
The Dilemma of Security Smells

and How to Escape It

Inaugural dissertation

of the Faculty of Science,

University of Bern

presented by

Pascal Gadient

from Flums-Grossberg SG, Switzerland

Supervisors of the doctoral thesis:

Prof. Dr. Oscar Nierstrasz
University of Bern, Switzerland

Prof. Dr. Mohammad Ghafari
University of Clausthal, Germany

The Dilemma of Security Smells

and How to Escape It

Inaugural dissertation

of the Faculty of Science,

University of Bern

presented by

Pascal Gadient

from Flums-Grossberg SG, Switzerland

Supervisors of the doctoral thesis:

Prof. Dr. Oscar Nierstrasz
University of Bern, Switzerland

Prof. Dr. Mohammad Ghafari
University of Clausthal, Germany

Accepted by the Faculty of Science.

Bern, 10 May 2022 The Dean
Prof. Dr. Zoltan Balogh

Submitted to:

Institute of Computer Science

University of Bern

Hochschulstrasse 6

CH-3012 Bern

Typesetting:

.com

LATEX, LaTeX Project Public License (LPPL)

UZH/USZ habilitation template from J. von Spiczak, CC BY 4.0

ETH CADMO template from F. Mousset and H. Einarsson

Imprint:

Lulu Press, Inc., NC, USA

https://www.lulu.com

License information:

Copyright © 2022 by Pascal Gadient (https://pgadient.github.io)

This work is licensed under the terms of the Creative Commons Attribution —

ShareAlike 3.0 Switzerland license. The license is available at

http://creativecommons.org/licenses/by-sa/3.0/ch/

Availability:

First edition, May 2022

https://www.lulu.com
https://pgadient.github.io
http://creativecommons.org/licenses/by-sa/3.0/ch/

“Repairing old faults often costs more than acquiring new ones.”

Wies law Leon Brudziński (1920 – 1996)

Polish writer, satirist, and aphorist

Acknowledgment

I would like to thank for the great supervision by Prof. Dr. Os-
car Nierstrasz who always remained very calm even during heated
paper discussions within the group and let me work with students
on my own ideas. Moreover, I would like to thank Prof. Dr. Mo-
hammad Ghafari for his expertise and out-of-the-box thinking in
several of my works. I am also very grateful to be able to work
in such a great team over the last four years together with Pooja,
Nataliia, Reza, Nitish, and Manuel.

A big thank you is also due to my friends and family, especially
my fiancée Gabi and my mother Edith, who particularly suffered
from my lack of sleep as deadlines approached. Finally, this work
was written in memory of my father Jakob and my fiancée’s father
Sergio who passed away much too soon.

iv

Abstract

A single mobile app can now be more complex than entire oper-
ating systems ten years ago, thus security becomes a major concern
for mobile apps. Unfortunately, previous studies focused rather on
particular aspects of mobile application security and did not pro-
vide a holistic overview of security issues. Therefore, they could not
accurately understand the fundamental flaws to propose effective
solutions to common security problems.

In order to understand these fundamental flaws, we followed a
hybrid strategy, i.e., we collected reported issues from existing work,
and we actively identified security-related code patterns that violate
best-practices in software development. Based on these findings, we
compiled a list of security smells, i.e., security issues that could
potentially lead to a vulnerability.

As a result, we were able to establish comprehensive security
smell catalogues for Android apps and related components, i.e.,
inter-component communication, web communication, app servers,
and HTTP clients. Furthermore, we could identify a dilemma of
security smells, because most security smells require unique fixes
that increase the code complexity, which in return increases the
risk of introducing more security smells. With this knowledge, we
investigate the interaction of our security smells with the 192 Mitre
CAPEC attack mechanism categories of which the majority could
be mitigated with just a few additional security measures. These
measures, a String class with behavior and the more thorough use of
secure default values and paradigms, would simplify the application
logic and at the same time largely increase security if implemented
appropriately.

We conclude that application security has to focus on the String
class, which has not largely changed over the last years, and secure
default values and paradigms since they are the smallest common
denominator for a strong foundation to build resilient applications.
Moreover, we provide an initial implementation for a String class
with behavior, however the further exploration remains future work.
Finally, the term “security smell” is now widely used in academia
and eases the communication among security researchers.

v

Contents

Contents vi

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 3
1.3 Contributions . 5
1.4 Outline . 7

2 Background 8
2.1 Android . 8

2.1.1 Architecture . 9
2.1.2 Crucial Components 10
2.1.3 Data Facilities . 12
2.1.4 Pillars of Security 14

2.2 Web Communication . 17
2.2.1 Web Addressing Scheme 17
2.2.2 Hypertext Transport Protocol (HTTP) 18
2.2.3 Web APIs . 19

2.3 Security Smell . 20

3 State of the Art 21
3.1 Android Security . 21
3.2 Android ICC Security . 22
3.3 Android Web Security . 24

3.3.1 APIs . 24
3.3.2 URLs in Apps . 25
3.3.3 App Servers . 26

vi

Contents

3.3.4 HTTP Headers . 26
3.4 Conclusion . 27

4 Security Code Smells in Android 29
4.1 Security Smells . 31

4.1.1 Insufficient Attack Protection 31
4.1.2 Security Invalidation 33
4.1.3 Broken Access Control 35
4.1.4 Sensitive Data Exposure 37
4.1.5 Lax Input Validation 39

4.2 Empirical Study . 40
4.2.1 Result . 41
4.2.2 Manual Analysis . 46
4.2.3 Threats to Validity 47

4.3 Conclusion . 48

5 Security Code Smells in Android ICC 49
5.1 ICC Security Code Smells 51

5.1.1 Literature Review 51
5.1.2 List of Smells . 52

5.2 Empirical Study . 59
5.2.1 Linting Tool . 60
5.2.2 Dataset . 61
5.2.3 Batch Analysis . 61
5.2.4 Manual Analysis . 72
5.2.5 Threats to Validity 77

5.3 Conclusion . 78

6 Security Smells in the Web Communication of Mobile
Apps 79
6.1 Web API Mining . 81

6.1.1 Library Inspection 81
6.1.2 API Miner . 81
6.1.3 Security Checks . 84

6.2 Study Result . 85
6.2.1 Communication Libraries 86
6.2.2 The Nature of Web Communication 87
6.2.3 Security Risks . 89

6.3 Web Communication Security Smells 90
6.3.1 Client side . 90
6.3.2 Server side . 92

6.4 Threats to Validity . 96
6.5 Conclusion . 96

7 Security Smells in Mobile App Servers 98
7.1 Empirical Study . 99

vii

Contents

7.1.1 Dataset . 100
7.1.2 Prevalence of Security Smells 102
7.1.3 Maintenance of Server Infrastructure 111

7.2 Threats to Validity . 114
7.3 Conclusion . 115

8 Security Smells in Mobile App HTTP Clients 116
8.1 Methodology . 117

8.1.1 Sourced Apps . 117
8.1.2 URL Extraction . 117
8.1.3 Header Data Collection 118
8.1.4 HTTP Client Support 118

8.2 Results . 118
8.2.1 Identified Header Fields 118
8.2.2 Security-related Header Fields 120
8.2.3 Security Smells in HTTP Clients 122

8.3 Threats to Validity . 125
8.4 Conclusion . 126

9 Effective Holistic Security for Mobile Apps 127
9.1 Attack Mechanisms . 129
9.2 Empirical Study . 133

9.2.1 Methodology . 133
9.2.2 Findings . 135

9.3 Effective Security Measures 135
9.4 From Effective to Holistic Security Measures 137
9.5 The Conflict in Android OS Security 137
9.6 Threats to Validity . 139
9.7 Conclusion . 139

10 Default Values and Practices to Improve Application Se-
curity 140
10.1 Secure Default Values . 141

10.1.1 Apps . 141
10.1.2 App Servers . 142

10.2 Safe Practices . 143
10.2.1 Apps . 143
10.2.2 App Servers . 148

10.3 Remaining Security Smells 148
10.4 Threats to Validity . 148
10.5 Conclusion . 149

11 A String-based Framework to Improve Application Se-
curity 150
11.1 Prototype . 152

11.1.1 Motivating Example 152

viii

Contents

11.1.2 Implementation . 153
11.1.3 Features . 155
11.1.4 Application Support 159
11.1.5 Performance . 161

11.2 Restrictions . 161
11.2.1 Methodology . 162
11.2.2 Compatibility . 162
11.2.3 Limitations . 162

11.3 Security Gains . 164
11.3.1 Data Type Emulation 164
11.3.2 In-memory Encryption 165
11.3.3 Off-memory Encryption 166
11.3.4 Taint Analysis . 167
11.3.5 Data Flow Analysis 169
11.3.6 Discussion . 171

11.4 Threats to Validity . 172
11.5 Conclusion . 173

12 Conclusions, Impact, and Future Work 174
12.1 Security Smells in Android 174

12.1.1 Visible Impacts . 175
12.1.2 Future Work . 175

12.2 Security Smells in Android ICC 175
12.2.1 Visible Impacts . 176
12.2.2 Future Work . 176

12.3 Security Smells in the Web Communication of Mobile Apps 177
12.3.1 Visible Impacts . 178
12.3.2 Future Work . 178

12.4 Security Smells in Mobile App Servers 178
12.4.1 Future Work . 178

12.5 Security Smells in Mobile App HTTP Clients 179
12.5.1 Future Work . 179

12.6 Effective Holistic Security for Mobile Apps 179
12.6.1 Future Work . 180

12.7 Default Values and Practices to Improve Application Security180
12.7.1 Future Work . 180

12.8 A String-based Framework to Improve Application Security 181
12.8.1 Visible Impacts . 181
12.8.2 Future Work . 182

12.9 Closing Remarks . 182

Bibliography 183

A Declaration of Consent 196

B Curriculum Vitæ 197

ix

Contents

B.1 Academic Education . 197
B.2 Professional Experience . 197

x

List of Figures

1.1 Annual increase in reported security issues and exploits 2
1.2 Annual increase in reported Android security issues and exploits 3

2.1 The Android architecture . 9
2.2 The structure of a URL . 17

4.1 Distribution of security smells in the apps 41
4.2 Partitioning apps by number of security smells 42
4.3 The distribution of security smells within each API level 43
4.4 Average number of smells within an app targeting a particular

API level . 44
4.5 Distribution of smells in app categories 44
4.6 The relationship between number of smells and number of down-

loads . 45
4.7 The relationship between number of smells and app star ratings 46
4.8 The precision of obtained results 47

5.1 Distribution of security smells in the apps 62
5.2 Prevalence of different security smells in apps 62
5.3 Relation between number of a project’s participants, its preva-

lence, and the average number of different security smells found 63
5.4 Evolution of security code smells in different Android releases . 65
5.5 Prevalence of Android Lint issues in the 100 most and least

vulnerable apps . 67
5.6 GitHub project creation and last commit date in relation to

each project’s issue count . 69
5.7 Different project properties in relation to kLOC 71
5.8 Tool evaluation results . 73
5.9 Tool performance . 75
5.10 Vulnerability capability of detected issues 75

xi

List of Figures

7.1 Star ratings for the Google Play apps in the dataset 101
7.2 The popularity and developer support for the Google Play apps

in the dataset . 101
7.3 Prevalence of app server smells in apps considering JSON com-

munication . 103
7.4 Prevalence of app server smells in apps considering non-JSON

communication . 103
7.5 Frameworks that caused code leaks 104
7.6 Disclosure of operating system information 105
7.7 Disclosure of service information 106
7.8 Disclosure of version information 107
7.9 Missing HTTPS redirects in app servers 108
7.10 Missing HSTS protection for app servers 109
7.11 Configuration changes of app servers after fourteen months . . 112
7.12 Correlation between app server security smells and configura-

tion changes . 113

9.1 Security smells categorized by the CAPEC taxonomy 134
9.2 A holistic domain of mobile apps 136
9.3 The triad of software security 138

10.1 A typical vulnerability not considered for apps in the Google
Play store . 145

11.1 Message flow between software components 155
11.2 The resulting value history tree for Listing 13 158
11.3 Value history tree visualized from a debugger 159

xii

List of Tables

5.1 The identified ICC security code smells 52
5.2 The relationship between vulnerabilities and security code smells 59
5.3 Correlation of ICC security smells with Android Lint issue cat-

egories . 68

6.1 Regular expressions used to detect computer languages 85

8.1 Top 50 HTTP headers in mobile app web communication . . . 119
8.2 Security-related HTTP header fields found in server responses

sorted by their prevalence . 121
8.3 Support of HTTP security-related header fields for frameworks,

Java classes, and web browsers 123

9.1 The attack mechanisms according to the Mitre CAPEC, version
3.7 . 130

9.2 The attack mechanisms according to the Mitre CAPEC, version
3.7 (continued) . 131

11.1 String performance evaluation 161
11.2 Evaluation of popular Java libraries 162

xiii

Chapter 1

Introduction

Our society is dependent on smart devices that run a complex OS (operat-
ing system) and apps, which are highly connected and support a plethora
of different sensors. Such devices are used to perform critical operations
such as voting, e-finance, unlocking doors and cars, or to show and validate
immunity certificates for Corona. Moreover, they allow users to commu-
nicate with others, browse the web, or consume digital media. Americans
spent an average of 4.1 hours a day on mobile devices in 2021, more time
than they spent watching TV.1

1.1 Motivation

The possibilities for misuse of smart devices are therefore very diverse and
security has become a major concern. In fact, the protection of installed
apps is very challenging since mobile app development is much more com-
plex than traditional software development: every mobile platform main-
tains a different software architecture that is not interoperable, and the
devices have countless unique hardware capabilities such as gyroscopes,
lidar scanners, cameras, and fingerprint sensors. In fact, unlike desktop
applications a mobile app must be at any time aware of the environment,
e.g., whether the OS has closed some app views to save battery. On top
of this, apps have many opportunities to collect personal data and they
often access servers from third parties, which are not maintained by the
app vendors.

The global increase in code complexity indeed represents a problem,
particularly for mobile apps. Shin et al. showed that complexity met-
rics can be successfully used to assess the likelihood of vulnerabilities [88].

1Forbes: Another blockbuster year for digital economy, https://www.

forbes.com/sites/roberthart/2022/01/12/record-38-trillion-hours-spent-

on-mobile-apps-during-2021-in-another-blockbuster-year-for-digital-

economy/?sh=715d48a32a42, accessed on 28-FEB-2022

1

https://www.forbes.com/sites/roberthart/2022/01/12/record-38-trillion-hours-spent-on-mobile-apps-during-2021-in-another-blockbuster-year-for-digital-economy/?sh=715d48a32a42
https://www.forbes.com/sites/roberthart/2022/01/12/record-38-trillion-hours-spent-on-mobile-apps-during-2021-in-another-blockbuster-year-for-digital-economy/?sh=715d48a32a42
https://www.forbes.com/sites/roberthart/2022/01/12/record-38-trillion-hours-spent-on-mobile-apps-during-2021-in-another-blockbuster-year-for-digital-economy/?sh=715d48a32a42
https://www.forbes.com/sites/roberthart/2022/01/12/record-38-trillion-hours-spent-on-mobile-apps-during-2021-in-another-blockbuster-year-for-digital-economy/?sh=715d48a32a42

1.1. Motivation

0

5’000

10’000

15’000

20’000

25’000

30’000

35’000

40’000

45’000

0

50’000

100’000

150’000

200’000

250’000

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

ne

w
 a

ss
ig

ne
d

C
V

E
 id

en
ti

fi
er

s
pe

r
ye

ar

as

si
gn

ed
 C

V
E

 id
en

ti
fi

er
s

(a
cc

um
ul

at
ed

)

CVE Mitre (trend) Exploit-DB # CVE Mitre

Figure 1.1: Annual increase in reported security issues and exploits

This suggests that more complex code is prone to security issues. Con-
sequently, it is no surprise that we can see a major increase of recently
reported security vulnerabilities in CVE Mitre,2 i.e., the most commonly
referred vulnerability database funded by the United States National Cy-
ber Security Division, and Exploit-DB,3 i.e., a database that leverages
data from CVE Mitre, which contains exploits for vulnerabilities and is
maintained by a security agency that provides consulting services.

Figure 1.1 shows the numbers of reported security issues and exploits.
We collected the data in early September 2021 and thus the final numbers
for the year 2021 will be higher than those presented in the plot where we
shaded that particular section. The area plot uses the accumulated data,
i.e., the total of reported elements until the specified year in the y-axis.
In contrast, the line plot indicates the new submitted reports per year,
but only for CVE Mitre since it is the major data provider used for the
reporting of vulnerabilities. We can clearly see that the number of reported
issues has exponential tendencies, and that the number of exploits released
to the public through Exploit-DB is constantly growing. In other words,
the number of annually reported security issues in software has increased
from about 11 000 to more than 40 000 within the last five years, which is
an increase of 267%.

Unfortunately, the situation may be even worse for mobile apps. Fig-
ure 1.2 shows the numbers of reported security issues related to Android.

2CVE Mitre website, https://cve.mitre.org, accessed on 28-FEB-2022
3Exploit-DB website, https://www.exploit-db.com, accessed on 28-FEB-2022

2

https://cve.mitre.org
https://www.exploit-db.com

1.2. Thesis Statement

0

1’000

2’000

3’000

4’000

5’000

6’000

7’000

8’000

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

as

si
gn

ed
 C

V
E

 id
en

ti
fi

er
s

(a
cc

um
ul

at
ed

)

Android # Android app

Figure 1.2: Annual increase in reported Android security issues and exploits

We use the same data and visualization as before, however we only counted
reports that either contained the term “android”, where we assume a bug
report is related to the Android OS, or “android app,” where we assume
a bug report is related to an Android app. On the one hand, we can see
that the Android OS received many bug reports and the climax seems to
be reached within the next few years. On the other hand, however, there
is only a very low number of vulnerabilities represented in red that have
been reported for a few apps although there exist currently more than 2.5
million Android apps in the Google Play store.4 Therefore, we should ask
ourselves if most of these mobile applications are secure, or if perhaps it
is more due to a lack of interest from the security community.

In this work, we will investigate common problems in Android apps
and based on these findings we will determine effective measures against
such threats.

1.2 Thesis Statement

The aim of this thesis is to improve the mobile app security with potential
applications to desktop application security. We formulate our thesis as
follows:

4AppBrain: Number of Android apps on Google Play, https://www.appbrain.com/
stats/number-of-android-apps, accessed on 28-FEB-2022

3

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps

1.2. Thesis Statement

Thesis Statement

The fundamental mitigation of security vulnerabilities in mobile
apps requires a holistic understanding of security. This work
achieves that by i) defining the notion of “security smell,” ii) gath-
ering common security smells in the context of mobile apps, and
iii) classifying the identified smells into threat classes. With this
knowledge, effective remediation strategies can be identified, im-
plemented, and evaluated.

In the following we present all the investigated research questions (RQs) of
this thesis separated by chapters. The presented RQs span eight chapters
of this thesis.

Chapter 4: Security Smells in Android
RQ 4.1: What are the security code smells in Android apps?
RQ 4.2: How prevalent are security smells in benign apps?
RQ 4.3: To which extent identifying security smells facilitates de-

tecting vulnerabilities?

Chapter 5: Security Smells in Android ICC
RQ 5.1: What are the known ICC security code smells?
RQ 5.2: How prevalent are the smells in benign apps?
RQ 5.3: To which extent does identifying security smells facilitate

detection of security vulnerabilities?

Chapter 6: Security Smells in the Web Communication of Mobile Apps
RQ 6.1: Which API frameworks are used in Android mobile apps,

and what is the nature of the data that apps transmit through
these frameworks?

RQ 6.2: What security smells are present in web communication?

Chapter 7: Security Smells in Mobile App Servers
RQ 7.1: What is the prevalence of the server side security smells in

the web communication of mobile apps?
RQ 7.2: What is the relationship between security smells and app

server maintenance?

Chapter 8: Security Smells in Mobile App HTTP Clients
RQ 8.1: What is the support of the most common security-related

HTTP header fields in existing HTTP clients?

Chapter 9: Effective Holistic Security for Mobile Apps
RQ 9.1: Which security smells enable what attack mechanisms?

4

1.3. Contributions

RQ 9.2: What are holistic security strategies that can effectively pre-
vent attack mechanisms?

Chapter 10: Default Values and Practices to Improve Application Secu-
rity

RQ 10.1: What are examples of default values and practices that could
greatly improve application security?

Chapter 11: A String-based Framework to Improve Application Security
RQ 11.1: What are the restrictions when using an instrumented Java

String class with existing code?
RQ 11.2: Can an instrumented String class offer protection against

data leaks and remote code execution, and what are the se-
curity risks using such a technique?

1.3 Contributions

We present nine distinct contributions with the aim to improve application
security from different aspects.

• We review related research, and identify avoidable vulnerabilities
in Android-run devices and the security code smells that indicate
their presence. In particular, we explain the vulnerabilities, their
corresponding smells, and we discuss how they could be eliminated or
mitigated during development. Moreover, we develop a lightweight
static analysis tool and discuss the extent to which it successfully
detects several vulnerabilities in about 46 000 apps hosted by the
official Android market.

• We review related research, and identify avoidable ICC (inter-com-
ponent communication) vulnerabilities in Android-run devices and
the security code smells that indicate their presence. We explain the
vulnerabilities and their corresponding smells, and we discuss how
they can be eliminated or mitigated during development. We present
a lightweight static analysis tool called AndroidLintSecurityChecks
on top of Android Lint that analyzes the code under development
and provides just-in-time feedback within the IDE (integrated de-
velopment environment) about the presence of such smells in the
code. Moreover, with the help of this tool we study the relevance of
security code smells in more than 700 open-source apps, and man-
ually inspect around 15% of the apps to assess the extent to which
identifying such smells uncovers ICC security vulnerabilities.

• We analyze the web communications found in mobile apps from the
perspective of security. We first manually study 160 Android apps

5

1.3. Contributions

to identify the commonly-used communication libraries, and to un-
derstand how they are used in these apps. We then develop a tool
called Jandrolyzer to statically identify web API URLs (uniform re-
source locators) used in the apps, and restore the JSON (JavaScript
object notation) data schemas including the type and value of each
parameter.

• We analyze the prevalence of six security smells in mobile app servers,
and we investigate the consequence of these smells from a security
perspective. We use an existing dataset that includes 9 714 distinct
URLs used in 3 376 Android mobile apps. We exercise these URLs
twice within 14 months and investigate the HTTP (hypertext trans-
fer protocol) headers and bodies. We find that more than 69% of
tested apps suffer from three kinds of security smells, and that un-
protected communication and misconfigurations are very common
in servers. Moreover, source code and version leaks, or the lack of
update policies expose app servers to security risks.

• We explore the adoption of security-related HTTP headers in mo-
bile app communication by querying 9 714 distinct URLs that are
used in 3 376 apps and collected each server’s response information.
We discover that support for secure HTTP header fields is absent in
all major HTTP clients, and it is barely provided with any server
response. Based on these results, we discuss opportunities for im-
provement particularly to reduce the likelihood of data leaks and
arbitrary code execution.

• We manually investigated the impact of our 51 security smells on 192
attack mechanisms of the CAPEC taxonomy, which led to 9 792 com-
binations that we considered. We found that insecure algorithms,
the abuse of existing functionality, data leaks, and user deception
are the four major threats when using Android, and we elaborate
strategies against them. That is, we see most potential in secure
default values and safe practices to prevent feature misuse in the
Android ecosystem. We further realized that string variables need
increased protection, because they are responsible for most issues
that relate to the employment of probabilistic methods and the in-
jection of unexpected items.

• We reviewed every reported security smell and found that eight
smells (16%) could be addressed with more secure default values,
and that 36 smells (71%) could be addressed with safer practices. In
fact, we only see for seven smells (14%) no potential in such mea-
sures, however they can be addressed using a better control of data.

• We present a flexible framework that can effectively prevent data
leaks and other threats even if developers are inexperienced or un-

6

1.4. Outline

aware of potential security implications when they apply changes to
their own code. Using this framework, we could successfully prevent
data leaks, leverage off-memory encryption, or perform taint and
data flow analyses even without changing the existing application
logic.

1.4 Outline

In chapter 2 we explain the frequently used terms, and in chapter 3 we ex-
plain the current state of application security. In chapters four to eight we
present security smells in Android (chapter 4), Android ICC (chapter 5),
web communication (chapter 6), app servers (chapter 7), and HTTP clients
(chapter 8). In chapter 9 we elaborate which security smells enable what
attack mechanisms and identify characteristics of effective holistic reme-
diation strategies. With this knowledge, we are able to propose effective
remedies in chapter 10 and in chapter 11, before we present future work,
visible impact, and the conclusions in chapter 12.

7

Chapter 2

Background

In this chapter we provide the necessary background to follow this thesis.
In more detail, we elaborate the Android OS, the web communication, and
we discuss the term security smell.

Declaration of Content Reuse

The content of this chapter contains elements from sections that
correspond to paper submissions, i.e., Security Code Smells in
Android ICC (chapter 5) and Security Smells in HTTP Headers
(chapter 8).

2.1 Android

The Android OS has become the most prevalent OS today with a mobile
OS market share of more than 70% in early 2022,1 and is used far beyond
smartphones, e.g., in cars, tvs, watches, and internet of things (IoT) de-
vices.2 Android was initially designed for “smart” digital cameras, which
can communicate with other devices.3 However, after Android was ac-
quired by Google, the intention behind the operating system changed: it
was to become an “open-source handset solution” with support for third-
party apps. Such Android apps can be installed manually or with app
stores, e.g., the Google Play Store. An Android app consists of an .apk

1statcounter: mobile OS market share worldwide, https://gs.statcounter.com/

os-market-share/mobile/worldwide, accessed on 21-MAR-2022
2Google documentation: Android devices, https://developer.android.com/about,

accessed on 21-MAR-2022
3PCWorld: Android founder: we aimed to make a camera OS, https:

//www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-

camera-os.html, accessed on 28-FEB-2022

8

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developer.android.com/about
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html
https://www.pcworld.com/article/451350/android-founder-we-aimed-to-make-a-camera-os.html

2.1. Android

Ja
va

-o
ri

en
te

d
C

/C
+

+
-o

ri
en

te
d

Layer 6 Android apps

Layer 5 Android Java framework

Layer 4 Android runtime

Layer 3 Android C/C++ libraries

Layer 2 Android HAL

Layer 1 Linux kernel

Layer 0 Hardware and firmware

Figure 2.1: The Android architecture

file that contains the compiled byte code and, optionally, native code, ad-
ditional metadata, and resource files. Moreover, each new major Android
release introduces new Android application framework APIs, and to easily
distinguish between the different Android releases a new “API level” is
introduced, i.e., an integer that corresponds to a particular Android OS
release. Android apps are always optimized for a particular Android OS
release, i.e., the desired API level is specified in their configuration files.

2.1.1 Architecture

According to Google’s documentation4,5, the Android architecture com-
prises several layers with distinct responsibilities that are shown in Fig-
ure 2.1:

• Layer 0: Encompasses the hardware and other low-level machine
code of which some can be implemented in silicon, e.g., firmware that
integrates logic for the hardware initialization to make it capable of
executing compiled code.

• Layer 1: A customized Linux kernel that includes some system
drivers.

• Layer 2: The hardware abstraction layer (HAL) that ensures uni-
form driver interfaces across different hardware platforms. There
exist different HALs for different purposes that must be followed,

4Google documentation: Android architecture, https://source.android.com/

devices/architecture, accessed on 21-MAR-2022
5Google documentation: platform architecture, https://developer.android.com/

guide/platform, accessed on 21-MAR-2022

9

https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform

2.1. Android

e.g., OpenGL and Vulkan for the acceleration of 3D content, or well-
defined HALs for radio communication and biometric authentication
hardware.6

• Layer 3: The native Android system libraries manage access to
hardware components such as cameras, speakers, or displays. Be-
sides, these libraries further provide access routines to the Webkit
browser, various hardware accelerator chips, and they can be ac-
cessed by Android apps using the Android native development kit
(NDK).7

• Layer 4: The Android runtime (ART) consists of the code execution
component which is similar to a Java virtual machine, and the cor-
responding core runtime libraries that offer most of the functionality
of the corresponding Java base libraries.

• Layer 5: The Android Java application framework offers the com-
ponents required to build an app, e.g., classes related to UI elements
and resource management. Among other purposes, this layer drives
the view system, a window manager, a notification manager, and an
activity manager.

• Layer 6: Incorporates all the Android apps that can be installed by
a user, and the apps pre-installed by Google or the device vendor.

The majority of the code that relates to the bottom layer (layer zero)
originates from microchip and device vendors, whereas the code at the
top layer (layer six) is written by Android app developers. The code of
the intermediate layers essentially is required to build Android from the
“official” Linux kernel, i.e., the mainline kernel. The Android Open-Source
Project (AOSP) maintains a dedicated android-mainline Linux kernel fork
that continuously integrates the changes from the Linux mainline kernel.8

Unfortunately, not all components required to build the Android OS have
been open-sourced, e.g., some firmware, device drivers, and proprietary
frameworks like the Google Play Services still remain closed-source.

2.1.2 Crucial Components

Android apps do not require a traditional “main” method, instead they
heavily rely on callback methods across system classes, which are called
when the callback events are raised by the OS. We review two major

6Google documentation: HAL types, https://source.android.com/devices/

architecture/hal-types, accessed on 21-MAR-2022
7Google documentation: native APIs, https://developer.android.com/ndk/

guides/stable_apis, accessed on 21-MAR-2022
8Android Open-Source Project (AOSP) website, https://source.android.com/,

accessed on 28-FEB-2022

10

https://source.android.com/devices/architecture/hal-types
https://source.android.com/devices/architecture/hal-types
https://developer.android.com/ndk/guides/stable_apis
https://developer.android.com/ndk/guides/stable_apis
https://source.android.com/

2.1. Android

system classes that are important for Android app development and the
remainder of this thesis.

Activity

An Activity class instance typically describes the entire life-cycle of a sin-
gle screen user interface of an app that a user can interact with. This class
facilitates 71 different on*(...) callback methods, however only seven of
them are important for developers: onCreate() which is called during the
initialization process of the object, onStart() which is called just before
the system shows the corresponding view to the user, onResume() which
is called after the activity is shown to the user and ready for user input,
onPause() which is called when the view loses focus, e.g., due to a home
button event, onStop() which can be used for clean up and executes if
an activity is about to be closed, i.e., the Activity.finish() method is
called by the user or forcefully by the system, onRestart() which is called
when the user navigates back to a previously closed activity, and finally,
onDestroy() which is called before the activity enters the terminal state.

Service

A Service class instance typically describes the entire life-cycle of a back-
ground service with no user interface that is used by one or more apps.
There exist two variants of starting a service: either an app can bind it
and without any particular instructions it will terminate if no app is bound
anymore, or it can be explicitly started using the method startService()

that will allow a service to be run indefinitely even when the corresponding
app is currently not executed. These two variants can also be combined.
Therefore, the abstract service class facilitates eleven different on*(...)

callback methods, however only four of them are essential for develop-
ers: onCreate() which is called during the initialization of the Service

object, onStartCommand() which is executed after the service has been
started, onBind() which is executed whenever an app initially connects to
the service, onUnbind() which is executed when an app disconnects from
the service, onRebind() which is executed when an app tries to reconnect
after it disconnected, and finally, onDestroy() which is executed before
the service terminates on behalf of the developer or the system that tries
to free resources.

11

2.1. Android

2.1.3 Data Facilities

Android supports a plethora of different data sharing9 and storage facili-
ties10 of which this subsection provides an overview. A brief knowledge of
these facilities is required to follow the remainder of this thesis.

Intent

The OS and its apps, as well as components within the same or across
multiple apps, communicate with each other via inter-component commu-
nication (ICC) APIs. These APIs take an intent object as a parameter. An
intent is either explicit or implicit. In an explicit intent, the source com-
ponent declares to which target component, i.e., Class or ComponentName
instances the intent is sent, whereas in an implicit intent, the source com-
ponent only specifies a general action to be performed, i.e., represented
by a text string, and the target component that will receive the intent
is determined at run time. Intents can optionally carry additional data
called bundles. Components declare their ability to receive implicit intents
using “intent filters,” which allow developers to specify the kinds of ac-
tions a component supports. If an intent matches any intent filter, it can
be delivered to that component. Broadcast receivers receive system-wide
“intents,” i.e., descriptions of operations to be performed, sent to multiple
apps. Broadcast receivers act in the background, and often relay messages
to activities or services.

Content Provider

A content provider manages access to a repository of persistent data that
could be used internally or shared between apps. That is, it mediates
access to one or more databases for various applications and components,
e.g., apps, widgets, and search suggestions. The used database structures
can be arbitrary, however relational tables and SQLite are preferred.

Persistent Storage

Android can store data on internal storage, e.g., integrated eMMC chips,
and external storage, e.g., memory cards. Such storage space can be ac-
cessed by traditional file system methods, by the MediaStore API to store
photo and video content in media folders, by the DataStore and Jetpack
Preferences APIs to save key-value pairs, or by the Room API to store
data in a SQLite database. Moreover, Android can use such storage to
automatically save debugging data of application crashes and Application
Not Responding (ANR) errors.

9Google documentation: application fundamentals, https://developer.android.

com/guide/components/fundamentals, accessed on 21-MAR-2022
10Google documentation: app data and files, https://developer.android.com/

guide/topics/data, accessed on 21-MAR-2022

12

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/topics/data
https://developer.android.com/guide/topics/data

2.1. Android

Volatile Storage

A developer can use application memory to store data during the execu-
tion of an app. Android uses circular in-memory buffers to store various
log messages. Ordinary log messages can be generated in apps with the
methods Log.v() (verbose message), Log.d() (debug message), Log.i()
(informational message), Log.w() (warning message), Log.e() (error mes-
sage), and Log.wtf() (“what a terrible failure” message).

IP-like Network Communication

Internet Protocol (IP)-like network connections in Android apps can be es-
tablished using well-known Java classes such as Socket, InetSocketAddr-
ess, HttpURLConnection, etc. Therefore, data can be shared by using a
variety of different classes. Many Java network APIs abstract the data
carrier for simple requests and responses, because it is nowadays irrele-
vant whether a message is sent through a cellular or WiFi network since
both technologies have converged in many aspects, e.g., both natively
support the IPv4 and IPv6 addressing schemes. Furthermore, data can be
sent with Bluetooth that uses a Media Access Control (MAC) addressing
scheme which is similar to the one used in IP, to enable the exchange of
messages between one master and up to seven clients in a wireless Personal
Area Network (PAN). What is more, Bluetooth Low Energy (BLE) for slow
but energy efficient data transmission supports mesh networking and has
no device limit. If faster data rates are required, recent Bluetooth imple-
mentations can use a WiFi link to boost the transmission performance at
the expense of an increased power consumption.

Other Communication

Communication that is not part of an IP network uses different address-
ing schemes and techniques than IP. For example, a smartphone can be
identified with the International Mobile Equipment Identity (IMEI) that is
globally unique and the user can be identified with the International Mo-
bile Subscriber Identity (IMSI) that is stored inside a Subscriber Identifica-
tion Module (SIM), which corresponds to a globally unique phone number.
Communication services that rely on such identifiers are traditional phone
calls, the Short Message Service (SMS), the Multimedia Messaging Ser-
vice (MMS), or the Rich Communication Services (RCS) that supersede
the SMS and MMS. There exist numerous other communication proto-
cols for point-to-point or point-to-multipoint connections, e.g., Near-Field
Communication (NFC) to communicate with another device over very
short distances of typically less than ten centimeters, Universal Serial Bus
(USB) to communicate through wires with up to 127 clients within a ra-
dius of few meters, Infrared Data Association (IrDA) to communicate to
devices in sight with invisible infrared light, and most recently, the Ultra-

13

2.1. Android

Wide Band (UWB) communication protocol that in theory supports fast
data transfers between devices within a range of about 200 meters, which
is currently used primarily for the precise tracking of objects. Rather un-
conventional communication protocols can further leverage speakers and
microphones, screens and cameras, or possibly light-based senders and the
corresponding camera-like receivers that are used in lidars and Time of
Flight (ToF) systems, which can create a depth map of the surroundings.

2.1.4 Pillars of Security

Google employs various security mechanisms to ensure a secure Android
app platform.11

App Screening

Before any app is published in the app store, it is screened by Google’s
Bouncer that is nowadays part of the Google Play Protect service, which
combines cloud-based security with on-device protection that is similar to
a traditional desktop malware scanner. In general, this is a continuously
improved automated service,12 however it can include a manual code re-
view if Bouncer identifies potentially harmful features in an app or the
corresponding metadata. If the app does not pass these screenings, it will
be rejected and not listed in the app store, or if already listed, it will
be unlisted from the app store and eventually removed from user devices.
According to Google, Bouncer instruments the app code with static and
dynamic code analysis tools that leverage machine learning algorithms.13

That is, its algorithms monitor hundreds of features and compare behav-
ior across Android apps to identify potentially suspicious behavior such
as illicit or unexpected interactions with other apps on a device, accessing
or sharing of personal data without any authorization, the aggressive in-
stallation of apps, requests to known malicious websites, or the bypassing
of built-in security features. Additionally, metadata from a developer’s
Google account is considered like actions, history, billing details, device
information, and more. To effectively identify potential threats, Bouncer
scans apps that are reported by security researchers, users, or generally
apps found on the internet. However, to let Bouncer inspect installed
apps from other markets, users have to allow Google to review new apps

11Android security & privacy: 2018 year in review, https://source.android.

com/security/reports/Google_Android_Security_2018_Report_Final.pdf, accessed
on 19-MAR-2022

12Ars Technica: new Play store rules block most apps from..., https:

//arstechnica.com/gadgets/2021/04/new-play-store-rules-block-most-apps-

from-scanning-your-entire-app-list, accessed on 11-APR-2022
13Google documentation: cloud-based protections, https://developers.google.

com/android/play-protect/cloud-based-protections, accessed on 11-APR-2022

14

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://arstechnica.com/gadgets/2021/04/new-play-store-rules-block-most-apps-from-scanning-your-entire-app-list
https://arstechnica.com/gadgets/2021/04/new-play-store-rules-block-most-apps-from-scanning-your-entire-app-list
https://arstechnica.com/gadgets/2021/04/new-play-store-rules-block-most-apps-from-scanning-your-entire-app-list
https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections

2.1. Android

by enabling the “Improve harmful app detection feature” in Google Play
Protect on their devices.

Although Google tries to hide implementation details of their screen-
ing process to prevent adversaries from exploiting it, researchers could
still obtain interesting findings. For example, Bouncer seems to use for
the dynamic analysis a randomly modified QEMU Android emulator in-
stance with some arbitrary user data that executes the app for a rather
short amount of time, and Bouncer grants internet access to the apps that
are being tested [66]. Therefore, Bouncer can assess byte code and native
code, which is usually used for specific features that require heavy com-
putation such as the conversion of image or video content. Researchers
further found that app analyses are immediately performed after every
submission, or weekly if no submission has been performed by the app au-
thor [71]. Moreover, Google Play Protect seems to be less strict compared
to traditional malware scanners [43].

Since the time available for automated and manual code reviews is
limited, Google Play Protect is particularly vulnerable for delayed attacks
where the submitted application behaves benignly while it is being ana-
lyzed, but turns malicious otherwise.

App Side-loading

In recent Google Play Protect-certified devices, by default, the manual
installation of apps from unknown sources is disabled, which is also called
app “side-loading” of Android PacKage (APK) files. As result, Google
has full control over all the available apps and can, if required, prevent the
spread of malicious apps.

Permission System

Access to sensitive APIs is protected by a set of permissions that the
user can grant to an app. If the user declines a permission request from an
app, the app can either continue with limited functionality or terminate. In
general, these permissions are text strings that correlate to a specific access
grant, e.g., android.permission.CAMERA for camera access. Apps can
further declare custom permissions with appropriate protection levels to
protect their exposed interfaces against unauthorized accesses from other
apps. In more detail, apps can use the protection levels “normal,” i.e., the
default permission level that is automatically granted at installation time,
“dangerous,” which must be requested during run time and usually leads
to a UI notification that a user has to acknowledge, or “signature,” which
only grants access if the requesting app has been signed using the same
certificate as the granter. If two apps are signed using the same certificate,
they can be expected to be from the same vendor.

15

2.1. Android

Security Hardware

Recent Android devices support hardware security features such as the
Trusted Execution Engine (TEE), which is part of the host CPU and runs
a secure, isolated OS that can only exchange data with Android via the
corresponding secure kernel driver. Therefore, that OS is preferably used
as a safe enclave to protect sensitive information such as passwords and
decryption keys. In addition, Android supports various authentication
hardware such as fingerprint readers and facial recognition systems.

Security Software

The Android platform assigns a unique user identifier (UID) to each app
at installation time that prevents apps from accessing other apps’ data.
Moreover, each app runs in a unique process within a sandbox so that every
app runs in isolation from other apps. The used Security-Enhanced Linux
(SELinux) kernel security module further improves the resiliency against
various attacks by introducing system-wide security policies and a more
fine grained set of access controls. In addition to that, user-space harden-
ing protects against memory corruption threats by introducing Address-
Space Layout Randomization (ASLR), Control Flow Integrity (CFI), and
Data Execution Prevention (DEP). Finally, the entire boot process relies
on cryptographic signatures to prevent unauthorized changes to the OS.

Software Updates

There exist two kinds of Android software updates: app updates and OS
updates. The Play Store is used to distribute app updates just in time
across its users. However, the procedure for OS updates is entirely differ-
ent and updates are released much less frequently, i.e., usually every few
weeks or months, because device vendors have to adopt the changes and
must possibly re-certify a cellular modem in different countries if they have
modified its baseband firmware. Therefore, Google is currently transition-
ing as many OS components as possible into the Play Store to facilitate
more seamless future updates.

System Image Scanning

Android can be installed on a device with a system image file that must be
flashed to the device’s persistent memory. A vendor can perform arbitrary
changes in the default image and, for instance, pre-install any Android ap-
plication or include additional device drivers to support custom hardware.
As a result, before any release of a new Android-powered device, it is rec-
ommended that the device vendor submit the customized system image to

16

2.2. Web Communication

https://john:aSecurePassword@www.example.com:8080/api/getBill?id=12345&locale=en-US#5

primary
domain

sub
domain

user
infoscheme

top level
domain port path query query fragment

host address

web API base address

Figure 2.2: The structure of a URL

Google to let them perform a security audit to identify potential threats.
If a problem is revealed, Google will assist the vendor in its remediation.14

2.2 Web Communication

The web communication of mobile apps accounted for more than 54% of
the total internet traffic in 2021.15 In this section, we briefly discuss the
primarily used web addressing scheme, the communication protocol, and
the web APIs that are built on top of them.

2.2.1 Web Addressing Scheme

A web resource is usually accessed with a Unified Resource Locator (URL),
which points to its location. The typical structure of a URL is shown
in Figure 2.2. From the left to the right, the scheme denotes the desired
protocol that usually corresponds to a particular port, the optional user
info section holds the colon-separated user name and password required
to access a protected resource, the sub domains, the primary domain, and
the top level domain identify the target computer(s) in the internet that
store(s) the desired resource, the port number specifies the desired target
service or process, the path indicates the desired resource in the host ser-
vice’s logical structure, the optional query elements further parameterize
the web resource so that a server can respond accurately, and finally, the
fragment specifies the desired page if the requested resource supports pag-
ination. When we refer to a host address, we assume the fully-qualified
domain name that includes any sub, primary, and top level domains, and
when we refer to a web API base address, we assume the left part of the
URL including the path. There further exists, compared to the URL, the
more general concept of a Uniform Resource Identifier (URI), which can
describe entities beyond web resources. A URI can identify a particular
physical or virtual resource that is unique in its kind, e.g., an international

14Android security & privacy report for 2018, https://source.android.com/

security/reports/Google_Android_Security_2018_Report_Final.pdf, accessed on
28-FEB-2022

15Statista: percentage of mobile device website traffic worldwide, https:

//www.statista.com/statistics/277125/share-of-website-traffic-coming-from-

mobile-devices, accessed on 21-MAR-2022

17

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices

2.2. Web Communication

phone number or a book identifier such as the International Standard Book
Number (ISBN).

2.2.2 Hypertext Transport Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is a client-server request-re-
sponse protocol that was invented in the 1980s by Tim Berners-Lee16 and
has initially been planned as a general purpose “application-level protocol
for distributed, collaborative, hypermedia information systems” [32], but
it is best-known for its delivery of content to web browsers. In fact, web
browsers commonly access websites through URLs that use the HTTP or
HTTPS scheme. HTTP and its successor HTTP/2 provide facilities to
encapsulate user data, e.g., HTML, JSON, XML, or SOAP, and use plain-
text messages to instruct the receiver on how to treat the transmitted
data. HTTP Secure (HTTPS) is an extension of HTTP and thus follows
the same principles, except that the messages are encrypted. As shown
in Listing 1, requests and responses mostly follow the same structure,
but there exist minor differences: the request always specifies the HTTP
method (line one), e.g., GET, POST, PUT, DELETE, and the requested fully
qualified resource path, i.e., lines one and two. On the contrary, the server
response includes an HTTP status code (line eleven) to indicate whether
the request was successful, but not any resource path.

1 GET /v2/networks/nextbike-leipzig HTTP/1.1

2 Host: api.citybik.es

3 User-Agent: Mozilla/5.0 (Windows NT 10.0)

4 Accept: text/html,application/xhtml+xml

5 Accept-Language: en-US,en;q=0.5

6 Accept-Encoding: gzip, deflate

7 Connection: keep-alive

8 Upgrade-Insecure-Requests: 1

9 Cache-Control: max-age=0

10

11 HTTP/1.1 200 OK

12 Content-Type: application/json

13 Content-Length: 5613

14 Server: nginx/1.15.9 (Ubuntu)

15 Date: Mon, 14 Oct 2019 09:44:16 GMT

16 Access-Control-Allow-Origin: *

17 X-RateLimit-Limit-minute: 180

18 X-RateLimit-Remaining-minute: 179

19 X-Kong-Upstream-Latency: 61

20 X-Kong-Proxy-Latency: 1

21 Via: kong/1.2.1

Listing 1: Typical request and response communication flow between a client and a server

16Request For Comments (RFC) of the HTTP 1.0, https://datatracker.ietf.org/
doc/html/rfc1945, accessed on 28-FEB-2022

18

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc1945

2.2. Web Communication

HTTP Header Fields

In HTTP communication, header fields are used to set up the connec-
tion between the server and the client, e.g., by specifying the used data
encoding (line six) and content caching option (line nine), and to pro-
vide additional information, e.g., the used infrastructure (lines three and
fourteen) or the originating date of the response (line fifteen). Besides
non-standard fields, there exist for the sake of interoperability 48 differ-
ent header fields in the HTTP/1.1 specification; each header field consists
of a key-value pair in textual form. For example, the header field key
Content-Type (line twelve) declares the content type of the message body,
e.g., the value text/plain is used for plain text, text/html for websites,
or application/json for JSON web API responses [32].

Security-related Header Fields

Header fields can pose a threat, e.g., leak software version information,
or they can mitigate a threat, e.g., code execution, click-jacking, and
data leak. Version information leaks are typically caused by Server,
X-Powered-By, X-AspNet-Version, and X-Powered-By-Plesk header fiel-
ds. These headers are widely used in web communications, and the risk is
that if adversaries know the software version, they can research that soft-
ware and find publicly disclosed vulnerabilities in old software versions to
plan attacks on web servers accordingly. Conversely, header fields such as
X-Content-Type-Options, X-XSS-Protection, or Content-Security-Po-
licy can mitigate code execution attacks. Code execution attacks re-
quire two steps: the arbitrary injection of malicious code into an app,
and its execution to steal sensitive data or to manipulate a rendered web-
site. Moreover, X-Frame-Options mitigates potential click-jacking attacks
that can be performed, e.g., when several iframes are shown simulta-
neously, but one creates a view that overlays the others. This attack
confuses users to accidentally click on clickable elements such as buttons
and hyperlinks. Another important security-related header field is HTTP
Strict-Transport-Security (HSTS), which ensures that clients access
a certain URL only through secure HTTPS communication channels, thus
mitigating potential man-in-the-middle attacks. However, to benefit from
such protection the first page visit must not be tampered with unless the
desired domain is already included in the pre-loaded list of domains that
support HSTS, which instructs the HTTP client to use HTTPS without
any prior communication over the insecure HTTP.

2.2.3 Web APIs

A web API can refer to a client side implementation, e.g., in a web browser,
or a server side implementation, e.g., a web service that generates dynamic

19

2.3. Security Smell

responses in a machine-readable format. In this thesis, we exclusively focus
on server side web APIs.

