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Abstract

Despite common belief, software engineers do not spend most time writing code.
It has been shown that an approximate 50–90% of development time is spent on
code orientation, that is navigation and understanding of source code. This may
include reading of local source code and documentation, searching the internet
for code examples and tutorials, but also seeking help of other developers.

In this dissertation we argue that, in order to support software engineers
in code navigation and understanding, we need development tools that provide
first-class support for the code orientation clues that developers rely on. We
argue further that development tools need to tap unconventional information
found in the source code in order to provide developers with code orientation
clues that would be out of their reach without tool support.

In a qualitative user study we identify four fundamental categories of ori-
entation clues that developers use for code navigation and code understanding:
lexical clues referring to identifier names and concepts, social clues referring to a
developer’s personal network and to internet communities, episodic clues refer-
ring to personal first-hand memories of a developer, and spatial clues referring
to the system’s architecture or to source code’s on-screen position as displayed
by development tools.

We introduce the following approaches that tap unconventional information
found in the source code in order to better support code orientation: The Evo-
Cloud tool uses lexical information found in source code to summarize parts
of a system, the whole system, or even the system’s entire evolution. The Ha-
pax tool clusters software systems using lexical information found in source
code. The Chronia tool addresses the episodic memory of developers by pro-
viding them with a visualization that tells the story of the team collaboration
as recorded by the version control system. The Devlect tool uses lexical infor-
mation found in contributions that developers shared with open source systems
to build a recommendation model for bug reports. The Bender tool uses
cross-project collaboration of developers in open source projects to estimate the
credibility of code search results.

Among the code orientation strategies used by developers, spatial clues stand
out for not having a first-class representation in the ecosystem of source code.
Therefore, we introduce Software Cartography, an approach to create spatial on-
screen visualization of software systems based on non-spatial properties. Soft-
ware maps are stable over time, embedded in the development environment, and
can be shared among teams. We implement the approach in the CodeMap tool
and evaluate it in a qualitative user study. We show that software maps are
most helpful to explore search results and call hierarchies.
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Chapter 1

Introduction

Despite common belief, software engineers do not spend most time writing code.
An approximate 50–90% of development time is spent on code navigation and
understanding [1, 123, 104]. This may include reading of local source code and
documentation, searching the internet for tutorials and code examples, but also
seeking help of other developers.

User studies have found that software engineers use at least four kinds of
cognitive clues for code orientation: lexical clues, social clues, episodic clues
and spatial clues [123, 104, 170, 70, 113]. Examples of code orientation by these
clues are: searching for an identifier name (lexical clue), contacting a coworker
with known expertise (social clue), referring to a design decision that was made
years ago (episodic clue), or navigating to the location of a piece of code within
a source text file (spatial clue).

In our research, we are interested in how to support software engineers when
they are facing technical questions that involve code navigation and code un-
derstanding. We investigated how software engineers find answers to technical
questions in order to learn about their code orientation strategies (Chapter 3).
We found that the way towards an answer is typically split into two parts. In
a first part, developers aim to turn their fuzzy initial clue into a concrete tex-
tual clue, for example by running a series of web searches and inspecting the
results. Developers particularly struggle to resolve social, episodic and spatial
clues during the first part. In a second part, they use that newly found textual
clue to query resources on the internet or in local documentation. This two-step
procedure might be an artifact of current tool limitations, that is developers aim
to find a lexical clue first because other clues are harder to follow up, or it might
be a general problem-solution strategy. In either case, developers need better
tool support to follow up non-textual clues such as social, episodic and spatial
clues.

Among the code orientation strategies used by developers, spatial clues stand
out for not having a first-class representation in the ecosystem of source code.
Spatial clues typically lack a first-class counterpart in source code since software
systems do not have an inherent spatial extent. Nevertheless, we found that
developers do refer to source code by ad hoc spatial properties, such as clues
regarding the position of a code artifact on-screen or within a source text file.
Given the potential of spatial clues for code navigation, we investigated how to
best represent software systems using spatial visualizatons.

