM: public NVRAMBase {
private: PecosGuard guard;
private: boolean haveRequest;
private: Data buffer;

void execute() {
while (1) {

guard.wait(); // wait for release
get_data(&buffer);
// write buffer to NVRAM here
busy = false;

}
}

void synchronize() {

if (! busy) {
if (! haveRequest) {

import_request();
get_request(&haveRequest);

if (haveRequest) {
busy = true;
import_data();

// now let execute() go
guard.release();

}
}
else {

// just finished a request
// set request flag to false
// to signal readiness for
// new requests

haveRequest = false;

put_request(haveRequest);
export_request();

}
}

}
}

Table 5.3: A simplified NVRAM component

5.5. SCHEDULING BEHAVIOUR 55

sequences and write them out as CoCo schedules (see 4.7). The other option is to write these
schedules directly by hand. There is actually a third option as it would also be possible to do
both: generate schedules first and then fine-tune them by hand. However, since at the time of
this writing the tool was not available we will only look at manual scheduling here.

Writing schedules is maybe the most complicated step in getting an application to do what it
is supposed to do. On one hand there is the problem of determining a proper sequence within a
single thread. But then they also have to be made to work together, so that they don’t block to
long, produce answers in time, etc. And of course, there is also a dependency on what happens
inside especially the synchronising actions.

Let’s start with what we can do in schedules:

• specify actions in any order (independent of the composition hierarchy)

• invoke actions as often as you want (including never for instance for empty actions)

• insert waiting periods

• have the sequence repeated with a certain period or run only once

There are also things we cannot do:

• specify actions not belonging to the active or event component at hand

• change the schedule in time

So to go back to our piano playing metaphor: a schedule represents the part of the tune played
by a single finger. Unlike normal piano play each finger is only allowed to play a specific set of
keys (and no other finger can touch them) and has to play the same sequence over and over
again. So for one finger the tune may be complicated but it is sequential (one key at a time) and
repetitious.

To achieve a certain behaviour it is necessary to run actions in a specific order. A thing to keep
in mind is that in cyclic schedules there is no real start or end. So for instance if there are two
actions A and B of which we know that B needs to be executed after A, then in the schedule it
is usually (depending on proper initialisation) fine to execute B first and then A. This because B
will be executing after A in the next cycle so the requirement is still met. However like ordinary
programs schedules should be written in an intuitive and easily understandable way. So for
instance in the example above it would still be preferable to have A scheduled before B within
the same cycle.

Another thing to keep in mind is that connectors may suggest a direct 1-cycle data-flow but
the schedule may do differently. Take for example a pipeline of components, where the outputs of
one component are connected to the inputs of the next. The connections suggest that the actions
should be performed following the flow of data, so that the entire computation finished in one
cycle. But there may be reasons to use the pipeline differently and for instance execute them in
the opposite order. 4. So clearly the schedule is in part defining a composition’s behaviour.

Let’s now look at some scheduling examples:

A simple schedule

Most composite active components need a schedule. A simple example is the top-level Device
component from the example in Chapter 2. It simply schedules the actions in the order they need
to be invoked. No delays between the actions are used.

4It is probably a good idea to make such deviation of the expected very obvious and its intended effect well docu-
mented

56 CHAPTER 5. COMPONENT BEHAVIOUR

Free Running

Some components don’t need a real schedule: they just need to be started, and then run their own
infinite loop. A good example is the NVRAM component discussed in 5.3. This component is in
a continuous loop that is suspended when it is waiting. Of course, keeping Rule 3 in mind, as
we did in the example, to implement this waiting you should use RTE provided mechanisms not
something like a polling loop. The latter would burn processor cycles for no use and probably
get in the way of other tasks.

The schedule for the NVRAM component is extremely simple and looks like this:

schedule run_NVRAM of xxx.nvram at 1 /* low priority */ {
exec at 0;

}

Leaving out the cycle time means that it is run only once, at the start of the application. The
component has then to provides its own infinite loop.

5.5.1 Priority scheduling

Until now we have mentioned the word priority a couple of times but never explained what
this would mean. Actually in our discussions we have more or less assumed that schedules or
threads are run concurrently. Of course, this is a simplification. In reality all our schedules have
to run on a single processor. Meaning that the schedules themselves need to be scheduled. And
this is where the priorities play a key role.

