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Body and mind are two phenomena , observed under different condi-
tions, but of one and the same ultimate reality. Body and mind are
aspects of the living being. They operate within a peculiar principle of
synchronicity wherein things happen together and behave as if they are
the same ...yet can be conceived of as separate.

—Staff Medical Manual, Ginaz School.
Brian Herbert & Kevin J. Anderson - Prelude to Dune: House Harkonnen
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Chapter 1

Introduction

This dissertation provides a framework to synchronise design and implementation by expressing de-
sign as a logic meta program over implementation. In this first chapter we introduce the basic termi-
nology, problems and solutions offered by this dissertation.

1.1 Design as abstraction of implementation

We first introduce the definition afesignthat is used in this dissertation. Our definitiondefsignis
rather broad. To illustrate this, let us take a look at the software development life cycle. In its most
common form, it is divided into three distinct phases [RWI.96, SAm96, Rl98, RJB99]:

1. theanalysis phas@entifies and models the problem that needs to be solved;

2. thedesign phaseéescribes how the system should be structured in order to solve the problem
described in the analysis phase. This phase is commonly divided into two smaller steps, the
architectural desigrand thedetailed design

3. theimplementation phaseanslates the design into a working solution in a particular program-
ming language.

The primary concern in the first phase is titeblem while the design and implementation phases
are concerned with theolution So the input for the design phase is the problem and its output are
blueprints that can be used in the implementation phase. In this view, we can see design as an abstract
solution to the problem that is afterwards codified in the implementation phase. This results in the
following definition of (software) desidh

Definition
Software design is an abstraction of implementation.

This definition is consistent with descriptions of design that can be found in common software
engineering literaturé [Bud94, GR95, Som96, Pfl98]. However, it is more general because it also char-
acterises other things as being design, such as programming conventions (for example idiomns [Cop98]
or best practice patterris [Be¢97]). The important aspect of this definition of design is that we require
it to be explicitly related to implementationWe considerny notation that can be regarded as an
explicit abstraction of implementation to be design.

Whenever in this dissertation we use the tetfesign we mearsoftware design
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Our definition thus yields the view that design is not a stand-alone entity, but that it defines a
complete range of different abstractions over implementation. This spectrum of abstractions ranges
from more local and detailed design (such as programming styles [Jon87] LH89, Bec97]) to high-
level abstractions that provide global views of the implementation (as in high-level design or software
architectures [PW92, GSB3, BJ94, BMBS, SG96)).

1.2 The gap between design and implementation

Having clarified what we mean by design, we can now look at the relation between design and im-
plementation. In traditional software engineering literature, implementation is typically viewed as a
concretization of design [Bud®4, GR95, Sorn96]. This implies a very general, unspecified and uni-
directional relation from design to implementation. In fact, general forward engineering techniques
do not bother with making this relation between design and implementation explicit. This implicit-
ness leads to serious problems when developing object-oriented systems, as shown by the following
well-known problems that are the result of the link between design and implementation being implicit:

drift and erosion Drift is the problem where implementation and design evolve in different direc-
tions because they are not explicitly relatétosionis the process where the initial design is
breached more and more in the implementation, because the design ages quickly as the imple-
mentation changes to accommodate new requirements [PW92];

documentation problems Severe problems occur when one documents a system and has to keep this
documentation up-to-date. This problem is clearly visiblelject-oriented frameworksAn
object-oriented frameworls defined as a set of classes which embody an abstract design for
solutions to a family of related problemis [JF-88]. It can be seen as a skeleton that implements
an abstract application for some specific domain. In order to get a working application, this
skeleton then has to be fitted with the specific outward appearance. This isioatedtiating
the framework

Instantiating a framework is a very conscientious and difficult process, since the correct methods
and classes need to be implemented in order for the framework to be fully instantiated and
usable. Depending on the application that is needed, it can be sufficient to just fill in basic
information by overriding the abstract methods from the framework. However, it might also
be necessary to override more methods in order to change the behaviour implemented by the
framework in some points to accommodate for a rare feature of the application that was not
yet foreseen by the framework developer. Because frameworks define a whole spectrum of
applications that have to be realised through adapting the source code, there is a large need of
support for documenting frameworks and the decisions made when implementing them. This
documentation is an obvious weak point of frameworks: it should be sufficiently elaborate to
allow simple instantiations of the framework, and should also provide sufficient information

to allow customisations of (parts of) the framework that change the general behaviour. The
problem is that the relations between all the implementation parts that make up a framework
have to be documented.

The problem of supporting framework documentation in order to allow any user to customise

it to a certain level is also present in other development activities, such as maintenance, reverse
engineering, porting or simply extending any piece of software. For reuse to succeed, one needs
to understand the system completely, and grasp its overall structure, before making changestoiit.
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This not only leads to problems when maintaining the software, but also when new requirements
need to be included, or when novice developers join the team and need to be productive as
quickly as possible;

supporting iterative development is also very hard. To make this clear, let’s first go back in time to
have a look at the software engineering process induced hydterfall model The waterfall
model is a forward engineering, top-down approach: from analysis to design to implementation
to maintenance. When an error is encountered in some phase, a complete rollback to a previous
phase is necessary. When developing an application in a fairly new application domain, the
design is typically not perfect from the first time on, and most errors will only become clear
in the implementation. When following the waterfall mode, a lot of backtracking would occur
here. Iterative development targeted more towards the development of a system built for
new domains and with changing user requirements. The strong point of iterative development
is that it integrates top-down development (typically done in the design phase) with bottom-
up development (typically encountered when implementing the design in some programming
language). In each pass, the implementation learns from the design, and the design learns from
information gathered in the implementation phase. This integration of top-down and bottom-up
development makes iterative development much more reactive towards changing requirements
and reuse. However, this flexibility comes at a cosgnchronisation Properly supporting
iterative development is impossible if the design phase and the implementation phase (through
which is continuously cycled) have to be synchronised manually. This is not a shortcoming of
incremental development alone; it just shows how crucial it is to be able to synchronise design
and implementation.

The fundamental problem underlying the problems sketched above is that therexplicit re-
lation between the design and the implementation. Because design and implementation are unrelated,
they can be modified independently of each other, and a modification of either one does not leave
any trace in the other. As a result, synchronising such two loosely coupled entities is at best difficult
and ad-hoc, and most of the time impossible. This discrepancy results in a practical development
process where analysis and design are used for the initial implementation, but evolution is applied to
the implementation alone [DDVMWO0O].

1.3 Thesis

The general context of this dissertation is the support ob-@volutionsoftware development ap-
proach: both design and implementation are subject to evolution, and they influence each other con-
tinuouslﬂ In the long run this should result in a development environment where all development
artefacts are related to each other, such that the evolution of one artefact influences the evolution of
other artefacts. This dissertation is a first step towards such a development environment, and hands
over a conceptual and technological framework that forms the foundation of such an environment.
Since the focus of co-evolution is @mangeof artefacts, and how these changes impact other arte-
facts, the core technological component that is needed to support co-evolution is a mearhad-

nizing change®f artefacts. In this dissertation we study the characteristics of such synchronization
mechanisms, and implementsgnchronization frameworto build tools that need synchronization
between design and implementation. The cornerstone of this framework is a logic meta-programming

2The termco-evolutionactually comes from a field in biology that studies interacting species, and their influence on
each other.



6 CHAPTER 1. INTRODUCTION

language that is integrated in the object-oriented development environment. This allows to make the
relation between design and implementation explicit by expressing design as a logic meta program
over implementation. Moreover, since the design lisgac program it can be used to generate, rea-

son about and constrain the implementation, and vice versa. We have formulated our solution in the
thesis we defend throughout the remainder of this dissertation:

Thesis

A framework for co-evolution of design and implementation, where design and implemen-
tation are related in such a way that the one can check, generate or constrain the other, can
be achieved in a logic meta-programming language integrated with a software development
environment.

Note that we limit the research &xistingobject-oriented programming languages and designs,
without adapting them to fit into our approach. Instead, we want our approach to be general such that
it can be adapted to different design and programming languages.

1.4 Approach and contributions

To prove our claim, we feel that it is necessary to ftsidy the synchronizatiosf design and imple-
mentation, and then to actualiypplement an artefacnd performexperimentsvith it. The artefact
consists of asynchronization frameworkhat is based on a logic meta-programming language inte-
grated with the development environment. The reason we feel that the building of an artefact is so
important is because it is not trivial to integrate a logic meta-programming language and an object-
oriented programming language. So, to get hands-on and complete experience with the necessary
technology, it is necessary to build a working prototype. Tgnsof by constructiompproach is
not new, and was also employed in a number of other cases. For example, to experiment with an
object-oriented environment for building simulations using constraints, irggLabsystem was im-
plemented([Bor79]. Another example is tRefactoring Browsetool, that was implemented in the
context of the PhD research of Don Robelrts [Rob99].

The proof of our claim thus consists of three parts:

1. a study of synchronization of design and implementation. It consists of a study of related work
and a number of characterizations of synchronization mechanisms;

2. a logic meta-programming language and synchronization framework: the cornerstone of the
artefact is a logic meta-programming language called SOULSthalltalk Open Unification
Languagein the object-oriented programming langu&yaalltalk SOUL's technical contribu-
tion is its symbiosis with Smalltalk, meaning that Smalltalk objects and expressions can be used
from within SOUL. SOUL is used as the implementation language foddwarative frame-
work, a layered library of logic rules that allows us to reason about Smalltalk code. The design
layer expresses several design notatigmegramming conventionslesign patterrstructures
and basidJML class diagramps We then conceive th&ynchronization tool framework frame-
work to integrate the declarative framework in the Smalltalk development environment, so that
it can react on notifications of changes to design and implementation.syirtehronization
frameworkis the combination of thdeclarative frameworkand thesynchronization tool frame-
work;
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3. experiments to show that the synchronization framework lives up to our claim. The first case
study uses thelotDraw framework to show how we support different kinds of synchronisation.
The second case study is performed in industry on a real-world application, and shows the
practical application and scalability of our approach.

To summarise, we now list the contributions made by this dissertation:

1. the first contribution is the study and characterization of synchronization mechanisms. These
characterizations are used as the key variation points of our synchronization framework;

2. the second contribution is the design of the logic meta-programming language, and more specif-
ically its symbiosis with the underlying implementation language. This symbiosis allows the
logic meta-programming language to wrap or evaluate expressions in the implementation lan-
guage during the logic interpretation process;

3. the third contribution is theynchronization frameworthat is used to build tools that need
synchronization of design and implementation.

1.5 Research context

This dissertation should be seen as a step in a more general effort conducted at the Programming
Technology Lab that focuses on how the emerging technigde@érative meta programmin(@®MP)

can be used to build state-of-the-art software development support tools. DMP is an instance of hybrid
language symbiosis, merging a declarative meta-level language with a standard object-oriented base
language. As described in [DDVMW0DO0], DMP emerged as a unifying approach that combined the
research of several members of the lab. Before, several members were using their specific declarative
languages in order to reason about or manipulate an underlying object-oriented programming lan-
guage:

e Tom Mens used graph rewriting techniques to formaliser¢huse contract modgireviously
introduced in[[SLMD96] Luc97]. A prototype tool was implemented in a logic programming
languagel[Men99];

e Koen De Hondt's PhD research focussed on supporting reverse engineering. It introduces
software classificationas general medium of storing and relating all kinds of software arte-
facts [DH98];

e Kris De Volder describedyruba a precompiler that generates Java-code from logic meta pro-
grams|[DV98];

e Kim Mens described software architectures as logic meta programs to check them against the
implementation[MWD99, MenQ0];

e Tom Tourwé uses a functional language with logic extensions to write declarative code trans-
formations that can replace framework and design pattern structures by optimised implementa-
tions [TDM99, Tou00];

e Maja D’Hondt expresses domain knowledge as a separate aspect that can be factored out from
the base program in a logic meta-programming language [DDMW99, DD99];
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e [Wuy96, ' Wuy98] reasoned about the structure of object-oriented systems using SOUL (the
Smalltalk Open Unification Language), resulting in this dissertation;

Recently we ported and extended SOUL (the logic meta-programming language that we introduce
and use throughout this dissertation) to the Squeak Smalltalk environment. This new language, QSoul,
is used as the common platform to develop more declarative meta programming applications. The first
experiments that use QSoul are described in a number of workshop position papers [MMWOQOQ, BriOOa,
BriO0OL, DWO00, WDVP0O0, DVFWOQ].

1.6 Dissertation overview

Chaptef R gives a general overview of co-evolution, and discusses the characterization of synchroni-
sation of design and implementation and related work. Then it introduces in more detail the approach
we propose in this dissertation.

Chapter| B introduces the implementation and usage of the logic meta-programming language
SOULwe built to perform the experiments needed in the dissertation. We introduce the language,
the development tools and the incremental solver.

Chaptelf 4 is devoted entirely to tlieclarative frameworka layered set of rules that allow to
reason on a high level of abstraction about the implementation. The top level of the framework
expresses three design notatiopramming conventiongesign pattern structureendUML class
diagramg as logic meta programs of implementation.

Chaptef b describes tteynchronization framewoyla combination of theleclarative framework
and thesynchronization tool framework

Chaptef b uses the well-known HotDraw framework for drawing editors to validate that our ap-
proach supports different kinds of synchronisation. We show different ways of synchronising design
and implementation.

Chaptef ¥ describes the experiments we performed on a real-world Smalltalk application to demon-
strate that our approach works in practice and is indeed scalable.

Finally, chaptef B concludes the dissertation. It shows that the thesis has been proved, enumerates
the contributions of this dissertation, and discusses future work.



Chapter 2

Co-evolution

In this chapter we give more information about co-evolution, and about synchronization. We start
by defining the major concepts we need. We then propose characterizations of synchronization, and
use them to discuss related work. Finally we introduce our synchronization framework from a high-
level perspective. The rest of the dissertation is concerned with discussing the building blocks of the
synchronization framework in more detail, and validate it.

2.1 Introduction

When a company starts developing a new product, it typically uses a clean forward engineering
scheme and goes (iteratively or not) through requirements analysis, high-level design, design and
implementation phases. This development process changes when a first implementation is finished.
From then on, the implementation receives more and more attention at the cost of the maintaining
the higher-level artefacts (such as design, analysis and documentation). This has been observed for
different phases, and was coined ‘architectural drift and erosiof’ in [PW92] for the high-level design
phase. We feel this term describes the problem very well: over time the artefacts from the original
phases erode more and more under the constant pressure of the ever changing implementation.

One of the reasons of this erosion is (tool) support. First of all, artefacts from the higher-level
development phases merely serve as documentation and roadmap in the implementation phase. Sec-
ondly, these artefacts need to be kept in sync manually when changes are made to the implementation.
These problems complement and reinforce each other, and typically result in a downward spiral where
only implementation evolves, and the artefacts from other development phases stand still. Of course,
this results in only the implementation being up-to-date, and an ever more difficult job to update the
rest.

The development process we envision is oneagevolution where all possible artefacts evolve,
separately or together, toward a solution. Evolution is then performed on all possible artefacts, with
support to synchronise changes between all artefacts. To support co-evolution in practice, we need
a mechanism teynchronisechanges between design and implementation. It is clear that the scope
of co-evolution is a very large one that encompasses the complete development life cycle. In this
dissertation we therefore focus only on tfesignandimplementatiorphases, and we build a frame-
work that allows us to synchronise design (documentation) with implementation. However, before
discussing our solution we first describe the biological foundations of co-evolution, classify different
kinds of synchronisation and discuss some related work.
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class subclass speciesl species2

co-operation commensalism + 0
mutualism + +

antagonism allelopathy - 0
exploiter-victim + -
competition - -

Table 2.1: Main classes of interactions between species, and their subclaseesans
positive feedback,means negative feedbaékmeans no feedback.

2.2 Co-evolution in biology

The termco-evolutioncomes from biology, where it is the hame of a research field that studies in-
teracting species which influence each other’s evolution. Enumerating all the biological definitions
of co-evolution is beyond the scope of this dissertation (see [Def99] for several definitions). We only
give the definition by J. Thompson [Thd94] since it is compatible with most other definitions:

Definition
Co-evolution is reciprocal change in interacting species.

The two major concepts in this definition apeciesaandinteraction In biological termsspecies
is mostly defined in terms akproductively isolatedwhich means that two individuals belong to
the same species when they can produce fertile offsplinigractionbetween species is much more
complicated, since there are different forms of interactions with different names throughout the litera-
ture. A common taxonomy is based on the reward a species expects from an interaction with another
species, and is given in taljle P.1. This allows us to define two classes of interaction, each with some
subclasses:

1. co-operative interactionare interactions where none of the species participating in the inter-
action is harmed. Depending on whether just one, or both species benefit from the interaction,
this class is split iitommensalisrandmutualismcases.

2. antagonistic interactionsre interactions where at least one of the participating species is
harmed. When one species benefits from this interaction, we call tregg@aiter-victimin-
teraction. When both species get negative feedback from the interaction, we dmwpetitive
interaction. In the case where one species gets negative feedback while the other has no feed-
back, we talk aboutllelopathy

The goal of co-evolution in biology is to study the evolution of a species with respect to other
species and its environment. This can then lead to information why some species get extinct, or if
and how complex symbiosis between two species occurs. Hence the goal is actually tonbdéla
to simulate continuous interactidretween species in order to study tbeg term effectsWhile this
would be very interesting to apply to software engineering, it falls outside the scope of this dissertation
and is discussed in the future work in secfion 8.3.4. Speaking in biological terms, this dissertation is
interested in thehort term effectenly, such as detecting differences between species at a certain point
of time (conformance checkingr seeing the impact of a single evolution step in one species on the
other {mpact analysis We are also interested in the generation of a species by another species and
by the constraints imposed by one species on another species. Especially for these last two situations
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Figure 2.1: A computational system

itis hard to find matching biological situations. Hence we only use the general ideas and terminology
of biological co-evolution in this dissertation.

2.3 Definitions

Before we take a closer look at the synchronization of design and implementation, and propose the
synchronization frameworkve first want to define some of the key concepts that are used throughout
this dissertationtogic meta-programmingndreflection

2.3.1 Logic meta-programming

One of the cornerstones of our approach is that design is expressed as a logic meta program over
implementation. However, we have not yet defined what logic meta-programming is. Before doing so
we first introduce the necessary terminology, starting from the definitiorcofgutational system

A computational systens a system that reasons about and acts upon some part of the world,
called thedomainof that system. The main idea is that a computational system consiststapf
a programand anexecutor This is depicted in figurp 2.1. Thdata representshe domain of the
system. Thexecutorruns the program. Thgrogrammanipulates the data and, by doing so, conveys
new information about the domain or acts upon the domain [Mae87]. We are interested in the program,
since it specifies (or describes) the computational system [Ste94].

Definition
A programis a formal, executable specification of a computational system [DV98].

The program is expressed in a formalism that can be interpreted automatically by the executor
in order to obtain the computational system it specifies. We call this formalism a ‘programming
language’.
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Definition

A programming languagis a formalism that can be interpreted in an automatic
manner in order to obtain the computational system specified by the program written
in it [DV98].

The data of a computational system is used to represent the domain of the computational system,

so that it can be acted upon by the program. It is important to stress that this is actually a mapping:
some properties and relations of the domain are descekplicitly in the data. Some other rela-
tions areimplicit in the internal relations between the data elements, the process that interprets the
representation and the domain in which the system is embedded.

Definition
Every aspect of the internal workings of a computational system that has an explicit
representation in the data of that system is said toditeed

Definition
Every aspect of the internal workings of a computational system that has no, or an
implicit, representation in the data of that system is said talrgorbed

Computational systems can be constructed for almost any domain. One only needs to represent

the domain in data, and write a program to specify the system. Hence, computational systems can
have other computational systems as their domain, as showed in[figure 2.2.

Definition
A meta systenis a system that has as its domain another computational system,
called itsbase-systerfMae87].

Definition
A meta prograns the program specifying thraeta systenof a computational system.

We emphasise that the conceptsnoéta systenand meta programarerelative concepts. This

means that one and the same system (program) can be meta system (or meta program) and base
system (base program) at the same time, depending on the context. We would also like to stress that
the meta system does not directly manipulate its base-system; the meta system mamipngedess

of the base-systermn [St€94].

Since the only thing ‘special’ about a meta program is the data it manipulates (representations of

base programs), meta programs can be written in general-purpose programming languages. However,
to facilitate the writing of meta programs, there are domain-specific programming languages that
have specific data structures and routines to represent and reason about base programs. We call such
languagesneta-programming languagésr meta languagei short). The language the base program

is implemented in is called tHease language

Definition
A meta languagés a programming language specifically tuned for specifying meta
programs [DV98].
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Definition
Thebase languagi®r a given meta language is the programming language for which
the meta language is specifically tuned [DV98].

We already mentioned that we express design as logic meta program over implementation. Now
we have enough terminology to give a precise definition of a logic meta-programming language.

Definition
A logic meta-programming languags a logic programming language that is used
as meta language.

2.3.2 Introspection and reflection

In this dissertation we extensively use meta programming, but we also skirt the borders of reflection.
More specifically, the logic meta-programming language we have implemented is introspective, and
has some reflective capabilities. Therefore we give the basic definitions here. More detailed informa-
tion and examples of reflection can be found in the dissertations of Maes [Mae87] and Stevaert [Ste94],
and in [DM98].
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We start by definingausally connectedhat actually means that two artefacts are related in such
a way that if one of the two changes, this leads to an effect on the other.

Definition

A computational system sausally connectetb its domain if the computational
system is linked with its domain in such way that, if one of the two changes, this leads
to an effect on the other.

A classic example is a robot arm, where the domain is a set of numbers indicating the position of
the robot arm. Updating these coordinates results in the robot arm to move. Vice versa, moving the
robot arm updates the coordinates to reflect the new position of the arm. Now that we have defined
causally connectedve can define reflection.

Definition
A reflective systems a causally connected meta system that has as base system
itself [Mae87].

As is shown in figuré 2|3 of a reflective interpreter, the data of a reflective system thus contains a
causally connected representation of itself, calledsti€representationNot only can the reflective
system see this representation, it can also alter it. Because the representation is causally connected
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to the meta system, this means that the meta system is altered. Besides this ‘full reflection’, we can
define a weaker form that allows a system to only inspect its own representation, but not alter it:
introspection

Definition
Anintrospective systeris a meta system that has as base-system itself.

There are philosophical discussions about what is exactly meant with self-representation, or oth-
erwise said: what exactly an introspective or a reflective system can reason about. One could assume
that the ‘self representation’ is a representation of its own program. However, this is an arbitrary line,
since it is not clear where this ends. For example, are the libraries used by the program part of the
self-representation or not ? If so, are libraries used by these libraries also taken into account ? In this
dissertation we assume a broad view on ‘self-representation’. We take this view because most prac-
tical reflective or introspective systems support this view: not only do they reason about themselves,
they also reason about the rest of the system executing them.

2.4 Co-evolution and synchronization

In chapteif || we have already explained that the general context of this dissertation is to support co-
evolution. In the long run this should result in a development environment where all development
artefacts are related to each other, such that the evolution of one artefact induces evolution on other
artefacts. This dissertation is a first step towards such a development environment, and hands over
conceptual and technological frameworks that form the foundation of such an environment. Since the
focus of co-evolution is onhange®f artefacts, and how these changes impact other artefacts, the core
component that is needed to support co-evolution is a measgnehronizing changesf artefacts.
Therefore, this dissertation focuses asyachronization frameworkuch that design and implementa-

tion can be checked, enforced or generated from the other, at a user-definable time. The next sections
take a closer look at the synchronization of design and implementation, and stritieronization
frameworkwe propose.

2.5 Synchronizing design and implementation

In order to give support for co-evolution, we first of all need a framework to synchronize design and
implementation. In this section we first take a closer look at the characteristics of synchronization,
and we then discuss some related work.

2.5.1 Characterizing synchronisation

In this section we classify different kinds fnchronisationStrictly speakingsynchronisatiomeans

to occur at the same time, to move or operate in unigdeb96]. So, when we synchronise two
participants this means that when one of the two changes, we see the effect on the other. After the
synchronisation, both participants aresyng meaning that there are no inconsistencies between
them. This ‘general’ definition implies a direct connection between the two participants: as soon as
one of the two changes, we see this effect on the other. In practice, the meaning of synchronisation is
broader since the timing constraint can be more relaxed. The effect on the other does not necessarily
take place immediately. However, the result of the synchronisation is still that both participants are
in sync This more relaxed definition opens up a spectrum of synchronisation. At the one end there
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is the use of synchronisation according to the ‘traditional’ definition that implies that directly after a
change both participants are synchronized. At the other end of the spectrum we find the case where
the synchronisation process is initiated manually, possibly some time after a number of changes to
one or both participants have occurred. When closely investigating the synchronization of design and
implementation, we found the combinations of the following characterizations helpful to distinguish
several kinds:

direction of synchronisation Although there are two partners to be synchronized (design and imple-

mentation), the process does not necessarily works in both directions. When only one partner
can be derived from the other, we havaradirectionalsynchronization. With &idirectional
approach, design can be derived from implementation and vice versa. This classification has
a strong impact on the results that can be expected from the synchronisation: a unidirectional
system can only be used to generate one of the two participants from the other, or to do a limited
conformance check. A bidirectional system can be used both for conformance checking and for
generating one participant from the other and vice versa,;

action to be taken Different actions can be taken when the synchronization detects contradicting or
missing items. This can result inr@port so the user can choose what to do, or in an attempt to
resolvethe situation automatically;

notification time When missing or contradictory items are found, the user has to be notified that
this change resulted in a loss of synchronisation. An important question is when this user
notification should occubefore during or afterthe change has been applied to the participant.
We call these respectivefyroactive reactiveor retroactivenatifications;

trigger time The synchronisation can be triggemicectly after every single change, delayed after
several changes were made;

scope A synchronization process is governed by rules that determine whether two items are conflict-
ing or not. These rules can have different scopggsbal or local. Global means that they are
applicable to all itemsLocal scopemeans that they are only usable for the particular part of
implementation or design where they are defined.

implementation granularity Reasoning over the implementation in order to synchronize it with de-
sign can be done on different levels of granularity. For example, only specific information of the
implementation (such as call-graph information) might be used. On the other, complete parse
trees or objects might be used. This characterization takes this granularity into account;

static/dynamic Up until now we did not specify whether the synchronization process used static
information, dynamic information or both. Static information means that the source code is
used, while dynamic information is gathered at runtime. Both could be combined in order to
get a better view of the implementation.

We use these characterizations to discuss the most important related work that tries to synchronise
design and implementation in some way or another, and as the design space for the synchronization
framework.
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Eiffel | CCEL | CS AstLog | LGA | Lint SRM | FM SF

direction | one one one one one one one both | both
action report | report | report | report | action | report | report | action | both
not. time | reac | retro retro | retro pro retro | retro | retro | all
triggering | del. del. del. del. del. del. del. del. both
scope local | local local | global | global | global| global | global | global

granularity | comp. | partial | comp. | comp. | partial | comp. | partial | partial | comp.
static-dyn. | dyn. | static | static | static dyn. | static | static | static | static

Table 2.2: The related work that is of interests to us, classified using the characterizations
from sectior] 2.5]1.CS stands for CoffeeStraine,GA for Law Governed Architectures,
SRM for Software Reflexion Models aid\ for the Fragment Model. The last entry (SF)
is an abbreviation for theynchronization frameworthat will be introduced in sectidn 2.6.

make(ce: POINT,; ra: REALs
—Set circle to have centeeand radiusa.
require
point.exists:cd= void;
positiveradius: ra>0.0
... Rest of routine declaration omitted . ..

Figure 2.4: Example of an Eiffel precondition that states that for a cafhaketo be correct
the first argument must be non-void and the second argument must be positive.

2.5.2 Related work

In this dissertation we make the relation between design and implementation explicit in order to syn-
chronise design and implementation. The goal is to buiidframework that can be used to support
different kindsof synchronisation. In this section we discuss the most important related techniques
that support forms of synchronisation that were of interest to our work. Because of the large diversity
we divided them into groups, where we list the key techniques. Talile 2.2 compares the most important
techniques using the characterization from previous section. Note that the last entry in thiSEble (

is the entry for thesynchronization frameworkhe software artefact constructed for this dissertation
that we introduce further on in this chapter. While we do not discuss our entry in this section, we
added it here for completeness.

Constraining the implementation

Some related work is concerned with letting the user put constraints on design or implementation.
These constraints make some design explicit in the implementation, such as a certain assumption
about the state of an object or a programming convention.