9



10 CHAPTER 1. INTRODUCTION

In this dissertation we introduce Software Cartography, a novel cartographic
visualization of software systems that enables code orientation by on-screen spa-
tial clues (Chapter 6). The software map visualizations created by our approach
offer a spatial representation of software systems based on lexical information
found in the system’s source code. Software maps are stable over time and can
be used by individual developers as well as shared by a team.

We implemented a prototype tool and evaluated it in a qualitative user study.
We found that software maps are most helpful to explore search results and call
hierarchies (Chapter 7).

1.1 Types of Code Orientation

We introduce the term code orientation in order to refer to the navigation
and understanding activities that happen while developers are looking for an
answer to their technical question. Code orientation is thus an umbrella term for
code navigation and code understanding, and includes activities such as reverse
engineering, software exploration and program comprehension.

In the context of this work, we categorize code orientation activities accord-
ing to the kind of cognitive clues being followed-up (lexical clues, social clues,
episodic clues and spatial clues) and characterize orientation tasks according to
their aim (refind, discovery and learning) and their reach (ranging from current
working set to the entire internet).

The aim of code orientation tasks can be “refinding” information or source
code that was encountered in the past, discovering new information or source
code, or learning how to solve a problem by talking to people with expertise,
by reading a book, or by getting advice from a mailing list or from a blog post.

The reach of code orientation tasks can range from the current working
set to the entire internet. The current working set can be a single method
or all open files. The local codebase can be the current project or the entire
codebase of a developer’s company, but also includes all local documentation
and learning resources. Eventually the ultimate reach is accessing the internet.
The internet offers two kinds of knowledge bases: on the one hand there are
dedicated code repositories that only contain source code; on the other hand,
there is an amazing amount of code examples that are contained in blog posts
and websites. The latter are a typically more useful for code orientation since
they have been selected through collaborative filtering, that is the authors of
the embedding content carefully selected those examples for their usefulness for
learning and copy-pasting.

The reach of code orientation tasks often correlates with their aim. For ex-
ample, refinding tasks are typically targeted at the local codebase, with which
the developers are familiar, whereas discovery and learning tasks are typically
targeted at the internet. But just as likely, parts of the local code based might
be unknown to a developer and thus become the target of a discovery task, or it
may be that a developer recalls having read about the solution on the internet
and attempts to refind information at a global scale on the internet. Generally,
the nature of information resources changes when moving from a local to global
information source. Local information sources are typically limited, homoge-
nous and authored by a small group of trusted people with known expertise.
Global information sources are typically unlimited, heterogenous and authored
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by people with unknown expertise and unknown trustworthiness.
In the following we introduce the categorization of clues that developers use

for code orientation. We motivate the use of orientation clues by developers,
provide examples, shed light on underlying assumptions, and discuss current
tool support and its shortcomings.

Orientation by Lexical Clues

We found that lexical clues are by far the most common clue used by software
engineers for code orientation. Examples of lexical clues are recalling the name
of an identifier, or using a keyword to search the web for documentation or code
examples.

Developers rely on lexical clues because they assume that names are mean-
ingful, that there is a meaning to names and that names have been meaningfully
chosen. Lexical clues are often pointers to lexical information found in source
code, that is identifier names or the vocabulary of comments. However, lexical
information is not limited to source code but also found in emails, bug reports
and web sites. For example, following up a lexical clue might guide the developer
to a wikipedia page that contains the algorithm he’s looking for.

Simple keyword search and regular expressions are of great help to follow
up lexical clues. However, a major problem with lexical clues is that developers
have to guess how other people name things. (It is often said that there are two
hard problems in software engineering, caching and naming.) Using information
retrieval and natural language processing can help to go beyond the limitation
of keyword-based approaches.