Running the schedules is done by the RTE, usually by making use of the thread scheduler of
the underlying RTOS. All control we have over this process is by assigning priorities. But before
we can do this we need to know better how the RTE works. For that some standard scheduling
terminology is required that we will introduce with only a rough explanation.

For our explanation every thread will always be in one of three states: running, ready, or
waiting.

A thread is waiting when it is unable to run because it has run out of things to do (next action
is not due yet) or it needs to wait for something to happen, like a lock being released.

A thread is ready if it is able to run, but not running because another thread already happens
to be running.

A thread is running if the processor is actually executing its code. Obviously at any point in
time there can be only one thread running.

Suspending a running thread to be able to run another thread that is ready is called preempting
it. The preempted thread will move into the ready state.

So now let us see some rules according to which the RTE schedules threads:

• a running thread will only be preempted in favour of a higher priority thread

• when a thread goes into the wait state (because it blocks, sleeps, etc.) the highest priority
thread that is ready will be run

• if more threads than one are ready and have the same priority one is picked (no assump-
tions should be made about which one5)

The major point to remember is that the highest priority thread will always run first and
exclusively until it finds a reason to wait. And lower priority threads can only get the processor
if and for as long as all higher ones are waiting. This obviously makes another case for Rule 3 of
component behaviour.

Of course this priority mechanism also affects the timing we specify in our action schedules.
Apart from the highest priority schedule, we can no longer expect the specified times to be met
exactly. For, if a higher priority thread happens to be running, there is no way an action can be run

5 Usually threads are selected ”round robin”. Some RTOSes allow this to be configured.

5.6. MAIN AND PECOSDEVICE 57

in time. Of course, you could try to ensure the former cannot happen. But that requires finding
a set of schedules that can never get in each others way, which would be impossible when using
components like the NVRAM that have running times that can exceed the cycle time of other
parts of the system.

The solution is to loosen our interpretation of the start times given in a schedule. Instead of
seeing them as fixed start times they are now seen as advisory times. But in addition it will be
required that actions finish before the next start time. So effectively the start times divide the
schedule cycle into intervals in which the actions have to run. This ensures that actions will still
be performed at the proper time if no higher priority task gets in the way. And that, even if an
action gets delayed, it will be finished before the next action is due. This warrants that even
though actions may run at varying times the schedule cycle itself will not be delayed, which
would compromise the system. The RTE can actually be configured to verify that these deadlines
are met.

None of this tells you how to write these schedules or assign priorities. Unfortunately there
is no golden rules telling how to do this. But we can say a few general words on designing these
schedules.

The main one is that the system should be designed in the most natural, intuitive way. It is
only when you find that you can’t get it to work that you should consider sacrificing the design.
And keep in mind, even if it is wasteful in time and other resources, as long as it meets the design
constraints, it works. It being an intuitively sound design is important, especially when doing
maintenance, more than its ability to break the speed record.

But at times it may be necessary to change the design to be able to meet the deadlines. An
example is in [6] where a component needed to wait for a response from the hardware after
querying it. In the final design it proved not to be necessary to actually modify the component
but if timing had been more tight, it would have been necessary to split the component into one
part that sends the query and another that waits for the reply. After this separation the latter can
be run in the background so processing can continue during the waiting period.

It is obvious that real-time critical parts of the application should be run at a high priority,
so they can meet their strict deadlines. But on the other hand you want to avoid running too
much action on a high priority, since that does not leave much opportunity for other tasks to do
their job. So it is often good to isolate the part that has the hard real-time requirement from its
supporting calculations and move the latter to another lower priority schedule. That way high
priority tasks take the shortest time possible and also won’t get in each others way.

5.6 Main and PecosDevice

So now we have our components and the schedules. We still need to get the system to run. For
that we have to write a last little piece: the main routine. Here we have to invoke two class
methods of a class we have briefly mentioned before: the PecosDevice class.

This class contains two important data structures. The top-level component class is instanti-
ated here and it also contains the implementation of the schedules that have been translated from
CoCo. Once more they are part of the system that you should need no direct access to and are
therefore hidden.