Eiffel The example that springs to mind is the explagsertiongpre- and postconditions) construc-
tion in the object-oriented programming langu&gtel [Mey88,[Mey00]. With assertions, developers
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PointersAndAssignment
/I If a class contains a pointer member, it must declare an assignment operator:
AssignmentMustBeDeclaredCond1 (
Class C;
DataMember C::cmycmv.is pointer();
Assert(MemberFunction C::cmfcmf.name() == "operator=");
);
/I If a class inherits from a class containing a pointer member, the
// derived class must declare an assignment operator:
AssignmentMustBeDeclaredCond2 (
Class B;
Class D| D.is_descendant(B);
DataMember B::bmy bmv.is pointer();
Assert(MemberFunction D::dmfdmf.name() == "operator=");

Figure 2.5: Example of a CCEL constraint class, with two constraints that express that
whenever a C++ class contains a pointer member, or inherits from a class containing a
pointer member, it must declare an assignment operator.

sametree(node)
<- op(nodeop),
with(node, op(nodeop)),
not(and( with(node, kid(n, nkid)),
kid(n, not(sametree(nkid)))));

Figure 2.6: An Astlog predicateametreaised to compare two parse trees (the current
node that is implicit, and the passed argumerdgde. The predicate holds if root nodes
have the same opcode and all corresponding children have the same structure.
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public abstract class MediaStregm
public void initialize(){

[*-
private AMethod initializeMethod(§
return Naming.getinstanceMethod(thisClass,
“initialize”, new ATypel[0]);
}
private boolean overrides(AMethod m1, AMethod r1§2)
if (m1 == null) return false;
if (m1.getOverriddenMethod() == m2) return true;
else return overrides(m1.getOverriddenMethod(), m2);
}
private AStatement getFirstStatement(ConcreteMetho¢l m)
AStatementList s1 = m.getBody().getStatements();
return s1.size(}>0 ? s1.get(0) : null;
}
private boolean callsInitialize(AStatement{s)
if(!(s instanceOf ExpressionStatement)) return false;
AExpression e=((ExpressionStatement) s).getExpression();
if(!(e instanceOf InstanceMethodCall)) return false;
AMethod called=(InstanceMethodCall e).getCalledMethod();
return called == initializeMethod()
|| overrides(called, initializeMethod);
public boolearcheckConcreteMethodConcreteMethod mj
rationale = “when overriding initialize, “ +
“super.initialize() must be the first statement”;
return implies(overrides(m, initializeMethod()),
callsInitialize(getFirstStatement(m)));
¥
_*/

Figure 2.7: Example of a CoffeeStrainer constraint that specifies that subclasses that over-
ride a methodnitialize should first callsuper.initialize(oefore doing anything else.
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can describe specifications of software components by specifying invariants. An assertion takes the
form of a boolean Eiffel expression, and can be used as pre- and postconditions of routines, as invari-
ants of a class and in loops. Hence the scope is local, and is determined by the position in the source
code. The assertions can be checked at runtime, to help with debugging. For examplg, figure 2.4
gives an example of an assertion that expresses that, when creating a circle, the centerpoint that is
passed has to exist, and the radius has to be positive. Of course, this means that the information that
is used is dynamic. Note that assertions can only be used to check specifications, and for example
not to query the software system (for example, using the example from above, to find all parts of the
implementation that check whether the radius is positive), or to generate code.

CCEL CCEL [MDR93] allows us to express and enforce constraints on C++ code, suliireas
member function M in class C must be redefined in all classes derived frdfraClass declares

a pointer member, it must also declare an assignment operator and a copy constarcddirclass

names must begin with an upper case letlidre constraints are included in the source files in specially
formatted comments. Syntactically, CCEL constraints resemble expressions in first-order predicate
calculus, allowing programmers to make assertions involving existentially or universally quantified
CCEL variables. Constraints can be grouped in constraint classes, but there are no provisions for
composing such classes, or calling constraints from one class in another class. An example of a class
grouping two constraints is given in figyre R.5. Note that CCEL constraints only have access to the
top-level declarations (class declarations, signatures of methods and field declarations), and not to the
complete parse tree.

Astlog Another constraint system that works on C++ codéstlog[[Cre97]. Astlog is a logic
programming language with two specific additions that facilitate the reasoning over parse trees. First
it avoids the overhead of translating the source code into the form of a Prolog database by allowing
predicates to work directly on C++ code. Second, terms are matched against an implicit current object,
rather than simply proven against a database of facts, leading to a distinct “inside-out functional”
programming style. Using Astlog we can perform logic queries on C++ code, for example, as shown
in figure[2.6 to compare the structure of two parse trees. Hence we can use it to check whether the
C++ implementation conforms to the structure we describe in the query (but not to generate code, for
example). The result of the query is the report that indicates whether, and where, the implementation
conforms to the design.

CoffeeStrainer CoffeeStrainefBok99] is a system that allows us to statically check structural con-
straints on Java programs. The constraints are written in stylised Java, and have access to the complete
Java parse tree. An example of a constraint is given in figufe 2.7. The scope of the constraint is deter-
mined by its position in the source code. For example, a constraint that appears in a class or interface
applies to that class or interface and its subtypes. Subclasses can strengthen constraints, but never
weaken them.

LGA Last but not least we mention the work baw Governed Architecture (LGAMIN96,MP97],

which expresses global constraints (callads) over the interactions between the modules of a sys-

tem. The laws allow to regulate interactions betwebects An objectis a triple containing an

exterior, aninterior and anagent The exterior and interior of an object are bags of Prolog terms de-
scribing attributes. The semantics of these attributes are given by the law that uses themgeritse

are treated as black boxes that generate messages. The laws are Prolog programs that prescribe the
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result of an object sending a message. While the laws thus regulate run-time interactions, static inter-
actions can be regulated when a configuration of objects is c@aﬁmﬂ) noteworthy is that not only

the object-oriented programming language Eiffel is supported, but also Prolog, even though Prolog
has no notion of objects or messages. The trick is to partition the clauses in subspaces that can be
viewed as objects by the laflis

Generation and weaving of code

Recently a number of techniques were introduced that allow the separation of a base program from
other, specific concerns [KLM97,[HO93/ CEQD]. The core idea is to writdbase progranin some
programming language, and to write (non-functional) aspects in dediaatett languagesThese

aspects are typically cross-cutting concerns that have to be merged with the complete base program.
Typical examples are security or persistence. The code in the aspects and the code of the base lan-
guages are then merged by a so-calledver An approach we find particularly interestingaspect-

oriented logic meta programminidV98, [DVD99]. Here the aspects are all expressed as logic pro-
grams, and the weaving is done by a logic meta-programming that generates source code. While
originally developed for Java, this work is now also continued in Smalltalk [Bri0OOa, BDMDVO0O,
BriO0OL, DW00; WDVPO0].

Conformance checkers

Several tools allow us to check whether an implementation conforms to some given design. The
basic example is that dfint [Joh77], originally a tool to check C code for common programming
mistakes. Lint is built around a regular expression search engine that allows us to express fairly
sophisticated string patterns. An interesting port of the original LignslltalkLint[RBJO96], that
allows regular expressions searches on Smalltalk parse tigas.and its derivatives are a great
example of lightweight approaches to express simple, string-based programming conventions. Note
that sacrifices were made in the expressivity of patterns to gain better performance, most notably
regarding abstraction facilities and recursion.

Software reflexion mode[MNS95,[MN95, Mur96] show where an engineer’s high-level model
of the software does and does not agree with a source model, based on a declarative mapping between
the two models. The idea is that an engineer defingglalevel modebf the software, then extracts
a source mode(such as a call-graph or an inheritance hierarchy) from the source code, and then
defines a declarative mapping between the two models. The mapping uses regular expressions to
relate entries from the high-level model with the source model. Then a software reflexion model is
computed that shows where the high model agrees with and where it differs from the source model.
This information is then used to update the high-level model, the mapping or the source code, and
to compute a new reflexion model. This can of course be repeated iteratively. Applications include
re-engineering, design conformance checking and system understanding, which was confirmed on
several case studies. Generation of code using the models and the mapping is however not supported.
Note that the mapping is expressed using a medium (regular expressions) that is not very expressive or
powerful, but can be checked very fast. An approach that might be seen as starting from the opposite
direction is proposed by Kim Mens [MWD99, MMW00, Meri00]. The idea is to use a very expressive
but much slower logic programming language. It allows us to do a conformance check between a

IHowever, it is still information about interactions that is regulated. Hence, in Ie 2.2 the entry that says that only
dynamic information is used.
2Note that, although Prolog is supported, the laws only regulate interaction between objects, as note@ table 2.2.
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software architecture and an implementation. The software architecture is expressed as a logic meta
program, and the actual conformance check is done by a logic programming language.

Fragment Model

Last but not least we want to discuss the Fragment Model, and the tool support for object-oriented
patterns implemented in Smalltalk using this model [Mei96, FMvW97]. The goal of the tools is

to make the use of patterns easier in software development, more specifically to provide support to
bind program elements to roles in a pattern, to check whether patterns still meet the invariants and
to generate program elements. The idea is to capture every component that is relevant to a design
pattern in a patterfragment Fragments are defined as a combinatiostafictural elementgclass-

roles, method-roles that must be fulfilled, inheritance relationships, etc.gargdraintsthat restrict

the reorganizations that can take place on the design level. The constraints are pieces of Smalltalk
code that implement boolean checks and that can use a number of prediefjnieg operatorsto

get to the properties of the fragment they are working on. The constraints are validated whenever an
editing operation (as provided by the fragment) has maodified the fragment, or whenever validation is
triggered by another fragment. When inconsistencies are detesisgptionsare raised. The system
includes several possible exception handlers (of which only one can be active at any given moment).
The exception handler is responsible to implement the action that needs to be taken. Several types
are implemented that allow the developeigoore, discard warn, repair or choose between different
optionswhen differences between the fragment and the implementation are encountered.

Once a fragment is defined, it can be bound manually to source code (mapping the design elements
represented by the fragment to the implementation). When the fragment is bound, the constraint
can check whether the implementation conforms to it. The fragment can also be used to generate
template code. However, when generating code, only the structural information of the fragment is
used. The semantics of the fragment, that are implemented by the constraint, are not taken into
account. In practice this means that only class hierarchies and methods without an implementation
can be generated. However, the interesting aspect is that this approach is clearly bi-directional: the
fragments can be used for extracting design information from the code and to generate source code.
This is quite different from all the other approaches, that are unidirectional.

2.6 A framework to synchronize design and implementation

As said before, the goal of this dissertation is to provide a framework to synchronise design and
implementation so that the one can check, generate or constrain the other. The cornerstone of our
solution is that design is expressed as a logic meta program over implementation. Now that we have
seen the necessary terminology, we can describe our approach to the synchronization framework from
a high-level perspective.

To synchronise design and implementation we propose a setup as depicted i figure 2.8. As
can be seen, there are three participantdesign repositorycontaining the design information, an
implementation repositorwith the implementation, and the actuainchronization frameworkhat
consists of theleclarative frameworland a mechanism to trigger design and implementation changes
and binding actions to these changes. Teelarative frameworks actually a mapping between
design and implementation, and consists of logic meta programs that express design as an abstraction
of implementation. The fact that design is expressed as a logic meta program has several advantages:

1. the relation between design and implementation is made explicit, since the design is expressed
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design
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Figure subclass: #CompositeFigure
instanceVariableNames: 'components
classVariableNames: ''
poolDictionaries: ''
category: 'HotDrawApp'

Figure 2.8: General setup of our framework to synchronize design and implementation

in terms of the implementation;

2. we use the open character of a logic programming language, which allows us to build a system
where rules can easily be added to implement specific behaviour, and where logic repositories
are used to group and nest rules;

3. the inherent declarative nature of logic programming is very well suited to express design nota-
tions, since these are typically also declarative in nature;

4. since all design notations we support are expressed in the same medium (as logic meta pro-
grams), they can be expressed in terms of each other. For example, the structure of design
patterns[[GHJV94] can be described using UML class diagrams [RJB99], th&stgractice
patterns[Bec97] or other programming conventions into account;

5. logic programs express relations between their variables, in a mathematical sense. This prop-
erty is also referred to as thmaulti-way propertyof logic programming languages. Concretely
this means that the same logic program can be used in many different ways depending on the
information that is passed to it.

For example, consider the following composite pattern relationship between two classes [GHIV94].
It relates two logic variable8componenand?compositeising the relation described by thempos-
itePatternrule?]

compositePattern(?component, ?composite)

3This example uses the logic meta-programming language we have implemented (seel}hapter 3), where variables are
denoted by question marks. TbempositePatterrule is one of the rules expressing design patterns (discussed in qﬂapter 4)
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We can use this relation in 4 different ways (all possible combinations of the two arguments):

e when we pass two actual classes, the relationship returns wether it holds for these two classes.
For example,

compositePattern([VisualPart], [CompositePart])

can be used to check whethdsualPartandCompositeParare in a composite pattern relation-
ship;

e when we pass only the component class, then we can infer the classes that play the role of
composite class

compositePattern([VisualPart], ?composite)

e We can also pass the composite class, and infer all the component classes for that composite
class:

compositePattern(?component, [CompositePart])

e when we pass no information (but only variables), all possible combinations of components and
composite classes as described by the relation are found:

compositePattern(?component, ?composite)

The actual synchronisation is done by a logic meta-programming language that uses the logic
meta programs to compare information about design and implementation. The results of the syn-
chronisation (that indicate possible discrepancies between design and implementation) can then be
reported, or used by other tools to take appropriate action. One possibility is to use the results in other
logic programs, for example to generate parts of the implementation. Of course the synchronization
engine needs to be integrated in the development environment, so that it can receive notifications of
changes in implementation or design. As the logic meta-programming language is integrated in the
development environment, results from the synchronisation can also be used directly in the develop-
ment process, for example to constrain the development or to generate code.

Last but not least we want to apply the characterizations discussed in dectign 2.5.1 to our ap-
proach. An overview can be found in taple]2.2, where our approach is shown as the last entry, labelled
SF (short for synchronization framework). First of all thgection characterization idoth, since
the logic meta-programming language allows us to see the impact of changes to design on the im-
plementation, and vice versa. Because of the integration of the logic meta-programming language
with the development environment, we cannot amlyort, but alsoact when discrepancies between
design and implementation are detected. For example, we show how the design documentation can
be updated automatically as the implementation changes. A second result of the integration is that the
notificationof discrepancies can occur at any time: before the change is applied, immediately after
it is applied or even later on. A third result of the integration is thatttiggier timecan be direct or
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delayed. The scope of the rules governing the synchronization process is global in our approach. The
reason is that the rules mapping design to implementation reside in a logic repository that has nothing
to do with either design or implementation. This is analogous to the other approaches that use a logic
programming language as synchronization engine. Another approach is to integrate these rules with
implementation or design, as is done in the constraint languages we saw in gectipn 2.5.2. The granu-
larity of our approach is completely user-defined, but ultimately supports objects or parse trees. As we
will see later on, the reason is the symbiosis of our logic meta-programming language with Smalltalk
that allows us to wrap and use any Smalltalk object in our logic meta-programming language. In this
dissertation we only use static reasoning over the implementation. While we did experiments with
reasoning over dynamic information collected at runtime [RDW98], we currently have no support for
good runtime integration of our logic meta-programming language. This is discussed in the future
work in sectiori 8.3]2.

2.7 \Validation and roadmap

The previous paragraph describes the foundations of the framework we propose to synchronise design
and implementation so that the one can check, generate or constrain the other. The validation of this
claim isproved by constructignn different steps:

1. first we introduce a logic meta-programming language called SOUL (an acrony8mattalk
Open Unification Languagén the object-oriented programming language Smalltalk [GM90,
Lew9E]. This language is integrated in the Smalltalk development environment and allows us
to express logic meta programs, and perform logic queries that use these programs to reason
about the Smalltalk source code;

2. then we describe theeclarative frameworka layered structure of rules to reason about the
base language. Closest to the implementation we findgesentational layethat contains
the rules that reify the core concepts of the base language. In the case of SOUL reasoning over
Smalltalk code, these artasses methodsinstance variableandinheritance Other layers
then build on this one, raising the level of abstraction of the predicates reasoning about the
implementation.

3. in the top layer in th&eclarative frameworkve express design notations as logic meta pro-
grams over implementation. As examples we pgggramming conventionglesign patterns
andUML class diagrams

4. next we introduce theynchronization tool framewoyla Smalltalk framework to integrate our
synchronization engine in the development environment. We combine this wide therative
frameworkto get the actuatynchronization framework

5. then we use thsynchronization framewor&n two case studies to prove that it can indeed be
used to synchronise design and implementation. First we uséatizraw framework (a frame-
work for structured drawing editors [Bra92, Joh92, EJ94, Cha94]) to show how the checking,
generation and enforcement of design on implementation, and vice versa, is done. Then we
experiment on a real world Smalltalk application to demonstrate that the approach is scalable.
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2.8 Summary

In this section we introduced the necessary background regarding co-evolution and synchronisation.
We started by discussing the biological view of co-evolution as a mutual interaction between species.
Then we introduced the necessary definitions, most notably the notionstafprogrammingntro-
spectionandreflection Then we introduced our view on co-evolution as a development approach
where both design and implementation are subject to evolution, and where they influence each other.
To allow tools that support co-evolution we therefore need to synchronize changes between design
and implementation. Therefore we first of all studied the characteristics of the synchronization of
design and implementation. The resulting characterizations are a conceptual contribution of this dis-
sertation. They are then used to discuss the related work. While several approaches look promising,
none currently exists that encompasses the complete spectrum of synchronization we described by
the characterizations. Hence, in order to prove our claim that we can build such a framework, the
following section describes from a high-level perspective our overview of such a framework . In the
remainder of this dissertation we will build the synchronization framework, and validate its support
for co-evolution, hence proving our claim.
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Chapter 3

SOUL and the incremental solver

In this chapter we introduce the logic meta-programming language we use to synchronise design and
implementation. We describe the basic syntax and usage, the development tools and the incremental
solver. In the next chapter we use this language to implemeidgtiarative frameworka layered set

of rules to facilitate reasoning over the implementation.

3.1 Introduction

For the validation of our claim, we need a logic meta-programming language to express design as a
logic meta program over implementation and to synchronise design and implementation. The research
language we conceived is called tBmalltalk Open Unification Languag8OUL). SOUL is a logic
programming language (analogous to Prolog [CM81, $S88]) that is implemented in, and lives in
symbiosis with, the object-oriented programming languagelitalk SOUL allows users to perform

logic queries over Smalltalk source code, without the need of representing this source code explicitly
in the logic repository. This is done with tlemalltalk term , a special construct that allows

us to invoke Smalltalk code during the logic interpretation process. Usingntiaditalk term :
concepts from the base language can easily be reified in SOUL.

Once we have a logic meta-programming language we can express design as a logic meta pro-
gram over implementation. This is done in a structured manner, resultingdalarative framework
The idea is to layer the rules expressing design in function of the implementation, where rules in
one layer are expressed in terms of the lower level layers. The layer that reifies the base-language’s
concepts (and that all other layers depend on) isréfpeesentational layer Other layers then add
lots of predicates that are expressed in terms of the predicates from previous layers and that facilitate
reasoning about implementation. This structure makes it easy to swap one layer for another should
this be required.

Note that this chapter does not go into the details of SOUL's implementation (the manual [Wuy00]
includes an overview of the implementation). Instead we focus our attention on the specific language
features and rules that allow SOUL to reason over Smalltalk. These rules are used in subsequent
chapters, when we express design as a logic meta program over implementation and when we perform
experiments.
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3.2 SOUL as a logic meta-programming language

In chaptef 2 we defined a meta language as a programming language with specific data structures
and routines to represent and reason about base programs. For SOUL we chose to make a symbiosis
with Smalltalk such that we could directly reason on Smalltalk base programs. Therefore the first
part of this section discusses this symbiosis in detail, and more specifically the language constructs
that allow the symbiosis: themalltalk term , the generate predicate Afterwards we discuss

the additions to the Smalltalk term that make SOUL a reflective logic meta-programming language.
Then we describe th@cremental solvethat uses local propagation techniques to solve networks of
logic relations expressed in SOUL. We end this overview with the development tools that are available
to SOUL developers to interact with SOUL, and the tools for the Smalltalk developers that we built
using SOUL. However, we start this section by giving SOUL's syntax.

3.2.1 Syntax of SOUL

Before we give the first SOUL code examples, figurg 3.1 gives the syntax of SOUL: the starting
production is underlined, square brackdt)(delimit optional constructs; brace§ f) indicate zero

or more repetitions of the enclosed construct; parenthé$emdicate simple grouping of constructs;

a vertical bar |) indicates choice of one from many; literal text in definitions is denoted using bold
typewriter font.

3.2.2 Symbiosis with Smalltalk

In this section we first of all motivate why we need symbiosis between the logic meta-programming
language and the base language for the purpose of synchronization. Then we discyssldiag
mechanisnuses to obtain the symbiosis. Finally we discuss some of the implementation details of the
implementation of the symbiosis mechanism in SOUL.

Symbiosis for synchronization

For a logic meta-programming language to reason about a certain base program, one possibility could
be to build a large logic repository containing the complete source code of that base program in logic
format. This indeed allows to write logic programs that reason about the source code in the logic
repository. However, this also means that every program is represented two times: once as regular
source code used in Smalltalk, and once in a logic format to reason about in SOUL. This poses two
problems. The first is where to draw the boundary when making a logic representation of a program.
Is it enough to represent only the classes of the program, or do we also need the code of the libraries
that are used by the program ? And the libraries these libraries use ? Making this decision is very
difficult to make in general. The second problem has to do with the synchronization. Since we use
the logic meta-programming language to synchronize changes between design and implementation,
the fact that there are two representations for one and the same base program means that we need an
extra synchronization step. This is necessary to make sure that the logic representation used in the
logic meta-programming language is kept in sync with the source code.

To solve these problems, we chose to makgrabiosidetween Smalltalk and SOUL. This sym-
biosis makes any Smalltalk object directly usable as a logic term in SOUL, and even allows to write
Smalltalk expressions (that can be parametrized by logic variables). Both features are enabled by the
smalltalk term , a logic construct containing Smalltalk code that can be executed during logic
interpretation. This way Smalltalk expressions can be wrapped and used as logic constructs. Before
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clauseSequence :=clause{ . clause}

clause :=fact| rule | query

fact = Fact term

rule = Rule compoundTernf terms

query = Query terms

term := simpleTernmj compoundTermspecialTerm
simpleTerm := constantTernj variableTerm| booleanTerm
constantTerm = word

variableTerm := normalVariableTerm specialVariableTermnunderscoreTerm
normalVariableTerm :=?word

specialVariableTerm := @vord

underscoreTerm =

booleanTerm :=true |false |fail

compoundTerm :=regularCompoundTermlistTerm

regularCompoundTerm :=simpleTern{ possiblyEmptyTerms

specialTerm := smalltalkTerm quotedString cutTerm
smalltalkTerm :=[ extended smalltalk code ]
guotedString :={string }

cutTerm =1

possiblyEmptyTerms :=terms| empty

terms =term{, term}

empty =

listTerm := emptyListf nonEmptyListTerm

emptyList =<>

nonEmptyList := <terms| (terms| (variableTerm| nonEmptyLigf) >

Figure 3.1: SOUL Syntax
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we continue, we have a note on behalf of Prolog users: despite its nanmg|ltalk term can
be used both as term and as clause.

The first, and simplest usage ofmalltalk term is to wrap Smalltalk objects and use them
in SOUL as constants. For example, #malltalk term [Array] is a SOUL constant that wraps

the Smalltalk clas#\rray in order to use it in SOUL. For example, if we want to ask SOUL to test
whetherArray is a class, we could evaluate the following qL@ry

Query class([ Array ])

SinceArray is indeed a class in the Smalltalk system, this query succeeds. We like to stress that
the smalltalk term really passes the Smalltalk cladsray, and not just the name or another
representation of the class. For example, would we like to pass the name of a class, we have to use
asmalltalk term with a string containing the name of the class. For exanjpkrray’ ] is a
smalltalk term representing the Smalltalk string ‘Array’.

The smalltalk term is not only used to wrap objects and use them in SOUL. It can also
contain Smalltalk expressions that are evaluated during the interpretation. Moreover, these Smalltalk
expressions can be parametrized with logic variables. Whesrtiaditalk term is evaluated,
these logic variables are substituted by their current binding. If they are unbound, the interpretation of
thesmalltalk term fails. As an example, we define a rule that gives all selectors (the names of
methods) of a class. In Smalltalk you can get the selectors of a class by sending that class the message
selectors The result is a Smalltalk collection with all the selectors of that class. Since the Smalltalk
system can tell us what the selectors are for a class, wearsalitalk term to ask the selectors
of a class. This is expressed in the following rule:

Rule simpleSelectors(?c, ?selectoifs)
class(?c),
equals(?selectors, [?c selectors]).

This rule uses amalltalk term to ask the logic variabl@c for its selectors. Intuitively, the
meaning is clear: the class that is bound to the variabighen thesmalltalk term is evaluated,
is asked for its selectors by sending it Beectoranessage. IPcis not bound when themalltalk
term is evaluated, themalltalk term fails. So, using thesimpleSelectoraule we can get the
selectors of the classrray in SOUL by evaluating the following query:

Query simpleSelectors([ Array ], ?sels)

When this query is evaluated, it uses wimpleSelectorsule, binding the variabl€c to the
smalltalk term [Array]. Then, when thesmalltalk term is evaluated the clasArray is
asked for its selectors, and the result is bound to the varfzd@kectors The result of the query is a
solution for the variabl@sels binding it to asmalltalk term that wraps the Smalltalk collection
with the selectors of Array:

0Of course, a predicatelassshould be defined. We implement this predicate in sen 4.3. For now, just suppose it is
implemented and succeeds if the argument passed is a Smalltalk class, and fails if it is not.
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Smalltalk Array
* I a
T4
SOUL [Array]

Figure 3.2: The up-down mechanism to let Smalltalk objects travel between Smalltalk and
SOUL.

?sels > [ldentitySet(#identitylndexOf:replaceWith:startingAt:stoppingAt:
#decodeAsLiteralArray #refersToLiteral: #storeOn: #printOn: #multiBecome:
#startingAt:replaceElementsin:from:to: #literalArrayEncoding #isLiteral
#equalsLiteral: #multiAllinstances #identitylIndexOf:from:to:ifAbsent:
#replaceFrom:to:with:startingAt: #multiAllLivelnstances #emWriteLiteralOn:)]

The up/down mechanism

In the previous section we saw thatsmalltalk term contains a Smalltalk expression. This
Smalltalk expression can be very simple, and consist of nothing but a class, but it can also be
parametrized by logic variables. In this section we want to explain how a Smalltalk term is inter-
preted in SOUL, and hence how the symbiosis works. The up/down mechanism we use was intro-
duced in the PhD dissertation of Steyaert as the core implementation mechanism for a framewaork for
open designed object-oriented programming language [Ste94]. The implementations of the object-
based object-oriented programming languédgm®ra uses theup/downmechanism to get reflection

with their object-oriented implementation language (Smalltalk, C++ and Java) [DM98]. Here we use
it as the cornerstone to get reflection between two languages from different paradigms. To explain
how this works, we first of all have to consid&ro levels in the semantics of SOUL.:

1. theuplevel is the level of SOUL's implementation language, Smalltalk;

2. thedownlevel is the SOUL level being evaluated by ting(Smalltalk) level.

The basis for the symbiosis is that Smalltalk objects can cross this boundary. Hence, any Smalltalk
object can be used in Smalltalk, but it can also be used as a logic term in SOUL. It is this transition
(shown in figur¢ 32) between these two levels that allows for the symbiosis between Smalltalk and
SOUL. Hence we cadowna Smalltalk objecrray (which is the clas#\rray) to get the logic term
[Array] . We can alsaup the logic term[Array] and get the Smalltalk objeétrray. The conversion
is done implicitly during the evaluation of themalltalk term . We will explain this in two
steps, first for asmalltalk term that is not parametrized with logic variables, and then for a
smalltalk term containing references.

Interpreting ssmalltalk term with an expression that contains no logic variables is straight-
forward, as is illustrated with the interpretation of the following query:

Query [Array selectors iSEmpty]
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To interprete themalltalk term in SOUL, we evaluate the Smalltalk expression it contains.
The result of this evaluation in Smalltalk is a Smalltalk instance of class Boolean instalsees{nce
the classArray contains methods). This Smalltalk object is then downed, and is then used in the rest
of the interpretation of the query (which will fail).

