
Modeling Examples to Test and
Understand Software

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Gälli
von Tübach (SG)

Leiter der Arbeit:
Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

Modeling Examples to Test and
Understand Software

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Gälli
von Tübach (SG)

Leiter der Arbeit:
Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 13.11.2006 Der Dekan:

Prof. P. Messerli

Abstract

One of the oldest techniques to explain abstract concepts is to provide concrete exam-
ples. By explaining an abstract concept with a concrete example people make sure that
the concept is understood and remembered.

Examples in software can be used both to test the software and to illustrate its func-
tionality. Object-oriented programs are built around the concepts of classes, methods
and variables, where methods are the atoms of the functionality. But the meta-models
of object-oriented languages do not allow developers to associate runnable and compos-
able examples with these concepts and particularly not with methods.

Unit tests on the other hand, assure the quality of the units under test and document
them. Not being integrated into the language, unit tests are not linked explicitly to their
units under test which makes it unnecessarily difficult to use them for documenting,
typing and debugging software. In addition they are not composable making it hard to
develop higher level test scenarios in parallel with higher level objects.

In this thesis we analyze unit tests to learn about implicit dependencies among tests
and from tests to the methods under test. We develop a technique to partially order
unit tests in terms of their covered methods, which reveals possible redundancies due
to the lack of composability. We show how partial orders can be used to debug and
to comprehend software. We then develop a taxonomy based on several case studies
revealing that a high fraction of unit tests already implicitly focuses on single methods.
We show that the rest of the tests can be decomposed into commands focusing on single
methods.

We build a meta-model based on our findings of analyzing test interdependencies which
establishes how tests can be explicitly linked to their method under test and how they
can be composed to form higher-level test scenarios. We explain how the problems
of missing links between tests and units under test are solved using our meta-model.
Furthermore, we implemented the meta-model and a first user interface on top of it to
give first evidence of how our model supports the developer.

i

Acknowledgments

First and foremost, I would like to thank my advisors Oscar Nierstrasz and Stéphane
Ducasse. They gave me the opportunity to work in an inspiring environment based
on trust. They provided me lots of good examples of how to collaborate in a scientific
environment – how to do research, how to work on papers and how to give presentations
and lectures. Oscar and Stéph, it was a great pleasure to work with you during all these
years.

Many thanks also for giving me some time to play around with Etoys and letting me
present two papers in Berkeley, which were not directly related to my thesis. I was glad
to be able to go there.

I would also like to thank the other member of my Ph.D. committee, Robert Hirschfeld.
Thanks for inviting me to Potsdam. You gave me very detailed and good critique of my
thesis! All: Keep on Squeaking!

Very special thanks go to my parents, you helped me a lot during the hard times and al-
ways trusted in me. Thanks for your love and for invoking the playful child in me.

I would also like to thank my friends for all the adventures and the good times we
have experienced together and for the support and advice you have given me. Best
regards especially go to the most venerable members of the “Zieschtigsclub”, to the
“french connection” and to all I ever had a cool beer and good talk with – was it in the
“Musigbistrot” or in the “Chine”.

Many thanks also to all the colleagues who have helped me and collaborated with me
during my work, especially to Doru and Orla, who always have an open ear and a helpful
advice. Thanks for reviewing my thesis and for being an integral part of the social center
at the Software Composition Group.

Many thanks go to Marcus for being part of our common Squeak adventures.

Next I would like to thank all the former and current members of the Software Compo-

iii

iv ABSTRACT

sition Group. It was a pleasure to work (and party) with you : Gabriela Arevalo, Alexan-
dre Bergel, Frank Buchli, Philipp Bunge, Juan Carlos Cruz, Marcus Denker, Adrian
Kuhn, Michele Lanza, Adrian Lienhard, Philippe Marschall, Michael Meyer, Laura Poni-
sio, Stephan Reichhart, Lukas Renggli, Matthias Rieger, David Röthlisberger, Nathanael
Schärli, Andreas Schlapbach, Therese Schmid, Florian Thalmann, Sander Tichelaar,
Rafael Wampfler, and Roel Wuyts.

I would also like to thank all the people that supported and hosted me during my travels
and stays abroad and send my best to all the great people I have met and talked to at
conferences, meetings, workshops, online and elsewhere.

Denise, thanks for your great support during the difficult months of the thesis. I am
happy we found each other – you are key.

Markus Gälli

November, 13th 2006

Table of Contents

Abstract i

1 Introduction 1
1.1 The Problem . 2
1.2 Our Approach in a Nutshell . 5
1.3 Contributions . 7
1.4 Thesis Outline . 8

2 Problems in Understanding and Testing 9
2.1 Agile Development aligns Viewpoints of Customers and Coders 10
2.2 Constraints of Test-Driven Development . 12
2.3 Problems of Implicit Test Interdependencies 14

2.3.1 Creating test scenarios is time-consuming and complex 15
2.3.2 Understanding the interplay of a system is hard 18
2.3.3 Testing time is unnecessarily long . 18
2.3.4 The problem of identifying relevant tests in the case of a failure . . . 20
2.3.5 The problem of detecting similar tests 20

2.4 Problems of Implicit Test / Code Interdependencies 21
2.4.1 Understanding the focus and the kind of a test is hard 21
2.4.2 The problem of separating good examples from less appropriate ones 22
2.4.3 The problem from separating tidy from untidy examples 23
2.4.4 The problem of keeping the tests and the code synchronized 23
2.4.5 The problem of seeing a method in a debugger 24

2.5 Problems of Implicit Code Interdependencies: Typing 24
2.6 Related Work . 25
2.7 Summary . 27

3 Partially Ordering Unit Tests 29
3.1 Implicit dependencies between unit tests . 30

v

vi TABLE OF CONTENTS

3.2 Ordering broken unit tests . 32
3.2.1 Approach . 32
3.2.2 Implementation . 34

3.3 Case studies . 34
3.3.1 Setup of the experiments . 35
3.3.2 Results . 36

3.4 Discussion . 39
3.4.1 Semantic ordering of tests . 39
3.4.2 Limitations . 40

3.5 Related Work . 41
3.6 Summary . 43

4 Taxonomy of Unit Tests 45
4.1 Introduction . 46
4.2 Basic Definitions . 48
4.3 A Taxonomy of Unit Tests . 48

4.3.1 Method test commands . 50
4.3.2 Method example commands . 51
4.3.3 Multiple-method test suite . 52
4.3.4 Others . 54
4.3.5 First validation: Maven . 55

4.4 Automatic Classification of Unit Tests . 56
4.4.1 Instrumentation . 56
4.4.2 Lightweight Heuristics . 57
4.4.3 A First Case Study: Squeak Unit Tests 59
4.4.4 A Second Case Study: SmallWiki . 59

4.5 Discussion . 60
4.6 Related Work . 63
4.7 Summary . 65

5 An exemplified Meta-Model for Examples: Eg 67
5.1 The Bank Account and its Tests refactored 68
5.2 Exemplified Responsibilities of Eg . 72

5.2.1 Module . 72
5.2.2 Example Module . 76
5.2.3 Method Command . 80
5.2.4 Negative Method Command . 83
5.2.5 Positive Method Command . 84
5.2.6 Method Test . 85
5.2.7 Method Example . 85
5.2.8 Class . 86

TABLE OF CONTENTS vii

5.2.9 Method . 87
5.3 Validation . 88

5.3.1 Creating Test Scenarios is easy . 88
5.3.2 Our sorting techniques help to understand the interplay of the system 89
5.3.3 Minimizing Testing Time . 90
5.3.4 Identifying relevant failed tests in the case of a failure is easy 90
5.3.5 We can detect similar tests . 92
5.3.6 We know exactly the scope and the kind of a test 92
5.3.7 We can highlight the best examples for methods 93
5.3.8 We can separate tidy from untidy examples 93
5.3.9 We can synchronize tests with code with a minimal overhead 93
5.3.10All exemplified methods can be seen in a debugger 93
5.3.11Typing . 94

5.4 Converting existing tests into Eg-Tests: A Case Study 94

6 Conclusions 97
6.1 Contributions . 97
6.2 Lessons learned . 98

6.2.1 Getting Feedback and Spreading the Idea by A Filmed Thinking
Aloud in Pairs Experiment . 98

6.3 Future Work . 99
6.3.1 Integration of Traits . 99
6.3.2 Scale freeness of method call distributions 99
6.3.3 Programming as a sequence of commands 99
6.3.4 The best examples . 100
6.3.5 Partial Ordering Unit Tests: More Techniques and Case Studies . . . 100
6.3.6 Implementing Eg in other languages 101
6.3.7 Ruby . 102
6.3.8 Java . 102

A First Validations of the Eg-Browser 103
A.1 GOMS keystroke-level model . 104

A.1.1 Validation of the EgBrowser . 104
A.1.2 Creating a test for an existing method 104
A.1.3 Creating a test for a new method . 105

A.2 Usability Experiment . 105
A.2.1 Test Setup . 106
A.2.2 Tasks . 106
A.2.3 Questionnaire . 107
A.2.4 Questionnaire Analysis . 107
A.2.5 Video Analysis . 109

viii TABLE OF CONTENTS

A.2.6 Conclusion . 112

List of Figures

1.1 “Example” defined in the Myriam Webster Online Dictionary. Note how
dictionaries use examples to explain words in their context: “There are
many sources of air pollution, exhaust fumes, for example.” The concept of
examples is currently not used in object-oriented programming languages
which makes it hard to test and document software. 1

1.2 Both language designers and developers came up with a list of independent
techniques and concepts to ease the process of translating requirements
into tests, of documenting and of testing code. 3

1.3 Agile developers favor writing tests over documentation, but these tests are
not well integrated into languages and thus not browsable. Examples on
the other hand can be used both to test software and to explain it. 4

1.4 A condensed version of our meta-model: Each method can have an ex-
ample stored in a method command. These commands deliver example
instances of their classes and thus can call each other to build higher level
test scenarios. Commands can also be stored into and reified from source
code. 6

2.1 “Moments before he was ripped to shreds, Edgar vaguely recalled having
seen that same obnoxious tie earlier in the day.” 10

2.2 Recent methodologies align the viewpoints of the customers and developers
to the same model using the same tests and the same user interface. 11

2.3 Customers and developer are composing new storytests, developers new
unit tests and code into an existing system and computers should run the
minimum set of relevant tests after a code change. All parties can only
fully understand relevant artefacts like tests and code, by understanding
the interdependencies of these artefacts. 14

2.4 A transitive reduction of all possible interdependencies between agile con-
cepts. None of these interdependencies is explicit, which causes problems
in understandability of the concepts. 15

ix

x LIST OF FIGURES

2.5 The canonical bank account in Smalltalk and some typical SUnit tests for it. 16
2.6 The canonical bank account: The bank customer can deposit and withdraw

money, the bank admin can create an account, but for doing so a bank
object must be created first. The relations between these concepts are not
reflected in the system which hinders its comprehensibility and thus its
evolvability. 17

2.7 The canonical bank account described in an example notation. The addi-
tional tasks for agile developers who take this point of view are depicted.
We will show in the rest of this thesis, that fulfilling these task can be easily
integrated in current development styles. 19

3.1 The test for #becomeProfessorIn: covers the test for #addPerson:. Inter-
secting signatures are displayed gray. 30

3.2 Two small unit tests, which do not cover each other. 31
3.3 A sample test hierarchy based on coverage sets. 32
3.4 The coverage hierarchy of the Code Crawler tests visualized with Code

Crawler. 36
3.5 The distribution of comparable test nodes in our four case studies. 37
3.6 An avalanche effect in the coverage hierarchy of Magic Keys. One manually

introduced bug causes 10 test cases to fail. 38
3.7 The generated partial order of a test suite concerned with a timestamp

functionality in Squeak 3.7. The two equivalence classes of tests displayed
in the two big ellipses on the top include similar method names indicating
that they test similar behavior. Our overview also indicates, that storing
and printing timestamps is similar if not interdependent behavior, like wise
comparing and sorting timestamps. 40

4.1 An enhanced class browser shows methods and their Method tests side by
side. Note that the test returns its result, thus enabling other unit tests to
reuse it. We thus store tests like other factory methods on the class side. . 47

4.2 Taxonomy of unit tests. Nodes are gray and denote concrete occurrences
of unit tests. 49

4.3 Manual classification of unit tests for the base Squeak system 50
4.4 Method test suites, multi-facet test suites and cascaded test-suites are

decomposable into Method tests. 53
4.5 Manual classification of 50 random unit tests of Maven 56
4.6 Manual classification of unit tests for the SmallWiki system 60

5.1 The Canonical Bank Account in Smalltalk now with Pre- and Postcondi-
tions. 69

LIST OF FIGURES xi

5.2 The bank account tests refactored to our new meta-model. We managed
to abstract all assertions into pre- and postconditions in the code. We
implemented our meta-model in a light way: We say, that the last method
called is the method under test. By returning the result we can compose
the examples. As a consequence only two tests have to be called to gain
the full coverage. 70

5.3 Inverse Tests are made explicit, by storing them in this schema. 72
5.4 The generated partial order of the old tests (left) and the refactored tests

(right) of the bank account. We only added the two tests on the bottom right
making the setup explicit. The structure stays the same as we refactored
the tests keeping their semantics. The partial order thus serves as a good
hint how tests can be recomposed. 73

5.5 The hierarchy of commands in our meta-model. An exemplified method can
collect all its exemplifying commands and display them to the developer. . 74

5.6 An object diagram depicting the relationship of a checked method example,
an executed method and a method testing the bank application. 88

5.7 Creating an example for depositing money with Eg, the tool. More complex
objects than numbers represented by method commands can be dragged
and dropped out of the left pane into the parameters fields. 89

5.8 The sorted refactored bank tests according to what test reuses what other
tests. This structure mirrors the structure of the system under test: A
bank has to be created before an account can be added to the bank, some
money has to be deposited on the account, before it can be withdrawn. . . 90

5.9 One can see the partial order of tests for the Squeak package Aconagua.
All tests are green. 91

5.10We planted an error in reverseDo:, reran the tests but display them using
the original order of running tests. 92

5.11A prototype of a five pane Eg browser even displays the concrete receivers
and parameters of the exemplified method after hovering over the method
signature using a tooltip. In this case the method deposit has been called
via three tests, all of them feeding the account with an amount of 100. The
method deposit: always returns an account. Inferring the concrete types
just means to ask the concrete values for its classes. 94

A.1 Results of the questionnaire displayed as box plots 108
A.2 Analysis of task 1 . 110
A.3 Analysis of task 2 . 111
A.4 Analysis of task 3 . 112
A.5 Analysis of task 4 . 113
A.6 Analysis of task 5 . 114

xii LIST OF FIGURES

List of Tables

3.1 The resulting coverage of unit tests in our case studies. 36
3.2 Results of our automatic mutation experiments. 37
3.3 Examples for equivalent test cases. 39

4.1 Preliminary manual and automatic classifications of Method commands of
the Squeak Unit Tests. 58

4.2 Preliminary manual and automatic classifications of Method commands of
the SmallWiki Unit Tests. 59

A.1 GOMS model . 104

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Figure 1.1: “Example” defined in the Myriam Webster Online Dictionary. Note how dictionar-
ies use examples to explain words in their context: “There are many sources of air pollution,
exhaust fumes, for example.” The concept of examples is currently not used in object-oriented
programming languages which makes it hard to test and document software.

1

2 CHAPTER 1. INTRODUCTION

People learn new concepts by example. They e.g., learn new words by looking them up
in dictionaries and understand them in an exemplified context. Dictionaries like the
Oxford Dictionary of Current English [Soanes, 2001] or the Webster Online Dictionary
Figure 1.1 (p.1) all present exemplified usages of words for different kinds of contexts
where they are used. Cognitive psychologist Jerome Bruner et al. state that all learning
means to compare examples and counter examples in order to derive an intentional
description of the subject at hand [Bruner et al., 1956] while Einstein even believed,
that “Example isn’t another way to teach. It is the only way to teach.”.

But the concept of examples is not established within current object-oriented program-
ming languages.

1.1 The Problem

Context Software developers have to illustrate their abstract programs to two audi-
ences: The computer, which is supposed to run and quality-assure their programs on
its own by using tests, and developers, who are supposed to understand the program
while building it and at a later time while extending it. In traditional software devel-
opment the process of writing documentation is different from the process of writing
tests. This dichotomy is reflected or caused by existing concepts of object-oriented pro-
gramming languages. There are concepts which either test or document programs but
there are no concepts which test and document software at the same time (Figure 1.2
(p.3)). All programming languages used in industry today provide means to document
code whereas none provides means to automatically test the programs out of the box
by integrating automated testing into the development cycle. On the other hand devel-
opers prefer to write code over documentation, which explains the rise of unit testing
frameworks being an integral part of current agile software methodologies like eXtreme
programming.

Agile methodologies aim to reduce the number of superflous artifacts used in traditional
software development and rely more on executable and well factored code and tests
than on written documentation. Agile developers aim at self documenting code, as the
code is written with meaningful class, variable and method names, functionality is not
duplicated, and as much functionality as possible is tested. As a consequence written
documentation rarely exists in these projects and tests become the most useful resource
for understanding the software. (See Figure 1.3 (p.4))

Unit test frameworks are an ad-hoc addition to current programming environments and
thus not well integrated into them: Though they help developers to write repeatable
automated tests, they leave them alone both with exploiting these tests as means of

1.1. THE PROBLEM 3

Method Comments

Static Types

Pre- / Postconditions Examples in Methods

Mock Objects

xUnit TestsClass Comments

Class Invariants

Unbound but dynamic concepts
to document and test code

created by developers

Bound but static concepts
to document and test code

created by language designers

Examples
bound to
classes

and
methods

Bound and
dynamic

JML

Figure 1.2: Both language designers and developers came up with a list of independent tech-
niques and concepts to ease the process of translating requirements into tests, of documenting
and of testing code.

documentation and with composing scenarios for higher level unit tests - which is the
most time consuming part of writing tests as mentioned by Zeller [Zeller, 2005].

The main reason for unit tests not being integrated into current programming languages
and environments is that the relationship of unit tests to other code artifacts – including
other unit tests – is left open by the unit test framework designers.

No distinction of possible units under tests are made. As a consequence developers
write all kinds of unrelated unit tests: Some of those tests focus on single methods
and execute them only in one scenario, some of them test several methods in different
scenarios, and none of them can be reused by yielding their scenarios to create higher
level scenarios. Agile communities have renamed “unit tests” into “developer tests” and
“acceptance tests” into “customer tests”. This reveals on the one hand the similarity of
those two kinds of tests, but on the other hand focuses more on who is writing the tests
and even less on what the tests are testing.

Not having an explicit link between a unit test and its unit under tests, browsers cannot
display them side-by-side. Thus developers are not reminded to write tests, they cannot
see tests side by side to the unit under test to better understand a unit, they do not
know if a unit has a dedicated test, and they cannot automatically run the unit test
when the unit has changed. Not being able to compose unit tests out of other unit
tests, developers have to write redundant tests, which leads to code duplication and

4 CHAPTER 1. INTRODUCTION

Developer
Write comments and tests.

Hate documenting...
better write a test.

How can I create high-
level test scenarios?

Write checked examples for
methods and classes.

Compose high-level examples
out of low level ones.

No comments again...
How is this method used?

What shall it do?
Sometimes I miss static
types...Can I use tests to
understand? Which tests

relate to this method?

Write tests

Developer

Explain with comments
and well factored code

Developer

Test and document with
checked, composable
examples

Developer

Can understand usage
and responsibilities of
methods and classes

by looking at their
examples.

Figure 1.3: Agile developers favor writing tests over documentation, but these tests are not well
integrated into languages and thus not browsable. Examples on the other hand can be used both
to test software and to explain it.

unnecessarily long testing times.

Unit tests can also serve as templates of how to use the units under test. As I am
writing this thesis, I do not follow an abstract thesis writing process, but I rather adapt
a successful example of a thesis of our group [Schärli, 2005]. Having a template or
example of a thesis at hand facilitates the task of writing a thesis: Whereas my template
thesis explains the problems of multiple inheritance and how to solve them with traits,
my task is to explain the problems of missing examples of how to run and test object-
oriented programs and how to solve them with commands.

There is no rigorous definition of a unit test, how it is structured or what level of gran-
ularity it should address: IEEE defines unit testing as

Testing of individual hardware or software units or groups of related units.
See also: component testing; integration testing; interface testing; system
testing.

[ANS, 1983]

Hence developers have written all kinds of tests with different levels of granularity and
scope. But not denoting the unit under test explicitly makes unit tests unusable as
examples, thus developers cannot use them to understand how the units under test
should be used.

1.2. OUR APPROACH IN A NUTSHELL 5

In addition to not being able to compose unit tests out of other unit tests, developers
have to write redundant tests, which leads to code duplication and unnecessarily long
testing times.

Furthermore unit tests are not orthogonal to static typing: Test-driven developers using
a statically typed language have to provide the types twice: When they develop the test
they need to come up with concrete instances to build the scenario for the unit under
test. If the unit under test is a method, they then have to again statically type that
method, though these types could have been inferred out of the test scenario.

1.2 Our Approach in a Nutshell

Our approach consisted of several iterations of analyzing existing unit test suites, de-
signing the problems we found away into a meta-model and implementing according
prototypes – always guided by the metaphor of examples.

Metaphor. We are relying on the metaphor of examples which is not yet fully exploited
in the context of object-oriented software engineering. The metaphor of examples not
only suggests a strong connection between the concept to be exemplified and the ex-
ample itself, but also to create high-level examples out of low-level ones: The idea of
composing tests is awkward, whereas it is natural to describe large examples out of
smaller ones.

Analysis. To make a transition from the perspective of tests towards the perspective
of examples, we first need to know how current unit tests are implicitly related to each
other, and how they implicitly relate to the concepts of object-oriented languages.

— To understand the implicit relationships of unit tests to other unit tests we are intro-
ducing a new technique of dynamic analysis: We partially order unit tests by the sets
of signatures of the methods called by the tests. Our experimentation with different
case-studies has revealed that a high percentage of current unit tests is comparable
to other unit tests using this technique. The partial order supports our understand-
ing of how unit tests correlate and suggests ways in which they can be refactored.
Moreover, our technique supports software debugging activities: Using this scheme
we can present the developer the most relevant failing test case first together with
the according methods causing the error.

— To understand the implicit relationships of unit tests to the concepts of object-
oriented languages such as classes and methods, we researched case studies, some

6 CHAPTER 1. INTRODUCTION

of them consisting of more than thousand unit tests, and iteratively built a catego-
rization scheme based on the relationship of the tests to the atomic unit of object-
oriented programming, the method.

Design. We can model the relationships found in our analysis-phases explicitly by ex-
ploiting our metaphor of examples. This model is called a meta-model, as we are not
modeling outer-world concepts but introduce new concepts of object-oriented program-
ming languages themselves. Our meta-model centers around the concept of composable
method commands which serve as dedicated exemplifications of one method. In Fig-
ure 1.4 (p.6) you can see a condensed version of our meta-model based on the concept
of method commands. As you can see method commands serve the purpose of exem-
plifying methods and classes, they can be stored into readable code or reified from this
code, and they are composable to form higher-level commands.

MethodCommand
result
storeString()

Method
class
selector exemplifiedMethod

1 dedicatedExamples
1...*

MethodTest
assertions

MethodExample
isChecked

calls other method
commands to create
receiver and parameters
of its exemplified method.

exemplifies a class
by returning an instance of
the class where it is stored
to and thus serves as a
factory.

is "checked method example"
if its exemplified method contains
postconditions or calls a class
invariant.

emulates
classic XUnit
Tests

can be stored to
and reified from
readable code.

Figure 1.4: A condensed version of our meta-model: Each method can have an example stored
in a method command. These commands deliver example instances of their classes and thus can
call each other to build higher level test scenarios. Commands can also be stored into and reified
from source code.

We explain how commands can be used to exemplify classes, methods, and variables.
We also show how they can be composed, and that every object can either be expressed
as a literal or as a result of a method command.

Implementation. We present a light-weight implementation of this meta model in
Smalltalk and finish by showing how our prototypes using these meta model can help
developers to test and understand software.

1.3. CONTRIBUTIONS 7

Thesis statement. Tests are neither composable nor explicitly bound to the concepts of
current object-oriented languages. The reason is that tests are only linked implicitly to
their unit under test and to other unit tests. Detecting these implicit links and making
them explicit using the guiding metaphor of examples helps developers to document, type,
debug and test object-oriented programs.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

1. A detailed illustration and analysis of the various problems that are associated
with the absence of linkable and composable examples for the building blocks of
object-oriented programs.

2. A detailed analysis of unit tests and their interdependencies with each other and
with the code under test:

(a) A new and simple trace summarization technique: First we flatten the sig-
natures of the traced methods of unit tests into sets. Then we use a partial
order mechanism to compare these sets. It turns out that a high percentage of
unit tests becomes comparable using this simple mechanism. We show [Gaelli
et al., 2004a] how the resulting partial order can be used to understand and
refactor the code with its test suites and to prioritize failing tests.

(b) A taxonomy of unit tests with respect to their units under test and to their
composability. Our case studies reveals that most unit tests are either method
commands focusing on one method or are decomposable into such method
commands. [Gaelli et al., 2005b]

3. Based on this analysis a suggestion of a new meta model to include unit tests from
the very beginning into the development cycle and environment:

(a) A light-weight implementation for making missing test links explicit [Gaelli et
al., 2004b] [Gaelli, 2004] [Gaelli et al., 2005a] together with an implementation
in Smalltalk.

(b) The development of a meta-model abstracting from our implementation.

(c) The development and evaluation of a programming methodology around this
meta-model exemplified by a tool called “Eg”.

(d) Suggestions how to implement this meta-model in light ways in other lan-
guages such as Java, Ruby and Python.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This dissertation is structured as follows:

Chapter 2 (p.9) identifies and illustrates problems of missing examples in object-oriented
programs by establishing a bank example which will be used throughout this the-
sis.

Chapter 3 (p.29) analyzes the interdependencies among unit tests. It presents a tech-
nique to partially order unit tests in order to understand, debug, and refactor
existing test suites.

Chapter 4 (p.45) analyzes the interdependencies of unit tests with their units under
tests using several case studies, one of them consisting of more than 1000 tests
and establishes a taxonomy of unit tests. It also introduces first heuristics to
categorize unit tests automatically.

Chapter 5 (p.67) establishes our meta model Eg for linking unit tests with the code
under test and with other unit tests. It first describes a light way implementation
of the meta-model in Smalltalk. It then introduces the meta-model in detail by
explaining the responsibilities of the classes of our meta-model – illustrated by use
cases to test, debug and understand the Bank example. It finishes by pointing out
how the meta-model solves the problems described in Chapter 2 (p.9) and gives an
outlook how to implement Eg in languages like Ruby and Java.

Chapter 6 (p.97) summarizes how the main results of our work support the statement
of the thesis, and we look forward to future work related to Eg.

