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Abstract

System comprehension is a prerequisite for software maintenance and evolution, but it is a time-
consuming and costly activity. In an effort to support system comprehension, researchers have
devised many different reverse engineering techniques. Several of these are based on statically
analyzing the source code. Purely static analysis techniques, however, overlook valuable end-user
knowledge of how a system behaves at runtime.

To address this problem, several researchers have identified the potential of exploiting features in
a reverse engineering context. Features are abstractions of a system’s problem domain that well-
understood by end-users. They encapsulate knowledge of a problem domain and denote units of
system behavior. Thus, they represent a valuable resource for reverse engineering a system, The
main body of feature-related reverse engineering research is concerned with feature identification, a
technique to map features to source code. To fully exploit features in reverse engineering, however,
we need to extend the focus beyond feature identification and exploit features as primary units of
analysis. We formulate our thesis as follows:

To exploit the inherent domain knowledge of features for object-oriented system comprehen-
sion, we need to explicitly model features, their relationships to source artefacts, and their
relationships to each other.

The contribution of our work is twofold: on the one hand, we enrich reverse engineering analysis of
object-oriented systems with semantic knowledge of features, and on the other hand, we introduce
new techniques that treat features as the primary entities of analysis. Our key contribution is our
definition of Dynamix, a meta-model for expressing feature entities in the context of a structural
meta-model of source code entities. Using case studies, we demonstrate how our feature-centric re-
verse engineering techniques, based on Dynamix, exploit feature knowledge to establish traceability
between the problem and solution domains throughout the life-cycle of a system.
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Chapter 1

Introduction

The goal of the object-oriented paradigm is to achieve an intuitive correspondence between static
entities of a problem domain and those of the solution domain. Features denote units of behavior
corresponding to well-understood abstractions of the problem domain, but they do not map directly
to individual source code artefacts. We center our reverse engineering analyses around the notion of
a feature as a dynamic entity. Our motivation is to enrich reverse engineering techniques by taking
advantage of the semantic domain knowledge that features represent.



CHAPTER 1. INTRODUCTION

1.1 Context

System comprehension is a prerequisite for software maintenance and evolution, but it is a time-
consuming and costly activity. Studies show that 50-60% of software engineering effort is spent
trying to understand source code [Basili, 1997]. The task of understanding is complicated by the
fact that there is often a discrepancy between the language used to describe the problem and solution
domains of a system. Domain analysts and end-users describe a system in terms of features that
solve requirements, whereas software engineers tend to focus on implementation details such as
architectural layers, interfaces, and source artefacts.

To tackle the task of understanding large and complex systems, people tend to break them down
into smaller units [de Bono, 1990]. With object-oriented systems, the class is the unit intended to
model a single entity of a problem domain. However, an individual class is typically too small a
unit for system comprehension [Zenger, 2002]. Examination of an individual class does not reveal
much about the behavior or purpose of a system. Typically, behavior of object-oriented systems
is characterized by groups of collaborating classes. Thus, to understand how a system behaves at
runtime, a software engineer needs to consider groups of classes. Although many object-oriented
languages define a package as a means to statically group classes in the source code, a package
does not solve the problem of understanding system behavior, as packages tend to reflect the static
structural divisions of a system rather than behavioral groupings [Wong et al., 2000].

From an external perspective, users understand a system as a collection of features that correspond
to system behaviors to fulfill requirements. As such, features are well-understood abstractions that
encapsulate domain knowledge and denote a system’s behavioral units. However, the software engi-
neer cannot identify and manipulate features, as they are not explicitly represented in the source code
of object-oriented systems. Typically, feature implementation cross-cuts the structural boundaries
(i.e., packages and classes) of an object-oriented system [Wong et al., 2000].

A software engineer is frequently confronted with features. Typically, change requests and bug
reports are expressed in a language that reflects the features of a system [Mehta and Heineman,
2002]. Therefore, to perform maintenance tasks, a software engineer needs to maintain a mental
map between the features and their implementation as source artefacts. In this dissertation, we
propose to support maintenance and evolution of object-oriented systems, by extracting dynamic
views that break a system down into groupings that reflect its features.
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1.2 The Problem of Object-Oriented System Comprehension

Until the mid 1980’s, the procedural paradigm dominated software development. It guided software
developers to transform requirements of a problem domain into procedures by a process of stepwise
refinement. The procedures were structured into modules that typically reflected runtime intent of
the system. Thus, by browsing the source code, a software engineer could obtain an impression of
how the system behaved at runtime.

A major disadvantage of the procedural paradigm is that it produces systems that hardwire func-
tionality to data, thus hampering their ability to evolve to meet the needs of changing require-
ments. The object-oriented paradigm revolutionized the way we think about and build software
systems. Objects of a problem domain are transformed into software objects in a solution do-
main. The software objects collaborate by exchanging messages to fulfill requirements or features
of the system. Object-orientation provides a better paradigm for building flexible systems. How-
ever, object-oriented language characteristics such as inheritance, dynamic binding and polymor-
phism mean that the behavior of a system can best be determined at runtime [Jerding et al., 1996;
Demeyer et al., 2003]. Thus, a side-effect of object-oriented systems is that it is difficult to under-
stand their runtime behavior purely by inspecting the source code [Wilde and Huitt, 1992; Dunsmore
et al., 2000].

As the flow of control of procedural-based systems is usually explicit in the code, source code
browsing and static analysis techniques usually provide sufficient insight into the intent of these
systems. In contrast, to gain an understanding of the behavior of object-oriented systems, we need to
obtain runtime views. Researchers who analyze runtime data are faced with the challenge of dealing
with vast amounts of data produced by dynamic analysis. To address this, they have devised a range
of techniques such as filtering and compression [Zaidman and Demeyer, 2004; Hamou-Lhadj et al.,
2005], metrics [Ducasse et al., 2004] and visualizations [De Pauw et al., 1993] to reduce the volume
of data without loss of information needed to address their research goals. The focus of many of these
approaches is to obtain an architectural insight into a program using dynamic analysis [Ball, 1999;
Zaidman et al., 2005]. Establishing traceability between problem domain and the solution domain
(i.e., source code) is not the primary concern.

In this dissertation, we claim that features are a good starting point for system comprehension, as
they not only encapsulate knowledge of a problem domain, but they also denote units of behavior.
Many researchers have identified the potential of exploiting features in a reverse engineering context,
and a body of research known as feature identification has emerged [Wilde and Scully, 1995; Wong
et al., 2000; Eisenbarth et al., 2003].

Feature identification techniques offer only one perspective of features in a reverse engineering con-
text: they focus on mapping features to source code to identify starting points for further inves-
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tigation. Only a few researchers have treated features as explicit entities when reasoning about a
system. The main motivation of our work is to capture the notion of a feature as a first-class entity
when reverse engineering a system, so that we can enrich high level views of a software system with
semantic context of its problem domain. Our goal is to support development and maintenance ac-
tivities by establishing traceability between feature knowledge of a problem domain and the source
artefacts that participate in their runtime behavior throughout a system’s life-cycle.

A software system comprises a set of features and relationships between features. Typically re-
lationships between features themselves are specified during requirements analysis, as they ex-
press conceptual dependencies and constraints of a system [Riebisch, 2003]. Only few researchers
have addressed feature relationships in a reverse engineering context [Salah and Mancoridis, 2004;
Kothari et al., 2006]. As these dependencies are not explicit in the source code, modifications often
result in unintended side effects such as breaking existing features or leading to behavioral inconsis-
tencies.

We claim that to provide a comprehensive support for object-oriented system comprehension and
maintenance activities, we need to extract features and feature relationships from a system and make
them explicit. We summarize the motivation of our research with the following question:

Research Question:

How can we exploit the knowledge of an object-oriented system’s problem domain to
enrich reverse engineering techniques with semantic context?

1.3 Our Proposal: Feature-Centric Analysis

To address our research question, we propose a feature-centric reverse engineering analysis for
object-oriented systems. By incorporating the notion of a feature in reverse engineering techniques,
we establish links between a problem domain and solution domain of a software system. We propose
to extend existing reverse engineering techniques in two ways: (1) by introducing feature-enriched
perspectives of a system and, (2) by introducing new techniques that treat features as primary entities
of analysis.

As the basis of our analysis, we define a meta-model for features, which we name Dynamix. Dy-
namix describes a meta-model for features in terms of message send and object instantiation entities
in the context of a structural model of the source code. Dynamix underlies all the feature-centric
analysis techniques we present in this dissertation.

An underlying principle of our feature-centric analysis techniques, is the idea of looking at the same
problem from different perspectives. We extract complementary feature-enriched perspectives of
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a system. Our goal is to support system comprehension by treating features as first class entities,
by considering the roles of structural entities of source code with respect to features, and also by
considering relationships between features themselves.

5
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We state our thesis as follows:

Thesis:

To exploit inherent domain knowledge of features for object-oriented system compre-
hension, we need to explicitly model features as first class entities, their relationships
to source artefacts, and their relationships to each other.

To obtain an instance of a Dynamix model, we first extract and model source code entities. We in-
strument a system and exercise its features. We adopt the definition of a feature as a user-triggerable
activity of a system [Eisenbarth et al., 2003]. To exercise features, we adopt various techniques: (1)
by manually interacting with the user interface, (2) by simulating the user interactions with scripts,
and (3) by executing regression tests. We capture traces of features as a call tree of events that rep-
resent message sends between collaborating objects. We process the trace and resolve relationships
between features and source artefacts (i.e., classes and methods) referenced by the individual mes-
sage events of the trace. Each feature is modeled as an explicit entity in Dynamix. Moreover, as
feature behavior is composed of message sends and object instances, we also model them as explicit
entities.

In this dissertation we introduce a variety of reverse engineering analysis techniques that exploit
the notion of features. We demonstrate that Dynamix supports a wide variety of feature-enriched
reverse engineering analyses.

1.4 Contributions

The contributions of this dissertation are:

1. Dynamix, a generic meta-model of runtime behavior of features in the context of a structural
model of source entities.

2. A feature-centric analysis comprising of three complementary perspectives: (1) we explicitly
model features as semantic groupings of source artefacts, (2) we define new measurement,
called Feature Affinity to quantify the relationships between a source artefact (e.g., class,
method) and a feature, and (3) we introduce a vocabulary to describe relationships between
features and describe measurements to quantify these relationships [Greevy and Ducasse,
2005b; Greevy and Ducasse, 2005a].

3. Two novel approaches to analyze evolution of a system: (1) we analyze how the roles of source
artefacts change with respect to features [Greevy et al., 2005a] and (2) we analyze how feature
views (i.e., a grouping of source artefacts) change over time [Greevy et al., 2006a].
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4. A novel visual feature analysis approach to detect feature hot spots in feature behavior based
on analysis of behavioral entities at the level of instances and message sends [Greevy et al.,
2005a].

5. An analysis of developer ownership of source artefacts to determine which developers were
responsible for the development of which features [Greevy et al., 2007].

1.5 Structure of the Dissertation

Chapter 2 (p.9) elaborates on the problem of system comprehension in an object-oriented context,
and surveys the state of the art in dynamic analysis and feature-related reverse engineering
techniques. We identify shortcomings of existing approaches in the context of our thesis and
identify key elements needed to exploit domain knowledge of features for reverse engineering.

Chapter 3 (p.25) defines Dynamix and presents feature-centric analysis from different and com-
plementary perspectives.

Chapter 4 (p.43) presents an application of three complementary perspectives of feature-centric
analysis on two software systems and discusses our findings.

Chapter 5 (p.67) describes a novel approach to evolution analysis of a software system that mea-
sures how roles of source artefacts change with respect to features over time. We exploit
knowledge of how classes participate in features to understand change intent in source code
over time. Our focus in this work is to enrich evolution analysis techniques with knowledge
of features. We define extensions to Dynamix to model multiple versions of a system and
describe our measurements in the context of these extensions.

Chapter 6 (p.87) complements the analysis approach described in the previous chapter with a
feature perspective of evolution analysis. We describe a novel approach to analyzing the
evolution of a system from the perspective of how its features change over time. Our approach
treats features as first class entities. We define extensions to Dynamix to model multiple
versions of the feature entities of a system and describe our measurements in the context of
these extensions.

Chapter 7 (p.109) presents a 3D visual analysis of features. Once again, this approach treats
features as the primary unit of analysis. In contrast to the previous approaches, it takes a more
fine-grained view of the runtime data of features, as it focuses on instance and message sends
of object-oriented runtime behavior. We apply our approach on a software system and show
how our visualizations of features are useful to understand the behavior of a systems features.
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Chapter 8 (p.127) presents a technique that explores how software developers address the task
of building software systems. This approach extends the focus of existing research work by
analyzing developer data from a feature perspective. Our focus is to analyze whether software
developers develop on structural code boundaries (i.e., within packages and classes) or on
feature boundaries (i.e., cross-cutting).

Chapter 9 (p.147) presents a summary of insights about our experiences and lessons learnt during
this research.

Chapter 10 (p.153) presents conclusions, and outlines future work.

Appendix A (p.159) provides a glossary for terms and definitions we use throughout this dissertation.

Appendix B (p.163) summarizes the Dynamix model and describes variations to the model to ad-
dress modeling features from multi-threading applications and alternative feature definitions.

Appendix C (p.167) describes the analysis environment of our research. Our Dynamix model was
implemented in a tool named DynaMoose. We elaborate on design issues, an architectural
overview, and how DynaMoose is integrated in the reengineering environment of Moose [Nier-
strasz and Ducasse, 2004].
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Chapter 2

Towards Feature-Centric Reverse
Engineering

Our research is directly related to dynamic analysis-based, concept assignment and feature identifi-
cation approaches to reverse engineering. We survey these approaches to identify current limitations
of the state of the art from the perspective of our research goals. Based on this, we establish crite-
ria for a reverse engineering approach that enhances system comprehension by exploiting domain
knowledge of features.



CHAPTER 2. TOWARDS FEATURE-CENTRIC REVERSE ENGINEERING

2.1 Context

Traditionally, reverse engineering techniques focused on analyzing the source code of a system
[Chikofsky and Cross II, 1990]. In recent years, researchers have recognized the significance of cen-
tering reverse engineering and comprehension activities around behavior of a system [Ernst et al.,
1999; Richner and Ducasse, 1999; Zaidman and Demeyer, 2004]. They identified that static analysis
approaches, though valuable, are incomplete and do not meet reverse engineering goals of today’s
object-oriented systems. The behavior of object-oriented systems can only be exactly determined
at runtime due to language features such as late binding and polymorphism [Jerding et al., 1996;
Stroulia and Systä, 2002; Demeyer et al., 2003]. A major shortcoming of purely static approaches to
reverse engineering is that they focus primarily on structural aspects of a system rather than inherent
domain knowledge embodied in a user’s perspective of how a system behaves at runtime.

Our work is directly related to the field of dynamic analysis and a range of techniques known as
concept assignment and feature identification. In this chapter, we review the state of the art, ranging
from dynamic analysis reverse engineering approaches to research work incorporating the notion
of features. Based on our survey, we establish limitations of related works in the context of our
research. This leads us to identify open problems that need to be addressed, if we are to incorporate
domain knowledge of features in reverse engineering analysis techniques.

Structure of the chapter. In the next section, we identify criteria of a reverse engineering tech-
nique, essential for achieving our research goals. Section 2.3 (p.11) presents a brief overview of
research we surveyed to establish limitations of the state of the art. We review a subset of dynamic
analysis techniques for system comprehension in Section 2.3.1 (p.12). Section 2.3.2 (p.16) reviews ap-
proaches to Concept Assignment, as these techniques relate domain concepts with implementation
details of a system. Then, Section 2.3.3 (p.17) takes a look at some of the main Feature Identification
techniques and evaluates them with respect to our research goals. Section 2.3.4 (p.20) provides a brief
overview of research in Feature Modeling for requirements engineering. We summarize our evalua-
tions of the various research works we reviewed in Section 2.4 (p.23). Based on our evaluations, we
summarize fundamental characteristics of a feature-centric reverse engineering analysis to meet our
reseach goals in Section 2.5 (p.24). Finally, in Section 2.6 (p.24) we provide a brief outlook for the rest
of the dissertation.

2.2 Motivating Feature-Centric Reverse Engineering

The main goal of our research is to identify how we can exploit domain knowledge of object-oriented
systems that is inherent in a user’s perspective of how a system behaves at runtime so that (1) existing
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reverse engineering analyses can be enriched with semantic context, and (2) we can define reverse
engineering analysis techniques that exploit the notion of features as first-class entities. We target our
survey of the state of the art, by considering criteria that we consider essential to meet our research
goals:

Behavior. Due to language features like polymorphism and late binding of object-oriented systems,
behavior of a system cannot be completely automatically determined by analyzing its source
code alone.

Exploiting Domain Knowledge. Our research question is centered around the problem of exploiting
domain knowledge to enhance system comprehension. We consider features to be units of
behavior encapsulating domain knowledge.

Combining Dynamic and Static Views. Two main distinct approaches to system comprehension
have dominated reverse-engineering research efforts [Chikofsky and Cross II, 1990]: dynamic
analysis approaches and static analysis approaches. Both perspectives are necessary to support
the understanding of object-oriented systems [Demeyer et al., 2000].

Features as First-Class Entities. During the lifetime of a system, software engineers are constantly
required to modify and adapt application features in response to changing requirements. A re-
verse engineering analysis needs to support this activity by breaking the system into groupings
that reflect its features.

Feature Relationships. Software engineers need to understand relationships between features, as
modifications to one feature may inadvertently affect other features. Furthermore, feature rela-
tionships reflect constraints and dependencies in a problem domain. Thus, they are important
sources of information for system comprehension.

Underlying Model. We identify the importance of defining a unified model of dynamic and static
data to accommodate a variety of reverse engineering analyses, so that researchers can reuse
techniques and results of their work.

This chapter identifies the environment for our research and establishes the goals of our work.

2.3 Related Research: A State of the Art

In our survey of the state of the art, we identify various research areas relevant to our work. We
evaluate these approaches to identify commonalities with our work and open issues in the context of
our research perspective.

Dynamic Analysis for System Comprehension. Approaches based on dynamic analysis tend to be
complex. The main reason is that it is difficult to design tools to process the huge volume
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of trace data and present it in an understandable form [Ducasse et al., 2004; Richner and
Ducasse, 2002]. As a result, much research effort has been concerned with compression
and summarization of large traces [Hamou-Lhadj and Lethbridge, 2004; Hamou-Lhadj et al.,
2005]. For our purposes, we restrict our survey to dynamic analysis approaches for system
comprehension.

Concept Assignment Approaches. The Concept Assignment problem, originally defined by Bigger-
staff et al., refers to the problem of discovering human-oriented concepts and relating them to
their implementation-oriented counterparts [Biggerstaff et al., 1993; Gold and Mohan, 2003].
We review a subset of concept assignment approaches, as features denote concepts of a sys-
tem’s problem domain [Marcus et al., 2004; Kuhn et al., 2005a; Deissenboeck and Ratiu,
2006].

Feature Identification Approaches. The goal of feature identification is to establish the relationship
between features and source code artefacts [Wong et al., 2000]. Most of these approaches
adopt the definition of a feature as a user-observable functionality of a system [Eisenbarth
et al., 2003]. Typically the approaches include a definition of a measurement to quantify the
relevance of a source artefact to a feature. They base their relevance measurement on heuristics
and validate their findings with case studies and developer knowledge.

Feature-Based Reverse Engineering Approaches. Recently, researchers have recognized the role of
features in the reverse engineering context [Salah and Mancoridis, 2004; Kothari et al., 2006].
We review these feature-related analysis techniques and evaluate them in the context of our
work.

Feature Modeling. This research focuses on domain analysis and requirements engineering [Riebisch,
2003]. We include a brief review of feature modeling research in our survey of the state of the
art, as it provides a range of definitions for features and feature relationships from the domain
perspective. The concepts of this research have not yet been fully exploited by the reverse
engineering community.

Based on our survey of the state of the art, we identify the limitations of these works from the
perspective of our research. From our survey we extrapolate the elements of a reverse engineering
analysis approach that addresses our research goal of exploiting the domain knowledge of features
for system comprehension.

2.3.1 Dynamic Analysis for System Comprehension

An extensive amount of research has been dedicated to understanding object-oriented systems using
dynamic information [Kleyn and Gingrich, 1988; Korel and Rilling, 1997; De Pauw et al., 1993;
Richner and Ducasse, 2002]. For our evaluation, we review a subset of dynamic analysis approaches
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Figure 2.1: Condensed Dynamic Data - Communications Interaction View.

to reverse engineering. As we build on dynamic analysis approaches, the problems of tackling large
amounts of data are relevant to our work. Some of the most popular strategies adopted by researchers
to analyze dynamic data are: (1) summarization through metrics, (2) filtering and clustering tech-
niques, (3) visualization and (4) query-based approaches. Many of the approaches discussed here
apply a combination of these strategies.

Summarization through Metrics. Many researchers have highlighted the importance of metrics
for dynamic analysis as good indicators of external runtime behaviors [De Pauw et al., 1993; Walker
et al., 1998; Ducasse et al., 2004]. With this strategy, dynamic data is summarized using metrics or
some other statistical measure. For example, they compute the frequency of calls or the number of
objects created in a trace. The measurements are usually visually rendered.

An example of such an approach is the work of Ducasse et al. [Ducasse et al., 2004]. They presented
a lightweight metrics-based approach to dynamic analysis and they proposed a polymetric view to
visually render the condensed information computed from an execution trace. Figure 2.1 (p.13) shows
such a condensed trace generated from one of their case study analyses. In this view, dynamic
metrics are mapped to the size and color (grayscale) of the nodes of the graph visualization. The
edges represent collaborations between the instances. In this example, a black node represents a
class that is heavily used. The research questions they address deal with a software engineer’s
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perspective of the system, such as identifying the most instantiated classes, the class collaborations
and the percentage of the methods of a class participating in a trace.

Filtering and Clustering. With this strategy, the amount of dynamic data to be analyzed is re-
duced using filtering and clustering techniques. Several researchers have incorporated this strategy
into their analysis of runtime data [Jerding and Rugaber, 1997; Walker et al., 1998; Ball, 1999;
Zaidman and Demeyer, 2004]. One example of this technique, known as Frequency Spectrum Anal-
ysis (FSA), was pioneered by Ball [Ball, 1999]. He showed how the analysis of frequencies of
program entities in a single execution trace can help software engineers decompose a program, iden-
tify related computations, and find computations related to specific input and output characteristics
of a program. He applied his technique primarily to procedural code.

Zaidman and Demeyer [Zaidman and Demeyer, 2004] based their program comprehension technique
on Frequency Spectrum Analysis, but adapted it for object-oriented programs. Their approach used a
heuristic to divide a trace into recurring event clusters and showed that these recurring event clusters
represent interesting starting points for understanding the dynamic behavior of a system.

In another work, Zaidman et al. [Zaidman et al., 2005] defined a dynamic analysis approach based
on web-mining techniques that identified key classes of a system. They showed that well-designed
object-oriented programs typically consist of key classes that work tightly together to provide the
bulk of a system’s functionality. Their hypothesis was that these key classes represent good starting
points for system comprehension.

Visualization Techniques. Substantial research has been conducted on runtime information vi-
sualization. Various tools and approaches use dynamic (trace-based) information such as Program
Explorer [Lange and Nakamura, 1995a], Jinsight and its ancestors [De Pauw et al., 1993], and
Graphtrace [Kleyn and Gingrich, 1988]. Vion and Drury [Vion-Dury and Santana, 1994] use 3D
to represent the runtime of objects in distributed and concurrent systems. Most of these approaches
focus on the analysis of execution patterns as useful abstractions for program comprehension.

De Pauw et al. proposed to classify repetitive behavior automatically into high-level execution pat-
terns [De Pauw et al., 1993]. The goal was to reduce the volume of information a software engineer
must assimilate, with little loss of insight. They used interaction diagrams to visualize interactions
between objects in their tool Jinsight. Figure 2.2 (p.15) shows an example of a visualization of a
repetition pattern of an execution trace. In another work, Jerding et al. proposed a visual analysis
approach where recurring interaction scenarios in program executions can be used as abstractions in
the understanding process [Jerding and Rugaber, 1997].
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Figure 2.2: Interaction Diagram showing a repition as a raised part of the diagram.

A Query-based Approach. Richner and Ducasse presented a query-based approach to extract
collaborations from execution traces, as they provide the software engineer with a larger unit of un-
derstanding than classes, and thus are an important aid for maintenance and evolution of a system
[Richner and Ducasse, 2002; Richner, 2002]. The technique allows the software engineer to declar-
atively define perspectives of interest of the system and use these perspectives to recover low-level
and high-level views of the system.

Ducasse et al. describe an approach that reifies execution traces of program tests and represents
them as logical facts about a system’s behavior. They use logic programming to express queries to
understand the inner structure of a program [Ducasse et al., 2006b]. Their approach also includes
a model of the dynamic information to express ordering and containment relationships between
events.

Evaluation:

Commonalities.

We have identified the need to adopt a dynamic analysis approach for the analysis of object-
oriented runtime behavior. Thus, a key challenge of our work is the problem of large amounts
of data.

Variations.
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— Research Focus. The primary concern of the above approaches is to obtain architectural
insights of a system by analyzing its runtime behavior. Thus, the main research focus
of these works differ from the goals of this dissertation. We seek to establish links be-
tween the domain knowledge of features and the parts of the trace that correspond to their
execution.

— Underlying Mechanisms and Model. In some cases, the approaches are purely based on
dynamic analysis. Thus, many of the above approaches do not model dynamic behavior in
the context of a structural model of source code. In contrast, we emphasize the value of
analyzing runtime behavior and relating this behavior to static views of a system. We aim
to enrich static analysis-based reverse engineering approaches with semantic context.

2.3.2 Concept Location Approaches

Traditionally, the problem of locating concepts in a program has been an intuitive and informal
process. In the context of reverse engineering, several researchers have addressed this problem
[Biggerstaff and Perlis, 1989; Rajlich and Gosavi, 2002; Robillard and Murphy, 2002; C̆ubranić
and Murphy, 2003; Marcus et al., 2004]. Marcus et al. define concept location as the process of
identifying parts of a software system that implement a specific notion or idea that originates from
the problem or solution domain [Marcus et al., 2004].

Some researchers have adopted an information retrieval approach based on semantic clustering
techniques to tackle the problem of concept location [Marcus et al., 2004; Kuhn et al., 2005a;
Kuhn et al., 2005b]. The focus of these works is to analyze identifiers to identify implementa-
tion concepts in source code. The goal is to support maintenance tasks in the absence of system
documentation.

Deissenboeck and Ratiu present a unified meta-model that extends a structural model of source code
with entities that represent concepts of a problem domain. They propose a semi-automatic approach
to locating concepts and defining their concept model [Deissenboeck and Ratiu, 2006].

Evaluation:

Commonalities.

— Concept. Features and concepts are essentially similar, as they both denote units that
encapsulate knowledge about a system.

— Model. The work of Deissenboeck and Ratiu emphasizes the role of a unified meta-model
to exploit the concepts for reverse engineering [Deissenboeck and Ratiu, 2006]. Similarily,
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we identify the need to model features in the context of a structural model of source code
as the basis of our work.

Variations.

— Research Focus. The primary concern of the approaches we reviewed is on assigning
concepts to parts of the source code to support comprehension. In contrast to our research
perspective, these approaches identify concepts that include both external domain concepts
and internal implementation concepts, whereas we consider features to map to real domain
concepts that are understood by an end-user.

— Underlying Mechanisms. The reviewed approaches considered the program identifiers as a
source of information to reveal domain concepts. In contrast to our perspective, the mean-
ing of a concept in the above approaches does not necessarily imply dynamic behavior of
a system.

2.3.3 Feature Identification Approaches

Feature identification is a technique to identify subsets of a program source code activated when
exercising a feature [Wilde and Scully, 1995; Wong et al., 2000; Eisenbarth et al., 2003; Antoniol and
Guéhéneuc, 2005; Koschke and Quante, 2005]. The approaches differ primarily in the mechanisms
used to locate the parts of the code relevant to a feature, and in their definition of measurements
to quantify the relevancy of a piece of code to a feature. Often, the research effort of these works
has focused on the underlying mechanisms used to locate features (e.g., static analysis, dynamic
analysis, formal concept analysis, semantic analysis or approaches that combine two or more of
these techniques).

Chen and Rajlich proposed a static analysis-based approach to feature identification based on the
analysis of a system’s call graph [Chen and Rajlich, 2000]. They targeted procedural code, thus their
approach did not take object-oriented language features such as polymorphism into consideration.
They described their approach as semi-automatic, as it required a software engineer, familiar with
the code, to guide the process of feature identification.

In contrast, dynamic analysis approaches to feature identification have typically involved executing
the features of a system and analyzing the resulting trace of dynamic data captured. We evaluate
a subset of the best-known dynamic analysis-based feature identification approaches, as they are
directly relevant to our research perspective.

Wilde and Scully pioneered the use of dynamic analysis to locate features [Wilde and Scully, 1995].
They named their technique Software Reconnaissance. Their goal was to support programmers
when they modify or extend functionality of legacy systems. The approach is best described using

17



CHAPTER 2. TOWARDS FEATURE-CENTRIC REVERSE ENGINEERING

Figure 2.3: An example of the Software Reconnaissance method of identifying a call-forwarding feature in the
source code.

the example shown in Figure 2.3 (p.18). Suppose you need to locate the call forwarding feature in
a telephone switch software system. To achieve this, two sets of test cases are executed, one set
that exercises the feature and one set that does not. The execution traces of both sets are compared.
Software components that only appear in the first trace are considered good starting points for further
investigation of the source code.

Eisenberg and De Volder [Eisenberg and De Volder, 2005] introduced a purely dynamic-analysis
technique based on simple heuristics that uses ranking to determine the relevance of a software entity
to a feature. They use test suites to generate dynamic feature traces. Their technique varied from
the Software Reconnaissance technique in that they considered sets of features rather than individual
features. They refined the measurement for determining the relevance of a piece of code to a feature
by employing heuristics. They base their measurement on: (1) multiplicity of occurrences of a
method in a trace and (2) nesting level of a method.