Interpreting asmalltalk term that is parametrized by logic variables, is analogous. However,
it is more complex because the bindings of the logic variables have to be passed to the Smalltalk
expression. The problem is that these bindings are used in SOUL (and thus consist of logic terms),
but that they are here used in a Smalltalk expression to be evaluated in Smalltalk. Therefore they have
to beuppedto get their Smalltalk representation. The interpretation of the following query illustrates
this:

Query equals(?c, [Array]),
[?c selectors iSEmpty]

The interpretation of thequalspredicate unifies the logic variablg with the smalltalk
term [Array]. This adds a binding in the logic environment, indicating that the logic variable
is bound to the logic termArray]. Then thesmalltalk term [?c selectors isEmptyfhas to be
interpreted. As before, this means we have to evaluate the Smalltalk expression it contains, and down
the resulting object. However, to evaluate the Smalltalk code isrhegltalk term we have to
lookup the binding for the logic variablec in the logic environment. This gives us the logic term
[Array], a logic construct. Therefore wep it, and get its Smalltalk representation, the classy.
Then we can evaluate the Smalltalk expres#oray selectors isEmptywhich yields the Smalltalk
resultfalse Since the result of the SOUL evaluation of a Smalltalk term has to be a SOUL term, the
Smalltalk resulfalseis downed to geffalse].

So, in general this means that to interpretenzalltalk term t in a logic environment, we
need to fetch the logic term for any logic variable used inghmalltalk term , and therup this
logic term to get its Smalltalk representation. Then we have a complete Smalltalk expression, that we
evaluate in Smalltalk. The result is a Smalltalk object, that is ttmmnedto get a logic term. This
logic term is the result of the evaluation tof

Implementation details

The previous section explains in general hownaalltalk term is interpreted. In this section

we want to say something more about the implementation of this mechanism in SOUL. Basically, a
smalltalk term is converted internally into a Smalltalk blockclosure, that can be evaluated to
get a result. Of course, sincesaalltalk term has access to logic variables, an environment
has to be passed to this block that contains the values to use. Therefore, svhalitalk term

is parsed, dlockand anenvironmentre constructed. The environment is simply an array that will

be used to hold the values for the variables referenced in the smalltalk term. The block contains the
Smalltalk code, but replaces every occurrence of a logic variable to a lookup in the environment. This
value isuppedto Smalltalk level. For example, for tremalltalk term that was used in the
simpleSelectoraule, the following block is created:

[:env| ((env at: 1) soulUp) selectors]
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Of course, when a variable is used multiple times within the block, it uses the same index in the
environment. When themalltalk term is interpreted, the environment containing the values
for the referenced variables is passed. When a variable remains unbound, an error is shown and the
interpretation stops. For example, the following query will give a SOUL runtime error because the
referenced variabl@écis not bound when themalltalk term is evaluated:

Query [?c selectors]

Note that because thlsnalltalk term contains regular Smalltalk code (extended with access
to logic variables), this also means that Smalltalk runtime errors can occur while interpreting the
smalltalk term . We just let these errors end the logic interpretation process, and a standard
Smalltalk exception is thrown and results in a dialog box. Alternatively we also did experiments
where the Smalltalk exception handler is used to catch the Smalltalk runtime errors, and just fails the
predicate. However, in practice the latter poses problems for the SOUL developer because it makes it
very hard to debug Smalltalk errorssmalltalk terms

3.2.3 The generate predicate

The smalltalk term wraps Smalltalk expressions, and allows us to evaluate Smalltalk expres-
sions during logic interpretation, wrapping the resulting object. This wrapping was illustrated in the
previous section, where we get one result when we ask the selectors of thé&rkass This one
result is a wrapped Smalltalk collection containing the selectors of Alaag. However, sometimes

we want to geseparatdogic results for each selector. Such functionality is offered bygemeerate
predicate which generates a set of solutions (described syalltalk term ) for a variable. The

first argument of the generate predicate specifiegi variableto bind the results to. The second
argument is a smalltalk term that describesraam of solutionsEach of these solutions is bound, one
by one, to the first argument. As an example, we revisesiin@leSelectorpredicate to use the gen-
erate predicate, and turn it intesanpleSelectopredicate. Therefore we replace the call toeleals
predicate by a call to thgeneratepredicate. We also change thmalltalk term to produce a
stream with the selectors of the class:

Rule simpleSelector(?c, ?selectdfr)
class(?c),
generate(?selector, [?c selectors asStream]).

When thegeneratepredicate is evaluated, it results in X solutions for the vari&selectors
where X is the number of elements in the stream. For example, the query to ask the selectors of class
Array now yields 15 results. Each result is a binding for the variablector containing the name of
a selector ofArray. We only show the first four of these results:

?selector > [#identitylndexOf:replaceWith:startingAt:stoppingAt:]
?selector > [#decodeAsLiteralArray]

?selector > [#refersToLiteral:]

?selector > [#storeOn:]
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3.2.4 The quoted string

Thesmalltalk term is used to wrap and use Smalltalk code (that can reference logic variables)
in SOUL. When asmalltalk term is interpreted, its smalltalk source code is invoked (after all

its logic variables where substituted). We would also like to be able to represent Smalltalk code as is,
without it being evaluated. To support this functionality SOUL providesgiheted stringanguage
construct. A quoted string is used to denote strings that can contain logic variables. Note that these
strings do not necessarily have to represent syntactically correct Smalltalk expressions.

For example, the following rule describes a simple HTML description of a class. Two quoted
strings are used. The first one is in the head of the rule, and states that the html file for a certain class
?class(the first argument) is a html file with some heading and followed by a list. The second quoted
string is used to construct the list items containing the names of the methods of the clasddlhe
predicate accumulates these items as in Prolog. It takes three arguments (a term, a goal and a list) and
finds the list of all the instances of the term for which the given goal is true. Note thhst®®tring
predicate is responsible for collapsing the list with strings describing the items into one single string:

Rule classHtml(?clasg, <html><body>
<h1>Methods of ?classNarrgh1>
<ul>
?selectorNameStrings
</ul>
</body></html>
) if

className(?class, ?className),

findall(  {<li>?sek/li>},
classimplements(?class, ?sel),
?ms),

list2String(?ms, ?selectorNameStrings).

When extended, rules likelassHtmlcould form the foundation for a documentation extracting
system. The idea is to query the implementation for information, and export the results in html. When
combined with the rules defined in tdeclarative frameworkn chaptef 4, a powerful documentation
system could be constructed. By using #ymchronization frameworthe extracted documentation
could even be kept in sync with the implementation.

3.2.5 Introspection and reflection in SOUL

Up until now we viewed SOUL as nothing more than a logic meta-programming language that has
some extensions that allow it to reason about Smalltalk. However, since SOUL is implemented in
Smalltalk, and since themalltalk term can be used to reason about any Smalltalk base program,

it can reason about the SOUL implementation itself. Hence, SOUhtligspectiveas defined in
sectior] 2.3.2. For example, the following query gets the names of the methods implemented by the
classSOULRulethe SOUL class representing rules:

Query simpleSelector([SOULRule], ?selector)

However, beside introspection, SOUL also uses lightweight forms of reflection. The goal of this
reflection was to be able to write second-order logic predicates from within SOUL. Therefore we
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reify two concepts that are important during the evaluation of a logic term: the logic repository and
the logic environment that holds on to the bindings. We chose to make these two concepts available in
thesmalltalk term , under the form of two hardcoded variabl@sepositoryand?bindings The
?repositoryvariable references the logic repository used when interpretingrtiaditalk term

The ?bindingsvariable holds the current set of bindings. This simple addition makes it possible
for a smalltalk term to inspect and influence its interpretation. As an example we give the
implementation of three widely used logic predicatesserf oneandcall. Theassertpredicate adds

a new logic clause to the current repository. Dmepredicate finds only the first solution of the term
passed as argument. If this first solution is found, the bindings are updated and the predicate succeeds,
otherwise the predicate fails. Tleall predicate is analogous to te@epredicate, but does not keep

the results. Hence it just needs to succeed when the argument term has at least one solution:

Rule assert(?clausé)
[?repository addClause: ?clause ].

Rule one(?term)f
[ | solution|
solution := ( ?term resultStream: ?repository ) next.
solution isNil
ifTrue: [false]
ifFalse: [ ?bindings addAll: solution. true ]

].

Rule call(?term)if
[(?term resultStream: ?repository) next isNil not]

Speaking in reflection terminology, the two hardcoded variaBtepositoryand bindingsare a
causally connected self-representation. Thereforesthalltalk term (and hence SOUL) can
reason about and even alter a part of its implementation. Note however that the introspective and
reflective capabilities of SOUL add nothing to the meta-programming abilities. As explained in sec-
tion[3.2.2 a construction such as graalltalk term is enough to get a logic meta-programming
language. The additions explained in this section only allow us to implement some higher-order func-
tionality from within SOUL itself. While this adds to the usability and expressive power of SOUL
(particularly while experimenting), it is no conceptual addition to help reasoning about the base lan-
guage.

3.2.6 The development tools

To complete the description of SOUL we want to show the tools that make up the SOUL development
environment. They mainly allow launching queries, edit and compose logic repositories and view
results. The basic tool for a SOUL developer is Bepository Inspectotool, shown in figuré 3]3.

This tool has different panes that allow us to launch queries@ineriespane, which is not shown

in the screenshot), to compose repositories @oafigurationpane) and to view and edit clauses

(the Clausespane). TheClauseCopieshown in figuré 34 allows to move and copy clauses between
different repositories. Last but not least, fighre] 3.5 shows an inspector on the result of a query. This
inspector displays the number of results in its title bar, and can show different aspects of the results
by selecting the appropriate entry in the list on the left (such as the query that was launched, the time
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Figure 3.8: The XRay Browser showing the extracted categories of Elgase

it took to solve the query, the results itself, and the results substituted in the original query. By double
clicking the entries, more detailed information can be obtained about each of these items.

We also show the tools for Smalltalk developers that use SOUL as a reasoning engine. These
tools are actually very simple to build, since they are basically GUI shells that only have to display
the information from queries. The first example is 8teuctural Findtool, shown in screenshpt 3.6.

It allows developers to find classes, methods or instance variables according to certain criteria that can
be selected from drop-down boxes. Another example iXtRay Browserthat allows us to display

the methods of a Smalltalk class according to three different categorizatiiassic templates and
hooksandextracted categoriesThe classicclassification is standard Smalltalk, where methods are
grouped by hand in named groups (calf@dtocolg. The templates and hooksassification uses

the messages teelf (the receiver itself) to differentiattemplate methodémethods calling other
methods through self-sends) frdmok method¢émethods that are being called in other methods of
the class). ScreenshjotB.7 shows the X-Ray browser opened on the HotDraiglassshowing the
template and hook methods. Thetracted categorieslassification goes a bit further. Each method
that only hasonesender in the class is assigned to a classification around that one method that calls
it. Screenshdt 3]8 shows the XRay-browser on the extracted categories dfiglass

3.3 The incremental solver

During our experiments we show how SOUL is used to support different kinds of synchronisation.
As seen in sectidn 2.5.1, one possible classification of synchronisation differentiates between the time
the synchronisation is triggeredelayedor direct When the synchronisation occurs delayed, we use
SOUL to launch a query to find the differences between design and implementation. However, this
process is too costly to support direct synchronisation, since it starts from scratch for each change to
design and implementation. Therefore SOUL includemaremental solvethat retains the results of
previous queries and can directly propagate small changes to these results. In this section we describe
this incremental solver. We start by discussing the local propagation techniques used in humeric
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constraint solvers, and then we see how we used this idea in our symbolic context.

3.3.1 Local propagation in numeric constraint solvers

The SOUL incremental solver uses techniques that are borrowedtinstraint programmingJL87,
Coh90], and more specifically from thecremental constraint solvingrea, where constraints are
used in interactive graphical user interface building and where responsiveness and efficiency are pri-
mary concerns [FB89, FBMB90, BAFBB6, San94, SMFBB93, BEB95, BB98]. Therefore, we first
introduce some common constraint programming terminology that helps explain our approach. The
classic meaning of aonstraintis a relation between variables (thenstraint variable}that should
be maintained at all times [FBMB90, BAFB96, SMFBB93, BFB95, BB98]. Constraints are grouped
in constraint networkswhere every constraint variable had@mainassociated with it. The domain
contains the possible values for the constraint variable in the constraint network. A value is possible if
it makes the constraint hold in the given constraint network. When a constraint network is constructed,
it can besolved

Solving a constraint network means finding the domain for each of the constraint variables, or
failing if this is not possible. The core ideaiimcrementakonstraint solving is first to build a network
(finding the domains for each constraint variable) and then keep on updating this network whenever
a value in the domain of a variable changes. Updating of the network starts with the variable whose
domain was affected, and proceeds recursively by updating the domains of variables that have a direct
relation with the initial variable. As a result, a change in one domain is propagated to all other domains
that need to be updated (and not more).

3.3.2 Local propagation in SOUL

Incremental constraint solvers seemed very good candidates to use as a foundation to support di-
rect synchronization of design and implementation. However, using existing incremental constraint
solvers proved impossible because the domains of these algorithms were almost always numerical.
In our case we want the values in the domains tesymboli¢ since we want to express relations
between Smalltalk objects. Therefore we chose to build a simple incremental symbolic solver, using
local propagation techniques analogous to those found in the incremental, numeric constraint solving
community. In our approach, constraints are expressed as logic terms using SOUL. Hence we use
SOUL as the language for describing the relations between variables. The domains of constraints are
calculated using SOUL, meaning that the approach is in essence multi-way (whenever a multi-way
predicate is used). However, because of limitations of our current implementation we only allow
at most two variables at this moment. Supporting more than two variables was not necessary for
this proof of concept, so we omitted it. However, we think it should not prove to be too difficult to
implement when the need arises.

For example, suppose we want to find all subclasses of a Elgaee that implement a method
initialize. We can express this in the following query, that returns all the initialize methods in variable
?m

Query hierarchy([Figure], ?c)
classimplementsMethodNamed(?c, [#initialize], ?m)
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hierarchy

superSends

K[#initialize]>);

Figure 3.9: Incremental solving example

If we then want to find all of the abovaitialize methods that do a super send (to make sure that
all the initialisation behaviour implemented in the superclasses is not forgotten), we have to run the
following query:

Query hierarchy([Figure], ?c)
classimplementsMethodNamed(?c, [#initialize], ?m)
superSends(?raf#initialize]>)

This second query, however, first has to find all ithgalize methods again, and then selects the
ones doing thénitialize supersend. In the incremental solver three stages will be used, where the
results from the previous stage are used in subsequent stage. The network (after the three constraints
have been added and solved) is depicted in figure 3.9. Ellipses represent constants and variables, and
are linked by lines representing the relations between these variables. The lines are labelled with the
predicate describing the relation, and the numbers that are used as roles near the end points give the
index of the argument in that relation. The network is built by creating a new incremental solver, and
adding the relations to it one by one. The solving process is explained in the following section.

SOULIncrementalSolver new
name: ‘Thesis Example’;
add: ‘hierarchy([Figure], ?c)’;
add: ‘classimplementsMethodNamed(?c, [#initialize], ?m)’;
add: ‘superSends(?m;[#initialize]>)’

3.3.3 The incremental solving process

In this section we explain the basic workings of our local propagation incremental solver. We use
the (simple) network from the previous section as running example. This network consists of three
separate relations that are added one after the other. Note that the order in which the relations are
added makes no difference regarding the results of the network, although it may have an impact on
the efficiency. For example, if we start this constraint network the other way round (starting with
the superSendselation), the initial domain of the variablam contains all the methods in Smalltalk
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{?c -> [Figure]},

{?c -> [EllipseFigure]},
{?c -> [PolyLineFigure]},
{?c -> [TextFigure]},

@ hierarchy
1
(o)

Figure 3.10: Solving the network, state 1

{?c -> [Figure]},
. LELli i

{?c -> [PolyLineFigure]},
L 1

CToxtEi

[Rect loEi

....... (8 more) o

{ 2¢c ->[ [Figure],
m ->[] method([Figure], [#initialize], arguments(<>),
] temporaries(<>), statements(
0 <send(variable([#super]), [#initialize], <>),
0 assign(variable( [#model]), literal([nil])),
0 assign( variable([#state]), variable([#Connectable]))>))},
{?2c —>[] [LineFigure],
2m ->[] method([LineFigure], [#initialize],
.................. (8 more)

Figure 3.11: Solving the network, state 2

that do a super send ofitialize. The subsequent constraints then limit this domain to onitialize
methods below clagsigure. In the order we use here, we first limit the scope and then start finding
the methods in this scope, which is more efficient.

In the example we start with an empty network where we add the first relation that binds the
variable?c to be a subclass of a cla&gyure using thehierarchy predicate. Since this is the first
relation, there is no existing domain for the variabte Hence the incremental solver just uses SOUL
to answer the query described by the constraint:

Query hierarchy([Figure], ?c)

The solver holds the results of the query together withhieearchy relation. The state of the
network is depicted in figure 3.]10. Note that the variable itself does not hold on to its domain, but
that the results are kept in the relation instead. When we ask for the domain of the variable, it is
constructed by filtering the results from one of its relations.

We are then ready to add the second relation to our network. This is actually a relation between
two variables:?cand?m When we add this second relation, we already have the domatt,fout
?mis a new variable. So we have to evaluate the query constructed from the relation in the scope of
the network, taking the domain 8t into account. Therefore we enumerate the values in the domain
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{?c -> [Figure]},
2 LEllipseli

7
{?c -> [PolyLineFigure]},
2 LToxiEi e

[Rect 1eEi

....... (8 more)

{ ?2c ->[] [Figure],
2m ->[] method([Figure], [#initialize], arguments(<>),
0 temporaries(<>), statements(
] <send(variable([#super]), [#initialize], <>),
0 assign(variable( [#model]), literal([nil])),
0 assign( variable([#state]), variable([#Connectable]))>))},
{?c ->[] [LineFigure],
2m ->[] method([LineFigure], [#initialize],
.................. (8 more)

superSends

K[#initialize]>);

{?m ->[] method([Figure], [#initialize], arguments(<>),
] temporaries(<>), statements(
0 <send(variable([#super]), [#initialize], <>),
] assign(variable( [#model]), literal([nil])),
0 assign( variable([#state]),
variable([#Connectable]))>))},
->[] method([LineFigure], [#initialize],
.................. (8 more)

Figure 3.12: Solving the network, state 3

of ?¢, constructing a query whef& is replaced by one of its values afithis calculated. The result

of this process is a collection of bindings giving couples of value®émnd?mthat are solutions to

the second relation. In our example, we get 10 results: all the subclasbegid that implement
aninitialize method. This also means that we now have to update the doma&ininfall the other
relations except the one we just added, since there is a chance that the dofitasharfiged (as is the

case in this example). Since we only have one other constraint that uses vaci@lefirst relation),

we then update its solutions to only have the 10 classes we found as result in the second constraint. If
there would be other relations that ugg or if the removal of some solutions &€ in another relation

would change the domain of yet another constraint, then these changes would also propagate. This
process stops when there are no more relations that have domains that changé. Figure 3.11 depicts the
state of the network after the two first relations were added.

Then we add the third relation that states thatittialize method has to usesuper sendThis
relation introduces no new variables, and thus serves only as an extra constraint that the methods in
the domain of?m have to satisfy. We thus evaluate the query constructed from the relation for each
solution of?m Since this succeeds for every method (they all do super sends), there is no change of
the domain, and there is no need to propagate any changes. The state of the network after the third
relation has been added is depicted in picfure|3.12.

The algorithm we implemented handles cycles in the network. When traversing the graph defined
by the constraint network, a stack is kept so that we can determine whether we have already visited
some node or not. If we reach a node that was already updated, we check to see if it is consistent with
the removals we need to do. Ifitis, then we proceed with the rest of the network (if this is necessary)
or we stop successfully. If there is a conflict, then the constraint network is inconsistent due to the
addition of the latest constraint. We then stop with an error, and perform a rollback that brings the
network in the state it was in before we added the last constraint.
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3.3.4 Limitations of the current implementation

The current implementation of the incremental solver has some limitations. First of all, the relations
can only have at most two logic variables. While the solver itself is multi-way, the limitation lies in the
way we have implemented the detection of relation violations. Second, we have not yet added support
to remove relations from a network. Since individual solutions can be removed from constraints (and
are then propagated), there is no problem to add such a functionality. Thirdly, there is no rollback of
the side-effects done by constraints. For example, if a constraint is triggered, and as a result removes
a method, then this method is not restored when the change is rolled back in the constraint network.
The net effect of this is that care has to be taken with automatic changes to the base implementation
by the constraints themselves. These side-effects should be done after change propagation, as part of
an action phase where the user takes some action indicated by the constraints. The action could be
automatic (such as the generation or removal of code) or manual (the user using the development tools
to make changes to the implementation).

3.4 Conclusion

In this section we introduced the logic meta-programming language SOUL, which allows us to reason
about Smalltalk code. We discussed the main features that make SOUL a logic meta-programming
language: themalltalk term , thegenerate predicatand thequoted string Then we introduced

the introspective and reflective capabilities of SOUL, obtained by adding two special hardcoded vari-
ables to thesmalltalk term (?repositoryand?bindingg. Then we showed the development tools

that are available to SOUL developers to interact with SOUL, and the tools for the Smalltalk develop-
ers that we built using SOUL. Last but not least we discussethtiemental solvethat was built on

top of SOUL.

The symbiosis between SOUL and Smalltalk is one of the technical contributions of this disserta-
tion. SOUL introduces thap-downmechanism between two languages of a different paradigm. This
allows Smalltalk objects to be used as logic terms, and eases the implementation of the reflection.
From the user’s point of view, this makes it very easy to use SOUL to reason about the base language
and to implement extensions of SOUL.

Using local propagation technigues to implement a symbolic incremental solver is another techni-
cal contribution of this dissertation. The SOUL incremental solver allows to build a network of logic
relations that share logic variables. The solver is then capable of keeping the results to these relations
consistent when solutions to these relations change (because relations are changed or under external
influences).

In the next chapter we use SOUL to implement tleelarative frameworka layered library of
predicates to reason about Smalltalk.
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Chapter 4

The declarative framework

This chapter introduces thkeclarative frameworja layered set of rules to facilitate reasoning over an
implementation. We introduce the four layers that currently make up this frameworkigidayer,
therepresentational layethebasic layerand thedesign layer In particular the latter is of interest for

this dissertation. We express three design notations in this layer, npnoglsamming conventions
design pattern structureandUML class diagrams These three design notations are thus expressed
in terms of the implementation, and are used in subsequent chapters where we validate of our claim.

4.1 Introduction

The previous chapter introduced the basic language features and tools of our logic meta-programming
language. In this chapter we use these language features to implement predicates that reason about
the implementation of a base system. These predicates are structured in what wed=sdldregive
framework depicted in figur@ 4|1. The declarative framework is a layered rulebase, where predicates

in one layer have access to all the predicates from lower layers. Each layer contains groups of rules
with similar or related functionality:

o thelogic layer. this layer contains the predicates that add core logic-programming functionality,
such adist handling arithmetic program contro] repository handling. ... It is at the top since
it used by all other layers;

o therepresentational layerthis layer reifies the base-language’s concepts, suclassesmeth-
ods instance variableandinheritance

o thebasic layer this layer adds a lot of auxiliary predicates that facilitate reasoning about im-
plementation. Since theepresentational layeonly provides the most primitive information,
this layer is absolutely necessary to interact on a reasonable level of abstraction with the logic
meta-programming language;

o the design layer this layer groups all predicates that express particular design notations. In
the next chapter we describe some design notations that we have expressed to experiment with,
namely theprogramming conventionglesign patterneandUML class diagram

Since every layer contains many predicates, we have logically divided them into groupg. Table 4.1
lists these groups within the layers, and gives the most important predicates for each group. We will
now study each of the layers in more detail, as this gives more information about the structure and
contents of the declarative framework.
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design layer
'ﬁ (programming conventions, design patters, UML class diagrams)
:
g basic layer
J:" (parse tree traversal, typing, flattening, code generation, accessing, auxiliary)
0
-E representational layer
g (base predicates)
3
§ logic layer
(arithmetic, list handling, type checking, repository handling, pattern matching)
Figure 4.1: The declarative framework
layer group major predicates
logic layer arithmetic add suh greaterThansmallerThan
list handling appendlength memberflatten head tail
type checking var, atom ground
repository handling assertretract
pattern matching | patternMatch stringSplit
representational base predicates class methodinstVar, superclass
layer
basic layer parse tree traversal isSendTpassignmentStatementtassesUsedjlob-
alsUsed returnStatements
typing instVarTypescollectionElementType
flattening classChainimplementationChairflattenedMethod
code generation | generateClassremoveClassgenerateMethodre-
moveMethod
accessing methodNamanethodClassnmethodStatements
auxiliary rootClass hierarchy, understandsabstractClass
design layer programming con4 accessormutator, badSupersend
ventions
design patters compositePatternvisitor, abstractFactory facto-
ryMethod singleton bridge
UML class dia-| umiDiagram umlClassifiey umlGeneralization
grams umlAssociation

Table 4.1: Overview of the different groups of predicates in each layer, and the most impor-
tant predicates for each group
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4.2 The logic layer

The first layer we encounter is thagic layer. As can be expected from the name, this layer contains
predicates that implement basic logic functionality. T4ble 4.1 lists the most important predicates in
this layer. Note that the layer is subdivided into several groups of predicates with related functionality.

In sectiorj 3.2.6 we already saw some examples of some of these logic predicates that use the reflective
capabilities of SOUL. In this section we therefore give some other examples, starting with two well-
known list handling predicatest{eadis used to unify the first argument with the head of the list,
while intersectiondefines the intersection of two lists) andype checlpredicate ground that only
succeeds if the argument does not contain variables):

Fact head(?firsk ?first| ?rest>).

Rule intersection(?list1, ?list2, ?intersectiah)
findall(  ?common,
and( member(?common, ?list1),
member(?common, ?list2)),
?intersection).

Rule ground(?X)if
[ ?X isGround ]

Before proceeding with the other layers, we want to show the implementation ket pred-
icate, that is used to relate the length of a logic list and a logic list. So, when the list is known, it is
sufficient to count the elements. This is implemented by usiggrerate predicatéo determine the
length of a given (bound) list. However, if the length is known but the list is unbound, then we have to
construct a list containing logic variables of the specified length. This is again done using a generate
predicate, but this time it constructs a SOUL list of the known length, containing logic variables called
var followed by their index. These two rules make sureldr@thpredicate can be used multi-way:
regardless the input (known values or variables forale or ?lengtharguments), a useful result or
check will be given:

Rule length(?list, ?lengthif
nonvar(?list),
generate( ?length,
[?list soulSize asStream]).

Rule length(?list, ?lengthif
var(?list),
atom(?length),
generate( ?list,
[((1 to: ?length) collect: [:id%
SOULVariableTerm name: (var’, idx printString)]) asSoulList asStream))
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predicate reifier

class(?class) classes
superclass(?super,?sub) inheritance relationship
instVar(?class,?iv) instance variables in a class
method (?class,?m) methods of a class

Table 4.2: SOUL Representational Predicates

statement syntax example translation
literal I literal([l])
variable t variable([#t])
assignment X:=y assign(x,y)
return X return(x)
message send X msgpartl: argl msgpart2: argzend( X,

msgpartl:msgpart2:,
<argl,arg2)

cascaded message x msgl: argl; msg2: arg2 send(x,msglsargl>),
send(x,msg2sarg2>)
block [;argl:arg2 t1t2 ...] block( arguments{argl,arg2),
temporaries{t1,t2>),

statements{...>))

Table 4.3: SOUL Logic Representation of Smalltalk Statements

4.3 The representational layer

The representational layer reifies concepts of the base language in order to reason about them. Since
SOUL is a logic programming language, we represent the reified Smalltalk concepts in a logic format.
This section describes the mapping that we use to map Smalltalk parse trees to a logic format, and
then discuss the predicates implementing this mapping (table 4.2 shows these predicates). We will
not discuss théinstVar andsuperclasgpredicates because their implementation are analogous to the
implementation of thelasspredicate.

4.3.1 Representing base programs

The mapping we use to represent Smalltalk programs in the declarative framework is fairly straight-
forward, and follows the Smalltalk parse tree structure. Actually, there is no parse tree for classes
(classes just contain methods). We represent a Smalltalk method as a functor with five arguments: the
class, its name, the names of the arguments, the names of the temporary variables and the statements.
The mapping of Smalltalk statements is given in tablé 4.3. As a concrete exampld figure 4.2 shows
the code of th@rintOn: method on clasSOULListand its SOUL. We use this method as an example

since its parse tree is not trivial, yet neither is it overly complicated.