As usual methods are provided to allow you to do what is necessary. In this case there are
two that need to be invoked by you:

initialize()
This starts the initialisation process of the component tree or, in other words, initialises all
components.

run()
This actually starts the running of the application. It should be called after initialize .

As we will see in the next chapter, main may contain more than these two calls. But the
following is what minimally needs to be done to get things running:

58 CHAPTER 5. COMPONENT BEHAVIOUR

void main()
{

PecosDevice.initialize();
PecosDevice.run();

}

5.7 Summary

In this chapter we have seen how components can be given behaviour. To make components
more reusable and better maintainable this behaviour should comply with some general rules.

The most complicated task of creating PECOS applications is to make sure that the behaviour
of the different components gets to run in time to produce the desired results. This requires a
careful design of synchronisation, schedules, and priorities.

Table 5.4: Specifying component behaviour

1. A component’s behavior is specified in a subclass of a generated
class

2. There are three categories of behavior: initialization, functional,
and synchronization

3. In general a component is free to do what it likes, except

• The behavior should be local

• A component should use the system, not try to defeat it

• Control should not be kept any longer than necessary

• No memory allocation should be done

4. Synchronization is implemented between the execute and
synchronize methods of active and event components.

5. Schedules specify which behavior is run when

6. There is a schedule for each active component

7. Schedules are run at different priority levels

8. The intricate interaction between schedules, priorities, synchro-
nization, and function make up the behavior of the device

Chapter 6

Application building and
deployment

6.1 Application Structure

After discussing CoCo and the C++ language mapping in the previous chapters we are well
prepared to develop a C++ based embedded device.

In the following sections the device functionality of our embedded device is presented. This
allows us to specify the required components that we are going to develop. Figure 1.1 shows
the embedded device example, a valve positioner, by which the development process of a field
device will be explained. A valve positioner is a field device used to increase or decrease air
pressure that acts upon an actuator.

The positioner controls a valve by a valve stem that is mounted at a membrane. This di-
aphragm reacts upon pressure and moves the valve stem. The field device positioner supervises
the stem position until the valve reaches the required position steared through the instrument
controller. Positioners are generally mounted on the side or top of their actuator. They are con-
nected mechanically to the valve stem. Thus enables the device to compare the stem’s actual
position with the aspired one. A positioner encapsulates a type of air relay which is used to
regulate the pressure that directly acts upon the stem.

The valve positioner is able to overcome hysteresis, packing box friction, and valve plug un-
balance due to pressure drop. It guarantees exact positioning of the valve stem in accordance
with the controller output. Variations in design of valves cause non-linear behavior in nature.
The relationship between valve capacity and valve travel is known as flow characteristic of the
valve. In order to fulfil the large variety of control application requirements it is necessary to
compensate the valve’s non-linearity. In conclusion the main task of the positioner is to control
the valve position by the positioners pressure relay, the membrane, and the valve stem.

Figure 6.1 presents a high level component view of the valve positioner. The picture simplifies
the device to stress the most important signal flow characteristics. The components have been
developed from an existing architecture where we mapped function modules to components. In
order to identify the relevant components of a new system those well-known methods for OOA
(Object Oriented Analysis) such as use cases, context diagrams, event lists (Yourdon method),
CRC cards, etc. can be used.

The current valve stem position is read using an ADC(Analog Digital Converter). The Controller
component takes the actual position and the required position (Setpoint), calculates the actual
position error and evaluates the new output value. The PWM(Pulse Width Modulation) compo-
nent converts this output value in a pulse width modulated signal by which the pressure relay is
driven. The user can set the valve position using the local HMI (Human Machine Interface) that
consists of three components HMIControl , HMIModel , and HMIView . The HMI display itself is
connected via the I2C bus to the devices micro controller. The I2C bus component serves as a

59

60 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

PWM

HMIModel HMIViewHMIControl I2C

KeyCode KeyCode
Line1
Line2
Symbols

A
D

Temperature

Temperature

BusFrame

BusFrame

Device1

Device2

Value

ADC

Control

in out

Se
tp

oi
nt

Fa
ils

af
e

Figure 6.1: A simple valve positioner

hardware abstraction for the bus. In addition the environment temperature can be read from a
sensor connected to this bus. It is used to control the display contrast.