Chapter 2

Problems in Understanding and
Testing

Software understanding and testing is a wide field and so in this thesis we are research-
ing problems of understanding and testing software only in the context of agile develop-
ment. Agile developers aim for simplicity in order to translate the problem domain into
tested and understandable code. Coming from an object-oriented background, they heav-
ily rely on automated tests while doing so. The main software related tasks for agile
developers are to write new tests and to enhance and to debug the the software. For
writing new tests developers spend most of their time in creating tests scenarios, for de-
bugging they spend most of their time in isolating the failure-inducing change and for
developing they spend their time in understanding the existing code-base. But current
object-oriented programming environments neither support agile developers to create sce-
narios for high-level tests out of existing ones nor to debug or understand code by using
tests as composable examples. The reason for this lack of help from programming environ-
ment is that tests are neither composable nor explicitly bound to the concepts of current
object-oriented languages. In this chapter we define the scope of this thesis not only by
specifying the problem, but also the “owners” of the problem – agile developers – and the
context they are living in. We do so by
— explaining the motivations and constraints of lightweight agile methodologies,

— examining the minimal set of concepts agile developers are relying on, namely tests
and code,

— defining a set of constraints that code and tests have to fulfill to keep software evolv-
able in an agile environment,

— examining the problems arising from implicit interdependencies of tests and code.

9

10 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

2.1 Agile Development aligns Viewpoints of Customers
and Coders

The quest for fighting unnecessary complexity continues. Though Brooks argues that
there is no “silver bullet” in software engineering [Brooks, 1987] and Nierstrasz [Nier-
strasz, 2002] emphasizes that “as long as industry remains focused on short-term goals,
and maintains a technology-centric view of software development, no progress will be
made”, industry continues to build new technology-oriented solutions and to buzz these
solutions to be “the next great thing” Figure 2.1 (p.10).

Figure 2.1: “Moments before he was ripped to shreds, Edgar vaguely recalled having seen that
same obnoxious tie earlier in the day.”

Any problem in computer science can be solved with another level of indi-
rection. But that usually will create another problem. — David Wheeler
[Wikipedia, 2006]

2.1. AGILE DEVELOPMENT ALIGNS VIEWPOINTS OF CUSTOMERS AND CODERS 11

Often only the first sentence is getting quoted. This observation fits well with another
observation, namely that

Software people tend to favor the joy of complexity, yet we should strive for
the joy of simplicity. — Alan Kay

The agile development movement as explained by Cockburn [Cockburn, 2002] can be
seen as the result of technically overcomplex solutions: Agile developers and their cus-
tomers focus on a rapid feedback cycle between them and the code by removing as many
unnecessary “silver bullets” or artificial artifacts imposing unnecessary levels of indirec-
tions as possible. [Fowler and Highsmith, 2001] They strive for the “Joy of Simplicity”.
Accordingly one of the mantras of the agile movement is “Do the simplest thing, that
could possibly work”1.

Many recent efforts like spreadsheet testing [Rothermel et al., 2001], Dabble DB2, Etoys
[Allen-Conn and Rose, 2003], Test-Driven Development or “Naked Objects” [Pawson and
Matthews, 2002] are agile in the sense that they focus on “end-user programming”. All
these efforts not only aim to align the viewpoints of end-users with the viewpoints of de-
velopers, they even want to empower end-users with abilities to do the real programming
(see Figure 2.2 (p.11)).

User
Interface

Story Tests Unit Tests

Objects

Domain Driven
Development

Customer
Perspective

Developer
Perspective

Common
Perspective

Naked
Objects

Test Driven
Development

Domain
Understanding
of Customer

Domain
Understanding

of Developer

Figure 2.2: Recent methodologies align the viewpoints of the customers and developers to the
same model using the same tests and the same user interface.

1The Simplest Thing that Could Possibly Work – A Conversation with Ward Cunningham, Part V, by Bill
Venners, www.artima.com/intv/simplest.html

2http://www.dabbledb.com

12 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

Let us have a more detailed look into the two complementing agile methodologies,
namely domain-driven design and test-driven development.

Domain-Driven Design. Domain-driven design (DDD) as described by Evans [Evans,
2003] tries to bridge the existing gap between domain understanding and software im-
plementation decisions: It questions the traditional separation between software design
and requirements analysis. Domain-driven design uses only one model “throughout all
aspects of the development effort, from code to requirements analysis”. This model, at
the heart of software, facilitates communication with users. It also serves as the imple-
mentation guide for programmers. Not separating concepts from their implementation
provides a “ubiquitous language” for all project stakeholders, and even improves soft-
ware usability, since the user’s model will match the programmer’s model of the system.
Domain-driven design’s defining characteristic is its “priority on understanding the tar-
get domain and incorporating that understanding into the software”, where some of its
elements closely correspond to elements in the model.

Test-Driven Development. Beck and Cunningham collaborated while inventing pair-
programming but went in different directions when it came to testing: Whereas Beck
invented the Xunit Test framework and promoted “Test-Driven Develolpment” [Beck,
2003] for developers, Cunningham focused as usual 3 on the collaborative aspect and
built a tool called FIT [Mugridge and Cunningham, 2005b]. FIT (Framework for Inte-
gration Testing) allows customers (with the help of developers) to build high-level story-
tests which in turn can be used by developers as concrete specifications to implement
against. As soon as the story test is running, the customer can see a green light in a
web-interface thus tracking the progress of the developers.

Agile projects try to align the viewpoints of customers and developers on the problem
domain by minimizing the set of concepts used. That minimal set of concepts used in
test-driven development which are also represented as programs consists of story tests,
unit tests and code.

2.2 Constraints of Test-Driven Development

In this thesis we are focusing on the minimal set of programmable concepts necessary
for test-driven development coming from a domain-driven design perspective.

3Ward Cunningham became famous for having invented the Wiki-Principle of collaborative Website Editing
best exemplified by the Wikipedia

2.2. CONSTRAINTS OF TEST-DRIVEN DEVELOPMENT 13

Customers are specifying their requirements iteratively with story tests, possibly with
the help of developers. The developers then iteratively translate these story tests into
unit tests and code as described by Beck [Beck, 2003]. We will not explore the role of
user stories [Cohn, 2004] which are an integral part of development in eXtreme pro-
gramming as they are not put into an electronic format.

Whereas customers deal with writing high level storytests4, developers help them doing
so. Developers also have to understand these storytests in order to compose in lower
level unit tests and appropriate code to satisfy both the story- and the unit tests. The
computer on the other hand should always be able to run the minimum set of rele-
vant tests after a change in the code, where relevant means that the test is calling the
code.

We thus end up with three different “users” of tests and code: customers, developers
and the computer as seen in Figure 2.3 (p.14). We subsume the role of the customers
with the role of the developers in the context of domain-driven design: In our experience
it is still common that customers do not write storytests and let developers do this work,
or at least help them doing so. Having unified our target audience we also unify the tests
they dealing with, namely storytests and unit tests into the concept of tests.

Although we do not claim that the following goals of agile test-driven development are
reachable, we however do claim that they represent the utopia test-driven developers are
aiming at, and that our approach is a contributing factor to approaching this goal.

We say that the set of agile concepts (tests and code) are minimal and sufficient to de-
scribe an evolvable system implementing some external requirements if

— all possible branches of all requirements are tested by a storytest,

— there exist no redundancies within tests and code,

— all storytests either test if a requirement is met or are indirectly used by a storytest
which tests if a requirement is met,

— all code is covered by at least one storytest ,

— all unit tests are used by storytests 5,

The set of agile electronically available concepts does not include any kind of classic
documentation. Thus it is crucial, that the tests and the code base are as understand-
able as possible. We say that the set of agile concepts (tests and code) are perfectly
understandable

4Storytests are also known under the name of acceptance tests
5We take the perspective that a system only has a bug, if that bug is reachable by the end-user of the

system. Thus we question the value of standalone unit tests and claim that each unit test can be part of a
high level storytest belonging to a user story, which specifies this situation.

14 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

Customer

Developer

Implement Storytests by
composing new Unit Tests
and Code into the system

Understand all relevant
Interdependencies of old
and new Storytests, Unit

Tests, and Code
<uses>

Specify new
Requirements by

composing Storytests
into existing ones

Understand all relevant
Interdependencies of old

and new Storytests
<uses>

Run minimum set of Test
Cases after Code Change

Know all relevant
Interdependencies of

Storytests, Unit Tests, and
Code

<uses>

Computer

Figure 2.3: Customers and developer are composing new storytests, developers new unit tests
and code into an existing system and computers should run the minimum set of relevant tests
after a code change. All parties can only fully understand relevant artefacts like tests and code,
by understanding the interdependencies of these artefacts.

— if the concepts are minimal and sufficient,

— if agile team members can be aware of all interdependencies between the concepts
they have to deal with.

— if the computer can automatically run all relevant tests after a code change.

In the rest of this chapter we take a detailed look at all possible interdependencies of
agile concepts as shown in Figure 2.4 (p.15) and the problems of comprehensibility and
local testability arising from the fact, that they are implicit. We will discuss the current
approaches dealing with these problems in the appropriate chapters.

2.3 Problems of Implicit Test Interdependencies

We motivate the problems arising from implicit test interdependencies by introducing
the canonical example of a bank account as depicted in Figure 2.6 (p.17). Typical user
stories here are Create Bank, Create an account, Deposit money and Withdraw money.

2.3. PROBLEMS OF IMPLICIT TEST INTERDEPENDENCIES 15

CodeStory / Unit Test
?

? ?

Test/Code Interdependencies
Useful for Understanding and
Refactoring of Tests and the

System under Test,
Coverage, Debugging,

Test Minimization

Code Interdependencies
Useful for Understanding

and Refactoring of
the System under Test

Test Interdependencies
Useful for Understanding of Tests

and the System under Test,
Delta Debugging, Reuse of Test Scenarios,

Feature Analysis

Figure 2.4: A transitive reduction of all possible interdependencies between agile concepts. None
of these interdependencies is explicit, which causes problems in understandability of the con-
cepts.

The order of the stories defines the prerequisite relationing – e.g., an account must exist
before money can be deposited, similarly the money is withdrawn only after the money
has been deposited. To better understand this example which will follow us throughout
this thesis, we show the code containing an implementation of this example in Smalltalk
in Figure 2.5 (p.16).

2.3.1 Creating test scenarios is time-consuming and complex

More than 50% of the effort of writing tests is spent writing the test scenarios ([Zeller,
2005]). Whereas it is easy to develop low level unit tests, which use only scalar data
types such as numbers or strings, the higher the level of the class under test, the more
complex it gets to create appropriate scenarios. Creating instances of the required input
parameters is more complex, as these parameters depend recursively on other objects
in the object net.

Example. Consider as an example the Account » withdraw method in the bank account
as seen in Figure 2.6 (p.17). To test this method it is necessary to first create a bank and
an account which already has money deposited on it. Having no instances ready for
use in complex tests is the main reason why writing tests of high level objects is such a
time-consuming task.

16 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

Object subclass: #Bank.Model.Bank
 instanceVariableNames: 'accounts'
 classVariableNames:''
 poolDictionaries: ''
 category: 'Bank.Model'

Bank.Model.Bank>>initialize
 accounts := Dictionary new.
 ^self

Bank.Model.Bank>>accounts
 ^accounts values

Bank.Model.Bank>>accountNumbered: aNumber
 ^accounts at: aNumber

Object subclass: #Bank.Model.Account
 instanceVariableNames: 'balance number'
 classVariableNames:''
 poolDictionaries:''
 category: 'Bank.Model'

Bank.Model.Account class>>numbered: aNumber
 ^self new initializeFor: aNumber

Bank.Model.Account>>balance
 ^balance

Bank.Model.Account>>withdraw: someAmount
 self assert: [self canWithdraw: someAmount].
 balance := balance - someAmount

Kernel-Classes.Behavior(Bank class)>>new
 ^self basicNew initialize

Bank.Model.Bank>>createAccount: aNumber
 |anAccount|
 self assert: [(self includesAccount: aNumber) not].
 anAccount := Account numbered: aNumber.
 accounts
 at: aNumber
 put: anAccount.
^self

Bank.Model.Bank>>includesAccount: aNumber
 ^accounts includesKey: aNumber

Kernel-Classes.Behavior(Account class)>>new
 ^self basicNew initialize

Bank.Model.Account>>initializeFor: aNumber
 number := aNumber.
 ^self

Bank.Model.Account>>deposit: someAmount
 balance := balance + someAmount

Bank.Model.Account>>number
 ^number

Bank.Model.Account>>canWithdraw: someAmount
 ^balance >= someAmount

Bank.Tests.TestCase subclass: #Bank.Tests.AccountTest
 instanceVariableNames: 'bank account'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Bank'

Bank.Tests.AccountTest>>testDeposit
 account deposit: 100.
 self assert: account balance = 100.

Bank.Tests.AccountTest>>testAccount1234Exists
 self
 should:[bank createAccount: 1234]
 raise: Exception

Bank.Tests.AccountTest>>testDepositAndWithdrawAll
 account deposit: 100.
 account withdraw: 100.
 self assert: account balance =0.

Bank.Tests.AccountTest>>setup
 bank := Bank new createAccount: 1234.

 "Developers do put assertions in the setup"
 self assert: bank accounts isEmpty.

 account := bank accountNumbered: 1234

Bank.Tests.AccountTest>>testWithdraw
 account deposit: 80.
 account withdraw: 30.
 self assert: account balance = 50.

Bank.Tests.AccountTest>>testWithdrawTooMuch
 self account deposit: 80.
 self
 should:[account withdraw: 100]
 raise: Exception

Figure 2.5: The canonical bank account in Smalltalk and some typical SUnit tests for it.
Bank.Model.Bank denotes the class Bank within a package called Bank.Model.

2.3. PROBLEMS OF IMPLICIT TEST INTERDEPENDENCIES 17

Bank
Admin

Bank
Customer

Developer

Storytest:
Withdraw money from account

with enough money

Storytest:
Withdraw money from account

with not enough money

Storytest:
Deposit money on account

Storytest:
Create an account

Storytest:
Create an account although

account already exists

Unit Test:
Create a bank.

Code:
Account>>

withdraw: someMoney

Code:
Account>>

deposit: someMoney

Code:
Bank>>

createAccount: aNumber

 Code:
Bank class >> new

?

?

?

?

?

(Unknown link
between tests)

 ?

?

(Unknown link
 between
tests and code)

 ?

?

?

?

?

<uses>

<uses>

<uses>

<uses>

<uses>

Figure 2.6: The canonical bank account: The bank customer can deposit and withdraw money,
the bank admin can create an account, but for doing so a bank object must be created first. The
relations between these concepts are not reflected in the system which hinders its comprehensi-
bility and thus its evolvability.

18 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

2.3.2 Understanding the interplay of a system is hard

User stories only make sense in the context of the other user stories which either are
required by or depend on them – and thus the according storytests also only make sense
in the context of other tests: Dependency graphs as seen in Figure 2.7 (p.19) would help
developers to understand the functionality and their according tests in context.

It is possible to build these kind of dependency graphs using a technique called gui
ripping as described by Memon et al. [Memon et al., 2003] but this technique requires
user interaction with the system. To our knowledge there is no way to automatically
infer them out of the running systems. These graphs are easy to create if the interde-
pendencies of the test were explicit.

We take the perspective that unit tests describe low level use cases: Each functionality
a developer has to write can be seen as a use case, though often a technical one. Be it
connecting to a database, filtering some data or processing it somehow, none of these
functionalities are treated different in the mind of a programmer to a high-level function-
ality like transferring money from one account to another, which just gets decomposed
into smaller unit cases.

These arguments above apply also to the viewpoint of the developer writing unit tests: To
understand a certain functionality developers need to put this functionality into context
of all prerequisite functionalities. If they write or read functionalities, writing or reading
the unit tests for the required functionalities helps them not only to create test scenarios
but also to understand the context this functionality is living in.

Example. If developers of a bank system were able to have a glance at an automatically
generated dependency graph as seen in Figure 2.7 (p.19) where the test interdependen-
cies of the system are show together with the interdependencies of the functionality
using concrete examples, they could directly infer that e.g., one needs to deposit money
into an account before being able to withdraw money from it.

2.3.3 Testing time is unnecessarily long

Having a set of storytests which are only implicitly calling each other tempts the devel-
opers to recreate test scenarios for each of them, although smaller storytests already
provide the fixture to be used by other tests. This may lead to unnecessary long testing
times.

Example. In the case of our example bank system a bank has to be created before being
able to create an account on it (Figure 2.6 (p.17)). Writing two independent storytests for
this clearly leads to an unnecessary increase of testing time as opposed to a cascading

2.3. PROBLEMS OF IMPLICIT TEST INTERDEPENDENCIES 19

Account(number=1234,balance=30):
withdraw(anAmount=200)

Returns: Message(Not enough credit)

Account(number=1234,balance=100):
withdraw(anAmount=70)

Returns: Account(number=1234,balance=30)

Account(number=1234, balance=0):
deposit(anAmount=100)

Returns: Account(number=1234,balance=100)

Bank(name=Duckburg, accounts=#(1234)):
create Account(accountNumber=1234)
Returns: Message(Account already exists)

System(Banks=#()):
create Bank()

Returns: Bank(accounts=#())

Bank(name=Duckburg, accounts=#()):
create Account(accountNumber=1234)

Returns: Account(number=1234, balance=0)

<uses>

<uses>

<uses>

<uses>

<uses>

<creates>

<creates>

<creates>
Agile

Customer

<creates>

<creates>

Test
Framework

Fulfilling above tasks helps agile developers
to understand, debug and test the system

<creates>

<runs>

<runs>

- Connect examples
- Connect functionality to examples

- Help customers to create examples
- Create missing examples

- Create Invariants and pre-/ postconditions

Figure 2.7: The canonical bank account described in an example notation. The additional tasks
for agile developers who take this point of view are depicted. We will show in the rest of this thesis,
that fulfilling these task can be easily integrated in current development styles.

20 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

style where the quality assured bank object can be reused for further test scenarios.
(See Figure 2.5 (p.16)).

Testtimeindependent = createBankTestt + createBankFixturet + createAccountTestt >

Testtimecascading = createBankTestt + createAccountTestt

(2.1)

2.3.4 The problem of identifying relevant tests in the case of a fail-
ure

One fault can cause several unit tests to break, so developers do not know which of
the broken unit tests gives them the most specific debugging context and should be
examined first.

Example. Suppose the developer accidently changes addition into subtraction in the
Account » deposit: someMoney method. (See Figure 2.5 (p.16)) Clearly the according test
AccountTest » testDeposit will fail. But this will not be the only test failing! To withdraw
money, one first has to deposit money, accordingly the correctness of the Account »
deposit: someMoney method is a prerequisite for testing the correctness of the Account »
withdraw: someMoney method. Otherwise the tester will assume an initial balance of the
account of 80 to withdraw from, whereas is actually has a balance of -80 leading to a
result of -110 – and not of 50 as expected. In our trivial example it is clear which of
these failing tests should be attacked first. But facing a more complex domain, which
the developers possibly have not built themselves, they might be misled and try to fix a
test first, which is testing a perfectly well functioning method. Thus would lead to an
unnecessary proliferation of debugging time.

2.3.5 The problem of detecting similar tests

Developers are free to write one test which tests a unit under several circumstances, or,
as an alternative, to write several tests, each focusing on the same unit but in several
scenarios. Developers who are reading these tests though are interested, if there are
other tests which focus on the same unit, but they only can detect them by reading code
and relying on brittle naming conventions. If a refactoring of code and tests becomes
necessary, it is desirable to present the developers all related tests automatically.

Example. In our example the tests AccountTest » testWithdrawTooMuch and AccountTest »
testWithdraw represent two tests focusing on the same unit under test: Whereas the first

2.4. PROBLEMS OF IMPLICIT TEST / CODE INTERDEPENDENCIES 21

is testing the boundary condition, the second one is testing the default case. It is only
the brittle naming conventions and the fact that they are residing in the same test class
which connects those two siblings.

2.4 Problems of Implicit Test / Code Interdependencies

Developers have written all kinds of unit tests using xUnit: some of them focus on one
method, sometimes testing it in one and sometimes in several scenarios, some of them
focus on several methods at the same time, some of them assure, that the method under
test throws an exception if used in a wrong context, and some of them just call a method
under test without checking its outcome.

As a consequence, tests are not only related implicitly to other tests as explained be-
fore, but also to their units under test. In the following we describe several problems
arising out of the fact, that the relationships between tests and their unit under test are
implicit.

2.4.1 Understanding the focus and the kind of a test is hard

Developers who are reading unit tests not only have to decrypt the focus of the test in
order to understand what functionality the test is testing, but also the type of the test
in order to understand to what degree it is testing the functionality. Typical questions
the developers have to ask themselves include:

— Are the called methods in the test independent from each other as the test tests
several independent aspects of a unit under test?

— Or is each method call required to successfully call later methods in the test?

— Is the test checking if the unit under test is working correctly after some valid input
state has been established?

— Or is it ensuring, that the unit under test fails correctly, if its precondition is violated?

This is cumbersome, time consuming and could be avoided by making both the unit
under test and the type of the test explicit in a meta-model.

To detect the focus of a unit test, one must understand what unit the unit test is
focussing on. Is it a method, a bunch of methods, a class, or a bunch of classes?
Currently the only name developers have to describe a unit test besides “developer test”
is “unit test” itself, adding much to the confusion in this area. Using names like “unit”,

22 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

“thing”, “entity” is a bad sign in object-oriented programs and means that the “unit” is
not yet well understood.

Like design-patterns [Gamma et al., 1995] allow developers to spot, communicate and
reuse recurring solutions for recurring design problems, a well based nomenclature
and description of the several kinds of unit tests should help developers to understand
existing test suites. Having established such a terminology one could also encode the
kind of unit test explicitly in the unit test itself. This is impossible without having a
meta-model for unit tests.

The only hints of the xUnit framework for detecting the unit under test is the naming
convention of the test classes and methods, which often implies the signature of the
method under test. But this naming convention is brittle, as it is not stable to refac-
torings like renaming the method under test or changing the contents of a test. Van
Deursen et al. [Deursen and Moonen, 2002] explore the relationships between testing
and refactoring. They suggest that refactoring of the code should be followed by refac-
toring of the tests. Many of these dependent test refactorings could be automated or at
least made easier, if the exact relationships between the unit tests and their methods
under test would be known.

Example. Is the test AccountTest » testWithdrawTooMuch in Figure 2.5 (p.16) testing both
Account » deposit: and Account » withdraw:? Though the name of the test implies the latter,
developers are free to test the former one also by inserting some assertions after calling
Account » deposit.

Developers have to imply that this test is bound to succeed if it’s call to it’s method
under test fails. They can do so by either looking at the exception catching mechanism
or by reading the name of the test. Though it is a small mental step to do so, it still
takes time to read the test. Developers cannot yet rely on a summary which implies that
this test (1) serves as a bad example by ensuring that a functionality breaks accordingly
if called in a wrong situation, and (2) focuses on Account » withdraw:.

2.4.2 The problem of separating good examples from less appropri-
ate ones

Beck points out the value of unit tests as documentation of their units under tests [Beck,
2003] but how can a unit test document a unit, if the relationship between the unit test
and the unit under test is implicit? The only relationship between the unit test and a
unit under test a developer using the xUnit framework can detect right now, is if the
xUnit test calls a given method. The reader of the test has to bring in lots of contextual
knowledge to decide, whether the test is using a given method only to setup a scenario,

2.4. PROBLEMS OF IMPLICIT TEST / CODE INTERDEPENDENCIES 23

if it is used for checking a desired state an object should be in, if it is used to clean up
the test scenario, or if – indeed – it is the method which is in the focus of the test.

Wittgenstein [Wittgenstein, 1953] and Lakoff [Lakoff, 1990] argue, that not all examples
are equal – it depends on the context, if a given example is a good example or not. It
would be a bad idea to explain a child the concept of a bird using a penguin as a first
example. Only after the child has some knowledge about typical bird-examples like sea-
gulls, eagles and pigeons, one might want to introduce the example of a penguin as a
typical non-flying bird.

Example. For understanding the functionality of Account » deposit: the developer should
be pointed first to the test(s) focusing on this functionality, which would be AccountTest
» testDeposit:. Certainly the developer should be also able to see how this functionality
is used in different contexts as like in AccountTest » testWithdraw: or AccountTest » testWith-
drawTooMuch: but pointing the developer first to a classic example of this functionality
before pointing to some derived functionalities speeds up the process of comprehen-
sion.

2.4.3 The problem from separating tidy from untidy examples

We say that an example is tidy if its execution does not create any left-overs like open
windows or changed global state. Currently developers do not make a distinction be-
tween tidy and untidy examples. Though it is useful to have untidy examples in order to
open application in an exemplified context and thus to understand them, these untidy
examples are neither composable nor can they be easily executed automatically.

Example. Imagine the following code snippet:
Account class�editAccount1234

Bank exampleAccount1234 openInWorld

The above would be an untidy example as it would leave open a window showing the
account in action whereas Bank class�exampleAccount1234 would be a tidy example which could
be used for testing purposes.

2.4.4 The problem of keeping the tests and the code synchronized

Saff et al. [Saff and Ernst, 2003] suggest to continuously run all unit tests in the
background, so that the developers do not have to run them explicitly. On the one hand
this still leaves lots of functionality uncovered as it is not known if a method is covered
by a test at all. On the other hand this brute force algorithm spends lots of unnecessary
cycles to check unchanged functionality.

24 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

If methods were explicitly connected to their executing tests, one could only rerun
those: Also Winger suggests to connect methods and tests via pragmas in VisualWorks
Smalltalk, so that after a changed method has been saved, the according test can be
run automatically [Winger, 2004].

On the other hand, test cases can be changed, too. As soon as a test is added, changed
or deleted the relevant code under test should be exercised in order to assess if the code
coverage stays the same and if the code complies with the current set of tests.

Test-driven development as introduced by Beck [Beck, 2003] suggests to first write a
unit test and then to write the method(s) to implement this unit test. Thus the first
test-driven session to implement some methods can be seen as a debugging session:
The task of the developer is to enhance the method in a such a way, that the former
failing unit test focusing on this method does not fail any more.

Example. Changing the functionality of Account » deposit should trigger all tests which
call Account » deposit – directly or indirectly. These would be: AccountTest » testDeposit,
AccountTest » testWithdraw and AccountTest » testWithdrawTooMuch.

2.4.5 The problem of seeing a method in a debugger

One classic way to debug and understand some methods is to insert a breakpoint into
them and then to hope to know an executable entry point or command which would
trigger this breakpoint during its execution. Squeak developers recently introduced a
debug item into the classical do it, print it, inspect it dialog with which any command can
be inspected in action in a debugger. But as long as there is no explicit knowledge
about which tests execute which methods along the way, this debug menu item cannot
be included into the context menu of any method. As a consequence developers have
a hard time to see any method within the debugger. Not being able to see a method in
the debugger requires developers to understand methods in an abstract way, e.g., they
often have to guess the actual callers of a possibly polymorphic method in a special use
case and cannot step through its actual concrete behavior.