Orientation by Social Clues

Social clues are often not considered part of program comprehension, yet they
are most helpful for discovery and learning. Coworkers are the most frequent
source of information used by developers [104]. Examples of social clues are
asking coworkers for help, or posting a question to a discussion board on the
web where professionals share their expertise.

Developers rely on social clues because they assume that people have ex-
pertise, in particular that other people have more or different expertise so they
can be of help to find answers. Typically, the knowledge in the mind of team
members is more accurate than documentation. Social clues are often pointers
to other persons from the developer’s personal network, either a co-worker or a
friend. However, social clues are not limited to the personal network but can
also be pointers to mailing lists and other expert groups that are ready to share
their expertise online on the internet.

Support for code orientation by social clues is typically not present in de-
velopment tools. The current state of the art is that developers have to recall
the name of a person with expertise, which basically boils down to a lexical clue
that has to be used as a proxy. Using techniques and ideas drawn from social
media can help address these limitations and may provide access to social clues
that are beyond the reach of the developer’s personal network.
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Orientation by Episodic Clues

Episodic clues are most helpful to refind source code that has been written or
used in the past, since as humans we have strong episodic memories. Episodic
clues are typically tied to personal memory, as for example in recalling the
first-hand experience of a conference talk or of a pair programming session.

Developers rely on episodic clues because they assume that their knowledge
in the past has been more accurate than their current knowledge. That is a valid
assumption because as humans our episodic memory works far better than our
structural memory. Typically developers recall “that” they knew the answer
before, but not “what” exactly constituted the answer.

Episodic clues are often pointers to past interaction with books, mailing lists
and other people, but may also be pointers to past snapshots of the current or a
related software system. Information related to episodic clues is often stored in
external databases, such as version control repositories and mailing list archives,
and thus not integrated with development tools. Using data mining techniques
and embedding the results in a story-telling visualization can help to address
this limitation and may provide access to episodic clues that are beyond the
reach of a single developer’s personal experience.

Orientation by Spatial Clues

Spatial clues may help to reduce the cognitive load of orientation in a hyper-
linked document space, such as software systems. We found that spatial clues
can be of three kinds, either they are structural or conceptual as in recalling
which class or architectural layer some functionality belongs to, or they are true
spatial clues as in recalling the on-screen or within-text-file position of a given
function.

Developers rely on spatial clues because as humans they have strong spatial
capabilities. The spatial capabilities of our brain are impressive. We found in a
user study that developers form a spatially meaningful internal mental model of
software systems (Chapter 7) even though the external representation of source
code has no inherent spatial dimension.

Current support for code orientation by spatial clues in development tools
is ad hoc at best. The system is presented as a tree of alphabetically ordered
files and inside a file the source code is linearized as a text file. While this
might accidentally help the developer to refind some code by a spatial clue,
support for discovering yet unknown source code by spatial clues is limited.
Providing developers with a cartographic visualization so they can use spatial
on-screen clues for navigation and understanding of code may help to go beyond
the limitation of source code’s missing spatial extent.
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1.2 Thesis Statement

We state our thesis as follows

To support software engineers in code navigation and understand-
ing we need development tools that provide first-class support for
the code orientation clues that developers rely on. We need to tap
unconventional information found in the source code in order to pro-
vide developers with code orientation clues that would be out of their
reach without tool support.

1.3 Contributions

We present the following contributions that explore the support of code orien-
tation clues by development tools. Common to all these contributions is that
they tap unconventional information found in source code and thus provide de-
velopers with code orientation clues that would otherwise be out of their reach.
For example, in Chapter 8 we present a story-telling visualization of a system’s
history that enables new hires to draw on episodic memories that they would
not have access to otherwise.

Each of these contributions has been published as one or more peer-reviewed
publications at international conferences or in international journals. For each
contribution we categorize aim and reach of the provided code orientation clues,
through which sources of information these clues are established, and how de-
velopers may query the development environment for those clues.