6.2 Component and Device Specification

The upcoming sections will give you a more detailed view in the application. One of the most
important issues for building component-based applications is to address the most critical real-
time part of the embedded device first, because all other behaviors are dependent on it. Therefore
we will now deal with the control loop of the positioner, by reason of its real-time requirements
it is the most critical element in our embedded device.

As you can see in figure 6.2 crux of the matter is the Controller component. From this point
of view the ADCand PWMcomponent are part of Controller , the explanation for this will be
given subsequently. The stimulation component was added to set the inputs of the Controller
as long as no HMI is available.

This composition shows the data flow between the components for closed-loop control sys-
tem. All data connections, which are not used for the control loop, such as device parameters,
have been omitted. The arrows pointing from and to YOUTand PosADCare indicating the con-
nection to the physical process.

The composition: YOUTand PosADCserve as hardware abstractions. PosADCprovides the
absolute position of the valve stem. YOUTcreates a pulse width modulated signal which is
proportional to the air pressure affecting the stem position. The absolute position has to be
linearized using the offset and the actual mechanical range to a logical position in the oper-
ational range. This linearization algorithm is implemented in Position . After linearization
the ControlAlgorithm component takes the linearized current position and the setpoint input
from SetpointCalculation component and calculates the new output value. The SetpointCalculation
linearizes and converts the given setpoint to the logical and operational area of the valve. The
control algorithm implemented in ControlAlgorithm consists of a structured controller cou-
pled with zoning controllers. The Shutoff component steers in dependency of the current shut-
off state the output to YOUT. In shutoff mode the output is set to open or close , dependent on the
configuration by the user. In normal mode the output will be just looped through.

Table 6.1 lists all components including a short description of task and timing requirements.
The real-time requirements are derived from the control theory the control algorithms are based

6.2. COMPONENT AND DEVICE SPECIFICATION 61

Application

Stimulation Setpoint
Calculation

YOUTPosADC

se
tp
oi
nt

fa
ils
af
e

Position ControlAlgorithm Shutoff

failsafe

yValue

springdrivestozero

absAngle

filtValve
Position

valvePosition

shutoffLock_0

shutoffLock_100

shutOffState

valvesetPoint

filtsetValvePosition

Output

Controller

Figure 6.2: A very simple valve positioner.

on, or have its origin in user requirements such as the response time.

Now we have basically identified the components, the composition, and the data flow of our
device. You may ask how the timing requirements are reflected in the specifications. This will be
discussed in the next paragraphs.

t

Controler

YOut

20ms
5ms

Trigger YOut timer

posADC …

Figure 6.3: Required executing order and timing of our device

Figure 6.3 presents the required real-time behavior and the schedule as specified in table
6.1. There is a timing dependency between PosADCand YOUT. Therefore YOUTis specified as
an event component with a timer. We can trigger this timer just before executing PosADC. The
timer timeout is chosen in such a manner, that first the execution of Shutoff has finished and
the new out value yValue is available and second YOUTcan be synchronized before the time

62 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

Name Task Timing Hardware
dependency

PosADC Gets the current absolute posi-
tion of the stem from the analog
digital converter

every 20ms yes

Position Linearizes and maps the abso-
lute position to logical and op-
erational area

every 20ms no

ControlAlgorithm Control algorithm with struc-
tured and zoning controllers

every 20ms no

Shutoff Switches between output of the
control algorithm or shutoff
value dependent on shutoff en-
able

every 20ms no

YOUT Creates a PWM signal with
pulse width given as input

5ms after the
PosADC has
started conversion

yes

SetpointCalculation Maps set-point 0..100% to oper-
ational area, set-point correlates
to flow rate

1000ms no

Stimulation Stimulates the Controller com-
ponent to influence the set-point
and the shutoff

1000ms no

Table 6.1: Components and their timing requirements of our device as found in discussions with
the control experts.

expires. After time has run down YOUT::execute takes the new yValue from its input and
sets the new PWM output. As a result of our composition we have achieved that the timing
requirements match.

Now we can go on with building the components. Therefore two steps are necessary: a)
specify the component in CoCo and b) implement the behavior. As an example we show the
Controller and the YOUTcomponents in detail. First of all, we have to set up a new ECLIPSE
project. In section 2.3 the handling of ECLIPSE is explained. This time we create a PECOS C++
Project to use C++. The next step is to add a new C++ component Controller and enter its
specification in the CoCo language. Figure 6.4 presents the ECLIPSE workspace after adding all
components from table 6.1.