2.5 Problems of Implicit Code Interdependencies: Typ-
ing

Test-driven developers using a dynamically typed programming language only provide
the types of the parameters implicitly. In theory a program could detect the types for all
variables of all classes instantiated by the tests and also the types of parameters and

2.6. RELATED WORK 25

return values of all methods executed by the tests. But to our knowledge no tool exists
until today to exploit tests in the context of dynamically typed languages to also infer
the concrete types for those entities mentioned above.

Test-driven developers using a statically typed programming language have to provide
the type6 of variables and parameters twice – once explicitly when they define the class
or method – and once implicitly when they provide concrete parameters and fill the
instance variables in order to set up the test scenarios.

We believe that the reason for this is that there exists no meta-model for unit tests which
makes it impossible to exploit unit tests for providing the type information of their units
under test although all the necessary information is just lying there waiting to be picked
up: If we connect a unit test with alls methods executed by it in an explicit way, not only
the parameters of these methods can be exemplified and thus also concretely typed, also
the type of the return value of these methods can be deduced, as at least one concrete
value could be computed along the way when the test gets executed.

As test coverage in current systems is rarely 100%, the approach of using dynamic
information for typing has not been followed yet – but with the rise of test-driven de-
velopment one could easily imagine check in policies that would only allow methods to
be stored which are actually covered by at least one repeatable command. The same
reasoning applies for the storage of classes: A class-definition could only be checked
into the code-repository if there is at least one way to create an instance of this class –
or in the case of abstract classes one of its concrete subclasses –, where all its variables
are initialized with a concrete object.

2.6 Related Work

Examples are heavily used in all fields of education such as mathematics where Mason
et al. find that examples help students to stay focused on the problem at hand [Mason
John H., 2001]. Watson et al. point out the effectiveness of student-generated examples
as a teaching tool in [Watson Anne, 2002]. They examine the roles played by examples
constructed and generated by students, illustrate and analyze the use of this tool, and
develop a theory for the act of exemplification as an act of cognition.

Examples are used for learning programming: Anderson et al. describe in [Anderson et
al., 1984] an example-based model of instruction, with practice and feedback to help
abstract from the examples. They suggest that students have heuristics that help them
generalize from examples to idioms. Problem solutions are learned and reused when

6With typing we mean specifying the concrete types of variables, parameters and return values at develop-
ment time.

26 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

like situations arise. Anderson’s theory predicts that students will learn idioms and
emphasizes the need for a complete repertoire of idioms. Likewise a pattern [Gamma
et al., 1995] only is a pattern if at least manifested three times by several developers.
Summers researched an example-driven way of Lisp programming [Summers, 1977]
and describes a construction methodology which consists of a series of transformations
from the set of examples to a program satisfying the examples. Lieberman and He-
witt interleave programming and testing in Lisp with a system called tinker [Lieberman
and Hewitt, 1980]. Nievergelt et al. emphasize the value of examples for learning and
understanding examples in computer science education in [Nievergelt, 2006].

Cunningham suggests to let the customer type in names so that the developer could
compose the tests if wanted. [Cunningham, 2006] Mugridge et al. [Mugridge and Cun-
ningham, 2005a] deal with the problem of composing storytests but they focus on min-
imizing testing time. They suggest to let the computer detect the interdependencies
of story tests and use a hill climbing algorithm to minimize the testing time of the re-
sulting cyclic graph. But considering use cases or according storytests to be cyclic runs
against the grain of conventional use case building and thus adds a level of unnecessary
complexity.

Recently Mugridge has built a web based test tool called FitLibrary 7 based on the
Fit Framework from Cunningham [Mugridge and Cunningham, 2005b]. FitLibrary en-
ables customers and developers to compose story tests by composing the according
tables.

Schuh et al. [Schuh and Punke, 2001] describe a so called mock framework called
“Object Mother” to create scenarios which are difficult to set up otherwise – as other tests
are not reused for creating more complex ones. Freeman et al. [Freeman et al., 2004]
emphasize the difference between mocks and stubs and explain that stubs are used
to create scenarios otherwise difficult to build, whereas mocks are used for behavioral
testing. Behavioral testing is concerned with checking if certain methods are called, and
that the methods are called in the right sequence.

Use cases can be seen as user stories and identifying how features relate in order to
generate hierarchical tests can also happen after deployment as described by Memon et
al. in [Memon et al., 2001] and [Memon et al., 2003].

Greevy et al. [Greevy et al., 2006] research the interdependencies of features and code
by compacting traces into simple sets of source artefacts in order to detect the evolution
of features.

Test Mentor, a commercial test framework from SilverMark, allows customers to create
user interface tests and developers to create unit tests. Those tests can be combined

7http://fitlibrary.sourceforge.net/

2.7. SUMMARY 27

by developers but there is no notion of examples. Tests are not integrated into the IDE
and are also not directly composable. Instead they suggest developers and end users
to store interim results into some variables of the test framework, so that testing states
can be used in higher level scenarios.

Alistair Cockburn [Cockburn, 2002] [Cockburn, 2003] talks about “Dos Equis-Driven
Design”, a wordplay to be able to spell out XXD, meaning “eXectuable eXample-Driven
design” [Cockburn, 2006]. He emphasizes the mantra of “TDD” (Test-Driven Design),
that “Test-Driven Design is not about Testing” but about learning and designing pro-
grams by writing examples first.

Lieberman [Lieberman, 2001] introduced a methodology called Programming by example
which is also called “programming by demonstration”. It is is a technique for teaching
the computer new behavior by demonstrating actions on concrete examples. The sys-
tem records user actions and generalizes a program that can be used in new examples.
Though also focusing on the power of examples, the goal of this methodology is differ-
ent as it is aiming to use techniques of artificial intelligence to automatically produce
code.

2.7 Summary

In this chapter we put our work into the context of agile methodologies. Agile methodolo-
gies aim at reducing the set of unnecessary artifacts by making the code as understand-
able and testable as possible, while on the other hand reducing the amount of extra, fast
outdated and possibly redundant artifacts such as written documentation.

We observed two dichotomies in current object-oriented programming systems: (1) One
dichotomy exists between documentation and tests. Documentation is bound to the
building blocks of object-oriented programs via code comments but in a static and non-
executable form, whereas unit tests are dynamic but currently not bound to their units
under test. We identified the main reason for this missing link of unit tests to be the
fuzziness of the term “unit test”. A consequence of the fuzziness is that the units under
test vary wildly in their granularity depending on the developer’s view of what defines the
“unit”. (2) The second dichotomy exists between low-level and high-level tests: Whereas
high-level functionality naturally reuses low level functionality, high-level unit-tests cur-
rently do not reuse low-level unit tests.

We gave a brief outlook to solve both dichotomies via the metaphor of examples. Exam-
ples always imply a specific unit they exemplify, are dynamic as they can be executed,
and can be composed naturally into high-level examples.

28 CHAPTER 2. PROBLEMS IN UNDERSTANDING AND TESTING

We motivated the need for making links of the remaining code artifacts in agile projects
explicit – links among unit tests, between unit tests and code, and among code. We
therefore examined a number of negative consequences of missing explicit links between
those artifacts and showed how these missing links hinder the understandability and
testability of object-oriented programs.

Chapter 3

Partially Ordering Unit Tests

Since one fault can cause several unit tests to break, the developers do not know which
of the broken unit tests gives them the most specific debugging context and should be
examined first. We propose a partial order of unit tests by means of coverage sets — a
unit test A covers a unit test B, if the set of method signatures invoked by A is a superset of
the set of method signatures invoked by B. We first explore the hypothesis that this order
can provide developers with the focus needed during debugging phases. By exposing
this order, we gain insight into the correspondence between unit tests and defects: if a
number of related unit tests break, there is a good chance that they are breaking because
of a common defect; on the other hand, if unrelated unit tests break, we may suspect
multiple defects. The key to make the unit test suite run again is to identify the central
unit tests that failed and thus caused a “failure avalanche” effect on many other tests in
the suite. The results of four case studies are promising: 85% to 95% of the unit tests
were comparable to other test cases by means of their coverage sets – they either covered
other unit tests or were covered by them. Moreover, using method mutations to artificially
introduce errors in a test case, we found that in the majority of cases the error propagated
to all test cases covering it. By describing the results of several little case studies done
within the Squeak environment, we then motivate that the technique of partially ordering
broken tests can be helpful for program comprehension also.

29

30 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

3.1 Implicit dependencies between unit tests

Example. Assume we have the following four unit tests for a simplified university ad-
ministration system:

— PersonTest»testBecomeProfessorIn tests if some person, after having been added as a
professor to a university, also has this role.

— UniversityTest»testAddPerson tests if the university knows a person after the person has
been added to it.

— PersonTest»testNew tests if the roles of a person are defined.

— PersonTest»testName tests if the name of a person was assigned correctly.

For a detailed look at the run-time behavior of the test cases see Figure 3.1 (p.30) and
Figure 3.2 (p.31).

PersonTest
University class

Professor class

name(...)

Person class

becomeProfessorIn(...) new

Person University
testBecomeProfessorIn

addPerson(...)

name(...)
new

professors

persons

addRole()

UniversityTest

University class

name(...)

Person class

University
testAddPerson

addPerson(...)
name(...)

new

persons

assert(aUni professors includes(aPerson))

assert(aUni persons includes(aPerson))

Figure 3.1: The test for #becomeProfessorIn: covers the test for #addPerson:. Intersecting signa-
tures are displayed gray.

3.1. IMPLICIT DEPENDENCIES BETWEEN UNIT TESTS 31

PersonTest Person class

testName name(...) new

assert(person name = aName) name

PersonTest Person class

testNew new

assert(person roles notNil) roles

Figure 3.2: Two small unit tests, which do not cover each other.

Furthermore assume that the implementation of Person class»new is broken, so that no
roles are initialized and the role variable in Person is undefined. When we run the four
tests, two of them will fail:

1. The test PersonTest»testBecomeProfessorIn (see Figure 3.1 (p.30)) yields a null pointer
exception: Undefined object does not understand: add: occurring in Person»addRole:.

2. In test PersonTest»testNew (see Figure 3.2 (p.31)) the assertion person roles notNil fails,
pointing directly to the problem at hand.

As the latter failing test case provides the developer directly with the information needed
to fix the error, the latter one should be presented first. We therefore order the unit
tests according to their sets of covered methods. All the methods which are called in
PersonTest»testNew are also called in UniversityTest»testAddPerson (see Figure 3.1 (p.30) and
Figure 3.2 (p.31)). Again all methods sent by UniversityTest»testAddPerson are themselves
included in the set of methods sent by PersonTest»testBecomeProfessorIn (see Figure 3.1
(p.30)). Note that PersonTest»testName is neither covered by any other test nor covering
one. Consider the unit tests in Figure 3.3 (p.32). We draw an arrow from one unit
test to another if the first covers the second. The test method PersonTest»testNew (i.e.,
the method testNew of the class PersonTest) will invoke at run-time a set of methods of
various classes. PersonTest»testBecomeProfessorIn will invoke at least those same methods,
so its coverage set includes that of PersonTest»testNew. Note that we do not require that
PersonTest»testBecomeProfessorIn invoke PersonTest»testNew, or even that it test remotely the
same logical conditions; merely that at least the same methods be executed during the
test run.

32 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

Figure 3.3: A sample test hierarchy based on coverage sets.

Unfortunately, existing unit testing tools and frameworks do not order unit tests in
terms of method coverage, and do not even collect this information. In this chapter we
investigate the following hypothesis: When multiple unit tests fail, the ones that cover
one another fail due to the same defects. We provide initial evidence that:

— Most unit tests of a typical application are comparable by the covers relation, and
can thus be partially ordered.

— When a unit test fails, another test that covers it typically fails too.

If unit tests break in the same coverage chain of our coverage hierarchy, we can infer
that there is a single defect that is causing all unit tests to break. Since PersonTest»testNew
is the “smallest” test (in the sense that it covers the least methods), it provides us
with better focus, and helps us find the defect more quickly. In any case, the fact
that these unit tests are related makes us consider them as a group in the debugging
process.

3.2 Ordering broken unit tests

In this section we explain our approach of ordering in detail, and discuss an implemen-
tation in a Smalltalk environment. The problem we tackle is to infer coverage hierar-
chies, given a set of unit tests. We therefore need to generate traces and then order
them.

3.2.1 Approach

To order the tests we used dynamic analysis because we

— have runnable test cases

— could apply it to both dynamically and statically typed languages

3.2. ORDERING BROKEN UNIT TESTS 33

— and are only interested in the actual paths taken of our unit tests

The examined unit tests are all written in SUnit, the Smalltalk version of the XUnit series
of unit test frameworks that exist for many languages. Our approach is structured as
follows:

1. We create an instance of a test sorter, into which we will store the partially ordered
test cases.

2. We iterate over all unit tests of a given application. We instrument all methods
of the application so that we can obtain trace information on the messages being
sent. The exact instrumentation mechanism to obtain the information depends on
the implementation language. We used the concept of method-wrappers ([Brant et
al., 1998]), where the methods looked up in the method dictionary are replaced
by wrapped versions, which can trigger some actions before or after a method
is executed. Here the method wrapper simply stores if its wrapped method was
executed.

3. We then

(a) execute each unit test, in our case via the XUnit-API,

(b) obtain the set of method signatures which were called by the test, in our case
by iterating over all wrapped methods and checking if they have been executed,

(c) check if this set is empty, which for example could be due to the fact that the
test only called methods of prerequisite packages,

(d) if the set is not empty, we create a new instance of a covered test case, where
we store this set of method signatures together with the test,

(e) add this covered test case to the test sorter,

(f) reset the method wrappers, so that they are ready to store if the next unit test
executes them.

4. Some of the covered test cases are equivalent to others as their sets of covered
method signatures are equal. To obtain a partial order we have to subsume this
equivalent covered test cases under one node, that we call an equivalent test case.
For all equivalent covered test cases we create an instance of an equivalent test
case, store the set of method signatures and the names of the equivalent test cases
in it, store it in the test sorter and then remove the equivalent covered test cases
out of the test sorter. Note that both covered test cases and equivalent test cases
are test nodes, a superclass where we store the shared behavior of these two.

5. We then order the resulting test nodes stored in our test sorter using the following

34 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

relationship: A test node A is smaller than a test node B if the set of method
signatures of A is included in the set of method signatures of B. We therefore
pairwise compare the remaining test nodes and thus build a partial order. We
store both the covering and the being covered relationship in variables of the test
node.

6. Finally we compute the transitive reduction of this lattice, thus eliminating all
redundant covering relations between the test nodes.

7. Finally we obtain an instance of a test sorter that we can ask which of some given
tests we should attack first. Note that we did the case studies with non breaking
unit tests. In the real world scenario with broken unit tests, we could either use
a test sorter, which was initialized with the tests while they were non breaking, or
reinitialize it with only the broken unit tests.

3.2.2 Implementation

In order to perform experiments to validate our claim, we implemented our approach in
VisualWorks Smalltalk1. We chose to do the implementation in VisualWorks Smalltalk
because

— tools to wrap methods and assess coverage are freely available,

— we have numerous case studies available,

— we can build on Lanza’s freely available tool CodeCrawler [Lanza, 2003] to visualize
the information we obtained.

We obtain the trace information by using Hirschfeld’s AspectS [Hirschfeld, 2003], a flex-
ible tool which builds upon John Brant’s MethodWrappers [Brant et al., 1998]. Though
AspectS obtains the traces in the same way as method-wrappers described before, we
used AspectS because it lets us obtain more detailed information about the current
state of the stack, when a method is entered. In Java one would use AspectJ [Kiczales
et al., 2001].

3.3 Case studies

We performed our experiments on the following four systems, which were created by
four different developers, who were unaware of our attempts to structure their tests

1See www.cincomsmalltalk.com for more information.

3.3. CASE STUDIES 35

while they were writing them.

1. Wuyt’s MagicKeys2, an application that makes it easy to graphically view, change
and export/import keyboard bindings in VisualWorks Smalltalk.

2. Gîrba’s Van ([Gîrba et al., 2004]), a version analysis tool built on top of Ducasse’s
et al. Moose Reengineering Environment [Ducasse et al., 2001].

3. Renggli’s SmallWiki ([Renggli, 2003]), a collaborative content management tool.

4. Lanza’s CodeCrawler ([Lanza, 2003]), a language independent reverse engineering
tool which combines metrics and software visualization.

3.3.1 Setup of the experiments

In a first phase, we ordered the unit tests for each case study as described in Chapter 3.2
(p.32) and measured if a relevant portion of them were comparable by our coverage cri-
terium.

In a second phase, we introduced defects into the methods to validate that if a unit test
breaks, its covering unit tests are likely to break as well. We therefore

1. iterated over all test cases of the case study that were covered by at least one other
test case,

2. determined which methods were invoked by each of those tests, but not by any
other test it is covered by,

3. mutated the methods according to some mutation strategy,

4. and, for each each mutation, executed the unit tests and all their covering unit
tests and collected the results.

We used the following mutation strategies:

1. full body deletion, i.e., we removed the complete method body.

2. code mutations of JesTer: JesTer, developed by Moore [Moore, 2001], is a mutation
testing extension to test JUnit tests by finding code that is not covered by tests.
JesTer makes some change to the code, runs the tests, and if the tests pass, JesTer
reports what it changed. We applied the same mutations as JesTer, which are

(a) change all occurrences of the number 0 to the number 1

(b) flip true to false and vice versa

2http://homepages.ulb.ac.be/∼rowuyts/MagicKeys/index.html

36 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

(c) change the conditions of ifTrue statements to true and the conditions of ifFalse
statements to false.

3.3.2 Results

The case studies are presented at more detail in Table 3.1 (p.36) and Table 3.2 (p.37).

System LOC LOC (Tests) Coverage #Unit Tests Equivalent tests Tests covered by Tests
Magic Keys 1683 224 37% 15 20% 53.3%

Van 3014 716 64% 67 9% 24.2%
CodeCrawler 4535 1071 24% 79 37.3% 40%

SmallWiki 5660 3096 64% 110 29.8% 47.4%

Table 3.1: The resulting coverage of unit tests in our case studies.

Figure 3.4: The coverage hierarchy of the Code Crawler tests visualized with Code Crawler.

As we see in Table 3.1 (p.36) our experiment was performed with applications which had
1600 to 5600 lines of code. The ratio of LOC(Tests) to LOC reached from 13% to 56%.
The maximum test coverage was 64%.

In Figure 3.4 (p.36) an arrow from the top to bottom denotes that the test node at the
top covers the test node at the bottom. We see a typical coverage hierarchy obtained in
the first part of our experiment: Most of the unit tests either covered or were covered
by some other unit test and only 5% to 16% of them were standalones (Figure 3.5
(p.37)).

A considerable percentage of unit tests (9% to 37%, see Table 3.1 (p.36)) called the same
set of method signatures as at least one other test. 25% to 53% of the unit tests were

3.3. CASE STUDIES 37

Figure 3.5: The distribution of comparable test nodes in our four case studies.

covered by at least one other unit test. This means that for roughly every third test of
our case studies, the probability is high that if the test fails it will not fail alone.

System #Methods Strategy #Methods mutated Errors propagating to all covering tests
Magic Keys 277 Full Deletion 46 93.5%

JesTer 17 58.8%
VAN Full Deletion 357 97.8%

JesTer 59 100%
CodeCrawler 1104 Full Deletion 41 92.7%

SmallWiki 1565 Full Deletion 2415 99.5%
JesTer 318 100%

Table 3.2: Results of our automatic mutation experiments.

We carried out the second phase of our experiment, the automatic method mutation,
in all case studies except CodeCrawler. As many mutations in CodeCrawler resulted
in endless loops we did not have time to complete it. We merely did the full deletion
mutation on every 10th method and omitted the JesTer mutations. The results are
displayed in Table 3.2 (p.37): 92% to 99.5% of the full deletion mutations of a method
broke the smallest test calling this method and all its covering tests, as did 59% to 100%
of the JesTer mutations. Note that the number of mutated methods is larger than the
number of methods, as the same method could be mutated in the context of different

38 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

tests.

Figure 3.6: An avalanche effect in the coverage hierarchy of Magic Keys. One manually intro-
duced bug causes 10 test cases to fail.

Let us have a detailed look at the effects of a full method deletion on the coverage hi-
erarchy of the Magic Key tests in Figure 3.6 (p.38). We are mutating a method which
is called from the test MagicKeysTest»testMasks, thus from all of its covering tests. Here
we picked a rare example, where not all of the covering tests are failing. Both MagicK-
eysTest»testRegularCharCreating and the node including the equivalent test cases MagicK-
eysTest»testMetaDispatchWriting, testAltDispatchWriting and testShiftDispatchWriting do not fail
because of the deleted method.

On the other hand the two tests MagicKeysTest»testSpecialConstantKeyCreating and Magic-
KeysTest»testKeyCopying also fail, though they do not cover the test MagicKeysTest»testMasks,
they merely have a non-empty intersection set with it, including the mutated method.
Also note, that MagicKeyTest»testKeyCopying, which is a standalone test, has the lowest
number of method signatures called, and not MagicKeysTest»testMasks.

3.4. DISCUSSION 39

3.4 Discussion

The experiments we performed are rather simple, but they are also remarkable for the
consistency of their results: In each case, a significant majority of the test cases was
comparable to other unit tests, using the rather stringent criterion of inclusion of the
sets of called methods. Furthermore, each case study consistently showed that if a
defect causes a particular unit test to break, unit tests that precede it in the partial
order also tend to break. The partial order over tests is therefore not accidental, but
exposes implicit dependency relationships between the tests.

3.4.1 Semantic ordering of tests

In this chapter we focused on bug tracking via partial ordering of unit tests. Providing
the order of unit tests could also help the developer to comprehend the structure of the
unit tests and the structure of the underlying system. It can reassure the developer
in his or her perceived layering of the system if the order of the test cases reflects this
layering.

System Signature of test case
Magic Keys MagicKeysTest»testAltDispatchWriting
Magic Keys MagicKeysTest»testMetaDispatchWriting
Magic Keys MagicKeysTest»testShiftDispatchWriting

CodeCrawler CCNodeTest»testRemovalOfEdgeRemovesChild
CodeCrawler CCNodeTest»testRemovalOfEdgeRemovesParent
CodeCrawler CCNodeTest»testRemovalOfSoleEdgeRemovesChildOrParent

Table 3.3: Examples for equivalent test cases.

The method names of the example in Table 3.3 (p.39) indicate a parallel structure of the
tests, while the method names in the list below suggest a hierarchical one:

— LoaderTest»testConvertXMIToCDIF
(LoaderTest»testLoadXMI)

— SystemHistoryTest»testAddVersionNamedCollection
(SystemHistoryTest»testAddVersionNamed)

— SystemHistoryTest»
testSelectClassHistoriesWithLifeSpan
(SystemHistoryTest»testSelectClassHistories)

40 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

Another example of how partially ordering the tests can help developers to understand
test suites and the system under test can be seen in Figure 3.7 (p.40) which displays the
ordering relationship of a Date and Time-package for Squeak. The test TimeStampTest »
testStoreOn covers the test TimeStampTest » testPrintOn which again covers the test TimeS-
tampTest » testPrinting. Smalltalk developers are aware of the fact that store strings for
some objects can be used to recreate these objects at a later time. Reading this hierarchy
hints developers that creating store strings for time-stamps is reusing the functionality
of printing time-stamps out to the user.

TimeStampTest
testMinusDays

TimeStampTest
testDateAndTime

3

TimeStampTest
testAccessing

1

TimeStampTest
testDate

3

TimeStampTest
testTime

5

TimeStampTest
testCoverage
TimeStampTest
testTimeStamp

6 4

TimeStampTest
testPlusSeconds
TimeStampTest

testPlusSecondsOverMidnight

2

TimeStampTest
testPlusDays

1

TimeStampTest
testConverting

9

TimeStampTest
testMinusSecondsOverMidnight

TimeStampTest
testMinusSeconds

4

TimeStampTest
testStoreOn

TimeStampTest
testPrintOn

3

TimeStampTest
testPrinting

1

16

TimeStampTest
testComparing

TimeStampTest
testSorting

6

4

TimeStampTest
testArithmeticAcrossDateBoundary

TimeStampTest
testFromString

5

3

TimeStampTest
testNew

TimeStampTest
testClassComment

2

TimeStampTest
testArithmetic

9

TimeStampTest
testFromSeconds

3

TimeStampTest
testUnCategorizedMethods

3

Figure 3.7: The generated partial order of a test suite concerned with a timestamp functionality
in Squeak 3.7. The two equivalence classes of tests displayed in the two big ellipses on the
top include similar method names indicating that they test similar behavior. Our overview also
indicates, that storing and printing timestamps is similar if not interdependent behavior, like wise
comparing and sorting timestamps.

3.4.2 Limitations

The lightweight nature of our approach has some drawbacks and limitations:

— One unexpected result was that if the JesTer mutations were applicable to some unit
tests, in 100% of the cases a broken inner test case meant that all its covering tests
were broken. Thus our first assumption that the more specific JesTer mutations
would let more covering test cases survive, seems to be incorrect: The JesTer method

3.5. RELATED WORK 41

tweaks are even more fatal to the majority of covering tests than full body deletions.
We plan to use more realistic mutations and manual introduction of errors in future
experiments to overcome this problem.

— Parallel tests seem to cover each other even if they differ only by a single method
signature. Sorting these basically equal unit tests does not add an advantage as an
exception will probably cause all of them to fail and none of them will be more telling
than the other.

— So far we have limited our case studies to Smalltalk programs. Perhaps style and
conventions used in Smalltalk produce results which differ in other object-oriented
languages.

— The developers of the case studies are all members of our research group thus also
working in academia.

— We have not measured the implications of real bugs. How many unit tests break
because of just one real bug and not because of one artificial mutation?

— We did not make any distinction between failures and errors when we were evaluating
the chain of failed tests caused by one mutation.

3.5 Related Work

Memon et al. [Memon et al., 2001] suggest the use of planning used in artificial intelli-
gence in order to hierarchically sort GUI tests into partial orders.

Unit testing has become a major issue in software development during the last decade:
Test-driven development (TDD) as defined by Beck [Beck, 2003] is a technique in which
testing and development occur in parallel, thereby providing developers with constant
feedback. The most popular unit testing framework used in TDD named XUnit and also
developed by Beck [Beck and Gamma, 1998] does not currently prioritize failed unit
tests.

De Pauw et al. [De Pauw et al., 1998] suggest execution-patterns to understand and vi-
sualize traces of object-oriented programs. One pattern could be to flatten the execution
trees, but they do not suggest to just put the signatures into sets and compare these
sets only.