Antoniol and Guéhéneuc proposed an approach to feature identification and feature comparison
based on consolidated tools and techniques, such as parsing, processor emulation [Antoniol and
Guéhéneuc, 2005]. Their approach combines static and dynamic analysis. They applied their ap-
proach to large object-oriented, multi-threaded programs. They exploited process emulation, knowl-
edge filtering and probabilistic ranking to overcome difficulties of collecting dynamic data (impre-
cision and noise). They showed that their approach is scalable and capable of addressing issues of
multi-threading. Furthermore, the authors defined a model, which they refer to as a micro archi-
tecture, to link the dynamic behavior of features with a model of the program architecture. This
approach also refined the relevancy measurement of the Software Reconnaissance approach.

Eisenbarth et al. described a semi-automatic feature identification technique which used a combi-
nation of dynamic analysis, static analysis of dependency graphs, and formal concept analysis to
identify which parts of source code contribute to feature behavior [Eisenbarth et al., 2003]. For the
dynamic analysis part of their approach, they extended the Software Reconnaissance approach to
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consider a set of features rather than one feature. They used formal concept analysis to character-
ize source artefacts as general or specific with respect to a feature. They applied formal concept
analysis to derive a correspondence between features and code. They invoked scenarios to exercise
features and capture execution traces. They used the information gained by formal concept analy-
sis to guide a static analysis technique to identify feature-specific computational units (i.e., units of
source code).

Wong et al. base their analysis on the Software Reconnaissance approach and complement the
relevancy metric by defining three new metrics to quantify the relationship between a source artefact
and a feature [Wong et al., 2000]. Their focus is on measuring the closeness between a feature and a
program component. They define three metrics: (1) disparity (i.e., it captures the disparity between
a source artefact and a feature), (2) concentration (i.e., how much of a feature is concentrated in a
source artefact), and (3) dedication (i.e., how dedicated a source artefact is to a feature).

These metrics show how a feature spreads over an entire system and complements the relevancy
measurement of the Software Reconnaissance technique [Wilde and Scully, 1995]. As with the
Software Reconnaissance approach, each feature is treated individually.

Evaluation:

Commonalities.

— Feature Definition. For our research, we adopt the definition of a feature as a user-
triggerable behavior of a system [Eisenbarth et al., 2003]. We recognize the need to define
a relevancy measurement to quantify the closeness of a source code artefact to a feature.

— Underlying Mechanisms. Most of the approaches described above are based on applying
dynamic analysis. This is necessary to determine the precise behavior of the analysis of
object-oriented systems.

— Model. Only the approach of Antoniol and Guéhéneuc defines a model of the relationships
between features and source code artefacts [Antoniol and Guéhéneuc, 2005].

Variations.

— Research Focus. The focus of feature identification is to locate the implementation of a
feature in source code. The goal of these approaches was to identify starting points for
further investigation of source code. Software Reconnaissance considers one feature at a
time, rather than analyzing a set of features. The main variation is in our research focus.
We seek extract and model feature entities and establish them as first class entities for
analysis of a system from different perspectives.
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— Unit of execution. In the approaches described above, scenarios and test cases were used to
generate execution traces, which were then analyzed to locate the parts of the code relevant
to a feature. The execution scenarios also perform other activities. We aim to focus on and
extract only the part of an execution that results from triggering one feature.

— Level of detail in the execution data. In the approaches described above, the focus of
analysis is on method executions. We aim to capture fine-grained dynamic information
of object-oriented systems such as instantiation, and to record between which instances
messages are sent.

— Feature Relationships. We aim to capture and quantify both static and runtime dependen-
cies between features. To detect runtime dependencies, we require that instance informa-
tion be maintained from one trace of feature execution to the next. None of the feature
identification approaches reviewed here provide a means of preserving instance informa-
tion from one trace to the next. Moreover, they do not focus on explicitly defining and
quantifying relationships between features to support program comprehension.

2.3.4 Feature Modeling in Requirements Engineering

Feature modeling is an established technique in the field of requirements engineering. It is used
extensively when analyzing requirements for product families. Feature models describe capabili-
ties or functionalities of a system and model the relationships between these features. They group
sets of requirements and map them to features. Their approach enables modeling of variability of
requirements.

A feature model is a high level description understandable by customers and is located between the
requirements model and the design model. It was first described in the FODA (Feature Oriented
Domain Analysis) paper [Kyo C.Kang et al., 1990]. The goal of feature models is to describe a
system according to its features, where a feature is defined as: A prominant or distinctive user-
visible aspect of a software system or systems. Features are any prominent and distinctive aspects or
characteristics that are visible to various stakeholders (i.e., end-users, domain experts, developers,
etc) [Kang et al., 2002].

It defines a hierarchical model or feature tree that expresses relationships between features and makes
explicit, baseline and optional features. It proposes a simple graphical notation to express these
relationships. Features may be defined as mandatory, optional or alternative. Mandatory features
represent baseline features and their relationships. The optional and alternative features represent
specialization of the more general features. Figure 2.4 (p.21) shows an example of FODA Feature
Model notation for a car system used by Kang et al.. in their paper [Kang et al., 2002].
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Figure 2.4: A FODA Example: A Car Feature Model specifying Features and Feature Relationships.

Evaluation:

Commonalities.

This work defines both a feature model and relationships between features.

Variations.

— Research Focus. Feature modeling limits its focus to requirements analysis. The vocab-
ulary of feature modeling represents a valuable source for knowledge to be exploited in
the context feature-centric reverse engineering, in particular when considering reverse en-
gineering the relationships between features. Features are treated as first-class entities but
feature modeling makes no provision for traceability of features throughout the life-cycle
of a system.

— Definition of Feature Relationships. Not all of the relationships between features described
by FODA (e.g., alternative or excludes ) can not be determined automatically by analyzing
source code or system behavior. Our focus is to reverse engineer feature relationships to
identify dependencies between features (e.g., the requires relationship). We aim to quantify
shared references to static and dynamic entities in the features.
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2.3.5 Analysis Approaches based on Features

Recently, some researchers have addressed feature analyses that extend beyond pure feature identi-
fication [Salah and Mancoridis, 2004; Kothari et al., 2006].

Salah and Mancoridis [Salah and Mancoridis, 2004] proposed a hierarchy of dynamic views based
on execution traces of feature behavior. Their goal was to describe views that support program un-
derstanding by depicting low level interaction between objects of a trace and dependencies between
features.

Kothari et al. [Kothari et al., 2006] proposed an approach to system comprehension that considers
features as the primary unit of analysis. Their hypothesis is that understanding the similarities be-
tween features supports maintenance of a system, as it is helpful to know which features are closely
related to a feature being changed. They develop a measure of similarity between pairs of features
and they use it to partition features into sets. They define a set of canonical feature sets (i.e., a
minimum set of features that represent a system). They define a similarity measurement based on
computing similarities in call graphs of features.

Evaluation:

Commonalities.

These works consider features as primary units of analysis. They also consider relationships
between features. The approach of Salah et al. analyzes relationships between features based
on shared usage of source artefacts and objects [Salah and Mancoridis, 2004].

Variations.

— Research Focus. These works extend their focus beyond feature identification to consider
features as first-class entities of their analysis. In contrast to our work, their research
perspective does not consider incorporating the notion of a feature into existing reverse
engineering analyses to enrich them with semantic context.

— Underlying Model. Neither of these approaches provide a definition of a unified model for
features and structural source entities. Thus, it is difficult to build on the results of these
approaches.
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2.4 Summary

We summarize our evaluations of the research work we reviewed as follows:

Dynamic Analysis Approaches. Many dynamic analysis-based system comprehension techniques
focused on gaining architectural insights into a system. Thus, the problem of exploiting do-
main knowledge and establishing links to source code is not a primary concern of these ap-
proaches.

Concept Assignment Approaches. The research into concept assignment is motivated by a need to
relate external domain knowledge to the internal representation of this knowledge in source
code. The approaches we reviewed assume domain knowledge to exist in the source code in
the form of program identifiers (e.g., class, method and variable names). They adopt infor-
mation retrieval approaches to mine domain knowledge. In contrast, from our perspective,
domain knowledge lies in a system’s features.

Feature Identification Approaches. Our survey of the state of the art revealed that the main body
of feature-related research in reverse engineering can be classified as feature identification.
This research represents a basis for our work. We extend the notion of mapping features to
source artefacts to incorporate feature as first class entitiies of reverse engineering analysis
techniques. To support this, we define the need for a unified model of features and structural
source entities.

Reverse Engineering Features. Despite the wealth of research in feature identification techniques,
only few researchers have centered reverse engineering approaches around the notion of fea-
tures as first class entities. In the case of evolution analysis, for example, researchers typically
reason about changes in source code over time [Demeyer et al., 2000; Lanza and Ducasse,
2002; Krajewski, 2003; Gı̂rba and Lanza, 2004]. By focusing only on source code, such anal-
ysis techniques overlook important semantic information about the roles of source artefacts in
features.

Feature Modeling in Requirements Engineering. Relationships between features represent another
important source of domain knowledge. Feature relationships reflect rules and constraints
over a system’s problem domain. A login feature of an application, for example, must execute
before other features are accessible to a user. Such relationships are not necessarily explicit in
source code. Therefore, to support maintenance and system evolution activities, it is essential
to make feature relationships of a system explicit. Feature relationships have received only
sparse attention in a reverse engineering context.
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2.5 Elements of Feature-Centric Analysis

By reviewing the state of the art, we identified limitations of existing research work with respect to
our research goals. We define key elements of a feature-centric analysis that are essential to achieve
these goals.

1. Behavior. To capture a system’s behavior, we need to perform dynamic analysis.

2. Combining Static and Dynamic Analysis. To complement structural analysis of a system,
roles of source artefacts need to be enriched with feature context (i.e., how they participate in
features at runtime).

3. Features as First-Class Entities. As a basis of any feature-centric analysis we need to define
a meta-model that treats features as first class entities (i.e., primary units) and establishes re-
lationships between features and source artefacts implementing their functionality. Therefore,
an underlying model should unify behavioral data of features and structural data of source
code such as packages, classes and methods. A unified model would provide a framework
for our feature-centric analysis. The model needs to be generic, extensible and should easily
accommodate metrics from other feature analysis techniques.

4. Feature Relevancy Measurements. Feature identification represents the foundation of our
work. Thus, a feature-centric analysis approach needs to provide a measurement to quantify
the relevance of a software artefact to a feature, or set of features.

5. Feature Relationships. A feature-centric analysis approach needs to identify and quantify
relationships and dependencies between features.

2.6 Outlook

In the rest of this dissertation, we outline a feature-centric analysis for reverse engineering object-
oriented systems. The key characteristic of our feature-centric approach is that we analyze a system
from different complementary perspectives: we enrich static perspectives of a system with domain
knowledge of features and define analysis techniques that are centered around features. A unified
model of execution entities of features and source code entities underlies our analysis. We validate
our feature-centric approach by applying it to a number of object-oriented systems. We demonstrate
how our analysis is supported by our unified model. We demonstrate the flexibility and extensibility
of our model to support visual analysis techniques, evolution analysis techniques and analysis of
developer data related to ownership of source code.
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Chapter 3

Feature-Centric Analysis

The basis of our approach is to treat features as first-class entities of analysis. We define a meta-
model, which we call Dynamix, to describe behavioral data of features in the context of a stuctural
meta-model of source code. Based on Dynamix, we define a feature-centric approach to analyze
a software system from three complementary perspectives: (1) a feature perspective relating run-
time behavior of features to source artefacts, (2) a structural perspective enriching static views
with feature context, and (3) a feature relationship perspective revealing dependencies between fea-
tures.



CHAPTER 3. FEATURE-CENTRIC ANALYSIS

3.1 Motivation

In the previous chapter we reviewed different approaches to system comprehension and reverse en-
gineering that analyze a system’s behavior or incorporate the notion of features. Our survey revealed
that, although there is a growing awareness in the value of features as a key to understanding software
systems, little emphasis has been placed on centering analysis techniques around features.

In this chapter, we introduce Dynamix, our meta-model to describe dynamic runtime behavior of
features as first-class entities. To motivate our feature-centric approach, we consider the following
reverse-engineering questions:

1. How do features relate to source artefacts (e.g., classes and methods)? Understanding how a
feature is implemented is essential for a software engineer, as maintenance requests are usually
expressed in a language that reflects a feature perspective of a system [Mehta and Heineman,
2002].

2. How do source artefacts relate to features? It is difficult to determine how classes and methods
contribute to the runtime behavior of features just by reading the source code. Control flow is
not explicit in classical object-oriented programs. Understanding the role of a class or method
in a system’s behavior is essential, when a software engineer needs to modify or adapt it.

3. How are features related to each other? A software system’s behavior is defined by its fea-
tures. Relationships may exist between features that define dependencies or constraints to
ensure correct behavior of a system. At the requirements analysis phase of a system, rela-
tionships between features are specified to avoid behavioral conflicts [Gibson, 1997]. Over
time, the original requirements specification may no longer reflect the implementation, as new
features are added or existing features are modified. Consequently software maintenance ac-
tivities may result in unintended side effects. Knowing which features could be affected by
modifications supports maintenance and evolution activities.

Dynamix provides the basis on which we define a feature-centric analysis. Our approach to reverse
engineering a system considers structural and behavioral data of a system from three complementary
perspectives. Each perspective addresses one of the above research questions.

Structure of the chapter. In the next section we define feature terminology and the underlying
concepts of our approach. In Section 3.3 (p.28) we describe Dynamix, our meta-model to express
the behavioral entities of features. We introduce our three perspectives in Section 3.4 (p.30). In Sec-
tion 3.5 (p.32) we define our Feature Affinity property of source entities. We define different Feature
properties in Section 3.6 (p.33) and in Section 3.6 (p.33) we define feature relationship properties.
We summarize our contributions and provide a brief outlook on the various feature-centric analyses
presented in the subsequent chapters of the dissertation in Section 3.8 (p.40).
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3.2 Terminology

Our work is centered around the notion of a feature. As we complement and build on previous
feature identification approaches, we adopt the definition of a feature proposed by Eisenbarth et al.
[Eisenbarth et al., 2003], as it is generally accepted by other researchers in a reverse engineering
context [Eisenberg and De Volder, 2005; Antoniol and Guéhéneuc, 2005]:

A feature is an observable unit of behavior of a system triggered by the user. [Eisenbarth
et al., 2003].

A user understands a system in terms of features. To activate a feature, the user typically interacts
with a system by means of its user interface. Not all features of an application satisfy this definition.
System internal housekeeping tasks, for example, are not triggered directly as a result of user inter-
action. In our intial experiments, we limited the scope of our investigation to user-initiated features.
We focused on the user-interface of an application to determine which user-observable features are
most adequate to include in our analysis. With later experiments, we designed test cases to invoke
features. This means that feature analysis does not have to be restricted to user-observable features
but may include any unit of functionality of a system.

Feature trace. We use the term feature trace to refer to an individual execution trace captured as a
result of triggering one feature. A feature trace consists of a tree of events, where each node in the
tree represents a performed event (e.g., an object instantiation or a message send). The edge between
two nodes represents a calling relationship between method events.

A marked trace of features. To preserve object instance information from the execution of one feature
to the next, we performed some of the experiments described in this dissertation by marking the start
and end of an execution of a feature in one execution trace. To simplify our discussion, we use the
term feature trace to refer to either an individually captured trace or to a portion of a marked trace
corresponding to one feature.

Source artefacts and source entities We refer to elements of source code (i.e., packages, classes and
methods) as source artefacts. To distinguish between source code elements and their corresponding
structural entities in a model (e.g., Package, Class and Method entities), we refer to model entities
as source entities.

Model. A model is a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system [Bézivin and Gerbé, 2001].

Meta-Model. A meta-model is a specification model for a class of systems under study where each
system under study in the class is itself a valid model expressed in a certain modeling language
[Seidewitz, 2003].
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Measurement. A measurement is a mapping from the empirical world to the formal, relational
world. Consequently, a measure is the number assigned to an entity by this mapping to characterize
an attribute [Fenton and Pfleeger, 1996].

3.3 Dynamix

We introduce Dynamix, our meta-model to specify behavioral entities of feature execution data and
their relationships. Dynamix also specifies the relationships between the behavioral entities and
the structural entities representing source artefacts. Dynamix is MOF 2.0 compliant 1. Our OCL
specifications comply with OCL 2.0 2.

To obtain a model of dynamic and static data of a system under study, we first extract a structural
model by parsing a system’s source code. Then, we extract feature traces by exercising a set of
features on an instrumented system. We transform the execution data of feature traces into Dynamix
entities and establish the relationships between the execution entities and the source entities of the
structural model.

In Figure 3.1 (p.29) we show the entities of our model in a UML 2.0 diagram [Fowler, 2003]. The
Features package represents the dynamic behavioral data of the feature traces. The Structure package
models the entities of the source code. We model behavioral data of features using three entities:
Feature, Activation and Instance.

Feature. Each feature trace we capture during dynamic analysis of a system is modeled as a Feature
entity. A Feature entity is uniquely identified by a name. The Feature entity allows us to
collectively manipulate all the Activations that correspond to the events of the feature trace
which it models. It maintains a list (modeled as an ordered collection) of all of its Activations
for ease of manipulation. The first Activation of the list represents the root of a feature trace.
We assign properties to Feature entities based on the Activations and their relationships to
other entities (e.g., number of Activations, number of Instances created, number of Methods
referenced, and Feature Affinity properties). Relationships between features are shown in
the model with a depends association. We provide the OCL definition for this relationship
between features in Figure 3.9 (p.39) or mathematically in Equation 3.3 (p.40)

Activation. An Activation in our model represents a method execution. It holds a reference to its
sender Activation. In this way Dynamix models the tree structure of a feature trace. Thus, the
model preserves the sequence of execution of method executions of a feature trace. Time is
captured and modeled with two attributes, namely startTime (i.e., the timestamp in millisec-

1http://www.omg.org/docs/ptc/03-10-04.pdf
2http://www.omg.org/docs/formal/06-05-01.pdf
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Figure 3.1: The Dynamix meta-model defines behavioral and structural entities and their relationships.
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onds, when the method was invoked) and stopTime (i.e., the timestamp in milliseconds when it
completed execution) of an activation . Each Activation is associated with a Method entity in
the structural model. The Method entity of the structural model has a relationship to the Class
entity where it is defined. In this way, we model relationships between features and source
entities. Furthermore, an Activation is associated with an Instance entity which represents the
receiver instance of a message. The sender instance is accessible via its sender Activation.
Thus, Dynamix models the actual object that invokes a method. This does not necessarily
correspond to the static relationship between Method and Class entities, due to inheritance
in object-oriented systems. The return value of a message is also stored as a reference to an
Instance entity in the Activation that models the message send.

Instance. We model every instantiated object of a feature trace as an Instance entity. An Instance
is created by an Activation and maintains a list of references to all Activations that hold a ref-
erence to this object (i.e., Activations reference the receiver instance of a message, Activations
that hold a reference to the Instance in the return value of a message send). The Instance is
associated with its defining Class entity of the structural model.

Dynamix supports feature analysis from different levels of granularity. We exploit relationships be-
tween Feature entities and source entities to view a system at the package, class or method level of
detail. When analyzing large and complex systems, we may need to obtain a big picture perspec-
tive to locate where features are implemented. In this case, we focus on the relationships between
features and packages. For more fine-grained perspectives of feature implementation, we analyze
feature-to-class and feature-to-method relationships.

Figure 3.1 (p.29) shows an AbstractEntity from which the entities (Structure and Feature entities) of
our model, are derived. A Model comprises every entity, and every entity is associated with the
Model entity. For example a Method entity obtains a collection of all the Feature entities in the
model via this association.

Our Dynamix model as shown in Figure 3.1 (p.29) models (1) sequential programs, (2) one path of
execution of features. In Appendix B (p.163) we show how Dynamix can be extended to model multi-
threaded applications and multiple execution paths of features and discusses how this influences the
analysis approaches described in this dissertation.

3.4 Feature Analysis: Complementary Perspectives

We define a feature-centric analysis that exploits feature knowledge of a system from three distinct,
but complementary perspectives:

Structural Perspective. From this perspective, we focus on its structural entites (e.g., Package,
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Figure 3.2: Feature-Centric Analysis: 3 Complementary Perspectives.

Class or Method entities). Our goal is to enrich structural analysis of a software system with
knowledge of the roles of source artefacts in the features. We apply this analysis on a model
of the system described by our Dynamix meta-model.

Feature Perspective. We describe reverse engineering techniques that center analysis and reasoning
about a system from the perspective of features. To achieve this we manipulate Feature entities
of the model and base our analysis on these entities.

Feature Relationship Perspective. We analyze how features are related to each other by extracting
and making the relationships between Feature entities of the model explicit. The relationships
are extracted by comparing similarities and runtime dependencies between pairs of features.

Figure 3.2 (p.31) summarizes our three perpectives. The edges represent relationships between classes
and features, and between features .

Dynamix combines static and dynamic data, thereby facilitating our three complementary analysis
perspectives.
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context Method
def: numberOfFeatures : Integer = self.model.features

->select(f | f.methods->includes(self))->size()

context Method
def: featureAffinity : FeatureAffinity =
if self.numberOfFeatures = 0

then FeatureAffinity::notCovered
else if self.numberOfFeatures = 1

then FeatureAffinity::singleFeature
else if self.numberOfFeatures = self.model.features->size()

then FeatureAffinity::infrastructuralFeature
else if self.numberOfFeatures < (self.model.features->size() / 2 )

then FeatureAffinity::lowGroupFeature
else FeatureAffinity::highGroupFeature

endif
endif

endif
endif

Figure 3.3: OCL specification of numberOfFeatures and FeatureAffinity properties of a Method Enttity.

3.5 Feature Affinity of Structural Entities

As in other Feature Identification approaches [Wilde and Scully, 1995; Eisenbarth et al., 2003], a
fundamental characteristic of our feature-centric analysis is to quantify the relevance of a source
entity to a feature. Many approaches compute the relevance of a source entity in the context of one
feature. In contrast, we define a Feature Affinity property that quantifies the role of a source entity
with respect to a set of features.

The Feature Affinity property underlies our Structural and Feature perspectives. This property
defines an ordinal scale corresponding to increasing levels of participation of a source entity in
the features of a model. A Feature Affinity level is defined to be one of 5 distinct roles, which
correspond to 5 mutually exclusive, discrete Feature Affinity values. We define this in our model as
a UML enumerator called FeatureAffinity (see Figure 3.1 (p.29)).

The values of FeatureAffinity are:

notCovered is a source entity that does not participate in any of the features of a model.

singleFeature is a source entity that participates in only one feature of a model.

lowGroupFeature is a source entity that participates in less than 50% of the features of a model.
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highGroupFeature is a source entity that participates in 50% or more of the features of a model.

infrastructuralFeature is a source entity that participates in all of the features in a model.

In Figure 3.3 (p.32) we provide formal OCL definitions for the Feature Affinity property of Method
entities of our Dynamix meta-model. (The definitions of these properties for Class and Package
entities are of the same format.)

We summarize Feature Affinity property (FA) of an entity e, where e is a Package, Class, or Method
entity in our model M , F is the set of features in our model M , and NOF (e, F ) is the number of
features an entity participates in (appears in its feature trace):

(|F | > 1), FA(e, F ) =



NOF (e, F ) = 0, notCovered
NOF (e, F ) = 1, singleFeature
(NOF (e, F ) > 1) ∧ (NOF (e, F ) < |F |

2 ), lowGroupFeature
(NOF (e, F ) < |F |) ∧ (NOF (e, F ) >= |F |

2 ), highGroupFeature
NOF (e, F ) = |F |, infrastructuralFeature

(3.1)

The Feature Affinity measurement is based on a threshold value. In the above definition, we selected
a threshold to be 50% of the features in a model. We chose this value to distinguish between source
entities that provide functionality localized in a group of features, and those that provide a more
general functionality, used by most of the features of a model.

3.6 Feature Properties

A Feature Perspective describes a feature-centric analysis that reasons about a system in terms of
its features. We define properties to features so that we can characterize them in the context of a
system. For example, we define feature properties that are derived by computing number of partici-
pating entities in a feature (e.g., number of participating classes, number of participating activations,
number of participating instances).

Furthermore, we define properties for features that exploit the Feature Affinity property of source
entities. We use these properties to characterize a Feature based on the concentration of types of
participating source entities (e.g., number of singleFeature classes participating in a feature). We as-
sume, for example, that a feature with a high number of singleFeature classes or methods is likely to
be implemented with functionality that is specific for this feature. If the features have a high number
of highGroupFeature or infrastructuralFeature classes, then the features are probably implemented
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context Feature
def: nOfClasses : Integer = self.classes->size()

context Feature
def: nOfSingleFeatureClasses : Integer = self.classes->select

( c | c.featureAffinity = FeatureAffinity::singleFeature)->size()
context Feature

def: nOfLowGroupFeatureClasses : Integer = self.classes->select
( c | c.featureAffinity = FeatureAffinity::lowGroupFeature)->size()

context Feature
def: nOfHighGroupFeatureClasses : Integer = self.classes->select

( c | c.featureAffinity = FeatureAffinity::highGroupFeature)->size()
context Feature

def: nOfInfrastructuralFeatureClasses : Integer = self.classes->select
( c | c.featureAffinity = FeatureAffinity::infrastructuralFeature)->size()

Figure 3.4: OCL specification of the properties that pertain to participating Classes of a Feature Entity.

using common or generic functionality. For example, our analysis of SmallWiki, a web-based ap-
plication, revealed that a high percentage of the methods participating in the features have a Feature
Affinity level of infrastructuralFeature . This is partially due to the http-request-response function-
ality that is common to all user triggerable features of SmallWiki. Closer investigation revealed that
the implementation of this application is highly generic.

In Figure 3.4 (p.34) we provide the OCL definition for some of the properties we defined for a Feature
entity. The properties pertain to classes participating in features. For Method or Package entities,
the definitions are of the same format.

Traces of feature behavior typically consist of many thousands of events [Ducasse et al., 2004].
However, it is difficult to interpret the vast amount of data associated with the feature entity of Dy-
namix. A single feature trace may consist of tens of thousands of events. This makes it difficult to
interpret. To address the question of how features map to classes, it is not necessary to manipulate
an entire feature trace. If we are not concerned with sequence of events or frequency of event oc-
currences, we can base our analysis on compact representations of Feature entities. To achieve this,
we simply reduce multiple references to source entities to a single element of a sets of participating
source entities. We refer to this representation of a feature as a compact feature view.

For one of our analysis techniques described later in the dissertation, for example, we manipulate
compact feature views consisting of a tuple of sets of source entities, where each set groups entities
of a different Feature Affinity level. In Figure 3.5 (p.35) we provide the OCL specification of this type
of compact feature view. In addition to the OCL definition, we provide a mathematical definition of
a compact feature view V of a feature f , F is the set of all features of our model, e is an entity of
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context Feature
def: singleFeatureClasses: Set(Class) = (self.classes->

select( c | c.featureAffinity = FeatureAffinity::singleFeature)
context Feature

def: lowGroupFeatureClasses: Set(Class) = (self.classes->
select( c | c.featureAffinity = FeatureAffinity::lowGroupFeature)

context Feature
def: highGroupFeatureClasses: Set(Class) = (self.classes->

select( c | c.featureAffinity = FeatureAffinity::highGroupFeature)
context Feature

def: infrastructuralFeatureClasses: Set(Class) = (self.classes->
select( c | c.featureAffinity = FeatureAffinity::infrastructuralFeature)

context Feature
def: compactFeatureView: Set(Set) = {self.singleFeatureClasses,

self.lowGroupFeatureClasses,
self.highGroupFeatureClasses,
self.infrastructuralFeatureClasses}

Figure 3.5: OCL specification of a Compact Feature View extracted from a Feature Entity.

our model M , as a tuple of sets of source entities:

SF (f) ≡ {e ∈ M, f ∈ F |FA(e, F ) =singleFeature}
LGF (f) ≡ {e ∈ M, f ∈ F |FA(e, F ) =lowGroupFeature}
HGF (f) ≡ {e ∈ M, f ∈ F |FA(e, F ) =highGroupFeature}
IF (f) ≡ {e ∈ M, f ∈ F |FA(e, F ) =infrastructuralFeature}

V (f) = < SF (f), LGF (f), HGF (f), IF (f) >

(3.2)

In Figure 3.6 (p.36) we show a representation of classes and compact feature views to illustrate the
relationships between features and classes and the assignment of the Feature Affinity property. On
the left hand side we show a Structural Perspective of a system in terms of its classes. We map colors
to values of Feature Affinity of an entity. The colors are mapped to exploit a heat map metaphor: the
more features that reference a class, the ‘hotter’ the class. For example, if a class is characterized as
having a Feature Affinity level of infrastructuralFeature , it is colored red, if it is characterized as
having a Feature Affinity level of singleFeature, it is colored cyan. Classes that are notCovered by
our feature analysis are shown in white.

On the right hand side we show a Features Perspective. Each feature is visually represented as
a large rectangle containing four subgroups of characterized classes represented as small squares
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Structural Perspective
(e.g. Classes)

Features Perspective
(e.g. Compact Feature Views)

Feature 
View  5

Feature 
View 4

Feature 
View 3
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View 2

Feature 
View 1

<<notCovered>>
Class X

<<singleFeature>>
Class A

<<singleFeature>>
Class B

<<lowGroupFeature>>
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Class E

<<infrastructuralFeature>>
Class F

Figure 3.6: The Relationships between Classes and Compact Feature Views.
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colored according to their Feature Affinity level. This visualization corresponds to our definition of
a compact feature view as specified in Figure 3.5 (p.35). The edges represent a ‘is participating in’
relationship between features and classes.

3.7 The Feature Relationship Properties

The third perspective of our feature-centric analysis, the Feature Relationship Perspective, focuses
on detecting relationships between features. We distinguish between static and dynamic aspects
of feature relationships. We extract static relationships based on the shared source entities of two
features. The dynamic relationships require a more fine-grained view of execution data. We ana-
lyze object instantiation and references to objects to detect these dependencies. Thus, a dynamic
relationship between pairs of features is based on shared usage of objects.

Static Feature Relationships. Typically features of a software system share common code to imple-
ment their functionalities. We consider that a static feature relationships exists if two features share
usage of source artefacts. Source entities that participate in more than one feature are assigned a
Feature Affinity level of lowGroupFeature, highGroupFeature or infrastructuralFeature. However,
the Feature Affinity property does not tell us which features share which entities. Our static feature
relationship property provides this level of information.