Server side web APIs commonly follow the REpresentational State
Transfer (REST) architectural pattern, which is based on HTTP. In the-
ory, a “RESTful service” is a well-documented stateless dynamic web
server that can respond to requests with properly encoded JSON or XML
data. However, some implementations are not well documented, return
malformed responses, or do not scale well, because they are stateful, i.e.,
they maintain connection information throughout the entire session, e.g.,
a successful log-in. To access such a service, it is mandatory to know the
web API base address, which is a URL, e.g., https://api.weather.com
to access an imagined weather service web API. The current weather at
a particular location could then be requested by attaching an additional
query parameter to the base URL, e.g., place=Paris. The resulting URL
string https://api.weather.com?place=Paris would then lead to a re-
sponse like {"condition":"clear sky","tempCelsius":25} that is re-
turned using HTTP. Usually, such services require either a unique query
key-value pair that grants the requester specific usage rights, or require
credentials attached to the HTTP request header. The information on
how to use a given service can be found in the API documentation that
should be made publicly available by the API operators.

2.3 Security Smell

In this thesis we do not particularly distinguish between a security code
smell and a security smell, although their meaning is slightly different:
We consider the security code smell a symptom in the code that signals
the prospect of a security vulnerability, and more generally, we consider
a security smell a symptom in the resources of an application that signals
the prospect of a security vulnerability.

20

Chapter 3

State of the Art

In this chapter we discuss related work to our security analyses, which
is relevant for this thesis. In particular, we present related work for our
investigations on Android security, Android inter-component communica-
tion (ICC) security, and Android web security.

Declaration of Content Reuse

The content of this chapter contains elements from sections that
correspond to paper submissions, i.e., Security Code Smells in An-
droid (chapter 4), Security Code Smells in Android ICC (chap-
ter 5), Security Smells in Web APIs (chapter 6), Security Smells
in Mobile App URLs (chapter 7), and Security Smells in HTTP
Headers (chapter 8).

3.1 Android Security

Code analysis is important for assessing the security of Android apps, and
one of these four strategies is usually pursued: i) a manual code analysis
where researchers use a workflow that involves manual work requiring spe-
cialized knowledge, ii) a static code analysis where researchers use a tool
to extract features from source code, iii) a dynamic code analysis where
researchers use a tool to extract features during the execution of an app,
or finally, iv) a hybrid code analysis where researchers employ both static
and dynamic code analysis techniques.

Linares-Vasquez et al. mine 660 Android vulnerabilities available in the
official Android bulletins and their CVE details,1 and present a taxonomy
of the types of vulnerabilities [57]. They report on the presence of those

1Common Vulnerabilities and Exposures (CVE), a public list of known cyber-
security vulnerabilities, https://cve.mitre.org, accessed on 28-FEB-2022

21

https://cve.mitre.org

3.2. Android ICC Security

vulnerabilities affecting the Android OS, and acknowledge that most of
them can be avoided by relying on secure coding practices. Li et al. stud-
ied the state of the art work that statically analyses Android apps [55].
They found that much of this work supports detection of private data
leaks and vulnerabilities, a moderate amount of research is dedicated to
permission checking, and only three studies deal with cryptography issues.
Unfortunately, much state of the art work does not publicly share the con-
cerned artifacts. Reaves et al. studied Android-specific challenges to pro-
gram analysis, and assessed existing Android application analysis tools.
They found that these tools mainly suffer from lack of maintenance, and
are often unable to produce functional output for applications with known
vulnerabilities [81]. Finally, Sadeghi et al. review 300 research papers
related to Android security, and provide a taxonomy to classify and char-
acterize the state of the art research in this area [84]. They find that 26%
of existing research is dedicated to vulnerability detection, but each study
is usually concerned with specific types of security vulnerabilities. Our
work expands on such studies to provide practitioners with an overview of
the security issues that are inherent in insecure programming choices.

Some research is devoted to educating developers in secure program-
ming. Xie et al. interviewed fifteen professional developers about their
software security knowledge, and realized that many of them have rea-
sonable knowledge but do not apply it as they believe it is not their re-
sponsibility [110]. Weir et al. conducted open-ended interviews with a
dozen app security experts, and determined that app developers should
learn analysis, communication, dialectics, feedback, and upgrading in the
context of security [102]. Witschey et al. surveyed developers about their
reasons for adopting or not adopting security tools [106]. Interestingly,
they found the perceived prestige of security tool users and the frequency
of interaction with security experts to be important for promoting security
tool adoption. Acar et al. suggest a high-level research agenda to achieve
usable security for developers. They propose several research questions to
elicit developers’ attitudes, needs and priorities in the area of security [65].

Our work is complementary to these studies in the sense that we pro-
vide an initial assessment of developers’ security knowledge, and we high-
light the significant role of developers in making apps more secure.

3.2 Android ICC Security

Numerous researchers have dedicated their work to detecting common ICC
vulnerabilities. Despite the fact that ICC has changed over time, for ex-
ample, with the availability of new APIs such as the path-permission fea-
ture, the vulnerability classes have remained largely the same. Chin et al.
discuss the ICC implementation of Android and examine closely the inter-
action between sent and received ICC messages [16]. Despite the fact that
their work is based on a small corpus containing only twenty apps, they

22

3.2. Android ICC Security

were able to detect various denial-of-service issues in numerous application
components, and conclude that the message-passing system in Android en-
ables rich applications, and encourages component reuse, while leaving a
large potential for misuse when developers do not take any precautions.

Felt et al. discovered that permission re-delegation, also known as con-
fused deputy or privilege escalation attack, is a common threat, and they
pose OS level mitigations conceptually similar to the same origin policy in
web browsers [30]. The community aimed on the one hand for preciseness,
as countless tools to detect these flaws in ICC have been released, notably
Epicc [67] and IccTA [54] with a significantly improved precision. On the
other hand, the app coverage began to play a major role, as in the work
of Bosu et al. who recently discovered with their tool inadequate security
measures, including privilege escalation vulnerabilities, among inter-app
data-flows from 110 000 real-world apps [12].

Along with static analysis that does not require any execution of code,
new kinds of attacks and run time countermeasures have emerged in the
scientific community. Garcia et al. crafted a state of the art tool to auto-
matically detect and exploit vulnerable ICC interfaces to provoke denial-
of-service attacks amongst others [38]. They identified exploits for more
than 21% of all apps appraised as vulnerable. Xie et al. presented a
bytecode patching framework that incorporates additional self-contained
permission checks avoiding privilege issues during runtime, generating a
remarkably low computational overhead [111]. Ren et al. successfully in-
vestigated design glitches in the multitasking implementation of Android,
uncovering task hijacking attacks that affected every OS release and were
potentially duping user perception [82]. They considered in particular the
taskAffinity and taskParentReparenting attributes of the manifest file
that allow views to be dynamically overlaid on other apps, and provided
proof-of-concept attacks. Wang et al. assessed the threat of data leak-
age on Apple iOS and Android mobile platforms and show serious attacks
facilitated by the lack of origin-based protection on ICC channels [98].
Interestingly, they found effective attacks against apps from such major
publishers as Facebook and Dropbox, and more importantly, indicate the
existence of cross-platform ICC threats.

Researchers have found interest in reinforcing the Android ICC core
framework. Khadiranaikar et al. propose a certificate-based intent sys-
tem relying on key stores that guarantee integrity during message ex-
changes [49]. In addition to securing the ICC-based communication, Shek-
har et al. proposed a separation of concerns to reduce the susceptibility for
manipulation of Android apps, by explicitly restricting advertising frame-
works [87]. Ahmad et al. elaborated on problematic ICC design decisions
on Android, and found that missing consistent message types and confor-
mance checking, unpredictable message interactions, and a lack of coherent
versioning could break inter-app communication and pose a severe risk [3].
They recommend a centralized message-type repository that immediately

23

3.3. Android Web Security

provides feedback to developers through the IDE.
In summary, existing studies have often dealt with a specific issue,

whereas the work presented in this thesis is aimed at covering a broader
range of issues, making the results more actionable for practitioners. For
example, we investigate multiple different ICC APIs in chapter 5. More-
over, previous work often overwhelms developers with reports that contain
many identified issues at once, whereas the work presented in this thesis
aims to provide feedback during app development where developers have
the relevant context. One result is the presented code linting tool in chap-
ter 5, which offers immediate feedback while a developer writes code. Such
feedback makes it easier to react to issues, and helps developers to learn
from their mistakes [97].

3.3 Android Web Security

Related work to this field primarily pertains to app analyses that have
been summarized by data transmissions with a particular interest in web
communication and the used URLs, public service audits that improve the
app server security, and the HTTP header support of popular websites.

3.3.1 APIs

Zhou et al. harvested free email and Amazon AWS cloud service creden-
tials with their tool CredMiner from more than 36 500 apps from various
Android markets [119]. In their case studies, they mention unprotected
credentials within the app’s source code, obfuscated credentials using a
Base64 encoding, and encrypted credentials, however, in those cases the
decryption key has also been found in the app’s source code. They alarm-
ingly found that more than every second app using such a service leaked
the developers’ credentials in the apps’ source code. Making matters worse,
more than 77% of those collected credentials were valid at the time of the
experiment. Such credentials will present a massive threat in the mid-term
future, as many of those credentials cannot be easily replaced without tem-
porarily abating the experience of millions of users, but in the meantime
they can be easily exploited by attackers.

Rapoport et al. studied web requests in Android apps [78]. They
demonstrated that a large number of web requests are not immediately
traceable to source code and need dynamic analysis. For instance, URLs
may originate in app resources, e.g., XML files or Gradle build scripts,
they may stem from the content received from previous web requests, or
they might be assembled by JavaScript code at run time. In contrast, a
significant proportion of URLs are only detected by static analysis: the
dynamic analysis may simply fail to produce desired results due to a lack
of code coverage during instrumentation.

24

3.3. Android Web Security

Mendoza et al. studied the inconsistencies in input validation logic
between apps and their respective web API services [61]. They developed
a tool to extract requests to web API services from an app, and to infer
sample input values that violate the implemented constraints found in the
app, such as email address or JSON content validation executed on the
client side. They then analyzed app-violating request logic on the server
side via black box testing. From a set of 10 000 popular Android apps,
they found 4 000 apps that do not properly implement input validation
for web API services. Investigation of web API hijacking vulnerabilities
in 1 000 apps showed that the security and privacy of millions of users are
at risk.

In summary, unlike our investigation in chapter 6, existing work usually
focused on the use of java.net APIs, and did not study several third-party
libraries to implement network communication in Android apps. Finally,
to the best of our knowledge, dissecting the distribution of elements that
comprise the web APIs, and the use of embedded languages, is never stud-
ied.

3.3.2 URLs in Apps

Web communication in apps is usually initiated by the client, i.e., the
app that sends a request to a specific server. Therefore, apps can reveal
interesting features used to establish such a connection. For example,
Zuo et al. analyzed 5 000 top-ranked apps in Google Play and identified
297 780 URLs that they fed to the VirusTotal URL screening service [120].
The service identified 8 634 harmful URLs of which the majority were
related to malware (43%), followed by malicious sites (37%), and phishing
(23%). For the malware category, one interesting example they mention
is an APK file download triggered by an app, which itself tries to obtain
superuser access to the device by exploiting Linux kernel vulnerabilities.
Mendoza et al. investigated the input validation constraints imposed by
apps on outgoing requests to web API services from 10 000 popular free
apps from the Google Play Store of which 46% suffered from inconsistencies
that could be exploited by attackers [61]. Such inconsistencies allowed
them to access app-related databases through various injection attacks,
e.g., they could misuse an app’s email address field for an SQL injection
attack, because its value did not receive additional server side validation.

Contrary to our analyses in chapter 6 and chapter 7, a comprehensive
investigation of the URLs used in mobile apps has not yet been performed,
i.e., existing work primarily focuses on a particular security aspect and
proposes a novel strategy to mitigate the potential threat, but it lacks a
more general view on web communication security, which limits the scope
of the proposed remediation strategies.

25

3.3. Android Web Security

3.3.3 App Servers

App server security focuses on server side problems, configuration, or im-
plementation. Zuo et al. found that 15 098 app servers are subject to
data leakage attacks [121]. In particular, they suffer either from a broken
key management, i.e., the developers became confused about root and
app keys, or from a broken permission configuration, i.e., developers were
overwhelmed when they had to choose appropriate permissions for their
data. They assume that this is a direct consequence of the utterly com-
plex interfaces to configure such services designed for developers. That is,
Google even provides a language for developers to specify the desired user
permissions. Moreover, Mendoza et al. found discrepancies between the
use of such features in the mobile and desktop version of websites that en-
able various injection and spoofing attacks, although the affected websites
remain in the realm of a few percent [60].

In chapter 7 we will advance existing research by performing an empir-
ical study on the prevalence of security smells in app server configurations
and we will assess the maintenance activity of app servers.

3.3.4 HTTP Headers

HTTP headers offer various security features and are widely used in tra-
ditional web communication. Lavrenovs et al. assessed HTTP security
header fields in the top one million websites including those accessed by
mobile apps and found that less popular websites tend not to implement
security-related features for their users [52]. Notably, they found that
nearly 38% of the top one thousand sites reported by Amazon Alexa im-
plement HSTS, while it is the case for only 17.5% of the top one million
HTTPS websites. This finding shows that large websites are twice as likely
to implement an up-to-date, effective security feature as less popular web-
sites. Buchanan et al. performed the same experiment and generally draw
very similar conclusions, except that, according to them, Let’s Encrypt
SSL certificates are more than eight times more prevalent in minor sites
compared to major sites, because the top sites apparently have the money
to buy their own certificates and do not rely on free services [14].

Fahl et al. investigated the use of insecure HTTP configurations in
Android apps [24] and found that almost every tenth app is potentially
vulnerable to a man-in-the-middle attack. They could capture credentials
from various credit cards, social media accounts, web blogs, etc.

Adopting new header fields seems to be an appropriate approach to
address HTTP issues without breaking existing implementations. Two
well-known instances are the cross-site scripting protection proposed by
Stamm et al. [90] and the protection against downgrading HTTPS con-
nections, which arose from the work of Marlinspike [59]. Both new header
fields, i.e., Content-Security-Policy and Strict-Transport-Security,

26

3.4. Conclusion

have become standardized, and they are now supported in major web
browsers.

HTTP header fields used in web communication are well documented
and received much interest in the scientific community, however their sup-
port in mobile app HTTP clients has not yet been comprehensively stud-
ied. We perform an in-depth study on HTTP header support in popular
HTTP clients used by Android apps in chapter 8.

3.4 Conclusion

We can confirm many results of existing work, however the reported vul-
nerabilities are usually incomplete in one or more aspects: they lack a
thorough discussion about symptoms, mitigation strategies, consequences,
prevalence, or the required tools. Consequently, security engineers face
difficulties to obtain all the required information to fully understand and
mitigate potential threats.

Moreover, existing work focuses at a particular domain and does not
consider a holistic view on the ecosystem. Therefore, such work cannot
leverage synergies of security measures across different domains to propose
effective holistic security strategies.

These two major limitations lead to the various open challenges we ad-
dress in the five subsequent chapters in which we will investigate security
smells in different domains, i.e., Android, Android ICC, web communica-
tion of mobile apps, app servers, and finally, HTTP clients used in mobile
apps. The remaining four chapters will then discuss the threats which
arise from security smells and effective holistic countermeasures, before
we reach the conclusion.

The open challenges are:

• Chapter 4: Security Smells in Android
[Challenge 1] The establishment of a notion to describe potential
vulnerabilities. [Challenge 2] The compilation of a comprehensive
list of Android security smells that have been reported in the liter-
ature. [Challenge 3] The large-scale study regarding the prevalence
of security smells in mobile apps.

• Chapter 5: Security Smells in Android ICC
[Challenge 4] The compilation of a comprehensive list of ICC security
smells that have been reported in the literature. [Challenge 5] The
implementation of IDE tool support for the reported ICC security
smells. [Challenge 6] The large-scale study of the prevalence of ICC
security smells in mobile apps.

• Chapter 6: Security Smells in the Web Communication of
Mobile Apps
[Challenge 7] The implementation of a tool to extract data relevant

27

3.4. Conclusion

for the web communication of mobile apps. [Challenge 8] The large-
scale study of web communication characteristics of mobile apps.
[Challenge 9] The compilation of a comprehensive list of web com-
munication security smells that have been reported in the literature.

• Chapter 7: Security Smells in Mobile App Servers
[Challenge 10] The large-scale study of the prevalence of the server-
side security smells in the web communication of mobile apps. [Chal-
lenge 11] The investigation of the relationship between security smells
and app server maintenance.

• Chapter 8: Security Smells in Mobile App HTTP Clients
[Challenge 12] The investigation of security-related HTTP header
support in existing HTTP clients.

• Chapter 9: Effective Holistic Security for Mobile Apps
[Challenge 13] The review of reported security smells with respect to
how they enable attack mechanisms. [Challenge 14] The identifica-
tion of holistic security strategies that can effectively prevent attack
mechanisms.

• Chapter 10: Default Values and Practices to Improve Ap-
plication Security
[Challenge 15] The discussion of default values and practices that
could greatly improve application security.

• Chapter 11: A String-based Framework to Improve Appli-
cation Security
[Challenge 16] The implementation of a String-based framework to
improve application security. [Challenge 17] The investigation of
the restrictions when using such a framework with existing code.
[Challenge 18] The investigation whether such a framework can offer
protection against data leaks and remote code execution, and what
security risks could arise when using it.

28

Chapter 4

Security Code Smells in Android

Declaration of Content Reuse

The content of this chapter is based on the full paper Security
Code Smells in Android that has been accepted for the 17th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM) in 2017 [39].

Smartphones and tablets have recently overtaken the number of com-
puters. They provide powerful features once offered only by computers,
but the risk of vulnerability on these devices is not on a par with traditional
desktop programs; smartphones are increasingly used for security sensitive
services like e-commerce, e-banking, and personal healthcare, which make
these multi-purpose devices an irresistible target of attack for criminals.

The recent survey on the Stack Overflow website shows that about 65%
of mobile developers work with Android.1 This platform has captured over
80% of the smartphone market,2 and just its official app store contains
more than 2.8 million apps. As a result, a security mistake in an in-house
app may jeopardize the security and privacy of millions of users. In this
chapter, we use the term “security” to refer to both security and privacy.

The security of smartphones has been studied from various perspec-
tives such as the device manufacturer [108], its platform [113], and end
users [47]. Manifold security APIs, protocols, guidelines, and tools have
been proposed. Nevertheless, security concerns, in effect, are outweighed
by other concerns [9]. Many developers undermine their significant role
in providing security [110]. As a result, apps still suffer from serious pro-

1Stack Overflow: Developer Survey Results in 2017, https://insights.

stackoverflow.com/survey/2017, accessed on 28-FEB-2022
2Website of Gartner, a technological research and consulting agency, https://www.

gartner.com, accessed on 28-FEB-2022

29

https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://www.gartner.com
https://www.gartner.com

liferating security issues.3 For instance, the analysis of 100 popular apps
downloaded at least 10M times, revealed that over 90% of them, due to
development mistakes, are prone to SSL vulnerabilities that allow crimi-
nals to access credit card numbers, chat messages, contact list, files, and
credentials [69].

Given these premises, the primary goal of this chapter is to shed light
on the root causes of programming choices that compromise users’ security.
In contrast to previous research that has often dealt with a specific issue,
we study this phenomenon from a broad perspective. We have identified
avoidable vulnerabilities and their corresponding smells in the code, and
we discuss how they could be eliminated or mitigated during development.
We have also developed a lightweight static analysis tool to look for several
of the identified security smells in 46 000 apps. In particular, we answer
the following three research questions:

• RQ1: What are the security code smells in Android apps? We have
reviewed major related work, especially those appearing in top-tier
conferences or journals, and identified 28 avoidable vulnerabilities
and the smells that indicate their presence. We thoroughly discuss
each smell, the risk associated with it, and its mitigation during app
development.

• RQ2: How prevalent are security smells in benign apps? We have
developed a lightweight tool that statically analyzes apps for the
existence of ten security smells. We applied the tool to a repository
of about 46 000 apps hosted by Google. We realized that despite the
diversity of apps in popularity, size, and release date, the majority
suffer from at least three different security smells.

• RQ3: To which extent does identifying security smells facilitate de-
tecting vulnerabilities? We manually inspected 160 apps, and com-
pared our findings to the result of the tool. Our investigation showed
that the identified smells are in fact a good indicator of security vul-
nerabilities.

To summarise, this chapter represents an initial effort to spread aware-
ness about the impact of programming choices in making secure apps.
We argue that this helps developers who develop security mechanisms to
identify frequent problems, and also provides developers inexperienced in
security with caveats about the prospect of security issues in their code.

The remainder of this chapter is structured as follows. We present the
identified vulnerabilities and corresponding security smells in section 4.1.
We study the prevalence of these smells and discuss the results in sec-
tion 4.2. We conclude this chapter in section 4.3.

3CVE Details: the ultimate security vulnerability data source, https://www.

cvedetails.com, accessed on 28-FEB-2022

30

https://www.cvedetails.com
https://www.cvedetails.com

4.1. Security Smells

4.1 Security Smells

Although Android security is a fairly new field, it is very active, so re-
searchers in this area have published a large number of articles in the past
few years. We were essentially interested in any paper explaining an is-
sue, or a countermeasure that involves the security of apps in Android. We
used a keyword search over the title and abstract of papers in IEEE Xplore
and ACM Digital Library, as well as those indexed by the Google Scholar
search engine. We formulated a search query comprising Android and any
other security-related keywords such as security, privacy, vulnerability, at-
tack, exploit, breach, leak, threat, risk, compromise, malicious, adversary,
defence, or protect. We read the title and, if necessary, skimmed the ab-
stract of each paper and included security-related ones. We further read
the introduction of these papers and excluded those whose concerns were
not about app security. In order to extend the search, for each included pa-
per we also recursively looked at both citations and cited papers. Finally,
we carefully reviewed all remaining papers. During the whole process, we
resolved any disagreement by discussion.

We identified 28 smells that may lead to vulnerabilities in Android-
powered devices, i.e., we consider a vulnerability a security issue that
compromises user’s security and privacy. We group these smells into five
categories. We explain each smell, its consequence, i.e., potential risk, and
its symptom, i.e., an identifiable property in the code. We also mention
any possible resolution, i.e., a more secure practice to eliminate or mitigate
the issue during app development.

4.1.1 Insufficient Attack Protection

• Unreliable Information Source
Developers acquire their programming knowledge from various sour-
ces such as official documentation, books, crowd sources, etc. Issue:
According to recent research, developers increasingly resort to study-
ing code examples provided by informal sources like Stack Overflow,
which are easy to access and integrate, but often lack security con-
cerns [1]. Consequently, vulnerabilities could make their way into
apps in the absence of security expertise. Symptom: Existence of
copy-pasted code from untrustworthy sources. Mitigation: Use of-
ficial sources, which are more reliable, and vet the security of any
external code before and after integration in your code.

• Untrustworthy Library
Developers cope with the complexity of modern software systems and
speed up the development process by relying on the functionalities
provided by off the shelf libraries. Issue: Many third-party libraries
are unsafe by design, i.e., they introduce vulnerabilities and com-
promise user data [101]. Consequently, the ramification of adopting

31

4.1. Security Smells

such libraries could be manifold. Symptom: The app utilises unsafe
libraries such as advertising libraries that are known to be prone to
data leakage [21]. Mitigation: Solely use reliable libraries [8].

• Outdated Library
The risk of using third-party libraries is not resolved by only using
trusted libraries per se. Issue: Libraries usually offer various bug
fixes and improvements in newer releases, but often different devel-
opers maintain libraries and apps, and their update cycles generally
do not coincide [100]. Consequently, a security breach in an old li-
brary or a deprecated API could lead to serious issues. Symptom:
An included library is behind the latest release, or the app exercises
a deprecated API that is not maintained anymore (e.g., the SHA1

cryptographic hash function). Mitigation: Integrate the latest re-
lease of a library into your app and replace deprecated APIs with
their newer counterparts. Publish an update not only when the app
itself has some improvements but also when there is a new version
of a library, which the app uses.

• Native Code
Developers often incorporate native code in their apps to perform
intensive computations or to use many third-party libraries, which
exist in this form. Issue: Native code is hard to analyze; there is
only little distinction between code and data at the native level, and
attackers can load and execute code from native executables, in a
variety of ways much easier than in Java. Consequently, native code
is susceptible to severe vulnerabilities like buffer overflow, and an
attacker could exploit such vulnerabilities, for instance, to execute
malicious code [99]. Symptom: Existence of native code or a native
code library in the app. Mitigation: Use native code only when
necessary, and only integrate trustworthy libraries [8] into your code.

• Open to Piggybacking
Android apps are often easy to repackage. Issue: Adversaries could
add their malicious code to a benign app before repackaging it [53].
Consequently, depending on the original app’s popularity, users can
be infected when installing a seemingly benign app that has evaded
the analyses of leading app markets [15]. Symptom: No technique,
e.g., watermarking or signature checking is applied to hardening
repackaging. Mitigation: Leverage obfuscation to make retro-engine-
ering of apps harder. Also, verify the app’s authenticity before any
sensitive operation.

• Unnecessary Permission
The use of protected features on Android devices requires explicit
permissions, and developers occasionally ask for more permissions

32

4.1. Security Smells

than necessary [94]. Issue: The more permission-protected features
an app can access, the more sensitive data it can reach. Conse-
quently, a more permission-hungry app may expose users to addi-
tional security risks [95]. Symptom: The manifest file contains per-
missions for APIs that are not used. Mitigation: Utilize tools like
PScout4 to exclude from the manifest file any permission whose cor-
responding API calls are absent in the app.

4.1.2 Security Invalidation

• Weak Crypto Algorithm
The fundamental set of cryptographic algorithms can be categorized
into symmetric, asymmetric, and hash functions. Issue: Each cat-
egory includes several algorithms, each of which may have various
features and attack resilience. Consequently, incautious adoption of
an algorithm could subject to security issues. Symptom: The use of
weak cryptographic hash functions like SHA1 or MD5, insecure modes,
e.g., ECB for block ciphers. Mitigation: Consult the state of the art
guidelines to choose an appropriate cryptography, and utilize expert
systems [7].

• Weak Crypto Configuration
The majority of security breaches come from exploiting developers’
mistakes. Issue: Cryptography APIs are widely perceived as being
complex with many confusing options [63]. Consequently, a strong
but poorly configured algorithm could jeopardise the in-place secu-
rity. Symptom: Each algorithm has different parameters, and cryp-
tographic parameters in each library could have different defaults.
PBE (password-based encryption) with fewer than 1 000 iterations,
short keys and salts, or inappropriate random seeds and initialisa-
tion vectors are common mistakes. Mitigation: Use libraries that
provide strong documentation and working code examples, and rely
on simplified APIs with secure defaults [2].

• Unpinned Certificate
Digital certificates are needed to ensure secure communication. Un-
pinned certificates are easy to maintain and are frequently used in
the appified world [68]. Issue: Ensuring the authenticity of a cer-
tificate is non-trivial, if it is not pinned. Consequently, an app may
inadvertently end up trusting a certificate issued by an adversary
who has intercepted network communication. Symptom: The app
uses unpinned certificates. Mitigation: Pinning certificates are al-
ways recommended to increase the security. Since Android 6.0 pin-

4PScout: analyzing the Android permission specification, https://pscout.csl.

toronto.edu, accessed on 28-FEB-2022

33

https://pscout.csl.toronto.edu
https://pscout.csl.toronto.edu

4.1. Security Smells

ning can be enabled using the Network Security Configuration

feature.

• Improper Certificate Validation
Android provides a built-in process for validating the certificates
signed by the trusted Certificate Authorities (CA). Issue: In other
cases, e.g., when a certificate is self-signed, the OS devolves this val-
idation process to the app itself. However, developers often fail to
implement it properly [24]. Consequently, this leaves the communica-
tion channel over SSL/TLS insecure and susceptible to man-in-the-
middle attacks [18]. Symptom: The presence of a X509TrustManager

or a HostNameVerifier that does not perform any validity check.
The TrustManager may only use checkValidity to assess the ex-
piration of a certificate without any further check, e.g., verifying
the certificate’s signature or asking the user consent to trust a self-
signed certificate. Overridden onReceiveSslError in WebView that
ignores any certification errors. Mitigation: Ensure the certificate
chain is valid, i.e., the root certificate of the chain is issued by a
trusted authority, none of the certificates in the chain are expired,
and each certificate in the chain is signed by its immediate successor
in the chain. Moreover, the certificate should match its designated
destination, i.e., the “Common Name” field or the “Subject Alterna-
tive Name” in the certificate should match the domain name of the
server being connected to. Finally, utilize network security testing
tools like “Nogotofail”5 to examine your communication.

• Unacknowledged Distribution
Google Play, Google’s official marketplace for Android, strives to
identify potential security enhancements when an app is uploaded
to it. However, developers may distribute their packages via other
channels to circumvent out of order updates, bypassing the slow re-
lease cycles and security restrictions of this market place. Issue: The
protection provided by Google, including code and signature checks,
is neglected. Consequently, the risk of distributing a vulnerable app
increases especially when the app utilizes uncertified libraries, or in
a worse case, an attacker can replace installation packages with ma-
licious ones [118]. Symptom: The android.permission.INSTALL -

PACKAGES permission exists in the manifest. Mitigation: Distribute
your apps and updates exclusively through official app stores that
perform security checks.

5GitHub project website: nogotofail, https://github.com/google/nogotofail, ac-
cessed on 28-FEB-2022

34

https://github.com/google/nogotofail

4.1. Security Smells

4.1.3 Broken Access Control

• Unauthorised Intent Receipt
An intent is an abstract specification of an operation that apps can
use to utilize the actions provided by other apps. An explicit intent
guarantees communication with the specified recipient, but it is the
Android system that determines the recipient(s) of an implicit intent
among available apps. Issue: Any app that declares itself able to
serve the requested operation is potentially eligible to fulfill the in-
tent. Consequently, if such an app is malicious, a threat called intent
hijacking could arise in which user information carried by the intent
could be manipulated or leaked [16]. Symptom: The existence of an
intent with private data, but without a particular component name,
i.e., the fully-qualified class name. Mitigation: Only use explicit
intents for sending sensitive data. In addition, always validate the
results returned from other components to ensure they comply with
your expectation.

• Unconstrained Inter-Component Communication
One app can reuse components, e.g., activities, services, content
providers, and broadcast receivers of other apps, provided those apps
permit it. Issue: Android apps are independently restricted in ac-
cessing resources. Consequently, a threat called component hijacking
arises when a malicious app escalates its privilege for originally pro-
hibited operations through other apps that can perform those op-
erations [107, 20]. Symptom: The existence of the intent-filter

element or android:exported = true attribute in the manifest file
without any permission check to ensure that a client app is origi-
nally permitted to receive that service. Mitigation: Exclusively ex-
port components that are meant to be accessed from other apps and
avoid placing any critical state changing actions within such compo-
nents. Enforce custom permissions with the android:permission

attribute to prohibit access from apps with lower privileges. Finally,
use tools like IccTA, which detects flaws in inter-component commu-
nication [54].

• Unprotected Unix Domain Socket
Android IPCs do not support cross-layer IPC, i.e., communication
between an app’s Java and native processes or threads. To circum-
vent this limitation developers resort to using Unix domain sockets.
Moreover, developers may reuse Linux code that already utilizes such
sockets. Issue: Developers are barely guided to protect Unix domain
sockets with appropriate authentication. Consequently, adversaries
are capable of abusing these exposed IPC channels to exploit vulner-
abilities within privileged system daemons and the kernel [86]. Symp-
tom: The server socket channel accepts clients without performing

35

4.1. Security Smells

any authentication or similarly a client connects to a server with-
out properly authenticating the server. Mitigation: Enforce proper
security checks when using the sockets.

• Exposed Adb-level Capability
Android debug bridge (Adb) is a versatile tool that provides com-
munication with a connected Android device. Many developers opt
for Adb-level capabilities to legitimately access a subset of signature-
level resources [56]. Issue: For this purpose, an app communicates
locally with an Adb-level proxy through the TCP sockets opened on
the same device, which exposes the Adb server to any app with the
INTERNET permission. Consequently, a malign app with ordinary
permissions can command the Adb and establish serious attacks [44].
Symptom: The existence of Adb-specific commands or TCP connec-
tion to local host in the code. Mitigation: Avoid using Adb-level
capabilities in your app, as it is also prohibited since Android 6.0.

• Debuggable Release
During app development there exist two major build configurations,
i.e., debug and release. The first is meant for active development,
while the latter is for signed in-market releases. However, developers
may forget to switch to release mode before publishing an app [112].
Issue: Apps shipped with debugging enabled always try to connect
to a local Unix socket opened by the Android debug bridge (Adb).
While Adb is not running on every consumer device, a malign app
could disguise itself as an Adb service and connect to random de-
buggable apps. Consequently, a malicious app is able to gain full
access to the Java process and can execute arbitrary code in the
context of the debuggable app.6 Symptom: The manifest file con-
tains the attribute android:debuggable = true. Mitigation: The
debug mode should be disabled in the signed release version, i.e.,
either the debuggable attribute should not exist in the manifest file,
or its value should be false. More recent build environments already
perform this task automatically.

• Custom Scheme Channel
Scheme channels, also known as protocol prefixes, like fblite://

for Facebook allow seamless interactions between web and Android
apps. Issue: The sender of a scheme message is not able to ver-
ify the recipient of the message so that malign apps could register
themselves as a receiver of another app’s unified resource identi-
fier (URI) scheme. Consequently, adversaries could collect access

6F-Secure labs: debuggable apps in Android market, https://labs.

mwrinfosecurity.com/blog/debuggable-apps-in-android-market, accessed on
28-FEB-2022

36

https://labs.mwrinfosecurity.com/blog/debuggable-apps-in-android-market
https://labs.mwrinfosecurity.com/blog/debuggable-apps-in-android-market

4.1. Security Smells

tokens or other sensitive information [98]. Symptom: The registra-
tion of a URI scheme within the intent-filter of the manifest file.
The SchemeRegistry.register method is in the code. Mitigation:
Adopt the dedicated system scheme, i.e., Intent, which is harder to
compromise.

4.1.4 Sensitive Data Exposure

• Header Attachment
The header section of data transport protocols like HTTP comprises
key-value pairs to store operational parameters. Issue: Develop-
ers may rely on headers to transfer sensitive data, e.g., they store
credentials to auto-login into a service. Consequently, any adver-
sary eavesdropping on the network may easily access the attached
data [98]. Symptom: Calls like HttpGet.addHeader() are present
in the code to store private data. Mitigation: Do not store sensitive
data in headers, but instead use dedicated mechanisms like OAuth2
protocol7 that rely on tokens to authenticate to third-party services.

• Unique Hardware Identifier
Each device often has a couple of globally unique identifiers such as
the IMEI number, MAC address, etc. Issue: For various purposes
like user profiling, apps utilize these IDs, which are tied to each de-
vice [50, 109]. Consequently, anyone in the possession of such IDs
would be able to track the user’s activities across various sources.
Symptom: Method calls that return IDs from associated classes like
TelephonyManager or BluetoothAdapter exist in the code. Mitiga-
tion: Use the UUID.randomUUID() API to ensure that the retrieved
ID is globally unique for each app installation.

• Exposed Clipboard
Users usually rely on a clipboard to copy and paste data across apps.
Issue: The clipboard content is readable and writable by all apps.
Consequently, a malign app could perform versatile attacks on the
clipboard content from URL hijacking to data exfiltration and code
injection [116]. Symptom: The related calls on ClipboardManager

exist in the code. The app uses the common TextView and EditText

controls, which allow copy and paste to handle sensitive data [64].
Mitigation: Never allow sensitive data to be copied and pasted in
your app. Perform input validation before exercising any input from
the clipboard.

• Exposed Persistent Data
Android provides various storage options to store persistent data.

7OAuth 2.0: the industry-standard protocol for authorization, https://oauth.net/
2, accessed on 28-FEB-2022

37

https://oauth.net/2
https://oauth.net/2

4.1. Security Smells

These options vary depending on the size, type, and accessibility of
data.8 Issue: Developers may opt for a particular option without
considering its security implication. Consequently, they expose pri-
vate data. Symptom: The existence of a private storage with global
access scope, i.e., MODE WORLD READABLE or MODE WORLD WRITEABLE

in the app [45]. The app relies on ContentProvider to access data,
but there is no access restriction for other apps. Mitigation: Specify
permissions to protect who can access your shared data. Encrypt any
internally or especially externally stored sensitive data, and place the
encryption key in KeyStore, protected with a user password that is
not stored on the device.

• Insecure Network Protocol
Data transportation channels exist in various flavours, and insecure
ones like HTTP are more prevalent and easy to maintain. Issue:
Insecure channels transfer data without encryption per se. Conse-
quently, an attacker can secretly relay the data and possibly alter
it [69]. Symptom: APIs related to opening insecure network connec-
tions like http or ftp exist in the code. Mitigation: All app traffic
should happen over a secure channel. Otherwise, any sensitive data
should be encrypted before it is sent out. Android 6.0 or above
provides the cleartextTrafficPermitted property, which protects
apps from any usage of cleartext traffic.

• Exposed Credential
Passwords, private keys, secret keys, certificates, and other similar
credentials are commonly used for authentication, communication,
or data encryption. Issue: In some circumstances such data is inad-
vertently disclosed to unauthorised parties. Consequently, this could
break the intended security. Symptom: The app contains hard-coded
credentials, or they are stored without any password protection such
as when the KeyStore.ProtectionParameter is null [62]. Mitiga-
tion: Store such data in a KeyStore in a protected format, which
restricts unauthorised accesses.

• Data Residue
According to recent research, about 80% of abandoned apps are likely
to be uninstalled in less than a week [58]. Issue: After an app is unin-
stalled, various types of data associated to the app, ranging from its
permissions, operation history, configuration choices, and so on may
still remain in a few system services [117]. Consequently, such so-
called “data residue” can be associated to another app and empower
adversaries to access sensitive information [115, 117]. Symptom: The

8Android documentation: data and file storage overview, https://developer.

android.com/guide/topics/data/data-storage.html, accessed on 28-FEB-2022

38

https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/data/data-storage.html

4.1. Security Smells

app calls system services that are known to be subject to the data
residue problem. Mitigation: Unfortunately, an app may not always
be aware of its data being stored in system services, and the mere
mitigation is to avoid sharing private data with these services, if
possible.

4.1.5 Lax Input Validation

• XSS-like Code Injection
WebView is an essential component that enables developers to use
web technologies such as HTML and JavaScript to deliver web con-
tent within an app. Unlike Web browsers such as Chrome, Fire-
fox, etc. that are developed by well-recognized companies that we
trust, each app using a WebView is like a customized browser, which
may not have undergone thorough security tests. Issue: An app
may load web content unsafely, i.e., without sanitising the input
from any code. Consequently, an adversary could inject malicious
code through any channel that the app uses to get web content [46].
Symptom: The setJavaScriptEnabled call with value true that en-
ables execution of JavaScript exists in the code, and the app fetches
web content from untrustworthy sources, e.g., by calling loadUrl or
loadData on WebView without applying proper sanity checks. Mit-
igation: Invoke the default browser to display untrusted data. Use
a HTML sanitizer to filter out any code inside the data, and show
plain text only using safe APIs that are immune to code injection,
i.e., do not execute JavaScript code. Beware of third-party libraries
that employ WebView. Disable JavaScript if you do not need it.

• Broken WebView’s Sandbox
There is a sandbox inside WebView that separates its JavaScript
from the rest of the system. Issue: WebView provides an API, i.e.,
the addJavascriptInterface through which an app can access Java
APIs, and therefore mobile resources from within JavaScript code in-
side the sandbox. Consequently, if the app renders the web content
unsafely, a code injection attack is possible [46]. Symptom: In addi-
tion to the symptoms of the previous issue, the addJavascriptInter-
face call exists in the code. Mitigation: Take into account the sug-
gestions of the previous issue, and as well use the @JavascriptInter-
face annotation to specify any method that is exposed by JavaScript
to prevent reflection-based attacks.

• Dynamic Code Loading
Android allows apps to load and execute external code and resources.
Issue: Although dynamic code loading is widely adopted, develop-
ers are often unaware of the risks associated to this generally unsafe
mechanism or fail to implement it securely [72]. An attacker can

39

4.2. Empirical Study

replace the code that is to be loaded with a malicious one. Conse-
quently, this can lead to severe vulnerabilities such as remote code
injection [25]. Symptom: Use of any class loader in the code. In case
of loading the code and resources of another installed app, a call
to createPackageContext() on the Context object exists in the
code. Mitigation: Either bundle the required resources within each
app package, or verify the integrity and authenticity of the loaded
code, e.g., by imposing restrictions on its location or provenance [96].
Analyze your app with the help of tools like Grab ’n Run [25].

• SQL Injection
Data-driven apps organize their data through a database. Issue: An
app might directly use inputs to build a query that will be run by
the database engine. Consequently, an adversary who succeeds at
inserting malicious code into SQL statements, can access or modify
database data [23]. Symptom: Inputs from untrustworthy sources
are passed to the database without proper validation. Mitigation:
Instead of dynamic SQL code generation, rely on parameterized
queries and stored procedures, which let the database distinguish
between code and data. Validate inputs and filter suspicious values,
e.g., escape characters to ensure they do not end up in the query.

4.2 Empirical Study

We developed a lightweight analysis tool that statically detects known
security smells in an app. We rely on the Apktool to reverse engineer
Android APK files and generate Smali code, which is a human readable
representation of byte code.9 We defined a set of rules to capture the
symptoms of each security smell. In particular, we utilize the Java XML
Parser for parsing the manifest files and use regular expressions to define
and match the code pattern corresponding to the identified symptoms of
each smell in the code. Since some smells require additional context, we
could only assess ten of the 28 reported security smells with our lightweight
analysis tool.

We randomly selected our apps from the AndroZoo dataset.10 This
dataset currently provides more than 5.5M apps collected from several
sources. We initially collected a random subset of 70 000 apps whose
sources are in Google Play. However, to collect more metadata such as an
app’s category, its number of downloads, update cycle, and star rating we
still needed to visit the Google Play website. Unfortunately, we could not
access 25 000 apps for various reasons, for example, because they were no

9Apktool: a tool for reverse engineering Android APK files, https://ibotpeaches.
github.io/Apktool, accessed on 28-FEB-2022

10AndroZoo: a growing collection of Android apps, https://androzoo.uni.lu, ac-
cessed on 28-FEB-2022

40

https://ibotpeaches.github.io/Apktool
https://ibotpeaches.github.io/Apktool
https://androzoo.uni.lu

4.2. Empirical Study

1 %

10 % 11 % 12 %

33 %
36 %

41 %
44 %

61 %

85 %

0

5’000

10’000

15’000

20’000

25’000

30’000

35’000

40’000

45’000

Debuggable
Release

Exposed
Clipboard

Header
Attachment

Insecure
Network
Protocol

Broken
WebView's

Sandbox

Improper
Certificate
Validation

Unique
Hardware
Identifier

Custom
Scheme
Channel

Dynamic
Code

Loading

XSS-like
Code

Injection

of

 s
ec

ur
ti

y
sm

el
l o

cc
ur

re
nc

es

Figure 4.1: Distribution of security smells in the apps

longer available on the store, or they were not accessible from Switzerland.
In the end, we included 46 000 benign apps in our dataset. About 90% of
these apps were released between 2014 and 2016, a quarter of them were
updated within three months, the majority were rated more than four
stars, slightly more than 27% were downloaded above 50 000 times, and
the median APK size was 5.5MB. The corresponding dataset is publicly
available on Figshare.11

4.2.1 Result

We applied our lightweight tool to all apps in the dataset. Figure 4.1 shows
how prevalent the smells are in our dataset, where the y-axis describes
the number of security smell occurrences. A majority of apps potentially
suffer from XSS-like code injection (85%) followed by dynamic code loading
(61%). About 44% use custom scheme channels and expose a unique
hardware identifier. More than 12% use an insecure network protocol,
and almost 10% are subject to header attachment as well as clipboard
issues. Finally, just under 1% of the apps have debug mode enabled.

We also studied how many of security smells usually appear in the
apps. The results are shown in Figure 4.2, where the x-axis describes the
number of different security smells an app suffers, i.e., zero to eight smells,
and the y-axis describes the number of apps. Only 9% of apps are free of

11Figshare: replication package security code smells in Android, https://figshare.
com/s/4f3b4bbc161d600b9ffb, accessed on 30-MAR-2022

41

https://figshare.com/s/4f3b4bbc161d600b9ffb
https://figshare.com/s/4f3b4bbc161d600b9ffb

4.2. Empirical Study

9 % 10 %

22 %

16 %

13 %

11 % 11 %

6 %

2 %

0

2,000

4,000

6,000

8,000

10,000

12,000

0 1 2 3 4 5 6 7 8

of

 a
pp

s

of security smells in an app

Figure 4.2: Partitioning apps by number of security smells

any smell, a majority, i.e., above 50% suffer from at least three different
smells, and over a quarter are subject to more than four smells, which is
catastrophic.

We also investigated the prevalence of security smells at different API
levels, i.e., different releases of the Android OS apps are optimized for, as
the proportion of devices running different API versions varies. Figure 4.3
shows the distribution of smells within each API level, i.e., the x-axis de-
notes the different Android API levels that an app can target, and the
y-axis shows the relative distribution of the different smells for a partic-
ular Android API level. We noticed that the prevalence of Debuggable
Release has been dramatically reduced. We believe this is mainly due to
the fact that the Google Play store no longer accepts apps in debug mode.
We conjecture this issue should have decreased also in other app markets
without this constraint as recent build platforms automatically disable the
debug mode in the signed release version of an app. In contrast, there is
an increase in the existence of the Exposed Clipboard security smell. This
could stem from the many sharing options for social media in the apps.
Similarly, the issue of Dynamic Code Loading has become more common.
We observed that many developers adopt this feature to implement their
own update mechanisms.

Figure 4.4 shows how many of these classes of smells appear within
each API level, i.e., the x-axis denotes the different Android API levels,
and the y-axis shows the number of security smell classes an app suffers on
average. The crosses represent the mean value of the number of different

42

4.2. Empirical Study

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21

Android API level

Broken WebView's Sandbox

XSS-like Code Injection

Dynamic Code Loading

Improper Certificate Validation

Insecure Network Protocol

Exposed Clipboard

Unique Hardware Identifier

Header Attachment

Custom Scheme Channel

Debuggable Release

Figure 4.3: The distribution of security smells within each API level

security smell classes apps are suffering from each category, and, as we hid
any outliers to increase readability, these values can exceed the first quar-
tiles. All box plots in this chapter use the same configuration. There is a
correlation between feature availability and feature usage, and apparently
these uses have introduced more insecurity. It seems the peak of issues
was reached around API level 15 at which an app suffers on average the
most from security smells.

In the remainder of this subsection we discuss our findings from a few
more perspectives.

Category

Figure 4.5 shows the number of different security smells appearing in the
apps in each category, i.e., the x-axis denotes the different Android Play
store app categories, and the y-axis shows the number of security smell
categories an app suffers on average. The apps in the Libraries and Demo
category are the most secure ones as they usually rely on local content. We
noted that security smells are prevalent in gaming apps, and that Casino
and Role Playing games are more problematic. Finally, Dating as well
Food and Drink apps suffer from the highest number of security smells.

Popularity

Figure 4.6 shows the relationship between the number of downloads and
the security smells, i.e., the x-axis denotes the number of app downloads

43

4.2. Empirical Study

Figure 4.4: Average number of smells within an app targeting a particular API level

Figure 4.5: Distribution of smells in app categories

44

4.2. Empirical Study

Figure 4.6: The relationship between number of smells and number of downloads

from the Google Play store, and the y-axis shows the number of security
smells an app suffers on average. The majority of apps with millions of
downloads suffer from five kinds of smells. Although about 73% of apps
within our dataset were downloaded less than 50 000 times, there were
still enough apps with more downloads to conclude that the number of
downloads never guarantees security.

Figure 4.7 shows the relationship between the number of security smells
and star ratings, i.e., the x-axis denotes the Google Play store star rating of
an app, and the y-axis shows the number of security smells an app suffers
on average. Despite the number of stars, apps often suffer from three
kinds of security smells. In particular, the star rating correlates negatively
with the presence of security smells. We assume that the studied security
smells are barely noticeable by end users, hence they are not reflected in
the ratings.

Release date

We further studied whether the prevalence of security smells changes over
time. In fact, with advances in developers’ support, e.g., tools, learning
resources, we expected that security smells in more recent apps should be
rarer than in older apps. Nonetheless, the result showed that neither the
number of smells nor the likelihood of a particular smell relates to the
release date of an app. Moreover, we noted that in general the security
of apps with short update cycles is similar to those with longer update

45

4.2. Empirical Study

Figure 4.7: The relationship between number of smells and app star ratings

cycles. That is, either security issues in one release still remain in future
releases, or they get fixed but new releases also introduce new smells.

App Size

We were interested to know whether the existence of security smells is ever
related to the size of an app. Our investigation showed that an app may
suffer from various kinds of security smells, despite its size. In fact, an
increase in app size may only increase the frequency of a security smell. It
is also worth mentioning that some apps are larger not because of having
more code but other resources such as image, video and audio content.