4.3.2 Theclasspredicate

We start with the general implementation of ttlasspredicate. This predicate allows us to check if
the passed argument is a class, or to generate all classes. Note that the smalltalk predicate uses the
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SOULList>>#printOn: aStream
“add a textual representation of the receiver to the stream”

self isEmptyList
ifTrue: [aStream nextPutAll:<>’]
ifFalse: [aStream

nextPut: &;
print: self term;
nextPut: $]
method( [SOULList],
[#printOn:],
arguments{ [#aStream]>),

temporaries{>),
statements{ send( send(variable( [#self]),
[#isEmptyList],
<>),
[#ifTrue:ifFalse:],
< block(arguments{>),
temporaries{>),
statementst{  send(variable([#aStream]),
[#nextPutAll:],
<literal(‘<>") >)>)),
block(arguments{>),
temporaries{>),
statementsf{  send(variable([#aStream]),
[#nextPut:],
<literal([$<])>),
send(variable([#aStream]),
[#print:],
<send( variable([#self]),
[#term],
<>)>),
send(variable([#aStream]),
[#nextPut:],
<literal([$>])>)>))>)>))

Figure 4.2: The Smalltalk implementation pfintOn: for classSOULList, and its logic
representation in SOUL
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classSOULExplicitMLIas a facade to facilitate and centralise the calls to Smdlitalk

Rule class(?c)f
generate(?c, [SOULExplicitMLI current allClasses]),

This predicate uses ttgeneratepredicate to generate all classes in the system. One by one it
binds these values as result for tPevariable. This definition ensures that the predicate can be used
regardless whether a constant or a variable is passed. For example we can then perform a query asking
for all the classes in the system:

Query class(?c)

However, using the multi-way directionality of logic programming, we can also solve the follow-
ing query asking whether the argument classy is indeed a class:

Query class([Array])

Note that we actually pass @uray class here, using the Smalltalk term and the fact that classes
are first-class objects in Smalltalk.

4.3.3 Themethodpredicate

Analogous to thelasspredicate, we define a generaéthodpredicate that relates classes and meth-
ods in the base program. The cl&9ULEXxplicitMLIis again used as a facade to allow easy access
to the Smalltalk meta system, and is now asked to return all the methods:

Rule method(?c, ?mif
class(?c),
generate(?method, [SOULEXxplicitMLI current allMethods]),
equals(?m, ?method).

Once this predicate is added (together withdlzespredicate defined above), we can reason about
classes and methods in the object-oriented system. This allows us to perform different queries, such
as asking whether a specific method is indeed a method of some class, finding all the methods of a
class, and so on.

1The implementation of the faca@®ULExplicitMLlactually uses a singleton design pattérn [GHJIV94], which explains
the currentmessage that is sent to tB®ULEXxplicitMLI class to retrieve the actual facade instance used. This instance is
then asked for all the classes in Smalltalk usingah€lassesnessage.
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4.3.4 Optimising the representational predicates

The current implementation of tlidassandmethodpredicates are very declarative and simple. While

this is clean, it also penalises the performance when used in some circumstances. Suppose for example
that the logic representation of a method is given, and that we want to know the class this method
belongs to. Since thmethodpredicate relates classes and methods, we can use it to find this out. The
following query is used to retrieve the class of a particular method (the logic representation of method
isConstanbf classSOULAbstractTerin

Query method( ~c,
method( [SOULAbstractTerm],
[#isConstant],
arguments{>),
temporaries{>),
statements{return(literal([false]))>))

However, to solve this query we run into performance problems because of the purely declarative
and simplistic implementation of theethodpredicate introduced before. This implementation first
generates a list of all classes. For each of these classes, every method is generated. All these methods
are then traversed and matched one by one to the method we gave as an argument. It is clear that
this is overkill, especially since our method representation includes the class the method belongs to
as first argument! Because of these performance reasons, the representational predicates are therefore
written less declaratively but more efficiently. Note that we take care not to compromise the multi-way
aspect of these predicates, so that from the outside it is transparent whether they are written in purely
declarative or in optimised form.

Optimizing the class predicate

As a first example, let us revisit the implementation of tfesspredicate. We write the predicate

using two rules instead of one. The first rule is used when the argument passed is a variable. The
second rule is used when the argument given is a constant. The real performance gain, compared to
the previous implementation, lies in this second predicate. If a constant is given, we do not need to get
all classes and then find one that matches. Instead we srsaldalk term to find out whether

this constant is a class. This results in the following two rules forcthsspredicate, one for each

case (the predicatesr andatomare used to check whether the passed argument is a variable or a
constant, respectively). This definition of thkasspredicate is the actual working implementation

that is used in the SOUL system:

Rule class(?classj
var(?class),
generate(?class, [SOULExplicitMLI current allClasses ]).

Rule class(?classj
atom(?class),
[SOULExplicitMLI current isClass: ?class].
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Optimizing the method predicate

The optimisation of the method predicate is a different story. Where the representation of a class is
an atom (smalltalk term representing the class), the representation of a method is a composite
structure (a logic functor with 5 arguments, as seen in seftion|4.3.1). As we saw in the query in
the beginning of this section, the user can choose for each of the elements in the structure to use a
variable or a constant. The variables need to be bound to possible values, while the constants need
to be checked to see if they are valid. For performance issues we want to take the given information
into account when finding out correct values for the variables. Another example of a very inefficient
usage of thenethodpredicate is the following query that finds all methods nam€dnstantwithout
arguments or temporaries. Note that no information about the statements is specified (a variable is
passed):

Query method( ~?c,
method( “?c,
[#isConstant],
arguments{ >),
temporaries{>),
statements(?statements))

When run, the query yields the following result:

?c = [SOULADbstractTerm]
?statements>  <return(literal([false]))}

This query shows that the obvious approach to optimisingrtbtihodpredicate (which is to check
whether the passed method is a variable or not, as we did inléisspredicate), would not work.
Since the method passed can be a compound structure, possibly containing variables, such a check
is not enough. The trick is to use the multi-way property of logic programming to extract as much
information as possible from the functor containing the method description. This information is then
used to parse and compare the required methods only. The result is a more refined implementation
than the crudenethodpredicate given above, but one that is still declarative:

Rule method(?class, ?methoidl)

01 methodClass(?method, ?class),

02 class(?class),

03 methodName(?method, ?name),

04 classimplements(?class, ?name),

05 calculateParseTree(?class, ?name, ?generatedMethod),

06 equals(?generatedMethod, ?method).
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As can be seen, lin@l first calls themethodClaspredicate to relate themethodvariable with
its ?class Depending on what was passed?asethodthis can have different consequences:

¢ if ?methods a variable, then it is bound to an empty method template:

method(?class,?sel,arguments(?args),temporaries(?ts),statements(?statements)).

Note that the first argument in this template (thelassvariable) is the same as tlrelass
variable in the template;

o if ?methods a complete method template, thHerlassis bound to the constant giving its class;

o if ?methodis a partially filled in method template, then the variaBtdassis bound to the
variable or constant in the first position of that template;

¢ if ?methods anything else, themethodClassand hence theethodpredicate, fails.

The important thing to notice is that after the call to the predica&hodClassthe ?method
variable is certainly bound to a method template, and?tiassvariable points to the first element
in that template. Lin®2 then states the®classshould be a class. This means thaPdasswas
bound to a constant, it is checked to make sure that it is a class. Howe®stagswas still a
variable, it is bound to all possible classes in the system, and also the method templates are filled in
accordingly. Line€D3 and04 do the same trick, further filling in or checking the method template
with the names of the method (the selector). Note thatthgsimplementgredicate used in lin@4
relates classes and names of methods. WherDbnis reached, we have information regarding the
classes and the methods, and we have sufficient information to calculate the parse tree. This is stored
in the variable?generatedMethodThe equalspredicate is then used in lir@ to unify the variable
?method(containing a possible partially filled in method template or variable) with the parse tree in
the ?generatedMethodariable. This last step fills in the remaining variables framethod

This optimised implementation of thmethodpredicate always uses as much information as pos-
sible to minimise the parsing of methods. For example, to find the class of a given method (the first
example at the beginning of this method), only one method in one class is parsed, whereas the previous
implementation parsed every method of every class in the system.

4.4 The basic layer

Thelogic layerand therepresentational layeprovide all the basic mechanisms to use SOUL to reason
about Smalltalk code. However, the level of abstraction is not very high, and for almost every query
to reason about the implementation we should have to write lots of logic code. Therefore we factored
out a lot of functionality and created th@sic layer This layer adds a lot of auxiliary predicates that
facilitate reasoning about implementation, and raises the level of abstraction significantly. Describing
the implementation of all these predicates falls outside the scope of the dissertation (there are currently
over 140 predicates in this layer). Therefore we describe the predicates in groups, and then give some
examples on how to use them:

e parse tree traversala lot of predicates have to traverse the parse tree of a method in search
for certain variables or message sends. Therefore we have implementealvérseMethod-
ParseTregredicate to travel over the logic parse tree of a method. Using this predicate we have
implemented some traversals that are commonly used (sus8esd TpassignmentStatements
classesUsedjlobalsUsedandreturnStatemenjs
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element predicate

class generateClass(?className, ?superclass)
removeClass(?class)

method generateMethodInProtocol(?parseTree, ?protocol)

generateMethodInProtocol(?quotedTerm, ?class, ?protocol)
generateMethod(?parseTree)
generateMethod(?quotedTerm, ?class)
cpgMethodInProtocol(?parseTree, ?protocol)
cpgMethodinProtocol(?quotedTerm, ?class, ?protocol)
cpgMethod(?parseTree)

cpgMethod(?quotedTerm, ?class)
removeMethod(?class, ?selector)
removeMethod(?parseTree)

instance variable | generatelnstVar(?instVarName, ?class)
removelnstVar(?instVarName, ?class)

Table 4.4: The code generation predicates

e typing Smalltalk is a dynamically typed object-oriented programming language. Therefore we
added some predicates that analyse the source code in order to find possible types for variables.
We use a lightweight type inferencing scheme that basically tries to detect all messages that
are sent to a certain variable (the interface), and then looks for all the classes that understand
the complete interface. This gives an indication of the type of the variable. Of course specific
programming conventions or refined type inferencing rules can complement these rules. This
is accomplished by adding rules to the framework as we describe in the next chapter when we
discussprogramming conventions

o flattening the basic rules representing classes and methoda@smmental meaning that the
information about a class is only what that class implements. Information from the hierarchy is
not taken into account. For example, when we usertbthodpredicate to get the methods of
a class we only get the methods that are really implemented by that class (and not all methods
it understands). The predicates in this group allow us to reason about classes in their flattened
versions, taking inheritance into account;

e code generationsince smalltalk predicates can contain any Smalltalk code, this code can use
the standard Smalltalk meta facilities to generate or remove code. The rules in this group use
this to offer predicates that generate code from logic descriptions of methods or from quoted
strings;

e auxiliary: there is also a number of auxiliary methods (suchicagClass hierarchy, under-
stands abstractClaskthat implement various useful predicates that are frequently used.

4.4.1 The code generation predicates

An important category of predicates are ti@neration predicatedisted in tablg 4J4. In this section

we discuss the predicates for generating methods. The implementation of these predicates relies on the
combination of the smalltalk predicate on one hand, and on the other hand on the fact that Smalltalk
itself is reflective [[FJ89]. Note that we chose not to discuss the implementation of the predicates
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to generate classes and instance variables, as these implementations are similar to those of the class
generating predicates.

The basic predicate generateMethodInProtocolt allows us to generate a method in a certain
protocdﬂ The implementation of the method to generate can come in two forms: a logic description
or a quoted string. Note that in the case of a quoted string, a class needs to be supplied as well (the
logic representation contains the class of the method as first argument in its representation). When a
logic description is supplied, the predicate checks to see if it does not contain any logic variables. If
it does not contain any variables, theethodSourceredicate is used to convert the logic description
into a source string. If it contains unbound variables, the predicate fails and nothing is generated.
When a quoted string is supplied, it is directly compiled and stored. Note that, when the source string
contains invalid Smalltalk code, the Smalltalk compiler produces no codenihigdreturned. This
causes the predicate to fail, as expected:

Rule generateMethodInProtocol(?methodParseTree, ?protbcol)
atom(?protocol),
methodClass(?methodParseTree, ?class),
existingClass(?class),
methodSource(?methodParseTree, ?source),
generateMethodInProtocol(?source, ?class, ?protocol).

Rule generateMethodInProtocol(?quotedTerm, ?class, ?protiécol)
atom(?protocol),
existingClass(?class),
sound(?quotedTerm),
[(?class compile: ?quotedTerm sourceString classified: ?protocol) = nil].

In most cases when we want to generate a method, we do not explicitly want to specify the protocol
to be used. Therefore we implementedemerateMethogbredicate, that is implemented in terms of
generateMethodInProtocollt simply uses an auxiliary predicafgotocolForSelectothat looks to
see if the class where the method is generated has a superclass that already implements it. If so, the
method is generated in the same protocol. If the method is new, then a default protocol is used.

The generateMethodnd generateMethodInProtocgiredicates always generates a method, re-
gardless whether it already exists or not. This is not always convenient. For example, we might only
want to generate a method if it does not yet exist. If it already exists, we do not want to c@nge it
Since this is frequently used in practice, we offer a set of predicates that are prefixegpgihich
is short forcheckPossiblyGenergteThecpgversions of predicate only generate source code if there
is no source code artefact present yet.

4.4.2 Examples using the basic layer predicates

Having enumerated the main groups of predicates of the basic layer, this section gives two examples
that use some of the basic layer predicates. The first example expresses the programming convention
that aninitialize method should always do a super send first, and then finds violations against this

2In Smalltalk every method belongs to exactly one protocol. Therefore, when generating, the protocol that is used for
a method has to be supplied. We see a little further that we provide predicates where this protocol is extracted from the
implementation.

3Note that other schemes are possible, in different gradations. For example, when a method already exist, we could
make sure that its implementation is the same as the one we want to generate.
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convention. The second example expresses what an interface of a class is, and then uses this to find
classes that conform to a certain interface. Then we show how this can be used to generate template
methods that are missing, given a class and an interface.

Initialize method should do a super send

First of all we express the programming convention that was also expressed in CoffeeStrainer (in the
related work in section 2.5.2). This convention expresses that whenever a class overrides a method
initialize it should first callsuper initializebefore doing anything else. As an example we write a query
that checks this convention for every subclass of a diégpsre. We can get all the subclasses from
Figure using thehierarchypredicate. Then we use tlowerridespredicate to check which of those
classes override a method calledialize. For each of these classes we then get the implementation
of the overriddennitialize method using thelassimplementsMethodNamgdicate. We then have

the parse tree of the method for which we have to check that its first statensepiisinitialize We

check this using thenethodStatemengsedicate, immediately indicating that the first statement has

to be send(variable[#super]), [#initialize]<>). The tail of the list (after the vertical bar) can be
anything, so we use an underscore variable:

Query hierarchy([Figure], ?c),
overrides(?c, [#initialize]),
classimplementsMethodNamed(?c, [#initialize], ?m),
methodStatements(?rasend(variable([#super]), [#initialize},>) | ->)

The following example writes a predicate that expresses the interface (messages send to) an in-
stance variable of a class. It useBralall predicate to collect all sends to the variable in a list. The
sends to the variable are found by ik&endT@redicate, one of the parse tree traversal predicates.
The interface is this set of methods, but without any duplicates:

Rule varinterface(?class, ?var, ?interfaife)
instvar(?class, ?var),
findall( ?varSend,
isSendTo(?class, ?var, ?varSend),
?varSendsList),
noDups(?varSendsList, ?interface).

Using thevarinterfacerule we can then write a rule to find all sends to an instance variable that are
not understood by some other class. This allows us to check whether some class we see as a possible
type for the instance variable could indeed be used as such.
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The implementation simply gets the interface of the instance variable, and extracts all selectors
from it that are not understood by the type (that has to be a class):

Rule interfaceDifferences(?class, ?var, ?varType, ?missingSeleitors)
class(?varType),
varlnterface(?class, ?var, ?interface),
findall( ?missingSelector,
and( member(?newSelector, ?interface),
not(understands(?varType, ?missingSelector))),
?missingSelectors).

For example, using this predicate we can check whétluenberis a possible type for the instance
variablex of classPoint

Query interfaceDifferences([Point], [#x], [Number], ?missing)

As could be expected, the query succeeds and returns as only possible value Forighiag
variable the empty list. This means tliiimberis a possible type for the instance variakjat least
by looking at the messages sentxtolf Numberwould not have been correct, th@missingwould
contain a list of selectors th&tumbershould understood in order to be usable as type. While it is
practical to know which selectors sent to our instance variable are not understood by the class we
passed as possible type, we can use this information for more. For example, we can use the code
generation predicates to generate template methods on the class we pass as type. Therefore we simply
enumerate all the selectors from the list we get fromnkerfaceDifferencepredicate using thiorall
predicate. For each selector we generate a method with template codetfedmplementedSource
gives a quoted string with Smalltalk source code for a given selector):

Rule adjustClass(?class, ?var, ?tyffe)
interfaceDifferences(?class, ?var, ?type, ?missingSelectors),
forallnember(?sel, ?missingSelectors),
and( notYetimplementedSource(?sel, ?code),
generateMethod(?type, ?code))).

4.5 The design layer

The last layer we discuss is thesign layer In this layer we have grouped the support for three design
notations we supporprogramming conventionslesign pattern structuresndUML class diagrams

Because the predicates expressing these design notations only use the other layers (and each other),
design is expressed as a logic meta program over implementation. Indeed, all the predicates are,
sooner or later, expressed in function of thpresentation layer

4.5.1 Programming conventions

First of all we are interested in expressimggramming conventiondVe use the terrprogramming
conventioras a common term to represent all kinds of conventions and styles, sigiibras[[Cop98],
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var
“direct accessor for an instance variable var”

Tvar

var
“most common lazy initialized accessor for an instance variable var”

Tvar isNil
ifTrue: [var := 0]
ifFalse: [var]

var
“other lazy initialized accessor form for an instance variable var”

var isNil ifTrue: [var := Q].
Tvar

Figure 4.3: Common implementations for accessor methods for an instance vaable

best practice patternfBec97], naming conventions .. In this section we express the structure of
accessing methodgive some examples, and extend the typing predicates to use this information.

Accessing methods

One of the ways to make data and operations more transparent is by hiding every access to data by a
message send. This is the motivation behind the concept and usageesting methodén access-
ing methods a method that is responsible for getting or setting the value of an instance variable. By
consequently using accessing methods (and never accessing instance variables directly), tThe caller
side never knows whether it is calling an accessing method (and thus manipulating data) or just per-
forming a message send that calculates something. This system therefore makes it easy for subclasses
to override these accessing methods to modify all kinds of data definitions. Note that, for this system
to work, all accessing of instance variables should be done using the accessing methods. Even one
violation can result in a bug when an internal representation is changed.

There are two kinds of accessing methods:

e accessor method®e unary methods that are used to get the value of an instance variable;

e mutator methodare methods that take one argument, and set the value of an instance variable
to the value of that argument.

In these examples we only discuss the support we have implementacciEssor methodsince
the support fomutator methods analogous.

Accessor methods can be implemented in numerous ways. Three common implementations are
given in figurg 4.8. The first one is the straightforward implementation that just returns the instance
variable. The two other ones ufzy initialization The rationale behind this is that an instance
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Rule accessorForm(?method, ?varName, [#simple])
methodStatements(?metheadeturn(variable(?varName}).

Rule accessorForm(?method, ?var, [#lazyClassic])
methodStatements( ?method,
<return(send( ?nilCheck,

[#ifTrue:ifFalse: ],

<?trueBlock,?falseBlock))>),
nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlockassign(?var,?varinit)),
blockStatements(?falseBloek?var>).

Rule accessorForm(?method, ?var, [#lazyAlternativie])
methodStatements( ?method,

<send( ?nilCheck,
[#ifTrue:],
<?trueBlock>),

return(?var}),

nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlogkassign(?var,?varinit}).

Rule accessorForm(?method, ?Vr)
accessorForm(?method, ?var,

Rule accessorForm(?methoidi)
accessorForm(?methaod,

Figure 4.4: The accessorform rules, making the implementations of the accessor methods
shown in figuré 4]3 explicit.

variable does not need a value unless it is actually used. Therefore lazy initialization is built into
the accessing method. This form of accessing first checks to see whether the variable was already
initialized or not (by checking whether the value of the instance variabid)isIf the variable was

not yet initialized (its value is nil), then it is initialized and returned. If it was already initialized (its
value is not nil), then the value is returned. Two possible implementations are given for this scheme
in the implementation.

The three forms we show in figure #.3 are made explicit in three rules shown in[fighre 4.4 (comple-
mented by two rules that can be used when not all the arguments are known or needed). The first rule
expresses the simplest form of an accessor, describing it as a method with just one return statement
that returns an instance variable. The two following rules make the other implementations explicit.
Now we can easily write a predicate to relate a class, an instance variable and an accessor method to
each other:

Rule accessor(?class,?method,?varNaifne)
instVar(?class,?varName),
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classimplementsMethodNamed(?class,?varName,?method),
accessorForm(?method).

This accessormpredicate states thafasshas an instance variable with namarName and a
method with the same name @arNameand implementation conforming taccessorForm This
means that we have codified a Smalltalk naming convention that states that accessing methods typi-
cally have the name of the instance variable they are accessing. Of course other haming conventions
could be used, for example the more C++ or Java-like one to prefix the name of the methgdtwith

Now that we have described what an accessing method looks like in a logic meta program, we
can write queries that check the source code for violations of this rule. Methods that violate the
encapsulation imposed by the accessor methods programming convention are methods that directly
send messages to instance variables (of course accessor methods themselves are excluded, because
they are the only ones allowed to do this). We can write a rule for such violations, that checks for
every method implemented in a class whether that method sends messages that have as receiver an
instance variable:

Rule accessingViolator(?c, ?m, ?iif)

class(?c),

instvar(?c, ?iv),

method(?c, ?m),

not(accessor(?c, ?m, ?iv)),

isSendTo( variable(?iv),
?violatingMessage,
?args)

We can then invoke a query to find violations:
Query accessingViolator(?class, ?method,?instvar)

Another violation is to assign values directly to instance variables (which should be done by call-
ing the mutator methods). To find such methods, we ask every non-mutator method for its assignment
statements, and then we check whether it includes an assignment statement with an instance variable
as left-hand side. This means that there are direct assignments to this instance variable.

Rule accessingViolator(?c, ?m, ?iif)
class(?c),
instvar(?c, ?iv),
method(?c, ?m),
not(mutator(?c, ?m, ?iv)),
assignmentStatements(?m, ?assignmentsList),
member(assign(?iv, ?violatingAssignment), ?assignmentsList)

Complementing the typing rules

In the typing predicatesve saw in sectiofi 4]4, typing instance variable was done by looking at the
sends to the instance variable, and using this information to determine the possible types.
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Using theinstVarTypegredicate we can then directly get the possible types for an instance vari-
able, for example the variableon classPoint

Query instVarTypes([Point], [#x], ?possibleTypeList)

Of course, when all accesses to instance variables are done ttaocegsing methodthen this
mechanism does not work anymore. The solution is rather simple: we have to take the sends to
accessor methods into account when determining the messages sent to an instance variable. So, in
order to complement the typing rules, we add a inVarTypeghat expresses this information.

When the design layer is then used, there are two rules that can give solutions when we have a query
asking for types of instance variables: one using direct sends to instance variables, the other one using
the sends to accessors.

Generating accessor methods

Previously we looked for accessor methods in the implementation, and for violations agaiast the
ways use accessor methgaegramming convention. However, sometimes we also want to generate
accessomethods for an instance variable in a class. CombiningticessorFornpredicate describ-

ing thesimpleaccessor form in combination with tigenerate predicatesom the basic layer makes
this easy to do:

Rule generateAccessor(?class, ?instvar, ?accessorMethod)
instvar(?class, ?instvar),
accessorForm(?accessorMethod, ?instvar, [#simple]),
methodClass(?accessorMethod, ?class),
methodName(?accessorMethod, ?instvar),
cpgMethod(?accessorMethod).

We want to notice that with the current form of thecessorFornpredicates, it is not possible
to generate any other form then thienpleaccessor method. The problem is that the source code of
the methods as given by tlaecessorFornpredicates is not complete. It is actually only a partial de-
scription that is matched against the source code, where some parts remain unspecified. For example,
when we look at théazyClassicaccessor form given in figufe 4.4, the code that gets assigned to the
instance variable is left unspecified. Hence we cannot use it to generate fully functional code, but
have to limit ourselves to generate template code where pieces have to be filled in manually by the
developer later on. We could also make HueessorFornpredicates more specific (for example by
passing the initialization code as an optional argument):

Rule accessorForm(?method, ?var, [#lazyAlternative], ?vaiiinit)
methodStatements( ?method,

<send( ?nilCheck,
[#ifTrue],
<?trueBlock>),

return(?var}),

nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlockassign(?var,?varinit}).

That way they can be used both for searching and for generating.
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name predicate

composite compositePattern(?component, ?composite, ?method
visitor visitor(?visitor, ?element, ?accept, ?visitSelector)
abstract factory abstractFactory(?class, ?element)

factory method factoryMethod(?class, ?method, ?element)

singleton singleton(?class)

bridge bridge(?left, ?right)

Table 4.5: The design pattern predicates in the design layer

Element Visitor
accept: aVisitor visitConcreteElementl: e
L% visitConcreteElement2.: e
ConcreteElement1 ConcreteElement2
accept: aVisitor accept: aVisitor ConcreteVisitor1

visitConcreteElementl: e
visitConcreteElement2: e

Figure 4.5: Visitor Design Pattern Structure

4.5.2 Design pattern structures

The second design notation we support is structures as described by design patterns [GHJV94]. We
want to stress at this point that the intent of these rulesiso capture theomplete design patterns

but only the part expressing their structure. A design pattern contains far more information than
only structure that is not captured by these predicates (suclmasivation intent, applicability, and
relationships with other design patterns). Therefore we always refer to these rules addwmimg
pattern structureules.

In general, a design pattern is detectable if its template solution is both distinctive and unambigu-
ous [Bro96]. We express the structural information in the template solutions by writing logic meta
programs. This is possible since these logic meta programs have access to the full parse trees of
the object-oriented system they are reasoning about. [Table 4.5 lists the design pattern structures we
expressed. In this section we give the implementation ofit$itor design pattern.

The general idea of the Visitor design pattern is to separatstthetureof elements from the
operationsthat can be applied on these elements. This separation makes it easier and cost-effective
to add new operations, because the classes of the object structure do not have to be changed. As
depicted in figur¢ 415 there is a hierarchy describing the elements, and there is a separate hierarchy
implementing the operations. Céllementhe root class of a hierarchy on which the clg@&stor and
its subclasses define operations. EVelgmentclass defines a metha@atcept that takes /isitor as
argument and calls this visitor using an operation that indicates its type. For example, the implementa-
tion of accepton classConcreteElementWill send the messagésitConcreteElementtb the visitor.

The Visitor hierarchy consist of the classes that define operations oBlémentclasses. They just
need to implement the calls made by the element classes. The typical example of the visitor design
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pattern is to separate parse trees from the operations that are typically performed on these parse trees
(such as generating code, pretty printing or optimizations).

The rule describing the structure of the visitor design pattern is fairly straightforward. It expresses
first of all that thevisitor is a class, and that it implements thisit methods (that have a namsitS-
electop. In the same waylements a class too, and implements methods cadleceptwith a body
acceptBody The arguments passed to this method are giveadogptArgs The body is responsible
for calling the passed visitarwith the actual visit operatiowisitSelectorand passing along the argu-
mentsvisitArgs One of the arguments has to be the receiver (denotextlbyn Smalltalk), and the
passed visitov actually has to be an argument of the accept method:

Rule visitor(?visitor, ?element, ?accept, ?visitSelectfor)
class(?visitor),
classimplements(?visitor, ?visitSelector),
class(?element),
classimplementsMethodNamed(?element, ?accept, ?acceptBody),
methodArguments(?acceptBody, ?acceptArgs),
methodStatements( ?acceptBody,
<return(send(?v, ?visitSelector, ?visitArgs))
member(variable([#self]), ?visitArgs),
member(?v, ?acceptArgs).

For example, since SOUL is implemented in Smalltalk (and uses a visitor pattern to enumerate
its parse tree) we can use thisitor predicate to find all the non-abstract parse tree elements of the
SOUL parse tree that do not comply to the visitor pattern. To do so, we select all subclasses of
classSOULParseTreeElemetttat are not abstract, and for each of those we find the ones that do not
comply to thevisitor rule:

Rule soulParsetreeVisitor(?nodié)
hierarchy([SOULParseTreeElement], ?node),
not(abstractClass(?node)),
not(visitor(?visitor, ?node, [#doNode:], ?callbackMsQ))

The last line in this rule gives the name of the visit-method used by the visitor to visit the nodes.
Itis a Smalltalk Symbol with the name of the methddNodeﬂ The results of this query contain the
methods that do not comply to the SOUL visitor design pattern, and that might need to be changed. If
the query fails, then all the classes and methods comply to the visitor design pattern.