As we have discussed in the previous section the Controller component looks like:

active component Controller {
Position pos;
ControlAlgorithm contrAlg;
SetpointCalculation setpCalc;
Shutoff shutOff;
PosADC posADC;
YOUT yout;

input char failSafeEnable;
input int setpoint;

// Connectors follows here. Left out for clarity.
}

Here follows the schedule in CoCo for the active Controller component and for the event

6.2. COMPONENT AND DEVICE SPECIFICATION 63

component YOUTas derived from the discussion above:

schedule controlScheduler of Application.controller every 20 at 200 {
{

exec; // self, trigger timer of yout
exec posADC
exec position;
exec contrAlg;
exec shutOff;
sync yOut;
exec setpCalc;

} at 0;
}

event component YOUT{
properties{

Timer = "timer";
}

input char failsafe;
input int yValue;
input char springdrivestozero

}

The execution order as specified in the controlScheduler was defined from the control
expert. The Controller should be executed every 20 ms at high priority. Now the specification
of our components and of our schedule is finished and we are able to build the complete project
in ECLIPSE that creates the schedule and the component skeletons.

Figure 6.4: Eclipse development environment with opened valve controller project

64 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

The presented solution assumes that the cycle time of the Controller has a very
low jitter (≤ 100us). During design and development of the system special care must
be taken to keep especially IRQ handler routines as short as possible. There are
ongoing activities to extend the RTE to support these special real-time requirements.

Next step is to add and implement the behavior in C++ code to get a fully functional applica-
tion that realizes the specified data flow and control flow:

• Implement the execute method of the Controller . Its function is to trigger the timer of
component YOUTat the beginning of each cycle.

• Call get*, put*, import* and export* methods where required. Be careful with the different
synchronize methods.

The source code of the Controller component consists of three methods in which the active
behavior is implemented. Method execute triggers YOUT’s timer, which was automatically
generated by the codegenerator, see section 5. 2 for details on timers. In synchronize we im-
port the two input ports of the Controller from the surrounding world. The puts commands
are inserted for debugging.

#include <Controller.h> #include <stdio.h> // puts

void Controller::initialize() {
// Add initialization code here

}

void Controller::execute() {
// Add the component behavior here
puts("Controller::execute() -> trigger yout timer");
setRelative_yout_timer(5);

}

void Controller::synchronize() {
// Add synchronization code here
puts("Controller::synchronize");
import_failSafeEnable();
import_setpoint();

}

Now we are able to add the main functionality to our components step by step and compile
and build our application for the target system. This is part of the following section.

6.3 Embedded Development Environment, M16C and embOS

In ECLIPSE [4] we specified the component descriptions and generated the C++ device skeletons
and the schedule. Now we leave ECLIPSE and switch to an embedded development environ-
ment. In our example we decided to use Taskings EDE. Other developers may use the upcom-
ing IAR C++ compiler environment or any other environment they are familiar with. Tasking
EDEoffers automatic makefile generation, debugger integration (CrossView or PD30), and auto-
matic generation of hardware dependent definitions for your target. Other EDEs, such as IARs
Embedded Workbench , can be used in the same manner. So, first the EDE has to be configured
to set-up the whole project including the fitting makefiles, the target and the debugging monitor
settings.

6.3. EMBEDDED DEVELOPMENT ENVIRONMENT, M16C AND EMBOS 65

We used the Mitsubishi M16C 3-Diamonds Board as common target for the first development
steps. Many field devices are based on this reference design. Mitsubishis board includes in- and
outputs, such as eight LEDs, a controllable AD-converter and three buttons to trigger events by
hand. Before the first usage the Mitsubishi ROM monitor has to be flashed to enable debugging
connection to the host system.

The ROM Monitor Version 1 can be found on the CD-ROM of the 3-Diamonds Board set. In
the board manual you can read further explanations how to flash the monitor.