4.2.2 Manual Analysis

To assess how reliable these findings are to detect security vulnerabilities,
we manually analyzed 160 apps. For each smell, we inspected 20 random
apps manually and compared our findings to the result of the lightweight
analysis tool. As is shown in Figure 4.8, the results were encouraging.
The manual analysis completely agreed with the tool in the security risk
associated with six security smells. In case of exposed clipboard the tool
achieved a very good performance, i.e., above 90% agreement with the
manual analysis. The level of agreement in insecure network protocol
and improper certificate validation was 80%. We realized some apps use
http connections to exclusively load local contents, which is legitimate in
development frameworks like Apache Cordova or Adobe PhoneGap. And

46

4.2. Empirical Study

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Header Attachment Improper Certificate

Validation

Insecure Network Protocol Exposed Clipboard Others

Figure 4.8: The precision of obtained results

some apps implemented their own custom TrustManager, which in fact
was secure. Finally, our tool was unable to correctly detect the security
risk associated with header attachment in 40% of cases, which is mainly
due to the fact that discerning data sensitivity is non-trivial.

4.2.3 Threats to Validity

We note several limitations and threats to validity of the results pertinent
to our research. One important threat is the completeness of this study,
i.e., whether we could identify and study all related papers in the litera-
ture. We could not review all the publications, but we strived to explore
top-tier software engineering and security journals and conferences as well
as highly cited work in the field. For each relevant paper we also recur-
sively looked at both citations and cited papers. Moreover, to ensure that
we did not miss any important paper, for each identified issue we further
constructed more specific queries and looked for any new paper on Google
Scholar.

We analyzed the existence of security smells in the source code of an
app, whereas third-party libraries could also introduce smells.

We were only interested in studying benign apps as in malicious ones
developers may not spend any effort to accommodate security. Thus, we
merely collected apps, which were available on the official Google mar-
ket. However, our dataset may still have malicious apps that evaded the
security checks of the market.

47

4.3. Conclusion

Finally, the fact that the results of our lightweight analysis tool are
validated against manual analysis performed by the authors is a threat to
construct validity through potential bias in experimenter expectancy.

4.3 Conclusion

In contrast to all advances in software security, software systems are suffer-
ing from increasing security and privacy issues. Security in Android, the
dominant mobile platform, is even more crucial as these devices often con-
tain manifold sensitive data, and a security issue in a small home-brewed
app can threaten the security of billions of users.

We reviewed state of the art papers in security and identified 28 smells
whose presence may indicate a security issue in an app. We developed a
static analysis tool to study the prevalence of ten of such smells in 46 000
apps. We realized that despite the diversity of apps in popularity, size,
and release date, the majority suffer from at least three different secu-
rity smells. Moreover, the manual inspection of 160 apps showed that the
identified security smells are actually a good indicator of security vulner-
abilities. Consequently, we promote the adoption of secure programming
practices to fundamentally reduce the attack surface in Android.

48

Chapter 5

Security Code Smells in Android ICC

Declaration of Content Reuse

The content of this chapter is based on the journal extension sub-
mission Security Code Smells in Android ICC that has been ac-
cepted for the journal of Empirical Software Engineering (EMSE)
in 2019 [34], which extends the previous chapter to better compre-
hend the aspect of inter-component communication.

In the previous chapter, we identified 28 security code smells, i.e.,
symptoms in the code that signal potential security vulnerabilities. We
studied the prevalence of ten such smells, and realized that despite the
diversity of apps in popularity, size, and release date, the majority suffer
from at least three different security smells, and such smells are in fact
good indicators of actual security vulnerabilities.

To promote the adoption of secure programming practices, we build on
our previous work, and identify security smells related to Android Inter-
Component Communication (ICC). Android ICC is complex, largely un-
constrained, and hard for developers to understand, and it is consequently
a common source of security vulnerabilities in Android apps.

We have reviewed state of the art papers in security and existing
benchmarks for Android vulnerabilities, and identified twelve security code
smells pertinent to ICC vulnerabilities. In this chapter, we present these
vulnerabilities and their corresponding smells in the code, and discuss how
they could be eliminated or mitigated during development. We present a
lightweight static analysis tool on top of Android Lint that analyzes the
code under development, and provides just-in-time feedback within the
IDE about the presence of such security smells in the code. Moreover,
with the help of this tool we study the prevalence of security code smells
in more than 700 open-source apps, and discuss the extent to which iden-

49

tifying these smells can uncover actual ICC security vulnerabilities. We
address the following three research questions:

• RQ1: What are the known ICC security code smells? We have re-
viewed related work, especially that appearing in top-tier conferences
and journals, and identified twelve avoidable ICC vulnerabilities and
the code smells that indicate their presence. We discuss each smell,
the risk associated with it, and its mitigation during app develop-
ment.

• RQ2: How prevalent are the smells in benign apps? We have de-
veloped a tool that statically analyzes apps for the existence of ICC
security smells, and we applied it to a repository of 732 apps, mostly
available on GitHub. We discovered that almost all apps suffer from
at least one category of ICC security smell, but fewer than 10%
suffer from more than two categories of such smells. Interestingly,
only small teams appear to be capable of consistently building soft-
ware resistant to most security code smells. Furthermore, long-lived
projects have more issues than recently created ones, and updates
rarely have any impact on ICC security.

• RQ3: To which extent does identifying security smells facilitate de-
tection of security vulnerabilities? We inspected the identified smells
in 100 apps, and verified whether they correspond to any security
vulnerabilities. Our investigation showed that about half of the iden-
tified smells are in fact good indicators of security vulnerabilities.

To summarize, this work represents an effort to spread awareness about
the impact of programming choices in making apps secure, and to funda-
mentally reduce the attack surface of ICC APIs in Android. We argue
that this helps developers who develop security mechanisms to identify
frequent problems, and also provides developers inexperienced in security
with caveats about the prospect of security issues in their code. Existing
analysis tool reports often overwhelm developers with too many identified
issues at once. In contrast we provide feedback during app development
where developers have the relevant context. Such feedback makes it easier
to react to issues, and helps developers to learn from their mistakes [97].
This chapter goes beyond our earlier work in chapter 4 by (i) providing
a completely new study on ICC vulnerabilities, one of the most prevalent
Android security issues, and identifying the corresponding security smells,
(ii) providing more precise, while still lightweight, static analysis tool sup-
port to identify such smells, (iii) integrating our analysis into Android Lint,
thus providing just-in-time feedback to developers, (iv) experimentation
on a new dataset of open-source Android apps, and (v) open-sourcing the
Lint checks as well as the analyzed data. We further collaborate with
Google to officially integrate these checks into Android Studio.

50

5.1. ICC Security Code Smells

The remainder of this chapter is organized as follows. We introduce
ICC-related security code smells in section 5.1, followed by our empirical
study in section 5.2. We conclude the chapter in section 5.3.

5.1 ICC Security Code Smells

In this section we present the guidelines we followed to derive the security
code smells from previous research. Finally, we explain each security smell
in detail.

5.1.1 Literature Review

Although Android security is a fairly new field, it is very active, and
researchers in this area have published a large number of articles in the
past few years. In order to answer the first research question (RQ1), and to
draw a comprehensive picture of recent ICC smells and their corresponding
vulnerabilities, our study builds on two pillars, i.e., a literature review and
a benchmark inspection.

We were essentially interested in any paper that matches our scope,
i.e., explaining an ICC-related issue, and any countermeasures that in-
volve ICC communication in Android. Therefore, we considered for our
analysis multiple online repositories, such as IEEE Xplore and the ACM
Digital Library, as well as the Google Scholar search engine. In each
repository we formulated a search query comprising Android, ICC, IPC
and any other security-related keywords such as security, privacy, vulner-
ability, attack, exploit, breach, leak, threat, risk, compromise, malicious,
adversary, defence, or protect. In addition to increase our potential cover-
age on Android security, we also collected all related publications in recent
editions of well-known software engineering venues like the International
Conference on Software Engineering (ICSE). This search led initially to
358 publications.

In order to retrieve only relevant information that lies within our scope,
i.e., Android application level ICC security, we first read the title and
abstract, and if the paper was relevant we continued reading other parts.

This process led to the inclusion of 47 papers in our study. We re-
cursively checked both citations and cited papers until no new related
papers were found. This added six new relevant papers in our list that
in the end contained 53 relevant papers for an in-depth study, out a total
of 430 papers. During the entire process, which was undertaken by two
authors of this paper, we resolved any disagreement by discussions. The
list of included papers in this study is available on the GitHub page of the
project.1

1GitHub project website: AndroidLintSecurityChecks, https://github.com/

pgadient/AndroidLintSecurityChecks, accessed on 28-FEB-2022

51

https://github.com/pgadient/AndroidLintSecurityChecks
https://github.com/pgadient/AndroidLintSecurityChecks

5.1. ICC Security Code Smells

We further studied the well-known DroidBench2 and Ghera3 bench-
marks for our evaluation, both built with a focus on ICC. We relied on
their technical implementation, or description where possible, to extract
the desired information, i.e., issues under test, symptoms, and vulner-
abilities. The inspection of these two benchmarks served two different
purposes: on the one hand we wanted to ensure there are no smells that
we might have missed to include in our list. On the other hand, we wanted
to rely on some ground truth, while explaining and examining the vulner-
ability capabilities of the smells.

5.1.2 List of Smells

We have identified twelve ICC security code smells that are listed in Ta-
ble 5.1. For each smell we report the security issue at stake, the potential
security consequences for users, the symptom in the code, i.e., the code
smell, the detection strategy that has been implemented by our tool for
identifying the code smell, any limitations of the detection strategy, and
a recommended mitigation strategy of the issue, principally for develop-
ers. One of these ICC-related smells, namely Custom Scheme Channel,
has been mentioned in subsection 4.1.3, however in this chapter we focus
particularly on the aspect of ICC.

ID Security code smells ID Security code smells
SM01 Persisted Dynamic Permission SM07 Broken Service Permission
SM02 Custom Scheme Channel SM08 Insecure Path Permission
SM03 Incorrect Protection Level SM09 Broken Path Permission Precedence
SM04 Unauthorized Intent SM10 Unprotected Broadcast Receiver
SM05 Sticky Broadcast SM11 Implicit Pending Intent
SM06 Slack WebViewClient SM12 Common Task Affinity

Table 5.1: The identified ICC security code smells

We mined this information from numerous publications and bench-
mark suites, but only few of these resources provided detailed information
about a given security issue. Therefore, we put in a great manual effort
to provide a comprehensive description for each smell, while consulting
other resources such as the official Android documentation and external
experts. For instance, authors who focused on vulnerability detection
generally neglected the aspect of mitigation. This is very problematic,
since it is very common for ICC-related issues to share strong similarities
with only subtle differences, e.g., regular directed inter-app communication

2GitHub project website: DroidBench, https://github.com/secure-software-

engineering/DroidBench, accessed on 28-FEB-2022
3Bitbucket project website: android-app-vulnerability-benchmarks, https://

bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks, accessed on
28-FEB-2022

52

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

5.1. ICC Security Code Smells

and broadcasts both rely on intents. Furthermore, manifold vulnerability
terms that are used in the literature insufficiently reflect the symptoms as
they do not name the involved component, e.g., “Confused Deputy” in-
stead of “Unauthorized Intent.” Better naming conventions would greatly
ease the understanding of security vulnerabilities.

• SM01: Persisted Dynamic Permission. Android provides ac-
cess to protected resources through a Uniform Resource Identifier
(URI) to be granted at run time.
Issue: Such dynamic access is intended to be temporary, but if the
developer forgets to revoke a permission, the access grant becomes
more durable than intended.
Consequently, the recipient of the granted access obtains long-term
access to potentially sensitive data [26].
Symptom: Context.grantUriPermission() is present in the code
without a corresponding Context.revokeUriPermission() call.
Detection: We report the smell when we detect a permission being
dynamically granted without any revocations in the app.
Limitation: Our implementation does not match a specific grant
permission to its corresponding revocation. We may therefore fail
to detect a missing revocation if another revocation is present some-
where in the code.
Mitigation: Developers have to ensure that granted permissions are
revoked when they are no longer needed. They can also attach sen-
sitive data to the intent instead of providing its URI.

• SM02: Custom Scheme Channel. A custom scheme allows a
developer to register an app for custom URIs, e.g., URIs beginning
with myapp://, throughout the operating system once the app is in-
stalled. For example, the app could register an activity to respond to
the URI via an intent filter in the manifest. Therefore, users can ac-
cess the associated activity by opening specific hyperlinks in a wide
set of apps.
Issue: Any app is potentially able to register and handle any custom
schemes used by other apps [58].
Consequently, malicious apps could access URIs containing access
tokens or credentials, without any prospect for the caller to identify
these leaks [98].
Symptom: If an app provides custom schemes, then a scheme han-
dler exists in the manifest file or in the Android code. If the app calls
a custom scheme, there exists an intent containing a URI referring
to a custom scheme.
Detection: The android:scheme attribute exists in the intent-fil-
ter node of the manifest file, or IntentFilter.addDataScheme()

exists in the source code.
Limitation: We only check the symptoms related to receiving cus-

53

5.1. ICC Security Code Smells

tom schemes.
Mitigation: Never send sensitive data, e.g., access tokens via such
URIs. Instead of custom schemes, use system schemes that offer re-
strictions on the intended recipients. The Android OS could main-
tain a verified list of apps and the schemes that are matched when
there is such a call.

• SM03: Incorrect Protection Level. Android apps must request
permission to access sensitive resources. In addition, custom permis-
sions may be introduced by developers to limit the scope of access
to specific features that they provide based on the protection level
given to other apps. Depending on the feature, the system might
grant the permission automatically without notifying the user, i.e.,
signature level, or after the user approval during the app installation,
i.e., normal level, or may prompt the user to approve the permission
at run time, if the protection is at a dangerous level.
Issue: An app declaring a new permission may neglect the selection
of the right protection level, i.e., a level whose protection is appro-
priate with respect to the sensitivity of resources.
Consequently, apps with inappropriate permissions can still use a
protected feature [62].
Symptom: Custom permissions are missing the right android:pro-
tectionLevel attribute in the manifest file.
Detection: We report missing protection level declarations for cus-
tom permissions.
Limitation: We cannot determine if the level specified for a protec-
tion level is in fact right.
Mitigation: Developers should protect sensitive features with dan-
gerous or signature protection levels.

• SM04: Unauthorized Intent. Intents are popular as one way
requests, e.g., sending a mail, or requests with return values, e.g.,
when requesting an image file from a photo library. Intent receivers
can demand custom permissions that clients have to obtain before
they are allowed to communicate. These intents and receivers are
“protected.”
Issue: Any app can send an unprotected intent without having the
appropriate permission, or it can register itself to receive unprotected
intents.
Consequently, apps could escalate their privileges by sending unpro-
tected intents to privileged targets, e.g., apps that provide elevated
features such as camera access. Also, malicious apps registered to
receive implicit unprotected intents may relay intents while leaking
or manipulating their data [16].
Symptom: The existence of an unprotected implicit intent. For in-
tents requesting a return value, the lack of check for whether the

54

5.1. ICC Security Code Smells

sender has appropriate permissions to initiate an intent.
Detection: The existence of several methods on the Context class
for initiating an unprotected implicit intent like startActivity,
sendBroadcast, sendOrderedBroadcast, sendBroadcastAsUser, and
sendOrderedBroadcastAsUser.
Limitation: We do not verify, for a given intent requesting a return
value, if the sender enforces permission checks for the requested ac-
tion.
Mitigation: Use explicit intents to send sensitive data. When serving
an intent, validate the input data from other components to ensure
they are legitimate. Adding custom permissions to implicit intents
may raise the level of protection by involving the user in the process.

• SM05: Sticky Broadcast. A normal broadcast reaches the re-
ceivers it is intended for, then terminates. However, a “sticky”
broadcast stays around so that it can immediately notify other apps
if they need the same information.
Issue: Any app can watch a broadcast, and particularly a sticky
broadcast receiver can tamper with the broadcast.
Consequently, a manipulated broadcast may mislead future recipi-
ents [62].
Symptom: Broadcast calls that send a sticky broadcast appear in
the code, and the related Android system permission exists in the
manifest file.
Detection: We check for the existence of methods such as send-

StickyBroadcast, sendStickyBroadcastAsUser, sendStickyOrder-
edBroadcast, sendStickyOrderedBroadcastAsUser, removeSticky-
Broadcast, and removeStickyBroadcastAsUser on the Context

object in the code and the android.permission.BROADCAST STICKY

permission in the manifest file.
Limitation: We are not aware of any limitations.
Mitigation: Prohibit sticky broadcasts. Use a non-sticky broadcast
to report that something has changed. Use another mechanism, e.g.,
an explicit intent, for apps to retrieve the current value whenever de-
sired.

• SM06: Slack WebViewClient. A WebView is a component to
facilitate web browsing within Android apps. By default, a WebView

will ask the activity manager to choose the proper handler for the
URL. If a WebViewClient is provided to the WebView, the host ap-
plication handles the URL.
Issue: The default implementation of a WebViewClient does not re-
strict access to any web page.
Consequently, it can be pointed to a malicious website that entails
diverse attacks like phishing, cross-site scripting, etc. [62].
Symptom: The WebView responsible for URL handling does not per-

55

5.1. ICC Security Code Smells

form adequate input validation.
Detection: The WebView.setWebViewClient() exists in the code
but the WebViewClient instance does not apply any access restric-
tions in WebView.shouldOverrideUrlLoading(), i.e., it returns fal-
se or calls WebView.loadUrl() right away. Also, we report a smell
if the implementation of WebView.shouldInterceptRequest() re-
turns null.
Limitation: It is inherently difficult to evaluate the quality of an
existing input validation.
Mitigation: Use a white list of trusted websites for validation, and
benefit from external services, e.g., SafetyNet API,4 that provide
information about the threat level of a website.

• SM07: Broken Service Permission. Two different mechanisms
exist to start a service: onBind and onStartCommand. Only the lat-
ter allows services to run indefinitely in the background, even when
the client disconnects. An app that uses Android IPC to start a
service may possess different permissions than the service provider
itself.
Issue: When the callee is in possession of the required permissions,
the caller will also get access to the service.
Consequently, a privilege escalation could occur [62].
Symptom: The lack of appropriate permission checks to ensure that
the caller has access right to the service.
Detection: We report the smell when the caller uses startService,
and then the callee uses checkCallingOrSelfPermission, enforce-
CallingOrSelfPermission, checkCallingOrSelfUriPermission, or
enforceCallingOrSelfUriPermission to verify the permissions of
the request. Calls on the Context object for permission check will
then fail as the system mistakenly considers the callee’s permission
instead of the caller’s. Furthermore, reported are calls to check-

Permission, checkUriPermission, enforcePermission, or enfor-
ceUriPermission methods on the Context object, when additional
calls to getCallingPid or getCallingUid on the Binder object ex-
ist.
Limitation: We currently do not distinguish between checks ex-
ecuted in Service.onBind or Service.onStartCommand, and we
do not verify custom permission checks based on the user id with
getCallingUid.
Mitigation: Verify the caller’s permissions every time before per-
forming a privileged operation on its behalf using Context.check-

CallingPermission() or Context.checkCallingUriPermission()
checks. If possible, do not implement Service.onStartCommand in

4Android documentation: SafetyNet safe browsing API, https://developer.

android.com/training/safetynet/safebrowsing.html, accessed on 28-FEB-2022

56

https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/safebrowsing.html

5.1. ICC Security Code Smells

order to prevent clients from starting, instead of binding to, a ser-
vice. Ensure that appropriate permissions to access the service have
been set in the manifest.

• SM08: Insecure Path Permission. Apps can access data pro-
vided by a content provider using path specifications of the form
/a/b/c. A content provider may restrict access to certain data un-
der a given path by specifying so called path permissions. For exam-
ple, it may specify that other apps cannot access data located under
/data/secret. The Android framework prohibits access to unautho-
rized apps only if the requested path strictly matches the protected
path. For instance, //data/secret is different from /data/secret,
and therefore the framework will not block access to it.
Issue: Developers often use the UriMatcher for URI comparison
in the query method of a content provider to access data, but this
matcher, unlike the Android framework, evaluates paths with two
slashes as being equal to paths with one slash.
Consequently, access to presumably protected resources may be gran-
ted to unauthorized apps [62].
Symptom: A UriMatcher.match() is used for URI validation.
Detection: We look for path-permission attributes in the manifest
file, and UriMatcher.match() methods in the code.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in the Android framework, use
your own URI matcher.

• SM09: Broken Path Permission Precedence. In a content
provider, more fine-grained path permissions, for example, on /data/

secret take precedence over those with a larger scope, e.g., on
/data.
Issue: A path permission never takes precedence over a permis-
sion on the whole content provider due to a bug that exists in the
ContentProvider.enforceReadPermissionInner() method. For
example, if a content provider has a permission for general use, as
well as a path permission to protect /data/secret from untrusted
apps, then the general use permission takes precedence.
Consequently, content providers may mistakenly grant untrusted apps
access to presumably protected paths [62].
Symptom: A content provider is protected by path-specific permis-
sions.
Detection: We look for a path-permission in the definition of a
content provider in the manifest file.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in Android, instead of path per-
missions use a distinct content provider with a dedicated permission
for each path.

57

5.1. ICC Security Code Smells

• SM10: Unprotected Broadcast Receiver. Static broadcast re-
ceivers are registered in the manifest file, and start even if an app is
not currently running. Dynamic broadcast receivers are registered
at run time in Android code, and execute only if the app is running.
Issue: Any app can register itself to receive a broadcast, which ex-
poses the app to any other app able to initiate the broadcast.
Consequently, if there is no permission check, the receiver may re-
spond to a spoofed intent yielding unintended behavior or data
leaks [62].
Symptom: The Context.registerReceiver() call without any ar-
gument for permission exists in the code
Detection: We report cases where the permission argument is miss-
ing or is null.
Limitation: We are not aware of the permissions’ appropriateness.
Mitigation: Register broadcast receivers with sound permissions.

• SM11: Implicit Pending Intent. A PendingIntent is an intent
that executes the specified action of an app in the future and on
behalf of the app, i.e., with the identity and permissions of the app
that sends the intent, regardless of whether the app is running or
not.
Issue: Any app can intercept an implicit pending intent and use the
pending intent’s send method to submit arbitrary intents on behalf
of the initial sender.
Consequently, a malicious app can tamper with the intent’s data
and perform custom actions with the permissions of the originator.
Relaying of pending intents could be used for intent spoofing at-
tacks [62].
Symptom: The initiation of an implicit PendingIntent in the code.
Detection: We report a smell if methods such as getActivity, get-
Broadcast, getService, and getForegroundService on the Pen-

dingIntent object are called, without specifying the target compo-
nent.
Limitation: Arrays of pending intents are not yet supported in our
analysis.
Mitigation: Use explicit pending intents, as recommended by the
official documentation.5

• SM12: Common Task Affinity. A task is a collection of activ-
ities that users interact with when carrying out a certain job.6 A
task affinity, defined in the manifest file, can be set to an individual

5Android documentation: PendingIntent class, https://developer.android.com/

reference/android/app/PendingIntent.html, accessed on 28-FEB-2022
6Android documentation: Tasks and the back stack, https://developer.android.

com/guide/components/activities/tasks-and-back-stack.html, accessed on 28-
FEB-2022

58

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

5.2. Empirical Study

activity or at the application level.
Issue: Apps with identical task affinities can overlap each others’ ac-
tivities, e.g., to fade in a voice record button on top of the phone call
activity. The default value does not protect the application against
hijacking of UI components.
Consequently, malicious apps may hijack an app’s activity paving
the way for various kinds of spoofing attacks [82].
Symptom: The task affinity is not empty.
Detection: We report a smell if the value of a task affinity is not
empty.
Limitation: We are not aware of any limitation.
Mitigation: If a task affinity remains unused, it should always be set
to an empty string on the application level. Otherwise set the task
affinity only for specific activities that are safe to share with others.
We suggest that Android set the default value for a task affinity to
empty. It may also add the possibility of setting a permission for a
task affinity.

In summary, each security smell introduces a different set of vulner-
abilities. We established a close relationship between the smells and the
security risks with the purpose of providing accessible and actionable in-
formation to developers, as shown in Table 5.2.

Vulnerabilities Security code smells
Denial of Service SM01, SM02, SM03, SM04, SM06, SM07, SM10, SM12
Intent Spoofing SM02, SM03, SM04, SM05, SM07, SM08, SM09, SM10, SM11
Intent Hijacking SM02, SM03, SM04, SM05, SM10, SM11

Table 5.2: The relationship between vulnerabilities and security code smells

5.2 Empirical Study

In this section we first present the Lint-based tool with which we detect
security code smells, and introduce a dataset of more than 700 open-source
Android projects that are mostly hosted on GitHub. We then present the
results of our investigation into RQ2 and RQ3 by analyzing the prevalence
of security smells in our dataset, and by discussing the performance of our
tool, respectively.

The results in subsection 5.2.3 suggest that although fewer than 10%
of apps suffer from more than two categories of ICC security smells, only
small teams are capable of consistently building software resistant to most
security code smells. With respect to app volatility, we discovered that
updates rarely have any impact on ICC security, however, in case they
do, they often correspond to new app features. On the other hand, we
found that long-lived projects have more issues than recently created ones,

59

5.2. Empirical Study

except for apps that receive frequent updates, where the opposite is true.
Moreover, the findings of Android Lint’s security checks correlate to our
detected security smells.

In subsection 5.2.4, our manual evaluation confirms that our tool suc-
cessfully finds many different ICC security code smells, and that about
43.8% of the smells in fact represent vulnerabilities. We consequently hy-
pothesize that the tool can offer valuable support in security audits, but
this remains to be explored in our future work.

We performed analyses similar to our previous work, e.g., exploring the
relation between star rating and smells, or the distribution of smells in app
categories, and we did not observe major differences with our past findings
in chapter 4. Our results are therefore in line with our prior research that
did not consider ICC smells, and found that the majority of apps suffer
from security smells, despite the diversity of apps in popularity, size, and
release date.

5.2.1 Linting Tool

Our Linting tool is built using Android Lint, a static analysis framework
from the official Android Studio IDE7 for analyzing Android apps. An-
droid Lint provides various rich interfaces for analyzing XML, Java, and
Class files in Android. Using these interfaces, one can implement a so-
called “detector” that is responsible for scanning code, detecting issues,
and reporting them. More specifically, each detector is represented by
a Java class that implements Android Lint interfaces to access Android
Lint’s ASTs (abstract syntax trees) of the app built from XML, source, or
byte code. In order to ease the AST traversal, Android Lint provides an
implementation of the visitor design pattern with additional helper meth-
ods to support further interaction with the tree. The majority of methods
use idiomatic names that closely resemble the developer’s intention, e.g.,
UastUtils.tryResolve() to resolve a variable, or the class Constant-

Evaluator to evaluate constants. The latest Android Lint provides more
than 300 different detectors to check several categories of issues such as,
e.g., Accessibility, Usability, Security, etc.

We extended Android Lint by developing twelve new detectors. These
detectors implement UastScanner and XmlScanner interfaces to check the
presence of security code smells in source code and manifest files, respec-
tively. The UastScanner is the successor of the JavaScanner, and, in
addition to Java, also supports Kotlin, a new programming language used
in the Android platform. We implemented the detection strategies that
we introduced for each security smell in section 5.1. The average size of a
detector is 115 lines of code.

7Android documentation: improve your code with lint checks, https://developer.
android.com/studio/write/lint, accessed on 02-MAR-2022

60

https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint

5.2. Empirical Study

Android Lint brings analysis support directly into the Android Studio
IDE. Developers can therefore receive just-in-time feedback during app
development about the presence of security code smells in their code. De-
tectors are automatically run during programming in the latest Android
Studio IDE, i.e., the Canary build and notify developers about the secu-
rity code smells once they appear in the code under development. Each
notification includes an explanation of the smell, mitigation or elimination
strategies, as well as a web link to some references.

Linting in batch mode is also possible through the command line inter-
face, given the availability of the successfully built projects. In our expe-
rience, a successful build often entails changing build paths, and updating
Gradle and its project configurations to a version that is compatible with
the current release of Android Lint. We created a script to automate most
of this non-trivial process. After a successful build of each project, an-
other script runs the executable of Android Lint, and collects the analysis
results in XML files.

The tool is publicly available for download from our GitHub reposi-
tory.8

5.2.2 Dataset

We collected all open-source apps from the F-Droid9 repository as well
as several other apps directly from GitHub.10 In total we collected 3 471
apps, of which we could successfully build 1 487 (42%). For replication
of our results we explicitly provide the package names of all successfully
analyzed apps,11 instead of a binary compilation, because of the dataset’s
storage space requirements of more than 27 GBytes. In order to reduce
the influence of individual projects, in case there existed more than one
release of a project, we only considered the latest one. Finally, we were
left with 732 apps (21%) in our dataset. The median project size in our
dataset is about 1.2 MB, while the median number of data files per project
is 108.

5.2.3 Batch Analysis

This section presents the results of applying our tool to all the apps in our
dataset.

8GitHub project website: AndroidLintSecurityChecks, https://github.com/

pgadient/AndroidLintSecurityChecks, accessed on 02-MAR-2020
9F-Droid: a catalogue of free and open-source apps, https://f-droid.org/, ac-

cessed on 02-MAR-2022
10GitHub project website: open-source-android-apps, https://github.com/pcqpcq/

open-source-android-apps, accessed on 02-MAR-2022
11AndroidLintSecurityChecks: list of analyzed apps, https://github.com/

pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv,
accessed on 02-MAR-2022

61

https://github.com/pgadient/AndroidLintSecurityChecks
https://github.com/pgadient/AndroidLintSecurityChecks
https://f-droid.org/
https://github.com/pcqpcq/open-source-android-apps
https://github.com/pcqpcq/open-source-android-apps
https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv
https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv

5.2. Empirical Study

0 0 2 2
8 9

34

49

59 60

82

729

0

20

40

60

80

100

700

720

740

#
 a

p
p
s

su
ff

er
in

g
 f

ro
m

 s
m

el
l

different types of ICC security smells apps suffer

Figure 5.1: Distribution of security smells in the apps

70.49 %

19.95 %

4.92 %

3.14 %

0.82 %

0.41 %

0.27 %

0 100 200 300 400 500 600

01

02

03

04

05

00

07

apps

di

ff
er

en
t s

m
el

ls
 f

ou
nd

 in
 a

pp
s

Figure 5.2: Prevalence of different security smells in apps

62

5.2. Empirical Study

0

0.5

1

1.5

2

2.5

3

3.5

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11-15 16-20 21-40 41-60 >60

di

ff
er

en
t s

ec
ur

it
y

sm
el

ls
 f

ou
nd

 in
 a

pp
s

pr

oj
ec

ts

contributors per project

projects # different security smells found in apps

Figure 5.3: Relation between number of a project’s participants, its prevalence, and the
average number of different security smells found

Prevalence of Security Smells

Figure 5.1 shows how prevalent the smells are in our dataset. Almost
all apps suffer from Common Task Affinity issues (99%) followed by the
much less prevalent Unauthorized Intent smell (11%). The default value of
task affinity configurations does not protect the application against high-
jacking of UI components, and only few developers appear to be aware of
the issue and set the property accordingly. Custom Scheme Channel and
Implicit Pending Intent each contribute about 8% of the smells. Further-
more, WebViewClient is in line with our observation that apps increasingly
rely on web components for their UI. At the other end of the spectrum,
Sticky Broadcast, Incorrect Protection Level, Broken Service Permission,
and Persisted Dynamic Permission cause less than 2% of all issues. The
threat of path permissions is not very common, as no apps suffered from
SM08 or SM09.

We were also interested in the relative prevalence of different security
smells in the apps, which we reveal in Figure 5.2. Less than 1% did not
suffer from any security smell at all, whereas the majority of apps, i.e.,
over 90%, suffered from one or two different smells. 9% of all apps were
affected by three or more smells. No apps, fortunately, suffered from more
than seven different types of smells. It is important to recall that the more
issues that are present in a benign app, the more likely it is that a malign
app can exploit it, e.g., with denial of service, intent spoofing, or intent
hijacking attacks.

63

5.2. Empirical Study

Contributor Affiliation

Figure 5.3 shows the relationship between the number of contributors par-
ticipating in a project and the mean number of security smell categories
apps suffer from. For example, the second last bar represents the number
of all projects maintained by 41 to 60 participants, while the line chart
shows that projects with this many participants suffer on average from 2.5
security smell categories. We see that most apps are maintained by two
contributors, followed by projects developed by individuals. A trend exists
that projects with many participants are less common than projects with
only a few contributors. The more people are involved in a project the
more the security decreases, especially for large teams. More precisely, we
found statistical evidence that only small teams of up to five people are
capable of consistently building projects resistant to most security code
smells, by using the non-parametric Mann-Whitney U test that does not
require the assumption of normal distributions for the dataset. The mean
different smell occurrences in the groups “projects with one contributor”
and “projects with six contributors” were 1.263 and 1.705; the distribu-
tions in the two groups differed significantly (Mann-Whitney U = -2.086,
n1 < n2 = 0, P < 0.05 two-tailed). Similarly, we found that the dis-
tributions in the two groups “projects with six to forty contributors” and
“projects with more than forty contributors” were diverse (Mann-Whitney
U = -2.204, n1 < n2 = 0, P < 0.05 two-tailed) with mean different smell
occurrences of 1.655 and 2.750, respectively.

App Updates

We investigated the smell occurrences in subsequent app releases. Of the
732 projects, 33 (4%) of them released updates that either resolved or in-
troduced issues. By inspection of source code we noticed that many of the
updates targeted new functionality, e.g., addition of new implicit intents
to share data with other apps, implementation of new notification mecha-
nisms for receiving events from other apps using implicit pending intents,
or registration of new custom schemes to provide further integration of
app related web content into the Android system. We believe this is due
to developers focusing on new features instead of security.

For the majority of the app updates that introduced new security
smells, we found that the dominant cause for decreased security is the
accommodation of social interactions and data sharing features in the
apps updates. Hence, developers should be particularly cautious when
integrating new functionality into an app.

Evolution

Every new Android version introduces changes that strengthen security.
The targeting of outdated Android releases will not only limit the sup-

64

5.2. Empirical Study

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7 8 9 10 11 14 15 16 17 18 19 21

pe
rc

en
ta

ge
 o

f
al

l i
ss

ue
s

fo
un

d

Android API level

SM12: Common Task Affinity

SM04: Unauthorized Intent

SM11: Implicit Pending Intent

SM02: Custom Scheme Channel

SM10: Unprotected Broadcast Receiver

SM06: Slack WebViewClient

SM05: Sticky Broadcast

SM03: Incorrect Protection Level

SM07: Broken Service Permission

Figure 5.4: Evolution of security code smells in different Android releases

ported feature set to the respective release, but also introduce potential
security issues as security fixes are continuously integrated into the OS
with each update.

Figure 5.4 shows the evolution of security smells across different An-
droid releases. For those apps that had more than one release in our
dataset, we only considered the latest release. The horizontal axis shows
the different Android releases apps are targeting in their configuration,
whereas the vertical axis shows the contribution of a specific smell to
the total amount of smells detected. As in chapter 4, we see changes in
some of the security smells apps suffer from. We believe that the positive
trend in Unauthorized Intent within apps is the consequence of built-in
sharing functionalities to external services. The relative growth of Im-
plicit Pending Intent could correlate to the introduction of a new storage
access framework in Android release 19, which heavily relies on intents,
and allows developers to browse and open documents, images, and other
files with ease. Google’s efforts to raise the developer’s awareness of web-
related security issues appears to be working: the occurrences of Slack
WebView Client have decreased in more recent releases. Despite the lack
of comprehensive data on API levels 10 and 11 due to the relatively few
apps available for study, the occurrences of the majority of smells remain
constant as a result of the early feature availability since API level 1.

65

5.2. Empirical Study

Comparison to Existing Android Lint Checks

In order to compare our findings with other issues in the apps, we corre-
lated the results from the existing Android Lint framework with security
code smells. We wanted to explore whether frequent reports of specific
Android Lint issue categories were also indicative of security issues, or in
other words, if security checks by the Android Lint framework agree with
our security smells and whether other quality aspects of an app could re-
late to its security level. We collected all available issue reports for each
app and then extracted the occurrences of each detected issue.

We applied the Pearson product-moment correlation coefficient algo-
rithm for each ICC security smell category combination according to the
following formula:

Pearson(x, y) =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
,where (5.1)

x is the array of all apps issue occurrences in category ICC security code smells,

y is the array of all apps issue occurrences in the respective Android Lint category, and

x̄, ȳ represent the corresponding sample means.

(5.2)

This formula provides a linear correlation between two vectors repre-
sented as a value in the range of −1, i.e., a total negative linear corre-
lation and +1, i.e., a total positive linear correlation. The correlation of
the Android Lint categories and our ICC smell category in Table 5.3 re-
veals several interesting findings: (1) Our ICC security category strongly
correlates with the Android Lint security category (+0.72), which con-
tains checks for a variety of security-related issues such as the use of user
names and passwords in strings, improper cryptography parameters, and
bypassed certificate checks in WebView components. (2) Another dis-
covery is the minor correlation between the ICC security smells and the
Android Lint correctness category (+0.29). This category includes checks
for erroneously configured project build parameters, incomplete view lay-
out definitions, and usages of deprecated resources. (3) Furthermore, we
assume that usability does not impede security (+0.07), because issues
in usability are closely related to UI mechanics. (4) Finally, minor corre-
lations are shown for performance, accessibility, and internationalization.
These three categories have in common that they rely heavily on UI con-
trols and configurations.

To further assess how our tool performs on real world apps against the
Android Lint detections, we take the 100 apps with the most and least
prevalent ICC security smells and compare them to Android Lint’s anal-
ysis results. We expect to see significant similarities in the increase of
issues detected as our security smells correlate to Android Lint’s security
checks, i.e., the least vulnerable apps should suffer less in both, the An-
droid Lint checks and our security smell detectors. Figure 5.5 illustrates

66

5.2. Empirical Study

(a) 100 least vulnerable apps

(b) 100 most vulnerable apps

Figure 5.5: Prevalence of Android Lint issues in the 100 most and least vulnerable apps

67

5.2. Empirical Study

Android Lint category Correlation with ICC security smells
Security 0.72
Correctness 0.29
Correctness: Messages 0.27
Accessibility 0.25
Performance 0.25
Usability: Typography 0.21
Internationalization 0.13
Internationalization: Bidirectional 0.11
Usability: Icons 0.11
Usability 0.07

Table 5.3: Correlation of ICC security smells with Android Lint issue categories

two plots, each presenting our analysis results for the 100 apps suffering
the most and the least from ICC security smells, respectively. The vertical
axis represents the condensed mean number of found issues, that is, we
conflated all detected ICC security smell issues, regardless of their smell
categories, into “ICC Security Smells.” The remaining Android Lint cat-
egories on the x-axis are treated accordingly. The crosses represent the
mean value of the number of different issues apps are suffering from in
each category, and, as we hid any outliers to increase readability, these
values can exceed the first quartiles. The least and most affected apps
clearly correspond in terms of issue frequency among specific categories,
that is, the mean number of issues found in each category is between 29%
and 332% higher on behalf of the 100 most vulnerable apps. Besides the
ICC Security Smells category with an increase of 219% in issues found,
the Android Lint security category experienced an increase of 152%. The
Correctness: Message and the Usability: Typography categories of An-
droid Lint achieved, unexpectedly, an increase in issues found of about
332% and 174%, respectively. After manual verification, we discovered
that these gains were mostly caused by flawed language dictionary entries
used for internationalization, such as missing or misunderstood language
dependent string declarations, spelling mistakes, and the use of strings
containing three dots instead of the ellipsis character. While the 100 most
vulnerable apps appear to prominently incorporate translations for sev-
eral different languages, the 100 least vulnerable apps rarely make use of
these features, hence, they suffer from much fewer issues. The remaining
categories encountered an increase of less than 139%. Interestingly, the
internationalization category does not encounter a noticeable increase in
issues due to its limited scope, i.e., it only covers five specific flaws regard-
ing insufficient language adaption, and the use of uncommon characters or
encodings. We propose that some of these issue detections should be re-
allocated to other categories, e.g., spelling mistakes should be assigned to
internationalization, and vice versa the issue SetTextI18n in the category
internationalization that reports any use of methods that potentially fail
with number conversions.

68

5.2. Empirical Study

linear trendline (project creation) linear trendline (project last commit)

(a) Relation of dates to our ICC security smells

linear trendline (project creation) linear trendline (project last commit)

(b) Relation of dates to Lint security

Figure 5.6: GitHub project creation and last commit date in relation to each project’s issue
count

69

5.2. Empirical Study

Influence of Project Age and Activity

To explore the effect of recent updates, which we believed would improve
app security, we evaluated our ICC category as well as the Android Lint
security and correctness categories according to time since the last commit.
More precisely, we were interested in the question: Do recent updates im-
prove app security? A related question arises from the age of a project, i.e.,
are mature projects more secure than recent creations? We investigated
these two questions based on available GitHub metadata, and brought the
dates into perspective with the reported issues.

Figure 5.6 shows the mean number of detected issues per app on the
vertical axis, either for the ICC security smells, or the Android Lint se-
curity category. The black dots reveal the app’s project creation dates,
whereas red dots indicate the most recent commit dates of projects, hence
every app is represented by one black and one red dot in each plot. The
creation date for the majority of apps dates back to less than 6.5 years.
We can clearly see in every plot a correlation between both the creation
date and the date of the last commit to the overall issue count, based on
the pictured linear trends using dotted lines. These trends, which are very
similar in terms of elevation, are a further indicator for the close relation-
ship between our tool and the Android Lint checks. Moreover, the Lint
security category shows strong evidence that mature projects have more
security issues than recent ones. We assume that this is caused by the
less comprehensive checks that older IDEs performed on the source code.
Similarly, apps that frequently introduce changes, i.e., receive updates,
are prone to have more issues.

Influence of Code Size

Another popular indicator used in software analysis is the code size, which
we measured in thousands of lines of code (kLOC) with the open-source
tool cloc.12 As Android projects consist aside from source code of different
configuration, resource and other utility files, we first ran the analysis of
adopted software languages, e.g., Java, Kotlin, XML that required each
of those items, before we excluded all elements except the Java code in
the main Java source folders for the kLOC measurements. We conjectured
that we would see a trend of small teams developing small apps that are
less likely to have problems. In contrast, we expect that aging projects
are more likely to have smells as they are larger than more recent ones.
Figure 5.7 illustrates the relation between the kLOC and other relevant
properties.

In Figure 5.7a we categorized projects according to their size on the
x-axis, while the left y-axis displays contributors per project, and the

12GitHub project website: cloc, https://github.com/AlDanial/cloc, accessed on
02-MAR-2022

70

https://github.com/AlDanial/cloc

5.2. Empirical Study

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

< 0.5 0.5 - 0.9 1 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 49 >=50

di

ff
er

en
t s

ec
ur

it
y

sm
el

ls
 f

ou
nd

 in
 a

pp
s

di

ff
er

en
t l

an
gu

ag
es

 u
se

d

co

nt
ri

bu
to

rs
 p

er
 p

ro
je

ct

kLOC

contributors per project # different security smells found in apps # different languages used

(a) Relation of kLOC to contributors, ICC security smells, and used languages

0

500

1000

1500

2000

2500

0

50

100

150

200

250

300

350

< 0.5 0.5 - 0.9 1 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 49 >=50

da

ys
 s

in
ce

 p
ro

je
ct

 c
re

at
io

n

da
ys

 s
in

ce
 la

st
 u

pd
at

e

pr

oj
ec

ts

kLOC

projects # days since project creation # days since last update

(b) Relation of kLOC to number of projects, days since project creation,

and days since last update

Figure 5.7: Different project properties in relation to kLOC

71

5.2. Empirical Study

right y-axis the number of different categories of security smells found in
apps, and the number of different languages used. We see a trend that
larger projects rely on more contributors with a minor exception at 20-
24 kLOC. Furthermore, it is interesting to see that projects of up to 10
kLOC are maintained by five or fewer developers. In addition, we see that
larger projects tend to suffer from more smells, and those projects are
also using more languages. After a manual inspection of apps exploiting
different languages we discovered that those apps are rather collections of
frameworks, e.g., for network penetration tests using a plethora of different
tools written in different languages.

Figure 5.7b uses the same feature for the x-axis, but presents on the
left y-axis the number of projects, and on the right y-axis the number
of days since project creation, and the number of days since last update.
The majority of projects in our dataset consist of less than 10 kLOC,
and especially projects with 1-4 kLOC have been very prevalent, followed
by apps that are less than 500 LOC. Only six projects contained more
than 50 kLOC. Interestingly, we cannot derive clearly any major trend
regarding the age of projects and LOC, although projects of 25-49 kLOC
evidently are older than the others. On the contrary, we can see a minor
trend regarding the time since last update. It appears that smaller apps
are updated less frequently than larger apps. We expect that the larger
an application becomes, the more maintenance work is required due to
library updates, obsolete external references, and content changes.

5.2.4 Manual Analysis

To assess the performance of our tool and show how reliable these findings
are to detect security vulnerabilities, we manually analyzed 100 apps. We
invited two participants to independently evaluate the precision and recall
of our tool. Participant A is a senior developer with more than 5 years of
professional experience in development and security of mobile apps. Par-
ticipant B is a junior developer with less than two years of experience in
Java and C# software development. We provided both participants an
introduction to Android security, and individually explained every smell
in detail. We subsequently selected the top 100 apps, that is more than
13% of the whole corpus, with most smells in accordance with our ICC
security smell list, for which we can say with 95% confidence that the pop-
ulation’s mean smell occurrences of the top 100 apps are between 3.04 and
3.48, while they are between 1.38 and 1.50 for the whole data set of about
732 apps. Then we provided the participants with our tool, the sources
of the top 100 apps, and a spreadsheet to record their observations. Each
participant was asked to import the sources of each app in Android Stu-
dio, which had been prepared to run a customized version of our analysis
plug-in, to verify each reported smell according to the symptoms of any
smell described in section 5.1. We were also interested in vulnerability

72

5.2. Empirical Study

0

130

260

390

520

650

780

3000

4500

#
 i

ss
u

es
 f

o
u

n
d

 i
n

 1
0

0
 a

p
p

 c
o

rp
u

s

TN

FN

FP

TP

supplementary issues

Figure 5.8: Tool evaluation results

detection capability of security smells, i.e., the possibility a security issue
can compromise a user’s security and privacy, thus the participants were
asked to investigate if a security smell indicates the presence of a secu-
rity vulnerability based on the vulnerability information available in the
benchmarks.

Tool Evaluation

While the assessment of true positives (TPs), i.e., reported code that
is a smell, and false positives (FPs), i.e., reported code that is not a
smell, requires participants to manually check only the tool’s results, the
extraction of true negatives (TNs), i.e., unreported code that is not a
smell, and false negatives (FNs), i.e., unreported code that is a smell, is
resource intensive and error prone. Therefore to avoid an exhaustive code
inspection, we developed a relaxed analysis that shows ICC-related APIs
in the code to support the participants.

We obtained relatively high smell detection rates, especially for SM02,
SM04, SM10, SM11 and SM12, as indicated by the TPs in Figure 5.8.
The reason is that these smells occur frequently and are straightforward to
detect, mostly relying on some very specific method calls and permissions.

We encountered above average FPs in SM12 due to the intended use of
task affinity features in apps that try to separate activities with empty task
affinities. This smell would require additional semantical, architectural,

73

5.2. Empirical Study

and UI information for proper assessment. While some of the exposed
activities are non-interactive, and thus supposedly secure, some of them
are interactive and could be misused in combination with other spoofing
techniques, like clickjacking, in which an adversary unexpectedly shows the
exposed activity to trick users into providing unintended inputs. In partic-
ular, call recorders and various client-server apps for chat, video streaming,
home automation, and other network services have been affected by this
issue.

Each participant had to check 7 241 locations in the code to examine
the TNs and FNs in 100 apps. In more than 98.36% of cases partici-
pants confirmed that there are no security smells beyond what the tool
could identify; we consider this very low proportion of FNs, i.e., 1.7%,
encouraging.

We are surprised to see only a few FNs in SM04 as we expected much
more to appear due to the countless ways that intents can be created in
Android. A substantial number of FNs were missed because of complex
chained executions and calls initiated from sophisticated UI related classes
containing URIs. For SM06, we discovered that the FNs have been fre-
quently caused by lack of context, e.g., unawareness of data sensitivity, or
custom logic that does not mitigate the vulnerability. For example, our
tool was unable to verify the correctness of custom web page white-listing
implementations for WebView browser components, which would actually
reduce security if implemented incorrectly.

We did not encounter any instances of the two smells SM08 and SM09,
that is, we retrieved zero reports on both of them for our 100 app dataset,
hence, we excluded them for all subsequent plots and discussions in this
subsection.

We could find common security smells while reviewing the feedback
from the two participants, for example, that some apps were using should-

OverrideUrlLoading without URL white-listing to send implicit intents
to open the device’s default browser, rather than using their own web
view for white-listed pages, thus fostering the risk of data leaks. Another
discovery was the use of regular broadcasts for intra-app communication.
For these scenarios, developers should solely rely on the LocalBroadcast-
Manager to prevent accidental data leaks. The same applies for intents that
are explicitly used for communication within the app, but do not include
an explicit target, which would similarly mitigate the risk of data leaks.
Moreover, unused code represents a severe threat. Several apps requested
specific permissions without using them, increasing the impact of potential
privilege escalation attacks.