Lexical Clustering

Aim Refinding and discovering topics.
Reach Local codebase of a system.
Clues Lexical (established through lexical information).
Query Visual analytics and fuzzy keyword search.

Keyword matching and regular expressions are powerful means for code ori-
entation by lexical clues. However, current tool support fails to meet the devel-
oper needs when they are following up on a fuzzy lexical clue.

We present an approach to model a system’s lexical information in a sta-
tistical text model that resolves synonymy and polysemy with unsupervised
learning. We use the statistical text model to cluster the parts of a system
by topic, and visualize the topics using correlation matrices and distribution
maps, a specialized visualization that illustrates the distribution of topics over
the packaging of a system. We implemented the approach in a prototype and
evaluated its application.

For more information please refer to Chapter 4. The work on lexical clus-
tering (formerly also known as “semantic clustering”) has been published as a
peer-reviewed conference paper [109] which has been extended as my Master’s
thesis [107] and as a peer-reviewed journal paper [110].
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Code Summarization

Aim Refinding and discovering topics.
Reach Part of a system’s codebase or history.
Clues Lexical and episodic (established through lexical information).
Query Visual analytics of word clouds.

When developers encounter a piece of source code for the first time, they
are typically not presented with a high-level summary of the code’s topics. We
present an approach to summarize a piece of code as a word cloud, consisting
of the statistically most significant terms that set this part of system apart
from the rest. The same approach can be used to compare two systems or two
versions of the same system. Presenting those word clouds to the developer
helps to lexically query the topics, as well to recover and tell the story of a
system’s history and thus enabling developers to draw from episodic memories
that they possibly never experienced first-hand. We implemented the approach
in a prototype and evaluated its application.

For more information please refer to Chapter 5. The work on code summa-
rization has been published as a peer-reviewed conference paper [108].

Software Cartography

Aim Code orientation in general.
Reach Local codebase and possibly history of a system.
Clues Spatial (established through lexical and structural information).
Query Visual analytics of a cartographic visualization.

Current tool support for code orientation by spatial clues is ad hoc at best,
most striking being the lack of spatial on-screen representations of source code.
Without such a representation, developer are barely able to draw on the strong
spatial capability of the human brain.

We present Software Cartography, an approach that provides a novel car-
tographic on-screen visualization such that developers can start using spatial
clues for code orientation. Since software has no inherent spatial dimenions, we
use lexical and structural information found in the source code to establish a
spatial layout of the local code base. The generated software maps are stable
over time and can be shared among members of a team to establish a common
mental model of the system. We implemented our approach in a prototype
and evaluated it in a user study. We found that it is most helpful for spatially
exploring search results and call hierarchies.

For a brief introduction please refer to the next section, and for more in-depth
information please refer to Chapter 6 and Chapter 7. The work on software
cartography has been published as two peer-reviewed conference papers [115,
112] one of which has been extended into a peer-reviewed journal paper [111].
The Codemap prototype and its evaluation in a user study have been realized
with the support of David Erni and Peter Loretan and is featured as part of
their Master’s thesis [66, 129].
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Stories of Collaboration

Aim Learning about team collaboration.
Reach Team of a project’s local codebase.
Clues Episodic (established through social and historical information).
Query Visual analytics of a story-telling visualization.

Episodic clues are of great help to developers when having to find their way
through a system, however episodic memory is only available to those developer
who know the system’s history first-hand. We present an approach to recover
and tell a system’s history as a story-telling visualization. Our approach uses
social and historical information taken from the version control system to es-
tablish an episodic visualization of the system’s history. Both new hires and
seasoned team members can use this visualization to learn about episodes from
the system’s history in order to take better technical decisions when working
with the system in the future. We implemented the approach in a prototype
and evaluated its application.

For more information please refer to Chapter 5. The work on visualizing
code ownership is part of Mauricio Seeberger’s Master’s thesis [166] and has
been published as a peer-reviewed conference paper [75] that was co-authored
by Tudor Gı̂rba and myself.