The Tasking Embedded Development Environment offers several possibilities to configure
your target. First you have to create a new workspace for your new project. The most important
project options to use the M16C target are:

• Internal ROM 0xC0000, 256K

• Internal RAM 0x400, 20k

• Special Function Registers 0x00000, 0x400

• Enable Generate Start-up Code

• Enable and initialize PM1

• Use small memory model

• Set OS LIBMODE R for the C++ Compiler to support embOS

Reserved areas of the M16C without external memory should be:

• 0xFC000,0xFFFFF

• 0x0,0x400

• 0x4CCC,0x53FF

• 0x5FF,0xC0000

Don’t forget to specify the right stack size e.g. 0x100 and address like 0x44cc and for the heap
0x200 and 0x3400 as well. More setting details regarding the debugger Crossview Pro are given
in 6.7. Now add the Run-time Environment library RTE.a for the M16C and the embOS sys-
tem rtosNR.a to your project. The correct path added to the include file path of the RTE lets
include the environment headers to the project. Initialisation of embOS is located in RTOS.h
and RTOSInit.c . These files have to be included from embOSs INC directory in your project
tree. RTOSInit.c must be renamed to RTOSInit.cpp for C++ compatibility. The peripheral
variable vector table has to be added in the vects32.src modified for our target:

ROM_MONITOR_VERSION equ 1

DEFSECT ".vecttab", FDATA, ROMDATA, MAX
SECT ".vecttab", RESET

OFFSET 19 * 4
IF ROM_MONITOR_VERSION == 2

DL 0xFF900 ; used by the Mitsubishi 3-Diamonds/Glyn ROM
DL 0xFF900 ; used by the Mitsubishi 3-Diamonds ROM

ELSE
DL 0xFCB6B ; used by the Mitsubishi 3-Diamonds/Glyn ROM
DL 0xFCB6B ; used by the Mitsubishi 3-Diamonds ROM

ENDIF
END

66 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

Figure 6.5: Adding generated files

Now you can include all the files, which are created by ECLIPSE to your project. Using the
project properties from the project menu you are able to add files by extension, add all .h and
.cpp files to your project, see figure 6.5.

After this set-up your project should include

• cpp and header files, which are generated in ECLIPSE

• vects32.src , peripheral variable vector table

• RTOSInit.cpp , initialisation and main file of embOS

• RTOS.h, definition file of embOS

• rtosNR.a , embOS library

• rte.a , run-time environment for M16C

The complete set-up looks like figure 6.6.

6.4 Implementing Main

A typical main implementation consists of initialising the operating system and the PecosDevice
component:

#include "RTOS.h"
#include "PecosDevice.h"

int main(int) {
OS_InitKern(); /* initialise OS */

6.5. IMPLEMENTING COMPONENT BEHAVIOR 67

Figure 6.6: TaskingWorkspace

OS_InitHW(); /* initialise Hardware for OS */

PecosDevice::initialize(); // initialise Device
PecosDevice::start(); // starts Device

OS_Start(); /* start Operating Systems */
return 0;

}

The embOS operating system is started with OSStart , in which the main loop of the system is
called. As the listed main routine shows the developer has not to implement more than the OS
initialization.

6.5 Implementing Component Behavior

Now, as discussed in chapter 5 we can develop the behavior of the components. In the derived
classes of the generated base classes code can be added to the initialize , execute and maybe
synchronize method. To change ports or connectors or to create new components the ECLIPSE
environment has to be used again. The Tasking EDE updates the modified files automatically,
only newly created files have to be added to the project by hand.

6.6 Makefile and Building

After the configuration of your project set-up the EDE generates automatically a makefile projectname.mak
for you. It is updated each time the project settings are changed. If you like to use your settings
in other projects you can save and load them in the project menu. The EDE starts the make and
build process by execution of the make command as shown in figure 6.7 and generates the binary
executable in IEEE-695 format for our target.

68 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

Figure 6.7: Make

6.7 Debugging and Deplyoing

The debugging of PECOS applications only requires a source level debugger. Today, the only
possibility to debug C++ applications is using a serial connection to the M16C system. Currently
the ICE (In-Circuit-Emulator) PD30 is not able to de-mangle C++ sources, but Mitsubishi works
on C++ support. Therefore we use the CrossView Pro Debugger 6.8 and Mitsubishis ROM Moni-
tor Version 1 to debug applications in flash-rom. A serial cable connects the development system
to the target system for remote debugging. The free running mode must be enabled to debug
multi-threaded and timed applications. The M16C offers two hardware breakpoints. The pre-
configured breakpoints at main and at SIO (Simulated In- and Output) should be disabled to
make them usable in other code fragments. During a debug run of the application the stop com-
mand connects the ROM monitor to CrossView and shows the current code at the hit breakpoint.
The debugging

Figure 6.8: CrossView Debugger

6.8 Summary

This chapter discussed C++ development and the available tools and technologies. We have seen
basic concepts of solving difficult real-time behavior and how easy it is to start building C++
embedded real-time applications step by step. In particular this chapter presented the use of
CoCo, an embedded development environment and the M16C (see also Table ??).