Tool Performance

Figure 5.9 presents the tool’s performance based on the precision, recall,
and lastly the F-measure for existing smells in 100 apps. All smells except

74

5.2. Empirical Study

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

precision

recall

F-measure

Figure 5.9: Tool performance

S
M

01
: P

er
si

st
ed

 D
yn

am
ic

 P
er

m
is

si
on

S
M

02
: C

us
to

m
 S

ch
em

e
C

ha
nn

el

S
M

03
: I

nc
or

re
ct

 P
ro

te
ct

io
n

L
ev

el

S
M

04
: U

na
ut

ho
ri

ze
d

In
te

nt

S
M

05
: S

ti
ck

y
B

ro
ad

ca
st

S
M

06
: S

la
ck

 W
eb

V
ie

w
C

lie
nt

S
M

07
: B

ro
ke

n
S

er
vi

ce
 P

er
m

is
si

on

S
M

10
: U

np
ro

te
ct

ed
 B

ro
ad

ca
st

 R
ec

ei
ve

r

S
M

11
: I

m
pl

ic
it

 P
en

di
ng

 I
nt

en
t

S
M

12
: C

om
m

on
 T

as
k

A
ff

in
it

y

0

100

200

300

400

500

600

700

vu

ln
er

ab
il

it
ie

s
in

 1
00

 a
pp

s

no (part. A) no (part. B) uncertain (part. A) uncertain (part. B) yes (part. A) yes (part. B)

Figure 5.10: Vulnerability capability of detected issues

75

5.2. Empirical Study

SM03 and SM06 show outstanding results, nonetheless, some of them could
be biased as a result of their low occurrences, which is true for SM01 and
SM07. We performed a follow up manual investigation of SM03 and SM06.
Apparently, the detection of SM03 suffers from the difficulty to discern
data sensitivity and the need to approximate the required protection level.
Besides that, SM06 is heavily affected by custom web API implementations
that (mis)use security features, which are, in fact, not secure.

Smells and Their Vulnerability Capability

Figure 5.10 shows the vulnerability capability perception of both partic-
ipants against the reported smells. For each smell we show two grouped
columns: the left column reports the results from the more experienced
participant A (PA), and the right column reports the results from the
less experienced participant B (PB). Each column consists of three dif-
ferent segments yes, uncertain, and no. The category yes is used for all
reported smells that introduce critical risks, such as plain exposure of user
passwords through network sockets. The uncertain category is used for
risks that potentially exist, and are challenging to inspect manually, for in-
stance, vulnerabilities that require prerequisites for successful exploitation
such as potentially dangerous user-defined schemes. Finally, all smells as-
signed to the no category are not vulnerable to any attacks, either because
they do not contain any user information, or because they are sufficiently
secure with respect to the participant’s opinion. Apps that send static
non-sensitive information commonly match this category. For all our con-
siderations the participants were told to treat any user data as sensitive,
since they could potentially contain sensitive information at run time.

According to the reports by PA, 38.5% of smells represent potential
threats, i.e., uncertain category, and only 5.3% of smells represent critical
threats, i.e., yes category. In other words, only about 44% of security
smells could lead to security vulnerabilities.

A further comparison of the reports between the two participants shows
that they expect somewhat similar risks for the smell categories SM05,
SM07, and SM12, whereas the participants tended to interpret diversely
the threat caused by Custom Scheme Channel, Unauthorized Intent, and
Slack WebViewClient smells. We reviewed the feedback of the partici-
pants and discovered that for Custom Scheme Channel predefined system
schemes are considered less harmful for PA (category no), while PB assigns
them to the category uncertain. For Unauthorized Intent PB assessed the
risks similar to PA, however, PB encountered difficulties to predict ade-
quately the threat capability of many intent instances, thus PB assigned
them to section uncertain. For the smell Slack WebViewClient PB per-
formed a conservative risk assessment by not assigning any custom security
feature implementations to no, instead PB assigned them to uncertain, un-
like PA who concluded many of them as secure. An example thereof is an

76

5.2. Empirical Study

app with a network security penetration test suite that requires opening
insecure web pages for security validation purposes.

It is interesting to observe that PB, in contrast to PA, does consider
fewer instances as harmful for SM11 and SM12. For the first smell SM11:
Implicit Pending Intent PB considers intents with assigned actions fre-
quently as secure, while PA considers them as potential risk, which is more
accurate. For the second smell SM12: Common Task Affinity PB consid-
ers most apps that used empty task affinity properties as secure, while PA
performed a more thorough analysis of the UI and considered additionally
the misuse capability of such exposed views, which resulted in many as-
signments to the category uncertain. We conclude that the very complex
and flexible ICC implementation provided by Android overwhelms inexpe-
rienced developers, even worse, it could mislead those developers to create
insecure code due to their misunderstanding.

Overall, most of the vulnerabilities seem to emerge from SM10 and
SM11, which collectively contribute to more than 72% of all detected crit-
ical issues. On the other hand, SM04 on its own provides with 77% the
largest proportion of false alarms regarding vulnerability capabilities.

5.2.5 Threats to Validity

A major threat to validity is the completeness of this investigation, i.e.,
whether we explored every related paper from the scientific community.

We focused on top software engineering and security conferences, jour-
nals, and included other popular work in the field. For each relevant paper
in the resulting corpus, we recursively iterated over both citing and cited
papers. Additionally, for each identified issue we further constructed more
specific queries and looked for any new paper on Google Scholar to prevent
missing a major publication.

We solely focused on benign apps as we expect that for malicious apps
developers usually do not dedicate much of their time to resolve security
issues. Our dataset therefore contains apps from GitHub and the F-Droid
app catalogue. Nevertheless, this dataset could still contain malicious apps
that have not been reported by the community or the app stores.

Our investigations regarding the prevalence of security smells is limited
to the source code of apps, whereas security smells could also manifest in
third-party libraries.

Our analysis is intra-procedural and suffers from inherent limitations
of static analysis. Moreover, many security smells actually constitute se-
curity risks only if they deal with sensitive data, but our analysis cannot
determine such sensitivity.

The Android Lint tool we used for the analysis is prone to errors that
could lead to FNs, for example, they can be introduced by an immediate
termination of the inspection that occurs when Android Lint crashes due
to file parsing issues.

77

5.3. Conclusion

Ultimately, there is a threat to construct validity through potential bias
in experimenter expectancy since some tool results were manually reviewed
by the people who created the tool. We mitigated this threat by including
an external participant in the process in addition to the co-author who
simultaneously played the senior developer’s role.

5.3 Conclusion

We have reviewed ICC security code smells that threaten Android apps,
and implemented a linting plug-in for Android Studio that spots such
smells, by linting affected code parts, and providing just-in-time feedback
about the presence of security code smells.

We applied our analysis to a corpus of more than 700 open-source apps.
We observed that only small teams are capable of consistently building
software resistant to most security code smells, and fewer than 10% of
apps suffer from more than two ICC security smells. We discovered that
updates rarely have any impact on ICC security, however, in case they
do, they often correspond to new app features. Thus developers have
to be very careful about integration of new functionality into their apps.
Moreover, we found that long-lived projects suffer from more issues than
recently created ones, except for apps that are updated frequently, for
which that effect is reversed. We advise developers of long-lived projects
to continuously update their IDEs, as old IDEs have only limited support
for security issue reports, and therefore countless security issues could be
missed.

A manual investigation of 100 apps shows that our tool successfully
finds many different ICC security code smells, and about 43.8% of them
in fact represent vulnerabilities. Thus it constitutes a reasonable measure
to improve the overall development efficiency and software quality.

We recommend security aspects such as secure default values and per-
mission systems to be considered in the initial design of a new API, since
this would effectively mitigate many issues like the very prevalent Common
Task Affinity smell.

78

Chapter 6

Security Smells in the Web
Communication of Mobile Apps

Declaration of Content Reuse

The content of this chapter is based on the full paper Web APIs
in Android through the Lens of Security that has been accepted for
the 27th edition of the IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER) in 2020 [35].

Mobile apps increasingly rely on web communication to provide their
services. Apps access the internet through web APIs in order to use an
increasing number of public web services, or to communicate with pri-
vate back-ends. Researchers have recently studied the use of such APIs
in mobile apps, and, for instance, found that a large number of web re-
quests are not directly traceable to source code [78], cloud and mail service
credentials are hard-coded in the apps [119], many web requests are harm-
ful [120], many web links targeting well-known advertisement networks
impose serious risks on users [79], and lax input validation in many web
APIs could compromise the security and privacy of millions of users [61].

We could not, however, find any publicly available tool that researchers
can use to study web APIs. Also, there are several third-party libraries
to implement network communication, but existing studies are mainly
limited to java.net APIs. Finally, dissecting the distribution of elements
that comprise the web API URLs is never studied, which is necessary for
collecting security-related information stored in query keys and values, as
well as to fuzz web APIs.

We manually studied the use of common web communication frame-
works in 160 randomly selected Android mobile apps, i.e., more than 4.7%
of the whole dataset, and developed a static analysis tool to investigate

79

whether network communications in 3 376 closed-source and open-source
apps differ. We manually inspected the tool’s output for 100 random apps,
and used the reported URLs to connect to the servers and to investigate
their response. We found eight security code smells, i.e., symptoms in
the code that signal the prospect of a security vulnerability, on both ends,
dominated by the use of embedded computer languages. We handcrafted
regular expressions to automatically identify the use of those languages,
and other languages prevalent on GitHub.

In this work we address the following research questions:
RQ1: Which API frameworks are used in Android mobile apps, and

what is the nature of the data that apps transmit through these frameworks?
We identified six different web API communication libraries, and learned
that open-source apps rely on simpler request paths including only one
or two path segments, whereas closed-source apps mostly include two or
three path segments. Unexpectedly, the opposite is true for key-value
pairs: open-source apps frequently use one to three pairs, whereas closed-
source apps mainly use one pair. Fragments have only been used very
sparsely in both types of apps. We found that open-source and closed-
source apps are similar in the choice of web communication libraries, but
advertising services are more prevalent in closed-source apps.

RQ2: What security smells are present in web communication? We
found eight security smells in the apps and the server software. For
instance, 500 apps use embedded computer languages, e.g., SQL, and
JavaScript commands in web API communications, thus introducing the
threat of code injection attacks. A horrific 67% of the closed-source and
9.5% of the open-source apps communicate with servers over insecure
HTTP connections. Many apps neglect to use the HTTP strict trans-
port security policy. Finally, we observed a lack of authentication and
authorization mechanisms for services that are supposed to be private.

In summary, this chapter attempts to shed more light on the use of
web APIs in mobile apps, by studying what data the apps transmit, to
whom, and for what purpose. The tool and the obtained results in this
study are available online.1

The remainder of this chapter is organized as follows. We describe
the methodology of our web API mining approach in section 6.1, and we
present the results of our empirical study in section 6.2. We report numer-
ous web API security smells in section 6.3. Finally, we recap the threats
to validity in section 6.4, and we conclude this chapter in section 6.5.

1GitHub project website: jandrolyzer, https://github.com/pgadient/

jandrolyzer, accessed on 02-MAR-2022

80

https://github.com/pgadient/jandrolyzer
https://github.com/pgadient/jandrolyzer

6.1. Web API Mining

6.1 Web API Mining

We manually inspected Android apps to identify what APIs developers
use to call web services, and how they are used. Then we took advantage
of this information to develop a tool to automatically extract the web
API URLs and their corresponding HTTP request data statically from
the apps.

6.1.1 Library Inspection

An Android app can call a web API either with the help of the built-
in Java classes, or by using external third-party libraries. We consulted
the official Java and Android documentations to compile a list of built-in
APIs that are relevant to network communication, and to establish how
these APIs are used. We mainly focused on the java.net package, which
includes a number of classes such as Socket, HttpsURLConnection, and
URLConnection to implement network-related operations.

Next, we manually inspected 160 randomly selected apps from a dataset
of 3 376 apps that request Android’s INTERNET permission to investigate
what third-party libraries they may use for web communication, and how.
These libraries are often built on top of the built-in Java network APIs.
Therefore, we first checked whether a call to such Java APIs exists, and,
if so, we checked whether the call belongs to the app or an external li-
brary. For each library, we studied the documentation, and investigated
how developers use the library in each app, e.g., to construct URLs, and
to attach headers to web requests. During the inspection of each app, we
collected the web API URLs and any data that are transmitted to the
servers to determine if what we collect from the source code is actually
helpful to issue valid requests.

In this study, besides the native Java network libraries, we found that
libraries such as Apache HttpClient, Glide, Ion, OkHttp, Retrofit, and Vol-
ley are used in the apps.

While studying the use of web communication libraries, we also no-
ticed that besides the built-in org.json package, developers often use two
external libraries, namely Gson and Moshi, for parsing and manipulating
JSON data, which is commonly used for data exchange in web services.

6.1.2 API Miner

We then developed a tool that leverages our finding in the library inspec-
tion phase, and statically analyzes apps to extract web API URLs, query
keys and the corresponding values where applicable. The tool takes the
following steps:

81

6.1. Web API Mining

Decompilation

Given an APK file, the tool first decompiles the app using the command
line version of the JADX decompilation tool.2 A successful decompilation
will provide us with a project folder that contains decompiled Java source
code of the app and the resource files. Although decompilation errors are
common, JADX is quite robust and produces code with a correct syntax.
In particular, method declarations and class structures remain intact with
comments in place where the decompilation did not succeed completely.

Detection and Extraction

The tool uses the JavaParser framework to create an AST for every .java

file within the project.3 When the actual source code of an app is available,
we use the information from the build and configuration files to accurately
inject specific library versions into the JavaParser framework to enable the
resolution of library dependencies in the subsequent app analysis. If the
desired library version is unavailable in our collection, the next available
more recent version is added instead. Closed-source apps packaged as APK
files do not require those dependency injections as they already contain
the required code themselves.

In principal, we need to track flows of data in relevant APIs, and
several static analysis frameworks exist to track data flows in Android
apps. Nevertheless, in our experience as well as according to recent studies,
these tools may not perform as described in the relevant papers [75, 70, 19].
We therefore decided to implement our own lightweight analysis tailored
to reconstruct web APIs in the code.

The tool traverses the AST to identify APIs, i.e., MethodCallExpres-
sion nodes, that are used to access web APIs in a network library. For
each method call, it recursively resolves the nodes on which the API de-
pends, e.g., the object on which the method is called, and its parame-
ters. In detail, we rely on the JavaSymbolSolver framework to associate
a variable in the code to its declaration.4 We track all Assignment, and
MethodInvocation constructs on each variable in each relevant Variable-
Declaration node. Moreover, depending on the target library, the tool
also tracks implicit dependencies, e.g., the annotation-driven dependency
injection.

URL and header construction largely depend on string concatenation,
e.g., the HTTP request header is a plain text record consisting of key-value
pairs providing input details for the web API request. We therefore sup-

2GitHub project website: jadx, https://github.com/skylot/jadx, accessed on 02-
MAR-2022

3JavaParser: project website, https://javaparser.org, accessed on 02-MAR-2022
4GitHub project website: javasymbolsolver, https://github.com/javaparser/

javasymbolsolver, accessed on 02-MAR-2022

82

https://github.com/skylot/jadx
https://javaparser.org
https://github.com/javaparser/javasymbolsolver
https://github.com/javaparser/javasymbolsolver

6.1. Web API Mining

port the extraction of strings that are built using the StringBuilder.ap-

pend() method, the String.concat() method, and the “+” operator.

Reconstruction

All web API URLs and JSON data structures that contain at least one
unresolved value are further processed in the reconstruction stage. We
set the value of variables whose types are number or boolean to 0 and
true, respectively. For those variables, i.e., JSON or query keys, whose
types are String, and for which we did not find a concrete value during the
extraction, we compute the Jaro-Winkler similarity distance [105] between
the variable names and every variable declaration in the code. In the
end, for each successful analysis, the tool reports the web API, as shown
in Listing 2, and the corresponding request headers, as shown in Listing 3.

1 Path:

2 /Users/webproject/...

3 Library:

4 com.squareup.retrofit

5 Scheme:

6 http://

7 Authority:

8 retrofiturl.com

9 Base URL:

10 http://retrofiturl.com

11 Endpoints:

12 Path: api/loadUsers

13 Queries:

14 Query key: position, query value: <String>

15 Query key: order, query value: <String>

16 Fragments:

17 HTTP Methods:

18 HTTP Method: GET

Listing 2: The tool’s output for a successful web API extraction

1 Path:

2 .../User.java

3 Library:

4 com.squareup.moshi

5 JSON Object:

6 {"address":{"street":"<STRING>",

7 "number": <NUMBER_INT>"},"name":"Bob"}

Listing 3: The tool’s output for a successful JSON object extraction

Evaluation

We performed a lightweight evaluation of the tool on ten open-source and
ten closed-source apps randomly selected from our dataset. In each app, we
manually searched for the terms “http://” and “https://” in the source
code. For each finding, we evaluated which entries were related to web

83

6.1. Web API Mining

APIs, and then tried to understand what are the URLs and the other
request parameters.

We manually identified 24 distinct URLs for web APIs in the apps, of
which 21 were found in the Java source code. The tool reported 39, of
which eighteen URLs referred to web services: seventeen were amongst
the URLs identified manually, and the tool uncovered one new case that
was overlooked due to complex string concatenation. The tool achieved a
precision of 46% and a recall of 80%.

There are several reasons for the tool missing the remaining seven
URLs, such as URLs in open-source apps being hidden in build scripts
and XML resource files rather than Java code, and incomplete library
injections for closed-source apps.

The tool reported 21 URLs that did not refer to a web service. In
particular, 18 URLs referred to static HTML pages, and three suffered
from invalid reconstruction.

6.1.3 Security Checks

We inspected the result of the tool on a random set of 100 apps in order to
identify security smells in the code relevant to web API communications.

We implemented lightweight detection strategies for these smells, mainly
using regular expressions. For instance, using search terms such as user-
name, password, etc. we could find hard-coded passwords, tokens, and
insufficiently protected authorization schemes in the results.

1 HTML:

2 String uiElement = "<html><body>" +

3 ↪→ jsonObj.getText() + "</body></html>";

4

5 JavaScript:

6 String customScript = jsonObj.getResponse();

7

8 SQL:

9 String queryParameter = "SELECT * FROM weather";

Listing 4: Examples of embedded computer code in app source strings

In many apps we found code from various computer languages em-
bedded in Java strings, such as that shown in Listing 4, thus potentially
exposing the app or the server to code injection attacks. We compiled a
list of commonly used computer languages based on our own findings, and
the scripting languages found in the top ten used programming languages
on GitHub.5 For each language, we pragmatically developed regular ex-
pressions inspired by the relevant language specifications, with the aim
to match as many occurrences as possible. With these regular expres-
sions, shown in Table 6.1, we counted the key identifiers for each language

5GitHub project website: github-languages, https://github.com/oprogramador/

github-languages, accessed on 02-MAR-2022

84

https://github.com/oprogramador/github-languages
https://github.com/oprogramador/github-languages

6.2. Study Result

in each app report, to detect usages of embedded languages in the web
communications.

Language Regular expressions Language Regular expressions
Bash sh[]+ SQL alter[]+table

%.sh create[]+.*index
HTML %<[]*html[]*%> create[]+.*table
JavaScript function[ˆ%(]*%([ˆ%)]*%) create[]+.*trigger

%<[]*script create[]+.*view
js[]*= delete[]+from

PHP %<%? drop[]+index
Python import[]+%(.*%) drop[]+table
Ruby require[]*%(.*%) drop[]+trigger

drop[]+view
insert[]+.*into
replace[]+into
select[]+.*[]+from
update[]+.+[]+set

Table 6.1: Regular expressions used to detect computer languages

In a subsequent step, we issued requests to each of the URLs extracted
from the entire dataset, and observed unexpected responses, e.g., stack
traces, error messages, or status information, disclosing sensitive infor-
mation regarding the API implementation, running software, or server
configuration.

6.2 Study Result

We investigated the use of network communication in Android mobile
apps. In particular, the focus is on the use of libraries, and the request
characteristics.

We randomly collected apps that use the internet. For closed-source
apps we mined the free apps on the Google Play store, and for the open-
source apps we relied on the F-Droid app catalogue.6 For each app, we
removed the duplicates, i.e., apps with the same package identifier, but
different version numbers, and kept only the most recent version of the
app. In the end, we collected 17 079 closed-source, and 432 open-source
apps.

We applied our tool to these apps, and restricted each app analysis to
30 minutes processing time, with a node resolution limit of 15 iterations
on a machine with two AMD Opteron 6272 16-core processors and 128 GB
of ECC memory. The tool could completely analyze 293 open-source apps,
and 2 410 closed-source apps. We also included the partial results of the
apps whose analyses were incomplete, resulting in a total analysis result
of 303 open-source, and 3 073 closed-source apps in our dataset. Only
2 587 apps (15%) were successfully decompiled, due to crashes of the tool

6F-Droid: a catalogue of free and open-source apps, https://f-droid.org/, ac-
cessed on 02-MAR-2022

85

https://f-droid.org/

6.2. Study Result

caused by various bugs, and incomplete feature support, e.g., reflection,
native code, and customized app configurations.

The apps in our dataset come from 48 different Google Play store
categories. Most of them belong to EDUCATION (317 apps) and TOOLS (292
apps), however, a majority (574) have a GAMES-related tag. Interestingly,
work-related apps are common in our dataset (335 apps). The top five
categories whose apps contain the largest number of distinct web API
URLs are EDUCATION (1 555 URLs), LIFESTYLE (1 027 URLs), BUSINESS
(995 URLs), ENTERTAINMENT (704 URLs), and PRODUCTIVITY (619 URLs).

The list of apps that we analyzed in this study is available online,7 and
we share the aggregated data for research purposes on request due to the
contained sensitive information such as credentials, API keys, and email
addresses.

We present our findings in the following, and conclude each focal point
with a short discussion, which entails similarities or differences in open-
source and closed-source apps.

6.2.1 Communication Libraries

We investigated the distribution of the seven communication libraries in
3 376 apps in our dataset.

Result

In open-source apps, we found that each app uses up to four network
libraries. The URLConnection (37%), HttpURLConnection (24%), Socket
(9.1%), and HttpsURLConnection (6.0%) classes included in java.net are
the preferred choice of open-source developers, especially URLConnection

and HttpURLConnection are omnipresent in projects. When considering
third party network libraries, we found that OkHttp and Retrofit (each
5.6%) are used the most. It is interesting to see that libraries with specific
support for image downloads are similarly used, i.e., Glide and Volley.
The Ion library is used only in three apps (1.0%).

In closed-source apps each app uses up to seven network libraries. We
found that the classes included in java.net such as URLConnection (42%),
HttpURLConnection (34%), Socket (10%), and HttpsURLConnection (4.3%)
are the preferred choice. Interestingly, the OkHttp library is the most com-
monly used third-party library even surpassing the well-known Glide and
Retrofit libraries. We found org.apache.httpcomponents and com.lo-

opj.android are the two least used network libraries contributing only
0.9% and 0.5%, respectively.

7Figshare: list of the analyzed apps, https://doi.org/10.6084/m9.figshare.

14981061, accessed on 02-MAR-2022

86

https://doi.org/10.6084/m9.figshare.14981061
https://doi.org/10.6084/m9.figshare.14981061

6.2. Study Result

Discussion

We realized that one to three classes are usually responsible for network
communication in an app. In open-source apps we found the use of up
to four network libraries in each app, and in closed-source apps it was
up to seven. Although each library may provide specific features, e.g.,
JSON parsing, HTTP connection management, image caching, etc., we
expect the reason for the use of multiple libraries in an app is that many
developers use the code snippets from other projects or online information
sources.

We found fewer java.net libraries in open-source apps compared to
closed-source apps. During decompilation, the bundled libraries are de-
compiled together with the app code. Therefore, what the tool reports
is not only the network calls in the app code, but also the network APIs
on top of which the third-party libraries are developed. However, this is
not the case for the open-source apps whose dependencies are defined in
Gradle, and are dynamically injected without adding the actual code to
the project itself.

The libraries Ion and Volley have been used only in open-source apps,
while HttpComponents and LoopJ have been used only in closed-source
apps. Surprisingly, we did not find any instances of the well-known Andro-

idHttpClient and SSLSocket classes. Finally, the use of Glide, which
supports exhaustive image downloading and caching features, seems much
more prevalent on closed-source apps.

6.2.2 The Nature of Web Communication

Based on the analysis results for the apps in our database, we investigated
the structure, dissemination and use of 13 276 web API URLs, of which
9 714 were unique.

Open-source Apps

The tool extracted 1 533 URLs from the open-source projects. We found
that the majority of web APIs consist of one or two queries or path seg-
ments. We only found up to one fragment per web API. We further found
that 209 web APIs exist with paths consisting of four or five segments to
distinguish between resources, and the average number of segments in the
web APIs is 2.36. Nevertheless, web APIs using more than five elements
are rare. Web APIs contain an average of 2.3 key-value pairs in queries.
The data do not follow a normal distribution.

Surprisingly, the top base URL was https://github.com, which we
observed 29 times (1.8%). Likewise, Google services have been widely
used, e.g., https://play.google.com or https://plus.google.com, of
which the tool could spot 42 instances (2.7%). Rather at the end of the ten
most commonly used base URLs the tool found the OpenWeatherMap API

87

https://github.com
https://play.google.com
https://plus.google.com

6.2. Study Result

http://openweathermap.org (7, 0.4%) and the Twitter social network
API https://twitter.com (6, 0.3%).

Furthermore, we found that the https URL scheme (1 012 occurrences,
66%) is much more commonly used than its insecure counterpart http (521
occurrences, 33%).

Closed-source Apps

The tool extracted 11 743 URLs from closed-source apps. We found that
the majority of web APIs consist of one or two queries or path segments.
On a second look, we observed that web APIs with two path segments
are most prevalent. We further discovered that 2 116 web APIs exist with
paths consisting of four to eight path segments to distinguish between
resources, and the average number of segments in the web APIs is 2.44.
Nevertheless, web APIs using more than four elements are rare. Addition-
ally, we could identify that URL fragments are seldomly used in web APIs;
although we found up to seven fragments in a single web API URL, we
only discovered 183 web APIs in total using this feature, i.e., 1.5%. Web
APIs, on average, contain 2.9 key-value pairs in queries. The data do not
follow a normal distribution.

Interestingly, all the most common URLs we could retrieve were point-
ing towards Google services. The top URL, http://schemas.android.
com, was observed 1 303 times (11%). Two of the observed URLs were re-
lated to advertising distribution services, i.e., http://media.admob.com
(283, 2.4%) and https://pagead2.googlesyndication.com (271, 2.3%).
Google AdMob is a popular advertising platform that provides SDKs to
developers to integrate Google ads into their own apps to increase revenue.

We found that the http URL scheme (7 208 occurrences, 61%) is much
more prevalent than its secure counterpart https (4 531 occurrences, 38%).
Besides findings of the two common schemes we found few appearances of
the ws schema that belongs to the WebSocket protocol (4 occurrences,
0.0%), which provides unprotected full-duplex web communication on top
of HTTP TCP connections.

Discussion

The numbers of used path segments and query keys are indicators for the
complexity of a specific request. Servers usually reject requests with in-
complete or flawed parameter configurations, and thus the task of sending
a successful request becomes harder the more path segments and query
keys are involved.

Open-source apps relied on simpler request paths including only one or
two path segments, while closed-source apps mostly included two or three
path segments. Unexpectedly, the opposite is true for key-value pairs:
open-source apps frequently use one to three pairs, whereas closed-source

88

http://openweathermap.org
https://twitter.com
http://schemas.android.com
http://schemas.android.com
http://media.admob.com
https://pagead2.googlesyndication.com

6.2. Study Result

apps mainly use one pair. Fragments have only been used very sparsely in
both types of apps.

We did not expect to observe a difference between open-source and
closed-source apps. Moreover, we did not expect to find many complex
requests, because the idea of providing APIs is that they can be used
by other developers who presumably prefer an easy to use interface. We
conclude that the majority of the APIs provide a simple interface and are
rather straightforward to access.

While the open-source apps contained no advertising services in the ten
most used base URLs, the closed-source apps heavily used such services.
We expect that the “Freemium” price model, i.e., installation of apps is
free but the user must later watch ads or pay a fee, is a major enabler of
this setting.

The open-source community prefers the Twitter social network over
Facebook.

We found one major difference in the URL schemes used in the apps.
Open-source apps principally rely on secure https connections (66%). In
contrast, closed-source apps largely use the insecure http protocol (60%).
We see here much potential for improvement through stricter rejection
of apps using insecure connections. The more efficient, but more com-
plex WebSocket protocol seems to be without interest for the majority of
developers.

6.2.3 Security Risks

We studied the kinds of data communicated through web APIs, and found
that both credentials, i.e., user name and password combinations and
embedded code were very common in the web communications. As the
former has been reported on extensively in the past, we focus here on the
latter.

Open-source Apps

The tool extracted 458 JSON schemes in which STRING is the most used
value type with 1 197 occurrences, followed by NUMBER with 234 occur-
rences.

We found that SQL (91%, ten affected apps) is by far the most used
embedded language. HTML (5.5%, two affected apps) and JavaScript
(2.7%, one affected app) are very rare. No instances of other embedded
languages were detected.

Closed-source Apps

The tool extracted 14 606 JSON schemes where STRING is the most used
value type with 40 017 occurrences, followed by BOOLEAN with 5 640 occur-

89

6.3. Web Communication Security Smells

rences. NUMBER and NULL only represent a minority with 2 389 and 1 483
occurrences, respectively.

In contrast to open-source apps, we observed that JavaScript (76%,
170 affected apps) is very prevalent, and SQL (23%, 476 affected apps) is
used less, but still frequently. HTML code is almost non-existent (0.7%,
27 affected apps).

Discussion

We found that the use of tokens in open-source apps is not as common as
in closed-source apps. One explanation could be that the fees associated
to web services do not pay off for open-source apps, which mostly do not
generate any revenue.

Several embedded languages are actively used within mobile apps.
While SQL is relatively common in both open-source and closed-source
apps, JavaScript is much more commonly used in the latter.

6.3 Web Communication Security Smells

In this section, we present the security smells that we found in web com-
munication during investigation of the tool’s results, by manually investi-
gating 100 apps, and by analyzing the responses from requests to each of
the 9 714 web API URLs extracted from apps in our dataset. We classify
the smells into client side, i.e., within mobile apps, and server side, i.e., on
the API servers. For each smell we report the security issue at stake, the
potential consequences for users, the symptom in the code, i.e., the code
smell, and the recommended mitigation strategy of the issue, principally
for developers.

We used the results from the manual analysis explicitly to identify
security issues, but not to perform any quantitative evaluation. In this
section, we do not report any number of occurrences found in the tool’s
results, because those either have been discussed in the previous section, or
the task would require additional research to gather quantitative results.

In our analysis, we could identify eight web communication security
smells, of which three were in apps and five in server implementations. Two
of the three web communication app security smells could be mitigated, if
only secure HTTPS channels would be used for communication. We have
not yet reported our findings to developers or marketplaces.

6.3.1 Client side

We identified three client side web communication security code smells.

• Credential leak
We found hard-coded API keys, login information, and other sensi-
tive data, e.g., email addresses, in the source code. Several of the

90

6.3. Web Communication Security Smells

retrieved data were valid at the time of our investigation: we could
access Google Maps, Mapquest, OpenWeatherMap, the San Francisco
transit API, and a Telegram bot.
Issue: Credentials issued to app vendors are prevalent in apps that
use web APIs, and they are statically stored in the Java software to
perform the queries. However, the software can be decompiled into
source code, which renders the data extraction trivial [119].
Consequently, web services can be misused by people who have gained
access to unique credentials. Such services allow impersonation,
phishing, information leaks, fake messages, or financial infringements
for the app developers due to API overuse or lockdowns.
Symptom: Query keys like key, token, user, username, password,
pw are used in web requests and the corresponding values are stati-
cally stored in the apps.
Mitigation: Developers should avoid using access tokens and logins
of corporate accounts for apps. Instead, a unique child token based
on the corporate token should be assigned to every user. If this
option is unavailable, web relay APIs can be provided to the apps,
which forward the requests to the final destination without disclosing
any credentials.

• Embedded languages
We found apps that assemble CSS, HTML, or JavaScript code pro-
grammatically using external input. In many apps, such constructed
code is executed within a WebView or Android’s UI framework, which
is inspired by Java Swing and supports HTML elements. Similarly,
we found assembled SQL statements that are executed in the local
SQLite database engine. In two apps we found assembled shell com-
mands sent over an SSH connection.
Issue: An attacker could gain control over the app’s visual represen-
tation, the behavior, the data storage, or the corresponding server
by exploiting such code [89].
Consequently, for HTML and CSS, an attacker could change the ap-
pearance of existing web elements to make space for additional ones,
e.g., by reducing the font size of existing text to make it impossible
to read and at the same time injecting additional text in regular size.
Such changes can trick users into taking unintended actions. With
JavaScript, an attacker could gain access to the DOM (document
object model) of the app’s web page and extract or alter the visible
content. Such changes expose sensitive user data, or mislead users
through altered information. SQL allows adversaries to perform ar-
bitrary actions on the database, e.g., altering and deleting existing
data, or inserting new data. This leads to data loss, corruption, or
leaks for the users. Through shell commands an adversary could po-
tentially gain elaborated remote access to the server’s operating sys-

91

6.3. Web Communication Security Smells

tem. For example, the shell command String command = "touch

/home/" + username + "/.toolConfig/configuration"; allows an
adversary to execute commands on a server in the context of the
service by letting the variable username be ;echo ’executes on

server’;. Threats range from DoS attacks to sensitive user infor-
mation leaks and corporate network infiltration by disabling security
measures and installing malicious software on the server.
Symptom: At least one statement is manually assembled with the
help of external data, e.g., "<html><body>" + example + "</html>

</body>" or "color:" + color + ";". HTML/CSS: common tags
or properties appear, e.g., "<html>", "<body>", or "color:". Java-
Script: identifiers exist in the app, e.g., function(), <script, js=.
SQL: the corresponding keywords exist in statements that obey the
SQL syntax. Such keywords are, e.g., SELECT, INSERT, UPDATE,
DELETE, REPLACE, TRUNCATE. Shell: commands are not trivial to de-
tect, because developers use a variety of different commands, e.g.,
sudo, rm, cp, mv, ls, exec, attrib, chmod, touch, etc.
Mitigation: Developers should not use external input when assem-
bling embedded languages, but try to embed the content into the app
installation or update package. Static code should be used whenever
possible. If dynamic code is required, the built-in sanitizing classes
must be used, e.g., PreparedStatement for SQL code. User input
should never be trusted. In general, any untrustworthy input must
not be used before it is properly escaped and sanitized.

• Insecure transport channel
Web API communication relies on HTTP or HTTPS; both variants
exist in apps.
Issue: HTTP does not provide any security; neither the address, nor
the header information or the payload are encrypted [69].
Consequently, any attacker with access to the transmitted data can
read or alter all plain text messages. User data leaks, corruptions,
losses, or impersonation are probable.
Symptom: HTTP URLs are used to establish connections to web
APIs.
Mitigation: HTTPS instead of HTTP URLs must be used for any
web communication.

6.3.2 Server side

For every collected API in our dataset, we accessed the corresponding
web server and stored the response. We were particularly interested in
information such as operating system identifiers, used software modules,
and version numbers, which we could initially identify during the manual
analysis of a sample of the server responses. We then crafted a number of

92

6.3. Web Communication Security Smells

search queries to detect occurrences of such features and applied them to
our dataset.

We have identified five server side web communication security code
smells.

• Disclosure of source code
Error messages provide valuable information regarding the imple-
mentation of a running system. We found web APIs that leak in-
ternal error states and use status codes in a different way than what
is specified by the RFC7231.8 Although HTTP servers should reply
with the status code 200 to indicate a successful request, we noticed
that some servers use this status code when an error has occurred
and instead return implementation code.
Issue: Error messages that include the relevant stack trace are trans-
mitted as plain text in the server’s message response body. Such a
message reveals information like the used method names, line num-
bers, and file paths disclosing the internal file system structure and
configuration of the server [4].
Consequently, adversaries can obtain detailed information about the
service implementation, which may lead to an exploit.
Symptom: When an invalid request is received, a server responds
with a detailed error message containing information that is not re-
quired by any user of the API.
Mitigation: If the used framework provides an option to turn off di-
agnostic or debug messages: this feature should be used. Otherwise,
an API gateway in between the client and the server should filter
such responses and deliver regular HTTP 500 messages to the client
instead.

• Disclosure of version information
Besides useful connection parameters, HTTP headers provide infor-
mation regarding the software architecture and configuration of a
running system. Their keys are case insensitive. We spotted in the
reported HTTP headers version information of web server daemons
and API implementation frameworks.
Issue: We encountered outdated software that suffers from severe
security vulnerabilities [52]. For instance, we observed a server that
returned X-Powered-By: PHP/5.5.23 in the response header. This
PHP version is at the time of writing more than 6 years old, and a
quick search in the Common Vulnerabilities and Exposures (CVE)
database showed that this framework suffers from 69 known security
vulnerabilities, six of which received the most severe impact score of

8Request For Comments (RFC) of the HTTP 1.1, https://tools.ietf.org/html/
rfc7231, accessed on 02-MAR-2020

93

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231

6.3. Web Communication Security Smells

10.9

Consequently, the vulnerabilities range from simple DoS attacks, ac-
cess control bypassing, and cross-site scripting to arbitrary code ex-
ecution on the server.
Symptom: One of the following header keys exists in the response
header: Engine, Server, X-AspNet-Version, or X-Powered-By.
Mitigation: If the used software provides an option to turn off the
publishing of version information: this feature should be used. Oth-
erwise, an API gateway in between the client and the server should
remove the affected keys and deliver messages with sanitized HTTP
headers to the client instead.

• Lack of access control
Authentication by a user name and a password provides tailored ex-
periences to end users, e.g., individual chat logs or friend lists, and
at the same time enables access control to separate and protect sen-
sitive user data.
Issue: The access to sensitive data or actions is not restricted by a
sane authentication mechanism such as a user name and password
pair, instead, easy-to-forge identifiers or no identification data at all
are used to secure the access [40]. We found several APIs that did
not use any authentication or authorization mechanisms, although
they host sensitive data, e.g., for car rental services and accounting.
In one app we found code to access an exposed SQL database inter-
face.
Consequently, every internet user can access sensitive data or per-
form unauthorized actions including the reading, modification, and
deletion of arbitrary user data. We could access information from
such APIs, e.g., real-time location data of rental cars and transac-
tion histories on different bank accounts. In one case, we were also
able to create new users in the system. Exposing database or other
interpreter interfaces with broken authentication allows adversaries
to execute arbitrary statements on the server.
Symptom: A web API server hosts sensitive data or provides ac-
tions, which would require elevated access rights. The server re-
sponds without asking for any login information, that is, no HTTP
headers or keys related to personal information are used in the
API, e.g., username, password, or pw. The server requires query
keys with names of programming languages, e.g., sql, and responds
when such variables hold a statement in that language, e.g., SELECT
table name FROM all tables;. The decision finding of data sensi-

9National Vulnerability Database (NVD): vulnerabilities of PHP 5.5.23, https://
nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&

search_type=all&isCpeNameSearch=false&cpe_vendor=cpe%3A%2F%3Aphp&cpe_

product=cpe%3A%2F%3Aphp%3Aphp&cpe_version=cpe%3A%2F%3Aphp%3Aphp%3A5.5.23,
accessed on 02-MAR-2022

94

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&isCpeNameSearch=false&cpe_vendor=cpe%3A%2F%3Aphp&cpe_product=cpe%3A%2F%3Aphp%3Aphp&cpe_version=cpe%3A%2F%3Aphp%3Aphp%3A5.5.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&isCpeNameSearch=false&cpe_vendor=cpe%3A%2F%3Aphp&cpe_product=cpe%3A%2F%3Aphp%3Aphp&cpe_version=cpe%3A%2F%3Aphp%3Aphp%3A5.5.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&isCpeNameSearch=false&cpe_vendor=cpe%3A%2F%3Aphp&cpe_product=cpe%3A%2F%3Aphp%3Aphp&cpe_version=cpe%3A%2F%3Aphp%3Aphp%3A5.5.23
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&isCpeNameSearch=false&cpe_vendor=cpe%3A%2F%3Aphp&cpe_product=cpe%3A%2F%3Aphp%3Aphp&cpe_version=cpe%3A%2F%3Aphp%3Aphp%3A5.5.23

6.3. Web Communication Security Smells

tivity or elevated actions is non-trivial and involves manual reason-
ing [114]. Therefore, we cannot infer general purpose terms.
Mitigation: Application architects have to implement authentica-
tion, favorably multi-factor authentication, whenever sensitive data
or elevated operations are involved in the process. All user data,
and location data in general, have to be considered as sensitive. De-
velopers should never expose interpreter interfaces to a web service
without prior authentication and input validation. REST interfaces
for specific tasks should be created, preferably each using static state-
ments that do not rely on any user input.

• Missing HTTPS redirects
In contrast to HTTPS, HTTP does not provide any security: nei-
ther the URL, nor the header information and embedded content
are encrypted. We found servers that do not redirect the clients to
encrypted connections although they would have been supported.
Issue: Web API servers do not redirect incoming HTTP connections
to HTTPS when legacy apps try to connect, or users manually con-
figure a URL without adding a proper https:// prefix [29].
Consequently, the transmitted data remains visible and changeable
to anyone within the communication path.
Symptom: For an HTTP web API request, a server does not deliver
an HTTP 3xx redirect message, which points to the corresponding
HTTPS implementation of the web API.
Mitigation: A server should not offer legacy HTTP services. If they
are still required due to legacy clients with hardcoded HTTP URLs,
redirects should be provided to guide all clients to the secure version.

• Missing HSTS
HTTP header information is used to properly set up the connection
by specifying various communication parameters, e.g., the acceptable
languages, the used compression, or the enforcement of HTTPS for
future connection attempts, a feature which is called HSTS (HTTP
strict transport security). HSTS provides protection against HTTPS
to HTTP downgrading attacks, i.e., when a user once accessed a web
resource in a secure environment, e.g., at home or work, the client
knows that the resource needs to be accessed only through HTTPS.
If this is not possible, e.g., at an airport at which an attacker tries
to perform MITM attacks, the client will display a connection error.
Hence, HSTS should be used in combination with HTTP to HTTPS
redirects, because the HSTS header is only considered to be valid
when sent over HTTPS connections. We found servers that do not
enforce clients to remain on the secure channel for future requests.
Issue: Servers do not leverage the HSTS feature [51].
Consequently, in unprotected public networks or networks under ex-
ternal supervision, if an attacker sets up a fake gateway which runs

95

6.4. Threats to Validity

SSLsniff,10 the provided services remain vulnerable, because trans-
mitted data is visible and changeable.
Symptom: A server does not deliver the HTTP HSTS header Strict-
Transport-Security: max-age=31536000; includeSubDomains for
an HTTPS request.
Mitigation: In combination with HTTP to HTTPS redirects, the
HSTS header should be used in all HTTPS connections.

6.4 Threats to Validity

The main threat to validity is the completeness of this study, i.e., it is not
guaranteed that we found all major libraries used for web communication
in Android apps.

There may be a bias in the apps that we selected for this study. We in-
cluded all open-source apps that were available on F-Droid, but they may
not be representative of the whole open-source app community. We col-
lected random closed-source apps that were freely available on the Google
Play store, but paid apps or the apps on third-party stores may have
different characteristics.

We only mined web APIs that were available in the source code; our
tool suffers from the inherent limitations that come with static source
code analysis. We developed a lightweight analysis, which is not path
sensitive. We opted for this design because, during the manual inspection
of network APIs in the apps, we noticed that these APIs are usually free of
conditional statements and loops. Moreover, we had to decompile closed-
source apps for analysis, which introduces further threats to the validity
of our results. For instance, the app code and its library code are not easy
to discern automatically, and therefore the libraries in such apps may have
influenced our findings.

We did not evaluate how complete the tool results are for every app,
but just a small number. There is a threat to construct validity through
potential bias in our expectancy. However, we examined the tool results
for 50 apps, and confirmed that 90% led to successful web communication.

6.5 Conclusion

We manually reviewed 160 Android apps to compile a list of commonly
used network and data conversion libraries and to learn how they are
used in these apps. Based on our findings, we developed a lightweight
static analysis tool that identifies network-related APIs, and extracts com-
munication information such as the web APIs, and the associated JSON

10GitHub project website: sslsniff, https://github.com/moxie0/sslsniff, accessed
on 02-MAR-2022

96

https://github.com/moxie0/sslsniff

6.5. Conclusion

headers. With the help of our tool we successfully analyzed the network-
related information within 450 closed-source and open-source apps. We
found that in both open-source and closed-source apps network communi-
cation is mainly developed using java.net classes. Amongst the third-party
libraries we found that OkHttp and Retrofit are used the most. By far the
most used value type in JSON data is STRING.

We realized that closed-source apps substantially rely on advertisement
services, and that they tend to have more complex URL paths consisting
of more path segments. Surprisingly, the secure HTTPS protocol is used
in the majority of extracted web APIs from open-source applications, but
the opposite is true for closed-source apps. Obviously, when embedded
languages are used along with manual string concatenations, the attack
surface for code-injection attacks increases. Nevertheless, we could iden-
tify numerous such cases during the manual examination of the web APIs,
i.e., embedded SQL and JavaScript content was rather common within
web communications. Even worse, we found many more issues on the
server side: unnecessary disclosure of server configurations, outdated web
servers and language interpreters with known security vulnerabilities, leaks
of internal error messages, and other sensitive data. Finally, we also found
private APIs without any kind of authentication or authorization mecha-
nisms.

We conclude that a lightweight static code analysis is very helpful in
mining web APIs, and that the impact of embedded code in web API re-
quests and the process of securing servers has been deeply underestimated.

97

Chapter 7

Security Smells in Mobile App Servers

Declaration of Content Reuse

The content of this chapter is based on the full paper Security
Smells Pervade Mobile App Servers that has been accepted for
the ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) in 2021 [37].

Globally accessible, reliable, and scalable web apps that utilize web
APIs are on the rise.1 In fact, there exist already more than 24 000 known
public web APIs.2

Unfortunately, many web APIs have flaws [61] and even worse, they
may behave unpredictable [10] as some of them are hosted externally with
the help of cloud operators that continuously try to maximize their profits
at the expense of the API users. What is more, if any problem occurs,
the majority of web API providers are unable to offer helpful support
through their official communication channels [11] and some of their servers
run dated software [35]. These as well as our other findings in chapter 6
indicate that many web APIs and particularly their corresponding app
servers are not always well maintained.

Therefore, we investigate in this chapter the prevalence of five app
server security smells that we identified in the previous chapter, and in
addition, we reconsider the client side security smell “Insecure transport
channel” from the server side. Moreover, we assess the server maintenance

1Forbes: the decline of the native app and the rise of the web
app, https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-

need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/, accessed
on 02-MAR-2022

2ProgrammableWeb: the largest API directory on the web, https://www.

programmableweb.com/apis/directory, accessed on 02-MAR-2022

98

https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/
https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/
https://www.programmableweb.com/apis/directory
https://www.programmableweb.com/apis/directory

7.1. Empirical Study

activity based on the dataset that contains 9 714 distinct URLs that were
used in 3 376 apps. We address the following research questions:

RQ1: What is the prevalence of the server side security smells in the
web communication of mobile apps? We found 231 URLs from 44 apps
that leak the source code of the web service implementation if processing
errors occur. We can further confirm that most app servers communicate
with apps over insecure HTTP connections [74], and fail to enforce use
of the HTTP strict transport security policy. Finally, we found that on
average almost every second app server suffers from version information
leaks.

RQ2: What is the relationship between security smells and app server
maintenance? In particular, we are interested in configuration changes,
because they provide insights into established maintenance processes of
mobile app servers. Based on the collected HTTP header information
from two measurements over fourteen months, we evaluated what soft-
ware changes are introduced by system administrators. We observed that
servers are usually set up once and never touched again, yielding severe
security risks. For instance, criminals can attack outdated app servers
by exploiting vulnerabilities listed in public databases or illicit websites.
On the positive side, we noted that version upgrades are much more com-
mon than version downgrades, and that developers occasionally use Cloud-
flare to protect their infrastructure against adversaries, especially for non-
JSON-based app servers.

In summary, this work reveals the prevalence of insecure app server
configurations accessed by Android mobile apps, and their maintenance
protocol. The list of apps that we analyzed in this study is available
online,3 and we share the aggregated data for research purposes on request
due to the contained sensitive information such as credentials, API keys,
and email addresses.

The remainder of this chapter is organized as follows. In section 7.1,
we present our empirical study about the prevalence of app server security
smells and server maintenance. In section 7.2, we recap the threats to
validity, and finally in section 7.3, we conclude this chapter.