Discovery of Experts

Aim Discovery of experts.
Reach Experts who committed to the local codebase.
Clues Social (established through lexical and historical information).
Query Fuzzy problem description given as natural language text.

Given current tool support, social clues have to be followed up through the
lexical proxy of a person’s name. We present an approach to discover experts
without having to know their names. Given a problem description, such as a
work item or a bug report, we provide automated means of linking the person
with the expertise on that matter. In order to model the developer’s expertise
we use lexical information found in their contributions to the version control
system. We implemented the approach in a prototype and evaluated it against
a benchmark that consists of bug-report assignments.

The work on discovery of experts has been realized with Dominique Matter,
and has been published as a peer-reviewed conference paper [141] as well as in
Master’s thesis [140].

Credibility of Code Search

Aim Discovery of trustworthy projects.
Reach Open-source projects on the internet.
Clues Episodic (established through social and historical information).
Query Name of an open-source project.
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Searching for code examples or libraries on the internet is a common pro-
gramming task. In interviews with developers, we have found that credibility
is one of the major issues when copying source code from an external and thus
untrusted source such as the internet (Chapter 3). We present an approach to
automatically assesses the trustworthiness of open-source projects based on the
credibility of their authors. Our approach infers the trustworthiness of unknown
projects from the trustworthiness of well-known projects, if they have common
contributors. We implemented the approach in a prototype and evaluated it
against a benchmark in bug-report assignment .

The work on discovery of experts has been realized by my student Florian
Gysin, and has been published as a peer-reviewed workshop paper [81] that he
first-authored as well as his Bachelor’s thesis [80], in addition his work won the
ACM Student Competition award 2010 [79].

1.4 Software Cartography in a Nutshell

Current tool support for code orientation by spatial clues is ad hoc at best,
most striking being the lack of spatial on-screen representations of source code.
Without such a representation, developers are barely able to draw on the strong
spatial capability of the human brain. With Software Cartography we aim to
address this limitation. We provide a cartographic on-screen visualization that
software engineers can start using to obtain spatial clues for code orientation.
Since software has no inherent spatial structure, we use lexical and structural
information found in the source code to establish a spatial layout.

Software Cartography embeds a cartographic visualization of the current
working set in the development environment (IDE) of software engineers. The
generated software map visualizations are stable over time and can be shared
among members of a team to establish a common mental model of the system.
Software maps are most useful when they support as many development tasks
as possible with spatial clues. Therefore we integrated Software Cartography in
the IDE so that a map of the software system may always be present and may
thus support as many development tasks as possible.

The general approach of Software Cartography, as illustrated in Figure 1.1,
is as follows:

1. We parse the vocabulary of source files into term-frequency histograms.
All text found in raw source code is taken into account, including not only
identifiers but also comments and literals.

2. We use Multidimensional Scaling (MDS) [33] to map the term-frequency
histograms onto the 2D visualization pane. This preserves the lexical co-
relation of source files as well as possible.

3. We use cartographic visualization techniques to render an aesthetically
appealing landscape.

We implemented the approach in Codemap, a prototype plug-in for Eclipse
that is available under an open-source license. The most recent version1 of the
plug-in supports the following tasks:

1http://scg.unibe.ch/codemap

http://scg.unibe.ch/codemap
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Figure 1.1: Construction steps of a software map, from left to right: 1) 2-
dimensional embedding of files on the visualization pane; 2.a) circles around
each file’s location, based on class size in KLOC; 2.b) each file contributes a
Gaussian shaped basis function to the elevation model according to its KLOC
size; the contributions of all files are summed up; 3) fully rendered map with
hill-shading, contour lines, and filename labels.

• Navigation within a software system, be it for development or analysis.
Codemap is integrated with the package explorer and editor of Eclipse.
The selection in the package explorer and the selection on the map are
linked. Open files are marked with an icon on the map. Double clicking
on the map opens the closest file in the editor. When using heat map
mode, recently visited classes are highlighted on the map.