In Figure 3.7 (p.38) we provide the OCL specification of our featureSimilarity measure. We apply
featureSimilarity to pairs of features of a model. We compute the relationship measurement based
on a set intersection of source entities of two features. The greater the number of source entities
that two feature views share, in proportion to the number of participating source entities, the more
similar their implementation. To express the degree of similarity of static feature relationships, our
similarity measurement defines an ordinal scale which represents the degree of similarity between
two features. This provides us with a vocabulary to characterize relationships between features. We
define this in our model as a UML enumerator, FeatureSimilarity (see Figure 3.1 (p.29)). We define t

to be a threshold value. We use this threshold value to distinguish between different levels of feature
relationships (e.g., let threshold = 0.5).

Variation: The definition of featureSimilarity provided in Figure 3.7 (p.38) includes all source arte-
facts. However, we could refine this definition to consider only the source artefacts with a Feature
Affinity level of lowGroupFeature and highGroupFeature. This reduces the number and degree
of similarity of feature dependencies detected. In particular this refinement avoids the detection of
feature relationships that arise from a general shared usage of a main class by all features.
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context Feature
def: simpleFeatureView : Set(Class) = self.classes

context Feature
def: similarity(aFeature: Feature) : Real = ((self.simpleFeatureView->

intersection(aFeature.simpleFeatureView)->size()) /
(self.simpleFeatureView->size()).min(aFeature.simpleFeatureView->size())

context Method
def: featureSimilarity (aFeature: Feature, threshold: Real ): FeatureSimilarity =
if self.similarity(aFeature)= 0

then FeatureSimilarity::disjoint
else if self.similarity(aFeature) = 1

then FeatureSimilarity::complete
else if self.similarity(aFeature) < threshold

then FeatureSimilarity::loose
else FeatureSimilarity::tight

endif
endif

endif

Figure 3.7: OCL specification of featureSimilarity .

similaritye(Fi, Fj) ⇐⇒
|Vi ∩ Vj |

min(|Vi|, |Vj |)


disjoint, similaritye(Fi, Fj) = 0
loose, similaritye(Fi, Fj) < t

tight, similaritye(Fi, Fj) ≥ t

complete, similaritye(Fi, Fj) = 1

We use a simple matrix representation to visualize static feature relationships, Figure 3.8 (p.39) shows
an example of a feature relationship matrix of three features. We use grayscale to represent the
degree of similarity of two Feature entities of our model, Fi to Fj . The darker the cell, the more
related are the features (black represents complete).

Dynamic Feature Relationships. The static relationship measurement does not take the runtime
behavioral characteristics of object-oriented systems into consideration. We define a dynamic rela-
tionship between two features if they reference the same instances at runtime. A refinement of this
definition is when a feature requires other features to be executed to establish prerequisite runtime
conditions; for example a web application may require a user to execute a login feature, thus creating
a session instance, which must exist before any other feature of the application can be executed. We
call these relationships depends relationships.
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featureSimilaritye(F3,F2) = 0.75,
a tight relationship ( where t = 0.5)   

V3 V2

F1 F2 F3

F1

F2

F3

Figure 3.8: Matrix visualization showing the featureSimilarity relationships between 3 features.

context Feature
def: importedObjects : Set(Instance) =

self.referencedObjects->excluding(self.createdObjects)

context Feature
def: depends(aFeature: Feature) : Boolean =
( self.importedObjects->intersection(aFeature.createdObjects)->size() > 0)

and not (self = aFeature)

Figure 3.9: OCL specification of depends relationship between features.

39



CHAPTER 3. FEATURE-CENTRIC ANALYSIS

We consider two features of our model, Fi and Fj . We say that Fi depends on Fj if and only if Fj

creates objects that are referenced by Fi. Let Ii be a set of objects referenced by Fi, but not created
in Fi (i.e., imported objects), and Oj be a set of objects created by Fj , then:

depends ≡ {(Fi, Fj) | Ii ∩Oj 6= ∅, i 6= j} (3.3)

We use graph visualizations to represent the dynamic relationships between features. The nodes of
the graph represent features. We draw an edge between feature nodes if a dependency exists. The
width of the edge of the node reflects the strength of the relationship between two features (i.e., the
more objects shared between two features, the higher the number of shared objects between two
features).

3.8 Summary and Outlook

In this chapter we introduced Dynamix, which explicitly models features as a collection of behav-
ioral entities. Our Feature entity reflects the tree structure of a feature trace. Dynamix establishes
links between the behavioral entities and structural entities representing the source code.

We defined our Feature Affinity property, which we assign to structural entities to enrich them with
feature context. Furthermore, we gave examples of feature properties that we use to analyze a system
from a feature perspective. All our definitions relate to our Dynamix meta-model.

In the remainder of the dissertation we present several feature-centric analyses, in different reverse
engineering contexts. In the next chapter, we demonstrate how we apply the three perspectives of
feature-centric analysis to two case studies. Our goal is to demonstrate how our Dynamix meta-
model supports the three analysis perspectives described in this chapter. We aim to show how
feature-centric analysis enriches reverse engineering techniques with domain knowledge of a sys-
tem’s features.

A particular focus of research considers software evolution analysis enriched with feature knowl-
edge. We extend feature-centric analysis with a time dimension to reason about the evolution of a
system in terms of its features. The feature knowledge of a system provides semantic context for the
intent and extent of changes we detect over time. We demonstrate the flexibility of our Dynamix
meta-model as we extend it with entities for modeling historical data.

With Figure 3.10 (p.42), we provide a map of the various feature-centric analysis techniques we
describe in the subsequent chapters. On the left side we represent the Dynamix meta-model and
extensions in terms of UML packages. On the right side, we represent the chapters and briefly
summarize the analysis technique they address. Each technique is based on the core Dynamix meta-
model. Some of the techniques introduce extensions to the meta-model to facilitate new perspectives
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such as evolution analysis, or the correlation of developer knowledge and features. We re-use the
color scheme of Feature Affinity to represent the level of relevance of each part of the meta-model
(i.e., Dynamix and extensions) to a particular technique.
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Figure 3.10: A Map of the Feature Analyses Techniques presented in the remainder of this dissertation, showing
which chapters related to which parts of the Dynamix Meta-Model and Meta-Model Extensions.
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Chapter 4

Applying Feature-Centric Analysis:
Two Case Studies

We describe in detail how we applied our feature-centric analysis approach to two software systems.
We show how our approach reveals relationships between features and classes and relationships
between features. We validate our findings with developer knowledge and system documentation.
Furthermore, we compare the results of applying our Feature Affinity measurement with metrics of
other Feature Identification approaches.



CHAPTER 4. APPLYING FEATURE-CENTRIC ANALYSIS: TWO CASE STUDIES

4.1 Introduction

In the previous chapter we described our feature-centric approach to analyzing a system from three
complementary perspectives. At the core of our analysis is Dynamix, our meta-model of execution
data that models features as first class entities and integrates with a structural model of a system’s
source entities. In this chapter, we perform feature-centric analysis on two object-oriented systems
to demonstrate our approach and validate our Dynamix meta-model. We aim to show how our
three perspective approach successfully addresses the reverse engineering questions we raised in
Chapter 3 : (1) How do features relate to classes and methods? (2) How do classes and methods
relate to features? (3) How are features related to each other?

The focus of our feature-centric analysis approach to extract and model a system as described by our
Dynamix meta-model. Our emphasis is on describing how we can treat features as first class entites
in reverse engineering analyses and thus exploit features for system comprehension.

As each of the above questions directs our focus to one perspective of feature-centric analysis, we
structure the presentation of our case study analyses accordingly.

A key characteristic of the approach we describe in this chapter is the use of simple visualizations
of features, enriched with the measurements defined in the previous chapter. We support under-
standing of a system’s features and how they are related. We use a clustering technique to sort the
features to highlight their similarity. We also extract visualizations of static and dynamic feature
relationships.

Our feature-centric analysis is a heuristic approach: we validate our findings of our feature-centric
analysis with developer knowledge and available documentation.

Structure of the chapter. In the next section, we introduce the case studies we chose for feature-
centric analysis and outline our reasons for selecting them. In Section 4.3 (p.45), we briefly outline the
methodology we adopted to obtain our model of a system’s source code and behavioral data of fea-
tures. We describe details of applying feature-centric analysis to the Pier application in Section 4.4
(p.47). Section 4.5 (p.53) describes our analysis of ArgoUML. Subsequently, in Section 4.6 (p.57),
we discuss and evaluate our results. We outline variations in our approach and identify strengths,
constraints and limitations in Section 4.6 (p.57). We compare our Feature Affinity measurement with
other Feature Identification metrics in Section 4.7 (p.60). Finally, Section 4.8 (p.65) concludes by sum-
marizing our findings and highlighting the main contributions of our feature-centric analysis.
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Application Size (in classes) # Features analyzed

Pier
ArgoUML

    258 

2075 11
 11

Figure 4.1: Details of the Case Studies to which we applied Feature-Centric Analysis.

4.2 Case Studies

We chose two object-oriented systems, one medium-sized system (< 300 classes), Pier, and one large
open source system (> 1000 classes), ArgoUML to validate our feature-centric approach.

Pier is a reengineered version of SmallWiki [Ducasse et al., 2005b] ported to Squeak [Briffault and
Ducasse, 2001], a dialect of Smalltalk. It comprises 258 classes (147 Pier classes, 111 Framework
classes). Our choice of Pier was motivated by the following reasons: (1) it is open source, thus its
source code is freely available, (2) we are familiar with the predecessor application SmallWiki and
have also analyzed this application in previous works [Greevy and Ducasse, 2005b; Greevy et al.,
2006b], (3) we are familiar with the features of Pier from the user’s perspective, and (4) we have
direct access to developer knowledge to verify our findings.

Our second case study, ArgoUML, is an open source UML modelling application implemented in
Java. Our choice of ArgoUML was motivated by the following reasons: (1) we have access to
developer documentation of ArgoUML to check our findings, (2) we want to illustrate that our
technique is language independent in that it is applicable to any object-oriented system (e.g. Java),
and (3) ArgoUML has been used by us and other researchers as a reverse engineering case study,
in particular for dynamic analysis [Greevy and Ducasse, 2005a; Zaidman and Demeyer, 2005]. To
validate the results of ArgoUML, we rely on the documentation and naming conventions used in the
source code. Figure 4.1 (p.45) gives an overview of size of the case studies and the number of features
we analyzed.

4.3 Methodology

Our first step is to obtain an instance of a Dynamix model for the system under analysis. We extract a
structural model of the source entities by parsing the source code. Then, we extract dynamic feature
data by exercising a set of features on an instrumented system. In the case of the Pier and ArgoUML
applications, we manually exercised features by interacting with the user interface of the application.
We captured traces and modeled each feature as a distinct entity in Dynamix. The message events
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Figure 4.2: Pier Features showing details of Feature Affinity of classes.

of each feature are modeled as a collection of activations and instantiations. For each Activation
entity, we resolve reference to a Method entity and for each instantiation we resolve the reference to
a Class entity to establish the relationships.

Once we have obtained an instance of a Dynamix model, we extract three complementary perspec-
tives: (1) a Feature Perspective to reason about a system’s features and how they relate to classes by
manipulating compact feature views (e.g., sets of sets of classes grouped by Feature Affinity level),
(2) a Structural Perspective to quantify the roles of class in features, and (3) a Feature Relation-
ship Perspective to analyze featureSimilarity (as described in Figure 3.7 (p.38)) and dynamic depends
relationships between features (as described in Equation 3.3 (p.40)).

We built simple, interactive visualizations using the Mondrian framework [Meyer et al., 2006] to
represent compact feature views and feature relationships. We exploit the interactive characteristics
of these visualizations to discover which classes participate in features and which classes and objects
are common to features.
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4.4 Pier Experiment

In accordance with our definition of a feature as an observable unit of behavior [Eisenbarth et al.,
2003], we identify features of Pier by making the assumption that elements of its user interface,
namely links, buttons and entry forms of Pier pages, exercise distinct features. Based on this as-
sumption, we selected 11 distinct interactive features (10 typical user interactions with the Pier
application such as adding a page, editing a page or deleting a page). In addition, we also selected
one non-interactive feature (Initialization) that initializes the Pier application at startup.

We extracted one single trace encompassing the execution of 11 distinct features. We implemented
markers in the trace to indicate where the execution of each feature was initiated and terminated.
The advantage of a single marked trace over individual traces of a previous SmallWiki experiment
[Greevy and Ducasse, 2005b] is that we preserve information about which behavioral entities (i.e.,
instances) are shared between features. This information is essential for the analysis of dynamic
feature dependencies.

In Figure 4.2 (p.46) we show the features of Pier that we selected for analysis and the distribution of
Feature Affinity over the classes of these features,

How do features relate to classes? We view a system as a set of features, where each feature groups
classes that participate in its runtime behavior. Figure 4.3 (p.48) shows feature views of classes. To
generate our visualization of feature views, we apply a dendogram seriation algorithm [Morris et
al., 2003], a clustering technique to define the order feature views in our visualization according to
their static featureSimilarity relationship (i.e., the larger the number of classes they share, the closer
together they appear in the visualization). We use interactive capabilities of our visualization to
discover which classes participate in a feature. To determine the classes that provide feature-specific
functionality, we focus on singleFeature classes ((1) (Figure 4.3 (p.48)) and lowGroupFeature classes
((2) (Figure 4.3 (p.48)) of the feature views.

Our analysis reveals lowGroupFeature classes PRDocumentScanner, PRDocumentParser and
PRDocumentWriter. These classes participate in both the Add Page feature and Edit Page feature.
The developer of Pier confirms that classes which are responsible for page manipulations are con-
ceptually part of these two features. Similarily we detect PUGroup as a lowGroupFeature class.
This participates in both Change Owner and Change Group features. Once again, the developer
confirms that this class provides a group level security functionality that is exercised by the Change
Owner and Change Group features. The features represent functionality to modify access rights of
a user.

How do classes relate to features? Most of the classes of the Pier application are characterized
as highGroupFeature classes. Only 0.66 % of the classes are singleFeature. In Figure 4.3 (p.48)

(1) we indicate three singleFeature classes we detect, namely PRPierMain, PROutGoingRefer-
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PRPierMain PROutGoingReferencesPRStructureDescription

PRDocumentScanner PRDocumentParser PRDocumentWriter

(1)

(2)

Figure 4.3: Pier Feature Views of Classes showing singleFeature classes and lowGroupFeature Classes shared
between the addPage and edit a page Features. (Numbers in the feature names indicate the order of execution.)
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ences and PRStructureDescription. The Pier developer confirms that the singleFeature classes
PRPierMain amd PROutGoingReferences are indeed correctly characterized, as these classes
only participate in the Start feature of the system. The other singleFeature class is correctly charac-
terized in the context of our feature model as only the Copy Page feature exercises the functionality
of PRStructureDescription. However, the developer of Pier informs us that in the context of the en-
tire application, this is a false positive, as the class PRStructureDescription would also participate
in other features which we did not include in our model.

We calculated the average proportional distribution of Feature Affinity over the features. The high-
GroupFeature classes of our analysis account on average for 76% of the classes of a feature. These
include classes that implement page rendering functionality and interaction with a web server. The
developer confirms our findings: the bulk of Pier’s functionality is used by most the features of our
analysis.

How do features relate to each other? For our Pier case study, we consider both static and dy-
namic feature relationships, as our tracing approach preserves instance information between fea-
tures.

Static Relationships.

We analyze the features to reveal static featureSimilarity relationships. We built an interactive visu-
alization which we call the Feature Similarity Matrix using Mondrian [Meyer et al., 2006] to show
the strength (i.e., number of shared source entities) of featureSimilarity relationships.

Figure 4.4 (p.50) shows relationships between pairs of features based on the number of methods they
share. The darker the cell of the matrix, the more methods a pair of features has in common. Our
visualization reveals that features of Pier share a high proportion of methods. To distinguish between
relationships, we configure our threshold t of Equation 3.3 (p.38) with a value of 0.8. In Figure 4.4
(p.50) (1) we highlight the relationship between the Add Page feature and the Edit Page feature, as
they are completely related on a class level. Figure 4.4 (p.50) (2) reveals that feature Initialization is
the most dissimilar feature to any other feature, and Figure 4.4 (p.50) (3) reveals that features Change
Other and Change Group are tightly related. Both features are conceptually part of the security
subsystem of Pier, so we expect these features to reuse a large number of classes. The results of the
analysis of the Feature Similarity Matrix agree with our analysis of feature views and the developers
confirm our findings.

This result agrees with our findings that most of the classes are characterized as highGroupFeature
or infrastructuralFeature by our Feature Affinity measurement.

Dynamic Relationships.

The featureSimilarity matrix visualization could be used to represent any of relationships defined
for features. Alternatively, we built an interactive graph visualization to represent dynamic relation-
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tures at Class level.
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ships depends between features as defined in Equation 3.3 (p.40). Our graph representation exploits
the principles of polymetric views described by Lanza [Lanza, 2003]. Each feature is represented
as a node of the graph. An edge between nodes represents a dependency relationship between two
features and we use an arrow to indicate the direction of the dependency. We map the metric nRef-
erencedObjects as defined in Figure 3.1 (p.29) (number of referenced objects) to the width of an edge
connecting two features. The wider the edge, the more objects are used by one feature that are
created by the other feature.

Our analysis of the depends relationships reveals that for our Pier case study, each feature has depen-
dencies with the feature that was executed prior to it in the trace (see Figure 4.5 (p.52)). Between some
features, there is a large number of dependencies as the width of the edges reveal: using the mouse
over interaction on an edge in the graph, a tooltip lists of objects on which a feature depends.

In Figure 4.5 (p.52) we show graph visualizations of feature dependencies we generated for Pier
features. In Figure 4.5 (p.52) (1) we show a complete graph of all the dynamic relationships. We
mapped a measurement nReferencedObjects (number of referenced objects) to the width of an edge.
We see that most dependencies exist to the Start and Initialization features. In Figure 4.5 (p.52) (2) we
applied a transitive reduction algorithm to the graph and obtained a hierarchy of relationships. Our
transitive reduction algorithm assumes the transitive property holds for all vertices of the dependency
graph:

Let R be a relation between to vertices of a graph. Let X be the set of all vertices.

∀a, b, c ∈ X, aRb ∧ bRc → aRc (4.1)

Transitive reduction removes all edges that reflect the transitive property of the graph as it assumes
that these relationships are implicit.

This hierarchy corresponds to the order in which we executed the features. Each feature accesses
at least one instance created by its predecessor. This result indicates that the order of execution of
the features impacts the dynamic relationships. To verify this we traced features with 4 different
orders. Each time the result reveals that a feature is dependent on its predecessor. We asked the
main developer of Pier to explain this result. He verified that due to the nature of features traced,
each feature will access the state of an object representing a user interface element that has been
instantiated by the previous feature.

In (3) we show the number of instances of the Start feature that the Remove Page feature de-
pends on. The mouse over tooltip of our graph visualizations also shows details of the relevant
instances.

One surprising result we obtained is the strength of the dependency relationship between the Remove
Page and Initialization features. The developer confirms our finding and explains that this depen-
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Figure 4.5: Pier Dependency Graph. This shows transitive closure and transitive reduction graphs for depends
relationships between features.
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dency is due to the fact that when a page is removed, the Pier system checks the entire Wiki structure
to see if there are any links exist to the page being removed. This results in a lot of accesses to
objects that were created during the Start and Initialization features.

We verified our findings with the developers of Pier. They confirm that the Start feature creates
instances such as PUSecurity, PRParagraph, PRComponent, PRInternalLink these are then
accessed by all the subsequent features. The developers also confirmed that all features depend on
the Initialization feature, as they all need to access the instance of the PRKernel class which is
created during initialization of Pier.

Due to the large number of dependencies detected, we believe that our depends definition needs to
be refined to distinguish between different types of objects (e.g., low-level objects and objects that
represent recurring dependencies between features).

4.5 ArgoUML Experiment

In this case study, we focused on the core of the application, (i.e., we applied selective instru-
mentation excluding library classes and plugin features from the trace). Our model consisted of
2075 classes. To narrow the scope of our investigation even further, we filtered out classes defined
in the library org.tigris consisting of GUI classes and Java library classes. This resulted in 1501
classes.

We consider only packages of the subsystems org::argouml, which consists of 83 packages. Our
analysis covers 56 of these packages. We exercised 11 features of ArgoUML. We traced each feature
individually, by manually interacting with the user interface of ArgoUML. We achieved a class
coverage of 58% of the 1501 classes of the org::argouml packages.

How do features relate to classes? Figure 4.8 (p.56) shows feature views of classes of the 11 features
we traced. As with the previous case study, we applied a dendrogram seriation algorithm [Morris et
al., 2003] to order the views by their featureSimilarity relationship, so that features that share a large
number of classes are displayed close together.

ArgoUML startup feature (159853 events). The feature view consists of 521 classes. 208 classes are
characterized as single feature. Figure 4.8 (p.56) shows that this feature view contains the most sin-
gleFeature classes of all the features we traced. This feature represents the startup and initialization
of the ArgoUML system. According to the ArgoUML documentation, the purpose of this feature
is the initialization of the applications main frame, the menu, tool-bar, status bar and the four main
areas: navigation pane, editor pane, to do pane and the details pane. By querying the singleFeature
classes, we discover the main class and ActionAboutArgoUML which is responsible for the splash
screen which is displayed at system startup.
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(2) low group feature classes 
shared by these two features
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eg. ZargoFilePersister, MultiTypeFileFilter, ArgoParser,

(5) MyTokenizer,
TokenSep

(1) 208 single-feature classes 

 (6) 53 infrastructural classes

Figure 4.6: ArgoUML Feature Views of Classes.
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According to the documentation, this feature is implemented in the application subsystem of Ar-
goUML. The classes that provide functionality are: ui.ProjectBrowser, kernel.Project and cog-
nitive support class cognitive.ui.ToDoPane. By querying our visualization, we confirm that these
classes have been located for the startup feature.

export a model to XMI feature (38611 events). This feature exports a UML model to a file in XMI
format. The ArgoUML documentation describes a peristency subsystem which provides function-
alities that allow the model to be stored persistently in a particular file format or loaded from a
persistent storage. Our feature view for the export model to XMI feature contains the classes of this
subsystem.

import XMI feature (131105 events). We exercised the feature to import a UML model. This feature
also exercises the functionalities of the persistency subsystem. In Figure 4.8 (p.56) (2) we highlight
the classes that are common to this feature and the exportxmi feature. At the class level, both fea-
tures exercise the functionality of classes such as ActionAddPackage and ActionAddDataType.
On closer examination of the source code we discover that the same classes implement export and
import functionality. To obtain a more detailed view and to distinguish between import and export
functionality we would need to generate feature views at a method level.

load project. We highlight in Figure 4.8 (p.56) (4) the 11 classes that are specific to the load project
feature. This feature interacts with the persistence subsystem of ArgoUML. We discover the fol-
lowing singlefeature classes, for example XMLTokenTableBase, ArgoParser and ZargoFilePer-
sister. We verify in the documentation that these classes deal with loading UML models stored in
ArgoUML format from persistent store.

new use case feature (270472 events). This feature exercises this functionality to create a new
use case diagram in our ArgoUML project. The ArgoUML documentation describes the Diagram
subsystem that implements draw and manipulate functionalities for UML diagrams.

How do classes relate to features? In Figure 4.8 (p.56) (1) we show the distribution of the Feature
Affinity measurement for ArgoUML. This reveals that 34% of the classes that participate in the
features, are characterized as singleFeature, 32% as lowGroupFeature, 27% as highGroupFeature
and 7 % as infrastructuralFeature.

Our feature perspective (Figure 4.8 (p.56)) reveals that a high percentage of the classes that are single-
Feature ( 208 classes) were detected in the startup feature of ArgoUML. This feature is responsible
for system initialization, which typically represents one-off functionality. If we treat the startup
feature as an outlier with respect to the features we analyzed and recalculate the distribution of Fea-
ture Affinity (as shown in Figure 4.8 (p.56) (2)), we obtain a more representative view of how Feature
Affinity levels are distributed over classes for the remaining features we traced ( singleFeature = 4%,
lowGroupFeature = 48%, highGroupFeature = 39% and infrastructuralFeature = 11%).
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single-Feature Classes

Figure 4.7: ArgoUML: Distribution of the Feature Affinity values of classes over the package hierarchy high-
lighting some of the singlefeature classes.

singleFeature
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1) Distribution of argoUML Feature Affinity for Classes 2) Distribution of argoUML Feature Affinity for Classes
after the 'outlier' feature startup has been removed.

Figure 4.8: ArgoUML: Highlighting the effect of the startup feature on the distribution of Feature Affinity
levels of the classes.
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Figure 4.9: ArgoUML Features Similarity Matrix similarity relationships between pairs of features at class
level.

In Figure 4.7 (p.56) we show the distribution of the Feature Affinity over the package hierarchy. We
highlight some of the single feature classes. This perspective offers an alternative to feature views
and the context of the system structure provides the developer with structural information about
which parts of the system are related to the features we traced and to which extent.

How do features relate to each other? For the ArgoUML experiment we focus only on the static
featureSimilarity relationships between features, as the individual traces of features do not preserve
instance information needed to analyze the dynamic feature relationships. Figure 4.9 (p.57) reveals
that the features saveproject and loadproject share a large proportion of methods. With a threshold
value of t = 0.8, this relationship is characterized as tight. Similarily we see that the features im-
portxmi and viewxmldump are tightly related. In contrast the startup feature is most dissimilar to the
other features. As the startup feature performs one-off initialization functionality, this result agrees
with our expectations.

4.6 Discussion

In this section we discuss some of the strengths and limitations of our feature-centric analysis ap-
proach.
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4.6.1 Strengths of Feature-Centric Analysis

As our approach incorporates the goals of Feature Identification techniques, we apply it to locate
key classes associated with features. Our Feature Affinity property enriches our understanding of
classes as it assigns them with a relevance with respect to a set of features. This gives us insights
into which parts of the system provide general functionality.

Moreover, the distribution of the Feature Affinity property provides us with an insight into the nature
of the system. For example in the case of our Pier case study, we detected that most of the classes
are characterized as highGroupFeature or infrastructuralfeature. This indicates that there is a large
propotion of common functionality, used by most of the features we traced. The developers of Pier
confirmed this finding. The explained that as Pier is a web application, each user-triggered feature
exercises common HTTP request/response and page rendering functionality.

For both case studies, we found that investigating singlefeature and lowgroupfeature classes were
the most revealing to gain an understanding of how the features are implemented.

Our Feature Relationship Perspective provides us with a more precise information about which
classes are shared between features. Our feature view perspective does not reveal which features
share which classes, whereas our similarity matrix reveals this level of detail. Furthermore, our Fea-
ture Relationship Graph provides a means of interactively exploring runtime dependencies between
features.

The Feature Affinity level distinguishes between source entities that are common to a small group of
features (lowGroupFeature) and those that are common to a large group of features (highGroupFea-
ture ). The lowgroupfeature classes are shared by a small number of features. They represent classes
that implement functionality that is shared by a small number of features (i.e., less than half of the
feature traced). For example, in our Pier case study (see Figure 4.3 (p.48) (2)) we highlight that the
features add page and edit the copied page share the same three classes. Thus, lowGroupFeature
classes represent good starting points for investigating similarities between features. Moreover, as a
result of the applying the dendrogram seriation algorithm, our visualization of feature views orders
feature views according to their featureSimilarity.

4.6.2 Evaluation of Feature Affinity

Stability of Characterizations. The Feature Affinity of a source entity in our approach is highly
dependent on the set of features selected for analysis. The highGroupFeature classes represent
classes that provide functionality used by most of the features in our model. In the case of our Pier
case study, all the features we exercised, except for the initialization feature, are initiated by the user.
These features exercised classes responsible for handling the HTTP request-response dialog and for
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page rendering code of the Pier application. We would expect that classes provide infrastructural
functionality to the features. However, they are characterized as highGroupFeature classes and not
as infrastructuralFeature. Due to our definition of infrastructuralFeature revealing a source entity
that participates in all features of our model, the choice of features affects the resulting Feature
Affinity level of classes. In this case, we included a feature in our analysis which does not involve
user interaction, namely the initialization feature.

Precision and Recall. Our feature-centric analysis builds on feature identification techniques. Thus
the approach is exploratory in nature. We seek to retrieve relevant classes for a feature. Dynamic
analysis is precise in that the feature trace we extract identifies all the classes that are referenced
while exercising a feature. It is difficult to determine if for the abstract notion of a feature, if all
relevant classes have been identified. We provided the developers of Pier with a list of all the features
we traced and the classes we identified for each feature, grouped according to their Feature Affinity
level, The developer confirms that all singlefeature and lowgroupfeature classes are relevant for the
features in which they were identified. However, the state that it is difficult to identify which classes
are not located by our approach.

We emphasize that our feature-centric analysis is an iterative process, We are in a position to assess
our choice of features only after we have performed feature analysis and applied Feature Affinity
measurement to the classes.

4.6.3 Variations

Defining Thresholds. In the experiments described in this chapter we defined a threshold value of
50% to distinguish between lowGroupFeature and highGroupFeature classes. A possible variation
of the approach would be to allow a configurable threshold value for Feature Affinity, based on itera-
tive analysis or depending on the type of application to be analyzed. Although we did not experiment
with variations in threshold values for Feature Affinity, we did experiment with the threshold values
of our featureSimilarity measurement. For systems with a high proportion of infrastructuralFeature
classes (e.g., Pier) the threshold value needs to be set > 0.5. We chose a value of 0.8. Otherwise it
is difficult to calibrate the similarities between the features. For ArgoUML we chose a value of 0.5
as the Feature Affinity levels are distributed more evenly than those of Pier over the classes.

Defining Filtering Criteria. Our dynamic feature relationship measurement depends yields a large
number of object dependencies, making it difficult in some cases to associate semantic context to
the relationships. Another variation of our approach would be to define a characterization of objects
similar to the Feature Affinity measurement for source entities that reflects if an object is shared by
two features, less than half the features, more than half the features and all the features. We believe
that this differentiation would help to isolate key feature dependencies. We explore this in more
detail in another work [Lienhard et al., 2006].
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4.6.4 Limitations

We identify and discuss constraints and limitations of our feature-centric analysis approach, based
on the experience we gained from applying it to the case studies.