7.1 Empirical Study

In this section, we investigate the prevalence of six of the eight security
smells that we identified in chapter 6, i.e., Insecure transport channel, Dis-
closure of source code, Disclosure of version information, Lack of access
control, Missing HTTPS redirects, and Missing HSTS. The two remain-
ing security smells, i.e., Credential leak and Embedded languages are not
within the scope of this study, because they already received much atten-

3Figshare: list of the analyzed apps, https://doi.org/10.6084/m9.figshare.

14981061, accessed on 02-MAR-2022

99

https://doi.org/10.6084/m9.figshare.14981061
https://doi.org/10.6084/m9.figshare.14981061

7.1. Empirical Study

tion in existing research [119] or they require a deep understanding of the
app and the context where they occur.

For this empirical study we evaluated all URLs from the dataset ac-
cording to the security smell symptoms described in the previous section.
We collected the data twice: the initial download of HTTP headers and
bodies was performed in June 2019 whereas additional data, i.e., the au-
thorization errors and up-to-dateness, was retrieved in August 2020. The
duration of 14 months is arbitrary but long enough to ensure developers
have to update their software infrastructure.

7.1.1 Dataset

We build on our previous work and dataset detailed in chapter 6 in which
we manually inspected Android apps to identify which APIs developers
use to call web services, and how they are used. We then took advan-
tage of this information to develop a tool to automatically extract and
reconstruct string variables and the assigned values as well as the server
URLs and their corresponding HTTP request headers statically from the
apps. Using this information, we analyzed the reconstructed app server
data and tried to establish connections to the corresponding servers from
which they gathered additional information for analysis, i.e., from HTTP
response headers.

The apps from the dataset are randomly collected from those that use
Android’s internet permission. For closed-source apps we mined the free
apps on the Google Play store, and for the open-source apps we relied
on the F-Droid software repository.4 For each app, we removed the du-
plicates, i.e., apps with the same package identifier, but different version
numbers, and kept only the most recent version of the app. We also in-
cluded the partial results of the apps whose analysis was incomplete and
could not finish in time, ultimately resulting in an analysis result for 303
open-source, and 3 073 closed-source apps in the dataset.

The apps in the dataset come from 48 different Google Play store
categories. Most of them belong to EDUCATION (317 apps) and TOOLS (292
apps), however, a majority (574) have a GAMES-related tag. Interestingly,
work-related apps are common in the dataset (335 apps). The top five
categories whose apps contain the largest number of distinct URLs are
EDUCATION (1 555 URLs), LIFESTYLE (1 027 URLs), BUSINESS (995 URLs),
ENTERTAINMENT (704 URLs), and PRODUCTIVITY (619 URLs).

As shown in Figure 7.1, almost 94% of the apps received a star rating of
3.0 or higher. Surprisingly, apps with a five star rating are more prevalent
than apps in any other category. The apps have an average star rating
of 4.2 stars and a median rating of 4.3 stars. Figure 7.2 presents the
number of app downloads and the timeliness of app updates. The y-axis

4F-Droid: a catalogue of free and open-source apps, https://f-droid.org/, ac-
cessed on 02-MAR-2022

100

https://f-droid.org/

7.1. Empirical Study

0

100

200

300

400

500

600

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

3.
6

3.
7

3.
8

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

4.
6

4.
7

4.
8

4.
9

5.
0

ap

ps

star rating of apps

Figure 7.1: Star ratings for the Google Play apps in the dataset

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0

200

400

600

800

1000

0 1 5 10 50 10
0

50
0 1k 5k 10
k

50
k

10
0k

50
0k 1m 5m

>
=

 1
0m

year of last app update

ap

ps

downloads

downloads year of last app update

Figure 7.2: The popularity and developer support for the Google Play apps in the dataset

101

7.1. Empirical Study

denotes the number of apps in each category. In contrast, the primary x-
axis with the bars indicates the app downloads, and the secondary x-axis
with the line indicates the time of the last app update. We can see that
most apps achieved between 100 and 1 000 downloads, and barely any app
was downloaded more than 1 million times. Regarding the app updates,
most of the apps received an update in 2018. Therefore, we see that most
vendors update their apps only a few times a year, because we collected
the statistics separately in 2019.

We then exercised every URL in the dataset and collected the HTTP
header and body of each server response. Eventually, we processed 1 230
open-source URLs and 8 486 closed-source URLs. We realized that many
app servers do not leverage JSON, but instead they use, for example, XML
or plain HTTP communication. Because we were interested whether there
exist any differences for data-centric app servers, we split the results into
four different groups. We report our findings based on closed-source and
open-source apps, and we also separate JSON and non-JSON app servers.
We decided to investigate the JSON data format, because it was much
more commonly used for communication than the others, e.g., comma-
separated values (CSV) and XML. Therefore, we partitioned the open-
source URLs into 1 171 non-JSON servers and 59 JSON servers. Accord-
ingly, we partitioned the closed-source URLs into 7 997 non-JSON servers
and 489 JSON servers. In addition, we matched these URLs against those
found in the apps to see how many apps are suffering from a particular
security smell.

We were particularly interested in information such as operating sys-
tem identifiers, used software modules, and version numbers. Hence, we
crafted a number of search queries to detect occurrences of such features.
The relevant features, i.e., security smells, and the results are part of the
discussion in the subsequent subsections.

7.1.2 Prevalence of Security Smells

This subsection answers RQ1: What is the prevalence of the server side
security smells in web communication? In Figure 7.3 and Figure 7.4 we
report on the relative prevalence of app server security smells in apps for
JSON and non-JSON web services, respectively. In Figure 7.3, the vertical
axis indicates the percentage of apps that suffer from a specific app server
security smell. In the following, we discuss the findings from different
perspectives, i.e., security smell categories, software development model,
and technology.

By Security Smell Category

We report findings and provide actionable advice to mitigate the issue for
each security smell.

102

7.1. Empirical Study

0

10

20

30

40

50

60

70

80

90

100

Insecure
transport
channel

Disclosure
of source

code

Disclosure
of version

information

Lack of
access
control

Missing
HTTPS
redirects

Missing
HSTS

af
fe

ct
ed

 a
pp

s
in

 %

open-source apps closed-source apps

Figure 7.3: Prevalence of app server smells in apps considering JSON communication

0

10

20

30

40

50

60

70

80

90

100

Insecure
transport
channel

Disclosure
of source

code

Disclosure
of version

information

Lack of
access
control

Missing
HTTPS
redirects

Missing
HSTS

af
fe

ct
ed

 a
pp

s
in

 %

open-source apps closed-source apps

Figure 7.4: Prevalence of app server smells in apps considering non-JSON communication

103

7.1. Empirical Study

0

20

40

60

80

100

120

140

160

180

200

ASP(.net) Php CherryPy Java NodeJS

af

fe
ct

ed
 U

R
L

s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)

Figure 7.5: Frameworks that caused code leaks

Insecure transport channel. Communication through an insecure trans-
port channel is prone to data leaks and manipulation, e.g., an adversary
could alter conversations. Hence, practitioners should avoid HTTP and in-
stead focus on the secure HTTPS. Third-party libraries that require HTTP
should be replaced with ones that support secure communication. With
respect to URLs from open-source apps, we found that 582 non-JSON app
servers (50%) did not use protected communication, respectively 100 open-
source apps (36%). This is different for JSON app servers: only six JSON
app servers (10%) used plain text communication, however they affect
thirteen open-source apps (46%). We found worse results in closed-source
communication. Secure communication was usually unavailable, i.e., 5 639
non-JSON app servers (71%) used HTTP, respectively 1 783 closed-source
apps (63%). A total of 245 JSON app servers were not protected (50%),
respectively 197 closed-source apps (76%).

Disclosure of source code. Leaked code is valuable for adversaries to
plot their attacks, or for competitors to glimpse into the source code and
the architecture. Therefore, administrators should disable verbose error
messages on production environments and review the default settings.
We could identify stack traces from five different server frameworks, i.e.,

104

7.1. Empirical Study

0

50

100

150

200

250

300

350

Ubuntu CentOS Debian Fedora cPanel Amazon others

op

er
at

in
g

sy
st

em
 le

ak
s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 7.6: Disclosure of operating system information

ASP(.net), CherryPy, Java, NodeJS, and Php. As we can see in Figure 7.5,
URLs from closed-source applications suffer the most from code leaks, i.e.,
we found 225 instances (2.7%) where 182 instances can be assigned to the
ASP(.net) framework. Considering URLs used in open-source software,
we only found six instances (0.5%) primarily caused by ASP(.net) and
CherryPy.

Disclosure of version information. The knowledge of what exact soft-
ware runs on a server is crucial for successful attacks. Consequently, ad-
ministrators should disable the self-promotion of services and review their
default settings. In Figure 7.6, we present the found operating system
leaks in app servers, where the y-axis denotes the number of leaks we
found. We found 1 155 operating system leaks in our dataset. Ubuntu and
Debian are the most prevalent operating systems for JSON app servers,
and CentOS is rather used for non-JSON app servers. Customized Linux
distributions, i.e., cPanel and Amazon, are less commonly used among
web application developers.

In Figure 7.7, we present the found service leaks in app servers, where
the y-axis denotes the number of leaks we found. We found 8 707 service
leaks in our dataset, including servers that pack up to three leaks into

105

7.1. Empirical Study

0

500

1000

1500

2000

2500

so
ft

w
ar

e
le

ak
s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 7.7: Disclosure of service information

a single HTTP response. Open-source and closed-source software behave
similarly, i.e., Apache and Nginx are among the top three web applica-
tion gateway servers used, but Microsoft services, i.e., Microsoft IIS and
ASP(.net), remain a preferred choice for closed-source developers. Inter-
estingly, the web security provider Cloudflare is used not only for numer-
ous closed-source apps, but also for open-source apps, as we expect, due to
their free plans. Furthermore, the service leaks indicate that most of the
app servers do not use the Google Cloud API (ESF) or storage services
such as Amazon S3.

In Figure 7.8, we present the found version leaks in app servers, where
the y-axis denotes the number of leaks we found. We found 3 992 closed-
source and 359 open-source software leaks in our dataset. Most version
leaks occur for both closed-source and open-source app servers in the
HTTP header field Server, followed by X-Powered-By, and X-AspNet-Ver-

sion. The leaks in HTTP bodies, i.e., Apache, Nginx, Apache H3, Open-
Resty, and CherryPy are less prevalent than those found in the headers.

Lack of access control. Unprotected information can be accessed by
everyone on the internet. Since apps usually provide experiences tailored
to each user, their servers should use well known authentication schemes to

106

7.1. Empirical Study

0

500

1000

1500

2000

2500

ve
rs

io
n

le
ak

s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

open-source app URLs (JSON APIs)

Figure 7.8: Disclosure of version information

prevent leaks of personal data. We encountered 53 HTTP authentication
errors for closed-source non-JSON app servers, and 28 errors for open-
source non-JSON app servers. We did not find any such errors for open-
source or closed-source JSON app servers. However, there exist JSON
web applications that returned arbitrary authorization errors in the JSON
format, e.g., using OAuth instead of the HTTP mechanism.

Missing HTTPS redirects. Missing redirects leave flawed or outdated
clients vulnerable to eavesdropping. Redirects should always be set in
place, if a server has ever been accessible through the insecure HTTP pro-
tocol. Redirects can be chained, but they should be used sparingly. As
shown in Figure 7.9, we found server responses with missing HTTPS redi-
rects in the URLs from 4 961 closed-source apps and from 387 open-source
apps. Fortunately, we did not find any HTTPS to HTTP connection down-
grades in JSON app servers, but we found 48 for closed-source non-JSON
app servers and 15 in open-source non-JSON app servers. Concerning
forwarded requests, closed-source app servers forwarded the requests on
average 1.3 times, open-source non-JSON app servers 1.5 times, and open-
source JSON app servers once. We found two request loops, i.e., infinite
redirects from a destination to itself, in each open-source and closed-source

107

7.1. Empirical Study

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

missing HTTPS redirects connection downgrades

oc

cu
rr

en
ce

s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 7.9: Missing HTTPS redirects in app servers

app servers. Without the request loops, open-source app servers redirected
a request up to three times, and closed-source app servers up to seven
times.

Missing HSTS. App servers without proper support for HSTS expose
users to eavesdropping due to possible HTTPS to HTTP connection down-
grades. Therefore, servers should deploy this feature to every subdomain
and request the client side caching of this setting for at least one year.
Ultimately, the protected URLs should be added to the publicly available
HSTS preload list that is included in all major browsers. As shown in Fig-
ure 7.10, we found 7 494 closed-source app servers and 833 open-source
app servers that miss HSTS HTTP headers. Only a minority of the con-
nections are protected, that is 397 (34%) of all open-source app servers
and 992 (12%) of all closed-source app servers. Contrary to recommended
practices,5 432 app servers use max-age values shorter than one year, and
785 do not use the preload feature. In other words, 31% of the app servers
that support HSTS have not sufficiently configured the protection for sub-
domains, and 57% lack the preload feature that enforces security already

5Google Chrome HSTS preload list submission form, https://hstspreload.org/,
accessed on 02-MAR-2022

108

https://hstspreload.org/

7.1. Empirical Study

0

1000

2000

3000

4000

5000

6000

7000

8000

H
S

T
S

un
av

ai
la

bl
e

H
S

T
S

en
ab

le
d

m
ax

-a
ge

<
 1

 y
ea

r

m
ax

-a
ge

>
=

 1
 y

ea
r

m
ax

-a
ge

>
=

 2
 y

ea
r

su
bd

om
ai

ns
in

cl
ud

ed

pr
el

oa
d

pr
ov

id
ed

oc

cu
rr

en
ce

s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 7.10: Missing HSTS protection for app servers

for the first request.

By Software Development Model

We report findings for two different software development models, i.e.,
the open-source and the closed-source software development model. We
can clearly see in Figure 7.3 and Figure 7.4 that closed-source apps gener-
ally suffer from more security smells than open-source apps. Furthermore,
Lack of access control and Missing HSTS appear in the communication
of almost all closed-source apps. Over all apps, the three smells Inse-
cure transport channel, Missing HTTPS redirects and Disclosure of ver-
sion information are less frequent, but exist still in more than 52% of all
closed-source apps and in more than 39% of all open-source apps. Inter-
estingly, Disclosure of source code primarily emerges in closed-source app
communication.

By Technology

We report our findings for two different technologies, i.e., the JSON and
non-JSON-based web communication. According to Figure 7.3, access

109

7.1. Empirical Study

control and unprotected HTTP communication constitute major threats
for apps that use JSON web services. However, apps that do not rely on
JSON communication are apparently more robust against security smells:
such apps are on average about 19% less affected by them. Code leaks
primarily occurred in JSON communication. For instance, Disclosure of
source code only exists in less than 1% of the apps that use non-JSON
web services, whereas it is more than 8% for the apps that use regular
JSON web services. We only found code leaks in JSON app servers that
use the Php or NodeJS framework, but in contrast, we found code leaks
in non-JSON servers from almost every major framework.

Summary

App server security smells pose a severe threat. Most app server security
smells affect more than 25% of all apps, regardless whether the app is
open-source or closed-source, and whether it uses a JSON or non-JSON
app server. Particularly alarming is the finding that apps using JSON app
servers suffer 1.5 times more from app server security smells than non-
JSON apps, and even worse, closed-source applications suffer 1.6 times
more compared to open-source applications.

More than 50% of the servers accessed by mobile apps use unprotected
HTTP communication. Since smart devices are becoming rather personal
assistants, they carry much sensitive information that needs adequate pro-
tection.

Misconfigured app servers cause code leaks. Although only little code is
revealed at a time, an attacker can replay requests and alter parameters to
reconstruct the architecture and logic behind the service. Such information
eases the search for bugs in the code.

The leaked information is devastating. Although intended for public-
ity purposes, the currently leaked data reveals very often not only the
operating system running on the server, but also the installed services and
their version number. Such information can be entered into vulnerability
databases to find suitable security issues that could be exploited.

Based on our results, access control for JSON app servers is currently
not implemented with HTTP status codes, but instead with arbitrary
replies. A standardized approach would help in creating more service
independent apps, and at the same time default authorization templates
could be used from back-end developers.

HTTPS redirects are usually inexistent for HTTP-based app servers.
Even worse, some downgrade a HTTPS connection to an insecure HTTP
connection. Moreover, redirect loops exist occasionally, and few redirect
implementations use more than five redirects, which is not recommended
by RFC2068.6

6Request For Comments (RFC) of the HTTP 1.1 section 10.3, https://tools.

ietf.org/html/rfc2068#section-10.3, accessed on 02-MAR-2022

110

https://tools.ietf.org/html/rfc2068#section-10.3
https://tools.ietf.org/html/rfc2068#section-10.3

7.1. Empirical Study

Finally, HSTS is only set up for a minority of app servers, and for those
it is common to have weak configurations.

In conclusion, we see that security smells are very prevalent in app
servers. In fact, every app references on average more than three servers
that suffer from at least one of these smells.

7.1.3 Maintenance of Server Infrastructure

In order to answer RQ2: What is the relationship between security smells
and app server maintenance? , we investigate maintenance operations per-
formed on the servers used by mobile apps. In particular, we are inter-
ested whether app server administrators have updated their infrastructure
within the time period of fourteen months, and if we see a correlation
between the number of identified security smells and the quality of server
maintenance. The selected duration of more than a year covers multiple
bug fixes including major releases of common server software, e.g., Apache,
Microsoft IIS, or PHP. We accessed the URLs by sending an HTTP GET
request, and stored their HTTP header responses twice, i.e., once in June
2019 and once in August 2020. We can only compare version numbers
between the two datasets if we received some version information in the
HTTP Server header. As a result, the data in this section are based on
fewer responses, i.e., from 309 open-source (JSON and non-JSON) app
server URLs (25%) and 3 006 closed-source (JSON and non-JSON) app
server URLs (35%).

During our manual analysis of the first 100 entries, we encountered
eight different scenarios: i) no updates have been applied, i.e., the soft-
ware name and version remains identical, ii) the version has been down-
graded, i.e., the software name remains identical, but the version number
decreased, iii) the version has been upgraded, i.e., the software name re-
mains, but the version number increased, iv) the version leak has been
closed, i.e., the software name remains, but the version number is not
anymore available, v) the environment has changed, i.e., the software has
been replaced and it might use a different versioning scheme, vi) Cloudflare
protection has been enabled, i.e., the server has moved behind a Cloud-
flare protection gateway and does not anymore leak version information,
vii) server spawned, i.e., we received no software name in the first run,
but we received one in the second run, viii) server shutdown, i.e., we re-
ceived a software name in the first run, but not anymore in the second run.
We could not gather security-related changes for 1 254 app server URLs
for several reasons: i) new server instances have been spawned without
prior knowledge of software configurations, ii) existing server instances
have been shutdown without the possibility to find any changes, or iii) the
environment has changed using a different versioning scheme.

111

7.1. Empirical Study

0

200

400

600

800

1000

1200

1400

oc
cu

rr
en

ce
s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 7.11: Configuration changes of app servers after fourteen months

Configuration Changes

In Figure 7.11, we show the results. From the app servers that leaked
versioning information, by far most closed-source non-JSON app servers
did not undergo any changes to the server software. Closed-source JSON
app server infrastructure seems to be updated more frequently, however the
majority still do not provide any updates. The same is true for open-source
software although less evident. Version downgrades occurred sparsely,
i.e., four times, and not for JSON app servers. Only a fraction of the
leaking servers, i.e., 103 (4%), have been configured to mitigate the leaks.
Interestingly, environment changes occur more frequently for open-source
non-JSON app servers than no updates at all. In other words, open-
source developers seem to replace app servers rather then updating them.
Moreover, Cloudflare support has been enabled for 104 app servers, i.e.,
for 45 open-source URLs and for 59 closed-source URLs. Finally, more
servers are shut down than spawned.

112

7.1. Empirical Study

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

U

R
L

s

security smells per app server URL

security improvement # no change # security reduction

Figure 7.12: Correlation between app server security smells and configuration changes

Correlation of Security Smells

Figure 7.12 shows the correlation between app server security smells and
administrative configuration changes. For this figure, we consolidated all
app server categories, i.e., open-source, closed-source, JSON, non-JSON
due to the limited number of elements in some of them. The x-axis de-
notes the number of security smells from which a particular app server
suffers, and the y-axis indicates how many such app servers exist in each
category. Based on the versioning information from 2 061 URLs, we can
see that app servers suffering from three or more smells are usually not
well maintained, i.e., they are set up once and then left alone. Although
security improvements, i.e., version upgrades, the removal of versioning
information, and the migration to Cloudflare appear more frequently in
instances that suffer from more than one smell, they only affect a minority.
Security downgrades, i.e., the change to a more dated version, appear only
in app servers that massively suffer from security smells, i.e., from three
or more smells.

113

7.2. Threats to Validity

Summary

According to our findings, app servers are usually set up once and never
touched again. This paradigm introduces severe security risks due to out-
dated software running on publicly accessible interfaces. Hence, sensitive
user data could be exfiltrated when adversaries apply suitable exploits to
such systems. Luckily, version upgrades are much more common than ver-
sion downgrades, although they cannot at all compensate for the lack of
change. We expect that downgrades were performed to circumvent new
bugs or compatibility issues, because all downgrades considered only minor
release changes, e.g., from nginx release 1.14.1 to 1.12.1. Some developers
shift to Cloudflare to protect their infrastructure especially for non-JSON
app servers.

We conclude that app server security smells seem to be a good indicator
for poor server maintenance. In fact, the more smells an app server has
the more likely it is that server maintenance processes are broken.

7.2 Threats to Validity

Completeness. A major threat to validity is the completeness of the used
dataset built from Android apps. Although state of the art decompilation
tools have been used, only about 37% of all closed-source Android apps
could be successfully decompiled for the subsequent analysis. Of these
decompiled apps, the analysis for 22% could not finish in time and might
have led to incomplete results. Moreover, the analysis tool skipped the
evaluation of bundled build scripts and XML resources that could have
pointers to additional app servers. This threat cannot be mitigated en-
tirely, however the rather large and diverse set of included apps ensures
that the results can be generalized.

Accuracy. Another important threat represents the accuracy of the
used dataset. The tool that we used to build the dataset achieves a preci-
sion of 46% and a recall of 80%. However, this performance is the result of
a manual analysis of decompiled code performed by the authors, which in-
cluded only ten open-source and ten closed-source apps that comprised 22
web API URLs. In particular, it reported several URLs unrelated to web
APIs but to static HTML pages, and the tool occasionally reconstructed
invalid requests. In this work, we do not depend on accurate requests,
i.e., the investigated response headers are identical even for malformed
requests. In fact, most of the reconstructed requests contained placehold-
ers that we could leverage to see whether the app servers leak sensitive
information in case of errors.

Data collection. The collected data might contain duplicates or suffer
from temporal issues. Some requests we generated from the URL might
have reached identical servers, which ultimately lead to duplicated con-
nection information in the result set. Another problem is that of server

114

7.3. Conclusion

side outages or configuration changes that temporarily cause unexpected
or erroneous results. To mitigate these threats, we filtered the URL list
for duplicates, and we used rather long timeouts and a high retry count
when we accessed the servers.

Selection bias. The data used for the investigation of server mainte-
nance represents only a subset of the original dataset. This is an immediate
result of the many servers that do not leak any data. Even more, for the
qualitative analysis we require two responses, each containing versioning
information. In order to reduce the impact of these threats, we manually
reviewed the first 100 server responses to ensure that we do not miss any
version information. We then designed the value extraction process for the
individual version numbers based on the results of this initial exploration.

Recency. The data set contains apps that have been downloaded in
2018, and the corresponding metadata has been collected in 2019. This
might change the results due to improved development processes and tools.
However, recent works still identified a lack of security in web communi-
cation [5, 42].

Security risks. The risks associated with the security smells are not
necessarily severe. We do not know what and how much data the web
services hoard, and many of the risks directly correlate with the confi-
dentiality of the data. Since we cannot easily obtain this information, we
follow a defensive strategy, i.e., we assume that every server might host
at least some sensitive data.

Construct validity. There is a threat to construct validity through
potential bias in our expectancy.

7.3 Conclusion

We analyzed the prevalence of six security smells in app servers and inves-
tigated the consequence of these smells from a security perspective. We
used an existing dataset that includes 9 714 distinct URLs that were used
in 3 376 Android mobile apps. We exercised the URLs twice over fourteen
months, and stored the HTTP headers and bodies. We realized that the
top three smells exist in more than 69% of all tested apps, and that un-
protected communication and server misconfigurations are very common.
Particularly alarming is the finding that apps using JSON app servers suf-
fer 1.5 times more from app server security smells than non-JSON apps,
and even worse, closed-source applications suffer 1.6 times more compared
to open-source applications. Moreover, source-code and version leaks, or
the lack of update policies foster future attacks against these data centric
systems. We found that app server security smells are omnipresent and
they indicate poor app server maintenance.

115

Chapter 8

Security Smells in Mobile App HTTP
Clients

Declaration of Content Reuse

The content of this chapter is based on the short paper Security
Header Fields in HTTP Clients that has been accepted for the 21st
IEEE International Conference on Software Quality, Reliability,
and Security (QRS) in 2021 [36].

The most prominent clients for the HTTP protocol are web browsers.
Modern web browsers receive regular updates every few weeks and protect
users from threats with various techniques such as HTTP headers to set
up HSTS. However, the support for such HTTP headers in HTTP client
libraries, e.g., HTTPUrlConnection in OpenJDK is missing.

Therefore, in this chapter, we study the presence of HTTP header
fields in the communication of mobile apps to understand their use and
the provided protection by the HTTP clients. Using the dataset presented
in chapter 6, we sent an HTTP GET request to each server behind the 9 714
distinct URLs from 3 073 closed-source and 303 open-source apps. We in-
vestigated the server responses to understand the research question, What
is the support of the most common security-related HTTP header fields
in existing HTTP clients? In particular, we present the security-related
HTTP header fields, their purpose, and prevalence, and we investigate
which are supported in common HTTP libraries.

In the top 50 used header fields in the communication of mobile apps,
we could identify sixteen well-known security-related fields. We found
that on average 93% of the security-enabling pairs are not used in server
responses. We discovered that all commonly used HTTP clients in Android
apps lack proper support for the majority of such header fields. We discuss

116

8.1. Methodology

these header fields and report where HTTP client libraries can benefit from
them too. We publicly share our replication package to encourage further
research in this direction.1

In the remainder of this chapter, we present the used methodology
in section 8.1 before we investigate the current HTTP header support in
HTTP clients and the resulting security smells in section 8.2. We ex-
plain the threats to validity in section 8.3, and we conclude this chapter
in section 8.4.

8.1 Methodology

For the analysis we used the URL list that we compiled in chapter 6 to
connect to servers and retrieve their responses, which we finally exercised.
Based on these results, we manually investigated the HTTP client support
for security-related header fields. Please note that the preliminary sourcing
of the apps and the extraction of the URLs is not in the scope of this
chapter, and we only provide a brief overview of the dataset.

8.1.1 Sourced Apps

The URLs in the dataset are extracted from random Android apps found
in the Google Play Store (3 073 apps) and the F-Droid repository (303
apps) that request Android’s INTERNET permission. Based on their package
identifier, only the most recent version of each app has been kept in the
dataset. The Play Store apps come from 48 different categories, the most
prevalent categories being EDUCATION (317 apps) and TOOLS (292 apps).
Moreover, the apps have an average star rating of 4.2 stars (median: 4.3
stars), and most apps reached between 100 and 1 000 downloads. Barely
any app was downloaded more than one million times, and most of the
apps were updated in 2018.

8.1.2 URL Extraction

The static analysis tool used to extract the URLs performed three steps for
each analyzed app. First, it decompiled the source code that is distributed
within the APK installation file to regular Java code. Next, it detected the
used web communication APIs in the code and extracted the corresponding
data, e.g., the tool can assemble URLs from concatenated string variables
within a class, and even reconstruct JSON data structures from JSON
object class implementations. Finally, the key-value pairs in the identified
URLs were enriched with possible values, which could be found in the code,
or their value type if no value was available. This process was error-prone
and time demanding. A 32-core machine with 128 GB RAM was allowed

1Figshare: replication package, https://figshare.com/s/c57bb34cadcac225cadc,
accessed on 02-MAR-2022

117

https://figshare.com/s/c57bb34cadcac225cadc

8.2. Results

to work on each app for up to 30 minutes before the process was killed,
yet the analysis did not complete for some of them. After the analysis, the
reported URLs were collected and duplicated URLs removed. URLs that
point to the same server, but use a different path or query parameter were
considered different to not miss any particular server configuration. In fact,
there exist technologies that may hide different servers behind a single IP
address, e.g., the Anycast network addressing and routing methodology.2

Therefore, we did not establish the number of unique servers. In the end,
1 230 open-source URLs and 8 486 closed-source URLs were available for
further analyses.

8.1.3 Header Data Collection

The reported URLs consequently represent different kinds of HTTP servers,
e.g., for web APIs, media streaming, or website delivery. For every re-
ported URL we issued an HTTP GET request and collected the response
header information. An empty file has been created for those URLs for
which we received no response in the process. After we collected the header
information, we used simple pattern matching to gather the prevalence of
the different response header fields.

8.1.4 HTTP Client Support

In order to understand whether an HTTP client supports the security-
related header fields that we discovered, we searched each field name in
the source code, the project website, documentation, and the forums where
available. If we encountered matches, we started a manual investigation
to determine the extent to which the support is available. For the web
browser compatibility, we searched Mozilla’s developer network directory,
which provides browser compatibility matrices, and for non-standardized
fields we had to use Google to find the relevant information. This task
was performed by the author and required about fifteen hours.

8.2 Results

In this section we first discuss the prevalence of header fields in server
responses for mobile apps, before we show our findings regarding their
support in non-browser HTTP clients.

8.2.1 Identified Header Fields

We found 439 header fields, which we could identify in the server responses.
We present the top 50 in Table 8.1. The first column denotes the rank

2Request For Comments (RFC) for the Operation of Anycast Services, https://

datatracker.ietf.org/doc/html/rfc4786, accessed on 30-MAR-2022

118

https://datatracker.ietf.org/doc/html/rfc4786
https://datatracker.ietf.org/doc/html/rfc4786

8.2. Results
R

a
n
k

#
O

c
c
.

H
e
a
d
e
r

fi
e
ld

P
u
r
p

o
s
e

R
e
le

v
a
n
t

t
o

s
e
c
u
r
it

y
0
1

7
5
6
7

D
a
te

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

p
ro

v
id

e
s

a
ti

m
e
st

a
m

p
0
2

7
1
8
9

C
o
n
te

n
t-

T
y
p

e
d
a
ta

p
re

se
n
ta

ti
o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

0
3

6
9
7
8

S
e
rv

e
r

a
d
v
e
rt

is
e
m

e
n

t
M

a
jo

r:
ca

n
le

a
k

se
n

si
ti

v
e

in
fo

rm
a
ti

o
n

0
4

4
0
3
2

C
o
n
te

n
t-

L
e
n
g
th

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

0
5

3
4
7
9

C
a
c
h
e
-C

o
n
tr

o
l

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

0
6

3
0
6
5

C
o
n
n
e
c
ti

o
n

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

p
ro

v
id

e
s

c
o
n
n
e
c
ti

o
n
-s

ta
te

0
7

2
4
0
0

E
x
p
ir

e
s

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

0
8

2
1
1
1

S
e
t-

C
o
o
k
ie

c
o
o
k
ie

m
a
n
a
g
e
m

e
n
t

M
in

o
r:

c
o
o
k
ie

tr
a
n
sm

is
si

o
n

0
9

1
8
1
1

V
a
ry

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

e
n
a
b
le

s
fi

n
e
-g

ra
in

e
d

c
a
c
h
in

g
1
0

1
7
8
8

L
o
c
a
ti

o
n

c
o
n
te

n
t

re
d
ir

e
c
ti

o
n

M
in

o
r:

re
d
ir

e
c
t

ta
rg

e
t

1
1

1
7
7
0

X
-P

o
w

e
re

d
-B

y
a
d
v
e
rt

is
e
m

e
n

t
M

a
jo

r:
ca

n
le

a
k

se
n

si
ti

v
e

in
fo

rm
a
ti

o
n

1
2

1
6
0
1

X
-C

o
n

te
n

t-
T

y
p
e
-O

p
ti

o
n

s
se

c
u

ri
ty

M
a
jo

r:
ca

n
p
re

v
e
n

t
co

n
te

n
t

sn
iffi

n
g

fr
o
m

a
rb

it
ra

ry
d
a
ta

1
3

1
5
1
9

X
-X

S
S

-P
ro

te
c
ti

o
n

se
c
u

ri
ty

M
a
jo

r:
ca

n
p
re

v
e
n

t
X

S
S

a
tt

a
c
k
s

1
4

1
3
6
7

A
c
c
e
p
t-

R
a
n
g
e
s

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

e
n
a
b
le

s
p
a
rt

ia
l

d
o
w

n
lo

a
d
s

1
5

1
2
8
9

X
-F

ra
m

e
-O

p
ti

o
n

s
se

c
u

ri
ty

M
a
jo

r:
ca

n
p
re

v
e
n

t
if

ra
m

e
a
tt

a
c
k
s

1
6

1
2
4
1

P
ra

g
m

a
p

e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

1
7

9
7
1

L
a
st

-M
o
d
ifi

e
d

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

1
8

9
1
6

A
cc

e
ss

-C
o
n

tr
o
l-

A
ll

o
w

-O
ri

g
in

se
c
u

ri
ty

M
a
jo

r:
e
x
te

n
d
s

c
ro

ss
o
ri

g
in

re
so

u
rc

e
sh

a
ri

n
g

1
9

8
3
4

E
ta

g
p

e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

d
o
c
u
m

e
n
t

id
e
n
ti

fi
e
r

2
0

7
8
7

S
tr

ic
t-

T
ra

n
sp

o
rt

-S
ec

u
ri

ty
se

c
u

ri
ty

M
a
jo

r:
ca

n
p
re

v
e
n

t
H

T
T

P
S

d
o
w

n
g
ra

d
e

a
tt

a
c
k
s

2
1

6
5
9

A
lt

-S
v
c

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

H
T

T
P

/
2

lo
a
d

b
a
la

n
c
in

g
2
2

6
0
1

U
p
g
ra

d
e

se
c
u

ri
ty

M
a
jo

r:
u

p
g
ra

d
e
s

co
n

n
ec

ti
o
n

p
ro

to
co

l
o
r

se
c
u

ri
ty

2
3

5
9
4

P
3
P

p
ri

v
a
c
y

M
in

o
r:

p
ri

v
a
c
y

w
e
b

p
a
g
e

2
4

5
3
8

X
-A

sp
N

e
t-

V
e
rs

io
n

a
d
v
e
rt

is
e
m

e
n

t
M

a
jo

r:
ca

n
le

a
k

se
n

si
ti

v
e

in
fo

rm
a
ti

o
n

2
5

5
1
7

C
o
n

te
n

t-
S

ec
u

ri
ty

-P
o
li

c
y

se
c
u

ri
ty

M
a
jo

r:
ca

n
re

st
ri

c
t

a
cc

e
ss

to
p
a
rt

ic
u

la
r

o
ri

g
in

s
2
6

4
7
1

V
ia

d
e
b
u
g
g
in

g
M

in
o
r:

ro
u
ti

n
g

in
fo

rm
a
ti

o
n

2
7

4
2
5

X
-C

a
c
h
e

d
e
b
u
g
g
in

g
M

in
o
r:

c
a
c
h
in

g
st

a
te

a
t

th
e

C
D

N
2
8

4
1
0

C
F

-R
a
y

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

2
9

3
3
6

A
cc

e
ss

-C
o
n

tr
o
l-

E
x
p
o
se

-H
ea

d
e
rs

se
c
u

ri
ty

M
a
jo

r:
e
x
p
o
se

s
se

le
c
te

d
h
ea

d
e
rs

to
a

fr
o
n

te
n

d
3
0

3
3
2

E
x
p
ec

t-
C

T
se

c
u

ri
ty

M
a
jo

r:
e
n

fo
rc

e
s

ce
rt

ifi
ca

te
tr

a
n

sp
a
re

n
c
y

(o
b
so

le
te

)
3
1

3
1
8

A
c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-M
e
th

o
d
s

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

li
st

s
su

p
p

o
rt

e
d

H
T

T
P

m
e
th

o
d
s

3
2

3
0
0

X
-U

A
-C

o
m

p
a
ti

b
le

d
a
ta

p
re

se
n
ta

ti
o
n

M
in

o
r:

li
st

s
c
o
m

p
a
ti

b
le

u
se

r
a
g
e
n
ts

3
3

2
5
8

A
g
e

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

p
ro

x
y

c
a
c
h
e

d
u
ra

ti
o
n

3
4

2
5
5

X
-P

o
w

e
re

d
-b

y
-P

le
sk

a
d
v
e
rt

is
e
m

e
n

t
M

a
jo

r:
ca

n
le

a
k

se
n

si
ti

v
e

in
fo

rm
a
ti

o
n

3
5

2
5
0

A
c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-H
e
a
d
e
rs

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

li
st

s
su

p
p

o
rt

e
d

H
T

T
P

h
e
a
d
e
rs

3
6

2
2
5

S
ta

tu
s

d
e
b
u
g
g
in

g
M

in
o
r:

se
rv

e
r

re
sp

o
n
se

st
a
tu

s
3
7

2
0
5

A
cc

e
ss

-C
o
n

tr
o
l-

A
ll

o
w

-C
re

d
e
n

ti
a
ls

se
c
u

ri
ty

M
a
jo

r:
e
x
p
o
se

s
c
re

d
e
n

ti
a
ls

to
a

fr
o
n

te
n

d
3
8

1
9
6

T
ra

n
sf

e
r-

E
n
c
o
d
in

g
p

e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

sp
e
c
ifi

e
s

d
a
ta

e
n
c
o
d
in

g
3
9

1
9
2

X
-G

it
H

u
b
-R

e
q
u
e
st

-I
d

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

4
0

1
8
9

T
im

in
g
-A

ll
o
w

-O
ri

g
in

se
c
u

ri
ty

M
a
jo

r:
ca

n
in

tr
o
d
u

ce
si

d
e
-c

h
a
n

n
e
l

a
tt

a
c
k
s

o
n

p
e
rs

o
n

a
li

ze
d

d
a
ta

4
1

1
8
6

R
e
fe

rr
e
r-

P
o
li

c
y

se
c
u

ri
ty

M
a
jo

r:
ca

n
re

st
ri

c
t

th
e

e
x
p
o
se

d
re

fe
rr

e
r

in
fo

rm
a
ti

o
n

4
2

1
8
5

X
-A

m
z
-C

F
-I

d
d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

1
8
5

X
-A

m
z
-C

F
-P

o
p

d
e
b
u
g
g
in

g
M

in
o
r:

se
rv

e
r

id
e
n
ti

fi
e
r

4
3

1
8
2

X
-R

e
q
u
e
st

-I
d

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

4
4

1
7
5

X
-C

a
c
h
e
-H

it
s

d
e
b
u
g
g
in

g
M

in
o
r:

se
rv

e
r

si
d
e

c
a
c
h
in

g
st

a
ti

st
ic

s
4
5

1
7
4

X
-S

e
rv

e
d
-B

y
d
e
b
u
g
g
in

g
M

in
o
r:

li
st

s
C

D
N

c
a
c
h
in

g
se

rv
e
rs

4
6

1
6
6

X
-F

B
-D

e
b
u
g

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

d
e
b
u
g
g
in

g
in

fo
rm

a
ti

o
n

4
7

1
6
3

A
ll
o
w

p
e
rf

o
rm

a
n
c
e

o
p
ti

m
iz

a
ti

o
n

M
in

o
r:

li
st

s
su

p
p

o
rt

e
d

H
T

T
P

m
e
th

o
d
s

4
8

1
3
1

C
o
n
te

n
t-

D
is

p
o
si

ti
o
n

d
a
ta

p
re

se
n
ta

ti
o
n

M
in

o
r:

sp
e
c
ifi

e
s

d
a
ta

p
re

se
n
ta

ti
o
n

1
3
1

X
-A

m
z
-I

d
-2

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

1
3
1

X
-A

m
z
-R

e
q
u
e
st

-I
d

d
e
b
u
g
g
in

g
M

in
o
r:

re
q
u
e
st

id
e
n
ti

fi
e
r

4
9

1
2
7

C
o
n
te

n
t-

L
a
n
g
u
a
g
e

d
a
ta

p
re

se
n
ta

ti
o
n

M
in

o
r:

is
a

C
O

R
S
-s

a
fe

li
st

e
d

re
sp

o
n
se

h
e
a
d
e
r

5
0

1
2
3

X
-T

im
e
r

d
e
b
u
g
g
in

g
M

in
o
r:

m
e
ss

a
g
e

tr
a
n
sp

o
rt

st
a
ti

st
ic

s

T
a

b
le

8
.1

:
T

o
p

5
0

H
T

T
P

h
ea

d
er

s
in

m
o

b
il
e

a
p

p
w

eb
co

m
m

u
n

ic
a

ti
o

n

119

8.2. Results

among the most prevalent header fields, the second column denotes the
number of occurrences in our dataset, the third column presents the header
field name, and the fourth column reveals the purpose. We collected this
information from Mozilla’s Developer Network,3 or, if unavailable, from
websites operated by the corresponding protocol designers that could be
found using Google Search. We proceeded identically for the last column,
which shows the relevance to security for each header field together with
a brief explanation. We highlighted the header fields that are directly
related to security.

We found that the most prevalent header fields serve eight different pur-
poses, i.e., sixteen (30%) allow performance optimization, fourteen (26%)
support debugging, twelve (23%) address security, four (8%) perform ad-
vertisement, four (8%) request data presentation, one (2%) enables cookie
management, one allows content redirection, and, finally, one clarifies pri-
vacy. As we can see, only a subset of them are security-related, i.e., sixteen
header fields (30%). Moreover, only four of them (8%) do not increase se-
curity, but pose a threat by leaking information.

8.2.2 Security-related Header Fields

Within the top 50 fields, we identified sixteen (30%) that may introduce
or resolve a security threat, e.g., fields that can prevent arbitrary code
execution, click-jacking attacks, or data leaks. We considered fields that
leak version information as also being security-related, because such data
can make existing servers an easy target for adversaries. We present the
details in Table 8.2. The first and second columns denote the header field
name and its intended use. The third column cites the relevant specifica-
tion document, where available. The fourth column indicates either the
corresponding threat that the field mitigates, or the threat that a field can
introduce, i.e., a version leak. The fifth column shows the total number
of URLs returning a specific header field in the order total responses

(open-source responses / closed-source responses), and the last
column reveals affected percentage of URLs following the same order.

From a total of 9 714 responses, the Server header field is omnipresent
and included in 72% of them. We observe that X-Powered-By, X-AspNet-
Version, and X-Powered-By-Plesk are less frequently adopted fields,
which were present in 18%, 6% and 3% of the responses, respectively. The
fields X-Content-Type-Options and X-XSS-Protection (both 16%), and
X-Frame-Options (13%) are among the top five most used header fields,
but they only occurred in around every seventh response. Strict-Trans-
port-Security and Expect-CT are rarely used (8% and 3%). Neverthe-
less, whether these fields are relevant for every app is not known and needs
to be investigated in future research.

3Mozilla Developer Network (MDN): HTTP headers, https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers, accessed on 02-MAR-2022

120

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

8.2. Results

H
e
a
d
e
r

U
s
e

S
p

e
c
ifi

c
a
t
io

n
T

h
r
e
a
t

#
R

e
s
p

o
n
s
e
s

%
U

R
L

s
S
e
rv

e
r

S
o
ft

w
a
re

u
se

d
b
y

th
e

o
ri

g
in

se
rv

e
r

to
h
a
n
d
le

th
e

re
q
u
e
st

.
R

F
C

2
6
1
6

[3
2
]

v
e
rs

io
n

le
a
k

6
9
7
8

(9
0
9

/
6

0
6
9
)

7
0
%

(7
4
%

/
7
2
%

)
X

-P
o
w

e
re

d
-B

y
S
p

e
c
ifi

e
s

th
e

te
c
h
n
o
lo

g
y

su
p
p

o
rt

in
g

th
e

w
e
b

a
p
p
li
c
a
ti

o
n
.

n
o
n
-s

ta
n
d
a
rd

v
e
rs

io
n

le
a
k

1
7
7
0

(9
5

/
1

6
7
5
)

1
8
%

(8
%

/
2
0
%

)
X

-C
o
n
te

n
t-

T
y
p

e
-

O
p
ti

o
n
s

C
a
n

b
e

u
se

d
to

re
q
u
ir

e
c
h
e
c
k
in

g
o
f

a
re

sp
o
n
se

’s
“
C

o
n
te

n
t-

T
y
p

e
”

h
e
a
d
e
r

a
g
a
in

st
th

e
d
e
st

in
a
ti

o
n

o
f

a
re

q
u
e
st

.
W

H
A

T
W

G
[4

8
]

c
o
d
e

e
x
e
c
u
ti

o
n

1
6
0
1

(3
3
0

/
1

2
7
1
)

1
6
%

(2
7
%

/
1
5
%

)

X
-X

S
S
-P

ro
te

c
ti

o
n

S
to

p
s

p
a
g
e
s

fr
o
m

lo
a
d
in

g
w

h
e
n

th
e
y

d
e
te

c
t

re
fl

e
c
te

d
c
ro

ss
-s

it
e

sc
ri

p
ti

n
g

(X
S
S
)

a
tt

a
c
k
s.

n
o
n
-s

ta
n
d
a
rd

c
o
d
e

e
x
e
c
u
ti

o
n

1
5
1
9

(3
2
1

/
1

1
9
8
)

1
5
%

(2
6
%

/
1
4
%

)

X
-F

ra
m

e
-O

p
ti

o
n
s

In
d
ic

a
te

s
a

p
o
li

c
y

th
a
t

sp
e
c
ifi

e
s

w
h
e
th

e
r

th
e

b
ro

w
se

r
sh

o
u
ld

re
n
d
e
r

th
e

tr
a
n
sm

it
te

d
re

so
u
rc

e
w

it
h
in

a
<

fr
a
m

e
>

o
r

a
n

<
if

ra
m

e
>

.
R

F
C

7
0
3
4

[8
3
]

c
li
c
k
-j

a
c
k
in

g
1

2
8
9

(3
1
7

/
9
7
2
)

1
3
%

(2
6
%

/
1
1
%

)

A
c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-
O

ri
g
in

In
d
ic

a
te

s
w

h
e
th

e
r

a
re

so
u
rc

e
c
a
n

b
e

sh
a
re

d
b
a
se

d
b
y

re
tu

rn
in

g
th

e
v
a
lu

e
o
f

th
e

O
ri

g
in

re
q
u
e
st

h
e
a
d
e
r,

“
*
,”

o
r

“
n
u
ll
”

in
th

e
re

sp
o
n
se

.
W

H
A

T
W

G
[4

8
]

d
a
ta

le
a
k

9
1
6

(1
4
1

/
7
7
5
)

9
%

(1
1
%

/
9
%

)

S
tr

ic
t-

T
ra

n
sp

o
rt

-
S
e
c
u
ri

ty

In
d
ic

a
te

s
to

a
U

A
th

a
t

it
M

U
S
T

e
n
fo

rc
e

th
e

H
S
T

S
P

o
li
c
y

in
re

g
a
rd

s
to

th
e

h
o
st

e
m

it
ti

n
g

th
e

re
sp

o
n
se

m
e
ss

a
g
e

c
o
n
ta

in
in

g
th

is
h
e
a
d
e
r

fi
e
ld

.
R

F
C

6
7
9
7

[4
1
]

d
a
ta

le
a
k

7
8
7

(2
5
1

/
5
3
6
)

8
%

(2
0
%

/
6
%

)

U
p
g
ra

d
e

In
te

n
d
e
d

to
p
ro

v
id

e
a

si
m

p
le

m
e
c
h
a
n
is

m
fo

r
tr

a
n
si

ti
o
n
in

g
fr

o
m

H
T

T
P

/
1
.1

to
so

m
e

o
th

e
r

p
ro

to
c
o
l

o
n

th
e

sa
m

e
c
o
n
n
e
c
ti

o
n
.

R
F

C
7
2
3
0

[3
1
]

d
a
ta

le
a
k

6
0
1

(0
/

6
0
1
)

6
%

(0
%

/
7
%

)

X
-A

sp
N

e
t-

V
e
rs

io
n

A
st

a
te

se
rv

e
r

im
p
le

m
e
n
ta

ti
o
n

in
d
ic

a
te

s
w

h
ic

h
v
e
rs

io
n

o
f

th
e

st
a
te

se
rv

e
r

is
u
si

n
g

th
is

re
sp

o
n
se

h
e
a
d
e
r.

n
o
n
-s

ta
n
d
a
rd

v
e
rs

io
n

le
a
k

5
3
8

(3
8

/
5
0
0
)

5
%

(3
%

/
6
%

)

C
o
n
te

n
t-

S
e
c
u
ri

ty
-

P
o
li
c
y

P
re

fe
rr

e
d

m
e
c
h
a
n
is

m
fo

r
d
e
li
v
e
ri

n
g

a
p

o
li
c
y

fr
o
m

a
se

rv
e
r

to
a

c
li
e
n
t.