6.8. SUMMARY 69

Table 6.2: Steps building embedded C++ application with real-time behavior

1. Create a PECOS C++ Project in ECLIPSE.

2. Identify critical timing issues.

3. Build your component specification in CoCo (component.cm).

4. Build the project (creates the base and utility classes).

5. Setup a project in your EDE.

6. Configure your project settings for your target.

7. Add the generated files from ECLIPSE.

8. Add the RTE and the OS.

9. Extend the main to the needs of your OS and the PecosDevice
class.

10. Implement the behavior in C++(component.cpp) using your
EDE.

11. Build the project.

12. Use your debugger for step by step debugging.

70 CHAPTER 6. APPLICATION BUILDING AND DEPLOYMENT

Appendix A

CoCo Grammer

This appendix shows the entire CoCo Syntax in extended BNF. Please not the meaning of the
following special characters:

| : items separated by | are alternatives (exclusive or)

* : means that an item can appear any number of times

+ : means that an item has to appear at least one time

() : in addition, parenthesis are used to group items

Terminal symbols are written in capital letters. The characters ”{”, ”}”, ”[”, ”]” and ”;” are also
terminal symbols.

cocoFile
: compilationUnits

compilationUnits
: (dataTypeDecl | component | task | propertySet)*

component
: plainComponent | abstractComponent

plainComponent
: componentType COMPONENT identifier isList hasPropertySets

componentBody

abstractComponent
: ABSTRACT COMPONENT identifier isList hasPropertySets

abstractComponentBody

componentType
: PASSIVE | ACTIVE | EVENT |

isList
: (IS abstractComponentNames |)

hasPropertySets
: (HAS propertySetNames |)

71

72 APPENDIX A. COCO GRAMMER

componentBody
: { (propertySettings |)

(portDecl | instance | connector | ;)*
}

abstractComponentBody
: {

(propertySettings |)
(portDecl | instance | role | connector | ;)*
}

abstractComponentNames
: abstractComponentName (COMMA abstractComponentName)*

abstractComponentName
: Identifier

propertySettings returns
: PROPERTIES { (propertyStatement | ;)* }

componentName
: Identifier

portDecl
: portOption portType dataType Identifier hasPropertySets portBody

portOption
: OPTIONAL
| MANDATORY
|

portType
: IN
| OUT
| INOUT

dataType
: (typeName | baseType) ([Integer])*

portBody
: { (propertyStatement)* }
| ;

propertyStatement
: IF String propertyStatement
| compoundPropStatement
| propertyInList

portAccess
: (instName DOT |) portName

instName
: Identifier

73

portName
: Identifier

partialAccess
: [Integer]
| DOT Identifier

instance
: componentName Identifier hasRole hasPropertySets instanceBody

hasRole
: (IS roleName |)

instanceBody
: { (propertyStatement)* }
| ;

roleName
: Identifier

connector
: CONNECTOR Identifier hasPropertySets

L_PAREN portAccessInList (COMMA portAccessInList)* R_PAREN
connectorBody

portAccessInList
: portAccess

connectorBody
: { (propertyStatement)* }
| ;

connectorName
: Identifier

role
: ROLE componentName Identifier ;

task
: SCHEDULE Identifier OF instDesignator

(EXTENDS scheduleName | cycleTime AT Integer)
hasPropertySets
taskBody

| SCHEDULE OF instDesignator eventTaskBody

instDesignator
: instName (DOT instName)*

scheduleName
: Identifier

cycleTime
: EVERY Integer
|

74 APPENDIX A. COCO GRAMMER

taskBody
: {

(propertySettings |) (jobSchedInList | jobDefInList)*
}

eventTaskBody
: { activity (; activity)* }

jobSchedInList
: jobScheduled

jobDefInList
: jobDefinition

activity
: SYNC instDesignator | EXEC (instDesignator |)