Mapping Traces to Features. We define a one-to-one mapping between an execution and a feature.
Other approaches [Eisenbarth et al., 2003] combine traces from multiple scenario executions
to obtain a feature mapping. At present, we do not model multiple execution scenarios for
one feature. Our experiments show that by capturing traces for one path of execution, we
established a mapping to the parts of the code that implement features. We model features
in Dynamix as one thread of execution. However, our model could easily be extended to
reflect a one-to-many relationship between features and feature traces and multi-threading or
multiple execution paths of a feature into consideration. As our feature analysis approach
extracts feature views (i.e., sets of source entities) from Dynamix, we simply need to define
how we would extract these sets from a composite feature entity representing either a multiple
scenario feature or multiple threads of execution.

Coverage. Coverage of the application by the feature model affects the Feature Affinity level of the
source artefacts. If the model contains only one feature, the feature can only be considered in
isolation. Only by executing all features of an application, and all possible paths of execution
of a feature, would we achieve a stable Feature Affinity level of source artefacts. For example,
a class is singleFeature, if it participates in one feature. However, its Feature Affinity level
may change as soon as we include another feature that references this class in the model. Then
the Feature Affinity level would change to lowGroupFeature.

Extracting Dynamic Feature Relationships. Our experiments used various techniques to extract
traces of features. For our analysis of ArgoUML, we generated a distinct trace for each fea-
ture. This approach does not preserve the information about dynamic feature dependencies
at the level of objects. For later experiments, we tackled this issue by defining a new tracing
approach based on capturing a marked feature trace (i.e., one trace containing all feature ex-
ecutions, the start and end of each feature execution is flagged in the generated trace) [Salah
and Mancoridis, 2004]. We adopted this approach for the Pier case study so that with a more
complete dynamic information, we can analyze dynamic feature relationships as described in
Section 3.7 (p.37) of the previous chapter.

4.7 Related Work

Our feature-centric approach is characterized by ease of use and interactive visualizations. Our
Feature Affinity measurement is computed by simple set intersection.
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context Feature
def: nMethodOccurrencesInFeature ( aMethod: Method) : Integer =

self.methods ->select(m | m = aMethod))->size()
context Feature

def: nMethodOccurrencesInOtherFeatures (aMethod: Method ) : Integer =
self.model.features->select(f | f.nMethodOccurrences(aMethod) )

->reject(self))->size()

context Feature
def: reconaissenceMetric (aMethod: Method) : Float =

self.nMethodOccurrencesInFeature
/ self.nMethodOccurrencesInFeature +

self.nMethodOccurrencesInOtherFeatures

Figure 4.10: OCL specification of Software Reconnaissance property for a Method Entity.

4.7.1 How Dynamix accomodates other Feature Identification Measurements

Most dynamic analysis-based feature identification approaches define a relevancy measurement to
quantify the relationships between features and source artefacts [Wilde and Scully, 1995; Eisenbarth
et al., 2003; Eisenberg and De Volder, 2005; Antoniol and Guéhéneuc, 2005]. They use heuristic
approaches to define the degree of relevancy of a source artefact to a feature. The software recon-
naissance family of approaches determine relevancy of source artefacts by comparing two sets of
exhibiting and non-exhibiting traces. Wilde and Scully proposed a relevancy index based on proba-
bilistic ranking to measure the relevancy of a component to a feature [Wilde and Scully, 1995]. Let
P(e) be the probability function that assigns a probability to an entity defining the relevancy of an
entity to a feature. Their relevancy metric is defined as follows:

P (e) =
N(e)

N(e) + N ′(e)
(4.2)

where N(e) is the number of times an event e appears in the scenarios exhibiting a feature and
N ′(e) is the number of times the same event occurs when executing scenarios that do not exhibit the
feature. In Dynamix, an event of a trace is represented as an Activation, which references a Method
entity. In Figure 4.10 (p.61) we provide an OCL definition of the Software Reconnaissance metric in
the context of Dynamix.

In contrast to Software Reconnaissance, our approach assumes a one-to-one relationship between
execution scenarios triggering a feature and the feature itself. We do not compare two types of
traces, rather we consider all the features under analysis at once and compute a Feature Affinity,
which we assign to each source entity of a model. If we compare the result of our measurement
with the Software Reconnaissance relevancy index, we discover that singleFeature classes obtain a
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Figure 4.11: The distribution of average values of the dedication and concentration metrics for each Feature
Affinity level of the Pier Case Study.

Software Reconnaissance relevancy index of 1. The main difference between the Software Recon-
naissance approach and our Feature Affinity is that Software Reconnaissance assigns relevancy to
source entities from the perspective of one feature at a time. Feature Affinity computes relevancy for
source entities based on of a set of features.

Feature Affinity also characterizes how source entities provide functionality to groups of related
features. Thus, it provides a more general characterization of source entities with respect to a group
of features.

Wong et al. proposed metrics to complement the Software Reconnaissance metric. They measured
the closeness of a feature to a source entity. They originally devised their metrics for procedural code.
We implemented the dedication and concentration metrics they proposed and applied them on our
Pier case study to compare them with the results of our Feature Affinity measurement. Figure 4.12
(p.63) specifies the dedication metric of a class with respect to one feature. In Dynamix, this value
of this metric is assigned to a FeatureClassAssociation entity (see Figure 4.13 (p.64)).

In Figure 4.11 (p.62) we show a comparison of Feature Affinity levels and the dedication and con-
centration metrics. For each Feature Affinity level, we calculated the average dedication and con-
centration values and plotted them as shown. The graph shows that the singleFeature classes have
a high dedication value and infrastructural classes show a low dedication value. For each Feature
Affinity level we obtain a low value for the concentration metric. This result is due to the nature of
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context Class
def: nMethods : Integer =

self.methods->size()
context Feature

def: nMethodsOfClassReferenced (aClass: Class) : Integer =
self.methods->select(m | m in aClass.methods)->size().

context Feature
def: dedicationMetric (aClass: Class) : Float =

self.nMethodsOfClassReferenced(aClass) / aClass.nMethods.

context Feature
def: concentration(aClass: Class): Float =
self.methods->select ( m | m in aClass.methods)->size() / self.methods.size()

Figure 4.12: OCL specification of the Dedication and Cconcentration Metrics in the context of Dynamix.

the Pier application. Most of the functionality of the features is characterizated as infrastructural,
thus yielding a low concentration of any one class. The results of our comparison with these metrics
show both our Feature Affinity measurement and the dedication and concentration metrics reveal
similar characteristics for the classes with respect to a set of features.

4.7.2 Dynamix Adaptation: Introducing Association Entities

The Software Reconnaissance metrics [Wilde and Scully, 1995] and the concentration and dedica-
tion metrics [Wong et al., 2000] provide useful insights into the roles of source entities in features.
As they focus on source entity-to-feature relationships, we need to extend our Dynamix meta-model
with a new kind of entity, an AbstractFeatureEntityAssociation entity. This entity models these rela-
tionships and allows us to assign properties to them that represent these metrics. The AbstractFea-
tureEntityAssociation entity expresses relationships between a distinct feature and a distinct source
entity. Figure 4.13 (p.64) shows the Dynamix extensions, namely a FeatureClassAssociation en-
tity and FeatureMethodAssociation entity, both inheriting from a AbstractFeatureEntitiyAssociation
entity.

4.7.3 Feature Relationship Approaches

In a reverse engineering context, only a few researchers have analyzed the relationships between
features.

63



CHAPTER 4. APPLYING FEATURE-CENTRIC ANALYSIS: TWO CASE STUDIES

Features Structure 

 
Instance

1

*

1

*

1*

1*

method

instanceOf

receivercreator

activations

* Method

Class

Package

1 Activationname: String
/methods: Collection<Method>

Feature

senderActivation
0..1

dedicationMetric : Float
concentrationMetric : Float

FeatureClassAssociation

The FeatureClassAssociation expresses the 
relationship between a Feature and a Class
.

*

*

AbstractEntity

AbstractFeatureEntityAssociation

The AbstractFeatureEntityAssociation expresses the 
relationship between a Feature and any other entity.
.

reconaissanceMetric : Float
FeatureMethodAssociation

The FeatureMethodAssociation expresses the 
relationship between a Feature and a Method
.

*
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Kothari and Mancoridis [Kothari et al., 2006] described a mechanism to identify similarity relation-
ships between features based on the source entities shared by the feature’s implementation. Whereas
our measurement considers only the source artefacts shared by two features, their similarity measure-
ment compares entire call graphs. Thus, they also take into account the edges of the call graph (i.e.,
the message sends between methods). The underlying assumption of their analysis is that similar
features are implemented in a similar way and thus share a significant amount of code.

Salah and Mancoridis [Salah and Mancoridis, 2004] described an analysis based on a dynamic anal-
ysis based on feature identification technique to define dependencies between features. They define
both static and dynamic feature relationships. Their static relationships are based on identifying the
common classes referenced by two features. They define a depends dynamic relationship between
features.

Our contribution is that we formalize the definitions of the different types of relationships. We
refine the relationships and introduce a feature relationship taxonomy to distinguish between varying
degrees of static relationships,

4.8 Summary

By applying our approach on two case studies, we demonstrate how we discover semantic infor-
mation about the roles of classes in features, the way features of a system are implemented and
relationships between features.

Our approach promotes an understanding of how existing features are implemented. By visually
analyzing feature views, a software engineer determines roles that classes play in a set of features.
We believe that a positive side affect of our Feature Perspective is that it makes it easier for a software
engineer to design and implement a new feature and reuse existing functionality. For example, if a
software engineer has to add a new feature to the Pier application, he can use his understanding of
existing feature implementation to determine which parts of the code can be reused.

The main contributions of this chapter are:

1. Our three perspective analysis builds on the work of feature identification techniques by enrich
structural entities with feature context, to define features as first class entities and to describe
static and dynamic relationships between feature entities.

2. We focus our approach on object-oriented applications, thus we define Feature Affinity for
structural entities of object-oriented software, namely packages, classes and methods.

3. We describe interactive visual representations of the Features of our Dynamix model and the
Feature relationships. Our visualziations support high-level and fine-grained feature analysis
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of a software system from three perspectives.

4. Dynamix defines a language independent meta-model to relate software entities (e.g., Class,
Method) with Feature entities. This renders our approach generally applicable to systems
written in any object-oriented programming language.

5. A key characteristic of our approach is ease-of-use and simplicity. We compactness of dy-
namic information. We condense information of feature traces to focus on key information to
achieve the Feature Affinity of source artefacts.

6. We compare our Feature Affinity property of source entities with metrics from related works.

7. We provide OCL definitions for the Software Reconnaissance, the dedication and concentra-
tion metrics for object-oriented systems in the context of our Dynamix meta-model.

The fundamental aspect of our feature-centric analysis approach is that we do not limit our focus
to locating features in the source code. Our emphasis is on treating features as first class entites in
reverse engineering analyses and to exploit features for system comprehension.
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Chapter 5

Evolution Analysis: A Structural
Perspective

We present an approach to evolution analysis that focuses on how the roles of source artefacts
change with respect to a set of features over time. To support our analysis, we augment Dynamix
with entities that model the notion of history explicitly. We demonstrate how semantic knowledge of
the role of a class in features supports interpretations of modifications and extensions to a system’s
source code by applying it to two case studies.



CHAPTER 5. EVOLUTION ANALYSIS: A STRUCTURAL PERSPECTIVE

5.1 Introduction

Most reverse engineering approaches to software evolution analysis focus on static source code
entities of a system, such as classes and methods [Demeyer et al., 2000; Krajewski, 2003; Lanza
and Ducasse, 2002]. A static perspective considers only structural and implementation details of a
system. Thus, key semantic information about the roles of source entities in features of a system is
overlooked. Without explicit relationships between features and the source artefacts that implement
their functionality, it is xicult for maintainers to discover what motivated changes in source code.
Static analysis approaches compare what has changed in a system but does not offer any semantic
context for the changes. In this chapter, we extend our feature-centric analysis with a notion of time,
so that we can focus on how roles of source artefacts change over a series of versions with respect to
a constant set of features.

We aim to support a software engineer to interpret the intent of changes by identifying how roles of
classes change with respect to a constant set of features over time. We motivate our analysis with
the following questions:

1. Why did a class change? When maintaining a system, it is useful not only to detect what
has changed in a system, but also to understand why a change was made [Gı̂rba et al., 2005b;
Demeyer et al., 2002]. We seek to enrich changes of a system with semantic knowledge about
the roles of source artefacts in the features of our model.

2. Are classes becoming more active with respect to features over time? We consider a class has
become more active with respect to a set of features if the role of a class changes to indicate
that it participates in more features in later versions of a system. Such a change suggests that
the class may have been modified, or its functionality is being reused by more of the features
in a later version. We assume that the more active a class in a set of features, the more generic
the functionality it implements.

3. Are classes becoming less active with respect to features over time, or becoming obsolete?
Classes that are less active with respect to features over time may indicate places in the code
that may have been refactored or that functionality within a class has become obsolete. Soft-
ware maintainers often leave obsolete code in a system if they are unsure which features are
using the code. We seek a means of detecting candidate obsolete classes and methods to
support software developers during the maintenance.

4. Are the features of a system resilient to change? For our experiments, we traced a constant
set of features for each version of a system we analyze. We seek to discover if a set of core
features of a system are resilient to change.

To address these questions, we focus on how the relationships between classes and features change
over time. We limit the scope of this analysis to a constant set of core features of a system over a
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series of versions. By core features we mean features that represent core or central functionality of
a system.

Both evolution analysis and dynamic analysis techniques are faced with the problem of manipulating
large amounts of data. We tackle this by (1) computing the Feature Affinity property for classes
to assign them roles with respect to features, and (2) by applying a history centered analysis to
summarize changes in the roles of classes over multiple versions.

We apply our evolution analysis approach to two medium size applications: SmallWiki [Renggli,
2003] and Moose [Ducasse et al., 2005a; Nierstrasz et al., 2005]. We extend our Dynamix meta-
model with entities that model history and versions of the entities. To measure and summarize
change, we define history properties in the context of Dynamix. To detect changes between versions,
we define how we quantify changes in the roles of classes over time. We validate our results with
(1) developer knowledge and (2) we compare the results of our analysis with the the findings of
applying a diff algorithm [Hunt and McIlroy, 1976] on the first and last versions of the systems we
analyze.

We show how our approach reduces the search space to focus only on changes that reflect changes
in the roles of classes with respect to features over time.

Structure of the Chapter. In the next section (Section 5.2 (p.69)) we discuss different approaches
to evolution analysis. Then, in Section 5.4 (p.70), we present how Dynamix, extended with History
and Version entities of the Hismo model [Gı̂rba and Lanza, 2004], supports an evolution analysis
of changing roles of classes with respect to features. Section 5.4 (p.70) describes how we quantify
changes to classes based on Feature Affinity and history measurements. In Section 5.5 (p.76) we de-
fine an analysis methodology. Then, in Section 5.6 (p.76) we report on two case studies we conducted
and present our results. Subsequently, in Section 5.7 (p.82) we discuss our results and outline con-
straints and limitations of the feature-centric approach we adopt. We list related work in Section 5.8
(p.84) and finally in Section 5.9 (p.85) we summarize our results.

5.2 Evolution Analysis: an Overview

Approaches to analyzing system evolution can be characterized as (1) version-centered or (2) history-
centered [Gı̂rba and Ducasse, 2006]. Version-centered approaches compare versions of a system
with the aim of revealing when (i.e., in which version) a particular change occurred. For example,
a typical version centered approach would be a comparison analysis that computes the difference
between two versions, or a graphic that plots the values of a property in time for a series of versions.
History-centered approaches on the other hand, are concerned with revealing what changes were
made and where in the system they occurred, by summarizing evolution according to a particular
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point of view.

In this chapter, we describe an approach that combines both history-centered and version-centered
techniques. As we are dealing with a large volume of information, we first adopt a history-centered
approach to summarize the changes to the roles of classes. This narrows the scope of investigation to
focus only on classes that have changed with respect to the features. Subsequently, to obtain a more
fine-grained perspective of the changes, we apply a version-centered approach to individual classes
to discover in which versions changes occurred.

5.3 Extending Dynamix for Evolution Analysis

Our Dynamix meta-model models one version of a system. To incorporate the notion of multiple
versions, we augment Dynamix with History and Version entities of the Hismo meta-model defined
by Girba [Gı̂rba, 2005]. Hismo is a generic meta-model that treats the notion of history as a first
class entity [Gı̂rba, 2005]. A History entity summarizes a sequence of versions of an entitiy as one
single entity. In the context of our analysis, we extend Dynamix with Hismo entities so that we
can manipulate History and Versions of a Dynamix entity. For a Structural perspective of evolution
analysis, we focus on the Class entity.

Figure 5.1 (p.71) shows Dynamix, extended with History entities of the Hismo model [Gı̂rba and
Lanza, 2004], namely ClassVersion and ClassHistory entities. A ClassVersion extends a class with
version information and reflects the fact that multiple versions exist for a Class. A ClassHistory
models a set of ClassVersion entities of the same Class.

5.4 History and Version Properties

In this section we describe how we apply version and history measurements [Gı̂rba and Lanza,
2004] to the Feature Affinity FA property of classes. The history measurements we compute for our
analysis are shown as properties of the ClassHistory entity in Figure 5.1 (p.71).

We describe an approach to evolution analysis that focuses on how the roles of classes change with
respect to the features of a model over time. We measure changes in class roles using the Feature
Affinity property of classes. As outlined in Chapter 3 (p.25), the Feature Affinity property reflects the
relevance of a class with respect to a feature.

The interpretation of changes to Feature Affinity depends heavily on the following context of our
approach: we do not add new features from one version to the next. We impose this restriction on
our technique because the Feature Affinity value of a class is sensitive to the features we trace. If we
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Figure 5.1: We extend Dynamix with Hismo ClassVersion and ClassHistory entities to support evolution
analysis from a Structural perspective.
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were to vary the features traced from one version to the next, we would not be able to distinguish
between a change in the role of a class due to a change in the code and a change due to including a
different feature in our analysis.

5.4.1 Measuring Changes in Feature Affinity (FA)

singleFeature
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(0)

infrastructura
lFeature
(4)

lowGroupFeature
(2)

highGroupFeature
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1

14

1

2
3

 

  

2

2
>

<

<

0

0

0

0

>

>

>

>

>

>
>

<
<

<

>

>

0 : class not covered in this version (notCovered)

> : class increase in participation (decreasedActivity) 
< : class decrease in participation (increasedActivity) 
-  : class no change in this version (noChange)

<

activityIndicator

changeFA

Figure 5.2: The Weighted Changes (changeFA) to a role (Feature Affinity) of a Class with respect to Features
between two versions of a system.

Figure 5.2 (p.72) we show how the roles of a class of a class change over time as a directed graph.
The nodes of the graph represent the Feature Affinity values of a class. The edges represent the
changes from one Feature Affinity level to the next. We quantify each change with a numerical
value corresponding to the difference between the Feature Affinity levels (their ordinal values) of
the two nodes it connects. The diagram also shows if a change of Feature Affinity represents an
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increase in participation of a class in a set of features (marked as >), a decrease in participation
(marked as <), or a change to no participation (marked as 0) on the edge.

To calculate the change to the FA properties, we associate numerical values (0..4) to each value of
FA and measure the differences of the property between two versions of a class. Essentially, we
quantify the change by measuring the absolute value of the difference of the Feature Affinity values
of the same class in version i (Ci) with a class in version i + 1 (Ci+1).

changeFA = |FA(Ci)− FA(Ci+1)| (5.1)

The changeFA property quantifies a change. For example, we consider a change from notCovered
to infrastructuralFeature to represent a more significant change than from singleFeature to low-
GroupFeature, as infrastructuralFeature classes affect all of the features of our model. In Figure 5.2
(p.72) we show all possible Feature Affinity changes of the FA property. The changeFA property is
associated with the ClassVersion entity.

In Figure 5.1 (p.71) we show a UML enumerator, ActivityValue, which we define to describe possible
types of Feature Affinity changes. We associate an activityIndicator property with a ClassVersion
to reflect the type of change: if a class participates in more features (increasedActivity > symbol),
less features (decreasedActivity < symbol), or no features (notCovered 0 symbol) of a model as a
result of a Feature Affinity change between two versions. (We use the − symbol to indicate that the
Feature Affinity of a class did not change.

In Figure 5.3 (p.74) we provide the OCL definition for the activityIndicator property.

5.4.2 Summarizing Change in Feature Affinity with a History Property

The Hismo History entity summarizes changes over a series of versions. To summarize changes
to the roles of classes, we define a History Property for a ClassHistory entity which computes the
number of times the role of a class changes over time. We refer to this measurement as the number of
changes to FA (numFA). We define numFA measurement applied on Class C for a given property
FA as follows:

(i > 1)

numFAi(C,FA) =
{

0, FAi(C)− FAi−1(C) = 0
1, FAi(C)− FAi−1(C) 6= 0
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context FeatureAffinity
def: value: Integer =
if self = notCovered
then 0

else if self = singleFeature
then 1

else if self = lowGroupFeature
then 2

else if self = highGroupFeature
then 3
else 4
endif

endif
endif

endif

context ClassVersion
def: activityIndicator: ActivityValue =
if self.succ.class.featureAffinity = FeatureAffinity::notCovered

then ActivityValue::notCovered
else if self.succ.class.featureAffinity = prev.class.featureAffinity
then ActivityValue::noChange

else if self.succ.class.featureAffinity.value
> self.prev.class.featureAffinity.value

then ActivityValue::increasedActivity
else ActivityValue::descreasedActivity

endif
endif

endif

Figure 5.3: OCL specification of the activityIndicator property to characterize changes in the Feature Affinity
level of classes.
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Figure 5.4: An Evolution Matrix of classes showing the Measurements we apply to Feature Affinity of Classes
to measure changing roles over time.

(n > 2) numFA1..n(C,FA) =
n∑

i=2

numFAi(C,FA) (5.2)

In Figure 5.1 (p.71) we provide the OCL definition of numFA in the context of Dynamix.

5.4.3 A Summary of the Measurements

Figure 5.4 (p.75) shows an Evolution Matrix [Lanza, 2003] of a small system consisting of 3 classes
(A,B,C) over a series of 5 versions. Each row of the matrix represents a ClassHistory (i.e., a set of
versions of the same class entity). The classes are colored according to their FA value. We use this
simple example to illustrate which history and version measurements we apply to the FA property
of classes, and how they characterize the changing roles of a class with respect to a constant feature
model.

Measuring the Number of Changes of the FA Property of a class (numFA). This measurement
counts in how many versions the FA property has changed with respect to the previous ver-
sion. We apply the measurement to isolate which classes have changed. For example we see
in Figure 5.4 (p.75) that the role of Class A changed once from singleFeature to infrastruc-
turalFeature, and Class B has changed from infrastructuralFeature to lowGroupFeature . The
role of Class C has remained the same. With this measurement we can filter out classes that
do not change with respect to features (i.e., NumFA = 0 ). In this example, we only need to
consider Classes A and C for further analysis.
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Characterizing Change with the activityIndicator Property. We compute the activityIndicator by
comparing the value of FA of the first version a class (firstFA ) with the value of FA in the
last version of a system under analysis (lastFA ). This measurement is a version measurement
rather than a history measurement as it compares two versions of a system at a time.

In our example system Figure 5.4 (p.75), we see that the Activity Indicator > of the class A
reveals that the class is more active in the last version of the system analyzed than the first
version. Class B is less active (< activity) and Class C shows − activity (i.e., no change).

5.5 A Methodology for Analyzing Changing Roles of Classes

We outline a methodology to describe how we apply our technique to measure the evolution of
classes from a feature perspective.

1. For each version of an application, we parse the source code and extract a model of structural
entities.

2. For each version of an application, we exercise the same set of features on the instrumented
system and extract feature traces. For the purposes of this experiment, we assume that the ex-
ternal observable behavior of each feature remains unchanged for all versions of our analysis.

3. We compute the Feature Affinity measurements for the classes of our models.

4. We compute history measurement numFA of a ClassHistory from the FA property of classes.
Then, we narrow our focus to consider only those classes that are affected by change, we define
queries to filter out classes that have never undergone any Feature Affinity changes (numFA

= 0).

5. We compute the activityIndicator between the first and last versions of a system and apply
queries to group classes according to activityIndicator values.

5.6 Validation

In this section we present the results of applying our approach to two case studies. For our ex-
periments we chose two in-house systems: SmallWiki [Renggli, 2003] and Moose [Ducasse et al.,
2005a].

Moose is an environment for reengineering object-oriented systems and is implemented in Visual-
Works Smalltalk [Ducasse et al., 2005a]. An important part of the functionality of Moose is the
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Figure 5.5: SmallWiki Versions used for the Evolution Analysis of Changing Roles of Classes..

import/export framework. This is responsible for parsing source code and representing the data as a
structural model of the system. Models are loaded and saved as files.

Our choice of case studies was motivated by the following reasons: (1) they are open source, thus
the source code is freely available, (2) we have access to multiple versions of the systems, (3) we
are familiar with the features of the application from a user perspective, and (4) we have access to
developer knowledge to verify our findings.

5.6.1 Case Study: SmallWiki

We selected the same 6 core features and 10 different versions of SmallWiki from the source code
repository that represented a period of development and refactoring of the application. Our selection
was guided by the developers. The versions span an 11 month time period (The two versioning
conventions shown in Figure 5.5 (p.77) are due to SmallWiki being released inhouse and to the open
source community). According to the developers, much of the changes in the code are as a result of
iterative development, refactorings and restructuring. Figure 5.5 (p.77) lists the versions we chose. In
the third column, we note what type of maintenance activity was reported by the developer at the time
a version was checked in to the source code repository for versions where it was available.

Our history model of SmallWiki contains 522 class histories. As a class history is a sequence of
versions of a class entity, this metric gives an indication of the size of the application.

Narrowing the Scope with the numFA measurement. We apply a filter to obtain all classes whose
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Activity Indicator SmallWiki Class Developer Validation
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Figure 5.6: A Subset of the Results of the SmallWiki Case Study. We list the classes with changing FA and
the activityIndicator. (for >, we show only classes with a ChangeFA >= 3)

Feature Affinity levels have changed during the history of a class (numFA > 0) and obtain 63
classes.

Categorizing Changes with the Activity Indicator. We compute the activityIndicator property (>,
< and 0) and we obtain 40 classes with a > indicator, no classes with an < indicator and 6
classes with a 0 indicator. Our results reveal that 67% of the classes that participate in features
are more active and 9% of the classes detected are candidate obsolete classes or may contain
candidate obsolete methods as they appear to be no longer participating the features in later
versions.

Focusing on Changes. To focus on the changes that indicate introduction of highGroupFeature or
infrastructuralfeature functionality at some point in the evolution of the system, we apply a
filter (lastFA >= 3). We identify five classes where new or existing functionality is reused
by more than half of the features of our analysis.

5.6.2 Analysis of the SmallWiki Results

Why did a class change? For each change we detected, we provided the developers the context in
which the change was detected by telling them which features of the system we traced. In the third
column of Figure 5.6 (p.78) we list the reason given by the developers as to why the role of a class
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has changed with respect to the features. We see that in most cases, the developers are adding new
functionality to the system. Our analysis reveals that 40 classes are more active in the last version
than in the first version of SmallWiki.

Why are classes becoming more active with respect to features over time? In the case of
the action classes AdminAction, ErrorAction, HistoryAction, SearchAction and
EditAction the developers of SmallWiki confirm that additional generic functionality was added.
This functionality is used by more than half of the features that we traced. In the earlier versions
of SmallWiki these classes were characterized as singleFeature. Their changeFA reveals that some
of these classes became either lowGroupFeature or highGroupFeature over time. In the case of
the ErrorUnauthorized, ErrorAction and FifoCache classes, the developers confirmed
that they added generic cross-cutting functionality to the features to improve error handling and ef-
ficiency with caching mechanisms. We also detect these changes with the Diff algorithm. In each of
the above cases, the developers confirmed that the changes represent refactorings, and thus they do
not affect the observable behavior of the features.

Why are classes becoming less active with respect to features over time? Figure 5.6 (p.78) shows
four classes with an activity Indicator of 0. As we do not have 100% coverage of the system,
we cannot conclude that these classes are obsolete in the later versions. However, we queried the
developers about these classes. They confirmed that in fact the VisitorCollectable class was
obsolete and could safely be removed from the code base. We used the Diff algorithm on a later
version of the system and discovered that this class was indeed removed from the code base. In the
case of the VisitorRendererHtml class, the developers informed us that this class has been
refactored. The features we traced are no longer using this class, thus this result represents a false
positive. In the case of the Folder class, it is still relevant for SmallWiki, but the method that was
participating in the features of our model had been removed from the class. This change did not
affect the observable behavior of the features.

Are the features resilient to change? In the case of SmallWiki we chose 10 versions of the sys-
tem that, according to the developers, constitute a period of iterative development. Although the
features we traced exhibit no change in their user-observable behavior, the underlying implemen-
tation was both extended with generic non-observable functionality (e.g., access control checking)
and refactored to improve the design. As most of the changes we detect represent changes to generic
functionality, most of the features are affected by change, thus signaling the need for regression
testing.

One of the key advantages of our analysis methodology is our ability to tackle large amounts of
data. We reduced the study space from 522 ClassHistory entities (summarizing 10 versions) to 46
ClassHistory entities requiring closer investigation. We applied a more fine-grained version analysis
to 12 classes shown in Figure 5.6 (p.78). Here we defined queries that used the changeFA property of
a ClassVersion to focus on classes with a major change in Feature Affinity level from the first to the
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Figure 5.7: Moose Versions used for the Evolution Analysis of Changing Roles of Classes.

last version of our analysis. Furthermore, the activityIndicator lets us distinguish between types of
changes we detect to help us interpret why a change occurred.

5.6.3 Case Study: Moose

Moose represents an ideal system on which to perform evolution analysis, as it is constantly being
refactored, bug-fixed and extended. For our experiment, we selected features of the import/export
framework and model navigation features from 12 versions of Moose (696 class histories) spanning
a four month time period. We summarize the versions and comments entered by the developers
when they commited changed sources to the source code repository in Figure 5.7 (p.80).