4.5.3 UML class diagrams

The UML class diagrampredicates express the basic concepts of UML class diagfams [BRJ97,
RJB99]: classifiers(with operationsandattribute9 and thegeneralizationandassociatiorrelation-

ships. Tablé 46 lists the logic representations we use for the different UML concepts we support. We
then have to write predicates to express these concepts in terms of the implementatign. Jrable 4.7 lists
those predicates. As with the other layers we again describe one of the predicates in detail.

“When we do not know this, we could have supplied a variable. The system would then have deduced the name used
in this specific visitor pattern instance. However, in this example we wanted to express the current situation and see if the
implementation conformed to this structure.
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UML concept | logic representation

classifier classifier([#class], ?name, ?attributeNames, ?operationNames)

generalization | relation([#generalization], ?classifierNamel, ?classifierName?2)

association relation([#association], ?classifierNamel, ?rolesl,
?classifierName2, ?roles2)

role role(?name, multiplicity(?mul), type(?type))

Table 4.6: The logic representation of UML concepts. Note thaattrdbbuteNamesopera-
tionNamesandrolesvariables are lists.

UML concept | predicate

classifier mapUMLClass(?classifier, ?class)

generalization | mapUMLGeneralization(?generalizationRelation, ?superClass, ?Psub-
Class)

association mapUMLAssociation(?associationRelation, ?leftClass, ?rightClass)

Table 4.7: The predicates mapping the logic representations of UML concepts shown in
table[4.6 to the implementation.

In this case we take the most complicated one, nammepUMLASssociation This predicate is
used to map UML associations against the source code. Because Smalltalk is dynamically typed,
extracting and checking collaborations between classes is hard. However, we can tygentpe
predicatesto extract possible associations. The core of mapping the UML association relation to
the implementation is thassociationRelatiopredicate, that types the instance variables of the left
class (using thinstvarTypesaindstripHierarchyClassegredicates) and uses that information to see
if there is an association with the right class. This is done by taking the instance variables of the
left class and, for each of them, determining their type. If the type is not a Smalltalk collection,
then the multiplicity is set to 1. If the type is found to be some Smalltalk collection class, then the
multiplicity is set tomany and the type of the elements contained in the collection is determined (with
thecollectionElementTyperedicate). For each possible type we then constrradedunctor with the
extracted information (type and multiplicity). Since tPallRolesthen contains possible nested lists,
we flatten the results before returning them:

Rule associationRelation(?leftClass, ?instvar, ?leftRdfes)
instVarTypes(?leftClass, ?instvar, ?typeList),
stripHierarchyClasses(?typeList, ?possibleTypes),
findall( ?roles,
and(member(?possibleType, ?possibleTypes),
or(and(containerType(?possibleType),
collectionElementType(?leftClass, ?instvar, ?types),
stripHierarchyClasses(?types, ?strippedTypes),
findall( role(?instvar, multiplicity([#many]), type(?possibleType, ?type)),
member(?type, ?strippedTypes),
?roles)),
and(not(containerType(?possibleType)),
equals(?rolesscrole(?instvar, multiplicity([1]), type(?possible Type))))),
?allRoles),
flatten(?allRoles, ?leftRoles).
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4.6 Instantiating and reusing the framework

Now that we have discussed theclarative frameworla natural question that ariseshisw it can be
instantiated and reusedefore we answer this question, we want to note that the lookup of predicates
in a logic programming language flat (where it ishierarchical in object-oriented systems, taking
inheritance into account). This means that, despite the layering stdh&geof the predicates, they
are seen as one flat pool of predicates at runtime (during the logic interpretation). In order to discuss
the reuse of the framework, let's see how we eatend refineandremovepredicates.

Extensiorof the framework is easy: any layer can add predicates to be used at runtime. We gave an
example of this with thenstVarTypegredicate: it is defined in theasic layer but we complemented
it in the design layerin section 4.5]1. Hence, when both layers are used at runtime, all the rules
defined in the predicates are taken into account. This can even be done at runtime usisggthe
predicate.

Refinementf rules (in a object-oriented sense) is currently very hard. What we would actually like
is a mechanism to implement a rule in one layer, eafitheit in another (which is done bgverriding
methods in a object-oriented system). The important aspect is that the original implementation does
not need to be changed, and that the new implementation can still reference the old one (doing a
supersend in object-oriented programming languages). In SOUL, refining a rule can be done in two
ways. The first way to do this is by changing the original implementation, or by removing it from
one layer and reimplementing it in the other. The second way iswgpping repositories Since
in SOUL the logic repositories can be nested, we can swap the repository containing the original
implementation of the predicate with a repository containing the refined implementation. While this
is clean and supported by the tools (see @mnfigurationpane in theRepository Inspectoin the
SOUL development tools from sectipn 3]2.6), this means that not one, but a number of predicates are
swapped. Hence this is more appropriate to accommodate large changes in functionality. None of
these ways allow us to invoke the previous implementation (other then copying its implementation).
To recapitulaterefinements currently not very well supported in SOEL

Removabf rules is not very hard. Individual rules can easily be removed (even at runtime using
theretract predicate). Also, complete logic repositories can be removed using the SOUL development
tools.

So, in short, thaleclarative frameworlallows us to easilyextendandremoveindividual predi-
cates, and lets yorefinepredicates (but in a harder way).

4.7 Lessons learned

Constructing theleclarative frameworkgave us insight in how to write and structure logic meta pro-
grams expressing information about the implementation. While this complete chapter tries to convey
the feeling for the framework, and especially its expressivity, we now want to explicitly enumerate
some of the key lessons we learned in general before concluding this chapter.

4.7.1 Guidelines for writing logic meta programs

First of all we collected a number of general guidelines that are useful when expressing design as a
logic meta programs:

®In the future work in secti0.2 we discuss a mechanism that we are implementing thatellegegionin reposi-
tories, makingefinemenof rules easy.
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1. the logic meta programs are first of atlurce codeThis means that they have to be written in
a disciplined and clean fashion, avoiding code duplication, just like any other implementation;

2. take care that every predicate is multi-way usable. When writing purely declarative, this is
normally the case (see for example the first example ofcthsspredicate in sectiop 4.3.2).
However, the common way of optimizing a logic meta program is typically by only writing it
for an argument of a certain type (a constant, a variable, or even a specific class or a method).
This means that it is not multi-way anymore, since the the caller has to know and anticipate this.
The lesson to learn is clear: when optimizing a predicate, also implement the other cases as was
done with the optimizedlasspredicate in section 4.3.4;

3. group related predicates in individual repositories. Since repositories can easily be manipulated
(added, swapped and removed), this makes it easy to change the structure of the framework;

4, SOUL only allows us to express predicates reasoning about the structure (parse tree) of a pro-
gram. This means that behavioural information is hard or impossible to express directly. How-
ever, typically this can be extracted from the programming conventions used. For example, it
is very hard to write a rule to find all methods that have to do withting textual representa-
tions However, in Smalltalk such methods typically belong fwr@tocolwith as nameorinting.

Another example was given when we expresaeckessor methodhat typically have the name

of the instance variable they are accessing. Using such programming conventions allows us
to -indirectly- support some behavioural information. While this chapter did not give much
information about this, the experiments and validation will give more explicit examples;

4.7.2 Causal connection

Second we want to comment on the fact that classes in SOUL are causally connected to classes in
Smalltalk, while this is not the case for methods. The representational layer introdciessand a
methodpredicates. While at first hand they do not seem very different, there is a difference regarding
the causal connection. The results of tlasspredicate aresmalltalk terms wrapping the

actual Smalltalk classes (that are thus causally connected, since it are the classes themselves). The
results of themethod predicatare logic representations that are decoupled from the actual smalltalk
compiled methods. For example, the following query gets the source code of the razéafttlass

Set(in logic form), then removes the method in Smalltalk, and then asks the name of the method:

Query classimplementsMethodNamed([Set], [#size], ?m),
removeMethod([Set], [#size]),
methodName(?m, ?name).

This is only possible because the logic representation that is kept in vafiabie decoupled
from the Smalltalk method. Note that this poses no problems for our experiments, as a logic pro-
gramming language is used functionally, inead/applyfashion. First a method body is asked, then
it is manipulated and then - if necessary - it is written to the implementation again usicgdbe
generationpredicates. In the middle of the manipulation, the logic representation of the method can
be syntactically incorrect for Smalltalk. However, this is no problem because we only want it to be
syntactically correct when it is generated.

However, the different treatment of classes and methods regarding their causal connection with
the source code could be worth investigating. It could be one of the results of the further reflection
between SOUL and Smalltalk that we discuss in the future work in sdction 8.3.2.
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4.8 Conclusion

This chapter discusses theclarative frameworka layered set of rules to express design as a logic
meta program over implementation. Closest to the implementation we fimdgtresentational layer

that reifies the basic concepts of the base language we want to make explicit in the logic meta-pro-
gramming language. The other layers build on this layer to implement ever higher abstractions of
the implementation. We discussed thesic layerthat -amongst other- has predicates for generating
source code, and the design layer. The latter implemaetgramming conventionsglesign pattern
structuresand UML class diagrams Because th&eclarative frameworks a framework, we also
discussed how it can be instantiated to be used in specific circumstances.

Throughout the chapter we have included the implementations of predicates to give a concrete
feeling of the expressivity of using a logic meta-programming language to express design. We also
gave several examples of how the predicates can be used to reason about the implementation on a
high-level of abstraction. For example, we extracted all classes in the system, looked for methods
calledinitialize that forgot to do a super send, checked whether two classes are substitutable for each
other, generated accessor methods, and looked for participants of a visitor design pattern.

In the next chapters we discuss how the declarative framework is integrated in the development
environment using theynchronization tool frameworklhe combination of both frameworks is our
synchronization framewaork that we use for validation.
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Chapter 5

The synchronization framework

In this dissertation we want a framework to synchronize changes between design and implementation.
Conceptually, our solution rests on three cornerstones:

1. express design as a logic meta program of implementation, and hence provide a mapping from
design to implementation;

2. use the logic meta-programming language as the synchronization engine to detect differences
between design and implementation;

3. integrate in the development environment so that changes to design or implementation can be
intercepted, and acted upon;

We have already discussed two of these cornerstones: the logic meta-programming language and
the declarative frameworkNow we want to discuss th&/nchronization tool frameworkhe frame-
work that is responsible for integrating synchronization tools in a development environment. We then
call thesynchronization frameworthe combination of theleclarative frameworland thesynchro-
nization tool frameworkand show how it can be instantiated for every characterization of synchro-
nization as discussed in sectfon 2]5.1. The following chapters then perform more practical experiments
to show the usability and scalability.

5.1 The synchronization tool framework

Thesynchronization tool framewoik an application framework to build tools that need synchroniza-
tion of design and implementation. It consists of the following parts, that are depicted inffigure 5.1

1. design repository: this is a logic repository that sedusnged messageghenever a clause
is added, removed or changed. These changed messages are interceptegdkebigthehange
monitor,

2. application model: in the Smalltalk environment we use (VisualWorks Smalltalk), theAgass
plicationModelis the general root class that is subclassed to build applications. We have created
a subclass3OULToolApplicationModgthat provides the core implementation for applications
that need synchronization. All the SOUL applications are subclasses from this class. For users
of the framework, this is the class they will certainly use to build their applications. It can be
configured for several kinds of synchronization;
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Figure 5.1: The major elements of the synchronization tool framework, and their depen-
dencies. Dashed arrows indicate indirect dependencies using a registration mechanism and
event system. Plain arrows indicate direct references.

3. implementation monitor: other classes can register to this monitor to receive notifications of
changes to the implementation (after the changes were performed). It is very important to note
that the monitor is implemented at the Smalltalk meta level, which meanstiyathange,
regardless of the tool, is captured. Hence all possible tools are supported, existing ones as well
as new ones, and they do not need to be modified. Note also that, in the current version, we do
not support proactive notifications. The implementation is analogous to the implementation of
the retroactive notifications, so we foresee no trouble implementing this;

4. design monitor: other classes can register to this monitor to receive notifications of changes
to the design (before or after the changes have been performed). The monitors receive their
notifications from the design repositories.

Note that the application has a direct reference to the design repository is uses, but that all other
dependencies are indirect, and work using the Smalllallendency mechanisnthis allows any
objects to register themselves to receive notifications frardelgobjects that send change messages
to their dependants). Important of this kind of reference is that it is a dynamic, runtime model that
uses a well-defined API.

For the user of the framework, the instantiation of the framework almost always includes creat-
ing a subclass c50OULToolApplicationModelBy default this class instantiates a new empty design
repository and registers itself with both monitors. It thus receives notifications for both design and
implementation changes. Every change results in a method being called, that is by default imple-
mented to do nothing. Takfle 5.1 lists what messages are called as a result from what change in design
or implementation. By overriding these methods, actions on changes can immediately be taken, as



5.2. THE SYNCHRONIZATION FRAMEWORK 73

kind change message
design adding a clause clauseAdded:
removing a clause clauseRemoved:
changing a clause clauseChanged:
implementation adding a class classAdded:
removing a class classRemoved:
changing a class classChanged:
adding a method selectorAdded:class:
removing a method selectorRemoved:class:
changing a method selectorChanged:class:

Table 5.1: The notifications that can be sent by the design and the implementation monitor,
and the corresponding method called in SOULToolApplicationModel.

is explained in the next sectioBOULToolsApplicationModellso implements methods to begin and
stop receiving notifications from design or implementation.

Note that the synchronization tool framework does not necessarily has to be used with the declar-
ative framework. It merely allows tools to be notified of implementation or design changes. For
example, it could also be used wiimalltalk LintfRBJO96] (which we discussed in related work in
sectior] 2.5.R) or other tools. However, we chose to combine it with the declarative framework since
we were interested in a very expressive and powerful reasoning mechanism.

5.2 The synchronization framework

The synchronization framework, shown in figfire]5.2, is the combination of the declarative framework
and the synchronization tool framework. It allows to build tools that support co-evolution, and that
can be customized towards particular forms of synchronization as described by the characterizations
of implementation. The general setup is depicted in figure. This shows an application that needs syn-
chronization of design and implementation. Using the declarative framework to pose logic queries,
the application can extract design information from the implementation, generate parts of the imple-
mentation or do conformance checks between design and implementation. Whenever this triggers a
change in design or implementation, any application can receive notifications of these changes. If it
chooses to do so, the application can then act on these changes (again by using queries).

In the following sections we discuss two concrete tools that are built using the synchronization
framework: astyle checketool that constantly reports violations against programming conventions,
and aUML editor that is kept synchronized with the implementation. Then we discuss how users of
the synchronization framework can instantiate the framework to obtain specific forms of synchroniza-
tion. This also forms the conceptual proof that the framework indeed supports all characterizations of
synchronization discussed in sectjon 2.5.1.

5.2.1 Style checker

One tool that we have implemented (shown in figurg 5.3) monitors the quality of methods in the
system. Therefore it fires user-definable queries whenever a method is changed in the system. These
queries express criteria methods should comply to. Failures to adhere to these criteria results in a
warning being written to the log application. The entries in the log application can then be double-
clicked to open a browser on the method causing the warning. Entries in the to-do log are overridden
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Figure 5.2: The general setup of ttsynchronization frameworkshowing the two main
constituents: theéleclarative frameworknd thesynchronization tool framework
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when the same method is changed (and thus contain the results of the latest version of the method),
or can be removed manually. The developer is thus not hindered: violations only result in logs to be
reviewed.

To use the synchronization framework to build this tool, we have to instantiate it. This comes down
to instantiating both frameworks: the declarative framework and the synchronization tool framework.
To instantiate the declarative framework, we merely have to select which parts of the declarative
framework we use, and add extra predicates that might be needed. This depends of course on the
criteria we want to check. For example, in figlire]5.3 we have highlighted a check that looks for
bad super send® methods. Therefore it uses a predidadelSuperSendnd logs a violation with a
descriptive string if this predicate succeeds. The second step is the instantiation of the synchronization
tool framework. For this we subclaSOULApplicationModeland provide two user interfaces: one
for the log where the violations are shown, and one to view and edit the queries that are checked
on every method. Then we override the methatsthodAdded:and methodChangedto invoke
the methodcheckMethodCriteria:whenever they are executed. The metlohéckMethodCriteria
invokes the queries wanted by the user, and updates the log showing the violations (if there are any).
Since this application is not interested in receiving notifications of changes in the design, we also
override thdnitialize method to indicate this.

When the application is active, it receives notifications of any change in methods in the applica-
tion, and performs checks on these methods. The basic form of this application as described above
can be extended in several different ways. For example, by using dialog boxes instead of a logging
strategy we can make it harder for users to violate the criteria. When we have an appropriate monitor
(that sends changes before the changes were actually applied to the implen@m&tionuld even
forbid to make changes that do not follow the conventions. Another application might offer rewrite
abilities for certain violations. For example, when we want to enforce that peopleusssor meth-
ods(see also sectign 4.5.1), and a direct send to an instance variable is detected, this can automatically
be rewritten to use the accessor.

5.2.2 UML tool

UML is a general-purpose visual modelling language that is used to specify, visualize, construct, and
document the artefacts of a software system [RIB99]. One of the diagrams offeredlssthdia-
gram, a static view that is used to model concepts in the application domain as well as concepts local
to the implementation of an application. It mainly consists of classes (with attributes and operations)
and their relationships. Several tools exist to draw UML class diagrams. Most of these tools allow us
to generate template code from a UML diagram (generally by using a customizable scripting system).
Some of them also allow us to extract UML diagrams from the source code (although typically not
customizable).

When instantiating the synchronization framework to build a UML class diagram tool, most work
is done on the user interface side. The subclasS@ELToolApplicationModéedirst of all has to
implement the drawing editor to view and edit UML class diagrams. Extracting or generating a UML
class diagram from the implementation is done by evaluating a query as is shown in[section 6.3.1 in
the experiments. Both of these processes are fully customizable, since the ‘scripting language’ used
is our full-fledged logic meta-programming language.

While this functionality is nice, we can go a step further and use our notification system. For
example, we can make a UML tool that enforces that every change in a design diagram should comply

*Our current implementation monitor ensures that the changes have been applied to the code before wend the change
message. This could easily be changed to send notifications before the change is actually applied.
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to the implementation. For example, when an operation is added to a classifier, the implementation
can be checked to make sure that the class corresponding to the classifier indeed implements such
method. If not, this can be logged or template code might be generated. Implementing this scheme
merely comes down to overriding tlebkauseAddedandclauseChangedmnethods.

5.2.3 Conceptual validation

In this section we evaluate the synchronization framework regarding the characteristics of synchro-
nization as discussed in section 2]5.1. For every characterization we show how the synchronization
framework can be instantiated to accommodate it:

direction of synchronization : we express design as a logic meta program of implementation. As
explained in sectiof 2.6, the logic meta program can then be used for checking (when both
design and implementation exist) and to generate the one from the other (if only one of them
is specified). In order to do this, no specific instantiation is necessary, since it is a direct result
from using a logic meta-programming language to make the design explicit;

action to be taken : when elements are found that are out of sync, there are two possibilities: the
differences can be reported (allowing the user to take action later), or they can be fixed auto-
matically. SOUL supports both the reporting and the action. The reporting is a direct result
of using a logic meta-programming language, since the report is actually formed as the results
of the query one formulates to do the synchronization. Actions have to be implemented by
instantiating thedeclarative frameworkand adding rules that describe the actions. Then the
synchronization tool framewoikas to be instantiated to invoke the actions at certain moments.
Note that a number of rules exist with built-in actions, namelydieckPossiblyGeneratales
we saw in sectiorls 4.4.1;

notification time : what notification time is possible depends entirely on the instantiation of the
synchronization tool framework. More specifically, tools can subscribe themselves to receive
notifications of changes to design and implementation. The synchronization tool framework
has to send all these events, so the tools can choose whatever they need. Note however that,
in the current implementation of treynchronization tool frameworkve support no proactive
notifications. However, as we explained in secfion 5.1, this would not be very hard to add,;

trigger time : whether direct or delayed triggering is used, depends on the instantiation ®jfrthe
chronization tool frameworkBy default, direct synchronization is supported because the tools
using the synchronization tool framework receive notifications for any change to design and
implementation. However, the actions that need to be taken when a change is detected have to
be implemented. Note that typically, for performance reasons, the SOUL incremental solver
will be used in combination with direct synchronization. The tools can also be set to receive
no notifications, and then the queries have to be launched manually to initiate synchronization.
Because the event mechanism is a very general and fine grained one (every change is received),
even combinations are possible;

scope: the scope of rules is global, since they are contained in a global repository and not bound to
certain pieces of the implementation. Local scope therefore needs to be specified in the rules.
For example, queries will typically restrict their search to certain hierarchies of classes;
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implementation granularity : by default, the representational predicates use complete parse trees
since we wanted to use fine-grained information. However, the declarative framework can be
instantiated to use other representations that are partial;

static/dynamic : the synchronization framework currently uses only static information. We have two
important remarks to make here. First of all, we have experimented with static reasoning on
top of information that was collected dynamically [RDW98]. Of course, this runtime informa-
tion can be combined with the static information, since they complement each other. Second,
because of SOUL's symbiosis with Smalltalk, Smalltalk objects can be used directly in SOUL.
When both are integrated even further, reasoning about dynamic information will be very easy.
We discuss this in some more detail in secfion 8.3.2.

By discussing how the synchronization framework can be instantiated to support the different
characterizations, we have also shown that, in general, it supports all the possibilities of synchroniza-
tion. There is one exception: the reasoning is essentially static. Of course, this general discussion still
has to be backed with a concrete validation. This is done in the next two chapters, were we described
our experiments.

5.3 Conclusion

In this chapter we combine tlieclarative frameworkntroduced in the previous chapter with thn-
chronization tool frameworkThe synchronization tool frameworis a Smalltalk application frame-

work that is used to build applications that need synchronization of design and implementation. There-
fore it implements a mechanism that tools can use to receive notifications of changes to design and
implementation. The combination of tldeclarative frameworkand thesynchronization tool frame-

work results in thesynchronization frameworkWe discuss two applications that use the synchro-
nization framework to support co-evolution: one application that logs violations against programming
conventions, and a UML tool that is synchronized with the implementation. Then we evaluate the
synchronization framework and show that it conceptually indeed supports all the characterizations
of synchronization (except the support for dynamic information). In the two following chapters we
perform practical experiments with the synchronization framework. A first series of experiments is
performed on the HotDraw framework and experimentally shows the complete spectrum of synchro-
nization supported by the synchronization framework. It also assesses the practical usability of our
approach. The second series of experiments shows the usability and scalability of the synchronization
by performing several experiments on a large industrial framework.



Chapter 6

Supporting co-evolution

The previous chapter discussed the synchronization framework, and showed conceptually that it in-
deed supports the complete spectrum of synchronization described by the characterizations. However,
we are also interested to assess the practical usability and scalability of the synchronization frame-
work. Therefore we performed two series of experiments, that are described in this chapter and in
the following one. In this chapter we perform a small-scale case study on the well-known HotDraw
framework, a framework for drawing editors. The goal is to show experimentally that the synchro-
nization framework supports the different characterizations, and to assess the practical usability of
our approach. The second series of experiments, that are described in the next chapter, test the us-
ability and scalability of our approach on a large-scale industrial framework used in the television
broadcasting industry.

6.1 Introduction

The claim of this dissertation is that when design is expressed as a logic meta program over imple-
mentation, a framework can be constructed that allows the design to check, generate or constrain the
implementation, and vice versa. The proof of this claim is dope&onstruction meaning that we
built the synchronization framewoyka framework to synchronize design and implementation. As
discussed in sectign 5.2.3, this framework conceptually supports the complete range of synchroniza-
tion described by the characterizations of synchronization. However, we also want an experimental
proof that the complete spectrum is supported, which also assesses the usability in the real world.
Therefore this chapter performs experiments on HotDraw [Bra92, Joh92,/BJ94 | Cha94], a framework
for structured drawing editors written in Smalltalk. HotDraw is used to build editors for specialized
two-dimensional drawings such as schematic diagrams, blueprints, music, or program designs. The
elements of these drawings can have constraints between them, they can react to commands from the
user, and they can be animated. The editors can be a complete application, or they can be a small part
of a larger system. We take this case because it is implemented in Smalltalk, fairly well-understood
and documented, and not too large. In the next chapter we perform experiments on a larger, real-world
case.

Thered threadin the experiments is the building of a graphical editor for the constraint networks
of the incremental solver. More specifically, we look at how to create an editor application and the
appropriate figures representiognstraint variablesandrelations We have divided the experiments
into two cases. In the first set of experiments, we show Helatyed synchronizatiofwhere several
changes are made to design and/or synchronization before being synchronized) is supported in our
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approach. In the second series of experiments we showdireat synchronizatiofwhere changes to

the implementation are directly propagated to the design and vice versa) is supported. We separated
both cases from the beginning since the delayed synchronization can be done using an ordinary logic
meta-programming language while we need the incremental solver to support direct synchronization.
In both experiments, we use the same logic meta programs expressing the design notations used in
previous section, but we store the actual design information differently. As is explained in §edtion 6.6,
both can be unified in one repository.

6.2 General setup of the experiments

Our experiments were performed in VisualWorks/Envy R4.01, on a Macintosh Powerbook G3 running
at 250 Mhz, and with 64 megabytes physical memory. The version of HotDraw was the latest release
for Envy (HotDraw R1.00). We used the latest version of SOUL/Envy (SOUL R1.55), including the
synchronization framework. Since there was no design information available at the beginning of the
experiments, the design repository was initially empty.

It is important to notice that we were not familiar with the HotDraw framework when we started
experimenting with it. Hence, there was not only the issue of expressing part of the documentation
of HotDraw and showing how it could be used by framework users, but there was also the problem
of learning the framework. During the experiments we therefore wore two different hats, and fre-
quently changed them: on the one hand we took the role ofréimework developeidocumenting
the framework using logic meta programs in an effort to keep the framework documentation and the
framework tied close together. On the other hand we played the rétaroéwork usewho tries to
use the framework and the documentation to build an application.

6.3 Supporting delayed synchronization

In the first series of experiments we show how to support a development process where the synchro-
nization of design and implementation is done from time to time. We follow a development scenario
where we familiarize ourselves with the HotDraw framework and then instantiate it to build an editor
for networks for our incremental solver. This shows how design can be extracted from implementa-
tion, how implementation can be generated from design and how design and implementation can be
checked for conformance at any given point in time:

o the first experiment is to use logic meta-programming to better understand the implementation
of HotDraw. This is actually a kind of reverse engineering step, where the existing documen-
tation of HotDraw is used as blueprints of queries that are checked against the source code. It
is thus concerned with generating (extracting) design from implementation. In this experiment
we start out with no design documentation, and completely extract this information from the
implementation using SOUL and the design expressed in the declarative framework;

o then we express design information that is specific to HotDraw. We focus on a particular hier-
archy of composite figures, and on the relationships betweegdibar (the actual application),
thetools (that create and manipulate figures) andfigaresthemselves. This step shows how
design information that was extracted in the first experiment is made explicit, so that it can be
used later on. Note that no synchronization is done in these experiments. We just show how we
can instantiate and complement the general rules in the declarative framework with rules that
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)

Figure 6.1: Extraction of design information from implementation.

express more specific design information. The next two experiments then show how we can
synchronize this updated design information with the implementation again;

e this experiment shows how to synchronize the implementation with the updated design infor-
mation from previous step. It shows a combination of using a query to find inconsistencies
between design and implementation, and an action that automatically generate methods and
classes if they are not implemented;

o then we see how to do conformance checking between design and implementation after changes
have been made to design and implementation. In this experiment we do a conformance check
between the updated design information from the second step and the modified implementation.
In contrast with the previous experiment where a default action is provided that generates parts
of the implementation, this consistency check results in a report that shows where the design
and the implementation deviate.