• Comparing software metrics to each other, for example to compare bug
density with code coverage. The map displays search results, compiler
errors, and (given the Eclemma plug-in is installed) test coverage infor-
mation. More information can be added through an plug-in extension
point.

• Social awareness of collaboration in the development team. Codemap
can connect two or more Eclipse instances to show open files of other
developers. Colored icons are used to show the currently open files of all
developers. Icons are colored by user and updated in real time.

• Understand a software system’s domain. The layout of Codemap is based
on clustering software by topic [110], as it has been shown that, over time,
the lexicon of source code is more stable than its structure [8]. Labels
on the map are not limited to class names, but include automatically
retrieved keywords and topics.

• Exploring a system during reverse engineering. Codemap is integrated
with Eclipse’s structural navigation features, such as search for callers,
implementers, and references. Arrows are shown for search results. We
apply the Flow Map algorithm [154] to avoid visual clutter by merging
parallel arrow edges. Figure 1.2 shows the result of searching for calls to
the #getSettingOrDefault method in the MenuAction class.
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Figure 1.2: Thematic codemap of a software system, here the Codemap tool it-
self is shown. Arrow edges show outgoing calls from the #getSettingOrDefault
method in the MenuAction class, which is currently active in the editor and thus
marked with a speech-balloon label.
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1.5 Outline

The dissertation is structured as follows

Chapter 2 discusses related work. We present various user studies and solu-
tions to code orientation and analyse the shortcomings in the context of
each orientation clue.

Chapter 3 presents a user study that looks at how developers find answers to
technical questions and discusses code orientation by cognitive clues. The
work presented in this chapter has been done in collaboration with Robert
DeLine while interning at Microsoft research.

Chapter 4 presents an approach for clustering and summarizing of software
systems using lexical information found in source code. The approach is
implemented in the Hapax tool.

Chapter 5 presents an approach that uses lexical information found in source
code to summarize parts of a system, the whole system, or even the sys-
tem’s entire evolution. The approach is implemented in the EvoClouds
tool.

Chapter 6 introduces Software Cartography, an approach to establish a carto-
graphic visualization that facilitates spatial code orientation by individuals
or teams. The approach is implemented in the Codemap tool.

Chapter 7 reports on a qualitative user study that evaluates the prototype
implementation of the Software Cartography approach presented above.

Chapter 8 presents an approach for addressing the episodic memory of de-
velopers by providing them with a visualization that tells the story of
the team collaboration as recorded by the version control system. The
approach is implemented in the Chronia tool.

Chapter 9 presents an approach that uses lexical information found in con-
tributions that developers shared with open source systems to build a
recommendation model for bug reports. The approach is implemented in
the Devlect tool.

Chapter 10 presents an approach that uses cross-project collaboration of de-
velopers in open source projects to estimate the credibility of code search
results. The approach is implemented in the Bender tool.

Chapter 11 concludes the dissertation and outlines future work.
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Chapter 2

Related Work

Investigation of human factors is a rather recent trend in the field of software
engineering research. While there have always been papers that focused on
human factors, a coherent body of research is yet to emerge. Researchers are
starting to investigate the user needs of software engineers in qualitative studies,
collecting for example the most frequent information needs of developers. Also,
researchers in the field of development tool building are starting to evaluate
the usability of their prototypes rather than just giving proof of a prototype’s
technical correctness.

At the same time, development tool building in industry is going through a
similar transition. While it used to be that software engineers built their own
tools (as often still is the case) we can observe a professionalization of devel-
opment tool building as well as a change in the demographics of developers.
Development tools are built by specialized engineers whereas the demographics
of developers is growing to include more and more end-user programmers who
lack the skills to build their own tools. In particular the store-based distribution
models for mobile applications opened up a new market of end-user developers
with very specific needs, but without the skills to build their own development
tools. Independent of whether the assumption that development tool builders
inherently know which tool to build because they address their own needs ever
used to be valid or not—these days it certainly does not apply anymore: devel-
opment tool building is about to become a specialized profession which opens
up new and exciting research opportunities.