5.6.4 Analysis of the MooseResults

Why did a class change? For each change, we provided the developers the context in which a
change was detected by telling them which features of the system we traced (the export import
subsystem or the navigation). In the third column of Figure 5.8 (p.81), we list the reason that the
developers gave, as to why a role of a class has changed with respect to the features.

Why are some classes becoming more active with respect to features over time? In the earlier
versions of Moose, the classes shown in Figure 5.8 (p.81) were characterized as notCovered. Our

80



5.6. VALIDATION

Activity Indicator Moose Class Developer Validation
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Figure 5.8: Moose Classes with Changing Roles with respect to our features model.

analysis reveals that these classes became infrastructuralFeature. The developers confirmed our
finding as they reported that they added generic cross-cutting functionality in the classes flagged
with the activityIndicator >. The changes where general and affected all the features to improve the
handling of property and expression functionality in Moose. They did not relate to one particular
feature.

To obtain more detailed information, we performed a detailed version analysis on the classes flagged
with > to detect when (in which version) the roles of these classes changed.

Our analysis reveals a repeating pattern of change for the classes CFCompositionOperator, CF-
BlockOperator, CFAbsoluteProperties and CFExpression classes.

We discovered that these classes are part of the same hierarchy and that their Feature Affinity change
occurred in the Moose version 3.0.15. We verified the finding with the developers. They confirmed
that the hierarchy became more important in that version as the system was refactored so that this
generic functionality was integrated into all features of the system. This explains our finding that the
classes appear to be becoming more active with respect to the same features over time.

Why are classes becoming less active with respect to features over time? Figure 5.8 (p.81) shows
that only one class of the system has an activity Indicator of <. The developers confirmed that func-
tionality has been removed from this class due to refactoring. We detected two classes CDIFSaver
and AbstractTool that are no longer participating in the featues of our model. The developer ex-
plained that the import/export mechanisms of Moose have been completely refactored and that these
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classes are obsolete. They have been replaced by other classes. Our result proved a useful insight
for the developer as it guided him to which classes could be removed from the code base.

Are the features resilient to change? In the case of Moose, we focused our analysis on the im-
port/export subsystem, as the developers indicated that this was reengineered during the time period
of our analysis. As with our SmallWiki case study, the features we traced exhibit no change in
their user-observable behavior. Our analysis reveals that the underlying implementation was refac-
tored.

Our results of our case studies show that our heuristic approach successfully (1) locates classes where
new functionality has been introduced, (2) detects refactoring, and (3) locates candidate obsolete
code. Our experiments provided useful insights for the maintainers of the system as to which parts of
the system were affected by change, what types of change and how the features were affected.

5.7 Discussion

The large volume of history information and complexity of dynamic information makes it hard
to infer higher level of information about the evolution of a system. We adopt a history-centered
approach to reduce the complexity of the information. We reveal key semantic information about
changes to the system by measuring how relationships between classes and features evolve over
time.

We limit the scope of our investigation to focus on a constant set of features. Our goal is to apply
feature-based evolution analysis to investigate the effects of maintenance on a specific set of features.
Our features perspective provides us with feature knowledge to reason about the design intent of the
class. Using feature-based evolution analysis we determine the stability of features of a system by
monitoring changes in Feature Affinity levels of classes over a series of versions.

Comparison with Diff. We applied the Diff algorithm integrated in the Smalltalk Store to the first
and last versions of SmallWiki that we analyzed to obtain actual physical changes between the
first and last versions of our SmallWiki case study. Diff reveals that 79 physical differences
at the class level. Our technique detects 46 classes that have become more, less or inactive
with respect to a set of features. However a change in a role of a class may not necessarily
mean a physical change in the source code of a class. The change may appear as a result of
change in usage of a class. Thus, we cannot compute precision or recall based on the results
of Diff. Calculating precision in for this experiment is difficult, since by definition all changes
we detect are relevant for our question of how classes change with respect to features over
time.
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History-centered versus version-centered evolution analysis. The advantage of applying a history-
centered approach is that it allows us to analyze a large number of versions of a system and
to manipulate a large volume of data. Version-centered approaches compare two versions
of a system at a time to detect when a change occurs. To obtain a general picture of how
roles of classes change with respect to features, a history-centered approach is more appro-
priate. However, to obtain a more fine-grained view of the evolution of the SmallWiki and
Moose systems, we supplemented our analysis with version-centered analysis to obtain in-
formation about when changes occurred. In this way, our changeFA property quantifies the
change of a class’s role between two versions. Version analysis gives us more precise infor-
mation about when changes occurred. Our approach combines history-centered analysis and
version-centered analysis.

5.7.1 Variations

In this chapter, we described one methodology to analyze how the roles of classes vary with re-
spect to features over time. Our goal was to show how the semantic context of features supports
interpretation of changes and highlights the extent of these changes on features that have been exer-
cised.

There are many variations to our approach that could be supported by Dynamix. We identify a few
of these variations.

Selecting Methods as the unit of granularity. For our experiments we chose the class as a unit of
granularity. We detected classes that appear to become less active with respect to the features
traced and were flagged with an activity indicator of 0. However, most of these results were
false positives, as in most cases the class was not obsolete. In many cases, a method had been
removed from a class. To reduce the number of these false positives, we could perform the
analysis at the level of methods. We believe that due to the large volume of data, an iterative
approach is required, first to reduce the study space and then to perform a more fine-grained
analysis at the level of methods.

Combining Feature Affinity properties with other class properties. Our technique is generic and
adaptable. For the experiments described in this chapter, we analyzed changing roles of
classes. To further enrich our analysis, we could extend our focus to combine and corre-
late FA changes with other properties of our model, for example properties assigned to Class
entites (e.g., NOA, WLOC). This would provide more detailed information about the changes
we detect.

Selecting a constant set of features. For our analysis, we extracted and modeled a constant set of
features. We did not consider varying the model over time. This is because the Feature Affinity

83



CHAPTER 5. EVOLUTION ANALYSIS: A STRUCTURAL PERSPECTIVE

levels of classes is highly dependent of which features we trace. Tracing an additional feature,
and including it in our model within one version could affect the Feature Affinity level of a
class, even though no change was made to its source code.

5.7.2 Limitations

Coverage. As our focus is on detecting changes over time, we sought to achieve high coverage,
so as to obtain a Feature Affinity level or a large proportion of classes. However, as our
experiments do not exercise features that have been added in later versions of the system,
100% coverage is difficult to achieve. The results of our experiments show that full coverage
is not essential to obtain useful insights into why a system has changed.

Scalability of the approach. Method instrumentation affects the performance of features. For some
of the features we traced in our Moose case study, the execution time of the instrumented
code made experimentation difficult. To tackle this problem, we applied selective instru-
mentation for the Moose case study. We selected which packages to instrument. Selective
instrumentation of the packages requires prior knowledge of the application and knowledge
of the relationships between packages and features. The resulting traces and the values of our
measurements are influenced by selective instrumentation. Exploiting knowledge of an appli-
cation to instrument only the parts of the system required for a specific analysis is referred to
by Antoniol et al. as Knowledge Filtering [Antoniol and Guéhéneuc, 2005].

Detecting new functionality. A limitation of the approach is that it cannot detect new functionality
that is added to the system in a generic way, such that no new methods are invoked. Multiple
calls to the same method of a class are compacted to one occurrence in a compact feature
view. This limitation was identified during the validation of Moose case study results. It could
easily be overcome by extending our analysis to correlate changes in metrics of structural
entities such as classes and methods with FA changes.

5.8 Related Work

Our main focus with this work is to define a reverse engineering approach that exploits history infor-
mation of a system’s features over a series of versions to enrich our understanding of the structural
entities (e.g., classes). Other researchers have exploited external information when analyzing the
evolution of a system.

Gall et al. [Gall et al., 1998] aimed to detect logical couplings by identifying which parts of the sys-
tem change together. They used this information to define coupling measurements. The more times
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modules were changed together, the more tightly coupled they are. This approach was based on files
and folders of a system, and did not consider the structural units (e.g., classes) of a system.

Fischer et al. [Fischer and Gall, 2004; Fischer et al., 2003] modeled bug reports in relation to changes
in a system. The purpose is to provide a link between bug reports and parts of a system.

In contrast to these approaches, the focus of our feature-centric analysis is to establish the links
between features and classes. Our goal is to enrich existing static evolution analysis approaches
with feature knowledge. Our Feature Affinity levels add semantic information to classes and use this
semantic information to reason about the evolution of a system in terms of its features.

5.9 Summary and Outlook

In this chapter, our goal was to demonstrate how Dynamix can be extended with History entities of
the Hismo meta-model to enrich a structural-based evolution analysis with the semantic context of
features. We applied our approach to two case studies and showed how our approach successfully
interpreted changes in the code. To validate our approach, we verified our findings against developer
information. For this analysis we chose a class as the structural unit. Our approach is equally
applicable to methods or packages.

The main contributions with this chapter are:

1. we define evolution analysis in the context of Dynamix augmented it with History and Version
entities to represent multiple versions of a system.

2. We describe a novel approach to analyze the evolution of a system based on relationships
between structural entities (i.e., classes) and features.

3. We characterize changes in the code in a way that reflects how the roles of classes change.

4. We combine a history and a version analysis approach.

In the next chapter, we complement the structural perspective of evolution analysis with an evolution
analysis focusing on changes to Feature entities over time.
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Chapter 6

Evolution Analysis: A Feature
Perspective

In contrast to the approach described in the previous chapter, we now present an approach to evo-
lution analysis that focuses on how features change over time. To support our analysis, we augment
our Dynamix meta-model with entities that model feature history and versions explicitly. Our goal
is to exploit domain knowledge of features to understand the intent and extent of changes in a sys-
tem. To demonstrate the usefulness of our approach, we apply it to a case study, where we address a
typical maintenance task of merging parallel development tracks of the same system.
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6.1 Motivation

In the previous chapter, we presented an evolution analysis technique focusing on how structural en-
tities change over time with respect to a set of features. Now we focus on features as the primary units
of analysis, when reasoning about the intent and extent of changes to a system’s features.

Our goal is twofold: (1) we want to demonstrate how Dynamix supports the analysis of features
over multiple versions, and (2) we aim to support understanding the intent and extent of changes in
a system’s features supports a software engineer when tackling maintenance tasks. To motivate our
analysis we address the following questions:

1. Which features are affected by changes in the code? Identifying which features have changed
and how they are affected by changes gives us an insight into change intent. We analyze
changes to determine their extent (i.e., if a change affects one or more features). This knowl-
edge helps the software engineer to decide which tests need to be performed after a change
has been made.

2. Do the changes in features indicate an increase in the complexity or refactoring of features
over time? We define complexity of a feature to be a function of the number of software
artefacts (e.g., classes) participating in its runtime behavior. We investigate if an increase in
the number of classes is indication that new functionality has been added to a system.

3. Do similar patterns of change indicate relationships between the features? We investigate
if similar patterns of increases or decreases in the number of source entities shared between
features is an indication that the functionality or purpose of features are related. By identifying
patterns of change, we aim to detect similarities between between features.

In our case study analysis, we address a typical problem of parallel development tracks in the devel-
opment and maintenance life-cycle of a system. For example, enhancements may be made in one
branch in preparation for the next release of a system, whereas bug fixes may be made in a branch
that corresponds to the release of the system in production. Inevitably, branches need to be merged
to reestablish a coherent code base. Merging branches is a nontrivial task, as changes to one feature
may conflict or break other features. Software engineers are faced with the task of understanding
what motivated changes in the code and how the changes affect the system as a whole.

We apply feature-centric analysis to four versions of the SmallWiki system [Renggli, 2003] and
show how we detect and interpret changes in the context of features. We perform experiments with
two distinct development branches of a system, consisting of three and two versions respectively
and address problems of merging changes from two development branches. We cross check our
results against developer implementation knowledge and the results of applying a Diff algorithm
[Hunt and McIlroy, 1976] on two versions (i.e., the first and last versions) of both development
branches.
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Structure of the chapter. In the next Section (Section 6.2 (p.89)), we outline our approach and
describe how we measure, characterize and visually represent changes. In Section 6.2.1 (p.89), we
describe how we extend our Dynamix meta-model with entities that model the notion of history and
versions of features. Section 6.4 (p.94) details the results of our experimentation with a medium size
application. We discuss and evaluate the results of our analysis in Section 6.5 (p.104). In Section 6.6
(p.105), we review related work in software evolution analysis approaches.

6.2 Analysis Strategy

As with the structural evolutional analysis approach described in the previous chapter, we adopt an
approach combining history-centered and version-centered evolution analysis [Gı̂rba, 2005]. We
first apply history-centered analysis to gain an overall impression of which features are affected
by changes and how. We summarize changes to focus on where (i.e., in which features) changes
occurred. Subsequently, we apply a version-centered analysis to obtain a more detailed view of
actual changes in features and when they occurred.

6.2.1 Modeling the History of Feature Entities

To obtain a Feature Perspective of a system’s evolution, we define Hismo entities [Gı̂rba, 2005] to
express the history and versions of our Dynamix Feature entity.

Figure 6.1 (p.90) shows how we extend our Dynamix meta-model with FeatureVersion and Feature-
History entities. The FeatureVersion entity extends a Feature entity with version and date informa-
tion. A FeatureHistory entity models a set of FeatureVersion entities. As FeatureHistory is explicitly
modeled, we can assign properties to it to summarize how a feature changed over time.

6.2.2 History Properties for Features

In Chapter 3 (p.25) we defined properties for the Feature entities of Dynamix. The OCL definitions
are provided in Figure 3.4 (p.34)) for the properties nClasses (nC) (i.e., the number participating
classes in a feature), nSingleFeatureClasses (nSFC) (i.e., the number of participating singleFeature
classes), nLowGroupFeatureClasses (nLGFC) (i.e., the number of participating lowGroupFeature
classes), nHighGroupFeatureClasses (nHGFC) (i.e., the number of participating highGroupFea-
ture classes) and nInfrastructuralFeatureClasses (nIFC) (i.e., the number of participating infras-
tructuralFeature classes).
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Figure 6.1: Dynamix is extended with Hismo entities to model the notion of Feature history.
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To measure changes in features over time, we apply two history measurements defined by the Hismo
meta-model [Gı̂rba, 2005] to the properties of the Feature entity.

Number of Changes of a Property (P ) - This measurement counts in how many versions a property
P has changed. We apply this measurement to the nClasses (nC) property (numNC) to isolate
which features have changed with respect to the nC property. The definition of numNC is of
the same format as numFA defined in Equation 5.2 (p.73).

Additions of a Property (P ) - This measurement sums increases of a property P . We apply this
measurement to detect an increase in a feature property (e.g., addNC sums the increases to
the nClasses (nC) property) over time. We interpret increases in the number of classes par-
ticipating in features to mean one of the following: (1) increased complexity: An increase in
the number of classes participating in a feature may indicate the appearance of additional non-
observable functionality in a feature, (2) refactorings or design improvements: These activities
often lead to an increase in the number of classes to implement a functionality. According to
Lehman’s second law of evolution, the increase in size of the code is a typical characteristic
of an evolving system and effort is required to reduce complexity to ensure the system is still
maintainable [Lehman et al., 1997].

(i > 1)

addNCi(F, nC) =
{

nCi(F )− nCi−1(F ), nCi(F )− nCi−1(F ) > 0
0, nCi(F )− nCi−1(F ) ≤ 0

(n > 2) A1..n(F, nC) =
n∑

i=2

addNCi(F, nC) (6.1)

6.3 Visualizing Change

In Chapter 3 (p.25), we introduced a simple visualization of a compact feature view as a grouping
of participating software entities (e.g., classes) for one version of a system. To represent changes
in features over time, we describe two variations of our compact feature view visualization: (1) a
feature additions view shows feature views showing only source entities that have been added to
a feature, and (3) a features intersection view showing which source entities have been added in
both development tracks of a system (i.e., the intersection of additions). We represent and quantify
changes between versions of features using a feature evolution chart, consisting of four line graphs
plotting how four distinct properties of a feature view change from one version to the next.

The goal of our visualizations is to support the software engineer when reasoning about a system’s
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evolution from a feature perspective. A crucial aspect is the interactivity of our visualizations: they
allow the software engineer to query the visualization to discover names of participating classes.
We built them using Mondrian [Meyer et al., 2006], a framework that provides building blocks to
express visualizations of the underlying Dynamix entities.

6.3.1 Visualizing When Features Change

Figure 6.2 (p.93) shows how the editPage feature of our SmallWiki case study changes over a series of
three versions. For each version, we show its corresponding feature view. The views group classes
by Feature Affinity level and classes are shown in different colors. The chart shown above the feature
views is a group of line graphs, each representing the evolution of a different feature property. A
horizontal delimiter of leach line graph indicates the maximum value of a feature property, taking
all the features of our experiment into consideration (e.g., max nLGF = 36 classes). The values are
indicated on the sides of the chart. The actual values of the properties (i.e., the number of classes
of each Feature Affinity level) for each version are represented as points on the line graph. We use
evolution charts to visually represent when (i.e., in which version) a change in a property occurred.
With the editPage feature, we detect that the value of nLGF (number of lowGroupFeature classes
in a feature view) increased from 10 to 36 classes in the second version.

6.3.2 Visualizing How Features Change

Our feature evolution charts provide the software engineer with a quantitative view of changes to
feature properties nSFC, nLGF, nHGF and nIF. However, they do not provide information about
which classes have been added or removed from a feature.

To address this problem, we introduce the feature additions view visualization. Figure 6.3 (p.94) (b)
shows only the additional classes participating in the feature.

Figure 6.3 (p.94) (b) shows actual classes that have been added to the editPage feature. The Feature
Affinity level of the classes is computed with respect to the last version. However, to conclusively
determine whether a class has been added to a feature view, we need to apply numNC measurement
to see if the number of classes has increased. Increases in the individual class groupings may be
caused by changes in Feature Affinity levels of individual classes.
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Figure 6.3: Feature Additions View of the editPage feature (Branch development track).

6.4 Validation

For our experiments we once again chose the SmallWiki application [Ducasse et al., 2005b] as we
have access to multiple versions of the system.

Figure 6.4 (p.95) shows the versions of SmallWiki we selected for our feature evolution analysis of
two distinct development tracks originating from the same version. These are representative versions
that reflect different phases of development in the lifecycle of SmallWiki.

Version 9.48 (22.03.2004). The original SmallWiki was developed predominantly by two people.
The results of their work are represented by this version, a major release of the system.

Version 9.52 (17.09.2004). As SmallWiki is an open source project, modifications and extensions
are implemented by open source developers. 9.48 and 9.52 represent the main open source
development track.

Versions 19.15.6 (30.08.2004) and 19.15.20 (08.09.2004). We selected this series of versions as
it represents the work of a developer, who joined the development team at an advanced stage
of the project. He undertook the task to refactor and extend SmallWiki with new features and
new generic functionality which crosscuts the features of the application. These two versions
represent a development branch of the system that is based on version 9.48. Changes to this
version were not included in the 9.52 version of the system.

We analyze two distinct development tracks. In our first experiment, we analyze the evolution of the
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Figure 6.4: The order of the analyzed versions of Smallwiki.

branch development of the system in terms of how the modifications affected the existing features.
Then in our second experiment, we analyze the evolution of the same features from version 9.48
to 9.52 (the main open source development track). We want to see what changed in the branch
(versions 19.15.6 and 19.15.20 ) and identify changes that could cause conflicts when merging the
branch with the main development track.

As with previous case studies, we identify features of SmallWiki by making the assumption that the
elements of the user interface, namely the links, buttons and entry forms of the SmallWiki pages
exercise distinct features. We selected 14 distinct features (14 typical user interactions with the
SmallWiki application such as login, editing a page or searching a web site). In addition, we also
selected one non interactive feature (start SmallWiki) that initializes the application at startup. We
exercised the features on an instrumented system to capture 15 distinct execution traces.

Our dynamic analysis tool TraceScraper [Greevy and Ducasse, 2005b] allows us to define scripts
to automate the execution and tracing of features. Thus, we ensure that the features are executed in
the same way with the same inputs for each version of the system we analyze. We achieved 84 %
coverage of the classes.

The goal of our analysis is to reveal the extent and intent of changes to a system over time. Our
interpretation of the history measurements depends heavily on a key aspect of our approach: we
always analyze the same set of features, in the same way for each version. Furthermore, from a
user perspective, a system appears to behave in the same way in each version. We describe changes
we detect in terms of the feature property that revealed that change. Our approach consists of the
following steps:

1. We define a model for each version of our evolution analysis. We instrument each version and
exercise the same set of features. For each feature we execute, we extract traces of runtime
behavior and obtain an instance of our Dynamix model. Our feature views are generated for
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each feature trace and we compute our Feature Affinity measurement to partition classes of
feature views into four distinct groups.

2. We apply history measurements to (1) feature view properties (nSFC, nLGF , nHGF and
nIF ), and (2) a NC (number of classes referenced in a feature view) property.

3. To obtain a more fine-grained view of the changes, we plot the values of the feature view
properties over the root version of our analysis (9.48) and the two versions of the SmallWiki
branch development track (19.15.6 and 19.15.20) as simple line graphs, as shown in Figure 6.5
(p.97). This visualization reveals when (i.e., in which version) the changes occurred. This
visualization supports a version-centered approach to analyzing the evolution of feature views.
We quantify the changes in properties of feature views.

4. We drive the analysis with the questions we asked at the beginning of this chapter (see Sec-
tion 6.1 (p.88))

5. We summarize our results and check them with the developers. Based on the developer knowl-
edge, we document the context of the changes revealed by our feature analysis.

6.4.1 Experiment 1 - Analyzing the Evolution of the Branch

The branch development code base of SmallWiki consists of the evolution of the versions on the
main axis as shown in Figure 6.4 (p.95). We apply history measurements described in Section 6.2.2
(p.89) to FeatureHistory entities to detect what has changed in the system in the context of the features
of our model.

Which features are affected by changes in the code? As a first step, we isolate features that have
changed. Then we group changes by applying the number of changes history measurement to each
of the four Feature properties (nSFC, nLGF , nHGF and nIF ).

Single Feature Changes. The extent of this type of change is limited to one feature. We compute
numNSFC to detect for which features, and how often this property changed. Our result reveals
that none of the features of our analysis exhibit singleFeature changes. Figure 6.5 (p.97) reflect
this result as the plot for the singleFeature classes ((nSFC) column) remains unchanged for
each version of a Feature.

Low Group Feature Changes. By definition, lowGroupFeature change affects a subset of fea-
tures ( < 50% of the features of our model). Most of the features are affected by this type
of change. In Figure 6.5 (p.97) we see that the only four features not affected by this type of
change, namely properties, stylesheets, resolveURL and comps do not contain lowGroupFea-
ture classes.
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Figure 6.5: Evolution charts of 15 SmallWiki features (branch development) revealing when changes occurred
in feature properties.
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Figure 6.6: Feature Addtions Views (i.e., showing only classes which represent additions to a feature view of
the Branch).

High Group and Infrastructural Feature Changes. Once again in Figure 6.5 (p.97) we see that all of
the features of our model have been affected by these types of changes. Both highGroupFea-
ture change and infrastructuralFeature change imply changes to generic functionality of an
application.

Another important result of our analysis is that we detected when all of the changes were made,
namely in the second version of our analysis (i.e., in version 19.15.6 of the branch development
track we analyzed (see Figure 6.5 (p.97)). Our technique does not detect any changes in the Features
between the versions 19.15.6 and 19.15.20.

Are features becoming more complex over time? We apply the numNC history measurement to
the features and plot the results from both development tracks in Figure 6.7 (p.99). The light colored
bars represent additions to the features in the branch, revealing that all features show an increase in
NC. Our graph shows that most of the additions occur in 4 features contents, addPage, addFolder
and editPage.

To distinguish between types of additions and determine the extent of their influence on the features,
we then compute the Feature Affinity level for added classes with respect to the last version. We
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Figure 6.7: Additions History measurement applied to Number of Classes (CF of a Feature for all features of
the branch (dark grey) and main (light grey) development tracks of SmallWiki.

discover as shown in Figure ?? (p.??) that most of the changes are in the nLGF (number of low-
GroupFeature classes in a feature view). Our results reveal that features that are most affected by
change are contents, addPage, addFolder and editPage.

Detailed analysis of the feature additions visualization reveals that the changes to these features are
as a result of the same added classes participating in the later version of the features. Furthermore,
the added classes are named in a similar way *Property (e.g., AccessEditProperty, AccessRe-
moveProperty, AccessViewProperty, BrokenProperty).

The result is particularly interesting, because although we do not trace any new features, our ap-
proach reveals the appearance of new classes indicating new functionality in the system. The devel-
oper responsible for this branch confirms that he added generic functionality to manage properties of
a Wiki page. This functionality is common to these three features and is exercised by them without
affecting their observable behavior.

Do similar patterns of change indicate relationships between the features? An increase in the
number of software entities shared between features suggests that these features may be related. For
example, the implementation of these features may be realized using generic functionality. We see
from the feature views, that a large number of classes participating in feature views are characterized
as highGroupFeature classes or infrastructuralFeature classes. This is because SmallWiki is a web
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application and all user-initialed features deal with the HTTP request/response communication and
page rendering.

Our Feature Evolution Charts (see Figure 6.5 (p.97)) reveal interesting patterns of evolution. We
ordered the evolution charts to emphasize patterns of change in features.

6.4.2 Summary of the Results of Experiment 1

Although we chose features that appear to behave in the same way for each version, when we apply
our history measurements to the classes, we reveal that there is an increase in the number of partic-
ipating classes in each feature of our model. We obtain a contextual perspective of the additional
classes appearing in the feature views by applying Additions history measurements to each of the
four feature properties nSFC, nLGFC, nHGFC and nIFC. The results of our experimentation are
shown in Figure 6.7 (p.99) and Figure 6.5 (p.97). Our analysis reveals two main results:

1. There are similar patterns of change (addition of lowGroupFeature classes) detected in the
features addPage (31 classes), addFolder (31 classes), Contents (28 classes) and editPage (27
classes).

2. There is a small increase in highGroupFeature classes and infrastructuralFeature classes (3
classes per feature on average), thus indicating addition of functionality affecting most, or all
the features under analysis.

6.4.3 Developer Validation (Experiment 1)

To verify our hypothesis that our feature views support understanding of the extent and intent of
change, we asked the developers to state the purpose of the changes with respect to the results of our
analysis. The developers confirmed our first main result ( (1) Section 6.4.2 (p.100)) by stating that a
large proportion of the changes were made to reengineer the manipulation and internal representation
of elements of the application (e.g., form fields, labels, pages, folders). This reengineering effort
accounts for the appearance of new classes, not specific to one feature, but to this group of features
concerned with page and folder manipulation.

The reengineering effort accounts for the appearance of new classes in the feature views over the
versions of the branch, which our feature analysis characterized as Low group additions. Using
the interactive capability of our feature view visualizations, we query to reveal the names of the
additional classes. The new classes, for example AccessEditProperty, AccessRemoveProperty,
AccessViewProperty, BrokenProperty participated in the features of the last two versions of the
branch. Once again, the developers confirm that these classes implement a generic mechanism to
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Figure 6.8: Feature Additions Views of Main Development track shows only added classes.

define and add properties to SmallWiki pages. The classes participate in all features that manipulate
pages and folders. Furthermore, the developers confirmed that adding these classes does not affect
their external observable behavior of the features.

The results of applying the Diff algorithm also confirms the addition of 26 new classes in a new
PropertyDescription package. The Diff algorithm also reveals 19 classes exhibiting physical
changes to the source code. These changes however do not affect the roles of the classes with respect
to the features traced.

The High group and Infrastructural Changes. The small increase in this grouping was also ex-
plained by the developers. This reveals an extension of user and role authentication functionality.
The classes BasicRole and AdminRole are responsible for limiting access to administrator func-
tionality. The developers confirm the integration of role-based authentication for all features was
one of the defined goals of this development track.

6.4.4 Experiment 2: Analyzing the Evolution of the Main Development Track

The main development code base of SmallWiki consists of the evolution of the two versions on the
main axis as shown in Figure 6.4 (p.95). The focus of our second experiment was to apply our analysis
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technique to identify changes in the main development track that conflict with, or duplicate effort of
changes in the branch. We extract feature views for the main development track to provide us with
the context of changes.

The most striking result we obtained by comparing the results of applying the numNC history mea-
surement to both development tracks ( Figure 6.7 (p.99)). There are additional classes participating
in only five features of the main development track (at most seven additional classes), whereas in
the branch we see that all features have additional participating classes. Computing the number
of changes history measurement for the nSFC, nLGFC, nHGFC and nIFC yields the following re-
sults:

— Only the startSW (SmallWiki initialization) exhibits singleFeature change.

— The login and changes features exhibit lowGroupFeature change.

— All features exhibit highGroupFeature and infrastructuralFeature change.

We apply the Additions history measurement to the NC property and compute Feature Affinity for
the classes with respect to version 9.52. Figure 6.8 (p.101) shows the resulting Feature addition views.
Querying the view (Figure 6.8 (p.101)) reveals that one additional class, ResourceStore, participates
in the startSW feature in version 9.52.

We also discover that the class BasicRole has a Feature Affinity level of infrastructuralFeature.
As we also detected exactly the same change in the branch development track, this suggests dupli-
cated effort in both development tracks. The change is due to the incorporation of role checking
functionality in all features of the system.

6.4.5 Supporting the Merging Changes

One of the goals of our experiments is to show how our technique supports developers when merging
changes from two distinct development tracks. Our approach isolates and characterizes the types
of changes, reducing the volume of information to be analyzed. For example, we assume that a
singleFeature change is localized in one feature. We also need to distinguish between classes that
have been added to a feature view and those whose functional role has changed with respect to the
feature model.

Another important factor when merging two distinct development branches is to identify which
source artefacts have changed in both development tracks, and check if these changes affect the
same features. These changes may be more difficult to merge as the two distinct development tracks
may reveal conflicting changes.

Furthermore, classes which have changed in both development tracks may indicate duplication of
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Figure 6.9: Feature Intersection View showing only the conflicting additions (i.e., classes that have been added
to both main and branch development tracks).

effort. Our analysis of SmallWiki reveals an example of this. The BasicRole class appears to have
changed in the same way in both development tracks (i.e., it changed from being a singleFeature
class to an infrastructuralFeature class. This is due to the fact that this functionality was reused by
all features in the later versions of the system. The singleFeature addition changes that we detected
in our second experiment affected only one feature. The changes we detected in the startSW feature
of the branch version represent new functionality. These changes could therefore be merged back in
the original development track without affecting other features.