Chari et al. [Chari and Hevner, 2006] stress the notion of cyclically depending test cases
and emphasize the schism between high level and low level tests: “we find a disconnect
between test case generation approaches that deal at the low level of individual program
statements and the reliability allocation models that are at the higher abstraction level

42 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

of software modules.”

Parrish et al. [Parrish et al., 2002] define a process for test-driven development that
starts with fine-grained tests and proceeds to more coarse-grained tests. They state
that “Once a set of test cases is identified an attempt is made to order the test case runs
in a way that maximizes early testing. This means that defects are potentially revealed
in the context of as few methods as possible, making those defects easier to localize.” In
their approach, tests are written beforehand with a particular order in mind, while in
our approach we investigate a posteriori orderings of existing tests.

Rothermel et al. [Rothermel et al., 2002] introduce the term “granularity" for software
testing, but they focus on cost-effectiveness of test suites rather than on debugging
processes.

Koschke’s survey of software visualization has shown that graphs are the most popular
means to convey information on software systems visually [Koschke, 2003].

Selective regression testing is concerned with determining an optimal set of tests to run
after a software change is made [Rothermel and Harrold, 1996] [Bible et al., 2001]. Al-
though there are some similarities with the work described in this chapter, the emphasis
is quite different: Instead of selecting which tests to run, we analyse the set of tests that
have failed, and suggest which of these should be examined first.

Test case prioritization [Rothermel et al., 1999] has been successfully used in the past to
increase the likelihood that failures will occur early in test runs.The tests are prioritized
using different criteria, the criterion which most closely matched our approach was total
function coverage [Elbaum et al., 2000]. Here a program is instrumented, and, for any
test case, the number of functions in that program that were exercised by that test
case is determined. The test cases are then prioritized according to the total number
of functions they cover by sorting them in order of total function coverage achieved,
starting with the highest.

End-users rely on the results of spreadsheets in day-to-day decision making but a study
from reported errors in 38% to 77% of the spreadsheets examined. [Panko and Jr, 1996]
They create cells and define formulas for them. These formulas use values contained in
other cells for their calculations. But whereas spreadsheets are very concrete and thus
attractive to the end-user, they lack a notion of testing. If the computations done in
spreadsheets are acyclic, they can be put into a partial order, thus helping the spread-
sheet developers to understand computations by visualizing them and also to debug
them.

Wong et al. [Wong et al., 1997] compare different selection strategies for regression test-
ing and propose a hybrid approach to select a representative subset of tests combining
modification based selection, minimization and prioritization. Again, they emphasize on

3.6. SUMMARY 43

which tests should be run and not on how failing tests should be ordered. Modification
based selection is their key to minimize the number of tests to run, thus they are relying
on having prior versions of the tested program whereas our approach can in principle
be used without having prior versions, as we could also order the tests using only the
coverage of the failed tests.

Zeller and Cleve et al. [Zeller and Hildebrandt, 2002] [Cleve and Zeller, 2000] [Zeller,
2005] introduced delta debugging to simplify test case input, reducing relevant exe-
cution states and finding failure-inducing changes. We focus on reducing failing tests
from a set of semantically different tests to the most concise but still failing tests. Thus
the technique of Zeller et al. could pay off more using these smaller tests as initial
input.

3.6 Summary

We have proposed a lightweight approach to partially order unit tests in terms of the sets
of methods they invoke. Our experiments with four case studies reveal that this tech-
nique exposes implicit semantic ordering relationships between otherwise independent
tests. We have showed that this ordering can be exploited in two ways:

Debugging failed Test Cases One fault in the software is triggering several test cases
to fail, as test cases overlap with regards to the functionality they test. Our partial order
enables developers to visualize that portion of tests which not only overlap but cover
each other’s functionality. It turned out that a high percentage of tests take part of
such an ordering. As less specific unit tests tend to fail if more specific unit tests also
fail, we can guide developers to the most specific failing test cases which are easier to
understand and debug, as they provide the most specific context.

Understanding Test Suites We showed how exposing implicit semantic ordering rela-
tionships between test also helps developers to understand both the test suites and the
system under test. As high-level functionality is using low-level functionality, high-level
tests are using both low- and high-level functionality. The layering of the system is
thus reflected by the layering of the tests, and visualizing the partial order helps to de-
termine what high-level functionality is using which low-level functionality (Figure 3.7
(p.40)).

Our results imply that if more specific unit tests run, less specific unit tests are likely to
run too. This makes a strong case for building high level unit tests, which is currently

44 CHAPTER 3. PARTIALLY ORDERING UNIT TESTS

difficult, as high level test scenarios cannot composed out of low level test scenarios.
In Chapter 5 (p.67) we will show how the metaphor of examples allows developers to
compose high level tests out of low level ones.

Chapter 4

Taxonomy of Unit Tests

The style and granularity of individual unit tests may vary wildly. This can make it dif-
ficult for a developer to understand which methods are tested by which tests, to what
degree they are tested, and what to take into account while refactoring. But in our ex-
perience most unit tests focus on a single method under test. To validate this claim we
have manually categorized the test base of a large existing object-oriented system in or-
der to derive a taxonomy of unit tests which highlights the relationships of tests with their
methods under test. We have then developed some simple tools to semi-automatically cat-
egorize tests according to this taxonomy, and applied these tools to two case studies. As it
turns out, the vast majority of unit tests does focus on single methods. In this chapter we
present our taxonomy, describe the results of our case studies, and present our approach
to semi-automatic categorization.

45

46 CHAPTER 4. TAXONOMY OF UNIT TESTS

4.1 Introduction

XUnit [Beck and Gamma, 1998] in its various forms (JUnit for Java, SUnit for Smalltalk,
etc.) is a widely-used open-source unit testing framework. It has been ported to most
object-oriented programming languages and is integrated in many common IDEs such
as Eclipse.

Although these development environments help developers to navigate between related
methods in a complex software system, they offer only limited help in relating methods
and the unit tests that test them.

Our hypothesis is that a majority of unit tests focus on single methods. We call these
dedicated unit tests Method commands. If our hypothesis is valid, then we could help
the developer in several ways to write and evolve methods together with their tests:

— Tighter integration of tests and methods in class browsers. Each Method command
could be displayed close to its method, and document a quality-approved usage of
the method. (See Figure 4.1 (p.47)) It then would be also clear if a method has a
dedicated test case or not. The developer would not have to switch windows for
developing tests or methods as they could be naturally displayed site by site.

— Test case selection. All Method commands could be executed as soon as their focused
method has been changed.

— Concrete Typing. The set of tested concrete types of the receiver, parameters and
result of the method under test are deducible by executing an instrumented version
of its Method commands. Thus Method commands remove the burden of a test-first-
driven development of providing the types in a statically typed language or deducing
them in a dynamically typed language.

— Test case refactoring. If a method is deleted, its corresponding test method could be
deleted immediately too. Renaming a method would not break the brittle naming
convention anymore, which is currently the only link between a method and its unit
tests. Adding a parameter to a method could be automatically mirrored by adding a
factory to its according test1.

In order to validate our hypothesis we have:

— Developed an initial taxonomy of unit tests by carrying out an empirical study of a
substantial collection of tests produced by a community of developers.

1Further refactorings [Fowler et al., 1999], which have to be carried out in parallel for the test code and the
code under test would be easier too, but this is subject to further research.

4.1. INTRODUCTION 47

Figure 4.1: An enhanced class browser shows methods and their Method tests side by side. Note
that the test returns its result, thus enabling other unit tests to reuse it. We thus store tests like
other factory methods on the class side.

— Implemented some lightweight tools to automatically classify certain tests into cate-
gories offered by the taxonomy.

— Conducted case studies to validate the generality of the taxonomy.

Our manual experiment supports the hypothesis that a significant portion of test cases
have an implicit one-to-one relationship to a method under test or are decomposable into
Method commands. Although it is difficult to identify a general algorithm to distinguish
this kind of test, our initial heuristics to automate this endeavor succeed in identifying
50% of one-to-one tests without resulting in any false positives.

In Chapter 4.2 (p.48) we define some basic terms. In Chapter 4.3 (p.48) we present the
taxonomy derived from our manual case study. In Chapter 4.4 (p.56) we describe some
simple heuristics for mapping unit tests to the taxonomy, and we describe the results
of applying these heuristics to two case studies. In Chapter 4.5 (p.60) we discuss some
of the problems and difficulties encountered. Chapter 4.6 (p.63) briefly outlines related
work. In Chapter 4.7 (p.65) we conclude and outline future work.

48 CHAPTER 4. TAXONOMY OF UNIT TESTS

4.2 Basic Definitions

We first introduce some basic terminology, on which our taxonomy builds on.

Assertion: An assertion is a method that evaluates a (side-effect free) Boolean expres-
sion, and throws an exception if the assertion fails. Unit test assertions usually focus on
specific instances whereas assertions of Design By Contract are used in post-conditions
and are more general.

Package: We assume the existence of a mechanism for grouping and naming a set
of classes and methods. In the case of Java this would be packages; in the case
of Smalltalk we use class categories as the smallest common denominator of several
Smalltalk dialects. We call these groups packages.

Abstract Command: Every XUnit Test is an abstract command [Gamma et al., 1995],
which is a parameter-free method whose receiver can be automatically created. The
XUnit Test can thus be automatically executed.

The abstract command receiver in the case of a XUnit test case can be constructed
automatically, e.g., new MyTestCase(myTestSelector). The whole abstract command then
looks like:

(new MyTestCase(myTestSelector)).run()

Test package: A test package is a package which includes a set of abstract com-
mands.

Package under Test: If a test package tests another package, we call this other package
the package under test, which may be identified either implicitly by means of naming
conventions, or explicitly by means of a dependency declaration.

Candidate method: A candidate method is a method of the package under test.

Focuses on one method: We say that a command focuses on one method, if it tests the
result or side effects of one specific method and not the result or side effects of several
methods.

4.3 A Taxonomy of Unit Tests

Initial case study. We derived the taxonomy by manually categorizing 982 unit tests of
the Squeak [Ingalls et al., 1997] base system2. Squeak is a feature-rich, open source
implementation of the Smalltalk programming language written in itself and by many

2Version 3.7 beta update 5878, available at http://www.squeak.org

4.3. A TAXONOMY OF UNIT TESTS 49

Abstract Command
(focuses on one method?)

Abstract Method Command
(tests each call of focused method?)

Method
Test Command
(calls focused

method once?)

Method
Example

Method
Test

Negative Method
Example

Method
Example Command

(calls focused
method once?)

Method
Test Suite

yes no

no

yesyes no

yes no

Multi-Facet
Test Suite

Cascaded
Test Suite

no

Multiple-Method Command
(decomposable into Method Tests?)

Independent
Test Suite

yes

Multiple-Scenario Test Suite
(all later tested methods use

result of former?)

yes no

Abstract
Method Example

(expects exception?)

yes

Method
Example Suite

no

Multiple-Method Test Suite
(same scenario for

each tested method?)

yes

no

Other

Meta Test

Inverse Test

Uncategorized

checks if f(f (x))=x

talks about the
program, not its
effects?

-1

Figure 4.2: Taxonomy of unit tests. Nodes are gray and denote concrete occurrences of unit
tests.

developers. It includes network- and 2D/3D-graphics support, an integrated develop-
ment environment, and a constructivist learning environment for children.

The tests were written by at least 26 different developers. One of the test developers
developed 36% of the test cases, two more developed a further 34%, and yet another
six developers produced another 19% of tests. Each of the other developers produced
less than 3% of the tests. We defined the taxonomy depicted in Figure 4.2 (p.49) by itera-
tively grouping tests into categories and refining the classification criteria. Our manual
categorization yielded a distribution of the categories shown in Figure 4.3 (p.50).

We now describe and motivate each of the unit test categories in the taxonomy. For
each node of our taxonomy we present a real world example found in the Squeak unit
tests3.

We divide our taxonomy tree into two subtrees (Figure 4.2 (p.49)): (1) Abstract method
commands, which are abstract commands that focus on single methods, and (2) multiple-

3For a short introduction to the Smalltalk syntax see the appendix.

50 CHAPTER 4. TAXONOMY OF UNIT TESTS

method commands, which do not focus on a single method. We divided each of these
subtrees into two further subtrees, which we will present in the following subsections.

Method tests
53%

Method test suites
15%

Method
example commands

6%

Multi-facet test suites
5%

Cascaded test suites
4%

Independent test suites
2%

Rest
5%

Inverse tests
10%

Figure 4.3: Manual classification of unit tests for the base Squeak system

4.3.1 Method test commands

A Method test comand is an Abstract method command which has assertions testing the
outcome of each call of the method under test.

Method tests

If it tests the outcome of exactly one call of a method under test, we call it a Method test.
In the example below the method Week class»indexOfDay: would be the method under
test, and only called once:
YearMonthWeekTest�testIndexOfDay

self assert: (Week indexOfDay: ’Friday’) = 6.

4.3. A TAXONOMY OF UNIT TESTS 51

Method test suites

On the other hand a Method test suite tests the outcome of the method under test in
several situations:
YearMonthWeekTest�testDaysInMonth

self assert: (Month daysInMonth: 2 forYear: 2000) = 29.
self assert: (Month daysInMonth: 2 forYear: 2001) = 28.
self assert: (Month daysInMonth: 2 forYear: 2004) = 29.
self assert: (Month daysInMonth: 2 forYear: 2100) = 28.

4.3.2 Method example commands

A Method example command is an Abstract method command which does not have as-
sertions for the method under test. So this command does not test the focused method
against some desired result, but merely calls it. We detected three concrete instances of
these commands:

Negative method example

A negative method example is an abstract method example which checks that an excep-
tion is thrown if a method is called in a way which violates a precondition. Beck [Beck,
2003] calls negative method example “exception tests”. Here is an example of a nega-
tive method example ensuring that an attempt to create the directory C: on a Windows
platform should fail:
DosFileDirectoryTests�testFileDirectoryNonExistence

"Hoping that you have ’C:’ of course..."
FileDirectory activeDirectoryClass == DosFileDirectory ifFalse:[^self].
self

should: [(FileDirectory basicNew fileOrDirectoryExists: ’C:’)]
raise: InvalidDirectoryError.

Note that we consider neither shouldnt: raise: nor should: raise: as assertions, because they
do not test whether something is true or false in a given state, but merely check whether
or not an exception is thrown.

Method examples

An method example is an abstract method example which expects that no exception is
thrown if the method under test is called without violating some preconditions. Again,
method examples do not contain assertions. The unit test below tests that the invocation
of copyBits on a BitBlt in a certain situation does not throw an exception:

52 CHAPTER 4. TAXONOMY OF UNIT TESTS

BitBLTClipBugs�testDrawingWayOutside2
| f1 bb f2 |
f1 := Form extent: 100@100 depth: 1.
f2 := Form extent: 100@100 depth: 1.
bb := BitBlt toForm: f1.
bb combinationRule: 3.
bb sourceForm: f2.
bb destOrigin: 0@0.
bb width: SmallInteger maxVal squared; height: SmallInteger maxVal squared.
self shouldnt:[bb copyBits] raise: Error.

Method example suites

A Method example suite is a Method example command which calls the method under
test more than once. It can be decomposed into several method tests or abstract method
examples which call the same focused method once:

FractionTest�testDegreeSin
self shouldnt: [(4/3) degreeSin] raise: Error.
self assert: (1/3) degreeSin printString = ’0.005817731354993834’

Above method example suite is decomposable into a negative method example and a
method test.

4.3.3 Multiple-method test suite

A multiple-method test suite is a multiple-method command which is decomposable into
Method tests. (See Figure 4.4 (p.53)).

Multi-facet test suites

Multi-facet test suites are multiple-method test suites that reuse a scenario to test several
candidate methods. In the following example a previously initialized variable time is
used to check different methods on Time.

TimeTest�testPrinting
self

assert: time printString = ’4:02:47 am’;
assert: time intervalString = ’4 hours 2 minutes 47 seconds’;
assert: time print24 = ’04:02:47’;
assert: time printMinutes = ’4:02 am’;
assert: time hhmm24 = ’0402’.

4.3. A TAXONOMY OF UNIT TESTS 53

Figure 4.4: Method test suites, multi-facet test suites and cascaded test-suites are decomposable
into Method tests.

Cascaded test suites

Cascaded test suites are multiple-scenario test suites in which the results of one test are
used to perform the next test:
Base64MimeConverterTest�testMimeEncodeDecode
| encoded |
encoded _ Base64MimeConverter mimeEncode: message.
self should: [encoded contents = ’SGkgVGhlcmUh’].
self should:

[(Base64MimeConverter mimeDecodeToChars: encoded) contents
= message contents].

This cascaded test suite first triggers a method Base64MimeConverter»mimeEncode:, tests
its result encoded, and then uses encoded to test Base64MimeConverter»mimeDecodeToChars:.

Independent test suite

An independent test suite is a multiple-scenario test suite which tests different methods
on different receivers not depending on each other.

In the following example several independent methods are tested:

54 CHAPTER 4. TAXONOMY OF UNIT TESTS

IslandVMTweaksTestCase»replaceIn:from:to:with:startingAt: needs a totally different set of pa-
rameters than say

IslandVMTweaksTestCase»nextInstanceAfter: 4

IslandVMTweaksTestCase�testForgivingPrims
| aPoint anotherPoint array1 array2 |
aPoint := Point x: 5 y: 6.
anotherPoint := Point x: 7 y: 8. "make sure there are multiple points floating around"
anotherPoint. "stop the compiler complaining about no uses"

self should: [(self classOf: aPoint) = Point].
self should: [(self instVarOf: aPoint at: 1) = 5].
self instVarOf: aPoint at: 2 put: 10.
self should: [(self instVarOf: aPoint at: 2) = 10].

self someObject.
self nextObjectAfter: aPoint.

self should: [(self someInstanceOf: Point) class = Point].
self should: [(self nextInstanceAfter: aPoint) class = Point].

array1 := Array with: 1 with: 2 with: 3.
array2 := Array with: 4 with: 5 with: 6.

self replaceIn: array1 from: 2 to: 3 with: array2 startingAt: 1.
self should: [array1 = #(1 4 5)].

4.3.4 Others

We call all test cases which neither focus on one method nor are decomposable into
Method tests others.

Inverse test

In [Gaelli et al., 2005b] we called the Inverse test Constraint test.

An inverse test checks the interplay of several methods without focusing on one of them.
In the following example a graphic conversion functionality is tested by comparing the
original bitmap with the result obtained after encoding the bitmap to the png-format
and then decoding it back again.

PNGReadWriterTest�test16Bit
self encodeAndDecodeForm: (self drawStuffOn: (Form extent: 33@33 depth: 16))

4Actually these tests are calling primitives, which are implemented in the virtual machine and not in the
Smalltalk image.

4.3. A TAXONOMY OF UNIT TESTS 55

Meta test

A meta test is a test which talks about the implementation itself, e.g., its structure,
its current state, its implemented or unimplemented methods or its call graph. For
example, the following squeak test checks if the class of Metaclass only has one instance,
namely Metaclass:

BCCMTest�test07bmetaclassPointOfCircularity
self assert: Metaclass class instanceCount = 1.
self assert: Metaclass class someInstance == Metaclass.

Mocks are used to state how often a certain method should be triggered in a given test.
Freeman et al. [Freeman et al., 2004] provide the following example for an access to a
cache, where only the first time an object is loaded the lookup should be executed. This
desired property is stated via mockLoader.expect(once()).

public void testCachedObjectsAreNotReloaded() {
mockLoader.expect(once())

.method("load").with(eq(KEY))

.will(returnValue(VALUE));

assertSame("loaded object",
VALUE, cache.lookup(KEY));

assertSame("cached object",
VALUE, cache.lookup(KEY)); }

Ducasse et al. [Ducasse et al., 2006] describe another approach to create meta tests
using a logic language like Prolog for stating desired properties of coverage sets.

Uncategorized

We call all unit tests which do not fall into one of the above categories uncategorized.

4.3.5 First validation: Maven

We have detected out taxonomy using the squeak case study. To validate its generality
we manually categorized 50 randomly selected JUnit tests of another case study using
the Java project management and project comprehension tool called Maven [Massol and
O’Brien, 2005].

25 of these tests merely checked some getter/setter code and were classified as inverse
tests. The other sampled tests fell naturally into one of our proposed categories, and
if less trivial getter/setter test code had been selected, we could expect again Method
commands as the majority of classified tests (See Figure 4.5 (p.56)).

56 CHAPTER 4. TAXONOMY OF UNIT TESTS

Method tests
16%

Method test suites
8%

Method
example commands

4%

Multi-facet test suites
4%

Cascaded test suites
12%

Inverse tests
52%

Rest
4%

Figure 4.5: Manual classification of 50 random unit tests of Maven

4.4 Automatic Classification of Unit Tests

After having manually derived the taxonomy, we developed some lightweight heuristics
to automatically detect the feature properties depicted in Figure 4.2 (p.49). Our goal is
to classify most of the unit tests automatically. Using these heuristics we have been
able to automatically classify 52% of the manually classified Method commands tests,
while our average precision rate was 89% (see Table 4.1 (p.58)). Finally we applied our
automatic approach to a new case study and found that more than a third of the unit
tests focus on single methods.

4.4.1 Instrumentation

To detect the feature properties we rely on dynamic analysis of the code, as we are
dealing with runnable test cases in a dynamically typed environment.

Many of the unit tests of the Squeak base system test low level classes like Arrays etc. It
is therefore not feasible to use method wrappers [Brant et al., 1998], because recursion
would almost certainly arise when the wrapping algorithm uses a method which is about

4.4. AUTOMATIC CLASSIFICATION OF UNIT TESTS 57

to be wrapped — thereby bringing our system to a halt. We therefore used the bytecode
interpreter found in the class ContextPart, which is also used in the debugger of Squeak
to step and send through methods.

Using and enhancing the bytecode interpreter of Squeak has the advantage of being
more general than method wrappers and base level classes can be tested too. However,
it comes with the following disadvantages:

— It is slower than current VM optimized method wrapper code.

— Simulation of exception handling code is buggy in the current implementation in the
SqueakVM and we lacked time to investigate this error further: As a consequence
using the bytecode interpreter of Squeak did not work for exception handling code
which is used mainly by method examples or negative method examples.

— Methods which only return a variable are inlined by the Smalltalk-compiler and thus
cannot be detected5.

4.4.2 Lightweight Heuristics

In the following we present a list of heuristics used to detect the feature properties
displayed in the left subtree of the Figure 4.2 (p.49). We have not yet developed any
heuristics to classify leaves of the right subtree.

The first question in the decision tree is whether a unit test focuses on a single method.
Three possible ways to detect this property are:

1. Deduction of the focused method from the command name. One approach to deduce
if a command focuses on one method is to examine the method name of the com-
mand. Often the developer includes the name of the method under test as part
of the test method. A typical unit test looks like FooTest»testBar which denotes that
a method named bar of the class named Foo is tested and thus focused on. The
execution of the test method can be simulated with our bytecode interpreter and
thus checked, if it calls directly a method of the form Foo»bar or Foo»bar:.

If the naming convention of the test method name can be decoded and exactly
one candidate method matches, then the developer has clearly indicated that this
would be the method under focus. More specifically we deleted the first four char-
acters “test” of the command name, and searched for a selector in the trace in
the first level, that matches the remaining string, possibly converting the leading
character to lower case, and ignoring parameters.

5On the other hand this might be a welcome side effect as one would normally not focus a test on a method
that merely returns a variable.

58 CHAPTER 4. TAXONOMY OF UNIT TESTS

Example: If the test method name is BarTest»testFoo then we look for an event in
which a candidate method foo is called. If there are two selectors called, like foo:
and foo, the result is ambiguous and we cannot say on which of them our test
would focus.

2. Deduction of the focused method by the command structure. We say that the com-
mand focuses on this method, if exactly one candidate method is called directly: A
simple way to detect if a unit test focuses on one method is to find out if the test
method only calls one candidate method, that is only one method of the package
under test. This approach cannot be complete, as many unit tests do the setup
of the test scenario not in the extra TestCase»setUp method, but in the test method
itself, and there they often have to call methods of the package under test for the
setup. We do not make a distinction whether a candidate method is called only
once or more than once, as long as it is the only called candidate method.

3. Deduction of the focused method by using historical information. In incremental test-
driven approaches the less complex methods will be built before the more complex
ones. To test a more complex method the developer will likely refer to simpler
candidate methods, either to build the scenario on which the complex method can
be run or to use already existing methods as test oracles. But due to a lack of time
we could not further examine this interesting line of research.

To determine if a Method command is a Method test command or a Method example com-
mand we check if it only calls self should: [] raise: Exception, self shouldnt: [] raise: Exception
or friends, and if all the expressions inside the “shoulds” call the same method.

We can distinguish Method tests from Method test suites by simply counting how often
the method under test is called. Accordingly we do the further split up in the right
subtree, the Method example command and then use the difference between the calls
should:raise: and shouldnt:raise: to make the last distinction. With this heuristic we classify
any Method test as Method test command which does not call any kind of should:raise: and
shouldnt:raise:.

Category Manual result Computed Result Hits Recall Precision
Method tests 387 207 202 52% 98%
Method test suites 114 86 57 50% 66%
Negative method examples 11 15 10 91% 66%
Method examples 15 16 10 67% 63%
Method example suites 10 1 1 10% 100%

Total 537 334 280 52% 89%

Table 4.1: Preliminary manual and automatic classifications of Method commands of the Squeak
Unit Tests.

4.4. AUTOMATIC CLASSIFICATION OF UNIT TESTS 59

Category Manual result Computed Result Hits Recall Precision
Method tests 59 19 5 8% 26%
Method test suites 80 48 37 46% 77%
Method example suites 3 3 3 100% 100%

Total 142 70 45 32% 64%

Table 4.2: Preliminary manual and automatic classifications of Method commands of the Small-
Wiki Unit Tests.

4.4.3 A First Case Study: Squeak Unit Tests

Having categorized the Squeak Unit Tests before, we could compare the results of our
lightweight heuristic with our manual results. (See Table 4.1 (p.58)). Squeak 3.7 has
no notion of packages and relies on a naming convention of class-categories. We only
automatically categorized 671 of 982 tests, whose class-category name allowed us to
identify their package under test. Our heuristics were able to categorize 52% of the
leaves of the left subtree from our taxonomy with a mean precision of 89%, meaning
that only 11% of the categorized test cases were put in a different category than by the
human reengineer.

4.4.4 A Second Case Study: SmallWiki

After having done a manual categorization (see Figure 4.6 (p.60)) we automatically cate-
gorized the 200 unit tests of SmallWiki [Renggli, 2003], a collaborative content manage-
ment tool written in VisualWorks Smalltalk and ported to Squeak. We chose this system
as a case study, as it is a medium sized application developed by a single experienced
developer in a test-driven way.

A surprising result here was that more tests could be detected as focusing on one
method by considering the calls of only one candidate method, rather than by exploiting
their naming convention.