W
3
C

[1
0
4
]

c
o
d
e

e
x
e
c
u
ti

o
n

5
1
7

(1
7
6

/
3
4
1
)

5
%

(1
4
%

/
4
%

)

A
c
c
e
ss

-C
o
n
tr

o
l-

E
x
p

o
se

-H
e
a
d
e
rs

In
d
ic

a
te

s
w

h
ic

h
h
e
a
d
e
rs

c
a
n

b
e

e
x
p

o
se

d
a
s

p
a
rt

o
f

th
e

re
sp

o
n
se

b
y

li
st

in
g

th
e
ir

n
a
m

e
s.

W
H

A
T

W
G

[4
8
]

d
a
ta

le
a
k

3
3
6

(2
3

/
3
1
3
)

3
%

(2
%

/
4
%

)

E
x
p

e
c
t-

C
T

A
ll
o
w

s
w

e
b

h
o
st

o
p

e
ra

to
rs

to
d
is

c
o
v
e
r

m
is

c
o
n
fi

g
u
ra

ti
o
n
s

in
th

e
ir

c
e
rt

ifi
c
a
te

tr
a
n
sp

a
re

n
c
y

d
e
p
lo

y
m

e
n
ts

.
IE

T
F

[9
1
]

d
a
ta

le
a
k

3
3
2

(1
4
7

/
1
8
5
)

3
%

(1
2
%

/
2
%

)

X
-P

o
w

e
re

d
-B

y
-P

le
sk

A
d
v
e
rt

is
e
s

th
e

u
se

d
P

le
sk

se
rv

e
r

so
ft

w
a
re

.
n
o
n
-s

ta
n
d
a
rd

v
e
rs

io
n

le
a
k

2
5
5

(0
/

2
5
5
)

3
%

(0
%

/
3
%

)
A

c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-
C

re
d
e
n
ti

a
ls

In
d
ic

a
te

s
w

h
e
th

e
r

th
e

re
sp

o
n
se

c
a
n

b
e

sh
a
re

d
w

h
e
n

re
q
u
e
st

’s
c
re

d
e
n
ti

a
ls

m
o
d
e

is
“
in

c
lu

d
e
.”

W
H

A
T

W
G

[4
8
]

d
a
ta

le
a
k

2
0
5

(7
/

1
9
8
)

2
%

(1
%

/
2
%

)

T
im

in
g
-A

ll
o
w

-O
ri

g
in

D
e
fi

n
e
s

a
n

in
te

rf
a
c
e

fo
r

w
e
b

a
p
p
li
c
a
ti

o
n
s

to
a
c
c
e
ss

th
e

c
o
m

p
le

te
ti

m
in

g
in

fo
rm

a
ti

o
n

fo
r

re
so

u
rc

e
s

in
a

d
o
c
u
m

e
n
t

W
3
C

[1
0
3
]

d
a
ta

le
a
k

1
8
9

(1
6

/
1
7
3
)

2
%

(1
%

/
2
%

)

R
e
fe

rr
e
r-

P
o
li
c
y

W
h
il
e

th
e

h
e
a
d
e
r

c
a
n

b
e

su
p
p
re

ss
e
d

fo
r

li
n
k
s

w
it

h
th

e
n
o
re

fe
r-

re
r

li
n
k

ty
p

e
,

a
u
th

o
rs

m
ig

h
t

w
is

h
to

c
o
n
tr

o
l

th
e

R
e
fe

re
r

h
e
a
d
e
r

m
o
re

d
ir

e
c
tl

y
.

W
3
C

[2
7
]

d
a
ta

le
a
k

1
8
6

(7
9

/
1
0
7
)

2
%

(6
%

/
1
%

)

T
a

b
le

8
.2

:
S

ec
u

ri
ty

-r
el

a
te

d
H

T
T

P
h

ea
d

er
fi

el
d

s
fo

u
n

d
in

se
rv

er
re

sp
o

n
se

s
so

rt
ed

b
y

th
ei

r
p

re
va

le
n

ce

121

8.2. Results

When comparing open and closed-source app URLs, we observed that
open-source apps are slightly better. For example, the Strict-Transport-
Security field was more common in open-source app responses, even
by considering the more extensive use of HTTPS connections. Simi-
larly, some well-known security-related HTTP header fields were more
prevalent in open-source server responses, e.g., X-Content-Type-Options,
Content-Security-Policy, X-Frame-Options, and X-XSS-Protection.

8.2.3 Security Smells in HTTP Clients

We report security smells in HTTP clients based on our findings in Ta-
ble 8.3. One of these HTTP client-related smells, namely Unsupported
HSTS, has been mentioned in subsection 6.3.2, however in this chapter we
focus particularly in the context of a HTTP client. For a feature, i.e., a
security-related header field that is fully supported we use the symbol 4,
and for those with limited support (4). Limited support refers to features
that only have partial support, e.g., only selected options are implemented,
the implementation has not yet been released, or the corresponding logic
is only available as stub, i.e., the most frequent header fields4 are parsed,
but not evaluated. We use the symbol 6 for unsupported features.

The following software releases have been evaluated in this study: Glide
4.7.0 from February 2018, HttpComponents 5.1 from August 2021, Ion
from November 2020, LoopJ 1.4.9 from January 2021, OkHttp from August
2021, RetroFit from August 2021, Volley 1.2.1 from August 2021, URL-
Connection, HttpUrlConnection, HttpsUrlConnection, and Socket, each in
OpenJDK 18 from August 2021, Android WebView 90 from April 2021,
Google Chrome 92 from August 2021, Microsoft Edge 92 from August
2021, and finally, Mozilla Firefox 91 from August 2021. The only HTTP
clients that contain closed-source components are Google Chrome and Mi-
crosoft Edge, which both rely on the open-sourced Chromium rendering
engine, however they have propretiary customizations, e.g., vendor account
synchronization.

The support for versioning information features (Server, X-AspNet-
Version, X-Powered-By, X-Powered-By-Plesk) remains incomplete across
the different softwares: although the header field is accessible in almost all
tested API clients, no further routines are available to dynamically react
on them, e.g., by disrupting connections to insecure servers.

HttpComponents has only stubs with no provided logic behind some
security-related header fields, however it is one of the few clients that
contains code to treat multiple different scenarios of the Upgrade field, e.g.,
a connection protocol upgrade from HTTP to HTTPS, from HTTP/1.1
to HTTP/2, or from HTTP to WebSocket.

4Request For Comments (RFC) of the header compression for HTTP/2, https:

//tools.ietf.org/html/rfc7541#appendix-A, accessed on 02-MAR-2022

122

https://tools.ietf.org/html/rfc7541#appendix-A
https://tools.ietf.org/html/rfc7541#appendix-A

8.2. Results

H
e
a
d
e
r

Glide

HttpComponents

Ion

LoopJ

OkHttp

RetroFit

Volley

HttpsURLConnection

HttpURLConnection

Socket

URLConnection

AndroidWebView

GoogleChrome

MicrosoftEdge

MozillaFirefox

S
e
rv

e
r

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

6
(4

)
4

4
4

4

X
-P

o
w

e
re

d
-B

y
(4

)
(4

)
(4

)
(4

)
(4

)
(4

)
(4

)
(4

)
(4

)
6

(4
)

(4
)

(4
)

(4
)

(4
)

X
-C

o
n
te

n
t-

T
y
p

e
-O

p
ti

o
n
s

6
6

6
6

6
6

6
6

6
6

6
4

4
4

4

X
-X

S
S
-P

ro
te

c
ti

o
n

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6

X
-F

ra
m

e
-O

p
ti

o
n
s

6
6

6
6

6
6

6
6

6
6

6
4

4
4

4

A
c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-O
ri

g
in

6
(4

)
6

6
(4

)
6

6
6

6
6

6
4

4
4

4

S
tr

ic
t-

T
ra

n
sp

o
rt

-S
e
c
u
ri

ty
6

(4
)

6
6

(4
)

6
6

6
6

6
6

4
4

4
4

U
p
g
ra

d
e

6
4

6
4

4
6

6
6

6
6

6
4

4
4

4

X
-A

sp
N

e
t-

V
e
rs

io
n

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

6
(4

)
(4

)
(4

)
(4

)
(4

)
C

o
n
te

n
t-

S
e
c
u
ri

ty
-P

o
li
c
y

6
6

6
6

6
6

6
6

6
6

6
4

4
4

4

A
c
c
e
ss

-C
o
n
tr

o
l-

E
x
p

o
se

-H
e
a
d
e
rs

6
(4

)
6

(4
)

6
6

6
6

6
6

6
4

4
4

4

E
x
p

e
c
t-

C
T

6
6

6
6

6
6

6
6

6
6

6
6

4
4

(4
)

X
-P

o
w

e
re

d
-B

y
-P

le
sk

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

(4
)

6
(4

)
(4

)
(4

)
(4

)
(4

)
A

c
c
e
ss

-C
o
n
tr

o
l-

A
ll
o
w

-C
re

d
e
n
ti

a
ls

6
(4

)
6

(4
)

6
6

6
6

6
6

6
4

4
4

4

T
im

in
g
-A

ll
o
w

-O
ri

g
in

6
6

6
6

6
6

6
6

6
6

6
4

4
4

4

R
e
fe

rr
e
r-

P
o
li

c
y

6
6

6
6

6
6

6
6

6
6

6
4

4
4

4

T
a

b
le

8
.3

:
S

u
p

p
or

t
o

f
H

T
T

P
se

cu
ri

ty
-r

el
a

te
d

h
ea

d
er

fi
el

d
s

fo
r

fr
a

m
ew

or
k

s,
Ja

va
cl

a
ss

es
,

a
n

d
w

eb
b

ro
w

se
rs

123

8.2. Results

Security Smell: Unsupported connection up-
grades

Only a few HTTP clients support connection upgrades to secure
communication.
Therefore, communication may remain unprotected [92].
Recommendation: If a client detects an insecure connection, it
should try to upgrade to a secure connection.

Furthermore, within the past six months we could see that the num-
ber of security-relevant header field stubs has continuously increased in
HttpComponents and OkHttp, e.g., the Access-Control-Allow-Origin

and the Strict-Transport-Security field are now explicitly parsed, al-
though still not evaluated, which has not been the case before. Since
LoopJ is based on HttpComponents it has access to the same feature set,
but unfortunately it currently uses an older release with fewer features.

Security Smell: Abandoned HTTP client

Some of the used HTTP clients seem abandoned and do not any-
more receive frequent updates.
Therefore, they increasingly lack support for essential security fea-
tures [100].
Recommendation: They should not be used.

We can further see that the HSTS policy has been considered for the
OkHttp client: there exists a feature request ticket from February 2017 in
Square’s GitHub product page asking for HSTS support.5 Unfortunately,
although the feature has apparently been implemented in some internal
developer builds, it has not yet found its way into the production releases.

Security Smell: Unsupported HSTS

No evaluated HTTP client does fully support HSTS policies, al-
though this feature has been discussed and partially implemented
in one of the major HTTP clients.
Therefore, users remain unprotected against man-in-the-middle at-
tacks [51].
Recommendation: HTTP clients should fully support this feature.

Finally, the Socket class is different from the other contenders, be-
cause it is mainly built for low-level network communication that does not
consider any information from the ISO/OSI layers four or higher that are
required for HTTP headers.

5OkHttp issue #3170: support HSTS, https://github.com/square/okhttp/

issues/3170, accessed on 02-MAR-2022

124

https://github.com/square/okhttp/issues/3170
https://github.com/square/okhttp/issues/3170

8.3. Threats to Validity

To summarize, we can see that support for header fields barely exists
among HTTP client libraries, however, the opposite is true for all web
browsers: they support all features with only a few exceptions, e.g., for
obsolete header fields.

8.3 Threats to Validity

Selection of URLs. The foremost threat to validity of this study is the
selection bias, i.e., whether the selection of URLs is representative. The
authors of the URL extraction study strived to collect URLs from more
than three thousand random apps from various categories in order to ob-
tain relevant results. The analyzed apps were popular and achieved many
downloads. Our decision to include URLs that point to the same server,
but use a different path or query parameter ensures that every server is
accessed, however it might introduce false positives when the same server
is serving multiple endpoints.

Dataset accuracy. Our analyzer that was used to build the list of URLs
suffers from the inherent limitations of static code analysis. Moreover,
the pre-processed list may suffer from inconsistencies due to their rather
opportunistic approach, e.g., broken variable assignments, etc. However,
the URLs generally do not need to be very accurate to retrieve reasonable
results; when the domain and the path are correct, the different query
parameters generally point to the same server.

Selection of header fields. We only considered security header fields
that were prevalent in the received HTTP responses and did not scrutinize
other header fields. As a result, we missed, for example, the outdated
header field Public-Key-Pins, which has been used for certificate pinning
before Expect-CT became available. We only queried the servers with the
most commonly used HTTP GET request method, but not other methods
such as PUT, DELETE, or POST, which are less prevalent. Moreover,
we used the default settings of the curl application, where not otherwise
specified, to collect the headers, which can alter the results if a server
reacts differently depending on the transmitted user agent.

Library support for security-related header fields. Where available, we
searched in the source code for the support of particular header fields, i.e.,
we checked whether a header field name exists. Although a match likely
indicates that the header field is at least partially supported, its absence
does not necessarily indicate that it is unsupported, although it is very
likely. We tried to mitigate this risk by intensively investigating the found
matches, and by manually skimming relevant classes for such logic.

Sensitive data. Finally, we assume that every communication involves
the transmission of sensitive data and should be secure, which is not always
true. However, the detection of data sensitivity is a non-trivial task and
not part of this work.

125

8.4. Conclusion

8.4 Conclusion

We collected the HTTP response header information from 9 714 distinct
URLs found in 3 376 Android apps. We discovered that, on average, 93%
of the security-related headers are not used in server responses, indicating
great potential for future improvements. We also found that unlike major
web browsers, the support for such fields in HTTP client libraries is very
limited, and that server responses for mobile apps frequently lack them.
We encourage a more comprehensive use of existing HTTP headers and
timely development of relevant web browser security features in HTTP
client libraries.

126

Chapter 9

Effective Holistic Security for Mobile
Apps

In the previous five chapters we investigated security smells in different do-
mains, i.e., Android, Android ICC, web communication, app servers, and
HTTP clients used in mobile apps. We observed that many of the reported
security smells have unique remedies and require additional context, and
thus their consideration is time consuming and error prone.

A potential solution to this problem is that of effective security mea-
sures that can prevent or resolve multiple security smells at once. In an
app, for example, where all user input containing distinct features of a
computer language is blocked, many, if not most code injection attacks
could be effectively repelled. However, we do not yet genuinely know how
such measures should look since we first have to understand the interaction
of security smells with common threats, i.e., how large their support is for
attacks that have been launched in practice. With this knowledge, we can
then reason about the key characteristics required by security measures
that can address several related attacks at once, and thus could provide
holistic security for mobile apps.

To assess this information, we utilize a comprehensive classification
taxonomy of known attacks that have been launched in the wild, i.e., the
Mitre Common Attack Pattern Enumeration and Classification (CAPEC)
taxonomy.1 The taxonomy defines nine major categories of attack mech-
anisms that group meta, standard, and detailed attack mechanisms based
on some common characteristic. All these attack mechanisms are cate-
gories of attacks that are used to classify CVE vulnerability reports.

Therefore, in the remainder of this chapter we will simply use the term
“category” wherever we refer to a particular category of attack mecha-
nisms, i.e., we refer to the standard category wherever we use the term

1CAPEC view: attack mechanisms (version 3.7), https://capec.mitre.org/data/
definitions/1000.html, accessed on 19-MAR-2022

127

https://capec.mitre.org/data/definitions/1000.html
https://capec.mitre.org/data/definitions/1000.html

without the words “major,” “meta,” or “detailed” beforehand.
The terminology of major, meta, standard, and detailed categories

originates from CAPEC and they are organized as hierarchy, however the
resulting hierarchy is not balanced, and not always consistent in terms of
hierarchy levels that correspond to a particular category, except for the
major and the meta categories. The used taxonomy is shown in Table 9.1,
which is continued in Table 9.2 where the nine major categories are em-
phasized in bold, the meta categories are emphasized in italics, and the
standard or detailed categories are displayed using the default typeface.
A typical example of a rather abstract major category is Inject unexpected
items, which encompasses all categories related to data injection attacks.
Meta categories are subordinate to the major categories and thus more
concrete, e.g., those related to Inject unexpected items are Code inclusion,
Code injection, Command injection, Hardware fault injection, Local execu-
tion of code, and Object injection. Standard categories are subordinate to
meta categories and are even more concrete with respect to a particular
attack. For example, the meta category Code injection encompasses the
standard category Cross-site scripting (XSS), Embedding scripts within
scripts, File content injection, Generic cross-browser cross-domain theft,
and Using meta-characters in email headers to inject malicious payloads.

We manually investigated the impact of our 51 security smells on 192
standard categories, which led to 9 792 combinations that had to be evalu-
ated. After that, we further condensed the results of all standard categories
to the nine superordinate major categories to better identify important
findings. We found four major threats that Android users face from our
reported security smells. With these findings in mind, we start a discus-
sion about effective holistic security and investigate suitable remediation
strategies such as more secure default values, safer best practices, and
smart data types, which we discuss in more detail in the two following
chapters.

In this chapter, we address the following research questions:
RQ1: Which security smells enable what attack mechanisms? After

we established the correlation of all security smells with the attack mech-
anisms, we found that insecure algorithms, the abuse of existing function-
ality, data leaks, and user deception are the four major threats when using
Android. Particularly dangerous are weak crypto algorithms and configu-
rations, which enable the employment of attack mechanisms that depend
on probabilistic techniques, and exposed Adb-level capability that fosters
acquisition of sensitive resources.

RQ2: What are holistic security strategies that can effectively prevent
attack mechanisms? We explain the concept of effective and holistic secu-
rity in the context of mobile apps and elaborate strategies with respect to
the four most affected major categories considering the results of RQ1. We
see most potential in secure default values and safer practices to prevent
feature misuse in the Android ecosystem. We realized further that string

128

9.1. Attack Mechanisms

variables are responsible for most issues that relate to the employment
of probabilistic methods and the injection of unexpected items, and thus
they need increased protection.

In the remainder of this chapter, we discuss the attack mechanisms
in section 9.1, and present the related empirical study in section 9.2, be-
fore we discuss effective security in section 9.3 and holistic security in sec-
tion 9.4. We then take a short detour in section 9.5 to focus on Android
OS security where we establish a security triad that can illustrate the cur-
rent conflict of concerns. We report the threats to validity in section 9.6,
and conclude in section 9.7.

9.1 Attack Mechanisms

CVE is maintained by the Mitre corporation and is the largest publicly
accessible vulnerability database [85]. Mitre used this knowledge to build a
comprehensive dictionary and classification taxonomy of known attacks,2

i.e., Common Attack Pattern Enumeration and Classification (CAPEC)
database. With nine major categories CAPEC encompasses 192 different
standard categories that have been observed in the wild.

Although it is not explicitly mentioned for the categories, some of the
reported categories can have more reach than others, e.g., categories such
as phishing can be used in distributed attacks to address millions of po-
tential victims simultaneously. Preferred targets of such categories are in-
ternational companies to extort ransom, the distribution of spam emails,
and the creation of fake internet traffic such as simulated clicks on ads to
increase any impact-based revenue for the adversary [6].

To make the comprehensive taxonomy more tangible to the reader, we
use a popular scenario, i.e., an adversary that tampers with crypto money,
to briefly illustrate how typical categories relate to the nine major CAPEC
categories, which are emphasized in bold.

• Abuse existing functionality. An adversary could trick a crypto
service provider to illegally transfer funds, or flood network interfaces
to delay transaction acknowledgments of block chain computations
that can enable further attacks.

• Collect and analyze information. An adversary probes the API
servers of a crypto provider to discover potential vulnerabilities that
can be exploited to finally take them over. Another example is the
interception of network traffic: an adversary intercepts communica-
tion between a user and the crypto provider to exfiltrate the used
credentials that eventually enable the theft of the user’s crypto wal-
let.

2CVE: CVE-CWE-CAPEC relationships, https://cve.mitre.org/cve_cwe_

capec_relationships, accessed on 19-MAR-2022

129

https://cve.mitre.org/cve_cwe_capec_relationships
https://cve.mitre.org/cve_cwe_capec_relationships

9.1. Attack Mechanisms

Abuse existing functionality Information elicitation
Communication channel manipulation Pretexting

Choosing message identifier Interception
Exploiting incorrectly configured SSL/TLS Android intent intercept

Excessive allocation Eavesdropping
ICMP fragmentation Sniffing attacks
Oversized serialized data payloads Protocol analysis
Regular expression exponential blowup Cryptanalysis
Serialized data with nested payloads Reverse engineering
SOAP array blowup Black box reverse engineering
TCP fragmentation White box reverse engineering
UDP fragmentation

Flooding Employ probabilistic techniques
Amplification Brute force
BlueSmacking Encryption brute forcing
HTTP flood Password brute forcing
ICMP flood Fuzzing
SSL flood Fuzzing for application mapping
TCP flood
UDP flood Engage in deceptive interactions
XML flood Action spoofing

Functionality bypass Android activity hijack
Calling micro-services directly Clickjacking
Evercookie Tapjacking
Transparent proxy abuse Task impersonation

Functionality misuse Content spoofing
Drop encryption level Checksum spoofing
Inducing account lockout Counterfeit GPS signals
JSON hijacking (a.k.a. JavaScript hijacking) Intent spoof
Passing local filenames to functions that expect a URL Spoofing of UDDI/ebXML messages
Password recovery exploitation Identity spoofing

Interface manipulation Fake the source of data
Exploit non-production interfaces Pharming
Exploit script-based APIs Phishing
Try all common switches Principal spoof
Using unpublished interfaces Signature spoof

Protocol manipulation Manipulate human behavior
Client-server protocol manipulation Influence perception
Data interchange protocol manipulation Influence via incentives
Inter-component protocol manipulation Influence via psychological principles
Reflection attack in authentication protocol Pretexting
Web services protocol manipulation Target influence via framing

Resource leak exposure Resource location spoofing
Sustained client engagement Establish rogue location

HTTP DoS Redirect access to libraries

Collect and analyze information Inject unexpected items
Excavation Code inclusion

Collect data as provided by users Local code inclusion
Collect data from common resource locations Remote code inclusion
Pull data from system resources Code injection
Query system for information Cross-site scripting (XSS)
Retrieve data from decommissioned devices Embedding scripts within scripts

Fingerprinting File content injection
Active OS fingerprinting Generic cross-browser cross-domain theft
Application fingerprinting Using meta-characters in email headers ...
Passive OS fingerprinting Command injection

Footprinting IMAP/SMTP command injection
Account footprinting LDAP injection
File discovery Manipulating writeable terminal devices
Group permission footprinting NoSQL injection
Host discovery OS command injection
Malware-directed internal reconnaissance SQL injection
Network topology mapping XML injection
Owner footprinting Hardware fault injection
Peripheral footprinting Mobile device fault injection
Port scanning Local execution of code
Process footprinting Targeted malware
Services footprinting Object injection
System footprinting (continues in Table 9.2)

Table 9.1: The attack mechanisms according to the Mitre CAPEC, version 3.7

130

9.1. Attack Mechanisms

Inject unexpected items (continued) Software integrity attack
Parameter injection Alteration of a software update

Argument injection Exploitation of transient instruction execution
Command delimiters Malicious software download
Email injection Malicious software update
Flash injection
Format string injection Manipulate timing and state
Reflection injection Forced deadlock

Resource injection Leveraging race conditions
Cellular data injection Leveraging TOCTOU race conditions

Traffic injection Manipulating state
Connection reset Bypassing of intermediate forms in multiple-...

Exploitation of transient instruction execution
Manipulate data structures
Buffer manipulation Subvert access control

Overflow buffers Adversary in the middle (AiTM)
Overread buffers Adversary in the browser (AiTB)

Input data manipulation Application API message manipulation via ...
Integer attacks Application API navigation remapping
Leverage alternate encoding Leveraging active AiTM attacks ...
Path traversal XML routing detour attacks

Pointer manipulation Authentication abuse
Shared resource manipulation Reflection attack in authentication protocol

Unauthorized use of device resources
Manipulate system resources Authentication bypass
Configuration/environment manipulation Escaping virtualization

Data injected during configuration Forceful browsing
Disable security software Key negotiation of Bluetooth attack (KNOB)
Manipulate registry information Server side request forgery
Manipulating writeable configuration files Web services API signature forgery leverag. ...
Schema poisoning Bypassing physical security

Contaminate resource Bypassing electronic locks and access controls
File manipulation Bypassing physical locks

Alternative execution due to deceptive filenames Exploitation of trusted identifiers
Artificially inflate file sizes Cross site request forgery
Hiding malicious data or code within files SaaS user request forgery
User-controlled filename Session credential falsification through forging

Hardware integrity attack Session hijacking
Malicious hardware update Exploiting trust in client
Physically hacking hardware Create malicious client

Infrastructure manipulation Manipulating opaque client-based data tokens
Audit log manipulation Manipulating user-controlled variables
Block logging to central repository Removing important client functionality
Cache poisoning Physical theft
Contradictory destinations in traffic routing schemes Privilege abuse
Force the system to reset values Accessing functionality not properly constr. ...

Malicious logic insertion Data serialization external entities blowup
Infected hardware Exploiting incorrectly configured access ...
Infected memory Using malicious files
Infected software WebView exposure

Manipulation during distribution Privilege escalation
Malicious hardware component replacement Cross zone scripting
Malicious software implanted Hijacking a privileged process
Rogue integration procedures Hijacking a privileged thread of execution

Modification during manufacture Subvert code-signing facilities
Design alteration Target programs with elevated privileges
Development alteration Use of known domain credentials

Obstruction Credential stuffing
Blockage Remote services with stolen credentials
Jamming Use of known Kerberos credentials
Physical destruction of device or component Use of known Windows credentials
Route disabling

Table 9.2: The attack mechanisms according to the Mitre CAPEC, version 3.7 (continued)

131

9.1. Attack Mechanisms

• Employ probabilistic techniques. An adversary uses a proba-
bilistic technique to decrypt a protected crypto wallet, e.g., by per-
forming a brute force attack on the used password. Another prob-
abilistic method is fuzzing, which uses generated values to identify
failures and ultimately weaknesses in a system, e.g., crypto web API
service.

• Engage in deceptive interactions. An adversary deceives a user
in malicious interactions such as a tap on a link from a spam email
that leads to a phishing site. The process of deception is very broad
and includes, for example, social engineering with the help of incen-
tives or psychological principles to steal crypto funds.

• Inject unexpected items. An adversary exploits a code injection
vulnerability to the crypto provider’s web API to access user data
and funds. A related technique is code inclusion that involves the
addition or replacement of file references to executable code, e.g.,
when a crypto app stores the wallet data using a referenced XML
schema. If the adversary could alter that reference to point to a
destination of choice, the app may receive an unexpected response
and behave irregularly.

• Manipulate data structures. An adversary manipulates a shared
resource, e.g., the crypto wallet of an app to perform illicit crypto
transactions. Moreover, this major category is about categories that
rely on the execution of native code and cause overflowed or overread
buffers, or use any kind of malicious memory pointer manipulation.

• Manipulate system resources. An adversary performs software
or hardware manipulations on a mobile device, e.g., during the man-
ufacture or distribution, to remotely control the device when it is
used for crypto transactions. Such manipulations aim at the OS,
application data, security configurations, or the infrastructure, to
name a few.

• Manipulate timing and state. An adversary exploits application
bugs to trigger a deadlock of the app or device to, for example,
delay a crypto transaction or prolong the time available to steal
a user’s crypto wallet. Furthermore, this major category includes
the manipulation of state, e.g., the overriding of browser cookies or
integrity checks that could reveal such adversarial actions.

• Subvert access control. An adversary tries to subvert access con-
trol features to steal the funds in a user’s crypto wallet, e.g., by using
a malicious web browser plug-in that can perform an adversary in
the middle (AiTM) attack to re-route crypto transactions. The ad-
versary could further try to bypass broken authentication protocols.

132

9.2. Empirical Study

9.2 Empirical Study

We first explain the used methodology before we report our findings.

9.2.1 Methodology

We read the description of each meta and standard category, i.e., in total
192 different categories, and evaluated them for each of the 51 security
smells that we identified in this work. Since not every meta category has
a subordinate category, we consider such meta categories also as standard
category to not miss any meta category in the subsequent analyses. In
addition, we consider a detailed category a standard category, if and only
if it resides in the same hierarchy level in the CAPEC taxonomy. Where a
given category was lacking context to be fully understandable, we iterated
over the peers and their descriptions to gather additional information. In
the end, we evaluated 9 792 security smell and standard category combina-
tions, and decided for each smell whether it is unlikely, neutral, or likely to
enable a particular category. Since we had to perform discrete decisions to
make it easier to abstract the data, we assigned the value zero to threats
that are unlikely to emerge from a particular security smell, the value 0.5
to threats that we expect to emerge occasionally from a particular security
smell, and the value one for a threat that is likely to emerge from a partic-
ular security smell. These decisions were taken objectively based on the
descriptions of the categories and the security smells in the appropriate
chapters. The entire dataset is available online.3

There are smell and standard category combinations, which are not
trivial to decide. For example, on the one hand, we determined that the
security smell “Unacknowledged distribution” is unlikely to have an im-
pact on the category “Choosing message identifier” since the app package
identifier should remain identical regardless whether an app is installed
from the Play store, or side-loaded by the user. On the other hand, we
determined the smell “Unauthorized intent receipt” likely to have an im-
pact on that specific category, because the availability of an implicit intent
receiver implies that other apps can choose a message identifier to access
that receiver, which lacks authorization. 48 categories (25%) were unre-
lated to our work, i.e., every security smell was determined to have unlikely
an effect on all of these categories. Typical examples of unrelated cate-
gories are: Physical theft, Bypassing physical locks, or Jamming, i.e., an
adversary uses radio noise or signals in an attempt to disrupt communi-
cations. The reasoning for every combination may introduce threats to
validity, and therefore a follow-up peer review is recommended to validate
the following preliminary results.

3Figshare: evaluation of security smells against CAPEC, https://figshare.com/
s/deb1a1983b956677fa2d, accessed on 23-MAR-2022

133

https://figshare.com/s/deb1a1983b956677fa2d
https://figshare.com/s/deb1a1983b956677fa2d

9.2. Empirical Study

Domain ID Name A
b
u
s
e

e
x
is

t
in

g
fu

n
c
t
io

n
a
li
ty

C
o
ll
e
c
t

a
n
d

a
n
a
ly

z
e

in
fo

r
m

a
t
io

n

E
m

p
lo

y
p
r
o
b
a
b
il
is

t
ic

t
e
c
h
n
iq

u
e
s

E
n
g
a
g
e

in
d
e
c
e
p
t
iv

e
in

t
e
r
a
c
t
io

n
s

In
je

c
t

u
n
e
x
p

e
c
t
e
d

it
e
m

s

M
a
n
ip

u
la

t
e

d
a
t
a

s
t
r
u
c
t
u
r
e
s

M
a
n
ip

u
la

t
e

s
y
s
t
e
m

r
e
s
o
u
r
c
e
s

M
a
n
ip

u
la

t
e

t
im

in
g

a
n
d

s
t
a
t
e

S
u
b
v
e
r
t

a
c
c
e
s
s

c
o
n
t
r
o
l

Android A01 Unreliable Information Source
Android A02 Untrustworthy Library
Android A03 Outdated Library
Android A04 Native Code
Android A05 Open to Piggybacking
Android A06 Unnecessary Permission
Android A07 Weak Crypto Algorithm
Android A08 Weak Crypto Configuration
Android A09 Unpinned Certificate
Android A10 Improper Certificate Validation
Android A11 Unacknowledged Distribution
Android A12 Unauthorised Intent Receipt
Android A13 Unconstrained ICC
Android A14 Unprotected Unix Domain Socket
Android A15 Exposed Adb-level Capability
Android A16 Debuggable Release
Android A17 Custom Scheme Channel
Android A18 Header Attachment
Android A19 Unique Hardware Identifier
Android A20 Exposed Clipboard
Android A21 Exposed Persistent Data
Android A22 Insecure Network Protocol
Android A23 Exposed Credential
Android A24 Data Residue
Android A25 XSS-like Code Injection
Android A26 Broken WebView’s Sandbox
Android A27 Dynamic Code Loading
Android A28 SQL Injection
Android ICC B01 Persisted Dynamic Permission
Android ICC B02 Custom Scheme Channel
Android ICC B03 Incorrect Protection Level
Android ICC B04 Unauthorized Intent
Android ICC B05 Sticky Broadcast
Android ICC B06 Slack WebViewClient
Android ICC B07 Broken Service Permission
Android ICC B08 Insecure Path Permission
Android ICC B09 Broken Path Permission Precedence
Android ICC B10 Unprotected Broadcast Receiver
Android ICC B11 Implicit Pending Intent
Android ICC B12 Common Task Affinity
Web comm. C01 Credential Leak
Web comm. C02 Embedded Languages
Web comm. C03 Insecure Transport Channel
Web comm. C04 Disclosure of Source Code
Web comm. C05 Disclosure of Version Information
Web comm. C06 Lack of Access Control
Web comm. C07 Missing HTTPS Redirects
Web comm. C08 Missing HSTS
HTTP clients D01 Unsupported Connection Upgrades
HTTP clients D02 Abandoned HTTP Client
HTTP clients D03 Unsupported HSTS

Ranking of major categories enabled by security smells 2 3 1 3 4 4 5 6 4

Figure 9.1: Security smells categorized by the CAPEC taxonomy

134

9.3. Effective Security Measures

9.2.2 Findings

We present our findings in Figure 9.1, where the y-axis lists all of our
security smells and the x-axis represents the CAPEC taxonomy. For each
major category, we accumulated the values, i.e., zero, 0.5, or one of all
subordinate standard categories and divided them by their number to
receive an average value, i.e., a value in the range [0,1]. This linear value
is then used to determine the red shade of the corresponding cell in the
table, i.e., white indicates no correlation, and bold red indicates maximal
correlation. In other words, the colours only reflect correlation, but not
frequency in practice. The bottom row presents the ranking from most (1)
to least (6) impacted major CAPEC category and is based on the average
value of the accumulated values in the corresponding column.

We can see that most affected are the major CAPEC categories “Em-
ploy probabilistic techniques,” “Abuse existing functionality,” “Collect
and analyze information,” and “Engage in deceptive interactions.” Cat-
egories that relate to the employment of probabilistic techniques are pri-
marily enabled by the security smells related to weak crypto algorithms or
configurations, and by unreliable information sources as well as untrust-
worthy or outdated libraries, because the requirements for secure encryp-
tion may change over time. Moreover, exposed Adb-interfaces are major
enablers of attacks related to data leaks, and attacks leveraging manipu-
lated data structures seem to have more potential in apps that suffer from
smells that relate to unreliable information sources and untrustworthy or
outdated libraries, and similarly, attacks that engage in deceptive interac-
tions especially seem to benefit from the task affinity security smell. On
contrary, security smells barely introduce threats that leverage manipu-
lated timing and state, and the smells regarding unique hardware identi-
fiers, exposed clipboard content, and persisted dynamic permissions seem
to favor only few categories.

9.3 Effective Security Measures

When we recap the findings of the previous section, we can observe a
high correlation of some smells with selected major categories. Vice-versa,
we can observe a high correlation of some major categories with selected
smells. We argue that it is reasonable to evaluate strategies against major
categories, because their subordinate categories do relate technically and
thus we have an increased chance that one measure can prevent multiple
standard categories. The four most affected major categories are respon-
sible for more than 70% of the positive correlations. Therefore, we expect
that remedies against these four major categories could greatly increase
the mobile app security. We turn these major category titles into four
questions that indicate our intended goals:

i) How can we prevent the use of probabilistic techniques?

135

9.3. Effective Security Measures

Network-domain

Content delivery networks

Cloudflare security gateways

Network communication protocols

...

Server-domain
Operator A
Microsoft Windows Server OS
Microsoft IIS web server
Microsoft SQL database server

Front-end logic
Back-end logic

...

Server-domain

Operator B
Ubuntu Server OS

Apache web server

PostgreSQL SQL database server

Front-end logic
Back-end logic
...

Client-domain

Android OS

OkHttp JSON library
Google Gson JSON library

WebView web library
Memory card support
NFC functionality
App logic
...

Holistic-domain

Figure 9.2: A holistic domain of mobile apps

ii) How can we prevent the abuse of existing functionality?

iii) How can we prevent the engagement in deceptive interactions?

iv) How can we prevent the collection and analysis of information?

Based on our observations during the data gathering for this thesis, we
see for these four questions three effective remediation strategies:

i) The use of secure default values. Probabilistic techniques can
be employed in unsafe configurations. Unsafe configurations can be
a result of people that use the provided default values to make code
just work with the least effort required. If a platform operator would
consistently set secure default values, such issues would effectively
be mitigated. This has already been proposed by researchers [80],
however there still seem to exist problems in the Android ecosystem.
Examples of secure default values are discussed in the next chapter.

ii) The enforcement of safe practices. Unsafe configurations, the
abuse of existing functionality, and deceptive interactions can be a
result of people that rely on flawed information from developer Q&A
sites such as Stack Overflow or, for example, developers who access
features that are not intended for them. If a platform operator would
consistently enforce secure and easy to follow practices across the
entire ecosystem, many of these issues could effectively be mitigated.
Again, this security strategy has been proposed by researchers [28],
however there still seem to prevail problems in the Android world.
Examples of safe practices are discussed in the next chapter.

iii) The use of smart data types. According to our findings, sensitive
data is usually stored as string. Therefore, if the String class would
offer features to protect its value based on the accessing context, leaks
could be prevented in many cases. A smart data prototype is discussed
in the next but one chapter.

136

9.4. From Effective to Holistic Security Measures

9.4 From Effective to Holistic Security Measures

Figure 9.2 shows the difference between security measures that target a
traditional security-domain or measures that target, as we call it, a holistic-
domain. Typical examples for security measures in the network-domain
are firewall configurations, cloud security providers, etc. Typical security
measures settled in the client-domain are OS settings, app updates, library
updates, etc. Typical security measures settled in the server-domain are
access control, certificate management, etc. Each of these traditional secu-
rity measures increase the system security, however they seldom leverage
synergies and although some of them are considered to provide “end-to-
end” security, they do not. In fact, an encrypted communication channel
may securely transmit data from the server to the client, but when the
client receives the data it is immediately decrypted and can be intercepted
by any involved library or method that is called in the process. Such a
treatment curates an environment where data leaks can happen. Instead,
holistic security takes the entire system into account, i.e., the server, the
network, and the client. Since all domains can share functionality, security
measures can more effectively benefit from synergies. For example, if data
is tagged as sensitive, the server, the network, and the client may behave
appropriately and all together prevent such data from leaking.

9.5 The Conflict in Android OS Security

During our review of Android application framework APIs for the secu-
rity smell investigations, we found that Android OS security has two main
opposing forces, i.e., changeability and compatibility as shown in Fig-
ure 9.3, resembling the well-known confidentiality, integrity, availability
(CIA) triad. The triad illustrates that only one aspect can be optimized
simultaneously, while the other two aspects will suffer the more the single
aspect is preferred.

In other words, if the Android OS maintainers would particularly focus
on security, continuous API changes would need to be prohibited and the
compatibility with existing apps would be limited since they either conform
with the higher security requirements, or fail to run. Moreover, if the
Android OS is preferred to have the ability of continuous change, it will
reduce app compatibility and security since apps from developers who do
not continuously adopt the changes fail to run, and the continuous changes
are likely to introduce new security vulnerabilities. Finally, if the Android
OS has to maintain compatibility with existing code, it cannot leverage
comprehensive code changes and thus it is likely that it also cannot evolve
securely since, for example, existing apps may still require insecure crypto
algorithms.

However, the Android OS is currently trying to offer the best of both
worlds as it maintains compatibility with as many existing apps as possible,

137

9.5. The Conflict in Android OS Security

security

changeability compatibility

Figure 9.3: The triad of software security

however at the same time it fundamentally changes continuously. On the
one hand, for example, the class WebView which is commonly used for the
display of web content contains currently 25 deprecated elements, and the
oldest was deprecated at API level 12, i.e., Android “Honeycomb” that has
been released in May-2011, which is more than ten years ago. On the other
hand, Android application framework APIs fundamentally change every
few months.4,5,6 The resulting conflict severely impacts the security of the
Android platform as security cannot be supreme without any sacrifices of
the changeability and the compatibility property. In fact, a consequence of
these contradicting requirements is that the development of any Android
app is a very painful process since numerous compatibility targets must be
dealt with, i.e., code paths for different versions of the Android OS, which
greatly contribute to code complexity and thus increase the risk of security
smells. This increased risk is measureable: Zimperium assessed in their
2022 security report vulnerabilities across different mobile platforms and
they consistently found more vulnerable apps on Android than on rivaling
mobile platforms.7

4Google documentation: API changes between API level 29 and 30, https:

//developer.android.com/sdk/api_diff/30/changes, accessed on 27-MAR-2022
5Google documentation: API changes between API level 30 and 31, https:

//developer.android.com/sdk/api_diff/31/changes, accessed on 27-MAR-2022
6Google documentation: API changes between API level 31 and 32, https:

//developer.android.com/sdk/api_diff/32/changes, accessed on 27-MAR-2022
7Zimperium: Global Mobile Threat report 2022, https://storage.pardot.com/

66612/1646667936Ekpj8Pff/Zimperium_Global_Mobile_Threat_Report_2022.pdf, ac-
cessed on 27-MAR-2022

138

https://developer.android.com/sdk/api_diff/30/changes
https://developer.android.com/sdk/api_diff/30/changes
https://developer.android.com/sdk/api_diff/31/changes
https://developer.android.com/sdk/api_diff/31/changes
https://developer.android.com/sdk/api_diff/32/changes
https://developer.android.com/sdk/api_diff/32/changes
https://storage.pardot.com/66612/1646667936Ekpj8Pff/Zimperium_Global_Mobile_Threat_Report_2022.pdf
https://storage.pardot.com/66612/1646667936Ekpj8Pff/Zimperium_Global_Mobile_Threat_Report_2022.pdf

9.6. Threats to Validity

9.6 Threats to Validity

Accuracy. A major threat represents the accuracy of the established
dataset, because the data is the result of a careful manual review per-
formed by the author. To mitigate this threat, the provided description
and further information such as related threats, meta, standard, or de-
tailed categories have been studied in detail if the purpose of a category
was unclear. Moreover, he closely followed the description of the reported
security smells to decide whether a smell can be a malefactor for certain
categories. However, a follow-up peer review is recommended to further
validate the preliminary results.

Correlation. Although we observed a high correlation between smells
and some attacks, this does not necessarily mean that there is any practical
relevance. To mitigate this threat, labeled data could be collected from
CVE, however the assessment of such data remains future work.

Completeness. Another threat to validity is the completeness of the
used classification scheme. He used CAPEC from Mitre, which is the
largest public vulnerability database provider. Therefore, he expects that
the established categorization in version 3.7 has come close to a stable
state, and is reasonable to be used.

Selection bias. Based on the results of the smell classification, he identi-
fied four major areas that would massively benefit from improved security.
However, what he has suggested is guided by the taxonomy proposed by
Mitre, and thus there might exist other taxonomies, which could lead to
another result.

Construct validity. There is a threat to construct validity through
potential bias in his expectancy.

9.7 Conclusion

We observed that the consideration of security smells is time consuming
and error prone, and therefore we are interested in finding more efficient
holistic remedies. For that purpose, we manually investigated the impact
of our 51 security smells on 192 attack mechanisms of the CAPEC taxon-
omy, which led to 9 792 combinations that we considered. We found that
insecure algorithms, the abuse of existing functionality, data leaks, and
user deception are the four major threats when using Android, and we
elaborate strategies against them. That is, we see most potential in secure
default values and safe practices to prevent feature misuse in the Android
ecosystem. We further realized that string variables need increased pro-
tection, because they are responsible for most issues that relate to the em-
ployment of probabilistic methods and the injection of unexpected items.

139

Chapter 10

Default Values and Practices to Improve
Application Security

Declaration of Content Reuse

The content of this chapter is partially based on the short paper
Security Header Fields in HTTP Clients that has been accepted
for the 21st IEEE International Conference on Software Quality,
Reliability, and Security (QRS) in 2021 [36].

In the previous chapter we established three measures that we expect
could greatly improve mobile app security. We cover two of them in this
chapter, i.e., secure default values and safe practices.

A secure default value could be, for example, a boolean flag in a web
API server that indicates whether secure communication channels should
be preferred. If such a flag is enabled by default, every application that
uses this server would immediately try to upgrade insecure communication
channel requests to secure ones, e.g., by forwarding the client to a HTTPS
URL that points to the same resource. A safe practice differs from a secure
default value in the sense that it does not leverage existing functionality
that can be triggered with a simple boolean value, but instead it requires
some additional logic or code changes. For example, a safe practice could
be to disable the possibility to execute native code, or the removal of con-
structors that allow one to initialize unencrypted credential stores, which
obviously represent a major risk.

These techniques are especially important as modern IDEs like An-
droid Studio incorporate much knowledge about the Android application
framework APIs and can propose default parameter values while a devel-
oper is writing code, e.g., for method calls. Moreover, the implementation
of Android application framework APIs determines how to treat missing

140

10.1. Secure Default Values

parameter values in methods used by apps, e.g., whether they are allowed,
and if they are, how they are set internally when not specified. There-
fore, the selection of a default value can have a tremendous impact on app
security, especially for novice developers who are not very familiar with
every option and like to stay safe with the default. Besides default values,
development practices are equally important, e.g., the decision whether
insecure APIs should be accessible for developers.

In this chapter, we shed light on different aspects based on the secu-
rity smells that we previously established. In particular, we address the
following research question:

RQ1: What are examples of default values and practices that could
greatly improve application security? We reviewed every reported security
smell and reasoned whether it could be mitigated with improved platform
security. We found that eight smells (16%) could be addressed with more
secure default values, and that 36 smells (71%) could be addressed with
safer practices. In fact, we only see for seven smells (14%) no potential in
such measures, however they can be addressed using a better control of
data and we present a potential solution to this problem in the following
chapter.

In the remainder of this chapter, we discuss secure default values in sec-
tion 10.1, and safe practices in section 10.2, before we report in section 10.3
the remaining security smells that have not been yet been considered in
this chapter. We report the threats to validity in section 10.4, and conclude
in section 10.5.

10.1 Secure Default Values

In general, wherever a developer is supposed to make a particular choice
from a list of options, the option that exposes the least privilege should be
proposed by default, or automatically used internally for calls that do not
require a choice. For example, if a developer does not specify any access
rights before reading an existing file from disk, it should be read-only
to prevent accidental modifications. Nevertheless, it should still remain
possible to modify the file when the access right is adjusted to provide
read-write access, but then this change is requested explicitly and chances
are much higher that a developer is aware of the potential implications.

10.1.1 Apps

With respect to apps, we identified one secure default value to address five
security smells.

• Android Permission System. Android’s permission system has
already been discussed in section 2.1.4. The default protection level

141

10.1. Secure Default Values

of an Android app permission is normal and gives requesting ap-
plications access to isolated application-level features with minimal
risk to other applications.1 However, the default use of a dangerous

protection level would prevent accidental data leaks since it has to
be acknowledged explicitly, and could be occasionally revoked, if un-
used. The signature level permission should not be used by default
as it does not require any user confirmation. Relevant for: Unau-
thorized Intent Receipt, Unconstrained Inter-component Communi-
cation, Incorrect Protection Level, Unauthorized Intent, and Sticky
Broadcast.

10.1.2 App Servers

With respect to app servers, we identified three secure default values to
address three security smells.

• Disclosure of Source Code. We discussed the disclosure of source
code in subsection 6.3.2. The server side option to show error mes-
sage output in the response may help during debugging, but it should
certainly not be enabled on a production system. Therefore, if this
feature would be disabled by default, lazy system administrators
could not forget to disable this particular feature. In practice, the
Apache Tomcat, i.e., a widely used web app server offers the flag
showReport that should be set to false by default to prevent stack
traces in error pages.2 Relevant for: Disclosure of Source Code.

• Disclosure of Version Information. We discussed the disclosure
of version information in subsection 6.3.2. The server side option
to include version information in the response may help during de-
velopment, but it should certainly not be enabled on a production
system. Therefore, if this feature would be disabled by default, lazy
system administrators could not forget to disable this particular fea-
ture. In practice, the Microsoft internet information server (IIS)
should be configured to not leak such information by setting in the
web.config file the enableVersionHeader property to false.3 Rel-
evant for: Disclosure of Version Information.