6.4.6 Developer validation (Experiment 2 - Main development track)

Two major findings of our feature analysis of the main development track are:

1. We discover the addition of a class named Resource as an addition to the startSW feature.
As its Feature Affinity level is singleFeature, this suggests that this class provides specific
functionality to the system only at initialization.

2. We detect that the Feature Affinity level of the classes BasicRole and AdminRole changes
in the main development branch. In the initial version of our analysis, these classes have
a Feature Affinity level of singleFeature, whereas in the last version of our analysis, their
Feature Affinity level is infrastructuralFeature.

3. We detect additions of infrastructuralFeature classes, namely Page, Content, Text, Docu-
ment in the contents feature.
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The developers of the main development track confirm our first finding. They reveal that the class
Resource provides SmallWiki with a cache implementation that has been added in the version 9.52.
It is instantiated and populated by SmallWiki at startup. Our analysis with Diff also reveals that this
class has been added in version 9.52.

Our second finding, namely the change of Feature Affinity of the BasicRole class, is confirmed
by the developers of both main and branch developments. The integration of role-based authentica-
tion for all features was a goal of both development tracks. The developers undertook to extend the
authentication mechanism of SmallWiki. The BasicRole class and the AdminRole class are re-
sponsible for role-based authentication. Typically access control functionality crosscuts all features,
as it is checked before each feature execution. The developers confirm that in version 9.48 (the first
version of our analysis) that this class was already present but was only being checked in the login
feature, explaining why its Feature Affinity value was singleFeature. Our analysis of the changes in
the branch development also revealed that the BasicRole class has changed Feature Affinity level.
However, these classes do not exhibit physical changes in source code and are therefore not detected
by the Diff algorithm. The changes are due to change of usage by the features.

The developers explain our third finding. New functionality has been added that results in the con-
tent feature registering all possible page contents. Once again the classes did not exhibit physical
changes. Thus the changes are due to increased usage of the classes by the feature.

We use the Feature Intersection View as shown in Figure 6.9 (p.103) to isolate and analyze such
conflicting changes.

6.5 Discussion

On the changing roles of classes. From our experimentation with the SmallWiki case study, we
see that some of the changes we detect in features are due to changes in the Feature Affinity
levels of classes. When our technique detects a change in a participating class of a feature,
this may not necessarily imply that the feature where the change was detected is directly
affected by this change. For example, in the case of the components feature, we detected that
singleFeature classes were removed in the third version of our analysis. However, when we
applied the Additions history measurement to the lowGroupFeature classes (numNLGFC), we
discovered that the number of lowGroupFeature classes had increased. We discovered that
the classes had not really been removed from the feature. Their roles (i.e., Feature Affinity)
with respect to the features of our model changed in the later version. We interpret this change
to mean that the functionality provided by these classes is being used by other features in the
later version. We refer to these changes as false changes in a feature.
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On the increase and decrease in the number of participating classes. As our features appear to
behave the same way from a user’s perspective in each of the versions we analyzed, changes
imply the addition or removal of non observable behavior to the features. Complexity of the
features adversely affects the maintainability and comprehensibility of the system [Lehman et
al., 1997]. On the other hand, an increase or decrease in feature complexity may indicate that
the developers have refactored the code to improve its design [Fowler et al., 1999].

On detecting new features. Our case study is a typical open source system that is constantly being
maintained and extended with new functionality and features. Although we do not trace any
new features in our experiments, our results revealed the appearance of classes in the sys-
tem that indicate the addition of new functionalities, perhaps indicating the addition of new
features.

On combining evolution analysis techniques. The features perspective considers changes in features
over time. However, as we do not achieve full coverage, our analysis is incomplete. Thus,
we could overcome a shortcoming of this approach by applying it in conjunction with the
structural evolution perspective described in the previous chapter. With a combination of both
perspectives, we could take advantage of both the features and the feature enriched structural
perspective to understand the changes that we detect.

6.6 Related Work

Hsi et al. [Hsi and Potts, 2000] described an approach to studying the evolution of features by de-
riving three views of an application, a morphological, a functional and an object view, based on the
domain knowledge of an application. Their models were derived from the user interface of an appli-
cation. They compare models of an application while they evolve. The purpose of their approach is
to depict the feature architecture of an application independently of the underlying software. They
highlight the importance of studying the evolution of a feature perspective of a system.

In another context, Ebraert et al. highlight the importance of reasoning about features when con-
sidering the problem of dynamic updates to a live system [Ebraert et al., 2006]. They propose to
adopt a feature-centric approach to address the problem of runtime updates, as a user of a system
could be warned at a feature level, which features would be affected by performing the update. They
identified our work as a means of modeling and manipulating features.

Many approaches to evolution analysis are based on comparing two versions of a system to detect
changes. The version-centered models allow for the comparison between two versions and they
provide insights into when a particular event happened in the evolution. Licata et al. assumed
that unit tests of a system are partitioned into suites that are roughly aligned with the features of
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a system [Licata et al., 2003]. The implementation of a feature ”cross-cuts” the code base. They
emphasized the value to new developers of a system of describing program changes in terms of
features. Typically new developers run the program to form a mental model of the user-observable
features of a system. Test suites describe a vocabulary that roughly corresponds to the user’s, and
thus the new developer’s ontology of the program. Their approach is version-based as they focussed
on the identification of differences between two versions of a program.

Xing and Stroulia detected server types of changes between two versions [Xing and Stroulia, 2004].
They represented each version of the system in an XMI format and then applied UML Diff to
detect fine-grained changes like: addition/removal/moving and renaming of classes, methods and
fields.

In contrast to the above approaches, our approach adopts a history-centered approach. Thus, we
can tackle a large volume of data of multiple versions of a system as well as the large volume of
dynamic data. The main advantage of a history-centered approach is that we reduce the problem
space to focus only on what has changed in a system.

Furthermore, we define a feature perspective that analyzes a system as a set of features relating to
concepts of a system’s problem domain. In this way, we analyze changes in the context of domain
knowledge. We use this context to interpret the motivation behind the changes and to determine
the extent of the changes on the system and its features. Our Dynamix meta-model expresses the
notion of FeatureHistory explicitly. All our measurements are defined in the context of Dynamix.
We also apply version analysis to obtain a more fine-grained analysis of the changes. Our Mon-
drian visualizations and our feature evolution charts [Meyer et al., 2006] support more fine-grained
version-centered analysis of changes, and help the software engineer to identify when the changes
occurred.

6.7 Summary

The main goal of this chapter was to demonstrate how Dynamix is extended with FeatureHistory en-
tities so we can analyze the evolution of a system from a feature perspective. To illustrate the exten-
sions to Dynamix and the definition of feature specific history measurements, we described how we
applied our feature perspective to reason about the evolution of two parallel development branches
of SmallWiki. We exploit the feature perspective to define the intent and extent of the changes.
In particular, we highlighted changes that may cause conflict when merging the two branches. We
focused our experiments on the following questions:

1. Which features are affected by changes in the code? Our feature view visualizations support
fine-grained analysis to detect which classes participate in which feature and to which extent
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they are participating in the features of the model. Our feature additions view helps to narrow
the scope of analysis to isolate only the classes that represent a change in a feature. The
feature evolution charts provide us with a detailed perspective of which feature properties
change from one version to the next.

2. Are features becoming more complex over time? Our analysis of the SmallWiki application
reveals that for both development tracks, the number of classes participating in features in-
creases over time. This evolution is typical for a system undergoing iterative development,
which is the case with SmallWiki. The two parallel development tracks we analyzed repre-
sent phases where new functionality was added or existing functionality was incorporated into
more of the features.

3. Do similar patterns of changes in features indicate relationships between features? Due to the
generic nature of SmallWiki, our analysis reveals that most of the classes participate in most
of the features. As a result, more features are affected by change to these classes. Our fea-
ture evolution charts and feature view visualizations proved to be useful for detecting similar
patterns of changes in the features that represent tightly related features.

The main contributions of this chapter are:

— We described a novel approach to analyze the evolution of a system based on how features
change over time. Our evolution analysis of features is defined in the context of our Dynamix
meta-model, augmented with Hismo FeatureHistory and FeatureVersion entities.

— We defined feature specific history measurements to summarize changes to FeatureHistory prop-
erties over a series of versions.

— We introduced two variations of the feature view visualizations to support reasoning about the
evolution of features: (1) the feature additions view shows feature views that show only the
additional source entities that have been added to a feature (2) the features intersection view
shows the source artefacts that have been added in both development tracks of the system (i.e.,
the intersection of additions). To represent a version-centered perspective, we used a feature
evolution chart showing how four distinct properties of a feature change over a series of versions.
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Chapter 7

Visually Reverse Engineering
Features

Most feature identification approaches focus on mapping features to source artefacts such as classes
and methods referenced in a call graph, but do not focus on object-oriented behavioral entities,
namely object instances and message sends between instances. We show how our Dynamix meta-
model represents this level of detail and we introduce a feature-centric analysis perspective focusing
on behavioral entities. To tackle the large volume of dynamic data, we base our approach on a novel
3D visualization of feature traces. Our goal is to understand feature behavior by identifying areas
of high activity during feature execution by analyzing visual representations of the traces. We show
how our visualizations reveal information about which parts of the system participate in a feature
and to which extent.



CHAPTER 7. VISUALLY REVERSE ENGINEERING FEATURES

7.1 Introduction

In previous chapters we addressed specific analysis goals to motivate feature-centric analysis. We
compacted the large volume of dynamic information to simple sets of classes or methods represent-
ing features. However, our compact feature views focus only on static entities of the feature trace,
namely classes and methods. If we are to take a broader view of feature behavior of object-oriented
systems, we need to consider object instances rather than classes, and message sends rather than
methods.

Zaidman et al. describe a dynamic analysis technique showing that a well-designed object-oriented
program typically consist of a few key classes working tightly together to provide the bulk of func-
tionality [Zaidman et al., 2005]. The approach described in this chapter is based on that hypothesis.
Our goal is to detect the key classes associated with a feature by visually identifying areas of high
activity in feature traces. We consider two types of high activity: (1) classes that create a high num-
ber of instances, and (2) instances of classes that appear as centers of communication (i.e., a high
number of ingoing and outgoing messages). We use the term feature hot spot to refer to these areas
of high activity during feature execution.

We motivate our visual analysis of feature behavior by considering the following reverse engineering
questions:

1. Which parts of the code (classes and objects) are active during the execution of a feature? By
identifying which classes are instantiated more than others, and how they collaborate during
feature execution, we aim to identify which classes represent key classes of a feature.

2. Which patterns of activity are common to features and which activities are specific to one
feature? Similar patterns of activity of feature behavior, such as similar sequences of com-
munications between objects, may give insights into the architectural structure of a system.
Recurring hot spots of activity in feature behavior reveal parts of a system providing infras-
tructural, rather than feature-specific functionality. This may give a software engineer insights
into the architectural structure of a system.

To address these issues, we devised a novel 3D visualization based on polymetric views [Lanza and
Ducasse, 2003] extended to 3D. We render both a structural perspective of a system and dynamic
perspective of feature behavior in one visualization. We apply our approach to the SmallWiki appli-
cation and show the effectiveness of our visual analysis to understand and identify key parts of code
contributing to run-time behavior of features.

Structure of the chapter. In the next section, we define feature hot spot terminology. In Section 7.4
(p.113), we describe a novel 3D visualization that depicts feature behavior and how we identify feature
hot spots. We validate our visual analysis approach by applying it to a case study in Section 7.5
(p.117). Section 7.6 (p.121) discusses our findings and outlines limitations and constraints of our
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Figure 7.1: The Focus of our Visual Feature Hot Spot Analysis in Dynamix

visualizations. We examine related work in the area of visualization of execution behavior and
compare this work with our visualization technique.

7.2 Feature Hot Spots

The term hot spot is used in many different contexts. In a geological context for example, it is used
to refer to areas of volcanic activity. In the context of dynamic analysis, we use the term feature hot
spot to refer to areas of high activity in a system during the execution of a feature. We consider two
types of feature hot spots:

1. an instance of a class, i.e., an object that acts as a central point of communication of a feature’s
runtime behavior

2. a class, for which a large number of instances have been created

We visually analyze features to detect feature hot spots. We associate feature hot spots with individ-
ual features and identify similar patterns of behavior between features in terms of recurrent feature
hot spots. We argue that feature hot spot analysis supports system comprehension.
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Figure 7.2: How Dynamix models a Feature’s Call Graph and Instance Relationships

7.3 How Dynamix supports Feature Hot Spot Analysis

In Chapter 3 we introduced the behavioral entities of our Dynamix meta-model, namely Feature,
Activation and Instance. In Figure 7.1 (p.111) we show Dynamix entities and attributes relevant for
the feature hot spot analysis approach. We provide the OCL definitions of the two types of feature
hot spots defined in Section 7.2 (p.111) in the context of our Dynamix meta-model in Figure 7.3
(p.113).

FeatureClassAssociation. This entity explicitly models the relationship between a Feature and a
Class. We define a featurehotspot attribute for this entity which determines if an instance of
this class represents a hot spot for the associated feature.

Instance. We define the fanIn and fanOut attributes of an instance and define the featureHotspot
attribute as the sum of the number of in-going and out-going activations. Figure 7.2 (p.112)

shows how Dynamix models the call graph and relations between activations and sender and
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context Instance
def: fanIn : Integer = self.activations

->select(a | a.receiver = self )->size()

context Instance
def: fanOut : Integer = self.activations

->select(a | a.senderActivation.receiver = self )->size()

context Instance
def: featureHotSpot (aHotspotValue: Integer) : Boolean =
self.fanIn + self.fanOut > aHotspotValue

endif

context FeatureClassAssociation
def: featureHotSpot ( aHotspotValue: Integer) : Boolean =
self.feature.activations->select(a | a.receiver.instanceOf = self.class )

->size() > aHotspotValue
endif

Figure 7.3: OCL specification of Feature Hot Spot for an Instance and for a Class of a Feature.

receiver instances.

7.4 3D Visualization of Dynamic Behavior

To provide a qualitative perspective on the large amount of information produced by traces, we
implemented TraceCrawler [Wysseier, 2005], an extension to the CodeCrawler tool [Lanza, 2003].
TraceCrawler provides an interactive 3D visualization, combining both structural information for
orientation and dynamic information to support understanding of feature behavior.

Our visualizations represent system behavior of a feature in the context of a static perspective of the
system. The static structure of our system is represented using a System Complexity View [Lanza
and Ducasse, 2003]. It shows classes (nodes) and inheritance relationships (edges) organized as a
tree. In Figure 7.4 (p.114) we see a schematic display of our 3D visualization. We display the System
Complexity View on a plane “floating” above the ground. The white boxes are the classes connected
by inheritance edges.

When the trace is interpreted, each instantiation of a class generates a box, like a “floor” of a building,
above the ground level of its corresponding class representation. The more boxes are above a class,
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Root Class

Subclass 1

Subclass 2
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Root Class

Inheritance 
Relationships
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message between
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Figure 7.4: The Elements of our 3D Visualization of Feature Behavior. The ground floor represents a static
class hierarchy perspective of a system. The dynamic behavior is represented by nodes above the ground floor
(the instances) and the red edges are the message sends between instances.
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Figure 7.5: An Overview of the SmallWiki case study after the execution of the Login Feature.

the more instances of this class have been created. Each time an object sends a message to another
object, a message edge is draw between the two object boxes.

We exploit the visual language of polymetric views [Lanza and Ducasse, 2003]. We map metrics to
the width (NOA = number of attributes) and to the length (NOM = number of methods) of the nodes.
Thus, the class hierarchy not only conveys information about the inheritance relationships between
the classes, it also reveals information about the sizes of the classes. For example, in Figure 7.5
(p.115), we see that the class HtmlWriteStream is represented with a longer box. This means it
has a larger number of methods than other classes in the visualization.

We map the Feature Affinity measurement to the color of nodes of our visualization. This enriches
our visualization with information about the functional roles of classes with respect to features.
We use grayscale to indicate the Feature Affinity level of a class. The darker the node, the more
features it participates in. For example, black nodes represent infrastructural classes (i.e., classes
that participate in all the features of our analysis) and light grey nodes represent single-feature classes
(i.e., classes that participate in only one feature of our analysis). In Figure 7.5 (p.115) we show an
instance collaboration view of a Login feature from our SmallWiki case study. Feature hot spots are
easily identifiable in this view as nodes of the visualization with a large number of edges or large
number of instances.

Crucial to the manipulation of large amounts of data are interactive and navigable capabilities of our
visualizations. The software engineer can examine in detail, objects and messages and change his
point of view in a 3D space with zooming, panning and rotating capabilities. This provides a closer
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Figure 7.6: Zooming into the class hierarchy active during the login scenario.
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look at specific parts of the visualization. At all times, a software engineer has access to the source
code of classes represented in the visualization.

The Activations of our Dynamix model maintain information about unique object identifiers of the
sender and receiver of a message.

7.5 Validation

In this section, we describe how we apply feature hot spot analysis to features of the SmallWiki
system. We verify our findings by checking our results with the developers.

The goals of our analysis are twofold: (1) to identify which classes are most active during the
execution of a feature, and (2) to identify patterns of behavior common to the features we analyze.
Our visual analysis is a postmortem analysis of feature behavior. We visually analyze an Instance
Collaboration View [Wysseier, 2005] of each feature to detect hot spots.

For our experiment, we chose 5 features of SmallWiki, representing typical user interactions, namely
Login, Edit Page, Edit Template, Show Page History and Search. In Figure 7.5 (p.115) we show
an Instance Collaboration View of the Login Feature Trace over the entire class hierarchy of
SmallWiki. We see which parts of the code actively participate in the behavior of this feature. In
particular, we see classes where a number of instances were created and we identify instances with
a large number of edges. This implies that they send and receive a large number of messages (i.e.,
high fan-in and fan-out). These classes act as centers of communication during the runtime behavior
of a feature.

The Instance Collaboration Views of all the SmallWiki features we analyzed, appear very similar.
The developers of SmallWiki confirm that this is due to the generic design of the application. A
further reason for this is due to the high proportion of common functionality that is exercised by all
the features (e.g., page rendering and server interaction). We look at each feature in more detail. For
each feature hot spot we detect in a feature, we validate our findings with developer knowledge to
determine if the class associated with that feature hot spot we detect corresponds to a key class for
that feature.

Login Feature Trace (5576 events). In Figure 7.5 (p.115), we see a complete visual representation of
its dynamic behavior after the Login feature was exercised. In Figure 7.6 (p.116) we show the same
view after we have zoomed in on the right hand side of the visualization. From this perspective,
we see some of the feature hot spots in more detail. In general, we discover that the developers
of SmallWiki adhered to naming conventions that reflect the functionality and features that they
implement.
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Figure 7.7: A Detail of the Visualization of the ”Edit Page” feature.

Our visualization of the Login feature reveals four feature hot spots, which we have marked on the
visualization:

Login activity feature hot spot. Our visualization reveals that instances of the Login class are
created when this feature is exercised. One instance of Login communicates heavily with
instances of classes of the Template hierarchy (subclasses of TemplateBody and Template-
Head). We check our findings with the developers. They inform us that they adhered to good
naming conventions during the development of SmallWiki, Thus it is not surprising that the
Login class is the key class responsible for performing the functionality of the Login feature.
They also confirm the participation of classes of the Template Hierarchy. In SmallWiki, tem-
plates are used for the composition of pages. That is why this instance renders the login entry
form and is executed to perform the login functionality.

Response feature hot spot. The developers confirm that the Response class plays a key role, as it
is responsible for handling HTTP responses sent to the web browser. Our visualization reveals
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that during the execution of the login feature, four HTTP responses are sent to the browser.
We detect this as the visualization consists of four instances of the Response class.

HTMLWriteStream feature hot spot. The functionality to generate HTML code is provided by
the HTMLWriteStream class. Our visualizations reveal that the HTMLWriteStream class
participates in all the analyzed features. The nodes are colored black indicating that our fea-
ture analysis characterizes this class as infrastructural. This reveals that this functionality is
generic or common to all features under analysis. This feature hot spot thus represents a re-
curring behavior or pattern of activity in the features of SmallWiki. The developers confirm
our finding.

PageView feature hot spot. Our visualization reveals that the PageView class is part of the Action
class hierarchy. The developers confirm that this class is responsible for rendering pages. The
instance of PageView class behaves as a central point of communication. There is a high
number of edges between the instance of this class and instances of the Template hierarchy.
This is due to the fact that SmallWiki pages are composed from templates.

The main part of the computation of the Login feature is involved with displaying the login page of
SmallWiki. An instance of the class PageView provides this functionality by requesting information
from other classes that model Templates (subclasses of TemplateHead and TemplateBody). All
five features share the feature hot spots of the Login feature, because these features also require
HTTP communication and page rendering functionalities.

Edit Page Feature Trace (12874 events). This feature allows a user to modify a page by entering an
editing mode. Once the user is finished editing the page, the new version is saved and displayed in
the browser. Figure 7.7 (p.118) shows a part of the visualization of this feature’s behavior. We use the
zoom capability of our visualization to analyze a new feature hot spot, namely the PageEdit feature
hot spot. The developers confirm that the PageEdit class is the key class responsible for rendering
the form to edit a wiki page and to save the submitted content.

Edit Template Feature Trace (15810 events). This feature allows a user to modify the look and
feel of pages by changing a template that affects the position, color, etc. of the page elements. This
feature-trace is more complicated than the previous ones as there are more events to render. The
visualization shown in Figure 7.8 (p.120) reveals one new feature hot spot, namely the TemplateEditor
feature hot spot. The visualization reveals that an instance of the TemplateBodyActions class
participates heavily in this feature. There are also two instances of EditTemplate communicating
with many other objects. Once again we confirm with the developers that these are in fact the key
classes that provide functionality to this feature.

Show Page History Feature Trace (8052 events). This feature allows a user to see a list of all pages
in SmallWiki which have recently changed. In Figure 7.9 (p.121) we show a part of the visualization
of the feature. Here we analyze one new feature hot spot located in the tower of the PageHis-
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Figure 7.8: A Detail of the Visualization of the ”Edit Template” feature.
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Figure 7.9: A Detail of a Visualization of the ”Show Page History” feature.

tory instances, where one specific instance communicates with many other objects. The developers
confirms that this is due to the rendering process of the version table of wiki pages.

Search Feature Trace (7554 events). This feature allows the user to search all the pages of the
Wiki for a specific string. Figure 7.10 (p.122) reveals a new feature hot spot, namely the Search
feature hot spot. There is a tower of instances above the Search class. Two of the instances heavily
communicate with other objects to perform this task. This is due to the fact that the results of the
search request need to be rendered.

7.6 Discussion

The large volume and complexity of dynamic information makes it difficult to infer how a software
system implements features. Our visualization metaphor of growing towers of instances represents
large amounts of dynamic data effectively, while still maintaining their structural context. By ana-
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Figure 7.10: A Detail of a Visualization of the ”Search” feature.

lyzing our 3D visualizations, the software engineer quickly obtains an overview of runtime behavior
of features. The feature hot spots guide a software engineer to identify key classes relevant to feature
behavior. Moreover, a visual comparison of the features reveals patterns of recurrent activity that
represent infrastructural functionality of the system.

The definition of a feature hot spot. For our experiments, we did not define thresholds for feature hot
spots. We rely completely on visual identification. However, our approach is easily extensible
to incorporate threshold values to explicitly define the number of instances of a class, or a
fanIn / fanOut value constituting a class being identified as a feature hot spot. We show in
Figure 7.3 (p.113) how we defined these metrics in the context of Dynamix.

Correlating Feature Affinity with feature hot spots. We map Feature Affinity level of the classes
to the color of the 3D nodes. This reveals information about the level of participation of each
class in the traced features.
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Interpreting NOA and NOM. Another kind of information is metric information rendered according
to the polymetric view principles [Lanza and Ducasse, 2003]. This is reflected in the width
and length of the cuboids and tells us the size of the participating classes.

2D versus 3D. The advantage of using 3D over 2D is that we exploit all three dimensions to render
dynamic information. Using only two dimensions would also be possible [Ducasse et al.,
2004], however these views typically require that the developer learn the semantics of the
visualization. As they map static and dynamic information on two dimensions, the developer
cannot intuitively distinguish between the dynamic and static information. Moreover, our
approach exploits developer familiarity with UML class diagrams as the static information is
displayed as a class hierarchy view. The runtime information is displayed in the context of the
static view.

The Interactive Visualization. Our visualizations provide an overview of an entire collection of
data that is represented, which may be difficult to interpret in the case of systems with a large
number of classes. Therefore, the interactive capabilities of our visualization are an integral
part of this discussion. Our visualizations allow zooming, panning and rotation of the view,
thus we tackle problems such as occlusion. The interactive capabilities of our visualizations
enable us to query a visualization to obtain more fine-grained information about key entities
of interest. For example, we query a node of a visualization to obtain a class name and view
source code. It is difficult to render such an interactive process on paper media. However,
the results of our analysis, namely the detection of feature hot spots are revealed by merely
viewing the visualizations. The fine-grained details of a feature hot spot such as browsing
source code of the classes are obtained by manipulation and interaction of the visualizations.

Naming. Our analysis of SmallWiki reveals that the developers adhered to sound naming practices.
The names of key classes identified by feature hot spot analysis reflect the intention of the
corresponding features. We show that, for our SmallWiki case study, semantic analysis or
regular expression matching could be applied to the source code to reliably uncover concepts
in the code.

Scalability. As discussed above, the expressiveness of the visualization and the interactive ca-
pabilities of our technique support the representation and interpretation of large amounts
of data. In our SmallWiki case study, we chose five features that generated traces con-
sisting of more than 8000 events. In a previous Moose case study [Greevy et al., 2005b;
Wysseier, 2005] we show that we have successfully applied our visualization to feature traces
of over 70’000 events. However, the number of classes and instances is a threat to scaleabil-
ity of the approach. It is difficult to display a large number of classes of a system in a class
complexity view on one screen. The zooming and scrolling capabilities of TraceCrawler tool
address this issue. The developer can visually identify and zoom in on the relevant areas of
the class hierarchy for further investigation.
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Coverage. Using dynamic analysis, it is difficult to achieve full coverage of a system. We argue that
this is not vital for feature hot spot analysis, as we focus on the traces of individual features.

7.7 Comparisons with other Related Work

Our main focus with this work is the use of 3D visualizations to analyze the dynamic behavior of
features and how they interact in terms of the parts of the code that they share.

Zaidmain et al. [Zaidman et al., 2005] define a dynamic analysis approach based on webmining
techniques that identifies key classes of a system. They argue that well-designed object-oriented
programs typically consist of key classes that work tightly together to provide the bulk of a system’s
functionality. Their definition of key classes corresponds to our notion of a feature hot spot. In con-
trast to our feature-centric approach, they do not partition the dynamic information into individual
feature-traces. The advantage of obtaining individual feature traces using our approach is that we
exploit feature knowledge and relate this knowledge to the key classes associated with the instances
identified in the feature hot spots.

Among the various approaches to support reverse engineering that have been proposed in the litera-
ture, graphical representations of software have long been accepted as comprehension aids [Price et
al., 1993; Stasko et al., 1998]. The work of Maletic et al. has provided important guidelines for our
visualizations. We devised our Instance Collaboration View visualization and analysis considering
the five dimensions of interest of software visualization as defined by Maletic et al. [Maletic et al.,
2002].

Marcus et al. use a 3D metaphor in their sv3D tool to represent a software system [Marcus et al.,
2003]. The main difference to their approach is that we exploit 3D to render dynamic information,
while they render static information in all 3 dimensions.

De Pauw et al. present two visualization techniques. With their tool Jinsight, they focus on inter-
action diagrams [De Pauw et al., 1993]. Thus all interactions between objects are visualized. The
focus of our visualizations is to address reverse engineering dynamic behavior of features. Thus we
tackle the challenge of obtaining high level views from a large volume of information to support
reasoning about the runtime behavior of features.

Walker et al. [Walker et al., 1998] use program animation techniques to display the number of
objects involved in the execution and the interaction between them through user-defined high-level
models. Their tool uses a summary strategy to show live objects using a histogram, and reduces the
information space by allowing the user to cluster together code elements to create a high level model.
Our TraceCrawler tool provides a means of stepping through a trace of a feature and to render each
event in the visualization.
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Jerding et al. propose an approach to visualizing execution traces as Information Murals [Jerding
et al., 1997]. They define an Execution Mural as a graphical depiction of an entire execution trace
of the messages sent during a program’s execution. These murals provide a global overview of the
behavior, They also define a Pattern Mural which visually represents a summary of a trace in terms
of recurring execution patterns. Both views are interdependent.

Reiss [Reiss, 2003] developed Jive to visualize the runtime activity of Java programs. The focus of
this tool was to visually represent runtime activity in real time and to support software development
activities such as debugging and performance optimizations. Our focus is feature-centric reverse
engineering. Feature trace data is captured from a running system and then modeled in the context
of static source code entities. However our technique is non-restrictive and could easily be adapted
to interpret real-time trace information.

Kleyn and Gingrich [Kleyn and Gingrich, 1988] and Lange and Nakamura [Lange and Nakamura,
1995b] chose a graph-based approach to visualize dynamic behaviour. Kleyn and Gingrich also
animate their views by highlighting and annotating nodes and edges to represent activity in the
code.

Pattern detection in dynamic behavior is a research question that has been addressed by many re-
searchers. De Pauw et al. apply pattern extraction algorithms to detect recurring exection behavior in
traces [De Pauw et al., 2006]. They state that a fuzzy matching algorithm could classify transactions
according to related operations. They apply their algorithm to real examples with traces of up to
40MB. Their analysis reveals that the number of patterns is small, usually about 10 patterns.

Recent work of Nagkpurkar and Krintz [Nagpurkar and Krintz, 2006] describe a technique whereby
they characterize the behavior of programs as phases. These phases represent repeating patterns
in the trace. They decompose a program into fixed-sized intervals of events and combine these
according to how similar the intervals are.

In another work, we described a visual analysis approach of traces based on comparing signal rep-
resentations of entire traces [Kuhn and Greevy, 2006a]. For this work we also chose SmallWiki as a
case study. Our analysis reveals patterns in traces. This approach does not compact the information
so it preserves the notion of time and frequency. In contrast to our 3D visual analysis approach, it
does not represent the dynamic information in the context of a static representation of the source
code.