6.3.1 Extraction of design information

Being a novice regarding the implementation of HotDraw, we started by reading the HotDraw docu-
mentation and papers mentioned on the website. The initial situation is depicted irj figure 6.1: we had
the HotDraw implementation, but no explicit design documentation. At the end of the synchroniza-
tion we thus wanted to have a repository containing design documentation. We came quickly to the
conclusion that most documents described a version of Hotltder than the one we were using.
However, it gave us enough overview of the implementation to get started. One of the first queries we
ran extracted theot classe®f HotDravﬂ Based on the names of these classes, and on the HotDraw
implementation, we came to the conclusion that three of these were of general irdesegnhgEdi-

tor, ToolandFigure. TheFigure hierarchy proved very extensive, so in order to familiarize ourselves

1We found 18 root classes: Figure, LineAnnotation, DrawingController, TransitionTable, PositionConstraint, ButtonDe-
scription, BoundaryConstraint, TransitionType, ToolStateCommandEditor, TransitionEditor, DrawingEditor, ToolbarCon-
troller, ToolStateModel, EndToolState, ToolStateTransitionModel, FigureAttributes, ToolbarView, Tool
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predicate description

composite compositePattern([Figure],[LineFigure])
compositePattern([Figure], [Drawing])
compositePattern([Figure], [CompositeFigure])

visitor none

singleton none

bridge none

factory method base level: 41
meta level: 3

accessor methods base level: 56

meta level: 1

Table 6.1: Extracting design from HotDraw

with it we used the UML class diagram rules from secfion 4.5.3 to extract a simple UML class dia-
gram. These results are stored in the HotDraw design repository (indicated by the second argument to
the predicatelHotDrawDesigh):

Query initializeDrawing(),
assertUMLDiagram([Figure], [HotDrawDesign])

The extracted classifiers and generalization and association relationships are shown|in figure 6.2.
Besides the extraction of this UML information, we also ran queries to check what accessor methods
were used where, and if we could detect design patterns. The results are shown([in table 6.1. In this
extraction phase we used all the SOUL development tools that were introduced in section 3.2.6.

This step shows how a lot of design documentation can be extracted from the implementation,
helping a developer unfamiliar with a certain implementation to gain a better insight. This does not
eliminate the need to read documentation, or to browse the source code manually to look at certain
parts of the implementation. It merely complements it by providing advanced development tools
that allow to browse the system on different levels of abstraction. Next we see how this extracted
information can then be refined towards more specific documentation.

6.3.2 Complementing the extracted design with specific information

In the first experiment in sectign 6.8.1 we showed how to extract design from implementation. In

this section we show how to complement this design with more specific HotDraw design information

regarding editors and composite figures. Hence, in this experiment we start with the synchronized
design and implementation from the first experiment, and complement the design information with

more specific information. It is important to note that in this step waakoyet synchronize design

and implementation. This will be done in the next two sectipns, 6.3.8 and 6.3.4.

Screenshdt 6|3 shows a standard HotDraw editor where we have drawn some standard figures.
Note the label of the window (that sayrawing Editor), and the toolbar. The toolbar displays a
number of buttons that can be used to draw figures in the drawing area, to select figures (which
displays their handles so they can be manipulated), and to delete figures. Not shown on the picture is
a context sensitive menu that is associated with each figure, and allows us to set some properties (such
as fill colours and line widths). Of course, specific figures can have specific menus by overriding the
menuAt:method.



84 CHAPTER 6. SUPPORTING CO-EVOLUTION

Dgnrawing EditorE—EE
Y ¢oBBk ¢~/ 00CccIIT
[
3
al =

Figure 6.3: The standard HotDraw editor opened

The implementation of the editor uses three main componentsDitie@ingEditor, the Figure
and theTool. From browsing the code (using a combination from the standard Smalltalk development
tools and the SOUL development tools), we found some very important, yet undocumented properties
and relationships between these components:

1. The interaction of the user with the editor is completely described using state diagrams. Class
Tool uses these state diagrams to decide what action is performed when a user clicks in a draw-
ing editor. Therefore, each tool needs to be added to this state diagram. This is done by adding
a class method to class Tool that describes the state changes for this tool, and what figures it
creates. The name of that state has to be used itothdamesnethod in the editor;

2. the label displayed by the window is determined bywledowNamenethod orDrawingEdi-
tor. Subclasses can override this to display other names;

3. the tools that are shown by the editor are enumerated in a method talléhmes This
method lists a number d@bol states Hence, every one of the tool states mentioned should be
available in the state diagram offered by the clessl;

4. every tool offered by the editor has a button on the toolbar. Therefore the editor has to offer
icons to use as buttons for every tool name mentioned inahid&ameanethod. These icons
are returned by methods that reside on the class side of the editor class. However, there has to
be some mapping between the name of the tool, and the name of the method used to provide
the icon. This mapping is actually a naming convention implemented in a method icalted
NameFor: Hence the toolbar is constructed by enumerating all the tool names provided by the
toolINamesnethod, and retrieving the icon for this tool using the naming convention.

Note that these dependencies are between three classes that are hierarchically unrelated, and are
implemented using naming conventions, hardcoded references and Smalltalk meta-programming tech-
nigues. We only found these dependencies by using the SOUL tools and regular Smalltalk develop-
ment browsers, as they were undocumented and scattered in different locations in the source code.
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predicate description

hdEditorClass an editor belongs to therawingEditor hierarchy
hdToolINamesMethod has atoolNamesnethod

hdiconMethod has icons for each tool

hdToolMethod extends the state diagrams on classl

hdEditor relates the editor and its tools and figures

Table 6.2: The predicates dealing with editors, tools and figures

Therefore we decided to make these conventions explicit as logic meta programs. The predicates we
implemented are shown in taljle 6.2, and are described in detail in the rest of this section. We then
used these predicates to generate code, for conformance checking and in a constraint network to guide
development.

hdEditorClass

The first predicate we would like is one to help us with constructing editors. As outlined in the above
explanation about editors and tools, there are several classes and methods we have to generate in
order to accomplish this. We have spread this code over several rules. First of all we implement the
hdEditorClasspredicate that describes what an editor class looks like. Actually, this is a very simple
predicate, since it only needs to check that the class belongs RrélwéngEditor hierarchy:

Rule hdEditorClass(?name, ?editdf)
hierarchy([DrawingEditor], ?editor),
className(?editor, ?name),

This predicate can now be used to detect inconsistencies between design and implementation, and
to extract information from the implementation. For example, when we have information that some
class is an editor class, we can usell&ditorClasgo confirm or reject this. The name of the class
is bound to?namewhen the existence of the editor in the implementation is confirmed:

Query hdEditorClass(?name, [FooEditor])

By replacingFooEditor with another variable, we can use the sami&ditorClasspredicate to
extract information about editors from the code. However, note that this predicate does not try to
correct inconsistencies. For example, if there iFF0oEditor in the implementation, the query just
fails. Then it is again up to the user to determine the action to take to solve the inconsistency. In
terms of the classification of synchronization as given in seftion|2.5.1, this comes downdpdrte
action. Using some of the other predefined predicates in SOUL, we can also implement a version
of the hdEditorClassrule that tries to automatically solve inconsistencies. We call this predicate
cpgEditorClasswhere the acronyropgstands for checkPossiblyGenerate (which is used throughout
our predicates):

Rule cpgEditorClass(?name, ?editdr)
cpgClass(?name, [DrawingEditor]),
className(?editor, ?name),
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ThecpgEditorClaspredicate makes sure that there is an editor class with a c@riame(using
thecpgClasgredicate). If no such class exists, it is generated as a direct subcResxahgEditor.
If it already exists in the hierarchy @rawingEditor, nothing is generated and the rule succeeds. If it
exists, but is not a subclass BfawingEditor, the generation fails.

hdToolINamesMethod

The second predicate we describe is concerned with the tools offered by the editor. As said before,
the editor should override a method calledlNamego describe the tools it uses. There exist two
typical implementations of this method. The first just returns an array with the names of the tools
this editor offers. For example, thieolNamesmethod ofDrawingEditor shown in figurg 6.4 lists

the default tools that are used by all HotDraw editors. The second implementation strategy that is
typically offered by specific editors is to get the tools used by their superclass, and append some
specific tools to it. The second method of figlire] 6.4 shows the implementation tddiames
method for classlotPaintEditor, one of the HotDraw examples. The followihgToolINamesMethod
predicate describes the general structuretobiNamesnethod for a certain editor. Note that we have
added &kind variable, that can be used to differentiate different formsofNamesvhen needed.
ThehdToolNamesMethopredicate first of all states thaeditorshould be an editor class. Therefore

we use the predicate introduced above, without supplying a particular name for the editor. Then we
say that the metho@mshould be a method of cla8sditor, with the namdoolNames The statements

of the method are described by an auxiliary predidaddoolNamesStatement&le provide two facts

that implement this predicate, corresponding to the two ways of implementitgaidamesnethod
described above. This could of course be extended to include other forms as well.

Rule hdToolNamesMethod(?editor, ?m, ?toolNamesList, ?kifnd)
editorClass(, ?editor),
classimplementsMethodNames(?editor, [#toolINames], ?m),
methodArguments(?m; >),
methodTemporaries(?ra;,>),
hdToolNamesStatements(?statements, ?toolNamesArray, ?kind),
array2List(?toolNamesArray, ?toolNamesList).

Rule hdToolINamesMethod(?editor, ?m, ?toolNameslifst)
hdToolNamesMethod(?editor, ?m, ?toolINamesLjst,

Fact hdToolINamesStatements(eturn(literal(?toolsArray)}y, ?toolsArray, [#enumeration]).

Fact hdToolNamesStatements{return(send( send(variable([#super]), [#tooINames}),
[#l]l
literal(?toolsArray)))>,
?toolsArray,
[#superAppendEnumeration])

ThehdToolNamesMethogredicate describes the form of the tooINames method of a certain edi-
tor, if the method exists. This again allows to extract the tools from a certain editor, to find all editors
using a particular tool or to check whether a particular editor uses a particular tool. However, the
results are just reported as results from a query, and when an inconsistency is found, no attempt is
made to solve it. Therefore we implement another predicate that generates an appiapfiees
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DrawingEditor>>toolNames
"Return the list of names for the tools.
'nil’ represents a space between tools in the icon bar.”

“#( ’'Selection Tool’
'Hand Tool’
nil
'‘Delete Tool’
'Bring To Front Tool’
'Send To Back Tool’
nil
'Polyline Tool’
'‘Bezier Tool’
'Spline Tool’
'Rectangle Tool’
'Rounded Rectangle Tool’
'Ellipse Tool’
'Arc Tool’
‘Image Tool’
"Text Figure Creation Tool’)

HotPaintEditor- >toolNames
"Return the list of names for the tools.”

“super toolNames

LH( il
'Hot Paint Canvas Tool’
'Hot Paint Paintbrush Tool’
"Hot Paint Mask Tool’
"Hot Paint Image Tool’
"Hot Paint Erase Tool’)

Figure 6.4: The tooINames method for two clasdesawingEditorand HotPaintEditor
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iconNameFor: aString

| iconName]

aString isNil ifTrue: ["nil].

iconName := aString select: [:eathach isAlphaNumeric].

iconName := iconName copyFrom: 1 to: (iconName size - 4 max: 1).
iconName at: 1 put: iconName first asLowercase.

“(iconName , 'lcon’) asSymbol

Figure 6.5: TheiconNameFor:method orDrawingEditor implementing the naming con-
vention to get the icon for a tool

method in the case it does not exist, or that rewrites an exishiofjNamesnethod when one does
exist but lacks certain tools we would like to offer in the editor (note that we could also have split the
second rule in two):

Rule cpgToolNamesMethod(?editor, ?toolNamesLiist)
hdToolNamesMethod(?editor, ?m, ?toolINamesLjst,

Rule cpgToolNamesMethod(?editor, ?toolNamesLiist)

not(hdToolNamesMethod(?editor, ?m?k)),
xor( hdToolNamesStatementsPexistingToolNames, ?kind),

and( equals(?existingToolNames;>),

equals(?kind, [#superAppendEnumeration)))),

difference(?existingToolNames, ?toolINamesList, ?newToolNames),
append(?existingToolNames, ?newToolNames, ?newNamesList),
hdToolNamesStatements(?newsStats, ?newNamesList, ?kind),
generateMethod( ?editor, [#toolINames]y, <>, ?newStats)

Using thehdToolINamesMethgave also implementedlad ToolINameMethogdredicate that relates
an editor and each of its tools separately instead of the editors and the list of all its tools.

hdlconMethods

For every tool enumerated in th@oINamesnethod, there should be a corresponding icon that is used

to build the toolbar. ThérawingEditorimplements a default naming convention, that determines

the selector to use for a given toolName. This naming convention is implemented in the method
iconNameFor; for which the code is given in figufe 6.5. When this method is cali&dringis bound

to a string containing the name of the tool. When this string is not nil, its alphanumeric characters
are used, the last four characters are chopped of, and the first character is ensured to be a lowercase
character. At last, the strindcon’ is appended. For example, for the tool call8election Tool,

this yields the stringelectionlconwhile ‘Rounded Rectangle Toofields ‘roundedRectanglelcon’

The resulting strings are used to retrieve the icons for these tools. The implementation of this method
is interesting, because it reveals another naming convention: the last four characters are chopped of
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because every toolname ends@wol’. This naming can also be made explicit by providing a separate
predicate for it, or adding some lines to théTooINamesMethopredicate explained in previous the
section.

In short, every toolname should have a corresponding class method that returns its icon. The
hdiconMethodoredicate makes this relation explicit. For a given editor, it describes that a toolName
should have a corresponding method on the class side. It uses an auxiliary predatbdenName
that uses amalltalk term to invoke theiconNameFor:method of the supplied editor to get the
correct naming convention. Note that we could also have implemented this directly in SOUL, using
the string handling predicates.

Rule hdiconMethod(?editor, ?toolNamit)
metaClass(?editor, ?editorClass),
toollconName(?editor, ?toolName, ?toollconSelector),
classimplements(?editorClass, ?toollconSelector).

Rule toollconName(?editor, ?toolName, ?toollconNaiifie)
generate( ?toollconName,
[(?editor new iconNameFor: ?toolName) asStream])

As in the previous sections, we also added a predicpggiotDrawlconMethodthat generates
the necessary method to provide an icon in the case where it is absent. This is again an example of
a predefined action we built into the predicate, and that decides to generate the implementation in
the case where it is missing. The method that has to return this icon uses two auxiliary methods, that
provide the image and the mask to use. In the predicate the code is provided by the auxiliary predicates
toollconimageCodandtooliconMaskCodeSince these predicates essentially contain Smalltalk code
that just return textual descriptions of the default icons, we do not show their implementation. The
cpglconMethogust uses these predicates to get the code, and generates the appropriate methods when
needed:

Rule cpgHotDrawlconMethod(?editor, ?toolNanik)
hotDrawlconMethod(?editor, ?toolName).

Rule cpglconMethod(?editor, ?toolNami¢)
metaClass(?editor, ?editorClass),
not(hotDrawlconMethod(?editor, ?toolName)),
toollconName(?editor, ?toolName, ?tooliconSelector),
toollconimageCode(?tooliconSelector, ?2imageSelector, ?imageCode),
cpgMethodinProtocol(?imageCode, ?editorClass, [#resources]),
toollconMaskCode(?toollconSelector, ?maskSelector, ?maskCode),
cpgMethodinProtocol(?maskCode, ?editorClass, [#resources]),
toollconSelectorCode(?toollconSelector, ?imageSelector, ?maskSelector, ?iconSelectorCode),
cpgMethodInProtocol(?iconSelectorCode, ?editorClass, [#resources])

While thehdiconMethodandcpglconMethogbredicates define the relationships between one tool-
Name and its icons, we also added two predicates that do this for a list of toolNadiesnMethods
andcpglconMethods The implementation simply enumerates all elements in the list and uses the
single version predicates.
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hdToolMethod

Previous sections describe predicates that all dealt with just the class or methods on the editor itself.
Now we describe the methods on tieol class that adds the necessary states to the general state
diagram governing the behaviour of the editors. Like we said beforeTdbkclass uses a state
diagram to implement the interaction between the user and the editor. Therefore, each tool offered by
the editor has to be added to this state diagram. That way, when the user selects a tool in the buttonbar,
and then clicks on the drawing area, the figure defined by the tool can be created.

When building the state diagram defined by classl, all methods from the protocabol states
of Tool's metaclass are enumerated. Every method in this protocol adds certain states and transitions,
that are used byool whenever the mouse is moved or clicked within the HotDraw editor. Therefore,
every toolname listed in thmolINamesnethod should occur in at least one method inttwe states
Also important is that these methods can be used to associate tooINames and figures, since the tran-
sitions are responsible for creating figures. We have expressed this informatiorhifitiin@dMethod
predicate. This predicate associates a certain toolName with its figure and its initialization method
on theTool class. Therefore it enumerates the methods irtdbestatesprotocol. For each of these
methods, it checks which figures are referenced by looking at the referenced classes and only keeping
the ones that actually belong to tRegure hierarchy. Then it enumerates the tool states, and keeps
the ones that end difool’. Like we said before, this naming convention of postfixing tools is used
throughout HotDraw, and can here be put to good use. As with the previous predicates, we again
provide acpgToolMethogredicate that generates a default initialization method adding states to cre-
ate and select the figure. The name of this method is constructed by prefixing the name of the tool
(without spaces) with the strirgpitialize’ . The rest of the code is then given by an auxiliary predicate
toollnitializationCodethat we is not shown here because it contains just a Smalltalk description of the
states and transitions that are added for the figure created by the tool.

Rule hdToolMethod(?toolName, ?figure, ?initMethat)
methodInProtocol([Tool class],[#tool states’],?initMethod),
classesUsed(?initMethod, ?classList),
member(?figure, ?classList),
hierarchy([Figure], ?figure),
isSendTo( ?initMethod,

send(variable([#Tool]),[#states]>),

[#at:put:],

<literal(?toolName),>),
patternMatch(?toolName, postfix([‘Tool]))

Rule cpgToolMethod(?toolName, ?figure, ?initMethdfd)
cpgFigure(?figure),
toollnitializationCode(?toolName, ?figure, ?code),
generateMethodInProtocol(?code, [Tool class], [#‘tool states’])

The hdToolMethodelates three variables: the tool used, the figure and the tool where the states
are added. We have a very important remark to make here, that may not be visible because it is
very natural: this rule actually configures several classes from completely different hierarchies to
work together. This is a major difference with some of the other rules we have seen and that only
express local properties of methods or classes. While this rule does not much different, it describes
the interplay between some components in the HotDraw framework.
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Note that we also adddwtiToolMethodsindcpgToolMethodshat handle lists of toolINames and
figures.

When we used thkdToolMethodredicate to see which figures are initialized by which methods,
we noticed that some figures were missing. This means that there exist HotDraw figures that are not
created by tools in editors. We can divide these figures in some groups.

o first of all we have the clagsgureitself. This is a template class that is not meant to be created
by tools, so this is no problem;

¢ next we foundCachedFigureViewAdapterFigureToolStateFigureand State TransitionFigure
These classes were used in examples or to edit the state diagrams, but have no associated tools
that allow them to be drawn in an editor;

e more interesting was that there is no tool to credténaFigure The reason is that instances of
LineFigure are created directly when a user connects two figures. Instead, one would expect a
state transition that defines that when a user clicks the connection point of a figure, and moves
the mouse to another figure, a new LineFigure is created connecting the two figures;

e the same holds for the three figures that represent handles on figuwekHandle Indexed-
TrackHandleand TentativePositionHand)e These handles are created and returned by the
figures when they are selected in a drawing.

e grouping of figures is accomplished through the menu, and not through a tddbreposite-
Figureis also one of those classes for which there is no tool.

This is actually an example to show that, by making the design information explicit and using
it to check the source code, we can make quality assessments. For example, in this case it shows
places where refactoring of code is probably needed, or more explanations so that we can understand
why these classes form exceptions and are not created by tools. We will see more examples when
we express a specific set of programming conventions in the case study in the next chapter, and do a
conformance check with the implementation.

hdEditor

We have now all predicates to define what a HotDraw editor class looks like, and to help us check and
generate editors. Therefore we group the predicates from previous sections to ddficEdherand
the cpgEditorpredicates:

Rule hdEditor(?name, ?editor, ?toolNamesList, ?figurelifst)
hdEditorClass(?name, ?editor),
hdToolNamesMethod(?editor, ?m, ?toolNamesList, ?kind),
hdlconMethods(?editor, ?toolNamesList),
hdToolMethods(?toolNamesList, ?figureList, ?initMethod),

Rule cpgEditor(?name, ?editor, ?toolNamesList, ?figurelifist)
cpgEditorClass(?name, ?editor),
cpgToolNamesMethod(?editor, ?m, ?toolNamesList, ?kind),
cpglconMethods(?editor, ?toolNamesList),
cpgToolMethods(?toolNamesList, ?figureList, ?initMethod),
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predicate description

hdcClass a composite figure is in the hierarchy below CompositeFigure
hdcConstraintsVar has an instance variable to hold the constraints
hdcinstanceCreation has acreateAt.constructor

hdclnitialization has ainitializeAt: method

hdcCopying has apostCopymethod

hdcSetBoundsTo has asetBoundsTomethod

hdcFigure combination of all the previous predicates

Table 6.3: The predicates dealing with CompositeFigures

Figure 6.6: Generating missing parts of the implementation from the design.

The predicates dealing with composite figures

Besides the information that deals with the interplay betweefdloéclass, the editor and the figure,
we also expressed information regarding composite figures. The implementation of these predicates
is not discussed, but they are listed in tgble 6.3.

6.3.3 Generating missing implementation parts from the design

In the previous section we made HotDraw specific design information explicit. This means that we
have a declarative framework that is extended to express some specific design information. This
situation is depicted in figure 8.6. More specifically, the HotDraw specific design documentation
describes that for each composite figure and editor the implementation has to implement classes with
certain methods. In this experiment we show how this information is used to check the conformance
between design and implementation. Moreover we do not only report the inconsistencies, but also
implement an action that automatically generates missing implementation parts: whenever the design
information specifies that a class or a method should exist, but it is not found in the implementation, it
is generated. If it already exists, nothing happens. This actually means that this action leaves existing
implementationss is and does not override them.

For example, the following query expresses the design information that there is a composite fig-
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Figure 6.7: Screenshot of a freshly generated editor, where we created a freshly generated
ConstraintVariableFigure

ure calledConstraintVariableFigurethat has two component figuresarNameandellipse It also
specifies that there is an editor, callédnstraintEditor with a tool that can draWonstraintVariable-
Figures In this experiment we are only interested in synchronizing this piece of design information
with the implementation, hence we invoke the following query, that uses the design information ex-

pressed in sectign 6.3.2:

Query cpgCompositeFigure( [#ConstraintVariableFigure],
<[#varName], [#ellipse}),
cpgEditor(  [#ConstraintEditor],
?editor,
<['ConstraintVariableFigure Tool'}>,
<['ConstraintVariableFigure'}>)

In this experiment, neither the composite figure class, nor the editor class existed yet. Hence,
they were completely generated, including their methods and the appropriate methods on the class
Tool. Since no types were specified for the component figliegFigurescontaining their name are
generated. Hence, the result of this synchronization example is that the implementation was made
consistent with the design as specified in the query by generating it using the information contained in
the declarative framework. The generated editor is showed in scre¢nshot 6.7, where we have opened
our newConstraintEditorand created aonstraint variablefigure. Note again that, since we did not
specify more specific information about the figures that need to be created, the names of the variables
were used. Hence we see two TextFigures that use constraints to be positioned above one another.

We also want to stress that in the case the classes or methods specified in the design would have
existed, they would not have been overridden. Hence, when changes are made to the implementation
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Figure 6.8: Two-way conformance check between design and implementation to synchronize
them after both have been changed.

(for example to actually draw an ellipse figure around the name of the variable), and we re-synchronize
design and implementation, these manual changes will not be lost. Of course, other actions can
be implemented with other default behaviour, such as always regenerating the implementation, or
prompting the user what to do.

6.3.4 Checking implementation and design

In section[6.3]1 we have shown how to use the synchronization framework to extract design from
implementation. In sectign 6.3.3 we showed how to provide an action that automatically generates
classes and methods when they are specified in the design but do not exist in the implementation.
In this section we do a full conformance check between design and implementation that reports on
any piece of design information that is not implemented, and any piece of implementation for which
design information should be present, but is not. Hence, the situation of this synchronization is shown
in figure[6.8: design and implementation were changed, and we are interested to see where they differ.

We have already discussed the updated design repository and mapping in detail in previous sec-
tions. In this section we manually make additions to the implementation, and then we synchronize
this with the design information. The changes to the implementation were concerned with changing
the implementation o€onstraintVariableFigurgo draw an ellipsis around the variable name. More
specifically, we changed the generatritialize method to initialize the second figure to be an el-
lipse. Then we changed tlsetupConstraintsethod (which was also generated as a result from the
synchronization done in sectipn 6J3.3), and changed the constraint that put the two text figures below
each other to a constraint that ensures that the ellipse is centred around the text with the name of the
constraint variable.

We now want to check whether the implementation and the design are still consistent after these
changes to the implementation. Such conformance check actually consists of two parts, that can
be combined. The first check is to see whether the current design information still holds for the
implementation. The second check is to see whether the new implementation yields a new or changed
design.



6.4. SUPPORTING DIRECT SYNCHRONIZATION 95

Checking whether the design information is still valid for the new implementation is relatively
simple. Since all the design information is contained in the form of facts in a logic repository, we
just have to fire each of these facts as a query, which checks that fact against the implementation. We
are interested in all queries that return false, since this produces the pieces of design information that
became invalid. This is shown in the following query, that first retrieves all the clauses of our design
repository (using theepositoryClausepredicate) and then checks all of them against the current
implementation (by calling them as queries usingdak predicate). The failed ones are enumerated
in a list, which is the result of this query.

Query findall( ?failedInfo,
and( repositoryClause(?failedinfo, [HotDrawDesign]),
not(call(?failedinfo))),
?failedList)

The result of this query is a list with the failed clauses. This list can then be processed manually
(checking why a piece of design information does not hold anymore, using all facilities offered by the
development environment and our tools), could be used in a browser that displays it more appropri-
ately, or could form the foundation for a sophisticated tool that suggests solutions. Note that in the
query we gave the complete design repository is rechecked. By slightly changing this query, we can
recheck only certain parts of the repository (for example, to determine whether some specific design
patterns still holds) to speed up the check.

The second check looks whether the new implementation also adds new design information. The
general approach to do this is to regenerate (parts of) the design, and check whether they are contained
in the repository. For example, we can extract the information regarding composite design patterns,
and find all possible new instances:

Query findall( newCompositePattern(?comp, ?composite, ?sel),
and( compositePattern(?comp, ?composite, ?sel),
not(repositoryClause( compositePattern(?comp, ?composite, ?sel),
[HotDrawDesign)))),
?newComposites)

This query again returns a list containing all possible new composite design patterns. These can
then be checked by the user and asserted in the design repository, or fed into a browser or a tool.
Note that regenerating the complete design information can take rather long, and is therefore best
performed in batch overnight. However, normally we would only extract new design information
for the classes or methods we just implemented. Here we wanted to show how to do a complete
synchronization check between the design and implementation. Hence this experiment shows that the
design information cannot only be used as explicit documentation and to generate specific parts of the
implementation, but also to check whether the implementation is still consistent with the design (and
vice versa), and to show which parts differ.

6.4 Supporting direct synchronization

In this second series of experiments, we investigate direct synchronization, where changes of imple-
mentation or design are directly propagated to each other. Conceptually, supporting direct synchro-
nization does not differ much from supporting delayed synchronization. The checks we described in
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Figure 6.9: Incremental solving example

previous sections just have to be done whenever something changes. For example, when we change
the implementation of a method, a full consistency check between the design and the new implemen-
tation should be performed. It is clear that this approach has too much overhead to work in practice.
What we need is a way of determining the impact of a small change (in this case the change of one
method) in such a way that only the necessary information is rechecked or generated. This, in turn,
could then be propagated further if necessary. So, while conceptually there might be no real difference
in supporting direct synchronization, we need a practical system of determining the impact of small
changes.

Therefore we use the incremental solver introduced in sectipn 3.3. First of all, we use the synchro-
nization tool framework to add special constraints that are dependent on changes in the system. Hence
they receive notifications on system changes, and can propagate these changes, firing queries on the
way to determine the impact. Hence the setup of these experiments is different from the setup for the
first series of experiments. In these experiments, the logic repository containing the design is replaced
with a constraint network, so that changes can be propagated locally. We will first describe the ad-
dition to the incremental solver that allows constraints to be dependent on implementation changes.
Then we describe the experiments in supporting the development process directly, giving feedback
when a developer changes design or implementation.

Making the incremental solver dependent on system changes

When we introduced the incremental solver in sedfioh 3.3, we used a small example constraint net-
work that expresses three relations between two variables. We have depicted the constraint network
again in figur¢ 6)9. When explaining the basic workings of the incremental solver, we already showed
that the domains of the variables can be changed by the addition of relations. Since in this experiment
the incremental solver has to react on changes to the implementation. Therefore wesyseline-

nization tool frameworko register some constraints to receive implementation changes. Once they
are registered for such changes, they receive notifications on additions, removals and changes in the
implementation.