• Missing HTTPS redirects. We discussed missing HTTPS redi-
rects in subsection 6.3.2. The server side option to forward the client
to the HTTPS version of a resource may complicate debugging, but

1Google documentation: permission element, https://developer.android.com/

guide/topics/manifest/permission-element#plevel, accessed on 27-MAR-2022
2Apache Tomcat documentation: error report valve, https://tomcat.apache.org/

tomcat-9.0-doc/config/valve.html#Error_Report_Valve, accessed on 29-MAR-2022
3Microsoft documentation: EnableVersionHeader property, https://docs.

microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.

enableversionheader, accessed on 29-MAR-2022

142

https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://tomcat.apache.org/tomcat-9.0-doc/config/valve.html#Error_Report_Valve
https://tomcat.apache.org/tomcat-9.0-doc/config/valve.html#Error_Report_Valve
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.enableversionheader
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.enableversionheader
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.enableversionheader

10.2. Safe Practices

it should certainly be enabled on a production system. Therefore, if
this feature would be enabled by default, lazy system administrators
could not forget to enable this particular feature. In practice, the
URL rewrite module of Microsoft’s IIS should by default contain a
redirect rule that will transform every HTTP request into an equiv-
alent HTTPS request.4 Relevant for: Missing HTTPS Redirects.

10.2 Safe Practices

Safe practices that we propose in this section are supposed to prevent
developers from making mistakes. However, if developers intentionally
neglect to follow safe practices, they should be motivated to change their
minds, e.g., with additional badges shown on their apps’ overview websites
of the app stores, or they should earn more profit from their app sales. The
practices we present in this section primarily comprise new IDE features,
a revised public Android Java API, and improved methodologies to cope
with Java API code changes. For example, it is important to remove
deprecated Java APIs in a timely fashion by leveraging short grace periods,
e.g., at most few OS release cycles.

10.2.1 Apps

With respect to apps, we identified 22 safe practices to address 35 security
smells.

• Code Black-listing. Some code snippets may suffer from well-
known vulnerabilities as discussed in subsection 4.1.1, however de-
velopers are not forced to replace them. In Android Studio, a solu-
tion should involve the black-listing of well-known vulnerable code,
e.g., that can be found on Stack Overflow. Relevant for: Unreliable
Information Source.

• Code Obfuscation. Continuously changing code obfuscation mech-
anisms increases the difficulty of reverse engineering apps as dis-
cussed in subsection 4.1.1, and therefore should be used by default.
This measure would make it more difficult for adversaries to piggy-
back existing apps. Relevant for: Open to Piggybacking.

• Custom Schemes. Custom schemes also known as “deep links”
required for URLs that can request certain views of a particular
app are well-known to introduce various threats as discussed in sub-
section 4.1.3. However, they still exist in the Android ecosystem
although a more secure implementation is available, which is called

4Microsoft documentation: using the URL rewrite module, https:

//docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-the-

url-rewrite-module, accessed on 29-MAR-2022

143

https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-the-url-rewrite-module
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/using-the-url-rewrite-module

10.2. Safe Practices

“Android App Links”5 that relies on a certificate to validate the
scheme ownership of an app, which cannot be forget easily. There-
fore, the concept of deep links should be abandoned entirely. Rele-
vant for: Custom Scheme Channel (Android and Android ICC).

• Dynamic Code Loading. The dynamic code loading API provides
flexibility in programming as discussed in subsection 4.1.2 and sub-
section 4.1.5, however it is risky to use since it allows the execution of
arbitrary code, which in turn can introduce various security vulner-
abilities. Therefore, this interface should be disabled and developers
should be forced to solely rely on the regular app store mechanisms
to update their apps. Moreover, the side-loading of apps should be
prevented for regular end user devices, and if side-loaded apps are
still installed, they should be screened and updated by Google Play,
which is currently the case.6 Relevant for: Unacknowledged Distri-
bution, and Dynamic Code Loading.

• Dynamic Permissions. Dynamic permissions allow the exposure
of resources until the permission is revoked as discussed in sec-
tion 5.1. However, developers may forget to revoke resources and
thus expose resources longer than desired. Therefore, the API should
be revised so that it does not require a revoke call, but instead use
a timeout or an integer that defines how many times the resource
can be accessed before it is revoked automatically. Therefore, devel-
opers would not have to mind revoke calls. Relevant for: Persisted
Dynamic Permission.

• Exclude Apps From App Stores. Apps that perform risky or
unauthorized operations as discussed in subsection 4.1.3 should be
removed from the store and eventually from the devices, e.g., when
Unix domain sockets are accessed instead of Android APIs, when
Adb sockets are exposed, when the debug mode is enabled, or when
the OS terminal is exposed. Currently, Google does not consistently
remove apps that suffer from well-known vulnerabilities, e.g., the use
of insecure implicit pending intent configurations as shown in Fig-
ure 10.1.7 Relevant for: Unprotected Unix Domain Socket, Exposed
Adb-level Capability, and Debuggable Release.

5Google documentation: handling Android App Links, https://developer.

android.com/training/app-links/, accessed on 27-MAR-2022
6Google enterprise help: why does Play automatically..., https://support.

google.com/work/android/thread/67460799/why-does-play-automatically-

update-sideloaded-emm-installed-apps-that-have-matching-bundle-ids?hl=en,
accessed on 27-MAR-2022

7Google documentation: remediation for implicit PendingIntent vulnerability,
https://support.google.com/faqs/answer/10437428?hl=en, accessed on 27-MAR-
2022

144

https://developer.android.com/training/app-links/
https://developer.android.com/training/app-links/
https://support.google.com/work/android/thread/67460799/why-does-play-automatically-update-sideloaded-emm-installed-apps-that-have-matching-bundle-ids?hl=en
https://support.google.com/work/android/thread/67460799/why-does-play-automatically-update-sideloaded-emm-installed-apps-that-have-matching-bundle-ids?hl=en
https://support.google.com/work/android/thread/67460799/why-does-play-automatically-update-sideloaded-emm-installed-apps-that-have-matching-bundle-ids?hl=en
https://support.google.com/faqs/answer/10437428?hl=en

10.2. Safe Practices

Figure 10.1: A typical vulnerability not considered for apps in the Google Play store

• Exposed Java Code. As discussed in subsection 4.1.5, the Java-
Script API provides flexibility in programming, however it is risky
to use since it exposes app code to the web, which is well-known to
suffer from code injection attacks. Therefore, this interface should
be disabled and developers should be forced to solely use Java or
Kotlin code to build their apps. Relevant for: Broken WebView’s
Sandbox.

• Exposed Private Storage. As discussed in subsection 4.1.4, pri-
vate storage can be exposed by using distinct parameters to grant
access rights to the “world,” i.e., every other app on the device. How-
ever, if data needs to be shared it should not remain in private but
public storage, and optionally leverage data encryption techniques.
Therefore, this API should be erradicated. Relevant for: Exposed
Persistent Data.

• HTTPS Certificates. As discussed in subsection 4.1.2, HTTPS
certificates are nowadays available for free and, consequently, the
pinning of HTTPS certificates should be enforced by default in com-
bination with the disabling of custom validation mechanisms to by-
pass the certificate validation process. These measures could effec-
tively prevent attackers from performing HTTP downgrade or cer-
tificate manipulation attacks. Relevant for: Unpinned Certificate,
and Improper Certificate Validation.

• Implicit Pending Intent. Implicit pending intents can be altered
by other apps and thus mislead subsequent accessors as discussed
in section 5.1. Meanwhile Android introduced a flag FLAG IMMUTABLE

to make them immutable, however its use is still optional. Since ex-
plicit pending intents offer a more secure addressing scheme, but
otherwise offer the same features, support for implicit pending in-
tents should be removed. Relevant for: Implicit Pending Intent.

145

10.2. Safe Practices

• Insecure Network Protocol. We already discussed insecure net-
work communication in subsection 4.1.4, subsection 6.3.1, subsec-
tion 6.3.2, and subsection 8.2.3. The communication over HTTP
is insecure and should be disabled by default. In the meantime,
this measure has already been implemented by Google.8 Moreover,
the HTTP headers Strict-Transport-Security and Upgrade sh-
ould be supported out of the box in major HTTP clients. Rele-
vant for: Insecure Network Protocol, Insecure Transport Channel,
Missing HSTS, Unsupported Connection Upgrades, and Unsupported
HSTS.

• Library White-listing. As discussed in subsection 4.1.1 and sub-
section 8.2.3, some libraries may suffer from well-known vulnerabili-
ties, however developers are not forced to upgrade them. In Android
Studio, a solution could be a white-listing of recent libraries that are
considered to be safe. Relevant for: Untrustworthy Library, Out-
dated Library, and Abandoned HTTP Client.

• Native Code. Native code is used by numerous apps to decrease
the time required for complex computations. As discussed in sub-
section 4.1.1, since it is simpler to investigate more abstract man-
aged code, native code should be prohibited, and instead frequently
used native libraries integrated into the Android system so that they
can be accessed straight from the Java framework. If custom ma-
chine code is still required, GPU acceleration APIs or the more se-
cure Rust programming language should be used instead, which are
more constrained.9 Rust is a system programming language designed
with performance and memory safety in mind to replace traditional
C/C++ code. Relevant for: Native Code.

• Path Permissions. As discussed in section 5.1, path permissions
are supposed to protect resources from unauthorized accesses, how-
ever their validation is flawed, i.e., the parsing and precedence of
paths is unexpected. Therefore, the parsing should be more robust
and the path precedence feature abandoned as it can be replaced
using more secure mechanisms, e.g., a different path permission for
every sub path. Relevant for: Insecure Path Permission, and Broken
Path Permission Precedence.

• Permission Clean up. As discussed in subsection 4.1.1, unneces-
sary permissions can be exploited by attackers and therefore they

8Google documentation: opt out of cleartext traffic, https://developer.android.
com/training/articles/security-config#CleartextTrafficPermitted, accessed on
27-MAR-2022

9Google security blog: Rust in the Android platform, https://security.

googleblog.com/2021/04/rust-in-android-platform.html, accessed on 27-MAR-
2022

146

https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://developer.android.com/training/articles/security-config#CleartextTrafficPermitted
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html

10.2. Safe Practices

should be reported by the IDE and removed before the release of an
app. Relevant for: Unnecessary Permission.

• Secure Authorization. As discussed in subsection 6.3.1, hard-
coded passwords should not be allowed in app code. Instead, cre-
dentials should be requested from the user during run time and used
to dynamically acquire a token, before such information must be
stored in a secure key store. Relevant for: Credential Leak.

• Secure Key Store. As discussed in subsection 4.1.4, Android’s
KeyStore API allows one to store key-value pairs, however the pro-
vided information is not necessarily encrypted since several methods
allow the use of null as key parameter to request unencrypted key
stores.10 Such code paths should be removed so that every use of
KeyStore results in an encrypted key store. Relevant for: Exposed
Credential.

• Service Permission. In Android, there exist validation methods
that depend on the execution context, and therefore behave differ-
ently in different app code locations as discussed in subsection 5.1.2.
Such methods should not be exposed publicly since they introduce
confusion among developers and thus can lead to vulnerabilities. Rel-
evant for: Broken Service Permission.

• Sticky Broadcast. As discussed in subsection 5.1.2, other apps
may tamper with a sticky broadcast. Therefore, the sticky broad-
cast should either be immutable for other apps, or, preferably, the
feature be removed entirely since there exist other mechanisms to
work around such a problem, e.g., a non-sticky broadcast. Relevant
for: Sticky Broadcast.

• Task Affinity. As discussed in subsection 5.1.2, the task affinity
feature allows other apps to show overlays if they know the name
of the used affinity. The used default value is the package name,11

which is publicly available and therefore should be replaced with a
random value, or even better, the entire task affinity implementation
in the Android application framework should be protected with fine-
grained permissions that can be revoked by the user at any time.
Relevant for: Common Task Affinity.

• Weak Crypto. As discussed in subsection 4.1.2, APIs related to
weak crypto algorithms and configurations can introduce major vul-
nerabilities. Therefore, they should be removed entirely so that

10Android documentation: KeyStore, https://developer.android.com/reference/
java/security/KeyStore, accessed on 27-MAR-2022

11Google documentation: activity, https://developer.android.com/guide/

topics/manifest/activity-element#aff, accessed on 27-MAR-2022

147

https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/guide/topics/manifest/activity-element#aff
https://developer.android.com/guide/topics/manifest/activity-element#aff

10.3. Remaining Security Smells

developers cannot anymore use them. Relevant for: Weak Crypto
Algorithm, and Weak Crypto Configuration.

• WebViewClient. Arbitrary URLs can be accessed when using a
WebViewClient instance. If such an instance would by default be
restricted to a particular domain as discussed in section 5.1, it could
effectively prevent arbitrary unsafe URLs from being accessed. Rel-
evant for: Slack WebViewClient.

10.2.2 App Servers

With respect to app servers, we identified one safe practice to address one
security smell.

• Lack of Access Control. As discussed in subsection 6.3.2, sensitive
resources must always be protected by some form of authentication
and authorization. Such validation measures should preferably rely
on existing standards such as OAuth. Relevant for: Lack of Access
Control.

10.3 Remaining Security Smells

There are seven remaining smells that we did not yet discuss, however all
of them rely on plain text that can be analyzed, e.g., the smell SQL injec-
tion relies on strings that contain fragments of a SQL query, which can be
detected with regular expressions. Although secure default values or safe
practices do not seem to be an option, we expect measures that operate on
plain text, i.e., strings can have an impact on them. We discuss a poten-
tial string-driven approach in the next chapter. Relevant for: Header At-
tachment, Unique Hardware Identifier, Exposed Clipboard, Data Residue,
XSS-like Code Injection, SQL Injection, and Embedded Languages.

10.4 Threats to Validity

Lack of validation. The foremost threat to validity is the lack of valida-
tion. We could not implement and evaluate the proposed measures in the
Android ecosystem and therefore the expected security gain remains spec-
ulation. However, the strategy to utilize secure parameters and to remove
or replace insecure features is commonly used to improve overall security.

Completeness. Another major threat to validity of this study is the se-
lection bias, i.e., whether the proposed measures are comprehensive. We
strived to identify effective measures that serve the purpose, and therefore
the scope of evaluated measures does not necessarily have to be investi-
gated entirely.

Construct validity. There is a threat to construct validity through
potential bias in his expectancy.

148

10.5. Conclusion

10.5 Conclusion

We reviewed every reported security smell and found that eight smells
(16%) could be addressed with more secure default values, and that 36
smells (71%) could be addressed with safer practices. In fact, we only see
for seven smells (14%) no potential in such measures, however they can be
addressed using a better control of data. We investigate a prototype that
offers better control over data in the next chapter.

149

Chapter 11

A String-based Framework to Improve
Application Security

Declaration of Content Reuse

The content of this chapter is based on the MSc thesis BString:
A String-based Framework to Improve Application Security from
Christian Zürcher [122], which was supervised by the author.

The Java String API does not provide any particular method related
to security, i.e., there is no method to validate the assigned data or to
prevent data leakage. For example, there exists no embedded facility that
can prevent email addresses and passwords stored in text strings from
leaking to the console or to a log file. If additional protection is required,
developers could, on the one hand, consider using additional checks at
critical locations. Unfortunately, the thorough manual implementation of
such checks is very error prone and introduces code duplication, which
further complicates the problem. On the other hand, there exist static
code analysis tools that cannot access problematic run time data, and
there exist dynamic analysis tools which are rather limited and usually
focus on a single security threat, e.g., they can only perform variable
tainting to determine potential data leaks. In other words, there is no
comprehensive solution that can prevent sensitive data from leaking and
remote code execution attacks, although these are among the top three
major web application threats in 2021 according to the OWASP project.1

In this chapter, we present a framework called BString that offers a
String class, which can react depending on the contained value. In con-
sequence, the behavior of an application will adjust depending on the

1Open Web Application Security Project (OWASP): top 10 web application security
risks, https://owasp.org/www-project-top-ten, accessed on 02-MAR-2022

150

https://owasp.org/www-project-top-ten

contained String values and their locations. For this purpose, we intro-
duced two additional methods in the OpenJDK Java String class imple-
mentation, which accept compiled byte code as an input parameter. The
provided code will be executed before every read, respectively before ev-
ery write on the object. For example, if such a String object’s value is
requested from within a FileWriter instance, it can either block the re-
quest and raise an exception, grant and log the request, or return a safe
replacement value that indicates the need for protection. The use of such
strings has only a minor average performance impact on accesses, of less
than 16%, is completely optional and, if not used, it does not alter the
behavior of existing code.

We investigate the following two research questions:
RQ1: What are the restrictions when using an instrumented Java

String class with existing code? We used an instrumented String instance
as parameter in the API calls of the thirteen most popular Java libraries in
the Maven repository, and we evaluated whether the behavior of the instru-
mented String was executed. If our code was not executed, we investigated
the root cause. We found that only two libraries were not compatible with
BString , i.e., the Gson library, which used reflection to access String val-
ues, and the SLF4J library, which used a not instrumented custom byte
buffer implementation for text content.

RQ2: Can an instrumented String class offer protection against data
leaks and remote code execution, and what are the security risks using such
a technique? Using BString , we implemented several remediation strate-
gies against the two major threats, data leak and remote code execution,
that have been presented in existing literature. Moreover, we briefly sum-
marize common threats that may arise when misusing BString . We found
that this technique can protect particularly well against data leaks, i.e., it
can encrypt data on demand or restrict access for certain classes without
the need for changing existing code in the used libraries. Furthermore, the
provided interface supports various other security-related tasks, e.g., data
verification and validation.

In summary, this chapter investigates the utility of injecting arbitrary
code into String instances to leverage additional functionality within Java
applications. Our evaluation with commonly used Java libraries showed
promising results for security-related tasks and moreover, we expect that
this concept can further be helpful in the domain of, for example, logging
and debugging.

The remainder of this chapter is organized as follows. We discuss the
implementation in section 11.1, and we present the restrictions of BString
in section 11.2. We show how BString can contribute to security in sec-
tion 11.3. We recap the threats to validity in section 11.4, and finally, we
conclude this chapter in section 11.5.

151

11.1. Prototype

11.1 Prototype

We start with a motivating example to describe the core idea, before we
elaborate on our prototype, i.e., its implementation, the features, and the
achievable performance.

11.1.1 Motivating Example

A developer has to implement an application that receives a user pass-
word from a web service and then securely stores it within an encrypted
database. Moreover, the plain password must never be logged, stored to
disk, or leaked through a network socket, and it must not contain any spe-
cial characters that could enable remote code execution (RCE) attacks.

To comply with the requirements, a continuous monitoring of all vari-
ables that get directly or indirectly “in touch” with the password value
would be required since the password string can be concatenated with
multiple other strings, for example, when a random salt value is added
which increases resilience against brute-force and rainbow table attacks,
i.e., attacks that leverage a large pre-computed table of hashed passwords
so that efficient search algorithms can be used to identify a password can-
didate, before it reaches the destination. Therefore, a developer would
currently require at least two different tools to solve this task: i) a dy-
namic analysis framework that can trace variables during run time, and
ii) a library or manual code that will check the variables for consistency
before they are accessed. Besides the high complexity of using multiple
tools for this particular task, it is difficult to reuse such code and config-
uration rules across different projects due to the additional dependencies
introduced by the tools.

In contrast, BString encourages developers to separate traditional ap-
plication logic from String validation logic that can easily be reused and
maintained across different projects. In Listing 5, we show an excerpt of an
interface implementation that can protect a password value, which, using
BString , can be attached to one or more String class instances. In partic-
ular, the implementation ensures that no data can leak through java.net

network, java.io disk, and java.system.out console classes (lines two
to nine), and at the same time it checks whether the string value contains
only safe characters (lines eleven to fourteen) to prevent potential RCE
attacks. Moreover, the attached interface implementation of a String in-
stance automatically can be reused by every other String instance that is
involved in a shared operation, e.g., when they get “in touch” because of
concatenation. In short, the presented code in Listing 5 can offer several
benefits: i) it separates security-related concerns from traditional code,
ii) it prevents duplicated validation logic being scattered across different
classes, iii) it reduces the overall project complexity by centralizing code
and by making several analysis libraries and frameworks obsolete, iv) it can

152

11.1. Prototype

be reused across different projects, and finally, v) security-related changes
are immediately visible when using a versioning system.

1 public String applyOnRead(String s) {

2 leakyClasses = "java.net", "java.io", "java.system.out";

3 stackTraceElements = Thread.currentThread().getStackTrace();

4

5 For each fully-qualified class name n in stackTraceElements do {

6 if(n.startsWithOneOf(leakyClasses)){

7 throw new LeakException("Data leak identified in

↪→ class " + n);

8 }

9 }

10

11 allowedCharacters = "A-Z", "a-z", "0-9", "-", ".", ",";

12 if (!s.containsOnly(allowedCharacters) {

13 throw new RCEException("The provided text contains unsafe

↪→ characters.");

14 }

15

16 return s;

17 }

Listing 5: Pseudo-code that illustrates the use of BString against data leaks and RCE
attacks

11.1.2 Implementation

We only modified the built-in Java classes of the OpenJDK VM to main-
tain compatibility across different platforms. In particular, we modified
besides the Java String class three more Java base classes, which are
used by the Java implementation when a developer concatenates multiple
strings, e.g., by using the + operator: StringBuilder, StringBuffer, and
AbstractStringBuilder. In particular, we were interested in intercepting
all methods of the String class that internally operate on the String value
using a byte[] or this reference, i.e., equals(Object), getBytes(),
charAt(int), substring(int, int), matches(String regex), and to-

String(). We check for each of these public methods whether there is a
behavior attributed to the String object and act accordingly.

We define the term “behavior” as the required code that a user must
provide to make use of BString , i.e., an implementation of the IStringBeh-
avior interface.

The intercepting code must follow the convention of the IStringBe-

havior interface shown in Listing 6 that we have added to the pack-
age java.lang. This interface describes five methods that can be imple-
mented: i) applyOnCreation(...) that holds the code that is executed
before the initialization of a String instance, ii) applyOnRead(...) that
holds the code that is executed before a value is leaked, iii) applyDeriva-
tionRule(...) that specifies when the provided code should be attached

153

11.1. Prototype

to a derived String instance, iv) recordHistory() that allows one to ac-
cess each String transformation that occurs in the lifetime of a String, and
finally, v) getDescription() that returns a textual description of the pro-
vided logic. Moreover, we provide the class StringNotMatchingBehavior-
Exception to indicate an error state that can be raised by the developer,
e.g., if a password is about to be leaked, etc.

1 public interface IStringBehavior {

2 public String applyOnCreation(String s);

3 public String applyOnRead(String s);

4 public boolean applyDerivationRule(DerivationRule dr);

5 public boolean recordHistory();

6 public String getDescription();

7 }

Listing 6: Methods of the interface IStringBehavior

Whether a user has to use applyOnCreation(...), applyOnRead(...),
or even both methods simultaneously depends on the task. If such a
method is not implemented, the string with behavior will act like any reg-
ular non-modified string. If such a method is implemented, it must return
a string that will be further used throughout the application instead of
the original value. Four examples are listed in Listing 7: line two returns
the original string and therefore does not alter the behavior, line three
returns the string “NewString,” line four returns a protected string en-
crypted by a custom method, and finally, line five throws the run time
exception StringNotMatchingBehaviorException to block the current
execution of the application.

1 public String applyOnRead(String s) {

2 return s;

3 return "NewString";

4 return EncryptionMechanism.encrypt(s);

5 throw new StringNotMatchingBehaviorException();

6 }

Listing 7: Behavior examples

We illustrate the signalling between the different methods when the
applyOn*(...) APIs are used in Figure 11.1. First, we create a String
object and then we add some behavior to it, i.e., an implementation of
the IStringBehavior interface. This implementation contains the rel-
evant logic and remains active when the String is later accessed with,
for example, the toString() method. Besides the manual use of such
String objects, we further provide the class StringBehaviorController

that can programmatically assign a behavior to selected String instances,
e.g., inside a specified package, method, or class. This class is particularly
important when working with closed-source code, however it only works
when the support for modules is disabled in the JDK.

154

11.1. Prototype

IStringBehaviorString object IStringBehaviorImplementation

applyOnCreation()

Code

return

String s = "Hello World!"

applyOnCreation()

return
return

return

applyOnRead()

return

toString()

return

applyOnRead()

Application Java base library Behavior

s.addBehavior(new Behavior())

Figure 11.1: Message flow between software components

11.1.3 Features

The implementation adds three major features to the String class, i.e.,
mutable strings, derivation of string behaviors, and a value history.

Mutable Strings

Strings are immutable in the Java VM and a change in a String value
will always return a new, derived String instance. However, we can use
the applyOnCreation(...) method to set a different value of the derived
String instance during its initialization by accessing the internal fields
byte[] value and byte coder, or we could at any time change the re-
turned value of the string with the help of a behavior, e.g., to prevent data
leaks.

We present two examples that illustrate the use and usefulness of a
mutated string value:

• Listing 8 shows the code that is required to add a prefix to a String of
which the prefix even can be altered during run time to, for example,
inform users that the application is a debug release that should not
be used for production.

1 public static String prefix = "DebugRelease:";

2 public String applyOnRead(String s) {

3 return prefix + s;

4 }

Listing 8: Read behavior that adds a prefix

155

11.1. Prototype

• Listing 9 shows the code that is required to escape all apostrophes
inside a string to prevent SQL injection attacks.2 Only the resulting
escaped string value will be saved into memory.

1 public String applyOnCreation(String s) {

2 return s.replaceAll("[0\t\n\r\"%\'_\\\\]", "''");
3 }

Listing 9: Initialization behavior to prevent SQL injection attacks

Derivation of String Behaviors

A user can precisely control to which derived String instances a behavior
is attached with the method applyDerivationRule(...), which takes a
DerivationRule enumeration as argument. Four different derivation rules
are available: i) COPY only attaches the behavior to the derived String if it
is a copy of the original String, ii) ADD only attaches the behavior to the
derived String if it is the result of a concatenation from the original String
with another String, iii) DELETE only attaches the behavior to the derived
String if it is the original String with one or more removed characters, and
iv) REPLACE only attaches the behavior to the derived String if at least
one character is altered from the original String. The derivation rules are
useful if certain string operations reduce the sensitivity of information, e.g.,
a credit card number from which numbers were removed, might require
less protection since the shortened numbers may not anymore unique.

Listing 10 shows typical examples of the different derivation rules. In
line one we copy a string to another string, which the framework will
consider a COPY operation. In line two we add a character to an existing
string, which will be classified as ADD operation. In line three we derive
a new string without the first three characters, which will be classified as
DELETE operation. Finally, in line four we replace the letter “a” with “b”
in a string, which will be classified as REPLACE operation. We distinguish
the REPLACE operation although it could be seen as a mixture of add
and delete operations, because it enables a developer to react more easily
on common changes.

1 String derivative = original; // derivation rule: COPY

2 String derivative = original + "!"; // derivation rule: ADD

3 String derivative = original.substring(3); // derivation rule: DELETE

4 String derivative = original.replace('a','b'); // derivation rule: REPLACE

Listing 10: Typical examples of different derivation rules

We show the use of such derivation rules in Listing 11. During run time,
the provided variable dr in line four holds the detected string operation

2Stack Overflow: What characters have to be escaped..., https://stackoverflow.
com/questions/1086918/what-characters-have-to-be-escaped-to-prevent-mysql-

injections, accessed on 28-MAR-2022

156

https://stackoverflow.com/questions/1086918/what-characters-have-to-be-escaped-to-prevent-mysql-injections
https://stackoverflow.com/questions/1086918/what-characters-have-to-be-escaped-to-prevent-mysql-injections
https://stackoverflow.com/questions/1086918/what-characters-have-to-be-escaped-to-prevent-mysql-injections

11.1. Prototype

by BString . For whatever string operation a developer returns true, the
behavior will be derived to the resulting String instance. For example, in
line five we specify that the behavior must be attached to derived String
instances if they are copied or include additional characters, but not in
any other case. In other words, if we want to always or never attach a
behavior to derived String instances, we can simply return true or false,
respectively.

1 public class BehaviorWithDerivationRule implements IStringBehavior {

2 ...

3 @Override

4 public boolean applyDerivationRule(DerivationRule dr) {

5 return (dr.equals(COPY) || dr.equals(ADD));

6 }

7 ...

8 }

Listing 11: Use of derivation rules

Listing 12 shows the interplay between a behavior and the derivation
rules using more complex examples together with the behavior from List-
ing 11. We initially assign a behavior to the String instance s1 (line one).
The behavior will be derived from s1 to s2 (COPY, line two) and s3

(ADD, line three) since both derivation rules matched the specified con-
dition in the used behavior. However, all the other strings will remain
without any attached behavior, i.e., s4, s5, s6, and both instances inside
arr.

1 String s1 = new String("Hello World", new BehaviorWithDerivationRule());

2 String s2 = new String(s1); // derivation rule: COPY

3 String s3 = s1 + "!"; // derivation rule: ADD

4 String s4 = s1.substring(6); // derivation rule: DELETE

5 String s5 = s1.toLowerCase(); // derivation rule: REPLACE

6 String s6 = s1.toUpperCase(); // derivation rule: REPLACE

7 String[] arr = s1.split(" "); // derivation rule: DELETE

Listing 12: Interplay between a behavior and the derivation rules

Value History

BString can record the value of every instrumented String object and
generate a tree representation of their lineages. In more detail, the String
history node class SHNode represents a node of a tree that reflects the
tracked string transformations, e.g., when two strings are concatenated
the resulting string will contain a tree with at least two nodes, i.e., a
parent node that points to one or more child nodes, which refer to the
originating strings. To use this feature, the implementation of the method
recordHistory() must return true and then the developer can access
the tree through the SHNode variable in the behavior interface. With this
feature a user can track the changes that have been applied over time to
a particular String, and act accordingly.

157

11.1. Prototype

"Hello World"

toUpperCase()

"Hello World!"

"!"

"HELLO" "WORLD!"

split(" ")

"HELLO WORLD!"

+

Figure 11.2: The resulting value history tree for Listing 13

Listing 13 illustrates the use of the value history feature. The content
of the String s1 is reused several times before the final result arrives in
the String variables in arr. The corresponding value history tree is shown
in Figure 11.2. First, we perform an ADD operation on “Hello World”
and “!”, before we perform a REPLACE operation with toUpperCase().
Next, we perform a DELETE operation that splits the string into the
two distinct strings “Hello” and “World.” For the original and every de-
rived String instance a new history value node is attached to their exist-
ing tree after each operation, which we can then access with the method
String.getHistoryNode(). We can further navigate the tree by calling
the getParents(), getChildren(), and getValue() methods of SHNode.
Alternatively, the tree can be inspected by any debugger. In Figure 11.3,
we show a screenshot of the debugger available in Visual Studio Code3

that currently inspects the variable historyNodeOfS1 at the end of the
execution (line six in Listing 13).

1 String s1 = new String("Hello World", new HistoryRecordBehavior());

2 String s2 = s1 + "!";

3 String s3 = s2.toUpperCase();

4 String[] arr = s3.split(" ");

5 SHNode historyNodeOfS1 = s1.getHistoryNode();

6 SHNode historyNodeOfArr = arr[1].getHistoryNode();

Listing 13: Use of the value history feature

3Visual Studio Code Website, https://code.visualstudio.com, accessed on 06-
MAR-2022

158

https://code.visualstudio.com

11.1. Prototype

Figure 11.3: Value history tree visualized from a debugger

11.1.4 Application Support

BString supports three different kinds of software:

• Open-source applications. If the source-code of an application is
available, a user can implement the IStringBehavior interface to
specify the desired behavior and either assign it to individual strings
with the method String.setBehavior(IStringBehavior) or as-
sign it more generally with the provided class StringBehaviorCon-
troller to, for example, all strings within a specified class. In more
detail, the class StringBehaviorController supports the meth-
ods addMethodBehavior(...), addClassBehavior(...), and add-

PackageBehavior(...), which all require a string parameter that ei-
ther define the relevant method (e.g., some.package.class.Method),
the relevant class (e.g., some.package.class), or the relevant pack-
age (e.g., some.package), and an instance of the behavior that
should be applied. This will force all String constructors inside the
defined scope to execute the applyOnCreation() method of the be-

159

11.1. Prototype

havior. In cases where method, class and package behavior conflict,
the method behavior is prioritized, then the class behavior and fi-
nally the package behavior.

• Closed-source libraries. A user can add custom String behavior
to compiled libraries. The process is the same as for open-source
applications, i.e., a String with behavior must be created and then
used as parameter in public library methods.

• Closed-source applications. The process to instrument compiled
code that is packaged as a runnable .jar file or as class files is more
complex: the interface implementation must be compiled manually,
and then referenced in an .xml file that must be parameterized at
the start of the VM, which then will load the configuration from
disk. An example of such a configuration file is shown in Listing 14
where the root tag <behaviors> allows one to specify one or more
IStringBehavior implementations that will be used in the appli-
cation. Each behavior is enclosed by a <behavior> tag that must
contain the name of the behavior including the package name if nec-
essary, and where it applies to. We can define each package, class, or
method in which the String instances must use the provided behavior
within the behavior’s <applyTo> tag. The use of such a configuration
file will force all String constructors within the defined scope to exe-
cute the applyOnCreation(...) method of the specified behavior.
Whenever a conflict arises between different behaviors, package-level
behaviors will have the least priority and method-level behaviors will
have the highest priority.

1 <?xml version="1.0">

2 <behaviors>

3 <behavior>

4 <name>SomeBehaviorClass</name>

5 <applyTo>

6 <package>name.of.package</package>

7 <class>name.of.other.package.Class</class>

8 <method>name.of.package.Class.method1</method>

9 <method>name.of.package.Class.method2</method>

10 </applyTo>

11 </behavior>

12 <behavior>

13 ...

14 </behavior>

15 ...

16 </behaviors>

Listing 14: Typical configuration file for closed-source application analyses

160

11.2. Restrictions

initialization read derivation
baseline 4 ms 166 ms 11 ms

without behavior 13 ms 171 ms 20 ms
with empty behavior 16 ms 193 ms 22 ms
with derivation rules 16 ms 191 ms 32 ms

with history 59 ms 213 ms 87 ms
with encrypt on init 2 388 ms 9 331 ms 19 ms

encrypt on init and decrypt on read 5 112 ms 7 982 ms timeout

Table 11.1: String performance evaluation

11.1.5 Performance

To assess the performance of the implementation, we instantiated one mil-
lion String objects with random values using seven different configurations
and measured the required time: i) a vanilla JDK without any changes in
the String class, ii) a custom JDK where we used no behaviors, iii) a cus-
tom JDK where we used empty behavior stubs, iv) a custom JDK where
we used empty behavior stubs and the behavior derivation feature, v) a
custom JDK where we used empty behavior stubs, the behavior deriva-
tion feature, and the history feature, vi) a custom JDK where we used a
behavior that encrypts the provided value during the initialization, and
finally, vii) a custom JDK where we used a behavior that encrypts the
provided value during the initialization and decrypts the value when it
is read. For each assessment we disabled any output to System.out to
prevent potential biases.

We present the results in Table 11.1. We can clearly see that a read
from a String object consumes much more time compared to its initializa-
tion, i.e., a read is between 1.6 and 41.5 times slower. This seems to be
caused by inefficient look-ups in the string pool that may involve value con-
versions between native and interpreted code. In general, encryption and
decryption methods are computationally demanding and can prolong the
initialization or read tasks by more than three orders of magnitude, e.g.,
5.1 s compared to 4 ms. Attaching behavior to other Strings is relatively
cheap, i.e., it usually prolongs the initialization task about 50%. Inter-
estingly, it seems that the vanilla Java VM is performing additional back-
ground optimizations for String objects when they are reassigned, which
is 2.75 times slower than the initialization of the original String instance.
Overall, we observed that the use of strings with rather simple behavior
has only a minor average performance impact on reads of less than 16%,
which is very close to what other researchers have achieved when they
added support for value tainting where they measured an overhead of less
than 15% [17].

11.2 Restrictions

In this chapter we investigate the first research question, i.e., What are
the restrictions when using an instrumented Java String class with existing

161

11.2. Restrictions

Project Name Package Version Compatible?
Apache Commons (IO) commons-io 2.8.0 4
Apache Commons (Logging) commons-logging 1.2 4
Apache HttpClient org.apache.httpcomponents 4.5.13 4
Gson com.google.code.gson 2.8.5 6 (reflection)
JavaMail com.sun.mail 1.6.0 4
Log4J (core) org.apache.logging.log4j 2.14.1 4
Logback (classic) ch.qos.logback 1.3.0-alpha5 4
SLF4J slf4j-simple 2.0.0-alpha1 6 (cust. byte buf.)
SLF4J (API) org.slf4j 2.0.0-alpha1 4
Spring org.springframework 5.3.6 4
Square Okhttp com.squareup.okhttp3 5.0.0-alpha.2 4
Square Okio com.squareup.okio 2.10.0 4
Square Retrofit com.squareup.retrofit2 2.9.0 4

Table 11.2: Evaluation of popular Java libraries

code? For that purpose we tested our implementation with some of the
most popular libraries in the Maven repository.

11.2.1 Methodology

We searched in the Maven repository for the thirteen most popular Java
web communication libraries and downloaded for each the most recent
version. Next, we set up a Java project for each library that uses our
custom JDK and prepared a String instance with a behavior that logs a
potential value leak to the console. Then we provided this String instance
to the library and checked whether the behavior was executed within the
library code. Whenever a behavior did not work as intended, i.e., we
received no message in the console, we kept notes and started to investigate
the root cause.

11.2.2 Compatibility

Table 11.2 presents the results of this evaluation. The first column states
the project name, the second column the Maven package identifier, the
third column lists the tested library version, and finally, the last column
indicates whether the library is compatible with BString , and if not, it
shows the reason why not. We can see that only two of thirteen libraries
are incompatible with BString , i.e., Gson and SLF4J. Gson uses reflection
to access String data internally, which is not supported by BString . SLF4J
uses custom byte buffers that are not instrumented in BString .

11.2.3 Limitations

We discuss the observed limitations of BString in more detail, and how
these shortcomings could be mitigated in future work, e.g., by extending
the framework or the Java environment.

162

11.2. Restrictions

Native Code

BString relies on the Java class system and therefore cannot track strings
that leave the object boundary and are forwarded to native code, which
can only work with primitive data types. However, a string with behav-
ior might still detect whether it is accessed in a native method and take
action before it is transformed to a primitive string type. Conversely, a
user can add behavior, i.e., use the method addBehavior(...) to attach
an implementation of IStringBehavior to a new String that is created
within a native method. This limitation could be removed entirely, how-
ever this demands many changes. On the one hand, the original C and
C++ languages only know a string in the form of a character array, which
is a primitive type that is not extensible. If behavior features are required,
they must be improved to support such mechanisms. On the other hand,
the C++ boost library offers a string class that could be adapted, i.e.,
to BString . Nevertheless, this requires that all native C++ code is re-
compiled and uses that particular class. In the end, the required native
behavior interfaces and their implementations would not be interoperable
with our Java implementation.

Value Conversion

Value conversions are not supported without additional support in the rel-
evant classes, e.g., ByteArray, etc. In other words, classes that do not use
the String class to work with text and rather prefer primitive collections
such as char arrays, byte streams, etc. cannot benefit from BString and
the attached behavior will be lost when the value conversion is performed.
To be clear: we can detect a value conversion in a behavior, but the be-
havior will be lost after it. This limitation could be removed if additional
classes and primitive types would support behaviors, e.g., the Object class
or the char type. However, a generic implementation for Object would re-
quire type-specific code, which may be difficult to maintain, and primitive
types would become more complex and thus slower.

Reflection

In Java, the reflection mechanisms eventually rely on native code to in-
teract with the system that can bypass our behavior. In other words, a
behavior will be lost if a String instance is constructed using reflective
methods. Therefore, BString does not entirely support applications that
use reflective methods although it is possible to detect an access from a
reflection class in a behavior to act accordingly. This limitation could be
removed if the native Java VM code that is responsible for the reflection
feature would support behaviors.

163

11.3. Security Gains

Concurrency

BString is currently not thread-safe. This limitation could be removed
by improving the existing code of BString to leverage concurrency fea-
tures, e.g., using concurrent locks to safeguard the offered methods. How-
ever, such a change would decrease the performance since string operations
would then first need to acquire a lock before any further operation, which
is very expensive.

Scope

BString only instruments commonly used methods in the String-related
classes String, StringBuffer, and StringBuilder. There is currently
no support for the Object class or wrapper classes like Integer, Float,
or Boolean. Moreover, if enabled, the module system introduced in Java 9
prevents the use of BString for closed-source projects since such code will
not reside in the same module. In order to use BString for such analyses,
the module system must first be disabled or bypassed. This limitation
could be removed by additional changes to the Java VM, and by adding
support for behaviors in Object instances. However, the latter change
would massively increase the complexity for such behaviors.

11.3 Security Gains

In this section, we explore the second research question, i.e., Can an in-
strumented String class offer protection against data leaks and remote code
execution, and what are the security risks using such a technique? For that
purpose, we implemented selected well-known security measures to prevent
data leaks and remote code execution attacks. In particular, we show how
a developer can use BString to implement type systems, encrypt values,
and perform code analyses. Finally, we reason about potential threats that
could arise when using BString .

11.3.1 Data Type Emulation

Two major type systems that are used in practice are linear types and
liquid or refinement types. Whereas a linear type can be accessed once at
most, refinement types do not have such a limitation. However, they allow
value constraints, e.g., the corresponding value must be shorter than five
characters or only contain letters.

Security Gain

Such type systems can be used to prevent remote code execution by speci-
fying value patterns that must not occur (refinement types), or to prevent
data leakage and to improve performance (linear types), because a value

164

11.3. Security Gains

can be accessed at most once and immediately after the access it can be
safely deleted.

Implementation

The code snippet in Listing 15 shows a String behavior that imitates a
linear type, i.e., a boolean flag is checked (line two) to ensure the returned
value has not been accessed before in which case the application will pro-
ceed as expected. However, if it already has been accessed before, the
check will fail and thus raise a LinearTypeException (line six). The code
snippet in Listing 16 shows a String behavior that imitates a refinement
type, i.e., the value is checked whether it meets the requirements (line
two) when it is created. If the value does not meet the requirements, the
check will fail and thus raise a RefinementTypeException (line three).

1 public String applyOnRead(String s) {

2 if (!this.hasBeenRead) {

3 this.hasBeenRead = true;

4 return s;

5 } else {

6 throw new LinearTypeException();

7 }

8 }

Listing 15: Code that simulates a typical linear type behavior

1 public String applyOnCreation(String s) {

2 if (s.length < 5) {

3 throw new RefinementTypeException();

4 }

5 return s;

6 }

Listing 16: Code that simulates a typical refinement type behavior

11.3.2 In-memory Encryption

String data can be securely encrypted using a robust encryption algorithm
together with a complex password. Such data remains encrypted in the
memory and is only decrypted when used.

Security Gain

The in-memory encryption of data values increases the difficulty for adver-
saries to understand and exfiltrate sensitive data from collected memory
dumps.

Implementation

A String value is encrypted in the applyOnCreation(...) method and
decrypted in the applyOnRead(...) method. The simplified code of such

165

11.3. Security Gains

a behavior implementation is shown in Listing 17. The behavior will en-
crypt the original string and store the encrypted value in memory instead,
when a string is created or the behavior attached to an existing string
(line four). If the string is requested, the applyOnRead(...) method is
called and the string is decrypted for the requester (line nine), but it still
remains encrypted in memory. The behavior will further attach itself to all
derived String instances (lines thirteen to fifteen), e.g., a substring will also
have the identical behavior attached and hence be encrypted in-memory.
The entire code of a working implementation can be found online in the
corresponding GitHub repository.4

1 public class InMemoryEncryptionBehavior implements IStringBehavior {

2 @Override

3 public String applyOnCreation(String original) {

4 return encrypt(original);

5 }

6

7 @Override

8 public String applyOnRead(String encryptedStringInMemory) {

9 return decrypt(encryptedStringInMemory);

10 }

11

12 @Override

13 public boolean applyDerivationRule(DerivationRule dr) {

14 return true;

15 }

16 }

Listing 17: A simplified behavior that illustrates the use of BString for in-memory encryption

11.3.3 Off-memory Encryption

Off-memory encrypted data remains as plain text in the memory and is
only encrypted when it leaves the memory.

Security Gain

The off-memory encryption of data values ensures that adversaries cannot
understand sensitive data that leaves a system, e.g., through a network
socket. Developers do not need to encrypt data manually, instead they
can attach behavior to sensitive content that will automatically encrypt
itself in a transparent process.

Implementation

Contrary to the in-memory encryption, the applyOnCreation(...) is not
needed and the value encryption in the applyOnRead(...) method must

4GitHub project website: StringWithBehavior, https://github.com/pgadient/

StringWithBehavior, accessed on 23-MAR-2022

166

https://github.com/pgadient/StringWithBehavior
https://github.com/pgadient/StringWithBehavior

11.3. Security Gains

only take place in certain execution contexts, e.g., where a value is stored
to disk or transmitted through a network socket. A strong encryption set
up, e.g., based on the symmetric-key algorithm AES should be preferred
since only a secure crypto configuration can prevent an adversary from re-
covering encrypted data, and therefore the receivers of the encrypted data
must know the key. Listing 18 shows the simplified code for such an imple-
mentation. It is not required to implement the applyOnCreation(...)

method, because the value must only be encrypted when it is read in
classes from network and file input or output packages. Two packages
related to network and disk storage have been selected to enable the en-
cryption: java.net and java.io (line two). The current execution con-
text that contains the used packages is determined with the stack trace
(line six). If a package name matches one of those that have been pre-
viously selected (lines seven to nine), the behavior will automatically en-
crypt the value before it is returned (line ten). Since it is reasonable to
apply this behavior to every derived string for protecting the data, the
applyDerivationRule(...) method always returns true (line nineteen)
without checking for a specific DerivationRule. The entire code of a
working implementation can be found online in the GitHub repository.

1 public class OffMemoryEncryptionBehavior implements IStringBehavior {

2 private String[] ioPackages = { "java.net", "java.io" };

3

4 @Override

5 public String applyOnRead(String s) {

6 StackTraceElement[] contexts = Thread.currentThread().getStackTrace();

7 for(int i = 1; i < contexts.length; i++) {

8 for(String ioPackageName: ioPackages) {

9 if(contexts[i].getClassName().startsWith(ioPackageName)) {

10 return encrypt(s);

11 }

12 }

13 }

14 return s;

15 }

16

17 @Override

18 public boolean applyDerivationRule(DerivationRule dr) {

19 return true;

20 }

Listing 18: A simplified behavior that illustrates the use of BString for off-memory encryp-
tion

11.3.4 Taint Analysis

Taint checking or tainting is the concept of adding a marker to a specific
variable that indicates its trustworthiness, i.e., either the origin of the
value is safe or unsafe. For example, a value received from an insecure

167

11.3. Security Gains

network socket should be tainted as unsafe, because an adversary might
have altered its value to exploit the application.

Security Gain

Properly tainted values can prevent arbitrary code execution or data leaks.
However, it is important to accurately specify the contexts, i.e., packages,
classes, or methods for which unsafe tainted data represents a security
threat.

Implementation

Listing 19 shows a typical implementation that provides taint support
for a String variable. The use of a boolean marker is optional, because
we can selectively assign this behavior to String instances that must be
tainted. However, a taint variable can be introduced, if desired, to support
use cases that require the StringController class. The String array
(line two) denotes the packages in which the particular String instance
must not be read, i.e., network and input or output-related classes. The
current execution context is retrieved from the stack trace (line five), and
the package names are validated for each element in it (lines seven and
eight). If an unauthorized package is found, a run time exception will be
thrown (line nine). Otherwise, the application will proceed as expected
(line thirteen). Since the tainting behavior should “taint” every derived
string, we just return true and do not check for a specific DerivationRule
(line seventeen). Please note that the caching of stack traces is not a
viable option with the existing Java mechanisms, because the returned
stack trace instance is different for every look up and therefore a manual
comparison, which we implemented, is required anyway.

1 private String[] unauthorizedPackages = {"java.net", "java.io"};

2 private ArrayList<String> list = Arrays.asList(unauthorizedPackages);

3

4 public String applyOnRead(String s) {

5 StackTraceElement[] contexts = Thread.currentThread().getStackTrace();

6 for (int i = 1; i < contexts.length; i++) {

7 for (String packageName: list) {

8 if (contexts[i].getClassName().startsWith(packageName)) {

9 throw new TaintException();

10 }

11 }

12 }

13 return s;

14 }

15

16 public boolean applyDerivationRule(DerivationRule dr) {

17 return true;

18 }

Listing 19: A behavior that simulates taint checking

168

11.3. Security Gains

Moreover, a behavior can behave responsibly for different kinds of
threats as illustrated in Listing 20. For example, it could ignore them
(lines four and five), log the use of a tainted value to the console for minor
threats (lines six to eight), or interrupt the further code execution for more
major threats by throwing a TaintException (lines nine and ten). Fur-
ther possibilities could involve the manipulation of the String value before
it is returned, or the termination of the entire application.

1 public String applyOnRead(String s) {

2 ...