The main focus of our approach is to visualize the dynamic behavior of features to detect feature hot
spots. Our goal is to guide the attention of the reverse engineer to key classes of a system from a fea-
ture perspective. Our visualization metaphor is intuitive as it exploits the developer’s familiarity with
graph visualizations similar to UML class and sequence diagrams. We emphasize the importance of
ease of interpretation of a visualization to gain acceptance by the software developer. Our approach
complements the approach of De Pauw et al. [De Pauw et al., 1993] by allowing the developer to
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interact with the visualization and control the display of events in a feature trace. Thus the reverse
engineer exploits her feature understanding of a system and directly focuses on the parts of dynamic
data of interest, in this case the feature hot spot. Our visualizations add semantic information to the
software entities by showing how they participate in features. The semantic information of feature
knowledge supports reasoning about the functional roles of software entities of a system.

7.8 Summary

In this chapter we focus on the behavioral data of object-oriented programs, namely instances and
message sends. We show how Dynamix, our unified meta-model of structural and dynamic data
supports the visual analysis approach we adopted.

Our feature perspective establishes the semantic purpose of a system’s source artefacts. The vi-
sualizations we presented in this chapter combine a structural view of a system in terms of class
hierarchies with a dynamic information of features.

Our goal was to answer the following questions:

1. Which classes and objects are most active during the execution of a feature? The feature hot
spots we detect in the features of SmallWiki revealed which were the key classes of a feature.
The interactive capabilities of the visualization allowed us to query the individual instances to
obtain fine-grained information about the classes involved in the feature hot spots.

2. What are the patterns of activity that are common in feature behavior and which are specific
to one feature? The feature visualizations of our SmallWiki case study reveal which classes
are active in more than one feature, and recurring collaborations between instances. We also
detect behavior that is specific to one feature. Moreover, our Feature Affinity measurement
of classes reveal classes that are characterized as infrastructural. These are shown as black
nodes. These classes participate in all features of our model. Thus we identify common
functionality.

The main contributions of this chapter are:

— The definition of feature hot spot analysis as an approach to understanding the runtime behavior
of features.

— A 3D visual analysis of true object-oriented dynamic information, namely instances and message
sends between instances.

— Visual analysis to detect behavioral patterns in features.

— OCL definitions for feature hot spots in the context of Dynamix.
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Chapter 8

Extracting Developer Roles with
Feature Analysis

Software systems are typically developed by teams of developers with responsibilities for different
parts of the code. Knowledge of how developers collaborate, and how their responsibilities are
distributed over source artefacts is a valuable source of information when reverse engineering a
system. Correlating developers with source artefacts reveals a static perspective of the system.
We complement this with a dynamic perspective to reveal which features are developed by which
developers. We analyze whether developer responsibilities correspond to structural divisions in a
system’s source code or to features. We apply our technique to two software projects developed by
two teams of students as part of their course work, and to one large open source project.
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8.1 Introduction

Many reverse engineering techniques consider source code as the most reliable source of information
about a system. Few researchers in the field of reverse engineering have devoted much attention to
the roles developers play in implementing a system. We believe that reasoning about how developers
build a software system represents a rich source of information for the reverse engineer [Lethbridge
et al., 2005]. For example, it is useful to know who is responsible for which part of the system, or
who developed which features [Demeyer et al., 2002].

Typically software systems are built by teams of developers. It is a well-known phenomenon that
human factors such as collaborations and communication paths are often reflected in the structure
of the code. According to Conway’s law “organizations which design systems are constrained to
produce designs which are copies of the communication structures of these organizatons” [Conway,
1968].

The structure of a development team and the division of responsibilities has a major impact on how a
software system is structured and implemented. The challenge lies in how to efficiently exploit and
access knowledge about which developer developed which parts of the code, and how developers
collaborated during implementation.

Often a discrepancy exists between the way developers and domain analysts see a system. Typically
the mental model of a developer reflects structural source artefacts such as packages and classes.
Domain analysts and users on the other hand, see a system in terms of features (i.e., the capabilities
of the system). Thus, understanding which developers are responsible for which source artefacts is
useful to support maintenance activities. Understanding which developers are responsible for which
features is the key to maintaining traceability between an external perspective of a system and its
internal structure.

In this chapter, we focus on a feature perspective of a system and correlate features and developers.
We motivate our research by addressing the following questions:

1. Which developers or groups of developers are responsible for which features? We seek to
extract information that would not only lead to relevant part of the code of a feature, but also
reveal which developers are responsible for its implementation and maintenance. From a static
perspective, developers who own the most classes in a system represent key developers. From
a dynamic perspective, we assume that developers who are responsible for multiple features
have a wider domain knowledge of the system than developers who contribute only to specific
parts. Knowing which developer is responsible for which feature is useful when faced with the
task of assigning bug reports and change requests to developers of large open systems [Anvik
et al., 2006; Canfora and Cerulo, 2006].

2. Do developers develop features or do they develop functional blocks? We aim to extract a
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development strategy of a project, to determine if the division of responsibilities corresponded
to structural source artefacts or to features. We seek to reverse engineer which developers
best understand parts of a system and whether developers develop on a static architectural
boundary or on a feature boundary.

To address these questions, we analyze the correlation between developers of a system in the context
of its static groupings of classes (i.e., subsystems and packages) and of dynamic groupings that
reflect its features. We obtain relationships between developers and classes by mining data about
developers from source code repository of a project. Based on the data, we compute an ownership
measurement of a class (i.e., the responsible developer) [Gı̂rba et al., 2005a]. We then build on
our feature-centric analysis technique to establish relationships between features and classes, and
subsequently we link developers to features.

Structure of the chapter. In Section 8.2 (p.129) we introduce key elements of our analysis tech-
nique: (1) a code ownership measurement and, (2) the visualizations we analyze to detect roles of
developers from both a structural and a feature perspective. In Section 8.3 (p.130) we describe how
we extend our meta-model with entities to model owners (i.e., developers who implement source
artefacts) and teams ( groups of collaborating developers). In Section 8.4 (p.132) we describe our
structural and feature views and briefly explain how we apply our feature analysis technique in the
context of developers. In Section 8.6 (p.135) and Section 8.7 (p.140) we report on three case studies
conducted using our approach. Subsequently, in Section 8.8 (p.144), we discuss our results and outline
the constraints and limitations of our approach, and propose possible variation points. We summa-
rize related work in Section 8.9 (p.144), and finally, we summarize our technique and contributions in
Section 8.10 (p.146).

8.2 Extracting Developer Data from Work Artefacts

Recent research in the field of reverse engineering and system comprehension reveals a growing
awareness in the role of software developers in a software development process [Lethbridge et al.,
2005]. Lethbridge et al. define a taxonomy of techniques for collecting data about developers
involved in a software project. For our experiments, we adopt what they refer to as a third degree
approach. In other words, we analyze work artefacts in an attempt to uncover information about
responsibilities of software developers of a system. The inputs of our analysis are: (1) source code
repository log information (2) source code and (3) execution traces of feature behavior. Our approach
makes use of a distribution map-like visualization [Ducasse et al., 2006a] to represent structural and
feature perspectives of developer responsibilities.

Girba et al. describe a technique to define code ownership based on data extracted from CVS logs
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of a project [Gı̂rba et al., 2005a]. The technique is based on the assumption that the developer of a
line of code is the most knowledgeable about that line of code. We assume that a developer owns a
line of code, if he was the last one that committed a change to that line. Based on this assumption,
we define the owner of a piece of code as being the developer that owns the most lines of that piece
of code.

We adopt the definition of file ownership proposed by Girba et al. as the percentage of lines owned
by a developer in a file. And the overall owner of a file is the developer that owns the most lines of
code [Gı̂rba et al., 2005a].

Let ownα
fn

be the percentage of lines in revision fn owned by author α. Given the file size sfn
, and

both the author αfn
that committed the change and afn

the number of lines he added, ownership is
defined as:

ownα
f0

:=
{

1, α = αf0

0, else

ownα
fn

:= ownα
fn−1

sfn − afn

sfn

+

{
afn

sfn
, α = αfn

0, else

In the definition we assume that the removed lines rfn
are evenly distributed over the ownership of

the preceding owners of fn−1.

As CVS is a file-based repository, strictly speaking ownership is calculated for files. However, for
our experiments, we assume a one-to-one mapping between files and classes. We exploit the fact
that the package structure in Java reflects the physical file structure and use this to determine which
class maps to which file.

8.3 Modeling Developers in Dynamix

Figure 8.1 (p.131) shows how we extend Dynamix with Developer and Team (i.e., groups of devel-
opers) entities and establish ownership relationships between developers and classes. We exploit
existing relationships of Dynamix to determine which developer or team of developers owns which
features. We model the relationships between Developer and Feature entities explicitly with the
FeatureDeveloperAssociation entity. Thus, we enrich Dynamix with knowledge of a system’s de-
velopers. We reason about the roles of developers in structural groups (subsystems and packages)
and dynamic groupings (features) of a system.
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Figure 8.1: We extend Dynamix with Developer and Team and establish ownership relationships between
developers and classes.
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Figure 8.2: Package Owner of the PhoneSimulator-1 case study showing a package hierarchy view of the
source code. We show the classes of each package, colored according to the developer that owns the classes.

8.4 Structural and Dynamic Views

We base our analysis on visual representations of a system that reflect roles of developers on classes
of a system. We define both static and dynamic perspectives of a system.

We use static analysis to obtain a structural model of the source code of a system and represent
the classes as static groupings in terms of the packages in which they are defined. We map the
developer ownership which we compute from CVS on classes and represent each owner with a
unique color.

Figure 8.2 (p.132) shows the package hierarchy extracted from one of our case studies: the large boxes
represent packages and are arranged in a tree, while the small boxes represent classes and are colored
by owner. This view reveals a developer’s perspective of a system structure. We detect packages,
where there is only one responsible developer, or one main responsible developer (i.e., a developer
owns most of the classes in a package). We refer to these packages as developer-focused packages.
On the other hand, there are packages with classes owned by many developers. One goal of our
analysis is to determine if the developers adopted a developement strategy reflecting a structural
division of responsibilities (on a package boundary) while developing a system.
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Figure 8.3: Phone Simulator Project: Example of a Package Hierarchy View highlighting packages and classes
specific to the Play Ringtone Feature, colored by owner (PhoneSimulator-1)

8.5 Feature Ownership Analysis

Our goal is to analyze whether the division of developer responsibilities in a team was influenced
directly by feature requirements or not. We complement a structural perspective (package hierarchy
view), by obtaining feature views of a system. We achieve this by applying our feature-centric
analysis to exploit relationships between features and classes. We focus our attention on classes
that are either single-feature or low-group-feature, and refer to them collectively as feature-specific
functionality.

We establish developer responsibilities with respect to features by identifying which developers own
feature-specific classes. For example, in Figure 8.3 (p.133), we highlight classes that participate in a
feature by the owner of a class. All classes that are not specific to a feature are colored gray.

A high proportion of developer-focused features may indicates that developers adopted a developer
strategy that reflected a feature perspective of responsibilities (on a feature boundary) while devel-
oping a system.

8.5.1 A Collaboration View of Developer Teams responsible for Features

Features are implemented by one or more developers. To understand how developers collaborate to
develop features, we extract and model teams of developers and relationships between teams. We
define a feature team to be a set of owners of classes of a feature view. A feature team models
collaborations between developers to develop a feature.

Typically developers, or teams of developers are responsible for one or more features in a system.
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context Feature
def: developers: Collection = self.model.featureDeveloperAssociations->

collect( fd | fd.feature = self)

context Feature
def: maxNumberOfClassesOwnedByOneOwner : Integer =

self.developers->sortedBy(self.developers.nClasses).first()

context Feature
def developerFocused: Boolean =
self.maxNumberOfClassesOwnedByOneOwned > self.nFeatureSpecificClasses / 2

Figure 8.4: OCL specification for the developerFocused attribute of a Feature Enttity.

Once we have extracted which developers are responsible for features as teams, we can represent the
relationship between developer teams in a partial order graph. Each node of the graph represents a
team (one or more developers) and contains one or more feature views. A team of developers may
represent a subset of another team. Our graph models the partial order of teams.

Figure 8.5 (p.137) shows an example from one of our case studies. Each large rectangle represents
a team formed by one or more developers. The graph shows responsibilities of a developer and
possible collaborations between developers with respect to a set of features we traced. Inside the de-
veloper collaboration rectangle, we represent each feature as a grouping of feature-specific classes.
As with the package view, classes are colored according to owners. For example, the top box rep-
resents a team that includes the red, blue, cyan and green developers and the one on the bottom is a
team formed by the red and blue developers. The team shown at the bottom of the graph worked on
two features, namely the viewHelp and viewAbout features.

8.5.2 Developer-focused Features

As with our structural perspective, we define a Feature to be developer-focused if a high proportion
of its feature specific classes are owned by one developer (i.e., more than half of the feature specific
classes). Thus, we assume that the existence of developer-focused features implies a feature-based
development strategy was adopted during the development of a system. For this analysis, we define a
developer-focused feature to be one where more than 50% of the classes are owned by one developer.
We provide an OCL definition for the developerFocused attribute of our Feature entity in Figure 8.4
(p.134).
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8.6 Case Study 1: Student Team Projects

To validate our technique, we applied it to five student team projects (each of approximately 200
classes). Each team consisted of four students working over a time span of four months as part
of their course work. The applications were developed in Java. CVS 1 was used as a source code
repository. The goal of these projects was to implement a cell phone simulator.

In this section, we report on our findings for two of these projects. We refer to the projects as
PhoneSimulator-1 and PhoneSimulator-2. In all cases the system requirements for the project were
defined in terms of user stories.

Our motivation for choosing these projects was: (1) we have access to the CVS repository to obtain
information we need to calculate ownership of files, (2) the resulting systems are the result of team
effort, and (3) our approach is a heuristic approach and we require developer knowledge to validate
our results.

8.6.1 Experimental Setup

We outline our approach to analyzing team projects.

— For each system, we extract a structural model of source code.

— We identify the features of these systems by associating them with the user-triggerable actions
accessible via their user interfaces. For each system, we instrumented the application using the
JIP profiler 2 and capture individual traces of runtime behavior. We resolve traces and obtain a
Dynamix model.

— We process a CVS log information for each application and compute file ownership. We map file
ownership to class ownership, and for each system, we generate (1) a Package Owner view for
the entire system only highlighting feature-specific classes, and (2) a Team Collaboration view
showing how developers collaborated to develop features (as Figure 8.5).

— We drive our analysis by addressing the questions we identified in the introduction of this chapter
(see Section 8.1 (p.128)). We validate our findings with the development team members.

1http://www.cvshome.org
2http://jiprof.sourceforge.net/
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8.6.2 PhoneSimulator-1 - Developer Analysis

This system consists of 251 classes and 20 packages and was developed by 4 developers. We traced
14 features and obtained a 70% coverage of classes.

Figure 8.2 (p.132) shows package owner view of a system. The classes are colored by owner (note
white classes are those for which our technique did not establish an owner). We see from this view
that there are packages with one responsible developer, packages with two responsible developers,
and packages with multiple developers.

Our visualization reveals that the red developer is solely responsible for the packages gui.renderer,
gui.PhoneDisplayPanels.text and gui.PhoneDisplayPanels.menu.dialog. The blue developer is solely
responsible for the packages events, resource and sms.

We see 5 packages where the same three developers (red, cyan and blue) own classes. This pattern
indicates a collaboration between these developers from a structural perspective.

The green developer owns only 8 classes in the system, distributed over three packages. Five of
these classes are located in the gui::phoneComponents package.

Which developers or groups of developers are responsible for which features? Figure 8.3
(p.133) shows an example of a feature perspective of the system. Here we see feature-specific classes
of the playRingtone feature in the context of the package hierarchy. The blue developer is the main
developer of this feature as he owns 60% of the feature-specific classes.

In Figure 8.5 (p.137) we show a collaboration view based on the features of our model. The view
establishes relationships between features and their responsible developers. Our visualization reveals
that the red developer is the sole responsible for the feature-specific classes of three features, namely
selectDateAndTime, checkInbox and selectNewLogo. The blue developer is solely responsible for
single-feature classes of the features switchOnPhone, dialUser and hangUpCall.

Figure 8.5 (p.137) also reveals that both the red and blue developers are active in all of the features.
Thus our analysis suggests that from a domain knowledge perspective, the blue and red developers
have a wider knowledge of the features than the cyan and green developers.

Do developers develop features or functional blocks? Our analysis of the system indicates that
the development strategy corresponds more closely with structural divisions in the system, namely
package boundaries rather than a features perspective. We checked our findings with the developers
of PhoneSimulator-1. They confirmed that initially they adopted a development strategy based on the
model-view-controller pattern. The red developer was responsible for the view classes and the cyan
and blue developers were responsible for the model and controller classes. The green developer
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Figure 8.5: Team Collaboration view from the PhoneSimulator-1 System. The small squares represent classes
(colored by owner), the medium rectangles represent features and the large rectangle represent teams of devel-
opers who collaborated to develop the features.
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was responsible for the creation of images used by the application and classes that manipulated
these images. Thus, the green developer touches only two packages of the system. Once the first
iteration of the system was completed, the developers adopted a user-story or feature development
strategy. In other words, the responsibility for developing new features (e.g., playRingTone) was
typically assigned to one or two developers. They confirmed our finding that the blue developer was
responsible for developing the playRingTone feature (Figure 8.3 (p.133)).

8.6.3 PhoneSimulator-2

Figure 8.6: Package Owner (PhoneSimulator-2)

This system consists of 196 classes and 25 packages and was developed by 4 developers. We traced
10 features and obtained a 68% coverage of classes.

Figure 8.6 (p.138) shows the package owner view of the system for PhoneSimulator-2. From this view,
we detect 5 packages where only the cyan developer is active. However, these packages contain only
very few classes. Although the team consisted of 4 developers, the visualization reveals that only
three of the developers actually own classes.

Our visualizations reveal that the cyan developer and the red developer are the key developers of this
system. The blue developer is exclusively responsible for the package model::database::addressbook.

Which developers or groups of developers are responsible for which features? Figure 8.7
(p.139) shows the team feature view of the system. We see that the cyan and red developers are
responsible for all of the features that we traced. We also see that the blue user shares responsibility
for the addContact and newCellphone features. This feature is related to the addressbook subsystem
of the application, for which the blue developer is solely responsible.
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Figure 8.7: Developer Collaborations (PhoneSimulator-2)
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Figure 8.8: Package Hierarchy View of the argoUML system showing classes colored by owner

Do developers develop features or functional blocks? We detect that there are structural divi-
sions of responsibilites (e.g., the addressbook package). However, the developers seem to be working
in pairs to develop individual packages. From our visual analysis of the package hierarchy and team
collaboration views, we see that the main developer (cyan) is clearly the developer with most re-
sponsibility from a structural and features perspective of the system. Discussions with students of
the second team confirmed our findings.

8.7 Case Study 2: ArgoUML Case Study

To test the scalability of our technique, we applied it to ArgoUML, an open source UML modeling
application implemented in Java. We chose ArgoUML because: (1) we have access to developer
knowledge in the documentation of ArgoUML to validate our results, (2) it is open source and we
have access to the CVS repository to obtain the information we need to calculate our ownership
measurement of files, and (3) it has been used by us in Chapter 4 (p.43), and by other researchers as
a reverse engineering case study.

We focus on the core of the application, (i.e., we exclude library classes and plugin features). We
parsed the source code and obtained a model consisting of 2075 classes. To narrow the scope of our
investigation we filtered out the classes in the library org.tigris that provide GUI classes and Java
library classes. This resulted in 1501 classes.

We exercised 11 features by interacting with the user interface and traced each feature individually.
We achieved a coverage of 58% of the classes.

Figure 8.8 (p.140) shows a package owner view of the system. There are 83 packages in total. 13
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packages are owned solely by the red developer and four packages owned soley by the cyan devel-
oper. The remaining 66 packages are owned predominantly by the red developer. Thus, our analysis
reveals that a subsystem is predominantly developed by one developer. There is structural division
of responsibilities between the red and cyan developers on a package boundary.

Which developers or groups of developers are responsible for which features? We identified
11 teams of collaborating developers, shown in Figure 8.9 (p.142). Each team is responsible for
one or two features. There is only one feature browsecritique where only one developer (cyan) is
responsible for all classes of a feature. For all other features, we see that three or more developers
are responsible for the classes of that feature.

From Figure 8.9 (p.142) we see that the red developer is predominantly responsible (i.e., owns 80%
of the classes) for the generateCodeforClass feature. Figure 8.10 (p.143) shows this feature in the
context of a package hierarchy view of the system. The feature-specific classes crosscut 9 of the
packages of ArgoUML.

Figure 8.9 (p.142) also reveals that the red developer is also predominantly responsible (i.e., owns
65% of the classes) for the startup feature. Figure 8.11 (p.143) shows this feature in the context of
the package hierarchy of the system. The feature-specific classes crosscut 37 of the packages of
ArgoUML. The startup feature is responsible for initializing the application.

Our analysis also reveals that the cyan developer is also predominantly responsible for the im-
portXMI and exportXMI features (i.e., owns 50% of the classes). In both cases feature-specific
classes crosscut the same 5 packages of ArgoUML.

Do developers develop features or functional blocks? We detect both structural and feature di-
visions of responsibilities. Of the 10 distinct developers we detect by applying our ownership mea-
surement, our visual analysis reveals that there are two main developers (red and cyan). We verified
that these two developers correspond to the main developers of ArgoUML. We detect that the red
developer is responsible for most of the classes in the system and owns most of the packages. He is
predominately responsible for most (80%) of the features we traced. The cyan developer’s respon-
sibilities correspond to both package and feature boundaries. Our results show that in the case of
ArgoUML, it is difficult to deduce whether a developer strategy aligns with a structural or a feature
perspective, as the responsibilitiy for classes of the application is dominated by two main developers.
Despite this, our results reveal the existence of both development strategies.
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Figure 8.9: Team Collaboration of ArgoUML showing relationships between Teams
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Figure 8.10: ArgoUML Generate Code For Class Feature

Figure 8.11: ArgoUML Startup Feature
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8.8 Discussion

The Ownership Measurement. We chose to use an ownership measurement calculated by analyzing
CVS log data. This solution is therefore coupled to the CVS tool. However, we have encapsu-
lated the repository dependent code, thus minimizing the required effort to adapt our solution
to another repository (e.g., Subversion or Clearcase) if required.

Our validation revealed a flaw in our ownership measurement. In discussion with developers
of PhoneSumulator-1 we discovered that the red developer appears to own a large proportion
of the classes. This is an incorrect conclusion as the red developer restructured a large pro-
portion of the classes in response to an automatic style checker flagging long methods. As a
result of this editing, our ownership calculation assigns him as owner of these classes. Thus,
the ownership measurement does not reveal who really developed the code in this case.

Classes without owners. Our ownership of classes is based on the assumption that there is a one-to-
one relationship between classes and files. This is not true in the case of the Java case studies
we chose. A file may contain more than one class, or there may be inner classes. To tackle this
problem, we would need to model a file entity and by statically analyzing the files we could
extract the one-to-many relationship between a file and classes.

Team definition. For this analysis, we extracted our definition of a team from the ownership infor-
mation of feature-specific classes of features. There are alternative ways to define a team based
on structural collaborations. We plan to investigate the definition of teams based on extracting
the developer collaborations in more detail in the future. Our visualization of a package hier-
archy of a system reveals that developers tend to develop a system from a package perspective.
The feature teams reveal how developers collaborate when implementing code that is specific
to one feature. In our case studies, we see that one or two developers were responsible for
implementing a feature.

The Roles of Software Developers. Our technique focuses exclusively on software development
activities. It excludes activities such as configuration management, creation of resources (e.g.,
image files), build and release management. These are all relevant activities within a develop-
ment project. Thus, the picture we obtain of a developer is incomplete.

8.9 Related Work

Researchers in the field of reverse engineering and system comprehension are becoming aware of
the importance of analyzing the role of the developer and exploiting new sources of data such as
source code repositories to understand software systems [Gı̂rba et al., 2005a; Hassan and Holt, 2004;
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Lethbridge et al., 2005; Wu et al., 2004]. Our main focus with this work is to define a reverse-
engineering approach that exploits developer information of a system’s features.

Lethbridge et al. define a taxonomy of data collection techniques to obtain information about the
roles of software engineers during the development of a project [Lethbridge et al., 2005]. Their work
highlights the growing awareness of this source of information in the field of reverse engineering and
system comprehension.

Eick et al. used data generated from a change management system to better understand how commu-
nication occurs in a globally distributed software development [Eick et al., 2001]. They used several
modeling techniques to understand the relationship between the modification request interval and
other variables including the number of people involved, the size of the change, and the distributed
nature of the group, working on the change.

Xiaomin Wu et al. describe a tool to visualize [Wu et al., 2004] the change log information to
provide an overview of the active places in the system as well as of the author activities. They
display measurements like the number of times an author changed a file, or the date of the last
commit.

Chuah and Eick proposed three visualizations for comparing and correlating different evolution in-
formation like the number of lines added, the errors recorded between versions, number of people
working etc. [Chuah and Eick, 1998].

Zimmerman et al. aimed to provide a mechanism to warn developers about the correlation of changes
between functions. The authors placed their analysis at the level of entities in the meta-model (e.g.,
methods) [Zimmermann et al., 2004]. The same authors defined a measure of coupling based on
co-changes [Zimmermann et al., 2003].

Anvik et al. [Anvik et al., 2006] describe a semi-automatic technique to assign bug reports to devel-
opers. They base their analysis on data extracted from the bug repository of a software development
project and use a machine learning algorithm to support the assignment of bugs to the appropriate
developer. One major contribution of their work is that they identify the problem of tracing the
correct developer to address a given bug report.

Canfora et al. [Canfora and Cerulo, 2006] also consider the problem of assigning change requests to
developers of open source projects. They design an approach to assign change requests to developers
based on analyzing the previous assignment history of the change requests.

The work of Anvik et al. and Canfora et al. identifies a motivation for our technique of associating
developers to features.

Our main focus was to define a reverse engineering approach that considers the roles of developers
in the context of both static and dynamic views of the system.
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8.10 Summary

In this chapter, our goal was to analyze the roles of developers from both a structural and a feature
perspective of a system. We extended Dynamix with developer information. We establish the re-
lationships between classes and developers and exploit the existing relationships expressed in our
model to associate the features to individual developers or teams of developers. In particular we
addressed the questions:

1. Which groups of developers are responsible for which features? We exploited our feature
perspective to identify teams of developers responsible for features. We define a team collab-
oration based on a partial ordering of teams, and we reveal which developers and teams of
developers are responsible for which features.

2. Do developers develop features or do they develop functional blocks? Our visualizations of
a package hierarchy showing owners of classes reveal which developers are responsible for
which classes. This view shows structural groupings of classes as packages. Our analysis of
student projects revealed that in these cases, the developers distributed responsibility accord-
ing to package boundaries. Different developers implement specialized functionalities such as
XML handling or database interaction. The boundaries of model-view-controller are also split
between different developers. We also discovered, that for some features, a developer strategy
reflecting feature boundaries was adopted when new features were added.

The main contributions of our approach are:

— We identify a novel way of analyzing roles of developers with respect to features of a system.

— We describe a technique to extract and visualize static and dynamic views of relationships be-
tween developers and structural packages and feature views.

— We extract and model collaborations between developers and teams of developers based on their
ownerships of classes of features.

— We define Developer and Team entities for the Dynamix meta-model.
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Chapter 9

Lessons Learned: a Retrospective

In this chapter, we take a step back to examine how we addressed the problem of exploiting feature
knowledge in reverse engineering. When we started our analysis work, our review of the state-of-
the-art revealed that although several researchers had addressed the problem of locating the parts of
source code that implemented features, the notion of a feature in a reverse engineering and system
comprehension context had not yet been fully exploited. Our primary focus was to take up this
challenge. We recognized that by establishing the links between domain knowledge abstractions
(i.e., features) and the implemented system, we could exploit these links in reverse engineering
analysis, thus supporting system comprehension throughout a system’s life-cycle.

In this dissertation, we described our feature-centric analysis and our Dynamix meta-model. In this
chapter we present some of the challenges we tackled along the way. We review both our high level
analysis decisions and low level technology decisions.

Structure of the chapter. In the next section we take a look at the definitions and underlying
mechanisms of our work. In Section 9.2 (p.150) we discuss our research focus and our choice of
experiments. We look in detail at some of the aspects of our feature-centric analysis in Section 9.3
(p.151), and we summarize in Section 9.4 (p.152).

9.1 Definition and Mechanisms

Researchers who undertake feature analysis are faced with the following issues:

Feature Definition. One of the first choices we were faced with was to define a feature. Our
definition was influenced on the one hand, by Feature Identification approaches, and on the
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other hand, by our research goal of exploiting domain knowledge in reverse engineering. We
adopted the definition of a feature as a unit of observable behavior triggered by the user [Eisen-
barth et al., 2003]. However, our approach does not exclude other definitions. For example,
non-observable activities of a system such as house-keeping tasks can also be described as
features.

One-to-One Mapping between Features and Traces. For the experiments described in this dis-
sertation, we assume a one-to-one mapping between feature-traces and features. This is a
simplification of reality, as the execution path of a feature varies depending on the combina-
tion of user inputs when it is triggered. Some researchers [Eisenbarth et al., 2003], define
a many-to-many relationship between traces and features, so that they can capture multiple
execution paths through a feature. However, extending our representation of a feature in Dy-
namix to model multiple execution paths would require only a minor extension to express a
many-to-one relationship between feature traces and features.

Multi-Threaded Applications. For our experimentation and feature definition, our model does not
currently take multi-threading into consideration. Once again extending our representation
of a feature in Dynamix to incorporate multiple threads of execution is would require only a
minor extension to express a many-to-one relationship between threads and features.

Similar Features. Our feature-centric analysis revealed that certain features were very similar and
perhaps could be considered as variations of the same canonical feature (e.g., addPage, copy-
Page of our SmallWiki case study). The recent work of Kothari et al. addresses this by
identifying that software systems are characterized by a set of canonical features [Kothari et
al., 2006]. In their approach, they treat system behavior as a distinct feature only when it is
significantly different from a set of features that have been already traced.