We only programmed the detection for three categories, namely Method tests, Method
test suites, and Method example suites. All of them together represented already more
than a third of all tests. Figure 4.6 (p.60) shows that contrary to the Squeak case study,
the developers here wrote more Method test suites than Method tests. The recall and
precision for Method tests displayed in Table 4.2 (p.59) is only 5% respectively 26% as
there have been many tests for getter/setter pairs: The getter-methods of variables are
inlined and could thus not be detected by our bytecode interpreter. Only setter methods
have been detected leading to false positives.

60 CHAPTER 4. TAXONOMY OF UNIT TESTS

Method tests
30%

Method test suites
39%

Multi-facet test suites
6%

Inverse tests
10%

Independent Test Suite
1%

Method
example commands

3%

MetaTest
1%

Cascaded test suites
10%

Figure 4.6: Manual classification of unit tests for the SmallWiki system

4.5 Discussion

82% of our manually classified Squeak tests implicitly focus on one method, which
strongly supports our hypothesis. It shows clearly that we should give the developers
means to make this link explicit6 as we propose in [Gaelli et al., 2004b].

A further advantage of our taxonomy is that it shows how tests are composable: 11%
of our manually classified tests are implicitly composed of Method commands. We can
thus give the developers means to compose and decompose tests explicitly. We will build
upon this result for designing our meta-model in the following chapter.

Although the taxonomy we have derived appears promising, it is a preliminary result for
several reasons:

— Our taxonomy is based on only three case studies. Though it seldom arises that we
discover new categories, more case studies need to be conducted.

— We focused on XUnit Tests, as described by Beck et al. [Beck and Gamma, 1998] so

6For Smalltalk we suggest to use method annotations which would not add much burden to the developer
and would be easy to parse

4.5. DISCUSSION 61

we do not know if developers write other kinds of unit tests while using other testing
frameworks.

— We have not addressed the question if unit tests should be considered whitebox or
blackbox-tests and if they could likewise be used as acceptance, integration, or end-
to-end tests.

— Only three of the Squeak Unit Test developers wrote 70% of the test cases making
our sample data of this case study less representative.

Developers have complete freedom to write any kind of unit tests — making automatic
classification a difficult business. The automatic classification heuristics are similarly
preliminary and may fail in the following cases:

Ambiguity of the naming convention Using the naming convention for automatic
detection of the method under test is unreliable and ambiguous. For example, does the
following test focus on Foo»bar:, on Foo»bar, or both of them? A similar problem arises in
Java, as the naming convention will not differentiate between overloaded methods that
take different types of parameters.
FooTest�testBar
|aFoo|
aFoo:= Foo new.
aFoo bar: 1.
self assert: (aFoo bar = 1)

We would manually categorize this one as a inverse test.

Test framework tests Tests of the test framework may be incorrectly categorized. The
following test could be classified as a negative method example of error: but its intent is
to be a method example of should:raise:

SUnitTest�testException
self

should: [self error: ’foo’]
raise: TestResult error

Assertions come only after clean up In some tests cleanups are necessary. As the
cleanup does not have to influence the test result, developers also write the assertions
after the cleanup.

In the following example both assertion statements could be moved two lines up pre-
serving the test case. Thus it is activate and not wait or suspend which is tested.
StopwatchTest�testMultipleTimings
aStopwatch activate.

62 CHAPTER 4. TAXONOMY OF UNIT TESTS

aDelay wait.
aStopwatch suspend.
aStopwatch activate.
aDelay wait.
aStopwatch suspend.
self assert: aStopwatch timespans size = 2.
self assert:
aStopwatch timespans first asDateAndTime <
aStopwatch timespans last asDateAndTime

Tested method is not the last called of the package under test Some tests are test-
ing methods which are not the last method of the package called before the assertion oc-
curred. Example: Is the method under test removeActionsWithReceiver: or actionForEvent:?
The name of the command indicates the former, but the structure of the test suggests
the latter:
EventManagerTest�testRemoveActionsWithReceiver
| action |
eventSource
when: #anEvent
send: #size to: eventListener;
when: #anEvent
send: #getTrue to: self;
when: #anEvent:
send: #fizzbin to: self.
eventSource removeActionsWithReceiver: self.
action := eventSource actionForEvent: #anEvent.
self assert: (action respondsTo: #receiver).
self assert: ((action receiver == self) not)

Mock objects The following test is interesting, as it is programmed by an experienced
developer (it uses mock principles [Mackinnon et al., 2000] to deal with program be-
havior). Here the methods under test in a cascaded scenario are overwritten so that
additional information about the number of calls could be transcribed and tested. We
currently subsume this kind of test under meta tests.
MorphTest�testIntoWorldCollapseOutOfWorld
| m1 m2 collapsed |
"Create the guys"
m1 := TestInWorldMorph new.
m2 := TestInWorldMorph new.
self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).

"add them to basic morph"
morph addMorphFront: m1.
m1 addMorphFront: m2.
self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).

4.6. RELATED WORK 63

(...)

Naming convention indicates a method test, but it is not Which is the method
under test here, weeks: or days? Days are computed too so it is also an interesting
method to test. Our heuristic would detect Duration»weeks as the method under test. We
would manually categorize this one as a inverse test.

DurationTest�testWeeks
self assert: (Duration weeks: 1) days= 7.

Developers do not agree on the method under test Consider the two following tests
written by two different developers: They both check if two different kinds of instantia-
tions yield the same result. The name of the first indicates that it is testing =, the name
of the second indicates that it tests the creation of instances. Both tests have at least
two candidate methods, namely the instance creation methods and the = method.

IntervalTest�testEquals4
self assert: (3 to: 5 by: 2) = #(3 5).
self deny: (3 to: 5 by: 2) = #(3 4 5).
self deny: (3 to: 5 by: 2) = #().
self assert: #(3 5) = (3 to: 5 by: 2).
self deny: #(3 4 5) = (3 to: 5 by: 2).
self deny: #() = (3 to: 5 by: 2).

MonthTest�testInstanceCreation
| m1 m2 |
m1 := Month fromDate: ’4 July 1998’ asDate.
m2 := Month month: #July year: 1998.
self assert: month = m1.
self assert: month = m2.

Any meaningful definition of focuses on one method, where at least two different candi-
date methods are involved, is likely to be dismissed by at least one of those developers.
As a compromise they could categorize both of them as inverse tests.

4.6 Related Work

Binder [Binder, 1999] discriminates between methods under test (MUT) and classes
under test (CUT) but he does not discriminate between unit tests which focus on one or
on several MUTS.

Beck [Beck, 2003] argues that isolated tests would lead to easier debugging and to
systems with high cohesion and loose coupling. Method commands are isolated tests,
whereas multiple method-commands execute several tests and in the case of cascaded

64 CHAPTER 4. TAXONOMY OF UNIT TESTS

method test suites or multi-facet test suites depend on each other or on a common sce-
nario.

Van Deursen et al. [Deursen et al., 2001] talk explicitly about unit tests that focus on
one method and start to categorize them.They also introduce bad test smells like indirect
testing, which describe tests that we will categorize as independent tests. Bruntink
et al. [Bruntink and van Deursen, 2004] show that classes which depend on other
classes require more test code and thus are more difficult to test than classes which are
independent. Using cascaded test suites, where a test of a complex class can reuse the
tests of its required classes to set up the complex test scenario, improves the testability
of complex classes.

Eclipse [Holzner, 2004] provides a Search»Referring Tests menu item which allows one
to navigate from a method to a JUnit Test that executes this method. However no
distinction is made between methods used for setting up the test scenario and those
actually under test.

Jézéquel [Jézéquel, 1996] discusses how testing can rely on the Design by Contract
principle [Meyer, 1992] and classes are seen as self-testable entities as much as possible
by embedding unit test cases with the class. We found that developers write many
tests we could categorize as Method commands. The concept of Method commands even
makes methods self-testable. Squeak version 3.7 had almost 900 unit tests but only 24
assertions in the non test code. Associating Method examples with assertion containing
methods yields highly abstract and executable tests.

Van Geet researched the coevolution of software and tests over time [van Geet, 2006]. He
used Ant as a case study to apply several metrics like counting methods per test or tests
per method on several versions. He concludes that these heuristic metrics on dynamic
test dependencies have to be combined with global code coverage information to provide
a measure for overall coevolution of test code and product code. He also detects that
lots of methods are executed over and over again in several test cases, whereas some
methods are only executed in a few tests. He detects that these often executed methods
belong to some setup code of general test scenarios.

Edwards [Edwards, 2004] is making a claim for example centric programming:

In general, examples are standalone snippets of code that call the code
under observation. Unit tests (...) are a good source of examples, and should
be automatically recognized as such.

Our taxonomy should help us to link the different kinds of unit tests to the code they
are exemplifying.

4.7. SUMMARY 65

4.7 Summary

We have developed a taxonomy which categorizes the relations

— between unit tests and methods under test and

— between unit tests and other unit tests.

Knowing these relations can help the developer to refactor, compose and run the pro-
gram together with the tests, and thus to speed up their co-evolution. It can also help
the reengineer to assess if a given method is adequately tested.

We have given evidence that the “unit” under test in object-oriented programs is most
often a method and that most other kinds of unit tests can be decomposed into abstract
commands such as method examples or method tests.

We have started to develop some lightweight heuristics to automate this categorization.
Our simple heuristics can identify a relevant portion of categories with a high precision
rate. We have given evidence why complete automatic classification of unit tests using
our taxonomy is impossible for all our suggested algorithms.

We have also discovered that developers write tests which do not have any assertion at
all, but only establish whether a given method should or should not throw an exception:
5% of the tests in our manual case study and 2% in the automatic one fell into this
category.

In the following chapter we will exploit the fact that most unit tests focus on single
methods by making this relationship explicit in a meta-model and discuss the several
advantages of this explicit linking.

66 CHAPTER 4. TAXONOMY OF UNIT TESTS

Chapter 5

An exemplified Meta-Model for
Examples: Eg

As object-oriented developers we are used to solving a problem by introducing new ob-
jects and then describing their relationships to other objects. If we have a problem with
software engineering itself, the same pattern can be applied. For example, If we find that
behavior is not well factored out in current object-oriented programming languages, we
introduce a new object “traits”, [Schärli, 2005] or we introduce a new concept of “history”
to describe the evolution of object-oriented programs ([Gîrba et al., 2005]). According to
our observations made in Chapter 4 (p.45) we introduce the notion of explicit method com-
mands to connect methods and their exemplifying method commands. We call the meta-
model based on those method commands “Eg” and describe in detail the responsibilities
and collaborations of each class of our meta-model. Each responsibility is exemplified
by a refactored version of our bank example, which we introduce in the beginning of the
following chapter.

67

68 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

We start this chapter by refactoring the example of the bank account as introduced in
Chapter 2 (p.9) into explicitly linked tests serving as examples. We thus present how
developers can associate tests with tests and also tests with their units under test in a
seamless way in Smalltalk. We then abstract a meta-model out of this implementation
centered around the concept of exemplifying method commands and describe this meta-
model in detail. Then we validate our hypothesis that the single new concept of examples
connecting agile concepts of tests and code is enough to solve the problems described
in Chapter 3 (p.29). We finish the chapter by giving a brief outlook how this meta-
model can be implemented in other object-oriented languages such as Java, Ruby and
Python.

5.1 The Bank Account and its Tests refactored

As we value the principle of examples we are developing also our meta-model based on
the bank example originally depicted in Figure 2.5 (p.16) in Chapter 2 (p.9). We there-
fore first refactor the bank account together with its tests using light-way conventions
keeping the code readable but still transferable into a meta-model: Our conventions will
allow developers to write tests and examples in a natural way, but will still make the
missing links explicit.

As we have showed in Chapter 4.3 (p.48) most tests either focus on single methods or
are decomposable into positive method commands. In our bank example we thus focus
on the exemplification of classes and single methods. Looking back into the figure
Figure 2.4 (p.15) in Chapter 2 (p.9) we can see that in the current xUnit framework two
links are missing, namely the one between tests and other tests, and the one between
tests and code, where code means classes and methods.

As you can see In Figure 5.1 (p.69) and Figure 5.2 (p.70) we have refactored the bank
application together with its tests so that above mentioned links can be discovered in
an unambiguous manner. We suggest two alternative strategies to make the meta-
information persistent about what method the method command is focusing on and
what kind of test it represents. In the first alternative we use code conventions using
plain source code and a special parser, in the second alternative we suggest to use
method properties.

5.1.1 Storing Eg Commands via Coding Conventions

We relied on this strategy for making the source code of the refactored bank tests (see
Figure 5.2 (p.70) persistent. We did so by just using three conventions:

5.1. THE BANK ACCOUNT AND ITS TESTS REFACTORED 69

Object subclass: #Bank.Model.Bank
 instanceVariableNames: 'accounts'
 classVariableNames:''
 poolDictionaries:''
 category: 'Bank.Model'

Bank.Model.Bank>>initialize
 accounts := Dictionary new.
 "Postcondition"
 self assert: [self accounts isEmpty].
 ^self

Bank.Model.Bank>>accounts
 ^accounts values

Bank.Model.Bank>>accountNumbered: aNumber
 "Precondition"
 self includesAccount: aNumber.
 ^accounts at: aNumber

Object subclass: #Bank.Model.Account
 instanceVariableNames: 'balance number'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Bank.Model'

Bank.Model.Account class>>numbered: aNumber
 |anAccount |
 anAccount := self new initializeFor: aNumber.
 "Postcondition"
 self assert: [anAccount balance = 0].
 ^anAccount

Bank.Model.Account>>balance
 ^balance

Bank.Model.Account>>withdraw: someAmount
 |oldBalance |
 oldBalance := balance.
 "Precondition"
 self assert: [self canWithdraw: someAmount].
 balance := balance - someAmount.
 "Postcondition"
 self assert:
 [oldBalance = (balance + someAmount)]

Kernel-Classes.Behavior(Bank class)>>new
 ^self basicNew initialize

Bank.Model.Bank>> createAccount: aNumber
 |anAccount |
 "Precondition"
 self deny: [(self includesAccount: aNumber)].
 anAccount := Account numbered: aNumber.
 accounts
 at: aNumber
 put: anAccount.
 "Postcondition"
 self assert: [self includesAccount: aNumber].
 self assert: [
 (self accountNumbered: aNumber) number =
 aNumber].
 ^self

Bank.Model.Bank>>includesAccount: aNumber
 ^accounts includesKey: aNumber

Kernel-Classes.Behavior(Account class)>>new
 ^self basicNew initialize

Bank.Model.Account>>initializeFor: aNumber
 number := aNumber.
 balance:= 0

Bank.Model.Account>>number
 ^number

Bank.Model.Account>>deposit: someAmount
 |oldBalance |
 oldBalance := balance.
 balance := balance + someAmount.
 "Postcondition"
 self assert:[
 oldBalance = (balance - someAmount)]

Bank.Model.Account>>canWithdraw: someAmount
 ^balance >= someAmount

Figure 5.1: The Canonical Bank Account in Smalltalk now with Pre- and Postconditions.

70 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Checked Method Example
 (Bank class>>createAccount:)

Bank.Eg.Bank class>>withAccount1234
 ^self new
 createAccount: 1234;
 yourself

Method Example
 (Bank>>accountNumbered:)

Bank.Eg.Account class >>empty1234
 ^Bank withAccount1234 accountNumbered: 1234

Checked Method Example
 (Account>>withdraw:)

Bank.Eg.Account class>>testWithdraw
 ^self testDeposit withdraw: 30

Inverse Test
 (Account>>deposit: and Account>>withdraw:)

Bank.Eg.Account class>>testDepositAndWithdrawAll
 |anAccount anAmount oldBalance|
 anAccount := self empty1234.
 oldBalance:= anAccount balance.
 anAmount:=100.
 anAccount
 deposit: anAmount;
 withdraw: anAmount.
 self assert: [anAccount balance = oldBalance]

Negative Method Example
 (Bank class>>createAccount:)

Bank.Eg.Bank class>>testAccount1234Exists
 self
 should: [self withAccount1234 createAccount: 1234]
 raise: Exception

Checked Method Example
 (Account>>deposit:)

Bank.Eg.Account class>>testDeposit
 ^self empty1234 deposit: 100

Negative Method Example
 (Account>>withdraw:)

Bank.Eg.Account class>>testWithdrawTooMuch
 self
 should: [self testWithdraw withdraw: 130]
 raise: Exception

Figure 5.2: The bank account tests refactored to our new meta-model. We managed to abstract
all assertions into pre- and postconditions in the code. We implemented our meta-model in a light
way: We say, that the last method called is the method under test. By returning the result we
can compose the examples. As a consequence only two tests have to be called to gain the full
coverage.

5.1. THE BANK ACCOUNT AND ITS TESTS REFACTORED 71

First convention: Tests as Factories. The tests are moved to the class sides of Bank
and Account respectively. They all return according instances of these classes and thus
serve as tidy examples of these classes. This works because tests never should leave
any unclean side-effects. If there were any side-effects we would ensure 1, that these
side-effects would be cleaned by allowing developers to inline any eventual TestCase »
tearDown functionality into the test itself.

Note that we also allow collections of instances to be returned by positive method com-
mands. If we e.g., had a method to retrieve accounts from the bank Bank.Model class »
accounts we would allow its according method test to return a collection of accounts but
it still would get stored into Bank.Eg.Bank class.

Second convention: Last call of the test before assertions calls the method under
test. We call the method under test always at last with two exceptions: We allow special
keywords such as yourself to be called later (see Bank.Eg.Bank class » withAccount1234 in
Figure 5.2 (p.70)), and second, in the case of method tests, we allow a list of assertions
to be called later. If we need to denote a different method than the last one called, we
can either use method annotations or, in the case of Smalltalk, we can also bracket the
method under test with a block a la self test:[aBar foo: someParameter], so that Bar » foo is
declared as the method under test. For doing so, we only have to implement Object » test:
aBlock in our Eg framework and change the possibly existing SUnit framework in such
a way, that this method codeInlineObject » test: aBlock is not discovered by accident to
be a classic SUnit test, as it also starts with “test”.

Third convention: Storage of the tests in a dedicated module. In XUnit the test
methods are denoted with a naming convention: All test method names have to start
with “test”. In JUnit 4 this convention has been changed so that tests can also be
denoted with method annotations. We chose a different convention by making clear
that all methods which are stored in a certain module (in our example the module
named “Eg.Bank”) serve as examples and tests. As a consequence no helper methods,
which are not commands, can be declared by the developers. Helper methods in tests
make the tests difficult to understand and can often be refactored into the domain
themselves.

Using these three conventions above is enough to construct the meta-model depicted in
Figure 5.5 (p.74). The only difficult part is to retrospectively discover inverse tests. But
closely looking at Bank.Eg.Account class » testDepositAndWithdraw we discover the scheme
depicted in Figure 5.3 (p.72).

1In Smalltalk one can use a construct like BlockContext » ensure: anotherBlock. There anotherBlock gets executed
in any case, no matter whether the execution of aBlock fails or not.

72 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Receiver class>>testFunction1Function2
 |aReceiver oldAttribute aParameter |
 aReceiver := self createReceiver.
 oldAttribute := aReceiver getInvariantAttribute.
 aReceiver
 function1: aParameter;
 function2: aParameter.
 self assert: [aReceiver getInvariantAttribute = oldAttribute].
 ^aReceiver

Figure 5.3: Inverse Tests are made explicit, by storing them in this schema.

5.1.2 Storing Eg Commands via Method Properties

To avoid inherent and invisible code conventions in the source code, one can also use
method properties2. A method storing a method test by enhancing it with a method
property in VisualWorks Smalltalk would look like the following:
Account class » exampleDeposit

< egClass: #’Eg.MethodTest’ method: #deposit: >
| aReceiver aResult |
aReceiver := Account new.
aResult := aReceiver deposit: 100.
self assert: aResult balance = 100.
^aResult

The method property can be seen in the second line of above code. It states that this test
is a method test focusing on the method Account » deposit. Note that the receiver class
(Account) of the method under test can be detected by partially running the method
command so that the temporary variable “aReceiver” on which the method under test is
executed gets filled with an instance of the receiver class. Using this convention allows
the developer to directly type in method commands as they do not have to be afraid to
violate some internal and hidden code conventions which would be the case if they use
our first strategy introduced above. But as our meta-model described below allows good
tool support for testing, typing in method commands directly should become more and
more superfluous.

After having refactored the bank tests from standalone tests as seen in Figure 2.5 (p.16)

into composed tests as seen in Figure 5.1 (p.69) we applied our partial order mechanism
from Chapter 3 (p.29) to these two sets and got the two orderings depicted in Figure 5.4
(p.73). We did not change the semantics of our tests as we refactored them, as a conse-
quence the partial order of them stays the same and we can use partial orders to test if
our refactorings indeed preserved the semantics.

2Method properties are also called Pragmas in VisualWorks Smalltalk. Since version 3.9 they are also part
of the Squeak Smalltalk Environment and have been introduced to Java in SDK Version 1.5

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 73

Equivalent Commands:
Account class >> testWithdraw

Account class >> testDepositAndWithdrawAll
(13)

Account class >> testDeposit
(11)

Equivalent Commands:
Bank class >> withAccount1234

Bank class >> testAccount1234Exists
Account class >> empty1234

(10)

Account class >> testWithdrawTooMuch
(12)

Equivalent Commands:
AccountTest >> testWithdraw

AccountTest >> testDepositAndWithdrawAll
(13)

AccountTest >> testDeposit
(11)

AccountTest >> testAccount1234Exists
(10)

AccountTest >> testWithdrawTooMuch
(12)

Figure 5.4: The generated partial order of the old tests (left) and the refactored tests (right) of the
bank account. We only added the two tests on the bottom right making the setup explicit. The
structure stays the same as we refactored the tests keeping their semantics. The partial order
thus serves as a good hint how tests can be recomposed.

5.2 Exemplified Responsibilities of Eg

In Figure 5.5 (p.74) 3 you can see the hierarchy of the various explicit commands we
made explicit after having detected their real world use in the taxonomy chapter Chap-
ter 4.3 (p.48). 95% of the tests written in the Squeak case study (Figure 4.3 (p.50)) can be
either directly translated or decomposed into these explicit commands. In the following
we explain the responsibilities and collaborators of each class defining our meta-model
in detail following the object design approach of Wirfs-Brock et al. [Wirfs-Brock and
McKean, 2003] extended with examples both for the classes we introduce and for the
responsibilities we demand.

3We define that each direction of an association is navigable if it is labeled. A getter method exists for all
navigable associations.

74 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Eg.PositiveMethod
Command

run
resultProjection
storeClass

Eg.MethodCommand
name
storeClass
storeString
exemplifiedModule
receiverCreator
parameterCreators
run / prepareInput/ apply
runInstrumented
testResult
coveredCommands
isEquivalent

Eg.MethodTest
assertions

Eg.MethodExample
isChecked

Eg.InverseTest
run
assertions

Eg.NegativeMethod
Example

run

Method
selector
postconditions
callsInvariant
Eg.(un)instrument
Eg.undedicatedExamples
Eg.allExamples
Eg.parameterTypes
Eg.returnTypes
Eg.isUpToDate
Eg.isChecked
Eg.saveAndRunAll
Eg.debugIn:aCommand

Eg.ExampleModule
reifyCommand: aCommand
runAll
runAllInstrumented
change: aCommand
isGreen
sortCommandsIntoPOSet
smallestFailingCommands
smallestFailingMethods
minimizeCommands
runMinimalCommands

minimal
Commands

*

Module
requiredModules
Eg.(un)instrument
Eg.(un)instrumentAll
Eg.executedMethods

0...1

Eg.example
Module

exemplified
Module

1

Eg.ExecutedMethod
receiver
parameters
result
debug

method1
*

Class
Eg.exampleCreators
 (MethodCommands)
Eg.examples
Eg.instVarTypes

1

Eg.dedicatedExamples

* exemplifiedMethod
1

coveringCommand
1 exectutedMethods

*

inverse
Method

Eg.executedBy

class

methods

1

*

classes
*module

1

module
1

methods
*

1...*

module
1

commands

rootsOf
Partial
Order

*

Figure 5.5: The hierarchy of commands in our meta-model. An exemplified method can collect
all its exemplifying commands and display them to the developer.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 75

5.2.1 Module

We define modules to hold a set of classes and methods. Only some languages support
this point of view. In Java for example developers cannot define methods for existing
classes in new modules whereas Ruby or Smalltalk allow developers to do so. Class-
boxes as defined by Bergel [Bergel, 2005] are a way to solve this problem for Java and
other languages that do not support class extensions.

Responsibilities.

1. Module » requiredModules A module knows all its required modules. We define
required modules to be the set of modules which are created by end-developers
and not the set of modules which are already provided by the infrastructure of the
underlying programming environment. Universes as described by Spoon [Spoon,
2006] provide this point of view: the context (a universe) is taken to be given so that
a simple name of a required module is enough to load it: the newest version of this
module is considered to be the best one and thus does not need to be specified.

Scope. This functionality is expected to be provided by the module, where the
class Module is defined making it a functionality of the kernel of our system.

Example. In our bank example the required modules for Bank.Eg would contain
the modules Bank.Model but not the module Eg, as first of all Eg would be a module
of the underlying infrastructure, and second none of the commands defined within
Bank.Eg need any functionality of the Eg-framework itself. It is the special module
Eg which defines that functionality and not its contents. The advantage of keeping
the examples agnostic about the Eg framework is that they can be deployed together
with the code for documentation and testing issues without the framework itself –
the example artifacts stay independent of the framework and the framework can
be licensed freely or commercially. 4.

2. Module » methods A module can enumerate all the methods defined within it.

Scope. This functionality is expected to be provided by the module, where Module
is defined making it a functionality of the kernel of our system.

Example. Printing out the source of all enumerated methods defined in Bank.Model
would yield the source of all methods displayed in Figure 5.1 (p.69).

3. Module » classes A module can enumerate all its classes.

Scope. This functionality is expected to be provided by the module, where Module
is defined in and thus to be a kernel functionality.

4This example could be expressed as a method test when writing tests and examples to verify Eg.

76 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Example. Printing out the source of all enumerated classes defined in Bank.Model
would yield the source of all classes displayed in Figure 5.1 (p.69) 5.

4. Module » exampleModule A module knows its exemplifying module.

Scope. This is a functionality of the Eg framework.

Example. The example module of Bank.Model is the module called Bank.Eg.

5. Eg.Module » (un)instrument A module can be instrumented, so that the call
of one of its method gets logged in the set of its executedMethods. All methods of
the module can be wrapped by a piece of code, which registers in the module that
its method was executed as soon as its method gets triggered. This functionality
relies on some available wrapping technique to instrument methods with general
code. For a discussion of wrapping techniques for Smalltalk see Ducasse [Ducasse,
1999]. For a modern and fast implementation using bytecode transformation see
Denker et al. [Denker et al., 2006]. Uninstrumenting the module means to bring all
the methods into their original state, so that no extra code will be executed when
the methods get executed.