jobDefinition
: Identifier ASSIGN activities ;

activities
: (activity | { (activity ;)+ })

jobScheduled
: (jobName | activities) AT Integer ;

jobName
: Identifier

dataTypeDecl
: TYPE Identifier

((EXTENDS typeName |) hasPropertySets
{ (fieldInList | propertySettings)+ }

)
| IS dataType hasPropertySets

(; | { (propertyStatement)+ })

typeName
: Identifier

fieldInList
: field

field
: dataType Identifier ;

baseType
: INT | BYTE | SHORT | LONG | FLOAT | DOUBLE | BOOL | CHAR

propertySet
: propSetType PROPERTIES Identifier

{ (propSetMember)* }

75

propSetType
: COMPONENT | PORT | TYPE | SCHEDULE |

propSetMember
: propertyStatement | propSetRefInList

propSetRefInList
: propSetRef

propSetRef
: PROPERTIES propSetName ;

propSetName
: Identifier

compoundPropStatement
: { (propertyStatement | ;)* }

propertyInList
: property

property
: propDesignator ASSIGN

(MANDATORY | constExpression | compoundPropStatement) ;

propDesignator
: Identifier (DOT Identifier)*

constExpression
: MINUS (Integer | Float)
| Integer | Float | Char | String | TRUE | FALSE

propertySetNames
: propSetNameRef (COMMA propSetNameRef)*

propSetNameRef
: propSetName

propName
: Identifier

76 APPENDIX A. COCO GRAMMER

Bibliography

[1] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages. Addison
Wesely, third edition, 2001.

[2] Alexander Christoph, Thomas Genssler, and Michael Winter. Description of the coco archi-
tectural description language and composition environment. Technical Report Deliverable
D225.06, Pecos, 2001.

[3] Carolyn MacLeod and Steve Northover. Swt: The standard widget toolkit - part 1 and 2.
http://www.eclipse.org/articles/index.html.

[4] OTI. Eclipse project home page. www.eclipse.org/.

[5] Bastiaan Schönhage. Pecos Run-time Environment C++ and Java. Technical Report Deliver-
able D4.6-2, Pecos, 2001. www.pecos-project.org.

[6] Andreas Stelter and Peter Müller. Field Device Component Specification. Technical Report
Deliverable D1.4, Pecos, 2001. www.pecos-project.org.

[7] Reinier van den Born and Bastiaan Schönhage. Model mapping to C++ or Java-based
ultra-light environment. Technical Report Deliverable D2.2.9-2, Pecos, 2001. www.pecos-
project.org.

77

	Introduction
	What is an Embedded System, what is a Field Device?
	Current Field Device Development
	Motivation of the PECOS approach

	Babysteps with PECOS
	Introduction
	The CoCo Clock Example
	Setting up the Project
	My First CoCo
	Implementing the Behaviour
	Get the Clock Going
	Adding a Digital Display Component
	Update the Device to include the Digital Display Component
	Wrap up

	Component Model
	Introduction
	Structural Overview
	Components
	Ports
	Connectors
	Composite Components
	Properties and Properties Bundles
	Parent

	Execution Model
	Data spaces
	Execution and Synchronisation Behaviour
	Runtime Semantics

	Summary

	The CoCo Language
	Introduction
	Keywords
	Components
	Ports
	Composite Components
	Component Instances
	Connecting Component Instances by Connectors
	'Upward' Connectors
	Semantics of Connectors

	Properties
	Simple Properties
	Property Bundles

	Schedule Specification
	Data Types
	Summary

	Component Behaviour
	Introduction
	Application Structure
	Component Structure
	Component Type Base Classes
	Component Base Classes
	Component classes

	Component Behaviour
	Initialisation
	Execution
	Synchronisation

	Scheduling Behaviour
	Priority scheduling

	Main and PecosDevice
	Summary

	Application building and deployment
	Application Structure
	Component and Device Specification
	Embedded Development Environment, M16C and embOS
	Implementing Main
	Implementing Component Behavior
	Makefile and Building
	Debugging and Deplyoing
	Summary

	CoCo Grammer