Tracing. When tracing an application, we needed to make the decision about what type of behav-
ioral data we should capture. For our first experiments, we traced applications at the level
of message sends (i.e., activations). However for our hot spot analysis approach described in
Chapter 7 (p.109), we performed a more fine-grained analysis of the runtime behavior, so it
was essential that the traces we captured contained information about the sender and receiver
instance information so that we could associate activations with objects. We did not perform
experiments that required tracing at the level of state accesses. However, Dynamix could eas-
ily be extended to include this information. Furthermore, we identify that this level of detail
would be useful for correlating static measurements (e.g., lines of code) and dynamic analysis
measurements (e.g., statements executed).

Trace Collection. The means of instrumenting an application is language dependent. To obtain
traces from SmallWiki and Moose applications, we use a code instrumenting technique for
Smalltalk based on method wrappers [Brant et al., 1998]. In a previous experiment with Java
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applications [Kuhn et al., 2005b], we used the Ejp (Extensible Java Profiler) [Vauclair, 2003]
based on the Java Virtual Machine Profiler Interface (JVMPI). Finally, for a later experiment
we developed a profiler, which we call J-WireTap which is built on the Jip profiler, so that we
could control the data collected by the tracer and use a format so that we could load the trace
into our DynaMoose tool for analysis. We used J-WireTap for our ArgoUML and Phone-
Simulator case studies [Greevy et al., 2007]. For our Pier experiment, we used the Object
Flow Tracer Tool for Squeak [Lienhard et al., 2006]. As long as the traces obtained from the
system under analysis contain message send events and instance information, our approach
will work for any object oriented language. We discuss the challenges of extracting traces for
dynamic analysis in more detail in another work [Denker et al., 2006].

Recall.A limitation of our approach is that it is difficult to calculate precison and recall for our
results. This is due to the nature of feature analysis. We perform feature analysis to discover
which source artefacts are relevant to a feature. It is the well-known fact that dynamic analysis
is not exhaustive, as all possible paths of execution are not exercised [Ball, 1999]. Therefore,
an analysis of features always has to be understood in the context of the actual execution.
While this is a difficulty, at the same time it is a key characteristic as running a feature can be
related directly to internal program behavior.

Selective Instrumentation. For some of our experiments, we performed a selective instrumentation
of a system to limit the amount of dynamic information generated; we use our knowledge of
an application to determine what is relevant for a particular feature. Our instrumentation only
included classes from the namespace or packages of the application under investigation and
excluded library calls. This resulted in incomplete traces, but was sufficient to focus on the
parts of the code that have been implemented specifically for the application. In the Moose
case study described in Chapter 5 (p.67)), we did not instrument every Moose namespace as we
have a good knowledge of the application and omitted the parts which we already knew were
irrelevant for the features we investigated.

Distinct Traces or Marked Traces. In our early experiments, we extracted individual traces to
represent the features. Our analysis focused on the relationships between features and the
source artefacts (classes and methods). However, when we considered analyzing the runtime
behavioral entities (objects) we realized that one trace of multiple features was more complete
than single traces, as we preserve information about how features share usage of objects at
runtime. This information is essential for analyzing runtime relationships between features.
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9.2 Focus of Analysis

Choice of Case Study. For our early experiments we focused on SmallWiki and Moose as we had
direct access to developer knowledge to validate our results. In particular, for our evolution
experiments [Greevy and Ducasse, 2005b; Greevy et al., 2006a], we needed access to multiple
versions. For later experiments, in particular the experiment where we analyze team work of
developers with respect to features [Greevy et al., 2007], we needed to experiment with a
system that had been developed in a team. Moreover, as we mine CVS repository data, we
needed access to an application’s project repository.

Choice of Experiments. One of our initial research goals was to study the evolvability of object-
oriented systems. A key focus in this dissertation was on the analysis of how features evolve
and how feature knowledge helps interpret changes.

A Collaborative Environment. We emphasize the value of a collaborative reverse engineering and
reengineering environment. This enables researchers to share underlying mechanisms and re-
sults and to profit from the synergies and commonalities of each others work. We outline our
environment in Appendix C (p.167). By making the Dynamix meta-model and tool environ-
ment accessible, we open up the possibility for other researchers to adopt our model and build
on it for their own particular research goals.

Visualizations. A key aspect of our analysis is the use of visualizations. Most of our visualizations
are simple graphs or distribution map-like visual representations of compact feature views
[Ducasse et al., 2006a], built using the Mondrian tool [Meyer et al., 2006]. These visualiza-
tions are interactive, thus providing the scope to analyze results at different levels of detail
[M.-A. D. Storey and Michaud, 2001]. In our visual feature hot spot analysis [Greevy et al.,
2006b], we adopted a 3D approach that is based on a 3D extension to CodeCrawler. Fol-
lowing this direction, we quickly realized that 3D visualization for software engineering is a
controversial topic. Despite this, we believe that there is a lot of scope for further work in 3D
visualization of dynamic behavior.

Validation. The validation of our techniques relies on developer knowledge. In a reverse engi-
neering context, developer knowledge is invaluable to confirm and interpret the results of our
experiments. However, to validate the general usefulness of the techniques for a software en-
gineer in a development environment, we believe there is a lot of scope to perform empirical
studies of a quantitative and qualitative nature. Such experiments are essential to assess how
software engineers perceive a features perspective in the context of their work.
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9.3 Aspects of Feature Analysis

Many of the topics we discuss here are as a result of our experience with applying feature-centric
analysis on the case studies.

On the Stability of Feature Affinity. Our Feature Affinity measurement provides a means of inter-
preting the role of a class based on the results of exercising a set of features. This measurement
is dependent on the number of features exercised and the type of features traced. If two fea-
tures with similar functionality are executed, classes that are specific to these features will be
assigned the Feature Affinity level low group. In our evolution experiments (Chapter 5 (p.67),
Chapter 6 (p.87)), we chose to exercise the same set of features for each version. Thus, we ex-
pect that Feature Affinity levels of a source artefact under these circumstances should remain
the same. Our technique detected changes due to modifications in the code and thus supports
the software engineer in interpreting the changes in the context of the features that have been
exercised.

On Levels of Granularity of Feature Views and Scalability. In many of our experiments, we selected
classes as a unit of granularity. For a more coarse-grained overview of a system features, for
example when considering large systems, we could select a package as the unit of granularity.
During our experimentation with the SmallWiki case study in Chapter 6 (p.87), analysis of
the system’s structural models revealed that the number of packages increased from 13 to 43
in the main development track. We were interested to see which features were now using
functionality of the new packages. Thus we extracted feature views as groups of packages and
applied history measurements to compute additions in the number of characterized packages
participating in a feature. Our results revealed that 7 of the new packages were referenced by
the components feature. Thus, by analyzing feature views of packages we obtained a coarse-
grained view of which features are affected by the addition of new packages in the system and
what type of functionality is provided by the packages (i.e., single feature, low group, high
group or infrastructural).

In the same way, we obtained a more fine-grained analysis by extracting feature views as sets
of methods. We applied our measurements to reveal how a feature view changes with respect
to its participating methods. The problem of scalability may be addressed by adopting an
iterative approach to feature definition and by selecting a more coarse-grained feature view.

On Coverage. Our feature analysis approach does not achieve 100% coverage of the system. For
the purpose of feature location, complete coverage of a system is not necessary [Wilde and
Scully, 1995]. Wilde and Scully’s Software Reconnaissance technique, and other approaches
based on this technique, do not locate all the code associated with a feature, but provide
good starting points for the software maintainer to understand the implementation of a feature
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[Wilde and Scully, 1995].

An Iterative Approach. It is by performing feature analysis in the first place that we determine
which features are related to source artefacts and how similar they are. Thus, obtaining the
best feature definition for an analysis is based on the analysis itself. This clearly suggests an
iterative approach to feature definition based on the findings of feature analysis.

9.4 Summary

In this chapter we have outlined the lessons we have learned with respect to undertaking feature-
centric reverse engineering. We summarized the definitions and mechanisms we adopted, and our
reasons for the descisions we made. We reiterated the focus of our analysis. Finally we highlighted
and discussed aspects of feature analysis and variations.
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Chapter 10

Conclusions

To fully exploit features in reverse engineering, we need to treat features as primary units of analysis.
We identified the research goals of this dissertation as follows: (1) to enrich reverse engineering
analysis techniques that extract structural views of a system with semantic knowledge about roles
of source artefacts in features of a system, and (2) to reason about a system in terms of features
themselves and relationships between features.

Our solution is a feature-centric analysis that extracts complementary, feature-enriched views of a
system. We extract and model features as explicit entities and reason about a system in terms of
these entities. We describe Dynamix, a meta-model that expresses the execution entities of feature
behavior and their relationships. Furthermore our meta-model expresses the relationships between
the execution entities and a structural model of source code. A key element of our analysis is to
combine static and dynamic views of a system.

We have validated our work by applying our approach on software systems of varying size and
complexity. To highlight the language independence of our approach, we selected case studies im-
plemented in different object-oriented languages (VisualWorks Smalltalk, Squeak and Java).
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We have presented several feature-enriched, reverse engineering analyses:

Three perspectives of feature centric analysis. We applied feature centric analysis on two soft-
ware systems, Pier (implemented in Squeak), and ArgoUML (implemented in Java):

— Feature Perspective. We reasoned about a system in terms of its features. The level of gran-
ularity chosen for our experiments was the class. We presented an interactive visualization
of compact feature views to show the distribution of classes over the features. Our Fea-
ture Affinity measurement showed relevance of classes in the context of compact feature
views. We distinguished between classes specific to one feature, a small group of features,
a large group of features, or all of the features we traced. Our case studies showed that this
perspective successfully identified classes relevant to a feature. Our approach presents a
software engineer a means to understand a system in terms of its features.

— Structural Perspective We focussed on source artefacts enriched with semantic knowledge
about their roles in features. When a source artefact (e.g., a class) needs to be modified, a
software engineer is aware that a change to an infrastructural class may affect many of the
features of the system. Similarly, if a class is assigned a single feature value, it represents
a good starting point for understanding a particular feature.

— Feature Relationship Perspective. We highlighted the role of feature relationships in sys-
tem comprehension. We defined static relationships based on the degree of overlap of
source artefacts. We introduced a taxonomy to describe relationships (i.e., when two fea-
tures share a high proportion of the source artefacts, we say that they are tightly related).
We also described dynamic relationships of features, based on the number of instances that
are accessed by one feature, but created by other features. We used graph visualizations to
depict these dependencies.

Evolution: A Structural Perspective. We show how our feature-centric analysis enriches an
evolution analysis of a system. Our approach combines both history analysis and version
analysis techniques. We defined history measurements to measure how the roles of classes
change with respect to the features of a system over a series of versions (i.e., we analyzed
the effect of time on the Feature Affinity property of classes). Our experiments revealed that
this perspective highlighted places in the code that had changed. The feature context of the
changes supported the interpretation of the changes.

Evolution: A Feature Perspective. Once again our approach combined a history-centric and
version-centric analysis. We defined history measurements [Gı̂rba et al., 2005b] to measure
how features of a system change over a series of versions. We validated our approach by
applying it to a problem where the development efforts of parallel development tracks needed
to be reconciled. We showed that our features perspective successfully provided insights into
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the extent and intent of changes. Our feature view visualizations reveal candidate conflicting
changes and duplicated effort.

Object-oriented dynamic information. With this analysis, we exploited object-oriented dynamic
data such as object-instantiation and message sends between instances to understand runtime
behavior of features and visualize features in 3D to detect feature hotspots (i.e., areas of intense
activity in features). We demonstrated the expressiveness of Dynamix to consider a more fine-
grained representation of a feature than a compact feature view. We addressed the problem of
large amounts of data by adopting a visual analysis approach.

Developer roles. We apply feature analysis to extract developer roles with respect to features. Our
features perspective of a system introduces a novel way of considering the roles of developers
in the implementation of a system.

10.1 Other Feature-Centric Research

We briefly outline other feature-centric research we have been involved in. This work is not covered
in this dissertation:

Semantic analysis. Kuhn et al. developed an approach to detect similarities between features by
applying semantic analysis to execution traces [Kuhn et al., 2005b]. With this technique we
identified similar features using the feature traces to represent documents and method calls to
represent the terms of the documents.

Features as Signal Traces. Kuhn and Greevy describe a novel representation of the feature traces
in terms of a time series as a means of representing large amounts of data. We exploited
some of the time series analysis toolkit to compare features and to establish relationships
between features. We used our Feature Affinity measurement to extract parts of the traces that
represent unique patterns of execution (i.e., single feature) and common patterns [Kuhn and
Greevy, 2006a; Kuhn and Greevy, 2006b].

Object Flow Analysis. Lienhard et al. analyzed the fine-grained dynamic relationships between
features based on tracking object aliasing [Lienhard et al., 2007a; Lienhard et al., 2007b]. We
extracted feature dependencies and associated context with the dependencies.

A Features Perspective in IDEs. Röthlisberger et al. [Röthlisberger et al., 2007] defined an exten-
sion to the IDE to provide an integrated a feature browser. The goal of a feature perspective
is to support system maintenance by providing views of the methods that are exercised by
a feature. In an ongoing work, they also empirically analysed the advantages of the feature
browser for users. They also collected data on the user’s subjective opinion of feature views
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enriched with our featurecharacterization measurement.

Higher Abstractions for Dynamic Analysis. In this work, Denker et al. argued for the need to adopt
a higher level view of a software system, when considering abstracting runtime information
[Denker et al., 2006]. We identified the need to define an intermediate behavioral layer that
provides access to reified runtime entities, so that developers of dynamic analysis techniques
do not have to focus on low-level language specific details.

J-WireTap. We built an interactive Java profiler for extracting feature traces from Java applica-
tions and imported them for feature-centric analysis into our DynaMoose dynamic and feature
analysis tool. We describe our analysis environment in more detail in Appendix C (p.167)

10.2 Future Work

Having defined a feature-centric analysis and a meta-model to represent feature entities and their
relationships, we identify scope of further work in this area. We have established a foundation and
defined a vocabulary. By doing so, we open new perspectives that lead to many ideas for further
research. We list a few of the directions:

— Fine-grained Analysis of Feature Traces. Many of the analysis techniques, apart from the feature
hot spot analysis technique described in Chapter 7 (p.109), manipulated a compact feature view as
a representation of a feature. There is scope to perform a more fine-grained comparison of feature
traces by considering of dynamic data such as sequence of execution of events or frequency of
execution, or variations in messages due to parameters.

— Feature Definition. Execution paths are affected by inputs. Thus, we need to consider many-to-
one and one-to-many relationships between traces and features. Thus, Dynamix could be adaped
to express a more complex feature entity.

— Units of Functionality. Our analysis techniques revealed recurring patterns of execution within
the execution traces of features. For example with the SmallWiki and Pier applications, we iden-
tified the recurring patterns of HTTP request response functionality and page rendering func-
tionality. We identify the need to define abstractions to represent component functionalities of a
feature that represent a smaller unit of granularity.

— Feature Relationships. We analyzed the relationships between features based on shared usage of
source artefacts and shared object instances. We identify the scope to continue on this research
direction, as feature relationships of a system’s problem domain are crucial for understanding the
business rules and constraints of a system. Often, in the case of legacy systems, the only reliable
source of information regarding the business rules are in the application itself. However, as this
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information is not explicit in the source code, these constraints may be difficult to locate and in-
terpret. Moreover, we identify scope to consider a temporal perspective of changing relationships
between features over time.

— Combining Dynamic and Static Metrics. We identified as a result of our evolution analysis tech-
niques that features provide semantic context for changes. However, we believe that there is
scope to extend our feature-centric perspectives to incorporate static measurements. In the case
of our evolution analysis approaches, we could correlate changes in static and dynamic views of
a system.

— Exploiting System Tests. Some researchers have used test cases to exercise features of a system
[Licata et al., 2003; Eisenberg and De Volder, 2005]. The problem with this is that many test
cases are unit tests and do not exercise domain concepts, rather low-level developer concerns.
In a previous work, we proposed a semi-automatic technique to compose unit tests into higher
level tests [Gaelli et al., 2005; Gaelli, 2006]. We believe that a higher-level feature test should
be an integral part of a software development life-cycle. To achieve this a framework similar to
the xUnit Framework providing some means to compose unit tests would support the creation
of feature tests [Beck and Gamma, 1998]. Furthermore, feature tests would formally establish
the links between features specified at requirements analysis, and over the life-cycle of a system
and a system source code. The goal of feature tests would be to provide the basis for generating
execution traces that are treated as feature traces for feature-centric analysis.

— Feature Analysis Integrated in the Development Environment. We believe that reverse engi-
neering techniques should be readily and easily accessible to the software engineer during the
development lifecycle of a system. An iterative approach to software development may mean
that even within the development life-cycle, the problem of understanding earlier iterations is an
issue. A software engineer may be required to understand earlier iterations and identify where
refactorings may be required to allow the addition of new features.

— Feature Modeling. This field of research focuses on the requirements phase of a system. We
identify the need to exploit the terminology of Feature Modeling in a reverse engineering context.
We need to bridge the gap between feature modeling and feature-centric reverse engineering.
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Appendix A

Definitions

For general terms:

Reverse engineering is the process of analyzing a subject system to create representa-
tions of the system at a higher level of abstraction. [Chikofsky and Cross II, 1990]

An entity is something that has separate and distinct existence in objective or conceptual
reality [Soanes, 2001].

For model, meta-model and measurement we use the following definitions:

A model is a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system [Bézivin and Gerbé,
2001].

A meta-model is a specification model for a class of systems under study where each
system under study in the class is itself a valid model expressed in a certain modeling
language [Seidewitz, 2003].

A measurement is a mapping from the empirical world to the formal, relational world.
Consequently, a measure is the number assigned to an entity by this mapping to charac-
terize an attribute [Fenton and Pfleeger, 1996].

For features we use the following definitions:

A feature is a realized functional requirement of a system. A feature is an observable
unit of behavior of a system triggered by the user [Eisenbarth et al., 2003].



There are many definitions for the word feature. The most appropriate definition in our context in
the Websters Dictionary is:

a prominent part or characteristic

Feature interaction is a situation in which system behavior does not as a whole satisfy
each of its component features individually [Gibson, 1997].

A feature trace is a sequence of runtime events (e.g., object creation/deletion, method
invocation) that describes the dynamic behavior of a feature.

A Feature Affinity describes the degree of usage of a source entity by the features of the
feature model. The OCL definition is provided in Chapter 3, Figure 3.3 (p.32).

A feature view is a grouping of source entities (e.g., Packages, Classes, Methods, In-
stances) abstracted from a feature trace. The compact feature view used in the disserta-
tion represents one type of feature view. It describes a tuple of sets of source entities,
each set contains source entities with the same Feature Affinity level. The OCL defini-
tion is provided in Chapter 3, Figure 3.5 (p.35).

Figure A.1: The principle of polymetric views

Our visualizations are based on polymetric views:

A polymetric view [Lanza and Ducasse, 2003] is a graph-based visualization of static
code or runtime behavior enriched with up to five software metrics. The nodes represent
structural or dynamic entities of a system and the edges represent relationships between
the node entities. The visualization is enriched with metrics by adapting the node size,
color and position of nodes and edges to reflect numeric values. For example, the higher
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the value of the metric, the larger the node.

As a polymetric view combines software visualization with software metrics, it elim-
inates the need to interpret large metric tables. After learning the visual language of
polymetric views one gets a fast overview about the software system, its entities and
relationships.

A dendrogram a branching diagram representing a hierarchy of categories based on degree of sim-
ilarity or number of shared characteristics especially in biological taxonomy. Figure A.2 (p.161) is a
simple dendrogram diagram showing how it clusters 3 features based on a distance value.

F1

F3

F2

2

8

distance values

Figure A.2: A Simple Dendrogram showing two Feature Clusters

We compute the order of the feature views in a visualization using a dendogram seriation algoritm.
It builds a dendogram of clusters of features based on a distance measurement. We use our featureS-
imilarity measurement (see Figure 3.7 (p.38)) to determine how the clusters of features are computed.
The leaves of the dendogram determine the order of feature views in our visualization.

The Webster’s dictionary defnes seriation as the arrangement of a collection of artefacts
in a series.

Transitive Reduction.

We express the transitive property in predicate logic as follows:
Let R be a relation between to vertices of a graph. Let X be the set of all vertices.

∀a, b, c ∈ X, aRb ∧ bRc → aRc (A.1)

The transitive reduction of a graph is its minimal representation. Given a binary relation R over a
set X is transitive if it holds for all a, b, and c in X, that if a is related to b and b is related to c then
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Figure A.3: Applying Transitive Reduction to a Simple Graph.

a is related to c. With transitive reduction we do not represent the edge of the transitive relation, as
we assume the transitive property holds. Figure A.3 (p.162) shows two graphs (1) and (2). Graph (2)
shows the result of applying transitive reduction to Graph (1).

162



Appendix B

Dynamix: Summary and
Variations

B.1 Introduction

We provide an overview of our Dynamix meta-model and the extensions proposed in this dissertation
unified in one diagram.

We also show variations to modeling features to incorporate modeling some of the variations identi-
fied in Chapter 9 (p.147), namely multi-threading applications and many-to-one relationships between
features and feature traces.

B.2 Dynamix and Extensions

In Figure B.1 (p.164) we provide an overview of our Dynamix a summary of the extensions to Dy-
namix.

B.3 Dynamix Variations

We describe extensions to the Dynamix meta-model described in this dissertation to encompass
two variations: (1) many-to-one relationships between features and traces, and (2) multi-threaded
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Figure B.2: Features Package of Dynamix showing Entities to model Multi-Threading (Thread) and One-to-
Many Relationships (FeatureTrace) between Features and Execution Paths.

applications.

AbstractFeature. This provides a common interface to manipulate Feature entities or FeatureFamily
entities.

FeatureFamily. The Dynamix model described in this dissertation restricts the definition of a fea-
ture to one path of execution. It defines a one-to-one mapping between features and traces.
However, as discussed in Chapter 9 (p.147), the execution path of a feature may vary depending
on the combination of user inputs entered when invoking a feature. In Figure B.2 (p.165) we
show the FeatureFamily entity as having a one-to-many relationship with the Feature entity of
our original Dynamix model. In this case the FeatureFamily entity allows us to collectively
manipulate one or more Feature entities and also retains its ability to to collectively manipulate
all the Activations that correspond to the events of the execution trace of a feature..

Thread. To cope with multi-threaded applications, we extend our model with a Thread entity to
model one thread of execution in a parallel application. Figure B.2 (p.165) shows the Thread
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entity our model. Each FeatureTrace entitiy consist of one or more threads of execution of a
feature trace. The Thread entity maintains a list (as an ordered collection) of Activations mod-
eling the method events of the thread. As with our original Dynamix model, the Activations
maintain a reference to their sender Activation. In this way we preserve the order of execution
of events in an execution thread.
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Appendix C

DynaMoose: Trace Extraction,
Meta-Modelling and Feature
Analysis

In this chapter we describe DynaMoose, the tool we built to implement our Dynamix meta-model
and the various feature-centric analysis techniques described in this dissertation. DynaMoose ex-
ploits the generic infrastructure of Moose [Ducasse et al., 2005a; Nierstrasz et al., 2005], a reverse
engineering and reengineering environment.

In Chapter 3 (p.25) we introduced our Dynamix meta-model which expresses feature execution enti-
ties, their relationships to each other, and to structural entities of source code. Dynamix underlies the
various feature-centric analysis techniques presented in this dissertation. A primary goal of our work
was to show how our Dynamix meta-model supports feature-centric analysis from many different,
complementary perspectives.

We demonstrated in Chapter 3 (p.25) that Dynamix not only supports the Feature Affinity mea-
surement defined in this work, but also accommodates metrics from other Feature Identification
techniques such as the Software Reconnaissance approach [Wilde and Scully, 1995] and dedication
and concentration metrics proposed by Wong et al. [Wong et al., 2000].

Extensibility is an important aspect of Dynamix. In Chapter 5 (p.67) and Chapter 6 (p.87) we demon-
strated the extensibility of Dynamix to support evolution analysis of multiple versions of a system,
and in Chapter 8 (p.127)), we demonstrated extensions to our model to incorporate mining source code
repository data to correlate developers with the static and dynamic entities of Dynamix.
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Figure C.1: DynaMoose, Moose and the Instrumentation Layer.

Structure of the Chapter. In the next section (Section C.1 (p.168)) we provide an overview of
DynaMoose in the context of the overall architecture of Moose. In Section C.2 (p.169) we outline the
tools we use to extract feature traces from different object-oriented applications. Then in Section C.3
(p.170) we briefly describe the tools we used to perform our feature-centric analysis.

C.1 Architectural Overview

Figure C.1 (p.168) shows the position of DynaMoose in the overall architecture of Moose. Different
analysis tools and components of Moose are represented by a rectangles. The edges between the
rectangles and DynaMoose indicate that DynaMoose interfaces or uses the features of these tools or
components to support feature analysis. The default meta-model of Moose is FAMIX, a language
independent meta-model [Demeyer et al., 2001]. Moose has a repository that can store multiple
models providing the necessary infrastructure for holding and managing multiple versions.
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At the core of DynaMoose is the implementation of Dynamix. In our implementation, Dynamix is
built on top of FAMIX [Demeyer et al., 2001] and is MOF 2.0 compliant.

Dynamix extends the meta-model with the notion of features. When DynaMoose is loaded in Moose,
then Moose is feature aware (i.e., the entire environment is capable of manipulating features).

C.2 Extracting Traces of Features

One of the fundamental task of dynamic analysis is to obtain and manipulate runtime traces of a
system’s behavior. Typically, dynamic analysis involves intrumenting the program under investi-
gation to record its runtime behavior. Detailed knowledge of the target programming language or
virtual machine is required to implement dynamic analysis tools. Our focus was on obtaining feature
traces.

— We built J-Wiretap to extract traces from Java applications. J-WireTap is built on the JIP (Java
Interactive Profiler) [jip, 2006] and the JavaAssist library1. The JIP profiler is based on the
JVMTI interface and provides control to turn on and off profiling at runtime. With this tool we
generate one trace containing marked features (i.e., we mark the start and end of the individual
traces). With our J-WireTap tool, we export the feature traces to a MSE format2, which describes
Dynamix execution entities (Features, Activations and Instances). We used the J-WireTap for
the ArgoUML experiments described in Chapter 4 (p.43) and Chapter 8 (p.127).

— We built TraceScraper to perform code instrumentation for Smalltalk based on the method wrap-
pers tool of Brant et al.. [Brant et al., 1998]. TraceScraper runs feature exercising scripts and
captures individual traces of the executions. The traces are modeled as Dynamix entites. We
used TraceScraper for our experiments described in Chapter 5 (p.67) and Chapter 6 (p.87).

— For our experiments with Pier (Chapter 3 (p.25)) we used the Object-Flow Tracer [Lienhard et
al., 2006]. The Object Flow Tracer is implemented for the Squeak environment. It adopts an or-
thogonal view of runtime behavior by capturing not only the message sends, but also how object
references are passed around a system at runtime. When analyzing the dynamic relationships
between features, as described in Chapter 3 (p.25), we focused on how instances were accessed
between features.

1http://www.jboss.com/products/javassist
2http://smallwiki.unibe.ch/moose/mseformat/
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C.3 Using the Tools of the Moose Reengineering Environment

We built our DynaMoose analysis tool to integrate and use other tools of the Moose reengineering
environment. In this section we outline which Moose tools we used and for which analysis tech-
nique.

C.3.1 Visualizing Features and Feature-enriched Structural Views

One key element of the approaches we describe is visualization. We implemented two main types of
visualizations, based on two distinct software tools:

— CodeCrawler is a visualization tool implementing polymetric views [Lanza and Ducasse, 2003;
Ducasse and Lanza, 2005]. It is based on a graph notion where the nodes and edges in the graph
represent entities in a model. The view of dynamic data presented in Chapter 2, Figure 2.1 (p.13)

is an example of a polymetric view.

— TraceCrawler [Wysseier, 2005] interprets the trace information provided by TraceScraper and
controls the visualization. It processes execution traces in the Moose model and represents the
events of the trace as 3D visualizations. The visualization is created by CCJun [Wysseier, 2004]
which is an extension of CodeCrawler [Lanza, 2003] and based on the 3D framework Jun.

Our 3D visualizations provide an overview of the entire collection of data that is represented.
This can often be difficult to interpret in the case of large systems with a large number of classes.
Therefore the interactive capabilities of our visualization are integral to the discussion of our
analysis approach.

— Mondrian [Meyer, 2006] provides basic building blocks to allow declarative scripting to express
visualizations based on an underlying model. We made extensive use of Mondrian visualizations
in this dissertation. For example, we represent our compact feature views (Chapter 3 (p.25)) and
the variations we used to represent changes to features over a series of versions (Chapter 6 (p.87))
with simple mondrian visualizations. Our Mondrian visualizations are polymetric representa-
tions as we map metrics (e.g., Feature Affinity) to the nodes and edges of the graph visualizations
we use.

Mondrian visualizations are also interactive. We can query the nodes to obtain more fine-grained
details about the underlying entity which it represents (e.g., class name or source code).
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C.3.2 Evolution Analysis

Van, the version analysis tool of Moose, supports the analysis of multiple versions of software sys-
tems [Gı̂rba, 2005]. We exploited the history and version analysis capabiliities of Van by extending
our Dynamix meta-model with History and Version entities for both structural (e.g., Class) and ex-
ecution (e.g., Feature) entities. In DynaMoose we implemented extensions to Van to manipulate
History and Version entities and to define feature-centric history and version properties.

C.3.3 Developer Analysis

Chronia is an implementation of a CVS protocol to allow direct connectivity to CVS repositories
[Seeberger, 2006]. Our developer analysis technique described in Chapter 8 (p.127) uses Chronia
to extract developer data from a CVS repository and model the resulting data in Moose. In our
approach, we establish relationships between the repository data extracted by Chronia and Dynamix
so that we associate developers with features.

C.4 Summary

We provided a brief overview of the tool environment of our feature-centric analysis techniques.
In particular, we explained the visualization tools and their role in the analysis techniques de-
scribed in this disseration. We highlighted which Moose tool was used in each of the analysis
techniques.
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