3 switch(taintAction) {

4 case NO_ACTION:

5 return s;

6 case LOG:

7 logLeak(stElements[i].getClassName(), stElements, i);

8 return s;

9 case BLOCK:

10 throw new TaintException("This String must not be used in this

↪→ package!");

11 }

12 ...

13 }

Listing 20: Behavior extension to support different severity levels

11.3.5 Data Flow Analysis

Whereas taint analyses are usually rather limited in the scope and the
level of automation, data flow analyses are much more sophisticated and
can trace data throughout the system from a source that provides sensitive
data to a sink that can leak sensitive data. A data flow analysis typically
requires a list of relevant data sources and sinks to report the desired
traces.

Security Gains

Data flow analyses can prevent arbitrary code execution or data leaks.
However, it is important to accurately specify the contexts, i.e., data
sources and sinks for which an exchange of data represents a security
threat, e.g., a password field as data source and the console output as
disallowed data sink. Using the history feature of our implementation,
the originating method and class where a String value was instantiated is
always known, every access can be tracked and, if necessary, prevented for
selected components of the application.

Implementation

The analysis of data flows is very similar to taint checking, and thus it
is straightforward to reuse that code as shown in Listing 21. In essence,

169

11.3. Security Gains

the behavior must be automatically attached to relevant String sources by
using the StringController class, and every relevant sink must be added
to the list of unauthorized contexts (lines one and two). In addition, access
to the origin and every subsequent state is required, which can be enabled
using the String history feature (lines twenty to twenty-two). The use of
history nodes has already been discussed in section 11.1.3.

170

11.3. Security Gains

1 private String[] unauthorizedPackages = {"java.net", "java.io"};

2 private ArrayList<String> list = Arrays.asList(unauthorizedPackages);

3

4 public String applyOnRead(String s) {

5 StackTraceElement[] contexts = Thread.currentThread().getStackTrace();

6 for (int i = 1; i < contexts.length; i++) {

7 for (String packageName: list) {

8 if (contexts[i].getClassName().startsWith(packageName)) {

9 throw new TaintException();

10 }

11 }

12 }

13 return s;

14 }

15

16 public boolean applyDerivationRule(DerivationRule dr) {

17 return true;

18 }

19

20 public boolean recordHistory() {

21 return true;

22 }

Listing 21: A behavior that enables data flow analyses

11.3.6 Discussion

We discuss potential threats and summarize the security gains.

Potential Threats

In this subsection, we briefly mention two threats that can arise when
using BString , how they present a security risk, and how they could be
mitigated.

String or Application Hijacking. We call string hijacking the at-
tack that allows an adversary to collect the content of string variables. If
adversaries gain access to the behavior files of an application, they could
induce malicious behavior that could, for example, send the value of an
instrumented string over the internet to any recipient. Consequently, sen-
sitive information may leak. Even worse, malicious behavior classes would
also allow an entire application to be hijacked, i.e., adversaries could ex-
ecute their own code in the context of the Java VM, e.g., to download
and execute arbitrary malicious code from the internet to take over the
computer that runs the application and eventually the corporate network.
This threat can only be mitigated by protecting the behavior files from
unauthorized accesses and instituting regular code reviews.

Developer Confusion. A developer who encounters unexpected be-
havior might become confused and start to debug the application, e.g.,
when the code does not function as expected. Therefore, the productivity

171

11.4. Threats to Validity

of such a developer will decrease. This threat cannot entirely be mitigated,
however a developer who has to work on projects that rely on behavior
classes should be made familiar with the mechanism before writing any
code.

Summary

We elaborated five different measures to prevent data leaks and remote
code execution that would require several distinct tools, and showed that
our proposed framework can provide initial support for all of them. More-
over, different functionality could be combined to provide new solutions
to common problems. For example, a developer could create a behavior
that validates whether a variable access originates from a network socket
class and block the subsequent storage into a database, or transparently
encrypt sensitive data to prevent a potential data leak.

11.4 Threats to Validity

In this section we discuss the threats to validity that might affected our
results.

The generalization of our implementation might be limited. BString
currently only offers support for String-related classes and we do not gen-
uinely know whether such functionality can be provided for other program-
ming languages or classes since their implementation may differ. This is an
inherent threat, because we cannot guarantee that the proposed approach
can be generalized beyond what we have presented. To reduce the impact
of this threat, we applied only few changes to the Java classes to avoid
unnecessary dependencies and increase the portability.

We introduced arbitrary decisions during the implementation and eval-
uation of our work. We selected the String-related classes in our work,
because they are used very frequently and can hold alphanumeric creden-
tials unlike numeric types that can only hold numbers. However, other
value types may still be valuable for some developers, and we expect that
an instrumentation of Object would allow more flexibility. For the eval-
uation, we randomly chose top listed libraries from the Maven repository,
which may not represent well the libraries used in practice. We tried limit
the impact of this threat by selecting popular classes and libraries that are
very likely representative of the current development practices.

The applicability of our results might be limited. We did not test
BString in large-scale and distributed applications and thus we cannot
predict the performance and reliability for such applications. Thread-
safety is not yet provided. However, we expect that a well-defined scope
can effectively reduce the performance overhead.

172

11.5. Conclusion

The authors have carried the work themselves. Finally, the fact that
the evaluation is performed by the authors is a threat to construct validity
through potential bias in experimenter expectancy.

11.5 Conclusion

In this work, we modified the String class of a recent OpenJDK release to
enable the execution of arbitrary Java code whenever a value is assigned
to, or read from a String object. This new interface enables the adoption
of several existing security concepts that have been proposed by numerous
researchers such as linear and refinement types, or taint and data flow
analyses. Moreover, it supports more complex use cases that are hardly
possible without such a framework, e.g., transparent in-memory or off-
memory data encryption, email notifications, etc. Since the implemented
behaviors consist of regular Java code, they can be easily integrated into
existing development processes and even used beyond a single project.
Therefore, such an API would greatly enhance the capabilities of existing
Java VMs, and the corresponding behaviors could increase application
security at a reasonable cost. We conclude that the proposed framework
provides obvious benefits and should be adapted to other languages that
use a particular entity to represent text strings.

173

Chapter 12

Conclusions, Impact, and Future Work

In this thesis we established a comprehensive catalogue of 51 security
smells that we have sourced from existing literature, and we assessed their
prevalence in publicly accessible apps. The catalogue comprises five dif-
ferent domains of the major mobile app ecosystem, i.e., Android, Android
ICC, web communication of mobile apps, app servers, and HTTP clients
in mobile apps. The tools that we used for the analyses are open-source
and publicly available on GitHub.

Carrying on with these results, we investigated what threats may be
introduced by which smell. Moreover, we propose how to mitigate such
threats at large and discuss three potential effective holistic remediation
strategies, i.e., the use of secure default values, the enforcement of safe
practices, and the use of smart data types.

In the remainder of this chapter, we revisit the challenges from chap-
ter 3, before we end this thesis with a closing remark.

12.1 Security Smells in Android

[Challenge 1] The establishment of a notion to comprehensively
describe potential vulnerabilities. We introduced the notion of
a “security smell” to describe a bad practice that may turn into a
vulnerability. Moreover, the manual inspection of 160 apps showed
that the identified security smells are a good indicator of security
vulnerabilities.

[Challenge 2] The compilation of a comprehensive list of An-
droid security smells that have been reported in the litera-
ture. We reviewed state of the art papers in security and identified
28 security smells whose presence may indicate a security issue in an
app.

174

12.2. Security Smells in Android ICC

[Challenge 3] The large-scale study regarding the prevalence of
security smells in mobile apps. We developed a static analysis
tool to study the prevalence of ten of such smells in 46 000 apps. We
realized that despite the diversity of apps in popularity, size, and
release date, the majority suffer from at least three different security
smells.

12.1.1 Visible Impacts

[Impact 1] Adoption of the term “security smell.” The term has
been adopted by other researchers after we published our initial
work, e.g., in the realm of code scripts [76, 77], smart contracts [22],
and microservice-based application [73].1

12.1.2 Future Work

We see four major aspects that should be considered in future work: time
series, more heavyweight analyses, the expansion to different mobile plat-
forms, and improved tool support. In our analysis, we only covered the
most recent version of an app in the dataset. However, an extended
analysis could offer valuable insight if repetitively performed over time,
e.g., to identify the adoption rate of security smell mitigation strategies.
Whereas we used a lightweight analysis based on regular expressions to
match method use patterns, a heavyweight analysis could provide a more
thorough view on the existence of security smells. For example, a static
or dynamic analyzer could leverage additional context to offer more pre-
cise feedback. We focused solely on Android apps, however there exist
other major mobile platforms such as Apple’s iOS, iPadOS, watchOS, and
tvOS, which would also benefit from such data gatherings. Finally, we
did not implement any developer tool support for the reported security
smells. Android app security can be expected to improve if the Android
Studio IDE could detect and report such security smells just-in-time to
developers.

12.2 Security Smells in Android ICC

[Challenge 4] The compilation of a comprehensive list of ICC se-
curity smells that have been reported in the literature. We
reviewed state of the art work that discusses ICC-related vulnerabil-
ities that threaten Android apps and compiled a list of twelve ICC
security smells.

1Google Scholar: “security smell” search, https://scholar.google.com/scholar?
q=security+smells, accessed on 26-MAR-2022

175

https://scholar.google.com/scholar?q=security+smells
https://scholar.google.com/scholar?q=security+smells

12.2. Security Smells in Android ICC

[Challenge 5] The implementation of IDE tool support for the
reported ICC security smells. We implemented a linting plug-
in for Android Studio that helps developers to spot and understand
such smells by linting affected code parts and providing just-in-time
feedback about their presence. A manual investigation of 100 apps
shows that our tool successfully finds many different ICC security
code smells, and about 43.8% of them in fact represent vulnerabili-
ties. Thus it constitutes a reasonable measure to improve the overall
development efficiency and software quality.

[Challenge 6] The large-scale study of the prevalence of ICC se-
curity smells in mobile apps. We applied our analysis to a cor-
pus of more than 700 open-source apps. We observed that only
small teams are capable of consistently building software resistant
to most security code smells, and fewer than 10% of apps suffer from
more than two ICC security smells. We discovered that updates
rarely have any impact on ICC security, however, in case they do,
they often correspond to new app features. Moreover, we found that
long-lived projects suffer from more issues than recently created ones,
except for apps that are updated frequently, for which that effect is
reversed.

12.2.1 Visible Impacts

[Impact 2] Collaboration with Google. We collaborated with Google’s
Android Studio team and submitted the revised ICC security smell
linters for further integration into Android Studio.

[Impact 3] Code linting for ICC security smells. Patrick Frisch-
knecht carried out further research on ICC security smells and con-
tributed to a security smell linting plug-in for Android Studio that
can provide just in time feedback [33].

[Impact 4] Quick fixes for ICC security smells. Dominik Briner
carried out further research on ICC security smells and contributed
to a quick fix plug-in for Android Studio that can not only provide
just in time feedback, but also resolve many security smells with just
a few clicks [13].

12.2.2 Future Work

We see two major aspects that should be considered in future work: time
series, and the expansion to different mobile platforms. In our analysis, we
only covered the most recent version of an app in the dataset. However, an
extended analysis could offer valuable insight if repetitively performed over
time, e.g., to identify the adoption rate of ICC security smell mitigation

176

12.3. Security Smells in the Web Communication of Mobile Apps

strategies. Moreover, we focused solely on Android apps, however there
exist other major mobile platforms such as Apple’s iOS, iPadOS, watchOS,
and tvOS, which would also benefit from such data gatherings.

12.3 Security Smells in the Web Communication of Mo-
bile Apps

[Challenge 7] The implementation of a tool to extract data rele-
vant for the web communication of mobile apps. We manually
reviewed 160 Android apps to compile a list of commonly used net-
work and data conversion libraries and to learn how they are used in
these apps. Based on our findings, we developed a lightweight static
analysis tool that identifies network-related APIs, and extracts com-
munication information such as the web APIs, and the associated
JSON headers.

[Challenge 8] The large-scale study of web communication char-
acteristics of mobile apps. With the help of our tool we success-
fully analyzed the network-related information within 450 closed-
source and open-source apps. We found that in both open-source
and closed-source apps network communication is mainly developed
using java.net classes. Amongst the third-party libraries we found
that OkHttp and Retrofit are used the most. By far the most used
value type in JSON data is STRING. We realized that closed-source
apps substantially rely on advertisement services, and that they tend
to have more complex URL paths consisting of more path segments.
Surprisingly, the secure HTTPS protocol is used in the majority of
extracted web APIs from open-source applications, but the opposite
is true for closed-source apps.

[Challenge 9] The compilation of a comprehensive list of web
communication security smells that have been reported in
the literature. During the analysis we identified bad coding habits
from the literature that we could relate to eight web communication
security smells. Major findings were the numerous cases of embedded
language use during the manual examination of the web APIs, i.e.,
embedded SQL and JavaScript content was rather common within
web communications, and the many issues in the server side commu-
nication: unnecessary disclosure of server configurations, e.g., out-
dated web servers and language interpreters with known security
vulnerabilities, leaks of internal error messages, and other sensitive
data. We further found private APIs without any kind of communi-
cation authentication or authorization mechanisms.

177

12.4. Security Smells in Mobile App Servers

12.3.1 Visible Impacts

[Impact 5] Web communication analysis of Android applications.
Marc-Andrea Tarnutzer carried out further research on the web com-
munication analysis of Android apps and contributed to a tool that
can reconstruct used web data structures from source code [93].

12.3.2 Future Work

We see two major aspects that should be considered in future work: the
expansion to different mobile platforms, and improved tool support. We
focused solely on Android apps, however there exist other major mobile
platforms such as Apple’s iOS, iPadOS, watchOS, and tvOS, which would
also benefit from such data gatherings. Moreover, we did not implement
any developer tool support for the reported security smells. Android app
security can be expected to improve if the Android Studio IDE could detect
and report such security smells just-in-time to developers.

12.4 Security Smells in Mobile App Servers

[Challenge 10] The large-scale study of the prevalence of the
server-side security smells in the web communication of mo-
bile apps. We used an existing dataset that includes 9 714 distinct
URLs that were used in 3 376 Android mobile apps to analyze the
prevalence of six security smells in app servers, and to investigate the
consequence of these smells from a security perspective. We realized
that the top three smells exist in more than 69% of all tested apps,
and that unprotected communication and server misconfigurations
are very common. Particularly alarming is the finding that apps us-
ing JSON app servers suffer 1.5 times more from app server security
smells than non-JSON apps, and even worse, closed-source applica-
tions suffer 1.6 times more compared to open-source applications.

[Challenge 11] The investigation of the relationship between se-
curity smells and app server maintenance. We exercised the
URLs twice over fourteen months, and stored the HTTP headers and
bodies. We found that app server security smells are omnipresent
and they indicate poor app server maintenance.

12.4.1 Future Work

We see two major aspects that should be considered in future work: the
expansion to different mobile platforms, and improved tool support. We
focused solely on Android apps, however there exist other major mobile
platforms such as Apple’s iOS, iPadOS, watchOS, and tvOS, which would
also benefit from such data gatherings. Moreover, we did not implement

178

12.5. Security Smells in Mobile App HTTP Clients

any server side tool support for the reported security smells. Server se-
curity can be expected to improve if the server management tools could
detect and report security smells just-in-time to system administrators.

12.5 Security Smells in Mobile App HTTP Clients

[Challenge 12] The investigation of security-related HTTP header
support in existing HTTP clients. We collected the HTTP re-
sponse header information from 9 714 distinct URLs found in 3 376
Android apps. We discovered that, on average, 93% of the security-
related headers are not used in server responses, indicating great
potential for future improvements. We also found that unlike major
web browsers, the support for such fields in HTTP client libraries
is very limited, and that server responses for mobile apps frequently
lack them.

12.5.1 Future Work

We see two major aspects that should be considered in future work: the
expansion to different mobile platforms, and improved library support. We
focused solely on Android apps, however there exist other major mobile
platforms such as Apple’s iOS, iPadOS, watchOS, and tvOS, which would
also benefit from such data gatherings. Finally, we did not implement
mitigation strategies in libraries for the reported smells. Android app
security can be expected to improve if the used libraries would support
the proposed features.

12.6 Effective Holistic Security for Mobile Apps

[Challenge 13] The review of reported security smells with re-
spect to how they enable attack mechanisms. We manually
investigated the impact of our 51 security smells on 192 attack mech-
anisms of the CAPEC taxonomy, which led to 9 792 combinations
that we considered. We found that insecure algorithms, the abuse
of existing functionality, data leaks, and user deception are the four
major threats that users face when using Android.

[Challenge 14] The identification of holistic security strategies
that can effectively prevent attack mechanisms. We explain
the concept of effective and holistic security in the context of mo-
bile apps and elaborate strategies with respect to the four most af-
fected major attack mechanisms considering the results of the pre-
vious challenge. We see most potential in secure default values and
safer practices to prevent feature misuse in the Android ecosystem.

179

12.7. Default Values and Practices to Improve Application Security

We realized further that string variables are responsible for most is-
sues that relate to the employment of probabilistic methods and the
injection of unexpected items, and thus they need increased protec-
tion.

12.6.1 Future Work

We see three major aspects that should be considered in future work:
a follow-up peer review to validate the preliminary results, a follow-up
study of how the attack mechanisms correlate with concrete attacks in the
wild, and the consideration of additional taxonomies. We recommend a
follow-up peer review to identify and clear misclassifications, because the
current analysis has been solely performed by the author and has not been
subject to a thorough review. Furthermore, we urge to investigate the cor-
relation of attack mechanisms with concrete attacks, because although we
observed a high correlation between smells and some attack mechanisms,
this does not necessarily mean that there is any practical relevance. The
labeled data required to assess the correlation could be collected from
CVE. Moreover, we established effective holistic remedies to address few
major CAPEC attack mechanism categories, however there might exist
other classification schemes that could reveal additional remedies.

12.7 Default Values and Practices to Improve Application
Security

[Challenge 15] The discussion of default values and practices that
could greatly improve application security. We reviewed every
reported security smell and reasoned whether it could be mitigated
with improved platform security. We found that eight smells (16%)
could be addressed with more secure default values, and that 36
smells (71%) could be addressed with safer practices. In fact, we
only see for seven smells (14%) no potential in such measures, how-
ever they can be addressed using a better control of data and we
implement a potential solution to this problem in chapter 11.

12.7.1 Future Work

We see two major aspects that should be considered in future work: the
implementation and evaluation of the proposed measures in practice, and
the more thorough exploration of mitigation strategies for the reported
problems. We could not implement and evaluate the proposed measures
in the Android ecosystem, however a collaboration with several distinct
teams working on Google’s Android ecosystem would be required for the
implementation of all the proposed measures. Furthermore, we strived
to identify effective measures that serve the purpose, but there may exist

180

12.8. A String-based Framework to Improve Application Security

additional pragmatic measures that could be identified in literature or in
discussions with a diverse crowd of security professionals.

12.8 A String-based Framework to Improve Application
Security

[Challenge 16] The implementation of a String-based framework
to improve application security. We modified the String class
of a recent OpenJDK release to enable the execution of arbitrary
Java code whenever a value is assigned to, or read from a String
object. This new interface enables the adoption of several existing
security concepts that have been proposed by numerous researchers
such as linear and refinement types, or taint and data flow analy-
ses. Moreover, it supports more complex use cases that are hardly
possible without such a framework, e.g., transparent in-memory or
off-memory data encryption, email notifications, etc. Since the im-
plemented behaviors consist of regular Java code, they can be easily
integrated into existing development processes and even used beyond
a single project.

[Challenge 17] The investigation of the restrictions when using
such a framework with existing code. We searched in the
Maven repository for the thirteen most popular and most recent Java
web communication libraries and downloaded each of them, which we
instrumented with our custom JDK. Whenever the instrumentation
did not work as intended, we kept notes and started to investigate
the root cause. We found that eleven libraries were compatible and
only two libraries were failing our framework, i.e., due to an unsup-
ported use of reflection or the lack of instrumentation in custom data
classes. However, these two limitations inherently reveal further lim-
itations, i.e., the lack of support for native code, arbitrary objects
and the corresponding conversions, and finally, concurrency.

[Challenge 18] The investigation whether such a framework can
offer protection against data leaks and remote code execu-
tion, and what security risks could arise when using it. We
implemented five security measures reported in existing literature,
i.e., data type emulation, in-memory and off-memory encryption,
taint and data flow analysis, and discuss two major threats that may
arise when using the framework, i.e., string or application hijacking,
and developer confusion.

12.8.1 Visible Impacts

[Impact 6] Protecting string-based sensitive information. Chris-
tian Zürcher carried out further research on the protection of string-

181

12.9. Closing Remarks

based information in Java applications and contributed to a pro-
totype that offers flexible security mechanisms that can be used in
existing applications [122].

12.8.2 Future Work

We see four major aspects that should be considered in future work: im-
proving the current implementation, the expansion to different platforms,
and improved tool support. Our framework supports currently only the
String class and adding support for additional classes may increase the
utility of the framework for more developers. We particularly used the
Java VM for demonstration purposes, however we expect that it is possi-
ble to adopt the concept in other object-oriented programming languages.
Finally, we did not implement any particular developer tool support that
would ease the work with such strings, nor did we yet propose these fea-
tures to the well-known OpenJDK project. If Java VMs and major IDEs
would offer such features out of the box, it would be much more convenient
for developers to use them.

12.9 Closing Remarks

This study condenses information regarding good and bad development
practices for an entire mobile ecosystem, and is to our knowledge the first
of its kind. This comprehensive and unique view allows one to reason
beyond existing work and thus advances the understanding of software
security in the highly complex mobile domain.

182

Bibliography

[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stran-
sky. How internet resources might be helping you develop faster but
less securely. IEEE Security Privacy, 15(2):50–60, March 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle Mazurek, and Christian Stransky. Compar-
ing the usability of cryptographic APIs. In Proceedings of the 2017
IEEE Symposium on Security and Privacy, 2017.

[3] Waqar Ahmad, Christian Kästner, Joshua Sunshine, and Jonathan
Aldrich. Inter-app communication in Android: Developer chal-
lenges. In Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on, pages 177–188. IEEE, 2016.

[4] Huyam AL-Amro and Eyas El-Qawasmeh. Discovering security vul-
nerabilities and leaks in ASP.NET websites. In Proceedings Title:
2012 International Conference on Cyber Security, Cyber Warfare
and Digital Forensic (CyberSec), pages 329–333, 2012.

[5] Eman Salem Alashwali, Pawel Szalachowski, and Andrew Martin.
Exploring HTTPS security inconsistencies: A cross-regional perspec-
tive. Computers & Security, 97:101975, 2020.

[6] Brian Anderson and Barbara Anderson. Seven deadliest USB at-
tacks. Syngress, 2010.

[7] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erd-
weg, and Mira Mezini. Towards secure integration of cryptographic
software. In 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (On-
ward!), Onward! 2015. ACM, 2015.

183

Bibliography

[8] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party
library detection in Android and its security applications. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 356–367, New York, NY,
USA, 2016. ACM.

[9] R. Balebako and L. Cranor. Improving app privacy: Nudging app
developers to protect user privacy. IEEE Security Privacy, 12(4):55–
58, July 2014.

[10] David Bermbach. Quality of cloud services: Expect the unexpected.
IEEE Internet Computing, 21(1):68–72, 2017.

[11] David Bermbach and Erik Wittern. Benchmarking web API quality
– revisited. arXiv preprint arXiv:1903.07712, 2019.

[12] Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang Wang.
Collusive data leak and more: Large-scale threat analysis of inter-
app communications. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, pages 71–85.
ACM, 2017.

[13] Dominik Briner. Developer tool support for security code smells.
Bachelor’s thesis, University of Bern, July 2021.

[14] William J Buchanan, Scott Helme, and Alan Woodward. Analy-
sis of the adoption of security headers in HTTP. IET Information
Security, 12(2):118–126, 2018.

[15] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang,
Heqing Huang, Wei Zou, and Peng Liu. Finding unknown malice in
10 seconds: Mass vetting for new threats at the Google-Play scale.
In 24th USENIX Security Symposium, pages 659–674, Washington,
D.C., 2015. USENIX Association.

[16] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wag-
ner. Analyzing inter-application communication in Android. In Pro-
ceedings of the 9th International Conference on Mobile Systems, Ap-
plications, and Services, MobiSys ’11, pages 239–252, New York, NY,
USA, 2011. ACM.

[17] Erika Chin and David Wagner. Efficient character-level taint track-
ing for Java. In Proceedings of the 2009 ACM workshop on Secure
web services, pages 3–12, 2009.

[18] M. Conti, N. Dragoni, and V. Lesyk. A survey of man in the middle
attacks. IEEE Communications Surveys Tutorials, 18(3):2027–2051,
thirdquarter 2016.

184

Bibliography

[19] Claudio Corrodi, Timo Spring, Mohammad Ghafari, and Oscar Nier-
strasz. Idea: Benchmarking Android data leak detection tools. In
Mathias Payer, Awais Rashid, and Jose M. Such, editors, Engi-
neering Secure Software and Systems, pages 116–123, Cham, 2018.
Springer International Publishing.

[20] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Mar-
cel Winandy. Privilege escalation attacks on Android. In Proceed-
ings of the 13th International Conference on Information Security,
ISC’10, pages 346–360, 2011.

[21] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and
Carl A. Gunter. Free for all! assessing user data exposure to advertis-
ing libraries on Android. In 23nd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016, 2016.

[22] Mehmet Demir, Manar Alalfi, Ozgur Turetken, and Alexander Fer-
worn. Security smells in smart contracts. In 2019 IEEE 19th In-
ternational Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 442–449, 2019.

[23] Ehsan Edalat, Babak Sadeghiyan, and Fatemeh Ghassemi. ConsiD-
roid: A concolic-based tool for detecting SQL injection vulnerability
in Android apps. arXiv preprint arXiv:1811.10448, 2018.

[24] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why Eve and Mallory love
Android: An analysis of Android SSL (in)security. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 50–61. ACM, 2012.

[25] Luca Falsina, Yanick Fratantonio, Stefano Zanero, Christopher
Kruegel, Giovanni Vigna, and Federico Maggi. Grab ’n run: Se-
cure and practical dynamic code loading for Android applications.
In Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015. ACM, 2015.

[26] Zheran Fang, Weili Han, Dong Li, Zeqing Guo, Danhao Guo, Xi-
aoyang Sean Wang, Zhiyun Qian, and Hao Chen. RevDroid: Code
analysis of the side effects after dynamic permission revocation of
Android apps. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ASIA CCS ’16, page
747–758, New York, NY, USA, 2016. Association for Computing
Machinery.

[27] Dominic Farolino, Jochen Eisinger, and Emily Stark. W3C editor’s
draft: Referrer policy, 2021.

185

Bibliography

[28] Johannes Feichtner. A comparative study of misapplied crypto in
Android and iOS applications. In ICETE (2), pages 96–108, 2019.

[29] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer,
Chris Bentzel, and Parisa Tabriz. Measuring HTTPS adoption on
the web. In 26th USENIX security symposium (USENIX security
17), pages 1323–1338, 2017.

[30] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve
Hanna, and Erika Chin. Permission re-delegation: Attacks and de-
fenses. In USENIX Security Symposium, volume 30, page 88, 2011.

[31] R Fielding and J Reschke. RFC 7230: Hypertext transfer protocol
(HTTP/1.1): Message syntax and routing, 2014.

[32] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Mas-
inter, Paul Leach, and Tim Berners-Lee. RFC 2616: Hypertext
transfer protocol–HTTP/1.1, 1999.

[33] Patrick Frischknecht. Security in android icc. Bachelor’s thesis,
University of Bern, June 2018.

[34] Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Os-
car Nierstrasz. Security code smells in Android ICC. Empirical
Software Engineering, 24:3046–3076, 2019.

[35] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, and
Oscar Nierstrasz. Web APIs in Android through the lens of security.
In 27th edition of the IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), March 2020.

[36] Pascal Gadient, Oscar Nierstrasz, and Mohammad Ghafari. Security
header fields in HTTP clients. In 21st IEEE International Confer-
ence on Software Quality, Reliability, and Security (QRS), December
2021.

[37] Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mo-
hammad Ghafari. Security smells pervade mobile app servers. In
ACM / IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), October 2021.

[38] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam
Malek. Automatic generation of inter-component communication
exploits for Android applications. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 661–
671. ACM, 2017.

[39] M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in An-
droid. In 2017 IEEE 17th International Working Conference on

186

Bibliography

Source Code Analysis and Manipulation (SCAM), pages 121–130,
Sept 2017.

[40] Md Maruf Hassan, Shamima Sultana Nipa, Marjan Akter, Rafita
Haque, Fabiha Nawar Deepa, Mostafijur Rahman, Md Asif Siddiqui,
Md Hasan Sharif, et al. Broken authentication and session manage-
ment vulnerability: a case study of web application. International
Journal of Simulation Systems, Science & Technology, 19(2):6–1,
2018.

[41] Jeff Hodges, Collin Jackson, and Adam Barth. RFC 6797: HTTP
strict transport security (HSTS). Internet Engineering Task Force
(IETF), 2012.

[42] Qinwen Hu, Muhammad Rizwan Asghar, and Nevil Brownlee. A
large-scale analysis of HTTPS deployments: Challenges, solutions,
and recommendations. Journal of Computer Security, Preprint:1–26,
2021.

[43] Shinelle Hutchinson, Bing Zhou, and Umit Karabiyik. Are we really
protected? an investigation into the Play Protect service. In 2019
IEEE International Conference on Big Data (Big Data), pages 4997–
5004. IEEE, 2019.

[44] Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu.
Bittersweet ADB: Attacks and defenses. In ASIACCS, 2015.

[45] Vineeta Jain, Shweta Bhandari, Vijay Laxmi, Manoj Singh Gaur,
and Mohamed Mosbah. SniffDroid: Detection of inter-app privacy
leaks in Android. In 2017 IEEE Trustcom/BigDataSE/ICESS, pages
331–338. IEEE, 2017.

[46] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and
Gautam Nagesh Peri. Code injection attacks on HTML5-based mo-
bile apps: Characterization, detection and mitigation. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 66–77. ACM, 2014.

[47] Beth H. Jones and Amita Goyal Chin. On the efficacy of smartphone
security: A critical analysis of modifications in business students’
practices over time. International Journal of Information Manage-
ment, 35(5):561 – 571, 2015.

[48] van Anne Kesteren. WHATWG: Fetch living standard, 2019.

[49] Babu Khadiranaikar, Pavol Zavarsky, and Yasir Malik. Improving
Android application security for intent-based attacks. In Informa-
tion Technology, Electronics and Mobile Communication Conference
(IEMCON), 2017 8th IEEE Annual, pages 62–67. IEEE, 2017.

187

Bibliography

[50] Youngho Kim, Tae Oh, and Jeongnyeo Kim. Analyzing user aware-
ness of privacy data leak in mobile applications. Mobile Information
Systems, 2015, 2015.

[51] Michael Kranch and Joseph Bonneau. Upgrading HTTPS in mid-air.
In Proceedings of thz 2015 Network and Distributed System Security
Symposium. NDSS, 2015.

[52] Arturs Lavrenovs and F. Jesús Rubio Melón. HTTP security headers
analysis of top one million websites. In 2018 10th International
Conference on Cyber Conflict (CyCon), pages 345–370, 2018.

[53] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro. Understanding Android app piggybacking: A system-
atic study of malicious code grafting. IEEE Transactions on Infor-
mation Forensics and Security, 12(6):1269–1284, June 2017.

[54] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick McDaniel. IccTA: Detecting inter-
component privacy leaks in Android apps. In Proceedings of the
37th International Conference on Software Engineering - Volume 1,
ICSE ’15, pages 280–291, Piscataway, NJ, USA, 2015. IEEE Press.

[55] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon.
Static analysis of Android apps: A systematic literature review. In-
formation and Software Technology, 88:67 – 95, 2017.

[56] Chia-Chi Lin, Hongyang Li, Xiao yong Zhou, and XiaoFeng Wang.
Screenmilker: How to milk your Android screen for secrets. In NDSS,
2014.

[57] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-
Velásquez. An empirical study on Android-related vulnerabilities.
In Proceedings of the 14th International Conference on Mining Soft-
ware Repositories, MSR ’17, pages 2–13, Piscataway, NJ, USA, 2017.
IEEE Press.

[58] X. Liu, X. Lu, H. Li, T. Xie, Q. Mei, H. Mei, and F. Feng. Un-
derstanding diverse usage patterns from large-scale appstore-service
profiles. IEEE Transactions on Software Engineering, PP(99):1–1,
2017.

[59] Moxie Marlinspike. More tricks for defeating SSL in practice. Black
Hat USA, 2009.

188

Bibliography

[60] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Un-
covering HTTP header inconsistencies and the impact on desktop/-
mobile websites. In Proceedings of the 2018 World Wide Web Con-
ference, WWW ’18, page 247–256, Republic and Canton of Geneva,
CHE, 2018. International World Wide Web Conferences Steering
Committee.

[61] Abner Mendoza and Guofei Gu. Mobile application web API re-
connaissance: Web-to-mobile inconsistencies & vulnerabilities. In
2018 IEEE Symposium on Security and Privacy (SP), pages 756–
769. IEEE, 2018.

[62] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repos-
itory of Android app vulnerability benchmarks. In Proceedings of
the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering, pages 43–52. ACM, 2017.

[63] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping
through hoops: Why do Java developers struggle with cryptography
APIs? In Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE ’16, pages 935–946, New York, NY, USA,
2016. ACM.

[64] Y. Nan, Z. Yang, M. Yang, S. Zhou, Y. Zhang, G. Gu, X. Wang,
and L. Sun. Identifying user-input privacy in mobile applications
at a large scale. IEEE Transactions on Information Forensics and
Security, 12(3):647–661, March 2017.

[65] Yasemin Acar nd Sascha Fahl nd Michelle Mazurek. You are not
your developer, either: A research agenda for usable security and
privacy research beyond end users. In IEEE SecDev 2016, 2016.

[66] Jon Oberheide and Charlie Miller. Dissecting the Android Bouncer.
SummerCon2012, New York, 95:110, 2012.

[67] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel,
Eric Bodden, Jacques Klein, and Yves Le Traon. Effective inter-
component communication mapping in Android with Epicc: An es-
sential step towards holistic security analysis. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13),
pages 543–558, Washington, D.C., 2013. USENIX.

[68] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith,
and Sascha Fahl. To pin or not to pin-helping app developers bullet
proof their TLS connections. In USENIX Security Symposium, 2015.

[69] Lucky Onwuzurike and Emiliano De Cristofaro. Danger is my middle
name: Experimenting with SSL vulnerabilities in Android apps. In

189

Bibliography

Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec ’15, pages 15:1–15:6. ACM,
2015.

[70] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do Android taint
analysis tools keep their promises? In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2018, pages 331–341, 2018.

[71] Nicholas J Percoco and Sean Schulte. Adventures in Bouncerland.
Black Hat USA, 95:110, 2012.

[72] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christo-
pher Kruegel, and Giovanni Vigna. Execute This! Analyzing Unsafe
and Malicious Dynamic Code Loading in Android Applications. In
Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS), San Diego, CA, 2014.

[73] Francisco Ponce. Towards resolving security smells in microservice-
based applications. In European Conference on Service-Oriented and
Cloud Computing, pages 133–139. Springer, 2020.

[74] Andrea Possemato and Yanick Fratantonio. Towards HTTPS every-
where on Android: We are not there yet. In 29th USENIX Security
Symposium (USENIX Security 20), pages 343–360, 2020.

[75] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, pages 176–186. ACM, 2018.

[76] Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins:
Security smells in infrastructure as code scripts. In Proceedings of
the 41st International Conference on Software Engineering, ICSE
’19, pages 164–175, Piscataway, NJ, USA, 2019. IEEE Press.

[77] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie
Williams. Security smells in ansible and chef scripts: A replication
study. ACM Trans. Softw. Eng. Methodol., 30(1), jan 2021.

[78] Marianna Rapoport, Philippe Suter, Erik Wittern, Ondřej Lhótak,
and Julian Dolby. Who you gonna call?: Analyzing web requests
in Android applications. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, pages 80–
90, Piscataway, NJ, USA, 2017. IEEE Press.

[79] Vaibhav Rastogi, Rui Shao, Yan Chen, Xiang Pan, Shihong Zou, and
Ryan Riley. Are these ads safe: Detecting hidden attacks through
the mobile app-web interfaces. In NDSS, 2016.

190

Bibliography

[80] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Johanna Amann, and Phillipa Gill.
Studying TLS usage in Android apps. In Proceedings of the 13th In-
ternational Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’17, page 350–362, New York, NY, USA,
2017. Association for Computing Machinery.

[81] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Ola-
bode Anise, Rahul Bobhate, Raymond Cho, Hiranava Das, Sharique
Hussain, Hamza Karachiwala, Nolen Scaife, Byron Wright, Kevin
Butler, William Enck, and Patrick Traynor. *Droid: Assessment
and evaluation of Android application analysis tools. ACM Comput.
Surv., 49(3):55:1–55:30, 2016.

[82] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu.
Towards discovering and understanding task hijacking in Android.
In USENIX Security Symposium, pages 945–959, 2015.

[83] David Ross, Tobias Gondrom, and T Stanley. RFC 7034: HTTP
header field X-Frame-Options. Internet Engineering Task Force
(IETF), 2013.

[84] A. Sadeghi, H. Bagheri, J. Garcia, and s. Malek. A taxonomy and
qualitative comparison of program analysis techniques for security
assessment of Android software. IEEE Transactions on Software
Engineering, PP(99):1–1, 2016.

[85] Brian Schweigler. An investigation into vulnerability databases.
Bachelor’s thesis, University of Bern, May 2020.

[86] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z. Morley
Mao. The misuse of Android Unix domain sockets and security
implications. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pages 80–91,
New York, NY, USA, 2016. ACM.

[87] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Sep-
arating smartphone advertising from applications. In USENIX Se-
curity Symposium, 2012.

[88] Yonghee Shin and Laurie Williams. An empirical model to predict
security vulnerabilities using code complexity metrics. In Proceed-
ings of the Second ACM-IEEE international symposium on Empiri-
cal software engineering and measurement, pages 315–317, 2008.

[89] Yunsik Son. A study on software vulnerability of programming lan-
guages interoperability. In Tai-hoon Kim, Hojjat Adeli, Rosslin John

191

Bibliography

Robles, and Maricel Balitanas, editors, Advanced Computer Sci-
ence and Information Technology, pages 123–131, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[90] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in
the web with content security policy. In Proceedings of the 19th
international conference on World wide web, pages 921–930. ACM,
2010.

[91] Emily Stark. IETF draft: Expect-CT extension for HTTP, 2018.

[92] Meenakshi Suresh, PP Amritha, Ashok Kumar Mohan, and V Anil
Kumar. An investigation on HTTP/2 security. Journal of Cyber
Security and Mobility, pages 161–180, 2018.

[93] Marc-Andrea Tarnutzer. Web communication analysis of Android
applications. Master’s thesis, University of Bern, April 2019.

[94] Vincent F. Taylor and Ivan Martinovic. SecuRank: Starving
permission-hungry apps using contextual permission analysis. In
Proceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices, SPSM ’16, pages 43–52, New York, NY,
USA, 2016. ACM.

[95] Vincent F. Taylor and Ivan Martinovic. To update or not to up-
date: Insights from a two-year study of Android app evolution. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 45–57, New York,
NY, USA, 2017. ACM.

[96] Dennis Titze and Julian Schütte. Preventing library spoofing on An-
droid. In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA
- Volume 01, TRUSTCOM ’15, pages 1136–1141. IEEE Computer
Society, 2015.

[97] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. JIT
feedback — what experienced developers like about static analysis.
In Proceedings of the 26th IEEE International Conference on Pro-
gram Comprehension (ICPC’18), 2018.

[98] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unautho-
rized origin crossing on mobile platforms: threats and mitigation. In
ACM Conference on Computer and Communications Security, 2013.

[99] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee.
Jekyll on iOS: When benign apps become evil. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13),
pages 559–572, Washington, D.C., 2013. USENIX.

192

Bibliography

[100] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying
Xu, Xin Peng, Yijian Wu, and Yang Liu. An empirical study of
usages, updates and risks of third-party libraries in Java projects.
In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 35–45. IEEE, 2020.

[101] Takuya Watanabe, Mitsuaki Akiyama, Fumihiro Kanei, Eitaro Sh-
ioji, Yuta Takata, Bo Sun, Yuta Ishi, Toshiki Shibahara, Takeshi
Yagi, and Tatsuya Mori. Understanding the origins of mobile app
vulnerabilities: A large-scale measurement study of free and paid
apps. In Proceedings of the 14th International Conference on Min-
ing Software Repositories, MSR ’17, pages 14–24, 2017.

[102] Charles Weir, Awais Rashid, and James Noble. Reaching the masses:
A new subdiscipline of app programmer education. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2016, pages 936–939. ACM,
2016.

[103] Yoav Weiss and Noam Rosenthal. W3C editor’s draft: Resource
timing level 2, 2021.

[104] M West. W3C working draft: Content security policy level 3, 2021.

[105] William E Winkler and Yves Thibaudeau. An application of the
Fellegi-Sunter model of record linkage to the 1990 US decennial cen-
sus. Citeseer, 1991.

[106] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill,
Chris Mayhorn, and Thomas Zimmermann. Quantifying developers’
adoption of security tools. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 260–271. ACM, 2015.

[107] Daoyuan Wu, Debin Gao, Yingjiu Li, and Robert H. Deng. Sec-
Comp: Towards practically defending against component hijacking
in Android applications. CoRR, abs/1609.03322, 2016.

[108] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian
Jiang. The impact of vendor customizations on Android security.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS ’13, pages 623–634, New
York, NY, USA, 2013. ACM.

[109] Wenjia Wu, Jianan Wu, Yanhao Wang, Zhen Ling, and Ming
Yang. Efficient fingerprinting-based Android device identification
with zero-permission identifiers. IEEE Access, 4:8073–8083, 2016.

193

Bibliography

[110] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make
security errors? In 2011 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 161–164, Sept 2011.

[111] Jiayun Xie, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani.
AutoPatchDroid: A framework for patching inter-app vulnerabili-
ties in Android application. In Communications (ICC), 2017 IEEE
International Conference on, pages 1–6. IEEE, 2017.

[112] LIANG XU, Shyhtsun Felix Wu, and Hao Chen. Techniques and
tools for analyzing and understanding Android applications. In Dis-
sertation, 2013.

[113] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong
Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung Lee, Chenxiong
Qian, et al. Toward engineering a secure Android ecosystem: a
survey of existing techniques. ACM Computing Surveys (CSUR),
49(2):38, 2016.

[114] George O. M. Yee. Model for reducing risks to private or sensitive
data. In Proceedings of the 9th International Workshop on Modelling
in Software Engineering, MISE ’17, pages 19–25, Piscataway, NJ,
USA, 2017. IEEE Press.

[115] Xiao Zhang, Yousra Aafer, Kailiang Ying, and Wenliang Du. Hey,
You, Get Off of My Image: Detecting Data Residue in Android Im-
ages, pages 401–421. Springer International Publishing, Cham, 2016.

[116] Xiao Zhang and Wenliang Du. Attacks on Android clipboard. In
DIMVA, 2014.

[117] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wen-
liang Du. Life after app uninstallation: Are the data still alive? data
residue attacks on Android. In NDSS, 2016.

[118] Min Zheng, Mingshen Sun, and John C. S. Lui. DroidRay: a security
evaluation system for customized android firmwares. In ASIACCS,
2014.

[119] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Harvesting de-
veloper credentials in Android apps. In WISEC, pages 1–12, 2015.

[120] Chaoshun Zuo and Zhiqiang Lin. SMARTGEN: Exposing server
URLs of mobile apps with selective symbolic execution. In Pro-
ceedings of the 26th International Conference on World Wide Web,
WWW ’17, pages 867–876, Republic and Canton of Geneva, Switzer-
land, 2017. International World Wide Web Conferences Steering
Committee.

194

Bibliography

[121] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your
data leak? uncovering the data leakage in cloud from mobile apps. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1296–
1310, 2019.

[122] Christian Zürcher. BString: A String-based framework to improve
application security. Master’s thesis, University of Bern, February
2022.

195

Appendix A

Declaration of Consent

196

Appendix B

Curriculum Vitæ

B.1 Academic Education

10/2017 - Dr. rer. nat. (PhD).
05/2022 Software Composition Group (SCG)

University of Bern, Switzerland (part-time)
Thesis advisors:
Prof. Dr. Oscar Nierstrasz
Prof. Dr. Mohammad Ghafari

09/2014 - Swiss Joint Master of Science in Computer Science (MSc).
09/2017 Universities Bern, Neuchâtel and Fribourg, Switzerland (part-time)

08/2008 - Bachelor FHO in Computer Science (BSc).
02/2013 University of Applied Sciences (OST), Rapperswil-Jona, Switzerland

(part-time)

08/2006 - Vocational Baccalaureate (BMS).
08/2007 AKAD Profession, Zürich-Oerlikon, Switzerland (part-time)

B.2 Professional Experience

10/2017 - Part-time employment
12/2021 Software Composition Group, University of Bern, Switzerland

08/2006 - Part-time employment
today Paul Morger AG, Rüti ZH, Switzerland

08/2002 - Apprenticeship as IT professional
08/2006 Paul Morger AG, Rüti ZH, Switzerland

197

https://www.inf.unibe.ch/ueber_uns/team/software_composition_group_scg/index_ger.html
https://www.inf.unibe.ch/ueber_uns/team/software_composition_group_scg/index_ger.html
https://mcs.unibnf.ch/
https://www.ost.ch/de/studium/informatik/bachelor-informatik
https://www.akad.ch/de-CH/Bildungsangebote/Berufsmaturitaet-Technik-Architektur-LifeSciences
https://www.inf.unibe.ch/ueber_uns/team/software_composition_group_scg/index_ger.html
https://www.morger.ch/
https://www.morger.ch/

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Outline

	Background
	Android
	Architecture
	Crucial Components
	Data Facilities
	Pillars of Security

	Web Communication
	Web Addressing Scheme
	Hypertext Transport Protocol (HTTP)
	Web APIs

	Security Smell

	State of the Art
	Android Security
	Android ICC Security
	Android Web Security
	APIs
	URLs in Apps
	App Servers
	HTTP Headers

	Conclusion

	Security Code Smells in Android
	Security Smells
	Insufficient Attack Protection
	Security Invalidation
	Broken Access Control
	Sensitive Data Exposure
	Lax Input Validation

	Empirical Study
	Result
	Manual Analysis
	Threats to Validity

	Conclusion

	Security Code Smells in Android ICC
	ICC Security Code Smells
	Literature Review
	List of Smells

	Empirical Study
	Linting Tool
	Dataset
	Batch Analysis
	Manual Analysis
	Threats to Validity

	Conclusion

	Security Smells in the Web Communication of Mobile Apps
	Web API Mining
	Library Inspection
	API Miner
	Security Checks

	Study Result
	Communication Libraries
	The Nature of Web Communication
	Security Risks

	Web Communication Security Smells
	Client side
	Server side

	Threats to Validity
	Conclusion

	Security Smells in Mobile App Servers
	Empirical Study
	Dataset
	Prevalence of Security Smells
	Maintenance of Server Infrastructure

	Threats to Validity
	Conclusion

	Security Smells in Mobile App HTTP Clients
	Methodology
	Sourced Apps
	URL Extraction
	Header Data Collection
	HTTP Client Support

	Results
	Identified Header Fields
	Security-related Header Fields
	Security Smells in HTTP Clients

	Threats to Validity
	Conclusion

	Effective Holistic Security for Mobile Apps
	Attack Mechanisms
	Empirical Study
	Methodology
	Findings

	Effective Security Measures
	From Effective to Holistic Security Measures
	The Conflict in Android OS Security
	Threats to Validity
	Conclusion

	Default Values and Practices to Improve Application Security
	Secure Default Values
	Apps
	App Servers

	Safe Practices
	Apps
	App Servers

	Remaining Security Smells
	Threats to Validity
	Conclusion

	A String-based Framework to Improve Application Security
	Prototype
	Motivating Example
	Implementation
	Features
	Application Support
	Performance

	Restrictions
	Methodology
	Compatibility
	Limitations

	Security Gains
	Data Type Emulation
	In-memory Encryption
	Off-memory Encryption
	Taint Analysis
	Data Flow Analysis
	Discussion

	Threats to Validity
	Conclusion

	Conclusions, Impact, and Future Work
	Security Smells in Android
	Visible Impacts
	Future Work

	Security Smells in Android ICC
	Visible Impacts
	Future Work

	Security Smells in the Web Communication of Mobile Apps
	Visible Impacts
	Future Work

	Security Smells in Mobile App Servers
	Future Work

	Security Smells in Mobile App HTTP Clients
	Future Work

	Effective Holistic Security for Mobile Apps
	Future Work

	Default Values and Practices to Improve Application Security
	Future Work

	A String-based Framework to Improve Application Security
	Visible Impacts
	Future Work

	Closing Remarks

	Bibliography
	Declaration of Consent
	Curriculum Vitæ
	Academic Education
	Professional Experience