Scope. This is a functionality of the Eg framework whereas the used basic func-
tionality of code wrapping is expected to be in the module, where Module is defined.

Example. Instrumenting the module Bank.Model and then calling the command
Bank.Eg.Bank class » withAccount1234 should result in a set of executed methods
(ExecutedMethod) all knowing their concrete receiver, parameter and return values,
and point to the methods depicted in Figure ?? (p.??).

Bank.Model.Bank class >> new
Bank.Model.Account class >> new
Bank.Model.Bank >> createAccount:
Bank.Model.Account class >> numbered:
Bank.Model.Account >> balance

Bank.Model.Bank >> initialize
Bank.Model.Bank >> accountNumbered:
Bank.Model.Bank >> includesAccount:
Bank.Model.Account >> initializeFor:
Bank.Model.Account >> number

Figure 5.6: The set of all methods of the Bank module directly or indirectly called from the
checked method example Bank.Eg.Bank class withAccount1234.

On the other hand un-instrumenting the module and running above command
should result in an empty set of executed methods6.

6. Eg.Module » executedMethods A module can be asked for all its methods which
have been executed in a certain situation. It therefore iterates over all its methods

5This and above example could be expressed as a method tests when writing tests and examples to verify
Eg. In this case a collection of methods and classes respectively would be delivered by the according method
tests.

6This example could be expressed as a method test when writing tests and examples to verify Eg.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 77

(Module » methods) and collects all of their executed methods (Eg.Method » execut-
edBy:.

Scope. This functionality is part of the Eg framework.

Example. The previous example includes a call to Eg.Module » executedMethods.

7. Module » (un)instrumentAll A module can be instrumented together with all
its required modules. This functionality simply enumerates all required modules
and instruments them together with the module itself. Instrumentations can be
undone for all required modules together with itself (Module » uninstrumentAll).

Scope. This functionality is a functionality of the Eg framework.

Example. Instrumenting Bank.Eg together with all its required modules and then
running all commands of Bank.Eg would result in a combined list of all methods
described in Figure 5.1 (p.69) and Figure 5.2 (p.70) as the commands – giving a
100% coverage of the module Bank.Model – would be instrumented too7.

Collaborators.

1. A module knows all its methods and classes which are defined in it.

2. A module can enumerate all its required modules to work in.

3. A module can have one example module (Module » exampleModule).

5.2.2 Example Module

An example module (Eg.ExampleModule) is a module that holds all commands testing its
exemplified module. It is responsible for running these tests, for running them in an
instrumented way so that all their touched methods get logged into them and for sorting
those instrumented commands into a partial order.

Scope. All further functionality of this class is part of the Eg framework.

Example. An example for an ExampleModule would be the module Bank.Eg.

Responsibilities.

1. ExampleModule » reifyCommand: aCommand All methods stored in an example
module play the roles of genotypes of commands: An example module can reify all

7This example could be expressed as a method test when writing tests and examples to verify Eg.

78 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

commands from the source code of its methods into living objects (ExampleModule
» commands) and thus create and hold according instances of Method Command.

Example. Reifying the source code from Bank.Eg.Bank class » withAccount1234 in
Figure 5.2 (p.70) should yield an instance of a checked method example, whose
storeString (Eg.Method Command » storeString) in turn gives the original source8.

2. ExampleModule » runAll An example module can run all of its commands. This
is the main interface for emulating the classic triggering of all unit tests. This
meta-model does not provide any kind of test-suites as introduced by XUnit, but it
could be easily extended to do so.

Example. Running all commands in the module Bank.Eg the first time should
result in a set of seven commands where the test result Method Command » testResult
of each of these commands has passed.

3. ExampleModule » runAllInstrumented An example module can run all of its
commands instrumented. It does so by calling Method Command » runInstrumented
to each of its commands. As a consequence the underlying exemplified model
gets instrumented and un-instrumented for the run of each command. For each
instrumented method being executed a Eg.ExecutedMethod is created and stored
both in the set of executed methods of the method itself (Method » executedBy and
in the set of executed methods of the method command which directly or indirectly
triggered the method (Eg.MethodCommand »

Example. Running all commands in the module Bank.Eg instrumented the first
time results in a set of seven commands where the test result Method Command »
testResult of each of these commands has passed and the set of executed methods
Method Command » executedMethods is not empty for each command.

4. ExampleModule » isGreen An example module is green if all of its commands
have passed and all of the methods of its exemplified model are up to date (Method
» isUpToDate). As a consequence the example module should run all commands
instrumented as soon as one of its commands has changed.

Example. Running all commands in the example module Bank.Eg instrumented
the first time should result in a green example module.

5. ExampleModule » change: aCommand This functionality is a place-holder for
adding/ removing or changing a command of the example module which is not
described in detail here. But each time a command of the example module has
been changed, all of its commands are run instrumented afterwards.

8This example could be expressed as an inverse test when writing tests and examples to verify Eg.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 79

Example. As this functionality is a place-holder for adding, removing or deleting
commands, no concrete examples are given.

6. ExampleModule » sortCommandsIntoPOSet An example module can sort all of
its commands into a partial order. As a prerequisite for doing so, it is necessary
that the example module be green as all of its commands have passed. The goal of
sorting the commands into a partial order as explained in Chapter 3 (p.29) is on the
one hand to ease the debugging process. On the other hand graphs of the partial
order can then be displayed to the developers to help them understand the test
suites at hand. This functionality first copies all commands of the module Exam-
pleModule » commands into a collection called ExampleModule » rootsOfPartialOrder. If
the algorithm detects a command being covered by another command it removes
it from this collection and stores it into the set of covered commands Method Com-
mand » coveredCommands of the covering command. In a second phase the algo-
rithm removes cyclic references by unifying all commands having the same set of
executed methods Method Command » executedMethods: If several commands are
equivalent with respect to these sets of executed methods, a new command node
is created by fully copying one of them. In a next step this new command acts as a
parent for the other ones by first removing them out of their former holders, putting
them into its set of covered commands and setting its boolean Method Command »
isEquivalent to true.

Example. Sorting the commands of Bank.Model yields a partial order according to
Figure 5.4 (p.73) 9.

7. ExampleModule » smallestFailingCommands Having the partial order of a green
example module in place using ExampleModule » sortCommandsIntoPOSet allows the
developer to ask the example module for its smallest failing commands. This ques-
tion can be asked after some code of the underlying exemplified module has been
changed and after the all the commands have been run. The set of the smallest
failing commands is defined as follows: A command is the smallest and failing, if
the command is failing and its set of covered commands Method Command » cov-
eredCommands does not include any other failing command.

Example. As a prerequisite of this example Bank.Model is green and sorted. Then
running the commands of Bank.Model with a bug introduced in Account.Model »
deposit: should yield a set of smallest failing commands containing only one failing
command, namely the checked method example Account.Eg » testDeposit.

8. ExampleModule » smallestFailingMethods Knowing the set of smallest and
failing commands allows Eg to detect the set of smallest failing methods: A method

9This example could be expressed as a method test yielding the example module of Bank.Eg containing
sorted commands as a return value when writing tests and examples to verify Eg.

80 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

is called to be smallest and failing, if the commands which include the method in
their set of executed methods Method Command » executedMethods are smallest and
failing commands and if the method is not included in the set of executed methods
of any of their covering non failing commands.

Example. Running the example described for ExampleModule » smallestFailingCom-
mands yields a set of smallest failing methods containing only once instance, namely
Account » deposit.

9. Eg.ExampleModule » minimizeCommands An example module can minimize
the set of commands to be run, if commands call each other in order to create test
scenarios via Method Command » receiverCreator or Method Command » parameterCre-
ators. This way commands can be called only as often as necessary: A command,
that is called by some other command, does not need to be executed in a stan-
dalone manner. A collection of directed acyclic graphs of commands calling other
commands is stored in the sets of minimal commands (ExampleModule » minimal-
Commands).

Example. The resulting set of minimal commands of our refactored bank example
consists of three commands: Account class » testDepositAndWithdrawAll, Account class
» testAccount1234Exists and Account class » testWithdrawTooMuch. All other commands
are reused by these commands for creating their scenarios and thus do not have
to be called explicitly (see Figure 5.8 (p.90)).

10. Eg.ExampleModule » runMinimalCommands An example module can run all its
tests in a minimal way so that only the top nodes of the partial order created by
ExampleModule » sortCommands get executed. Note that this functionality does not
sort the commands before running the minimal set, so that the partial order of a
set of running commands is preserved.

Example. Only the three commands described in the previous example are run.

Collaborators.

1. An example module knows its exemplified module.

2. An example module stores all its reified commands.

5.2.3 Method Command

A method command (Method Command) does not need any further context to be ex-
ecuted. Whereas in the XUnit framework tests are stored on the instance side of a

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 81

paralleled test hierarchy we store method commands as unary methods on the class
side of our domain classes. We can do this, as commands neither need a receiver nor
any parameters for creating their context and only internally call other commands to set
up the context of their method under test.

A method command of the Eg framework focuses on a single method. It knows how to
recreate the context in which its exemplified method can be executed.

Scope. All functionality of this class is part of the Eg framework.

Example. Method Commands are abstract, only its subclasses have direct instances:
Bank.Eg.Bank class » withAccount1234 would be an example for a persisted method com-
mand, namely a checked method example.

Responsibilities.

1. Method Command » name Method Commands have a telling name. This name
is unique within the class method names of its store class and thus can be used
as the method name for persisting the command. It hence should contain only
characters allowed within method names.

Example. In our bank example the name of the command (a checked method
example) Bank.Eg.Bank class » withAccount1234 would be withAccount1234.

2. Method Command » storeClass All method commands know the class in which
their source code is stored. By default they get stored in the class of the instance,
which is the result of evaluating their receiver creator (Method Command » receiver-
Creator). In the case of method commands (MethodExample) this behavior is over-
written to return the class of the result they return.

Example. The negative method example Bank.Eg.Bank class » testAccount1234Exists is
stored into Bank.Eg.Bank class as the receiver creator self withAccount1234 returns an
instance of the bank class Bank.Eg.Bank class.

3. Method Command » storeString Method Commands can store themselves as
readable source code using classical source code repositories like cvs, subversion,
or in the case of Smalltalk fileouts, Monticello (Squeak), Envy (VisualWorks and
IBM Visual Age) or Store (VisualWorks).

Example. Reifying the source code from Bank.Eg.Bank class » withAccount1234 in
Figure 5.2 (p.70) should yield an instance of a checked method example, whose
store string (Eg.Method Command » storeString) in turn gives the original source10.

10This example could be expressed as an inverse test when writing tests and examples to verify Eg.

82 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

4. Method Command » module Method Commands know the module they are
stored in.

Example. All commands exemplifying the bank application can tell that they are
stored in Bank.Eg.

5. Method Command » exemplifiedModule Method Commands can be asked for
their exemplified module. For detecting this, they just have to ask their module for
its exemplified module.

Example. In our example the exemplified module of each command would be
Bank.Model.

6. Method Command » receiverCreator and Method Command » parameterCre-
ators Method Commands know how to create the context necessary to execute
their exemplified method. The genotype of the receiver and the parameters of their
exemplified method is stored in a receiver and parameter creators. These creators
can either be method commands which would return an object of interest, or blocks
(lambda expressions), literals as string, integers, symbols and the like. To treat lit-
erals and commands the same way one has to teach literals a run method to be
polymorphic with method commands. This run method in literals just returns the
literal itself.

Doing encapsulation right is a commitment not just to abstraction of
state, but to eliminate state oriented metaphors from programming. –
Alan Kay [Kay, 1993]

In an early prototype of Eg we stored the state of the receiver and parameters
in an XML format, but realized that it was cumbersome to compose these test
objects into higher level scenarios. We had to side track the way the application
was designed to compose higher-level objects and instead found ourselves using
accessors all the time.

Example. In the checked method example Bank.Eg.Account class » testDeposit the
receiver creator code self empty1234 gets unified with the method example defined
Bank.Eg.Account class » empty1234 and stored in the receiver creator of Bank.Eg.Account
class » testDeposit. The “100” gets stored as the first and only element of the param-
eter creators of Bank.Eg.Account class » testDeposit.

7. Method Command » run Method Commands can be executed directly. This
functionality is abstract as negative method examples have to wrap the run with
an exception handler, inverse tests even have to apply two methods and method
commands return a result at the end. The class Method Command itself can pro-
vide functionality to prepare the input by evaluating the receiver- and parameter

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 83

creators Method Command » prepareInput and it can apply the exemplified method
to this input via Method Command » apply.

8. Method Command » runInstrumented Method Commands can be executed with
their exemplified module together with required modules instrumented before us-
ing the following scheme:

(a) They call its exemplified module (Method Command » exampleModule) to be in-
strumented together with all its required modules (Module » instrumentAll),

(b) They run themselves (Method Command » run),

(c) They collect the executed methods in their appropriate field (Method Command
» exectutedMethods),

(d) They finally uninstrument its exemplified module together with all its required
modules (Module » uninstrumentAll).

Example. Running the command described in Bank.Eg.Bank class » withAccount1234
instrumented, and then asking this command for its covered methods Method Com-
mand » coveredMethods should result in the same set of methods as described in
the example for Eg.Module » (un)instrument.

9. Method Command » testResult Method Commands know if something went
wrong after they have been executed. The test result is either a failure (some
assertion has failed) or an error (some unexpected exception has been thrown)
together with the according error message, or the test result indicates that the
command has been executed without an error.

Example. The test result of all commands of our bank example indicate that there
have been no errors during their execution.

10. Method Command » exemplifiedMethod Method Commands can display their
exemplified method. This exemplified method can be derived statically.

Example. The exemplified method of Bank.Eg.Account class » testWithdraw would be
the method (Method) Bank.Model.Account » withdraw.

11. Method Command » executedMethods Method Commands store a list of all
methods they executed.

Example. The set of executed methods (Eg.ExecutedMethod) of the checked method
example Bank.Eg.Bank class » withAccount1234 would consist of the ten executed meth-
ods as explained in the list depicted in the examples for Eg.Module » (un)instrument
in Figure ?? (p.??).

84 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Collaborators.

1. Method Commands collaborate with one or more exemplified methods (ExemplifiedMethod).
Being abstract, the cardinality and specific use is determined by the subclasses of
ExemplifiedMethod.

2. Method Commands directly know the module in which they are stored, and thus
indirectly also know their exemplified module.

5.2.4 Negative method example

I am not completely useless. I could always serve as a bad example – Mark
Twain

A negative method example is a method command that shows an invalid call of a certain
method. As its method under test is supposed to fail, its method under test should not
have any (side) effects. Therefore a negative method example does not return an object
of interest and thus cannot be reused by other commands.

Scope. All functionality of this class is part of the Eg framework.

Example. Bank.Eg.Bank class » testAccount1234Exists would be an example for a negative
method example.

Responsibilities. A negative method example inherits all responsibilities of method
commands. It only has to implement the abstract functionality of running itself.

1. Eg.NegativeMethodExample » run A negative method example is run by wrap-
ping the call of its method under test by an exception handling mechanism. The
test result is set to green if the wrapped piece of code throws the expected exception
after executing it within the context set up by the negative method example.

Example. Running the negative method example described in Bank.Eg.Bank class »
testAccount1234Exists triggers an expected exception as accounts of a certain name
can only be created once. The test result is set to green as the method under test
fails as expected.

5.2.5 Positive Method Command

A positive method command is a command which delivers a result. It is stored in some
storeClass which is derived by asking its result for its class. A positive method command

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 85

is abstract but provides a common functionality for its two subclasses Method Test and
Method Example, namely to run itself.

Scope. All functionality of this class is part of the Eg framework.

Example. All examples of its subclasses Method Test and Method Example serve as
examples of Positive Method Commands.

Responsibilities.

1. Eg.PositiveMethodCommand » resultProjection Running a positive method
command yields a result. This result is either the receiver, one of the parame-
ters or the result of the method under test. To determine which of these objects
shall be returned by the method command, the meta-model needs a slot for storing
this information. A possible value for this slot is one of the following list of symbols:
(receiver, parameter1, ... parameterN, result).

Example. Running the checked method example described in Bank.Eg.Account class
» testWithdraw returns the result of the method under test, which in this case is also
the receiver. Thus the field resultProjection would include the symbol result.

2. Eg. PositiveMethodCommand » run As this method could not have been defined
in the superclass command as its behavior differs for all its subclasses, we have to
define it here. Running a positive method command consists of several steps:

(a) Preparing input via Method Command »prepareInput

(b) Applying the method under test to this prepared input via Method Command
»apply

(c) Returning either a (changed) receiver or parameter of the prepared input or the
result of the application above, depending on the symbol in the resultProjection-
field.

Example. Running the checked method example described in Bank.Eg.Account class
» testWithdraw would consist of the following steps:

(a) Preparing the input: Run the checked method example Account class » testDe-
posit

(b) Applying the method under test to the input: Apply the method under test
Account » withdraw: to the non empty account created in the first step together
with the literal of 30 and storing the resulting account to some temporary
result variable.

86 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

(c) Determining and returning a result: The field resultProjection includes the sym-
bol result, thus the returned result would be the account containing 70 as its
balance.

5.2.6 Method Test

A method test is a positive method command which contains some assertions in the test
itself.

Scope. All functionality of this class is part of the Eg framework.

Example.

Bank.Eg.Account class�testWithdrawAll
|anAccount|
anAccount := self testDeposit.
anAccount withdraw: 100.
self assert: [anAccount balance = 0].
^anAccount

would be a method test as it includes assertions and returns a value.

Responsibilities.

1. Eg.MethodTest » assertions A method test knows all the assertions stored into
it.

Example. The set of assertions of Bank.Eg.Account class » testWithdrawAll consists of
only one code block namely anAccount balance = 0.

5.2.7 Method Example

A method example is a positive method command which does not contain any asser-
tions in itself. It is called to be checked, if its method under test contains a post-
condition.

Scope. All functionality of this class is part of the Eg framework.

Example. Bank.Eg.Account class » empty1234 is a method example as it does not include
any assertions but returns a value.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 87

Responsibilities.

1. Eg.MethodExample » isChecked A method example knows if it is checked as it
can ask its exemplified method if it has post-conditions.

Example. Bank.Eg.Account class » testWithdraw is a checked method example as its
exemplified method Account » withdraw contains a post-condition.

5.2.8 Class

A class contains variable definitions and method definitions. We require that a class
knows the module where it is defined (Class » module), and that it can enumerate all its
methods it defines (Class » methods).

Within the context of our meta-model Eg we extend classes so that they can provide
examples for their instances, that they can enumerate all the method commands which
provide these examples, and that they can display all concrete types of their instance
variables which are deducible by their examples.

Scope. All functionalities of classes explained as follows are part of the Eg frame-
work.

Example. Bank.Eg.Account class is a class with extended capabilities defined by Eg.

Responsibilities.

1. Class » Eg.examplesCreators If Eg is used, a class can enumerate all method
commands which return exemplifying instances of itself. It does so by filtering
out all method commands out of the example module of its module which return
instances of itself.

Example. Bank.Eg.Account class » Eg.examplesCreators collects all commands of the
module Eg.Bank which is the example module of Bank where the class Bank is defined
in. It returns all method commands depicted in Figure 5.2 (p.70).

2. Class » Eg.examples If Eg is used, classes can enumerate all their examples by
executing all their example creators.

Example. Bank.Eg.Account class » examples would execute all its example creators
and return their results. The set of examples returned consists of five instances
of accounts, as the class has five method commands returning instances of itself.
Two of these accounts would be empty, one would contain a balance of 30, one a
balance of 100, and one a balance of 70.

88 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

3. Class » Eg.instVarTypes Knowing its example instances, it is easy for a class
to detect typical values and thus concrete types of its instance-variables. As a
prerequisite its instances need to be able to return the values of their instance-
variables which can be accomplished by exploiting reflection capabilities of the
base system. In Smalltalk one could use Object » instVarAt:.

Example. Bank.Eg.Account class » Eg.instVarTypes would return a dictionary with one
key, balance, and one value, SmallInteger.

5.2.9 Method

A method is the atomic unit of object-oriented programs. As such it is defined within
the base-system of the underlying system.

Within the context of our meta-model Eg we extend methods in several ways as de-
scribed below. We require that methods can tell their selector (Method » selector), the
class and module in which it is defined in (Method » class), (Method » module), their post-
conditions (Method » postconditions), and whether they call an invariant or not (Method »
invariant).

Scope. All functionalities of methods explained as follows are part of the Eg frame-
work.

Example. All methods denoted in fig:bankaccountSUnitTestsRefactored and Figure 5.1
(p.69) serve as examples as they are reified within the system.

Responsibilities.

1. Method » Eg.(un)instrument Each method can be instrumented and un-instru-
mented. We suggest to use a default instrumentation strategy but make other
strategies pluggable within the system. We require from the instrumentation strat-
egy that it can read out the actual receiver, parameters and result of the method
after it has been executed.

When a method is instrumented and executed, it creates an executed method with
its actual receiver- parameter and return-values, links to it and adds that executed
method to the list of executed methods of the currently run command – if there is
any11.

11The Example Module has a helper variable “actualCommand” which is set accordingly while running over
all its commands in an instrumented way.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 89

Example. Running the method Bank.Model.Bank » accountNumbered: instrumented
by running the checked method example Bank.Eg.Bank class » withAccount1234 in-
strumented, creates one instance of ExecutedMethod pointing to Bank.Model.Bank »
accountNumbered:. Whereas a method can be executed lots of times by a single
command, in our small example the method Bank.Model.Bank » accountNumbered: is
called just once. You can find an example of this executed method in Figure 5.6
(p.88).

an ExecutedMethod
receiver = aBank

parameters = {1234}
result = anAccount(balance=0, number = 1234)

a Method
selector =

#accountNumbered:
postconditions = #()
callInvariant = false

(...)

a Class
name = Bank

exampleCreators = {(Bank class >> withAccount1234)}
examples = {(aBank

 (accounts = aDictionary(
 1234->anAccount(

balance = 0
number = 1234))))}

a Method Example
name = withAccount1234

storeClass = Bank
receiverCreator = [Bank new]

parameterCreators = #()
testResult = #passed

(...)
isChecked = true

Figure 5.7: An object diagram depicting the relationship of a checked method example, an exe-
cuted method and a method testing the bank application.

2. Method » Eg.executedBy: Each method can display a the set of executed meth-
ods which call it.

Example. Asking the method Account » deposit: for its set of executed methods
yields a set of executed methods containing four instances whose covering com-
mands are either one of the following:

— Bank.Eg.Account » testDeposit

— Bank.Eg.Account » testWithdraw

— Bank.Eg.Account » testDepositAndWithdrawAll

— Bank.Eg.Account » testWithdrawTooMuch

3. Method » Eg.dedicatedExamples Each method can display a the set of dedicated
method commands which focus on it.

Example. Asking the method Account » deposit: for its dedicated examples yields a
set of method commands which focus on this method containing only one instance,
namely Bank.Eg.Account » testDeposit.

90 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

4. Method » Eg.undedicatedExamples Each method can display a the set of unded-
icated method commands which only cover it somewhere during their execution
but do not focus on it.

Example. Asking the method Account » deposit: yields the following set of method
commands which only call this method indirectly:

— Bank.Eg.Account » testWithdraw

— Bank.Eg.Account » testDepositAndWithdrawAll

— Bank.Eg.Account » testWithdrawTooMuch

5. Method » Eg.allExamples Each method can display a combined set of method
commands which either focus on it as an exemplified method or only cover it some-
where during their execution.

Example. Asking the method Account » deposit: for all its examples yields the
following set of method commands which either focus on this method directly or
indirectly:

— Bank.Eg.Account » testDeposit

— Bank.Eg.Account » testWithdraw

— Bank.Eg.Account » testDepositAndWithdrawAll

— Bank.Eg.Account » testWithdrawTooMuch

6. Method » Eg.parameterTypes Each method can display the concrete types of its
parameters if its set of executed methods (Eg.ExecutedMethod) is non empty.

Example. Asking the method Account » deposit: for all its concrete parameter types
yields a set containing only one class, namely SmallInteger.

7. Method » Eg.returnTypes Each method can display the concrete types of its
returned object if its set of executed methods (Eg.ExecutedMethod) is non empty.

Example. Asking the method Account » deposit: for all its concrete return types
yields a set containing only one class, namely Account, as it implicitly returns self.

8. Method » Eg.isUpToDate Each method knows if it “up to date”, meaning if all its
examples (Method » allExamples) have been executed after its latest change.

Example. All tests as depicted in Figure 5.2 (p.70) are up to date with the code
depicted in Figure 5.1 (p.69). Changing either method of the bank would make it
outdated.

5.2. EXEMPLIFIED RESPONSIBILITIES OF EG 91

9. Method » Eg.isChecked Each method, whose set of post conditions is not empty
or which calls an invariant, and which has at least one covering command, is
called to be “checked”. Furthermore we require that the covering command is not
a negative method example focusing on this method as this would only check if the
precondition of the method fails in a certain circumstance.

Example. All methods depicted in Figure 5.1 (p.69) which come with a post-
condition are checked, as all of them have at least one method command which is
executing them.

10. Method » Eg.saveAndRunAll Each method not only can save itself, but also can
save itself and run all its examples (Method » Eg.allExamples) just afterwards –making
it up to date again (Method » isUpToDate).

Example. Saving the changed method Account » deposit: and running all its exam-
ples would trigger the following method commands:

— Bank.Eg.Account » testDeposit

— Bank.Eg.Account » testWithdraw

— Bank.Eg.Account » testDepositAndWithdrawAll

— Bank.Eg.Account » testWithdrawTooMuch

Method » Eg.debugIn: aCommand Each method can be debugged within one of
its exemplifying commands (Method » Eg.allExamples). A breakpoint is inserted into
the method and the appropriate command gets executed, so that the method can
be seen in the debugger within a running context.

Example. Debugging the method Account » deposit: becomes easy by running its
dedicated example Bank.Eg.Account class » testDeposit.

5.2.10 Eg.ExecutedMethod

An executed method is a persisted message send retrieved by instrumenting the method.

Scope. All functionalities of executed methods explained as follows are part of the Eg
framework.

Example. An executed method for the method Eg.Bank » accountNumbered: is depicted
in Figure 5.6 (p.88).

92 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Responsibilities. An executed method can tell the concrete receiver, parameters and
result of the message send, knows its covering command, and the method it instanti-
ates.

11.1. Eg.ExecutedMethod » receiver/ parameters/ result Being a message send an
executed method not only knows its concrete receiver and parameter objects but
also can tell its result.

Example. Values for the receiver, parameters and result of an executed method
are depicted in Figure 5.6 (p.88).

5.3 Validation

In this section we describe how the meta-model solves the problems of implicit test
interdependencies as described in Chapter 2 (p.9).