To show this on a concrete example, we create the same constraint network that we used before,
but now we let thelassimplementsMethodNamaohstraint receive notifications of method changes.
Therefore, every time a method changes in the implementation, this constraint is triggered and can
take appropriate action. Because of the definition of the constraint, this consist of checking that,
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whenever the method is in thégure hierarchy, and it is an initialize method, it has to use a super
send. All other methods, or initialize methods in other classes, should not trigger violations. To create
this network, we evaluate the following Smalltalk statement:

SOULIncrementalSolver new
name: ‘Dependent Network Example’;
add: ‘hierarchy([Figure], ?c)’;
add: ‘classImplementsMethodNamed(?c, [#initialize], ?m)’ method: #m;
add: ‘superSends(?m;[#initialize]>)’

These statements create a new incremental solver and, one by one, add the relations. The only
difference is that thelassimplementsMethodNameahstraint receives all changes in methods. We
also indicate that the variab®mholds the methods.

At this moment, in our example of HotDraw, 10 subclassds@idire implement a methodhitial-
ize and all of these methods do a super send. Suppose we now implement a migiddcd on class
ConstraintVariableFiguré€the newly implemented class from the first series of examples):

initialize

super initialize.
self initInstVars.

When we accept this method, a changed message is triggered that indicates that a new method
initialize was added to a class nam@dnstraintVariableFigureThis notification is intercepted by the
classimplementsMethodNameaihstraint. Because the change message indicates that it is a method
addition, and because it knows which method was added in which class, and because we indicated the
variable?mto be the method variable, this constraint tries to add this new result to the domam for
Therefore, it finds the other relations that use vari&nteln our example, there is only tlseiperSends
constraint. This constraint checks whether the newly accepted method indeed does a super send. Since
this is the case, it then checks whether it is also a valid solutiosl&msimplementsMethodNamed
constraint, and if so, whether this changes the domain for vari&blé herefore it constructs and
solves a query, filling in the method body of the newly added method:

Query classimplementsMethodNamed({ConstraintVariableFigure],
method( [ConstraintVariableFigure],
[#initialize],
arguments{>),
temporaries{>),
statements(send(variable([#super]),[#initialize},>),
send(variable([#self]),[#initInstVarst,>)>))

The result of this query gives us possible new values for the domég, @h this case the class
ConstraintVariableFigure This new value is checked against the current domain of @laf3ecause
it does not yet exist in this domain, it is added. Since there is another constraint that also uses variable
?¢, this constraint is checked too. Because cl@ssstraintVariableFiguras indeed a subclass of
classFigure, it is also consistent with that constraint. Since there are no more relations or variables to
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Figure 6.10: Constraint network to support the direct synchronization experiments

className

?compositeName

check, the process stops. At the end of this change, all relations have one extra solution in their result.
Changes or removals of methods (or classes) are handled analogously, growing or shrinking solutions
of relations, and propagating the changes to dependent relations (that can in their turn grow or shrink
their solutions, and propagate the changes further along).

6.4.1 Guiding development

Now that we have discussed the principle of using the incremental solver, it is time to put it to good
use. Like we said before, we now want to support the development process directly, giving feedback
when a developer changes design or implementation.
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The constraint network we use for these experiments expresses the information obtained in the
first series of experiments. It is depicted in figlire $.10, and is created by the following Smalltalk
expression that, one by one, adds the relations to the network:

SOULIncrementalSolver new
name: 'HotDraw Support Network’;
add: ‘equals(?figure, [Figure])’;
add: ‘compositePattern(?figure, ?compositeFigure)’ class: #compositeFigure;
add: ‘className(?compositeFigure, ?compositeName)’;

add: ‘cpglnstanceCreation(?compositeFigure)’;
add: ‘cpgConstraintsVar(?compositeFigure)’;
add: ‘cpgCopying(?compositeFigure)’;

add: ‘cpgSetBoundsTo(?compositeFigure)’;

add: ‘figureUsed(?compositeFigure, ?leafFigure)’;
add: ‘hierarchy(?figure, ?leafFigure)’;

add: ‘hierarchy([DrawingEditor], ?editor)’ class: #editor;

add: ‘methodInProtocol([Tool class], [#"tool states™], ?toolInitMethod)’ method: #toollnitMethod:;
add: ‘cpgToolNameMethod(?editor, ?toolName)’;

add: ‘cpgToolMethod(?toolName, ?toollnitMethod)’;

add: ‘cpgToolMethod( ?compositeFigure, ?toollnitMethod)’

By creating the constraint network, three important things happen:

1. while building the network, we find values for the variables in the relations. All this information
is not stored in one repository under the form of facts (as was the case in the first series of
experiments), but is instead stored in a distributed fashion (since the solver keeps the results
locally for each constraint);

2. changes of the implementation trigger the network, which then determine the impact of these
changes, and propagates them if needed. This propagation results in updating the design infor-
mation wherever necessary, possibly checking or deriving additional information;

3. we can change design information by adding or removing results of relations. These changes
are again propagated, and checked against the implementation and other design relations.

In the first series of experiments we created a composite figure to show constraint variables. In
this experiment we create tBonstraintFigurdigure to display the relations between those constraint
variables. We start by making a change to the design: adding a new solutiondaskilameon-
straint. Of course, there exists no class with that name in the implementation yet. Because of the
definition of this constraint, it notifies us that the class does not exist, arﬁ fagsa result, we know
that the class does not yet exist, and that we have to add it manually.

S0 next we open a standard development tool, and create a new subclass of tB®clpssite-

Figure, calledConstraintFigure Because this is a change to the implementation, the relations that are
dependent of implementation changes are notified. Each of these relations checks whether this change
is of interest by invoking a query. If this query fails, the change is not of interest. If the query does

2We could also have made this constraint more specific, and automatically let it generate a sul@tmspasiteFigure
with the name we have given.
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not fail, the change is propagated. In our example, only one constraint is interested in the change:
the compositePattergonstraint. The change is propagated, and so the relations Groneposite-

Figure variable are checked one by one, to see if this new class conforms to them. Several of these
relations automatically generate code (more specifically, the ones startingpgiths explained in

sectior{ 4.4]1). ThéigureUsedconstraint extracts the figures that are used in this composite which,

at the moment, is none. Then ttelInitializeFigureconstraint checks whether this figure has a tool

that can create it. Of course, at the moment there is none, so this is reported. So, adding a subclass
from CompositeFigurén a standard development tool results in an updated design documentation,
the automatic generation of some parts of the implementation, and the notification that there is no tool
that can create this kind of figure.

The next obvious step is to create a tool that allows our editor to c@mtstraintFigurefigures.
Since we have documented this step before, we choose to evaluate a query that helps in doing this,
and that generates a default method on class

Query toollnitializationCode(['ConstraintFigure’], ?code),
generateMethodInProtocol(?code, [Tool class], [#'tool states’])))

Because the generation of the method by the query is a change in the implementation, this change
is again intercepted by the constraint network. Now we get a notice bydheolNameMethothat
there is no editor that uses t@@nstraintFigure toal
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We then add the new tool to our editor using the following query that usespthgoolNames-
Methodpredicate defined in sectipn 6.3.2:

Query cpgToolNamesMethod([ConstraintEditet], ConstraintFigure’]>)

This generates the necessary methods to add the tool to our editor. Again the constraint network
is notified and updated, and as a result¢hglconMethodsonstraint generates default icons for this
new tool. The design documentation then indeed reflects the implementation. Of course, we now
have to manually reimplement some methods in @uastraintFigure but whenever we change a
method, we can be sure that the constraint network checks it to see whether it violates the design
documentation we expressed in it, and updates this information when necessary. This concludes our
experiment of using the incremental solver to support direct synchronization.

6.5 Experimental validation

We performed the experiments with a clear goal in mind: to show that the synchronization framework
allows design to check, generate or enforce implementation, and vice versa. During the experiments,
we encountered several problems that needed solving. First of all we came to the conclusion that there
is a substantial practical difference between supporting delayed versus direct synchronization. While
they are conceptually not that different, the performance penalty for doing a complete conformance
check for every small change in design or implementation proves to be not very practical. Therefore
we first performed a series of experiments using nothing but delayed synchronization, and then turned
our attention to direct synchronization.

Supporting delayed synchronization was feasible and practical with our approach. We showed
this using a fairly regular development process that synchronized design and implementation while
not constraining either phase too much.

Supporting direct synchronization in such a way that it is usable and scalable in practice proved
much harder. We built an incremental solver that allows us to filter and propagate the changes, thereby
removing the need to synchronize all of the design information whenever something changed. The
constraint network we showed allowed us to monitor changes in the implementation, and gave feed-
back about these changes. Also, when we changed the design information contained in the network,
this was also checked against the implementation.

We now want to review the classifications of synchronization introduced in sgction 2.5.1, and
show that each of the possibilities can be handled by our approach. This enumeration is complemen-
tary to the enumeration in sectipn 5]2.3, where we discussed the instantiationsghtfrgonization
frameworkfrom a general point of view.

direction of synchronization : since we expressed design as a relation in terms of the implementa-
tion, this relation can be used for checking (when both design and implementation exist), as
shown in[6.3.4. It can also be used to generate one of the two (if the other exists), such as
in[6.3.1 and i 6.3]3. Hence the different possibilities for this classification are accounted for;

action to be taken : when elements are found that are out of sync, there are two possibilities: the
differences can be reported (allowing the user to take action later), or they can be fixed auto-
matically. In most examples where we ran queries, the results showed us differences between
the design information and the implementation. For example, in sgctior} 6.3.4 we run a query
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that reported the design information which could not be found in the implementation, and an-
other one that reported design information that was extracted from the implementation, but did
not exist in the design data repository. We also implemented rules to automatically generate
pieces of implementation when they deem this is necessary (for example, the relations starting
with ‘cpg’ in the direct synchronization experiments in secfion 6.4.1.

notification time : Making some changes and then doing a conformance check is an example of
retroactive notification in delayed synchronization. When doing direct synchronization we used
both retroactive notification and reactive notification (depending on the constraint used). We did
not show proactive notification, because our system that notified us of changes did so after the
changes were applied. However, this is fairly easy to modify such that the system notifies us
before the change is actually committed. In that case, we could check relations and, depending
on the result, choose to allow the action or refuse it;

trigger time : because the synchronization system is explicit, it can be triggered at any time by
anyone. In the first series of experiments we showed delayed synchronization (where synchro-
nization was done after several changes were made to design and/or implementation), and in the
second series we supported direct synchronization (where it was the environment that invoked
the synchronization system after each small change);

scope: since rules are not bound to certain pieces of the implementation, the rules are global in
general. Of course, queries will typically restrict their search to certain hierarchies of classes.
For example, in sectidn 6.3.2 we show ti@EditorClasgule that uses theierarchypredicate
to restrict its work to thérawingEditor hierarchy. In a system with a local scope, this would
somehow have been bound explicitly to the clasawingEditor. Another example that is very
hard to express in a locally scoped system is discussed in s¢ctioh 6.3.z2dThelMethod
predicate shown there acts on several hierarchies and methods at once. In a locally scoped
system, we can only put it in one of those classes, which is not very natural.

implementation granularity : in these experiments we extensively used the fact thatiéictara-
tive frameworkuses full parse trees. Lots of examples of this can be found throughout the
declarative frameworland the predicates expressed in this chapter. For exampladifoml-
NamesMethogbredicate in section 6.3.2 expresses the structure dbtiillamesnethod of a
HotDraw editor. This would be very hard to express when only partial representation is avail-
able;

static/dynamic : In these experiments we only used static information. Dynamic information could
have been used mainly for typing, but like we already mentioned, it is not available in the current
synchronization framework

6.6 Discussion

6.6.1 Performance and scalability

From the beginning, SOUL was meant to be our experimental logic meta-programming language.
As such, its primary concern was to allow us to experiment with a logic programming language

integrated with an object-oriented programming language. Therefore, not so much the performance,
but the extensibility was stressed. For example, on our 250 mhz Macintosh G3, deducing the type
of an instance variable typically takes about one minute and a half, and extracting the UML class
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diagram for the completEigure hierarchy takes three hoEksWhiIe these figures are only meant to

give an indication of the performance, we also compared timings for some of our queries with those
of Kim Mens. In his dissertation research, that also deals with logic meta-programming, Mens uses
a commercial Prolog system to reason about implementation. Whereas in SOUL the base predicates
are mapped to Smalltalk objects, in Mens’ approach they fetch results from a relational database
using ODBC queries. This results in about the same performance penalty. For analogous queries, the
commercial Prolog system was about forty times faster than SOUL. We can draw two conclusions
from these benchmarks:

e even using the current, non optimized implementation of SOUL, querying the source code using
a logic meta-programming language is feasible. While larger queries (with complicated map-
pings to the source code, such as in our paper expressing software architéctures [MWD99]),
gueries might take longer than an hour, most queries take on the order of minutes. This is too
slow to be truly interactive, but the speed of commercial Prolog implementations makes these
kinds of queries possible;

e now that we have a clear view of the functionality that a logic meta-programming language
should have, we can re-implement it and focus more on performance. The commercial Prolog
indicates that the performance gains of such new implementation should be significant.

Last but not least we want to mention thgstem dependent cactieat we use to cache the con-
struction of logic representation of methods. As explained in this chapter, the logic programs reason
about the source code in a logic form. This means that every time we ask for a particular parse tree of
a method, the source code of this method needs to be fetched and parsed, and then the resulting parse
tree needs to be enumerated to construct a logic representation of it. To make this more efficient we
have implemented method cachéhat holds a certain number of these method bodies. Noteworthy
about the cache is its invalidation mechanism, that depends on system changes. Every time a method
is changed or deleted, it is removed from the cache. This invalidation mechanism allows the cache to
be very efficient. While we did not implement it, an analogous system could be used for the typing
of instance variables, implementing Brstance variable typeache that gets notified when methods
and classes change. This has the potential to dramatically increase the performance for predicates that
depend on typing of instance variables (such as the ones expressing UML class diagrams).

6.6.2 Combining direct and delayed synchronization

In the experiments we explicitly dividedirect synchronization frondelayedsynchronization. For
delayed synchronization, we could directly use the logic meta-programming language to synchronize
design and implementation. In that setup, the design was stored as clauses in a design repository. For
direct synchronization, we used the incremental solver to make the approach scalable and usable in
practice. The setup there was to store the design data in a distributed fashion (divided over the rela-
tions) instead of putting it in one flat repository. It is important to note that both series of experiments
used the same repository of clauses expressing the design notations. Combining them in one system
is not very hard: we merely have to allow a network to be used as a repository. This is not very hard,
since the network contains the relations, and for each of these relations the results. Therefore, the
information in the constraint network can indeed be considered as one repository.

3Note that, since Smalltalk is dynamically typed, most of this time is spent trying to type the instance variables of the
figures. Therefore, these results cannot be compared with commercial UML case tools that extract class diagrams from
typed languages.
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6.6.3 Symbiosis versus integration versus stand-alone

In our approach, we express design as a logic meta program of implementation, and then use a logic
meta-programming language to synchronize design and implementation. In this section we want to
make clear why we want this logic meta-programming language to be integrated with the develop-
ment environment (and what kinds of synchronization are possible when it is not). We difference
between the following modes of integrating a logic meta-programming language and the development
environment:

1. stand-alonethe development environment and the logic meta-programming language are com-
pletely separate entities. They can only interact indirectly, for example through files, and are
not aware of each other. Hence the logic meta-programming language has no language fea-
tures or extra constructs to interact with a development environment. In this setup, we have
all the benefits of a logic meta-programming language, but of course the integration is severely
limited. As example, take any programming environment and a stand-alone Prolog interpreter.
Since there is no relation between the two, the Prolog interpreter needs a logic repository with
(aspects of) the source code in logic format. Keeping the source code synchronized with its
logic representation has to be done delayed, since the development environment has no guar-
anteed mechanism to tell the logic interpreter that the implementation has changed. Using the
characterizations of synchronization introduced in se¢tion]2.5.1, this means thateteyed
triggering is supported, and that only retroactive notification is possible;

2. integrated the development environment and the logic meta-programming language are aware
of each other, and use facilities offered by the operating system to communicate. Typically this
means that hooks to some interoperability mechanism provided by the operating system can be
used by both the development environment and the logic meta-programming language (such as
AppleScriptunder MacOS, oDDE and derived technologies affindowssystems). In com-
parison with the stand-alone situation this means that both delayed and direct synchronization
can be supported, and that it is easier to keep the source code consistent with the repository
containing its logic representation. However, it is still necessary to have a logic representation
of the implementation language concepts;

3. symbiosis the development environment and the logic meta-programming language are not
only aware of each other, but entities from the development environment can be used directly in
the logic meta-programming language and vice versa. To the integrated approach this removes
the need for separate logic representations of the concepts reified by the logic meta-program-
ming language.

6.6.4 SOUL and other object-oriented programming languages

SOUL is a logic meta-programming language implemented in Smalltalk, that reasons about Smalltalk
source code. In this context, two different questions can be asked regarding other object-oriented pro-
gramming languages:

1. can SOUL be used to reason about another base language then Smalltalk ?

2. can SOUL be implemented in another language than Smalltalk ?
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SOUL reasoning about another base language

The answer to the first questionyies SOUL can indeed be used to reason about another language
then Smalltalk. However, note that this means that some of the benefits of the symbiosis are not useful
then, and that the rules in the declarative framework need to be changed. Certain is that the rules in the
representational layer need to be changed. However, two options are possible. The choice between
the two depends on the differences between Smalltalk and the new base language, and on the intended
usage:

1. the first option is to keep the same predicates that are currently used, but implement them to
work with the base language. This means that the rest of the rules can be kept the same. Possibly
these layers can be complemented by predicates that are specific to the new base language, or
some groups of predicates might be replaced. For example, when reasoning about a statically
typed programming language, the group of predicates implementing the type checking can be
re-implemented to take advantage of the explicit types in the base language;

2. the second option is more drastic: change the representational layer. This implies typically
that the complete (or at least most) of the predicates in the declarative framework should be
rewritten.

Implementing SOUL in another language

Of curse SOUL can be implemented in another language. The core interpretation engine is a stream-
based logic interpreter that can be implemented in any general-purpose programming language. The
hardest part is probably the implementation of the up-down mechanism that enables symbiosis and
reflection. However, there we see some precedents. At the lab, the up-down mechanism was used to
implementAgora, a reflective, object-based language [Ste94]. The first language was implemented
in Smalltalk, but the system was also implemented in C++ and Java [DM98]. Each of these systems
required different implementation techniques to implement the reflection, but all were possible. Hence
we see no reason why this should pose problems for the SOUL implementation.

Note however that, while SOUL can be implemented in another language, this is much harder for
the synchronization framework. This framework extensively uses the facts that Smalltalk is reflective
and that the environment is open source. Hence, integrating tools with the environment (a requirement
for the synchronization tool framework that needs to capture changes to design and implementation)
will be far more difficult.

6.7 Conclusion

This chapter is the first chapter with experiments to validate our claim. It shows experimentally that
the synchronization framework indeed supports all the possibilities of synchronization of design and
implementation as described in sectjon 3.5.1 (excepsthtic/dynamiccharacterization). Through

an extensive case study of thltDraw framework, we show how design can be extracted from the
implementation (and vice versa), how to do a conformance check between design and implementa-
tion, and how design can be used to guide implementation (and vice versa). The experiments were
performed for bothdirect and thedelayedsynchronization. Besides this experimental validation, this
chapter also shows the usability of the synchronization framework to make some undocumented and
hard to find relations between tidrawingEditor, Figure and Tool classes explicit. These relations

are hardcoded in a number of methods on these three classes, and use several nhaming conventions



106 CHAPTER 6. SUPPORTING CO-EVOLUTION

and low-level dependencies. Using SOUL we made these conventions explicit and use them to guide
development. This shows the practical usability of synchronization, even for a mature and refined
framework that formed the basis for several design patterns. In the following chapter we apply the
synchronization framework on a large-scale industrial application to assess the usability and scalabil-
ity in that context.



Chapter 7

Supporting real-world development

In the previous chapter we performed a number of experiments oHdt@raw framework. This
allowed us to show the overall approach, demonstrating the uses of the synchronization framework in
supporting delayed and direct synchronization, and different actions that can be taken. However, these
experiments were done on a fairly small scale, and under laboratory conditions. We also wanted to
test our system on a large, real-world application to validate its usability and scalability. This chapter
discusses the experiments we performedvediaGeniXs Whats’Onapplication, and the lessons
learned from these experiments.

7.1 Introduction

The claim made in this dissertation is that expressing design as a logic meta program of implemen-
tation constitutes a framework to synchronize design and implementation. Up until now we have
developed and tested our approach under laboratory conditions, applying them to small case studies.
This showed us that we can support different forms of synchronization as described by the charac-
terizations of synchronization. However, we were unsure whether our approach would be usable in
practice. This chapter answers this important applicability question by describing the experiments we
did on a large commercial Smalltalk system.

MediaGeniX develops tailor-made broadcast management systems for television stations. Their
flagship product id¥Vhats’On that manages television channels, integrating programme scheduling
and asset management needs. It centralizes all information related to the planning and management of
television broadcasts, such as the schedules, storage media, contracts, license windows, author rights,
programme information, press information, viewing figures, ... Itis built as a core framework [VV96]
of about 2000 classes that is then customized and instantiated for different clients that are located
throughout Europe.

For our system we worked on tiMedia Managementnodule ofWhats’On that handles every-
thing that has to do with the actual management of the media used for broadcasting, such as tapes.
Originally this functionality was offered for one customer only, and was heavily intertwined with the
application logic. This dispersion made it very difficult to customize it for other clients that needed
similar functionality. Therefore it was completely rewritten as an optional module, that could easily
be configured for each client needing this functionality. The resuMeglia Managemenodule
took about 1 man-year to implement, which was done by up to three developers. It consists of 441
classes.

Since theMledia Managemenhodule is one of the newer parts\Whats’On it is one of the first
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to use theMediaGeniX Application FrameworfMAF). The MAF is MediaGeniX’ framework for
building applications. The rationale to develop the MAF was to allow software developers to build
applications easily and rapidly according to MediaGeniX’ application design guidelines. The MAF is
an elaboration of the application building classes provided by VisualWorks Smalltalk, and consists of
five major parts:

1. aframework for building applications that MediaGeniX wants to build;
2. adapted and extended VisualWorks user interface components;
3. new user interface components that are typical for broadcasting software;

4. integration with other frameworks, such as the domain/persistency framework and the permis-
sion framework;

5. design and implementation rules for developers.

Besides the definition of the ‘look and feel’ of the applications MediaGeniX wants to build, the
MAF lays down how those applications have to be implemented. In that view, the MAF is a crucial
part of the software products of MediaGeniX that are realised in Smalltalk.

We performed two sets of experiments. The first was to synchronize the UML diagrams from
the Media Managememnnodule with the implementation. The second was to make explicit the rules
that MAF applications should comply with, and to check existing applications for conformance with
these rules. The experiments were performed during 7 days that we stayed at MediaGeniX. Note that
we have given timings for each of the queries we performed. The motivation for this is to give an
indication of how long a certain query took. The queries were done on two machines: a Macintosh
Powerbook, with a G3 processor running at 250 megahertz and 64 megabytes of memory, and a
PC, with a Pentium running at 266 megahertz, and also featuring 64 megabytes of memory. The
environment used was VisualWorks Smalltalk/Envy R4.01.

7.2 Setup of the experiments

To perform the experiments, we used the complete synchronization framework. First of all we in-
stantiated the declarative framework, and extended it with two layers containing the rules specific
to these experiments: the rules expressing MediaGeniX specific programming conventions, and the
rules expressing the MAF programming conventions. These two layers were added as two separate
repositories to the composite repository holding the declarative framework.

7.3 Synchronizing UML diagrams

The first set of experiments was to synchronize the UML diagrams documentiMgtiaManage-
mentmodule with the actuaflediaManagemernimplementation. Hence the input for this experiment

was the UML diagrams of thielediaMangementodule, and the actual Smalltalk implementation of

this module. The goal of the experiment was to assess whether the UML predicates as introduced in
sectior] 4.5.8 could be used on real-world UML class diagrams to detect inconsistencies between the
diagrams and the implementation. Hence it thus assesses the quality of the UML rules and the usabil-
ity of the synchronization framework in practice. In this context, we actually performed two kinds of
experiments, since we had different implementation versions of the module: version 1.8 was the first
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implementation to be released to customers. The latest release we used was 2.28, which contained
some enhancements in functionality and bugfixes with respect to the first release. The UML diagrams
were used in the design phase, before the first implementation phase. Between version 1.8 and 2.28,
they were manually brought inline with the implementation. Hence the UML diagrams were fairly up

to date. The goal of the experiments described in this section is to:

1. synchronize the existing UML diagrams against version 1.8 otbdiaManagemennodule;

2. synchronize the existing UML diagrams against version 2.28 dftdgiaManagememhodule,
and determine whether we can detect design changes between version 1.8 and version 2.28.

7.3.1 Expressing MediaGeniX programming conventions

In sectior[ 4.5.8 we saw how the rules expressing UML class diagrams build on the typing rules in
order to describe associations. More specifically, associations between UML classifiers are mapped
to instance variables of the appropriate type in the implementation. Hence, to use the default UML
rules in the declarative framework, the classes should have an instance variable for each association
at the UML level.

Throughout the implementation &¥hats’Onhowever, domain classes need to fErsistent
meaning their state can be stored and retrieved from databases. Therptsistency framework
is used, which imposes some constraints on the domain classes. First of allder&in clas$as
an associatesgtorage classhat is responsible for mapping values to an underlying database. Second,
the domain classes delegate the retrieval and updating of their state to the storage classes through
their accessing methods. As a result, domain classes do not use instance variables, but only provide
the accessors which are responsible for getting and setting the values through the associated storage
cIasE. This second constraint also implies that throughtitats’On accessing instance variables
should always be done using the accessing methods.

Since there are no explicit instance variableS\hats’Ondomain classes, our rules expressing
UML associations are not valid. Hence we need to complement them with rules expressing the specific
MediaGeniX programming convention used in the persistency framework. We did this in such a way
that the general framework was complemented with some rules, and that we did not have to change
any rules from the UML layer. First of all we added anothecessorForntule, that expresses the
specific form of an accessor method used to retrieve the value of an instance @aﬂ'emtmghout
Whats’Onthis is done by sending the messagtValueOf:to self, passing the name of the instance
variable.

The only exceptions to this general rule is the usage of instance variables to cache results in order to improve the
efficiency.

2This complements the accessorForm predicates introduced in gectidn 4.5.1 that describe direct and lazy implemented
accessor methods. Hence the other predicates using accessors also automatically use this new form.
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This method is implemented at the root domain class, and is responsible for fetching the value of
the persistent instance variable.

Rule accessorForm(?method, ?iv, [#mgxPersistaht])
equals( ?method,
method( ?class,
?iv,
arguments{>),
temporaries{>),
statementsgreturn(send(  variable([#self]),
[#getValueOf:],
<literal(?iv)>))>))),
classimplementsMethodNamed(?clas®method).

The second predicate we complemented with MediaGeniX specific information isstvéar
predicate. By default this predicate asks the class for information regarding instance variables. How-
ever, for domain classes the accessor method should also be checked since thepedsifitent
instance variables. Therefore we introducedpbesistentinstvapredicate that expresses that we can
get the persistent instance variables for a MediaGeniX class by looking at the accessor methods in
the mgxPersistentorm described previously. Then we add anotinstVarrule that expresses that an
instance variable can also be a persistent instance variable:

Rule persistentinstvar(?class, ?persistentinstifar)
mediagenixClass(?class),
method(?class, ?m),
accessorForm(?m, ?persistentinstvar, [#mgxPersistent]).

Rule instVar(?class,?vai)
persistentinstvar(?class, ?var)

As we mentioned, the three rules described above were put in a separate layer, that was then added
to the repository containing the rest of the declarative framework. This enhanced repository was then
ready to reason about tivdedia Managemennodule.

7.3.2 Conformance checking the UML diagrams and the implementation

TheMedia Managemennodule’s design comprises 7 UML class diagrams that depict the main clas-
sifiers and relations. To give an impression of these diagrams, figyre 7.1 shows the one that describes
the basic administration of media. We started by doing a conformance check of these diagrams against
version 1.8 of theMedia Managemennhodule implementation. We followed the process for confor-
mance checking described in secfion §.3.4 of the HotDraw experiments, building a design repository
describing the elements in the UML diagram. Once the design repository was built, we checked for
each of the elements whether we could find them in the source code. As a result we found minor dis-
crepancies (such as typos in names of classes, instance variables and operations), missing information
(such as attributes or operations that could not be found in the implementation). We also found a few
larger problems, such as 4 missing classes, some associations between classes that could not be found
in the code, and incorrect cardinalities of associations. In general, however, the design diagrams were
fairly consistent with the implementation.
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classifier attribute change
MMCarrierLocationDescriptor removed
MMCarrierLibraryPositionPolicyAssoc | basicPositionType added
MMCarrier locationDescriptor removed
parcelltems added
isBorrowed added
nrTimesErased added
MMVideoSet plannersAttention added
description added
MMCarrierLibrary defaultPositionType added
Table 7.1: Classifier changes between versions 1.8 and 2.28 dfi¢lea Management
module
classifier association change
MMRegistration owner-1-MMRegistration added
MMCarrierLibraryPositionPolicyAssoc | positionPolicy-1-Object added
MMMediaSet remarks removed
MMVisioningComment videoPart removed
MMCarrier parcelltems-many-Object added
isBorrowed-1-Boolean added
nrTimesErased-1-ArithmeticValue added

Table 7.2: Association changes between versions 1.8 and 2.28 bfatia Management
module

The other way around we also looked for information we could extract from the implementation
and which was missing in the source code. Therefore we extracted association relationships from
the code, and compared them against the information in the design repository. While we extracted
associations that were not on the design documentation, these proved to be left out intentionally from
the design documentation. However, the original documents omitted a lot of role names, which we
were able to extract. The result of this phase were some extended UML diagrams,

The overall results of these experiments were an updated set of UML diagrams, where the names
of classes and roles now correspond to their implementation counterparts, and where the associations
in the UML diagram we could check are consistent with the implementation.

7.3.3 Checking evolution in the implementation

The previous experiments were done with version 1.18 ditbdia Managemenhodule, the first one

to be released to the customers. Since then, the implementation has undergone some changes, mainly
for maintenance and bugfixing, and for smaller, client specific updates. Biada Management

is fairly new, no large updates have been done. Sitill, in this experiments we want to see if we can
find changes in the implementation that are not reflected in the design. Therefore we extracted the
same design information as for the first experiment, but using version 2.28 ldettie Management
implementation. We then compared the extracted information, noting the changes between both. First
of all we compared the classifiers and their attributes. The results of this comparison are shown in
table[7.1. Afterwards we also compared the extracted associations for both versions, for which the
results can be found in talle ¥.2.



7.4. SUPPORTING THE MEDIAGENIX APPLICATION FRAMEWORK 113

Overall we can say that the extraction process on the new version 2.28 generally gave better
results. The reason is that, because functionality was added, more messages were send and thus that
there was more information available for our type checking rules. Regarding the differences between
the two versions, we found no big differences. This was expected since the implementation did not
undergo major changes. We noted however one class that was removed. When checking with the
architect of theviedia Managemennodule this was indeed a refactoring that was done. The removed
class actually implemented application behaviour, and was thus not a domain class. Therefore it was
removed, and its functionality was moved to a new application.

7.4 Supporting theMediaGeniX Application Framework

Together with the main architect of tidAF, we made a list of constraints that are imposed on to
Media Managemerdapplications in order for the MAF to function properly. The goal of these experi-
ments is to

1. make these programming conventions explicit;

2. check the source code to find violations against the MAF programming conventions.

7.4.1 Expressing the aspect and domain class rules

The MAF imposes certain constraints on the classes that use it. Currently these constraints are im-
plicit, passed orally between developers. The first part of this experiment therefore was to get the
rules (or at least the most important ones) from the architect of the MAF. The resulting list is dis-
played in figuré 7]2. Note that a lot of the rules regulate the usagspectsa mechanism used in
VisualWorks’s model-view-controller implementatidn [KP88] to link models to applications. More
specifically, anaspectis a model object for a widget provided by an application model. In other
words, it provides a customizable channel the views use to get the information they have to display
from the model.

Once we had the list, we expressed it as a number of predicates shown in[figlres 7.3[ 7.4 and 7.5.
Predicatenitialize AspectsMethodxpresses that the methimitializeAspectswhen implemented on
MAF applications (classes in the hierarchy of the cldgd-ApplicationModeé)l, should have a specific
form. The first statement in iaitializeAspectsnethod should be the super send. Then it should be
followed only by statements described by the auxiliary preditgimitAspectStatementhetoplni-
tAspectStatemepredicate describes that an aspect can directly be assigned a value (the first rule), or
that it can be assigned a value through a mutator message. In both cases, the statements describing
the value that should be assigned are expressed by the auxiliary preditésgpectStatementThis
expresses the different values that can be assigned to aspects, both direct and indirect. For example, it
takes factory methods and transitive closures of message sends into account.

Note that this heavy use of recursion (necessary to express the transitive closures) that is necessary
to express these programming conventions means that less powerful approaches can not fully express
these programming conventions. When these transitive closures cannot be expressed, a lot of false
information will be detected when we start looking for violations using these rules.

7.4.2 Checking the aspect and domain class rules

Once made explicit, we did several conformance checks of the implementation, to find out where
the MAF assumptions where possibly breached inNteglia Managementodule code. The first
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1. for each aspect there has to be an aspect methodaspect method is an accessor method that
returns an aspect. The MAF assumes that these aspect methods do not use lazy initialization
(which is the default for aspect methods that are used outside the MAF), and that they are
hence pure functional methods that do not store anything in instance variables but just return
the aspect;

2. accessing an aspect should only happen through its aspect meii applications should
always use the aspect methods, and never access the instance variables directly;

3. all aspects should be bound to instances of ValueModel, MAFSelectioninList, MAFNoteBook
or MAFApplicationModel

4. domainobjects should send change messages whenever they are clizagmde the MAF ap-
plications need to know whenever a domain object changes, the domain objects are responsible
for sending change messages. Because the persistency framework implements this behaviour,
there is no problem for the majority of the domain classes. However, problems might arise when
domain classes use instance variables to keep their own intermediary results, without using the
persistency framework. This is mostly done by domain classes that provide different views on
values of certain instance variables. For example, collections of values can be returned sorted
by some key, or filtered. In that case, they should still usesét€alueOf:tanethod,;

5. aspectadaptors on domainobjects should have 'subjectSendsUpdatesinrgeheral, a MAF
application should not create AspectAdaptors on domain models explicitly. However, in the
rare cases they do, they have to indicate to the AspectAdaptor that the domain objects sends
updates. This is generally done by sendinpjectSendsUpdates: trtethe aspect adaptor;

6. aspects should be initialized in the initializeAspects me#ratinot, for example, in anitialize
method. ThenitializeAspectsnethod should do a super send;

7. all enabling and disabling of widgets should be done using MAFEnablingPdltlty messages
isEnabled; isVisible: andreadOnly:should never be used;

8. initialization of an enabling policy is done in teetupEnablingPolicynethod. This method
should do a super send.

Figure 7.2: MAF constraints imposed on the implementation.
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Rule initializeAspectsMethod(?class, ?ih)
classimplementsMethodNamed(?class, [#initializeAspects], ?m),
hierarchy([MAFApplicationModel], ?class),
methodStatements(?m, ?stats),
head(send(variable([#super]), [#initializeAspects}), ?stats),
tail(?initAspects, ?stats),
forall( member(?initAspectStatement, ?initAspects),

toplnitAspectStatement(?class, ?initAspectStatement))

Rule toplnitAspectStatement(?class, assign(?leftHand, ?init$tat))
initAspectStatement(?class, ?initStat).

Rule toplnitAspectStatement(?class, send(variable([#self]), ?mutatorSele@ioitAspectStatemer)) if
initAspectStatement(?class, ?initAspectStatement).

Rule toplnitAspectStatement(?class, send(variable([#self]), ?delegatedInitSetesi)iif
classimplementsMethodNamed(?class, ?delegatedInitSelector, ?m),
methodStatements(?m, ?stats),
forall( member(?stat, ?stats),

toplnitAspectStatement(?class, ?stat))

Figure 7.3: ThenitializeAspectsMetho@ndtoplnitAspectStatemenredicates
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“domain object wrapped asValue”
Fact initAspectStatement(?class,sendasValue],<>)).

“explicit class”

Rule initAspectStatement( variable(?classNameif)
className(?aspectClass, ?className),
validAspectClass(?aspectClass).

“instance creation of explicit class”

Rule initAspectStatement(send(variable(?className),)) if
className(?aspectClass, ?className),
validAspectClass(?aspectClass).

“recursive”
Rule initAspectStatement(?class, send(?reg)) if
initAspectStatement(?class, ?rec).

“factory method”
Rule initAspectStatement(?class, send(variable([#self]), ?faeSe)) if
mafAspectFactoryMethod(?class, ?facSel).

“factory method on class side”

Rule initAspectStatement(?class, send(  send(variable([#self]), ?factoryMethodSelectir, ’
?instanceCreationSelector,
) if

mafAspectFactoryMethod(?class, ?factoryMethodSelector).

“instance creation of class returned by factory method on class side”
Rule initAspectStatement(?class, send(  send(send(variable([#self]), [#elads],
?factoryMethodSelector,
<>),
?instanceCreationSelector,
) if
metaClass(?class, ?mClass),
mafAspectFactoryMethod(?mClass, ?factoryMethodSelector).

Figure 7.4: ThenitAspectStatemerpredicate
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Rule mafAspectFactoryMethod(?startClass, ?factorySeleiftor)
rootMinusOne(?startClass, ?minusOne),
flattenedClassimplementsMethodNamed(?startClass, ?minusOne, ?factorySelector, ?m),
returnStatements(?m, ?returnStatements),
forall( member(?stat, ?returnStatements),
initAspectStatement(?startClass, ?stat)).

Rule validAspectClass(?class)
hierarchy([ValueModel], ?class).

Rule validAspectClass(?clas$)
hierarchy([ApplicationModel], ?class).

Rule validAspectClass(?clas$)
hierarchy([MAFNoteBook], ?class).

Rule validAspectClass(?clas$)
hierarchy([MAFSelectionInList], ?class)

Figure 7.5: ThemafAspectFactoryMethoand validAspectClasgredicates

thing we wanted to know was whidllediaManagemerdpplications violated one of the MAF rules
regarding aspect and domain class usage. Therefore we launched a query to enumerate all classes in
the MediaManagementodule that implement aimitializeAspectsnethod with at least one aspect
methods violating the MAF rules:

Query findall(  ?c,
and( mmcClass(?c),
classimplements(?c,#initializeAspects),
not(initialize AspectsMethod(?c,?m))),
?L)

Running this query over the implementation gave 22 results, each indicating a possible violation
of a MAF ruleﬁ Together with the MAF architect we looked through the results, and categorized
them according to severity. The results are shown in table 7.3. We found 8 genuine errors, and 2
classes with a dubious implementation of th¢ializeAspectanethod (ending with the super send
instead of starting with it). We also found two implementations that triggered violations, but were
actually legacy implementations that were allowed to do this. The last 8 classes did specific aspect
initializations which were not captured by our rules and hence resulted in errors. Given some more
time, most of these cases could be eliminated by further extendirigitAspectStatement

We also checked direct sends to instance variables holding aspect methods. Therefore we launched
a query enumerating all 1495 methods of the Mi&liaManagemerdpplications:

3This took 11 minutes and 36 seconds on our testing machine. Note that 51 classes were checked, and that 29 classes
passed the tests.
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severity class
Error MMADbstractPrototypeListSelector
MMActivitySetUpSelector

MMCarrierSelector
MMPIlanninglnfoList
MMProductAndMediaSetRegistrationSelector
MMRegistrationVisioningListSelector
MMCarrierLocationDescriptorEditor
MMViewProgramHistoryEditor
Dubious MMParcelEditor

MMParcelEditorTask

Legacy MMCarrierLocationQuerySelector
MMSearchParcelEditor

Ghosts MMCarrierEditor
MMADbstractHierarchicallList
MMListDataBag
MMMediaSetRegistrationCarrierEditor
MMProductMediaSetSelector
MMSearchParcelTask
MMTaskBasedEditor
MMVideoSetVisioningEditor

Table 7.3: Media Management classes violatimigjalize AspectsMethod

Query hierarchy([MAFApplicationModel], ?c),
mmClass(?c),
instVar(?c, ?iv),
and( classimplementsMethodNamed(?c, ?sel, ?m),
newlsSendTo(?m, variable(?iv), ?msg, ?args),
instVar(?c, ?iv),
not(accessorForm(?m, ?y))

The results of this query are shown in tabld7.As can be seen, 13 methods directly reference
instance variable instead of using their accessors, and are a possible source of bugs. They should be
refactored to use the accessor methods for the instance variables they now reference directly.

Last but not least we were interested in finding aspects that used lazy initialization, which should
not be done according to the MAF rules. To check this, we use a Visualworks Smalltalk programming
convention that aspect methods are in a protocol cafgectsand the accessor rules as introduced
in sectior 4.5]1. The resulting query checks all methods iraipectgprotocol to see if they are in
lazy initialized accessdiormat:

Query hierarchy([IMAFApplicationModel], ?c),
mmClass(?c),
and( methodInProtocol(?c, aspects, ?m),

4This query took 1 hour and 48 minutes.
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class

selector

MMADbstractList

MMParcelSelector

MMCarrierSelector
MMRegistrationOnEXxistingCarrierSelector
MMLocationSelector

MMParcelEditor

MMSearchParcelEditor
MMViewCarrierHistoryEditor
MMViewProgramHistoryEditor

MMCarrierTapeSpecificNoteBookPage
MMSearchParcelTask
MMBarcodeReader

basicListDataBagAspect:
preferredSelectionChannel
initialize Aspects
initializeCarrierList
firmSelector
parcelltemSelectioninListStatusChanne
release

initialize
editeeChanged
historyListFromProduct
firmSelector

initialize Aspects
errorMessage

Table 7.4: MAF applications directly referencing instance variables

class

selector

MMCarrierAndProductSelector

MMActivitySetUpSelector
MMParcelSearchResultViewer
MMBrowser

MMMediaSetAndRegistrationListView

MMCarrierBrowser
MMNewCommandDialog
MMNewMediaSetDialog
MMNewMediaSetDialog

productsStatusBarHolder
selectionIinProducts
projectChannel
selectedDescriptiveParcelltemHolder
resultList
resultListDefinitionChannel
mediaSetListDefinitionHolder
mediaSetListHolder
mediaSetListSelectionInList
mediaSetListStatusBarHolder
registrationListDefinitionHolder
registrationListHolder
registrationListSelectioninList
registrationListStatusBarHolder
gueryEditorBook

command

mediaSetPrototype
mediaSetType

Table 7.5: MAF lazy initialized aspect methods
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lazylnitialisedAccessorForm(?m, ?iv, ?kind))

From the 145 aspect methods in the applications ifMbdia Managemernnodule, we found 18
that use lazy initializaticﬁl They are in clear contradiction with the MAF rules, and should be fixed.
They are listed in table 7.5

7.4.3 Expressing the enablingPolicy rules

Normally, enabling and disabling widgets in an application is done explicitly by seisfimgabled;
isVisible: andreadOnly; passing a boolean to indicate the desired state. Since this can get very com-
plicated for large user interfaces with lots of interface elements that depend on each other’s state, the
MAF introduces arMAFEnablingPolicyclass. The purpose of this class is to centralize all informa-
tion regarding the enablement state of widgets, and making sure that this is handled appropriately.
However, this means that the applications usingWi#Ad-EnablingPolicyclass should never useEn-

abled; isVisible: or readOnly: messages themselves, nor the derived methods that send one of these
messages internally. Therefore we made this information explicit in some predicates.

The first predicatayidgetStateChangeronstructs a list of selectors that result in state changes of
widgets. One possible implementation could be to explicitly enumerate this list. However, we chose
to calculate it, so that possible extensions of widgets would also be included. Therefore we get all the
local senders of the messaigenabled:andisVisible: on the clas§VidgetWrappeand its subclasses.
These lists are concatenated, and contain all messages thasEeatlled: or isVisible Then we
complement this list with the three main messages to change the istatalfled; isVisible: and
readOnly). This list, without duplicates, gives all selectors that change the state of widgets. Itis used
in theenablingPolicyViolatorpredicate to find all MAF applications that use M&FEnablingPolicy
and still send one of these ‘forbidden’ messages:

Rule widgetStateChangers(?messagdkes)
stLocalSenders([WidgetWrapper], [#isEnabled:’], ?isEnabledSenders),
stLocalSenders([WidgetWrapper], [#isVisible:'], ?isVisibleSenders),
append(?isEnabledSenders, ?isVisibleSenders, ?indirectMessages),
append(?indirectMessageg#isEnabled:], [#isVisible:], [#readOnly, ?allMessages),
noDups(?allMessages, ?messages).

Rule enablingPolicyViolators(?violations)
widgetStateChangers(?forbiddenSends),
findall(  violation(?sel, ?class, ?selector),
and( member(?sel, ?forbiddenSends),
stLocalSendersComplete([MAFApplicationModel], ?sel, ?whoWhere),
memberk ?class, ?selector, ?whoWhere),
classimplements(?class,[#setupEnablingPolicy])),
?violations)

7.4.4 Checking the enablingPolicy rules

Using theenablingPolicyViolatorgpredicate, we find that the applicatitdiV TaskBasedEditosends
disableto items in its menu. This should be incorporated inM&FEnablingPolicyused in the rest
of this class. The other 46 classes that Mgg-EnablingPolicydo not violate these rules.

5The query took just over one minute to run on the testing machine.
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7.5 Lessons learned

These experiments of our approach outside laboratory conditions proved worthwhile. It was inter-
esting to use and see the applicability in a real-world context. In this section we want to enumerate
general points of interest we learned during these experiments.

e IntheHotDraw experiments described in chagiér 6, we only had some vague information about
the implementation to start with. Using SOUL to explore the system we were able to express
important design information. In tHdediaGeniX experiments the process was much simpler
because we had access to clear design documents and to the architects and developers. Almost
immediately after we started we could therefore extract UML information, and we expressed the
MAF programming conventions. So, in order for this approach to work well from the start, the
developers or architects should bootstrap the process by supplying as much design information
as possible;

o the key pointin making the approach efficient in a real world context is reduction of scope. This
can be done by making use of the programming conventions, and by pre-filtering irrelevant in-
formation using a coarse grained (but efficient and inexpensive) approach, and then finecombing
these results with the more expensive full logic programming approach;

e the reasoning power of SOUL was necessary in order to make the MAF programming con-
ventions that deal with aspects explicit. The reason was that in practice transitive closures of
methods sends need to be taken into account to express certain programming conventions. This
is hard to express in approaches that do not support recursion (such as SmallLint, a tool that
one might think could be used to support these programming conventions). However, to ex-
press some of the other programming conventions, no recursion is necessary and hence less
powerful but faster reasoning engines could be used (such as SmallLint). We discuss this issue
further in the future work in sectign 8.3.3, because we would like to combine solvers of different
expressive power and performance.

e during the experiments with the UML schemas we lacked integration with the UML tool used
regularly in the development process. As a result, we had to manually ‘translate’ the UML
schemes from their graphic description to our logic description. Vice versa, we had to manually
update the UML diagrams with the results from our extraction process. So, in order to be
fully usable in a practical setting, we have to integrate SOUL not only with the development
environment, but also with external tools. This is possible by writing scripts in tools that support
this, or using the interoperability mechanisms offered by operating systems (shpplaScript
under MacOS, oDDE and derived technologies alindowssystems).

e the declarative framework is the key mechanism in being able to adapt quickly to different
implementations. As we saw in sectjon 7]3.1, being able to complement the general rules with
MediaGeniX specific rules meant we could reuse the declarative framework. Actually, two
features are necessary: a composition mechanism of repositories, and a mechanism that clauses
can easily use and override other clauses. While SOUL allows the first, the latter is currently
very primitive. We discuss this together with other extensions of SOUL in s€ctior} 8.3.2 of the
future work.



122 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

7.6 Conclusion

This chapter describes the experiments we performed in a real-world context. It shows that the syn-
chronization framework can be used in a practical setting to synchronize design and implementation.
In a limited period of time we successfully applied the synchronization framework to express and syn-
chronize design information with an implementation. More specifically, we did a conformance check
of existing UML diagrams with the released implementation. We found some discrepancies between
the two, most notable some classes and relations in the UML diagram that did not exist in the im-
plementation. Also, we were able to complement the UML diagrams with information we extracted,
most notably role names for associations. We also checked the evolution of the implementation with
respect to this UML diagram. Besides these experiments with UML diagrams, we also made a set of
programming conventions explicit, and used this to find violations against these programming con-
ventions in the implementation. The results of these checks where a number of clear errors in some
parts of the implementation that do not follow the programming conventions.

Overall, the experiments oHotDraw and Whats’Onshowed that the rules in the declarative
framework, although lightweight, can be used to successfully express the design used in a particular
context and that the synchronization framework successfully synchronizes design and implementa-
tion. In the next chapter we conclude this dissertation, list the major contributions and discuss future
work.



Chapter 8

Conclusion and future work

8.1 Conclusion

The goal of this dissertation is to pave the road towards support for co-evolution. The thesis statement
we defended was the following:

Thesis

A framework for co-evolution of design and implementation, where design and implemen-
tation are related in such a way that the one can check, generate or constrain the other, can
be achieved in a logic meta-programming language integrated with a software development
environment.

When we looked at supporting co-evolution, we came to the constatation that in order to support
co-evolution, we had to synchronize the changes between design and implementation. Therefore, we
first of all investigated theharacteristicof synchronization between design and implementation, and
we found that there is actually a broad spectrum. To describe this spectrum, we used the following
characterization, which we applied on related watkection action, notification time trigger timeg
scope implementation granularitandstatic/dynamic To construct a framework that supports all of
these characteristics, we proposed and defended the following conceptual solution:

1. make the relation between design and implementation explicit by expressing design as a logic
meta-program of implementation;

2. integrate the logic-meta programming language in the environment to capture changes of design
and implementation;

3. use the logic meta-programming language to find differences between design and implementa-
tion, and define actions (SOUL).

We showed that this conceptual solution indeed supports all the characterizations. However, we
also implemented a software artefact to show that this solution is not only conceptual, but can also
be used in practice. The software artefact is calledsfmechronization frameworklit is composed
of two individual frameworks: theleclarative frameworlkhat expresses design as a logic meta pro-
gramof implementation, and tlsgnchronization tool frameworkhat integrates synchronization tools
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in the development environment. Last but not least, we also implemented a reflective logic meta-pro-
gramming language that exploits its symbiosis with the base language to reason directly over the
implementation of the base programs.

The synchronization framework was then applied to two different case studies to show its usability
and scalability in practice. First it was experimentally shown on a smaller case study (the HotDraw
drawing editor framework) that the synchronization framework indeed supports all different character-
izations of synchronization. On the same case study, we also found that, even for the well-known and
well-documented framework HotDraw is, there is need for synchronization of design and implemen-
tation and the synchronization framework can do so. Besides the experiments on HotDraw we also
did experiments on a large industrial framework. Here we did conformance checks of UML diagrams
against the implementation (complementing the diagrams with extracted information and detecting
differences between the UML diagrams and the implementation). We also expressed programming
conventions and found several violations in the implementation that needed to be fixed. These exper-
iments strengthened our claim that the synchronization framework is usable in practice, and showed
that it is scalable.

Overall, the conceptual and experimental validation proved our thesis statement, and the experi-
ments showed the usability and scalability of our software artefact that implements our solution.

8.2 Contributions

While proving our claim, the following contributions were made:

e the first contribution is the study and characterization of synchronization mechanisms. These
characterizations are used as the key variation points of our synchronization framework;

o the second contribution is the design of the logic meta-programming language, and more specif-
ically its symbiosis with the underlying implementation language. This symbiosis allows the
logic meta-programming language to wrap or evaluate expressions in the implementation lan-
guage during the logic interpretation process;

e the third contribution is the incremental solver we built using techniques from the incremental
symbolic constraint solving community. The main idea is to use the logic meta-programming
language to express and solve the relations, and to use local propagation techniques to incre-
mentally solve the network;

o the fourth contribution is theynchronization frameworiself, that is used to build tools that
need synchronization of design and implementation. It consists afeéblarative framework
and thesynchronization tool frameworkThe declarative framework is a logic meta-program-
ming framework that is used to map design to implementation in an explicit, customizable and
expressive way. The synchronization tool framework is a Smalltalk framework that allows to
monitor and act upon any change to design and implementation.
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8.3 Future Work

8.3.1 Refining the synchronization framework

First of all we want to apply the synchronization framework to more cases. The goal is to ameliorate
the synchronization framework, as this can only be done by applying it more. For the declarative
framework, this should result in an extended set of logic meta programs expressing design. Possibly
we can add some popular design notations, and extend the current ones. For the synchronization tool
framework we want to fully implement the pro-active notification mechanism, and experiment with it.

8.3.2 SOUL-2

Because a suitable logic programming language integrated in a development environment did not
exist, we implemented SOUL. SOUL has several very important and non-trivial features we want
to keep (especially the symbiosis with Smalltalk). However, now that we have a better view on the
requirements for a logic meta-programming language integrated in a development environment, we
want to implement a new and improved version of SOUL, called SOUL-2. More specifically, we want
to tackle the following areas:

e performance: the inference mechanism in the current version of SOUL is completely stream-
based. While this had certain advantages when we started our experiments, this implementation
is rather slow. As we already indicated in secfion §.6.1, we have a performance loss of a factor
of 40 when compared with commercial Prolog interpreters. So, we want to implement a new
stack-based interpreter in order to boost the performance;

e incremental solver: we want to reimplement the incremental solver, using the experience gained
by the first implementation and by the experiments. The resulting incremental solver can then
be truly multi-way, and far more configurable with respect to constraint violations then the
current one;

e SOUL as base language: Clauses written in SOUL are built using certain programming conven-
tions and are also subject to evolution. Therefore we would like SOUL to also support SOUL
as base language, next to object-oriented programming languages that are currently supported;

o further symbiosis with Smalltalk: in its current version, SOUL has a symbiosis with Smalltalk
that allows full introspection and even reflection. We would like to extend this further. For
example, we already performed experiments to write SOUL code in any Smalltalk method.
When such Smalltalk methods are executed, and the SOUL clauses are encountered, they are
evaluated by the SOUL interpreter, passing the context of the method. When this integration
is completed, we will have a language with full reflection between an object-oriented program-
ming language and a logic programming language. Compared with SOUL in its current state,
this would mean for example that there would be a causal connection between Smalltalk meth-
ods and their logic form. This would make rewriting code much easier. It would also mean that
dynamic information is supported,;

e repository composition mechanism: In SOUL we can compose repositories using a nesting
mechanism. This proved very important in practice. However, we would like to go much
further in this context, and have a real composition mechanism on repositories. The idea is to
have an object-oriented programming language like late-binding mechanism, where repositories
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can be parametrized with other repositories. A crude, experimental version of such system was
implemented that allows terms to be prefixed bgamnector variablehat has to be bound

with a repository at interpretation-time. For example, this system allows us to write a rule in a
repository that has basicLayerconnector that asks the repository bound to this connector for
theclassimplementgredicate:

Rule sameSelectors(?c, ?d, ?5€l)
@basicLayer.classImplements(?c, ?sel),
@basicLayer.classImplements(?d, ?sel)

Theconnector variabletave to be bound to a repository when it is interpreted.

8.3.3 Combining solvers

In the related work described in sectjon 2]5.2, it is clear that there is a trade-off bedw@ressivity

and computation powerersusperformance For example, an approach based on regular expressions
allows to express fairly complicated patterns, and is performant. On the other, using SOUL we express
much more complicated patterns (using abstraction mechanisms and recursion), but the interpretation
is slower. Therefore, one way to increase performance is to integrate several solvers in one interpre-
tation engine. The idea is to use the fastest approach possible depending on the expressivity that is
needed. We implemented a number of ad-hoc rules that already do this, for example the rules imple-
menting pattern matching operations (see the logic layer described in gection 4.2). This combination
should be refined and extended, and promises a high expressivity while remaining performant.

8.3.4 Full co-evolution support

In this dissertation we limited ourselves to the synchronization design and implementation, where the
mapping between both has to be made explicit in logic meta programs. However, in order to fully
support co-evolution, we have to take other phases in the development cycle into account and help the
definition of the mapping between such phases.

First of all, we would like to generalize the approach as proposed in this dissertation to other cycles
in the development process. More specifically, we think of supporting use-cases as well. Therefore,
uses-cases need to be made explicit as well, and changes to use-cases have to be propagated to the
design and vice versa.

Second, there should be support for building and maintaining the mapping between design and
implementation. The synchronization framework assumes that the mapping is available, and uses it to
determine the impact of changes to the design level on the implementation and vice versa. However,
there is no real support for implementing and maintaining this mapping. The developer has to be an
expert when describing the mappings, and a lot of experiments are needed in order to validate it. We
would like to investigate whether this process can be simplified and supported. One research direction
that is worth investigating is to use knowledge representation and machine learning techniques to help
implementing and maintaining the mapping. For example, we want to have a mechanism where we
provide the design and an implementation that conforms to this design, and where the mapping is
extracted semi-automatically.
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