5.3.1 Creating Test Scenarios is easy

Objects to create scenarios can be easily found for reusing them as they are bound as
factory methods to their classes. Using Eg developers can explicitly ask a class for all its
tidy examples. Eg just collects all positive method commands of that class and presents
them to the developer. Creating a scenario thus boils down to filling the receiver and
parameters of new methods under test by either selecting existing method commands
or by creating new literals by just typing them in. As an advantage of our approach
compared to xUnit, scenarios are not bound in the setup and can be used by other tests:
In our example application of the bank account depicted in Figure 5.2 (p.70) we “freed”
the setup code into the methods Bank.Eg.Bank class » withAccount1234 and Bank.Eg.Account
class » empty1234 respectively.

5.3.2 Our sorting techniques help to understand the interplay of
the system

We have presented two sorting techniques of tests whose created order reflects the inter-
play of the system under test. The first sorting technique we have presented in Chapter 3
(p.29) is to partially order the sets of commands of a given example module via Example-
Module » sortCommandsIntoPOSet. The second sorting technique we have presented is to
minimize a set of method commands who call each other in order to reuse created test

5.3. VALIDATION 93

Figure 5.8: Creating an example for depositing money with Eg, the tool. More complex objects
than numbers represented by method commands can be dragged and dropped out of the left pane
into the parameters fields.

scenarios. (ExampleModule » minimizeCommands). This sorting directly mirrors the struc-
ture of the system under test with the tests themselves. In Figure 5.4 (p.73) you can see
the partial order of our bank account example before and after refactoring it, already
implying the layering of the system and the according tests, whereas the sorting of the
refactored tests according to their reuse mirrors directly the dependency-layering of the
system under test (Figure 5.8 (p.90)).

5.3.3 Minimizing Testing Time

We have shown how the testing time can be minimized by first allowing the developers
to reuse created test scenarios via method commands and then minimizing these sets
of method commands in order to only call the high level commands which in turn call
the rest of the commands (ExampleModule » minimizeCommands.

94 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Account class >> testDepositAndWithdrawAllAccount class >> testDeposit

Bank class >> testAccount1234Exists

Account class >> testWithdrawTooMuch

Account class >> testWithdraw

Bank class >> withAccount1234

Account class >> empty1234

Figure 5.9: The sorted refactored bank tests according to what test reuses what other tests. This
structure mirrors the structure of the system under test: A bank has to be created before an
account can be added to the bank, some money has to be deposited on the account, before it can
be withdrawn.

5.3.4 Identifying relevant failed tests in the case of a failure is
easy

Having a partial order of tests of a running green test suite stored in an example mod-
ule allows developers to spot both the set of smallest failing commands and the set of
smallest failing methods (ExampleModule » smallestFailingCommands and ExampleModule »
smallestFailingMethods).

Example. Consider the partial order of unit tests of the Squeak-package “Aconagua”
which deals with converting scalar units in Figure 5.9 (p.91). All tests are running there.
We planted an error in ArithmeticObjectInterval » reverseDo and reran the tests uninstru-
mented without sorting them again. Updating the color of the tests in the graph ac-
cording to the state of the tests but keeping the topology of the running partial order
graph results in Figure 5.10 (p.92): The two failing tests ArithmeticObjectIntervalTest » testRe-
verseDo and ArithmeticObjectIntervalTest » testReverse are colored red now. Our meta-model
allows us to present the developers both the smallest failing command, which in this
case would be ArithmeticObjectIntervalTest » testReverseDo. But it even allows us to guide
the developer directly to the failing method itself (ArithmeticObjectInterval » reverseDo) and
opening a browser on the failed method.

5.3. VALIDATION 95

Figure 5.10: One can see the partial order of tests for the Squeak package Aconagua. All tests
are green.

5.3.5 We can detect similar tests

Our partial order also allows us to detect similar tests. Tests which cover the same set
of executed methods are stored in equivalence classes represented by commands which
are tagged as equivalent and contain the set of equivalent commands in their covered
commands (Method Command » coveredCommands).

5.3.6 We know exactly the scope and the kind of a test

When we make our commands persistent, we store also its kind in a method prop-
erty. As a consequence we can reify commands into method examples, negative method
examples, inverse tests etc. Thus we can always display the type of the test to the
developer. Also the scope of all tests is made clear, as they in general only focus on
one method, with the exception of inverse tests focusing on two methods at the same
time.

96 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Figure 5.11: We planted an error in reverseDo:, reran the tests but display them using the
original order of running tests.

5.3.7 We can highlight the best examples for methods

Each command is focusing on exactly one method Method Command » exemplifiedMethod
and thus serves as one of the “best examples” for it. The methods know their dedicated
examples (Method » dedicatedExamples) and undedicated examples (Method » undedicat-
edExamples). Hence browsers can display the dedicated examples for a method next to
the method in a five pane browser as suggested in Figure 4.1 (p.47) in Chapter 4 (p.45)

and tag them as best examples with a special color. Method Commands which only
include a certain method only in the set of executed but not as an exemplified method
are the undedicated examples and can be displayed next to the method, just colored
differently.

5.3. VALIDATION 97

5.3.8 We can separate tidy from untidy examples

Only tidy example creators should be stored as method commands into example mod-
ules. Though we provide this context for storing tidy examples we cannot enforce de-
velopers to follow this convention but by a rigorous tool approach. But having blurred
the difference between tests and examples allows developers to use module examples as
their main test suites, and thus they would soon clean up all commands which would
create any left-overs.

5.3.9 We can synchronize tests with code with a minimal over-
head

Each method knows if it is up to date, by checking if all tests which are concerned with
it have been executed after its latest change. If there are no commands testing it, the
method is not up to date, but untested. Using our meta-model can easily implement a
function which would not only save a method but also exercise all commands concerned
with that method. (Method » undedicatedExamples)

5.3.10 All exemplified methods can be seen in a debugger

Developers just have to select a command of the set of all examples (Method » allExam-
ples) and Eg can guide them directly into a context where this method is executed. It
does so by simply inserting a temporal breakpoint into the method and exercising the
command.

5.3.11 Typing

All methods exercised by any command(Method Command » allExamples know the con-
crete types of their parameters and their returned object (Figure 5.11 (p.94)). All classes
exemplified by example creators can be asked for the concrete types of their instance
variables.

98 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Figure 5.12: A prototype of a five pane Eg browser displays the concrete receivers and parameters
of the exemplified method after hovering over the method signature using a tooltip. In this case
the method deposit has been called via three tests, all of them feeding the account with an amount
of 100. The method deposit: always returns an account. Inferring the concrete types just means
to ask the concrete values for its classes. The test we display here includes depost: as an executed
method, but serves as a dedicated example (as a negative method example) for withdrawing too
much from an account.

5.4 Converting existing tests into Eg-Tests: A Small Case
Study

We converted 40 Unit Tests from Mondrian, a visualization framework developed by
Meyer et al. [?], into the new meta-model in a pair-wise programming scenario.

5.4.1 Results

We used the heuristic that the method called last before calling any assertions was the
method under test. All tests could be decomposed into positive method commands,
as we neither encountered any negative method examples, nor any inverse tests or

5.4. CONVERTING EXISTING TESTS INTO EG-TESTS: A SMALL CASE STUDY 99

multiple method commands. Many of the tests only checked some internal behavior of
the framework which had a high distance from the method under test. As a consequence
we only succeeded in refactoring three tests into checked method examples which are
our preferred tests as they give rise to the most reusability of tests. We managed to
refactor 34 of the remaining 37 of the tests into method tests. We had problems to
refactor three tests as they asserted some state on a temporary variable which was
neither a receiver, parameter or result of our candidate methods under test. We would
categorize those tests as “independent tests” according to our taxonomy introduce in
Chapter 4 (p.45).

5.4.2 Discussion

The most interesting result of this case study was our inability to refactor around 10%
of the unit tests according to our meta-model as we could not understand them. Our
ignorance about Mondrian forbid us to refactor the code under test together with the
unit tests to make them conforming with our meta-model. XUnit allows developers to
write all kinds of tests – and they will make use of this facility until a more rigid testing
methodology like the one we introduced with Eg suggests developers to make the links
between tests and code explicit – and as soon as developers understand the benefits of
these explicit links.

100 CHAPTER 5. AN EXEMPLIFIED META-MODEL FOR EXAMPLES: EG

Chapter 6

Conclusions

In the introduction to this dissertation (Chapter 4.1 (p.46)), we claimed the following:

— Tests are currently neither composable nor explicitly bound to the concepts of current
object-oriented languages.

— Detecting above implicit links and making them explicit using the guiding metaphor
of examples helps developers to document, type, debug and test object-oriented pro-
grams.

In this final chapter, we first summarize how the contributions presented in this thesis
support this statement (Chapter 6.1 (p.97)).

Then, we we discuss directions for future work (Chapter 6.3 (p.99)) and conclude by
presenting the lessons we have learned (Chapter ?? (p.??)).

6.1 Contributions

In Chapter 2 (p.9) of this dissertation, we have given a detailed description of prob-
lems that arise with missing explicit links between tests and code in object oriented
programming languages. These problems include difficulties in test creation, program
understanding and debugging, test synchronization, test time reduction, and duplicated
typing.

To overcome these problems we first analyzed existing test suites. This analysis con-
sisted of two parts: First we researched hidden interdependencies among unit tests by

101

102 CHAPTER 6. CONCLUSIONS

partially ordering their coverage sets. (Chapter 3 (p.29)). Our experiments with four case
studies revealed that this technique exposes implicit ordering relationships between
otherwise independent tests. This ordering strengthened our initial hypothesis that
unit tests are inherently but only implicitly intertwined with each other. Furthermore,
our experiments show that the partial order corresponds to a semantic relationship in
which less specific unit tests tend to fail if more specific unit tests also fail. We showed
how we can exploit this order to present the developers the most specific failing test case
first.

In a second step (Chapter 4 (p.45)) we validated our experience that most unit tests focus
on single methods by analyzing a case study consisting of more than 1000 unit tests.
In this analysis we developed a taxonomy which categorizes the relations between unit
tests and methods under test and between unit tests and other unit tests. We gave
evidence that the “unit” under test in object-oriented programs is most often a method
and that most other kinds of unit tests can be decomposed into method commands
focusing on a single method. We also started to develop some lightweight heuristics
to automate this categorization. Our simple heuristics can identify a relevant portion
of categories with a high precision rate. We have given evidence why complete auto-
matic classification of unit tests using our taxonomy is impossible for all our suggested
algorithms.

Synthesizing our findings of above two chapters and we continued by developing the tax-
onomy of Chapter 4 (p.45) into a meta-model called Eg orbiting around method commands
which are exemplifying single methods (Chapter 5 (p.67)). We described in detail the re-
sponsibilities and collaborations of each class of our meta-model. Each responsibility
was exemplified by a refactored version of the bank example. We validated our meta-
model by explaining how it solves the problems described in Chapter 2 (p.9) together with
a small case-study refactoring 40 unit tests of the graphics framework Mondrian.

6.2 Future Work

6.2.1 Integration of Traits

In Chapter 5 (p.67) we described our meta-model by describing the responsibilities for
each class in a sequential order and gave example situations where these responsibil-
ities would apply. But for explaining responsibilities we had to refer to responsibilities
belonging to classes only later described in the meta-model. We believe that the reason
for this is that classes are too coarse-grained to explain the responsibilities of a model
in a logical, linear fashion, where each responsibility can only be explained after its re-
quired responsibilities have been explained before, and thus where each example and

6.2. FUTURE WORK 103

command for a responsibility can build upon already existing examples and commands.
Traits [Schärli, 2005] on the other hand shatter classes into smaller sets of coherent
responsibilities. One the one hand there still exists no meta-model for integrating tests
and examples with traits – which should be fruitful in itself as soon traits get more
adapted by developers. On the other hand scenarios like the one above should be much
easier sortable and describable using fine grained traits. It would be especially interest-
ing to research the roles of required and provided methods in the context of providing
and reusing exemplified methods.

6.2.2 Implementing Eg in other languages

The main constraint to implement the meta-model of Eg into other programming lan-
guages is that the links and the kind of test (e.g., a method example, a method test, an
inverse test) should be represented in parsable source-code. The links we have identified
are

— the link between the method command and its exemplified method

— and the link between the result of a positive method command and the class of the
result.

It is desirable to store positive method commands close to the classes of their returned
object in order to provide developers directly with tidy examples for the classes when
browsing them. In above meta-model we therefore made heavy use of class extensions.
As a consequence we did not have to store positive method commands in a parallel test
hierarchy but rather could treat them as factory methods. Note that class extensions
work without executing the test cases first, so browsing examples for classes does not
need any tool support as the developer can easily navigate to a class and discover the
tests which would provide exemplifying instances of that class.

But extending the classes under test with class methods representing these positive
method commands is not feasible in all object-oriented languages. The reason is that
only some dynamic languages such as Smalltalk or Ruby know the concept of class
extensions. As a consequence languages not providing the concept of class extensions
can provide this link only (1) by dynamically executing all positive method commands
and storing/providing the result in some cache or (2) by requiring the developer to
provide the concrete type of the returned object within the method property/pragma
annotating the test case.

Let us have a look on three wide-spread object-oriented languages in detail:

104 CHAPTER 6. CONCLUSIONS

Ruby To our knowledge Ruby does not come yet with method properties. As a conse-
quence one would have to implement the meta-model of Eg using coding conventions as
introduced in Chapter 5 (p.67).

Connecting methods and method commands. Parsing the method to identify the last
method called before the assertions is as well possible, also we can store a list of
words which should not be treated as candidates for methods under command. If
we needed to denote another method as the last one as the method under com-
mand, we can use the block/lambda expression of Ruby Proc»call as we use the
block statement block in Smalltalk.

Connecting classes and exemplified instances. In Ruby on can extend any class with a
method within a new module. A module can include methods and classes are kind
of modules. A class can include several modules in a sorted manner. Traversing
this sequence of included modules in the reverse order and asking if this method is
defined in some of these modules for that class and if not repeating this procedure
starting with the superclass delivers the module where the method is defined in.
We can make use of the interface Module»method_defined?(id). Thus we can always
identify if a method is a dedicated method command by detecting if its module is
a dedicated example module. This means that we can denote and retrieve method
commands in the same way as we denote and retrieve them in Squeak, namely by
putting them into some dedicated module.

Parsing the kind of test. In order to recreate if the test was a method example, a method
test or an inverse test, we can parse the source-code just as we did in the Smalltalk
solution introduced in Chapter 5 (p.67): e.g., if there are no assertions called after
the method under test is called, it is a method example.

Java

Connecting methods and method commands. Java 1.5 introduced the notion of method
properties. JUnit 4 is already making use of these method properties. We can use
them to annotate the method under test (“mut”) with the method as explained by
Marschall in [Marschall, 2005].

@Testscape(mut =
"package.under.test.Class2#method2(ArgumentTypeOfMethod2)")
public void testXYZ()
....

Connecting classes and exemplified instances. In order to detect the type of the returned
object in case of positive method commands, it would be necessary to be able to
change the signature of the return type of the test from “void” to the according

6.3. LESSONS LEARNED 105

signature of the returned object. Whereas it was possible in earlier versions of
JUnit to return any kind of object, with the introduction of JUnit 4, tests “are void”
again.

Parsing the kind of test. The kind of the test can be annotated with method annotations
in an analogue manner to annotating the method under test.

Python Python does not know method or class extensions nor pragmas or method
properties so we could not come up with a scheme to build the missing links within
Python though we do not think it would be impossible to do so.

6.3 Lessons Learned

Until real software engineering is developed, the next best practice is to de-
velop with a dynamic system that has extreme late binding in all aspects.
(Alan Kay)

During our work on better integrating unit tests into the developer’s workflow we have
learned that the principle of late binding cannot be overestimated. All techniques we
relied on to enhance and play with the base system are relying on this principle.

6.3.1 Reifying and extending base classes and browsers helps

We have developed Eg within Smalltalk, a system architected with the principle of late-
binding in mind. Relying on such a system can be a curse and a blessing. As Smalltalk
stems back from times where computing power was precious, we still find essential
code in current Smalltalk systems which is optimized for computers of the 1970’s. As
a consequence we have problems within Smalltalk at places where the design-principle
of Smalltalk was given up in favor of performance. It was only last year that Denker et
al. [?] introduced methods as first-class objects to make Squeak more evolvable. The
good news is that systems with a clean and clear architectural metaphor as “Everything
is an object” [?] have this kind of self-heeling capabilities. If it is not (yet) an object, we
can make it one, especially in systems like Squeak whose source is open on all levels.
We can extend the class Method to directly point to its exemplifying method commands
or to a sampled set of executed methods. Likewise we easily can play with and extend
the developer’s interface of Smalltalk like its class browsers [?].

Another advantage of late-bound systems like Smalltalk is the extensibility of classes.
We have heavily made use of this feature. Smalltalk and Ruby store methods in an

106 CHAPTER 6. CONCLUSIONS

extensible dictionary. This allows us to add positive method commands as class ex-
tensions to the classes of whom these positive method commands provide exemplified
instances of – within the scope of the example module and not within the scope of the
exemplified module. So positive method commands can be displayed to developers as
class factory methods which we find to be a natural role tests should and can pro-
vide. We thus strengthened our believe that class extensions are a powerful mechanism
making systems like Smalltalk or Ruby superior to Java or Python in this aspect.

6.3.2 Coverage information is essential for testing

Having had already good success in industry by introducing coverage information to
testing we learned during our work on this thesis how essential coverage information
is for testing. A decent test- and developing environment cannot and should not live
without a mechanism which provides coverage information. Coverage information (1)
tells the developer what really happened, it lowers the value of static typing – which often
hinders late binding – by providing concrete types (2), and it allows us to develop new
views on tests (3) like our partial order and – as a consequence – new debugging facilities
(4) like delta-debugging using partial orders as introduced in Chapter 5 (p.67).

6.3.3 Checked method examples are the atoms of unit testing

We believe that the problems we have with unit tests – e.g., their missing navigability and
composability – can be solved like most problems within the context of object-oriented
programs: Make them first-class objects. We therefore analyzed and decomposed exist-
ing unit-tests suites down to smallest units we could find, namely into checked method
examples. Those checked method examples not only focus on methods, the atoms of
object-oriented programs, but also separate the scenario-building part from the verifi-
cation part. Here the verification takes place within the method under test and not within
the test. This separation of concerns allows developers to compose high-level examples
without having to bother about writing concrete assertions, whereas they can focus on
writing decent post-conditions and invariants within their domain models. Whereas
most software-engineering books suggest to write post-conditions and invariants [?] [?]
they are far from being common sense: In Squeak version 3.7 we could detect more
than 1000 unit tests but only three(!) post-conditions. We believe the reason for this
rareness of “design by contract” is that developers prefer automatically running tests
over static contracts. Contracts do not come with a concept of how to run them, on the
other hand current unit tests are not composable as they only provide concrete asser-
tions which only apply in specific contexts. We therefore gave evidence that we can close

6.3. LESSONS LEARNED 107

the gap between static code coming with contracts and runnable and composable ex-
amples by zipping those two valuable concepts via checked method examples Figure ??
(p.??).

a Method with Post-Condition
Account >> withdraw:

a CheckedMethodExample:
Account class >> testWithdraw

a Method with Post-Condition
Account >> deposit:

a CheckedMethodExample:
Account class >> testDeposit

needs explicitly needs implicitly

exemplifies

exemplifies

a MethodExample:
Account class >> empty1234

a Method
Bank >> accountNumbered:

needs explicitly needs implicitly

exemplifies

a CheckedMethodExample:
Bank class >>withAccount1234

a Method with Post-Condition
Bank >> createAccount:

needs explicitly needs implicitly

exemplifies

Figure 6.1: Bridging the gap between static code which comes with post-conditions and exe-
cutable examples by zipping the methods under tests with checked method examples. As long
as the checked method example on the top left calls the three methods at the bottom right to
set up its scenario, we could even get rid of the method examples displayed in gray: All previ-
ously checked methods on the right would stay checked, and they still could provide undedicated
examples.

108 CHAPTER 6. CONCLUSIONS

Appendix A

First Validations of the
Eg-Browser

In the following I present the results of the Master Thesis of Rafael Wampfler, with whom
we implemented Eg and conducted the research presented in this appendix [?].

We built the meta-model for unit tests and an editor for it. But is the editor easier to
use than the XUnit framework? Are developers faster in writing unit tests with our tool
than with the classic XUnit? This chapter gives some initial answers.
The three main measurements of usability evaluations according to [Alan Dix, 2004]
are:

— Assess accessibility of the system’s functions

— Assess user’s expirience of interaction

— Identify any problems

It is difficult to find good parameters for a user interface metric [Ivory and Hearst, 2001].
Counting the number of clicks or keyboard inputs is a simple metric, but it does not
state something about the usability of the system. Stopping the time a user needs to
fulfill a certain process can benchmark the usability, but this depends of how fast the
user can interact with the system.

In this chapter we use two approaches to measure the usability of Eg. We first use a
metric called GOMS (Goals, Operators, Methods, Selection) which can be applied with-
out real users by manually counting the necessary steps and estimating their time to
accomplish a given task. We apply this metric both to creating unit tests with XUnit

109

110 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

and with Eg. We then did a “speak aloud” experiment with five pairs of our research
group and compared their experience of using XUnit with Eg under laboratory condi-
tions.

A.1 GOMS keystroke-level model

GOMS keystroke-level model is a metric for user interfaces [John and Kieras, 1994]
[Alan Dix, 2004]. GOMS computes the time spent for the needed actions like clicking
the mouse, moving the mouse or entering a word on the keyboard. GOMS is a model-
based evaluation and does not need a user to participate.
The GOMS model uses the values from table A.1. The times are mean values. The time

Table A.1: GOMS model
Operator Time Description

K 0.2 sec Keying: Perform a keystroke or mouse click
P 1.1 sec Pointing: Position the mouse pointer
H 0.4 sec Homing: Move hands from keyboard to mouse
M 1.3 sec Mental: Prepare for the next step
R ? Responding: Computer responds to the user inputs

for performing a keystroke can vary from 0.12 (good typist) to 1.2 seconds (non-typist).
The time needed for pointing on an object is dependent on the objects size and the
distance to current mouse position. Fitt’s law says: t = 0.1 ∗ log2(Distance/Size + 0.5).
To calculate the time spent for an action the times of its subtasks is summed up. Mental
preparation is needed before accomplishing different tasks and has be to considered
too.

A.1.1 Validation of the EgBrowser

The EgBrowser is compared to SUnit with Refactoring Browser Extensions support. The
GOMS model from section A.1 is used as metric.
Different tasks are measured with the tools.

A.1.2 Creating a test for an existing method

The initial situation of both is the same: a browser on the selector we want to test. The
test uses the bank account example. The test should deposit an amount of money on

A.2. USABILITY EXPERIMENT 111

an new account and assure that the balance is greater than zero. GOMS measure the
time spent to implement and run the test.
Summary: 134∗K+11∗P+12∗H+21∗M = 134∗0.2+11∗1.1+12∗0.4+21∗1.3 = 71 seconds. The
process took 178 steps. A lot of mental work and typing is needed with SUnit. A person
would have longer to create this test because the mental work assume the person knows
exactly what to. But coding is rarely straight forward, often the formulation changes or
is try and error.
The class and the setup method can be shared by different tests. If they are already
built for another test, the time to create a new SUnit test reduces to 43 seconds in 122
steps.
Summary: 32 ∗ K + 6 ∗ P + 4 ∗ H + 8 ∗ M = 32 ∗ 0.2 + 6 ∗ 1.1 + 4 ∗ 0.4 + 8 ∗ 1.3 = 25 seconds.
The process took 50 steps.

A.1.3 Creating a test for a new method

The same scenario in section A.1.2, except that the method withdraw: is not yet imple-
mented. The browser has the bank class selected. The test class and setup method of
SUnit can be reused from the first comparison.
Summary: 125 ∗ K + 10 ∗ P + 4 ∗ H + 17 ∗ M = 125 ∗ 0.2 + 10 ∗ 1.1 + 4 ∗ 0.4 + 17 ∗ 1.3 = 60
seconds. The process took 156 steps. A lot of steps are reused from section A.1.2 as a
new test class and setup method is not needed.
Summary: 91 ∗ K + 11 ∗ P + 10 ∗ H + 15 ∗ M = 91 ∗ 0.2 + 11 ∗ 1.1 + 10 ∗ 0.4 + 15 ∗ 1.3 = 54
seconds. The process took 127 steps. The steps used in the debugger for defining the
method are the same as with SUnit, but the debugger is opened automatically when a
test runs the first time.

A.2 Usability Experiment

The best usability tests are done with real users. We built a tool for unit testing, so
developers are our users. Developers have a base knowledge in using new applications,
they get used to it faster than other users.
The experiment is done with real user participation under laboratory conditions. Lab-
oratory conditions mean that the user tests the tool in a prepared setup and not in
daily work (field studies). This conditions and the experiment in general can affect the
results.

112 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

A.2.1 Test Setup

Participants The test users are developers from our research group. They all have at
least a basic knowledge about unit testing.

Hypothesis

— The EgBrowser easier to use than SUnit.

— It is faster to accomplish the tasks.

— The EgBrowser is easy to use without previous knowledge.

Technics We did the experiment with pair programming. Pair programming is a com-
mon way to develop software. Two developers are drown by lot. We used think aloud
as observation technic [Alan Dix, 2004]. Think aloud is easier to arrange with pair
programming [Holzinger, 2005]. The users should describe and explain their thoughts
while interacting with the system.
To analyze the protocol later, the process is filmed with a video camera. The camera
records the conversation from the think aloud, but also the screen where the inter-
action with the system happened. The screen is also recorded with a screen capture
application.
The user answers a short questionnaire after the experiment.

A.2.2 Tasks

The team has to write some tests with SUnit and the same with EgBrowser. The tool to
start is chosen randomly to not bias the results.

1. Write an account class.

2. Write a test to create an empty account. Assure that the balance is zero.

3. Write a test to deposit an amount of money on the account. Assure that the account
has the right balance.

4. Write a test to withdraw an amount of money from a not empty account. Assure
that the balance is greater than zero.

5. Write a test to withdraw a too big amount of money from an account. The method
should fail.

6. Browse between the withdraw test and the withdraw method.

A.2. USABILITY EXPERIMENT 113

A.2.3 Questionnaire

This questions are answered by the participants after doing the experiment. Each ques-
tions is responded for SUnit and the EgBrowser on a scale from 1 (disagree) to 5 (agree).
The participants are the 10 developers from the usability experiment.

1. The system is easy to use

2. It is easy to learn

3. It supports the developer’s workflow

4. It tells me what to do at every point

5. It is easy to recover from mistakes

6. It is easy to get help when needed

7. I always know what the system is doing

A.2.4 Questionnaire Analysis

The answers of the questionnaire are shown on figure A.1. The results are biased be-
cause most participants are SUnit experts and use SUnit every day. Another caveat is
that SUnit is a well proven tools used for 30 years. The EgBrowser is in early testing
stage and therefore has some bugs.

1. The system is easy to use
∅ SUnit: 4, ∅ EgBrowser: 3.1
Because most participants are SUnit user, it is unambiguous they prefer SUnit
and believe it is easier to use. Some users like the idea of tests and examples as
reusable commands. The limiting factor was mainly the user interface.

2. It is easy to learn
∅ SUnit: 4.1, ∅ EgBrowser: 3.6
Again higher votes for SUnit, but some participants cannot remember how hard it
was to learn SUnit.

3. It supports the developer’s workflow
∅ SUnit: 3.3, ∅ EgBrowser: 3.9
The participants believe that the EgBrowser supports the workflow. Some devel-
opers are really fast in writing SUnit tests, other needs to browse the SUnit source
code first.

114 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

●

●

●

● ●

●●

●

●

●

● ●

●●

SU1 SU2 SU3 SU4 SU5 SU6 SU7

1
2

3
4

5

Question

A
cc

or
da

nc
e

●

●

●●

●

Eg1 Eg2 Eg3 Eg4 Eg5 Eg6 Eg7

1
2

3
4

5

Figure A.1: Results of the questionnaire displayed as box plots

4. It tells me what to do at every point
∅ SUnit: 2, ∅ EgBrowser: 3.1
EgBrowser has a defined number of input fields. If all fields are filled, the test
should work. SUnit does not provide any steps, the user may be lost in an empty
editor.

5. It is easy to recover from mistakes
∅ SUnit: 3.8, ∅ EgBrowser: 2
Support for recovering from mistakes was limited in the used test version of Eg-
Browser, therefore again good results for SUnit where the debugger opens on the
right context.

6. It is easy to get help when needed
∅ SUnit: 2, ∅ EgBrowser: 2.8
Surprisingly the users think they get more help from EgBrowser than SUnit, but
both tools does not provide any help system. In SUnit a lot of help can be obtained

A.2. USABILITY EXPERIMENT 115

by reading the source code. The EgBrowser leads the user and there are fewer
situation where a user needs help. The EgBrowser has small syntax helps when
hovering over an input field.

7. I always know what the system is doing
∅ SUnit: 4.1, ∅ EgBrowser: 2.7
Another problem with the EgBrowser was the missing feedback to the user through
the user interface. Whereas the participants knew what SUnit is doing in the
background the way Eg works in the background was not immediately understood.

A.2.5 Video Analysis

The same tasks were performed with two different tools, SUnit and EgBrowser. The
EgBrowser is a prototype able to handle the underlying meta model. The version of the
EgBrowser used for the experiment had the following bugs:

— The interface was not always updated correctly. The EgBrowser needed a manual
reload to create a new command or modifying existing commands.

— The EgBrowser did not warn the user if the example is compiled to another class
than the receiver of the command. The default return value was the result and not
the receiver.

— The commands were running in an anonymous context, so the debugger stack could
not be used to fix mistakes.

— If a command failed and the EgBrowser was closed the command was not saves and
the user had to rewrite it.

— Bad examples did not report a success after running and were displayed as failure in
the interface.

Therefore the situation cannot be compared directly. The user had more problems with
the EgBrowser interface bugs than expected.
To compare the EgBrowser with SUnit, the time spent with the bugs is subtracted from
the EgBrowser time. The estimation of the bug time is ambiguous and in same cases too
optimistic. Sometimes it is the time spent to implement the command for the third time.
The developers already knew what to enter and were accordingly fast. This corrected
time is displayed in the diagrams as EgBrowser real.

116 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

Task 1: Write an account class

The EgBrowser did not yet supported generating classes. The process of creating the
class was the same as with SUnit. Because the tasks was done twice, it was faster
implemented with the second tool.
Team 1, 3 and 5 started with Eg, team 2 and 4 with SUnit.
Team 1 wanted to implement the test first and the class after until they realized it is not
possible.
Team 3 was very fast with SUnit because they first implemented the test case and
defined the class in the debugger.
Team 4 had problems defining a class because both team member were not familiar
with the VisualWorks environment.

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 20 40 60 80 100 120 140

Write an account class

Figure A.2: Analysis of task 1

Task 2: Write a test to create an empty account

Team 2 and 3 implemented the test with Eg as fast as in SUnit.
The other Teams had more problems. Because the EgBrowser crash course was a bit
short team 1 did not remember how to open the right browser and noticed it after
creating the tests.
Team 4 and 5 had difficulties formulating the demanded test as one method command.

A.2. USABILITY EXPERIMENT 117

They compiled the command to a wrong receiver class because the receiver was the
default return value. So they had to delete the wrong command and the compiled
methods and re-implemented the command with the right return value.

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 100 200 300 400 500 600

Write a test to create an empty account

Figure A.3: Analysis of task 2

Task 3: Write a test to deposit an amount of money on the account

Overall this task was done faster than the previous because most teams comprehended
the function of the EgBrowser.
Team 1, 3 and 4 had the first problems with refreshing the interface.
Team 5 wanted to reuse the command of task 2 in a strange way. Because the task 2
returned the wrong value, it did not work at all. Finally the model was out of sync and
the team was very confused about the function of Eg.

Task 4: Write a test to withdraw an amount of money from a not empty ac-
count

The main goal of this task was to reuse the command from the previous task. The
difference between SUnit and Eg is smaller than in the tasks before. Except for team 3,
they had serious problems and had to implement the command multiple times.

118 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 200 400 600

Write a test to deposit an amount of money on the account

Figure A.4: Analysis of task 3

Task 5: Write a test to withdraw a too big amount of money from an account

Most teams did not know by heard how to raise an exception and how to catch it with a
SUnit test. Some teams needed to browse the SUnit class to look up the syntax for the
failed test.
Team 3 used most time to implement a working withdraw method and did not waste all
the time to create an Eg command.

Task 5: Browse between the withdraw test and the withdraw method

This was not a real task. It was to demonstrate the features of Eg where you can browse
between test and implementation with the meta model. SUnit does not have this feature
and is not comparable.

A.2.6 Conclusion

Most teams chose a test driven approach: they implemented the first test before the
class and the method implementation in the debugger. If the duration for the tasks of
SUnit and the EgBrowser is compared, they are more or less equal. Most participants

A.2. USABILITY EXPERIMENT 119

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 50 100 150 200 250

Write a test to withdraw an amount of money from a not empty account

Figure A.5: Analysis of task 4

are fast with SUnit. They use SUnit every day and know how to create a test without
mistakes.
The participants learned the usage of the EgBrowser fast. With the EgBrowser the time
to create a test is reduced, so the inexperienced user had approximately as long to cre-
ate a test as with SUnit.
Most teams had problems to create a command with Eg. The interface did not provide
enough feedback. They were not sure if the model is comiling the right thing in the
background.

120 APPENDIX A. FIRST VALIDATIONS OF THE EG-BROWSER

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 50 100 150

Write a test to withdraw a too big amount of money from an account

Figure A.6: Analysis of task 5

Bibliography

[Alan Dix, 2004] Gregory D. Abowd Alan Dix, Janet E. Finlay. Human-Computer Inter-
action (3rd Edition). Prentice Hall, 2004.

[Allen-Conn and Rose, 2003] B.J. Allen-Conn and Kimberly Rose. Powerful Ideas in the
Classroom. Viewpoints Research Institute, Inc., 2003.

[Anderson et al., 1984] John R. Anderson, Robert Farrell, and Ron Sauers. Learning to
program in Lisp. Cognitive Science, 8(2):87–129, 1984.

[ANS, 1983] ANSI/IEEE Standard 729-1983, New York. IEEE Standard Glossary of Soft-
ware Engineering Terminology, 1983.

[Beck and Gamma, 1998] Kent Beck and Erich Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7):51–56, 1998.

[Beck, 2003] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2003.

[Bergel, 2005] Alexandre Bergel. Classboxes — Controlling Visibility of Class Extensions.
PhD thesis, University of Berne, November 2005.

[Bible et al., 2001] John Bible, Gregg Rothermel, and David Rosenblum. A compara-
tive study of coarse- and fine-grained safe regression test selection. ACM TOSEM,
10(2):149–183, April 2001.

[Binder, 1999] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Object Technology Series. Addison Wesley, 1999.

[Brant et al., 1998] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrap-
pers to the rescue. In Proceedings European Conference on Object Oriented Program-
ming (ECOOP 1998), volume 1445 of LNCS, pages 396–417. Springer-Verlag, 1998.

[Brooks, 1987] Frederick P. Brooks. No silver bullet. IEEE Computer, 20(4):10–19, April
1987.

121

122 BIBLIOGRAPHY

[Bruner et al., 1956] Jerome S. Bruner, Jacqueline J. Goodnow, and George A. Austin.
A Study of Thinking. John Wiley & Sons, New York, NY, 1956.

[Bruntink and van Deursen, 2004] Magiel Bruntink and Arie van Deursen. Predicting
class testability using object-oriented metrics. In Proceedings of the Fourth IEEE Inter-
national Workshop on Source Code Analysis and Manipulation (SCAM). IEEE Computer
Society Press, September 2004.

[Chari and Hevner, 2006] Kaushal Chari and Alan Hevner. System test planning of
software: An optimization approach. IEEE Transactions on Software Enginering,
32(07):503–5099, 2006.

[Cleve and Zeller, 2000] Holger Cleve and Andreas Zeller. Finding failure causes
through automated testing. In Proceedings of the Fourth International Workshop on
Automated Debugging, August 2000.

[Cockburn, 2002] Alistair Cockburn. Agile Software Development. Addison Wesley,
2002.

[Cockburn, 2003] Alistair Cockburn. Writting Effective Use Cases. Addison Wesley,
2003.

[Cockburn, 2006] Alistair Cockburn. Dos equis driven design, 2006, http://
alistair.cockburn.us/index.php/Dos_equis_driven_design. Retrieved August
25th 2006.

[Cohn, 2004] Mike Cohn. User Stories Applied: For Agile Software Development. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[Cunningham, 2006] Ward Cunningham. Private communication, 2006.

[De Pauw et al., 1998] Wim De Pauw, David Lorenz, John Vlissides, and Mark Weg-
man. Execution patterns in object-oriented visualization. In Proceedings Conference
on Object-Oriented Technologies and Systems (COOTS ’98), pages 219–234. USENIX,
1998.

[Denker et al., 2006] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime
bytecode transformation for Smalltalk. Journal of Computer Languages, Systems and
Structures, 32(2-3):125–139, July 2006.

[Deursen and Moonen, 2002] Arie van Deursen and Leon Moonen. The video store re-
visited — thoughts on refactoring and testing. In M. Marchesi and G. Succi, editors,
Proceedings of the 3nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2002), May 2002.

[Deursen et al., 2001] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard
Kok. Refactoring test code. In M. Marchesi, editor, Proceedings of the 2nd International

http://alistair.cockburn.us/index.php/Dos_equis_driven_design
http://alistair.cockburn.us/index.php/Dos_equis_driven_design

BIBLIOGRAPHY 123

Conference on Extreme Programming and Flexible Processes (XP2001), pages 92–95.
University of Cagliari, 2001.

[Ducasse et al., 2001] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. The
Moose Reengineering Environment. Smalltalk Chronicles, August 2001.

[Ducasse et al., 2006] Stéphane Ducasse, Tudor Gîrba, and Roel Wuyts. Object-
oriented legacy system trace-based logic testing. In Proceedings 10th European Con-
ference on Software Maintenance and Reengineering (CSMR 2006), pages 35–44. IEEE
Computer Society Press, 2006.

[Ducasse, 1999] Stéphane Ducasse. Evaluating message passing control techniques in
Smalltalk. Journal of Object-Oriented Programming (JOOP), 12(6):39–44, June 1999.

[Edwards, 2004] Jonathan Edwards. Example centric programming. In OOPSLA 04:
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, pages 124–124. ACM Press, 2004.

[Elbaum et al., 2000] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rother-
mel. Prioritizing test cases for regression testing. In International Symposium on
Software Testing and Analysis, pages 102–112. ACM Press, 2000.

[Evans, 2003] Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Fowler and Highsmith, 2001] Martin Fowler and Jim Highsmith. The Agile Manifesto.
Software Development Magazine, 9(8), August 2001. http://agilemanifesto.org.

[Fowler et al., 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.

[Freeman et al., 2004] Steve Freeman, Nat Pryce, Tim Mackinnon, and Joe Walnes.
Mock roles, not objects. In Companion of OOPSLA ’04, ACM SIGPLAN Notices, pages
236–246, New York, NY, USA, 2004. ACM Press.

[Gaelli et al., 2004a] Markus Gaelli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts.
Ordering broken unit tests for focused debugging. In 20th International Conference on
Software Maintenance (ICSM 2004), pages 114–123, 2004.

[Gaelli et al., 2004b] Markus Gaelli, Oscar Nierstrasz, and Stéphane Ducasse. One-
method commands: Linking methods and their tests. In OOPSLA Workshop on Revival
of Dynamic Languages, October 2004.

[Gaelli et al., 2005a] Markus Gaelli, Orla Greevy, and Oscar Nierstrasz. Composing unit
tests. In Proceedings of SPLiT 2006 (2nd International Workshop on Software Product
Line Testing), September 2005.

124 BIBLIOGRAPHY

[Gaelli et al., 2005b] Markus Gaelli, Michele Lanza, and Oscar Nierstrasz. Towards a
taxonomy of SUnit tests. In Proceedings of ESUG 2005 (13th International Smalltalk
Conference), September 2005.

[Gaelli, 2004] Markus Gaelli. PhD-symposium: Correlating unit tests and methods un-
der test. In 5th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP 2004), volume 3092 of LNCS, page 317, June 2004.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, Mass., 1995.

[Gîrba et al., 2004] Tudor Gîrba, Stéphane Ducasse, and Michele Lanza. Yesterday’s
Weather: Guiding early reverse engineering efforts by summarizing the evolution of
changes. In Proceedings 20th IEEE International Conference on Software Maintenance
(ICSM 2004), pages 40–49, Los Alamitos CA, September 2004. IEEE Computer Society
Press.

[Gîrba et al., 2005] Tudor Gîrba, Michele Lanza, and Stéphane Ducasse. Characteriz-
ing the evolution of class hierarchies. In Proceedings IEEE European Conference on
Software Maintenance and Reengineering (CSMR 2005), pages 2–11, Los Alamitos CA,
2005. IEEE Computer Society.

[Greevy et al., 2006] Orla Greevy, Stéphane Ducasse, and Tudor Gîrba. Analyzing soft-
ware evolution through feature views. Journal of Software Maintenance and Evolution:
Research and Practice, 2006. To appear.

[Hirschfeld, 2003] Robert Hirschfeld. AspectS – aspect-oriented programming with
Squeak. In M. Aksit, M. Mezini, and R. Unland, editors, Objects, Components, Ar-
chitectures, Services, and Applications for a Networked World, number 2591 in LNCS,
pages 216–232. Springer, 2003.

[Holzinger, 2005] Andreas Holzinger. Usability engineering methods for software devel-
opers. Commun. ACM, 48(1):71–74, 2005.

[Holzner, 2004] Steve Holzner. Eclipse. O’Reilly, May 2004.

[Ingalls et al., 1997] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. Back to the future: The story of Squeak, A practical Smalltalk written in it-
self. In Proceedings OOPSLA ’97, ACM SIGPLAN Notices, pages 318–326. ACM Press,
November 1997.

[Ivory and Hearst, 2001] Melody Y. Ivory and Marti A. Hearst. The state of the art in
automating usability evaluation of user interfaces. ACM Comput. Surv., 33(4):470–
516, December 2001.

BIBLIOGRAPHY 125

[Jézéquel, 1996] J-M. Jézéquel. Object-Oriented Software Engineering with Eiffel. Addi-
son Wesley, 1996.

[John and Kieras, 1994] Bonnie E. John and David E. Kieras. The GOMS Family of
Analysis Techniques: Tools for Design and Evaluation. Technical Report CMU-CS-
94-181, Carnegie Mellon University School of Computer Science, August 1994.

[Kay, 1993] Alan C. Kay. The early history of Smalltalk. In ACM SIGPLAN Notices,
volume 28, pages 69–95. ACM Press, March 1993.

[Kiczales et al., 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Proceeding ECOOP 2001,
number 2072 in LNCS, pages 327–353. Springer Verlag, 2001.

[Koschke, 2003] Rainer Koschke. Software visualization in software maintenance, re-
verse engineering, and re-engineering: a research survey. Journal of Software Mainte-
nance and Evolution: Research and Practice, 15(2):87–109, 2003.

[Lakoff, 1990] George Lakoff. Woman, Fire, And Dangerous Things. University Of
Chicago Press, 1990.

[Lanza, 2003] Michele Lanza. Codecrawler — lessons learned in building a software
visualization tool. In Proceedings of CSMR 2003, pages 409–418. IEEE Press, 2003.

[Lieberman and Hewitt, 1980] Henry Lieberman and Carl Hewitt. A session with Tinker:
Interleaving program testing with program writing. In LISP Conference, pages 80–99,
1980.

[Lieberman, 2001] Henry Lieberman. Your Wish Is My Command — Programming by
Example. Morgan Kaufmann, 2001.

[Mackinnon et al., 2000] T. Mackinnon, S. Freeman, and P. Craig. Endotesting: Unit
testing with mock objects, 2000, http://www.mockobjects.com.

[Marschall, 2005] Philippe Marschall. Detecting the methods under test in Java. Infor-
matikprojekt, University of Bern, April 2005.

[Mason John H., 2001] Watson Anne Mason John H. Getting students to create bound-
ary examples. MSOR Connections, 1(1):9–11, 2001.

[Massol and O’Brien, 2005] Vincent Massol and Timothy M. O’Brien. Maven: A devel-
oper’s Notebook. O’Reilly, 2005.

[Memon et al., 2001] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Hierar-
chical GUI test case generation using automated planning. IEEE Trans. Softw. Eng.,
27(2):144–155, 2001.

126 BIBLIOGRAPHY

[Memon et al., 2003] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing. In Proceedings IEEE Work-
ing Conference on Reverse Engineering (WCRE 2003), pages 260–269, Los Alamitos CA,
November 2003. IEEE Computer Society Press.

[Meyer, 1992] Bertrand Meyer. Applying design by contract. IEEE Computer (Special
Issue on Inheritance & Classification), 25(10):40–52, October 1992.

[Moore, 2001] I. Moore. Jester – a JUnit test tester. In M. Marchesi, editor, Proceedings
of the 2nd International Conference on Extreme Programming and Flexible Processes
(XP2001). University of Cagliari, 2001.

[Mugridge and Cunningham, 2005a] Rick Mugridge and Ward Cunningham. Agile test
composition. In Hubert Baumeister, Michele Marchesi, and Mike Holcombe, editors,
Extreme Programming and Agile Processes in Software Engineering, 6th International
Conference, XP 2005, volume 3556 of Lecture Notes in Computer Science, pages 137–
144. Springer, 2005.

[Mugridge and Cunningham, 2005b] Rick Mugridge and Ward Cunningham. Fit for De-
veloping Software: Framework for Integrated Tests (Robert C. Martin). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[Nierstrasz, 2002] Oscar Nierstrasz. Software evolution as the key to productivity. In
Proceedings Radical Innovations of Software and Systems Engineering in the Future,
Venice, Italy, October 2002. preprint.

[Nievergelt, 2006] Jürg Nievergelt. Die Aussagekraft von Beispielen. Informatik Spek-
trum, 29(4):281–286, 2006.

[Panko and Jr, 1996] Raymond R. Panko and Richard P. Halverson Jr. Spreadsheets
on trial: A survey of research on spreadsheet risks. In HICSS ’96: Proceedings of the
29th Hawaii International Conference on System Sciences (HICSS) Volume 2: Decision
Support and Knowledge-Based Systems, page 326, Washington, DC, USA, 1996. IEEE
Computer Society.

[Parrish et al., 2002] Allen Parrish, Joel Jones, and Brandon Dixon. Extreme unit test-
ing: Ordering test cases to maximize early testing. In Michele Marchesi, Giancarlo
Succi, Don Wells, and Laurie Williams, editors, Extreme Programming Perspectives,
pages 123–140. Addison-Wesley, 2002.

[Pawson and Matthews, 2002] Richard Pawson and Robert Matthews. Naked Objects.
Wiley and Sons, 2002.

[Renggli, 2003] Lukas Renggli. SmallWiki: Collaborative content management. Infor-
matikprojekt, University of Bern, 2003. http://smallwiki.unibe.ch/smallwiki.

BIBLIOGRAPHY 127

[Rothermel and Harrold, 1996] Gregg Rothermel and Mary Jean Harrold. Analyzing
regression test selection techniques. IEEE Transactions on Software Engineering,
22(8):529–551, 1996.

[Rothermel et al., 1999] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and
Mary Jean Harrold. Test case prioritization: An empirical study. In Proceedings ICSM
1999, pages 179–188, September 1999.

[Rothermel et al., 2001] Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher
Dupuis, and Andrei Sheretov. A methodology for testing spreadsheets. ACM Trans.
Softw. Eng. Methodol., 10(1):110–147, 2001.

[Rothermel et al., 2002] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky,
Praveen Kallakuri, and Brian Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings ICSE-24, pages 230–240, May 2002.

[Saff and Ernst, 2003] David Saff and Michael D. Ernst. Can continuous testing speed
software development? In Fourteenth International Symposium on Software Reliability
Engineering ISSRE 2003. IEEE, November 2003.

[Schärli, 2005] Nathanael Schärli. Traits — Composing Classes from Behavioral Building
Blocks. PhD thesis, University of Berne, February 2005.

[Schuh and Punke, 2001] Peter Schuh and Stephanie Punke. ObjectMother, easing test
object creation in XP, 2001, http://www.xpuniverse.com/2001/pdfs/Testing03.pdf.
http://www.xpuniverse.com/2001/pdfs/Testing03.pdf.

[Soanes, 2001] Catherine Soanes, editor. Oxford Dictionary of Current English. Oxford
University Press, July 2001.

[Spoon, 2006] S. Alexander Spoon. Package universes: Which components are real can-
didates? Technical Report LAMP-REPORT-2006-002, École Polytechnique Fédérale
de Lausanne (EPFL), 2006.

[Summers, 1977] Phillip D. Summers. A methodology for Lisp program construction
from examples. J. ACM, 24(1):161–175, 1977.

[van Geet, 2006] Joris van Geet. Coevolution of software and tests: An initial assess-
ment. Diploma Thesis, University of Antwerpen, July 2006.

[Watson Anne, 2002] Mason John H. Watson Anne. Student-generated examples in the
learning of mathematics. Canadian Journal of Science, Mathematics and Technology
Education, 2(2):237–249, 2002.

[Wikipedia, 2006] Wikipedia. David Wheeler, 2006, http://en.wikipedia.org/wiki/
David_Wheeler. Retrieved August 10th 2006.

http://en.wikipedia.org/wiki/David_Wheeler
http://en.wikipedia.org/wiki/David_Wheeler

128 BIBLIOGRAPHY

[Winger, 2004] Eric Winger. Pragmas: Running tests on method change, 2004, http://
www.cincomsmalltalk.com/userblogs/eric/blogView?entry=3265627283. Re-
trieved August 10th 2006.

[Wirfs-Brock and McKean, 2003] Rebecca Wirfs-Brock and Alan McKean. Object Design
— Roles, Responsibilities and Collaborations. Addison-Wesley, 2003.

[Wittgenstein, 1953] Ludwig Wittgenstein. Philosophische Untersuchungen. Blackwell,
Oxford, 1953.

[Wong et al., 1997] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study
of effective regression testing in practice. In Proceedings of the Eighth International
Symposium on Software Reliability Engineering, pages 230–238, November 1997.

[Zeller and Hildebrandt, 2002] Andreas Zeller and Ralf Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on Software Engineering, SE-
28(2):183–200, February 2002.

[Zeller, 2005] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, oct 2005.

http://www.cincomsmalltalk.com/userblogs/eric/blogView?entry=3265627283
http://www.cincomsmalltalk.com/userblogs/eric/blogView?entry=3265627283

	Abstract
	Introduction
	The Problem
	Our Approach in a Nutshell
	Contributions
	Thesis Outline

	Problems in Understanding and Testing
	Agile Development aligns Viewpoints of Customers and Coders
	Constraints of Test-Driven Development
	Problems of Implicit Test Interdependencies
	Creating test scenarios is time-consuming and complex
	Understanding the interplay of a system is hard
	Testing time is unnecessarily long
	The problem of identifying relevant tests in the case of a failure
	The problem of detecting similar tests

	Problems of Implicit Test / Code Interdependencies
	Understanding the focus and the kind of a test is hard
	The problem of separating good examples from less appropriate ones
	The problem from separating tidy from untidy examples
	The problem of keeping the tests and the code synchronized
	The problem of seeing a method in a debugger

	Problems of Implicit Code Interdependencies: Typing
	Related Work
	Summary

	Partially Ordering Unit Tests
	Implicit dependencies between unit tests
	Ordering broken unit tests
	Approach
	Implementation

	Case studies
	Setup of the experiments
	Results

	Discussion
	Semantic ordering of tests
	Limitations

	Related Work
	Summary

	Taxonomy of Unit Tests
	Introduction
	Basic Definitions
	A Taxonomy of Unit Tests
	Method test commands
	Method example commands
	Multiple-method test suite
	Others
	First validation: Maven

	Automatic Classification of Unit Tests
	Instrumentation
	Lightweight Heuristics
	A First Case Study: Squeak Unit Tests
	A Second Case Study: SmallWiki

	Discussion
	Related Work
	Summary

	An exemplified Meta-Model for Examples: Eg
	The Bank Account and its Tests refactored
	Exemplified Responsibilities of Eg
	Module
	Example Module
	Method Command
	Negative Method Command
	Positive Method Command
	Method Test
	Method Example
	Class
	Method

	Validation
	Creating Test Scenarios is easy
	Our sorting techniques help to understand the interplay of the system
	Minimizing Testing Time
	Identifying relevant failed tests in the case of a failure is easy
	We can detect similar tests
	We know exactly the scope and the kind of a test
	We can highlight the best examples for methods
	We can separate tidy from untidy examples
	We can synchronize tests with code with a minimal overhead
	All exemplified methods can be seen in a debugger
	Typing

	Converting existing tests into Eg-Tests: A Case Study

	Conclusions
	Contributions
	Lessons learned
	Getting Feedback and Spreading the Idea by A Filmed Thinking Aloud in Pairs Experiment

	Future Work
	Integration of Traits
	Scale freeness of method call distributions
	Programming as a sequence of commands
	The best examples
	Partial Ordering Unit Tests: More Techniques and Case Studies
	Implementing Eg in other languages
	Ruby
	Java

	First Validations of the Eg-Browser
	GOMS keystroke-level model
	Validation of the EgBrowser
	Creating a test for an existing method
	Creating a test for a new method

	Usability Experiment
	Test Setup
	Tasks
	Questionnaire
	Questionnaire Analysis
	Video Analysis
	Conclusion