Related work on development tool building is basically found in two distinct
bodies of research literature. On the one hand, there is the solution-driven work
published at venues of the software maintenance community (such as ICPC1,
ICSM2 and WCRE3). On the other hand, there is problem-oriented work pub-
lished at venues of the human-computer interaction community (such as CHI4,
CSCW5 and VLHCC6) and, as of recently, also the software engineering com-

1International Conference on Program Comprehension
2International Conference on Software Maintenance
3Working Conference on Reverse Engineering
4International Conference on Human-Computer Interaction
5International Conference on Computer-Supported Collaborative Work
6Symposium on Visual Languages and Human-Centric Computing

21



22 CHAPTER 2. RELATED WORK

munity (most prominently ICSE7 with its CHASE8 workshop).
The solution-driven literature typically reports on prototypes of external

development tools that exploit novel technical approaches. Evaluation is done
by applying the prototype on a small number of cases, typically the codebase
of one or more open-source projects. This is done as proof-of-concept that it
is feasible to realize the proposed technical approach and that the prototype
implementation is technically correct. The user needs addressed by this kind
work are typically not grounded in the findings of user studies, but rather drawn
from the personal development experience of the researchers themselves. In
recent years, some researchers in that field started to evaluate their prototypes
using controlled experiments. Controlled experiments have been developed in
psychology to study phenomena that are easy to isolate in the lab, such as
basic human behavior. Isolating software engineering tasks in a lab situation is
a daunting, often near impossible endeavour given the inherent complexity of
software engineering and how little understood it still is. Using quantitative user
studies is common practice to evaluate end-user applications, as are development
tools, in industry.

The problem-oriented literature typically reports on surveys and interviews
with professional developers and sometimes presents a tool prototype that ad-
dresses a specific user need identified by the initial user study. The results of
the user studies are typically distilled as lists of common actions, questions or
problems that document the most common or the most frequent user needs of
software engineers. Evaluation of prototypes is done by qualitative user stud-
ies, that is again interviewing developers that used the prototype tool and thus
showing that the tool in fact addresses the user need that it was built for. Some
prototypes are evaluated using quantitative studies, typically not using con-
trolled experiments but rather measuring frequency, correctness or performance
of certain actions that are related to the addressed user need.

The remainder of this chapter is structured as follows. First, related work
on developer needs is discussed. Then, tool prototypes are discussed, loosely
grouped by the four categories of code orientation clues, that is lexical, so-
cial, episodic and spatial. Where applicable, literature on related information
sources, such as for example lexical and social information found in source code,
is discussed as well.

2.1 User Needs

The literature on developer needs is split into two bodies of work. More recent
studies are descriptive and based on qualitative user studies whereas older work
from the eighties and nineties tends to be theoretical and is typically drawn on
personal experience rather than grounded in empirical studies.

Latoza, Venolia and Deline [123] studied the work habits of software engi-
neers in two surveys and a series of interviews. They investigated how much time
developers spend on code related activities and which are the most serious prob-
lems and questions that developers face when working with source code. They
found that developers spend an almost equal amount of time (that is each about
10–15% of development time) on editing, writing, designing and understanding

7International Conference on Software Engineering
8Workshop on Cooperative- and Human-Aspects in Software Engineering
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code, but also on communication with other developers and other activities,
such as refactoring. They found a negative correlation between working on new
features (36% of development time) and communication, which suggests that de-
velopers working on new features need less information from their team mates.
Whereas developers working on bug fixes (49% of the development time) and
maintenance (15% of development time) spend more time following up social
clues, that is communication with team mates and their social network.

With regard to problems that developers face, they found that understand-
ing the rationale behind a piece of code is the biggest problem for developers
(reported by 66% of participants). When trying to understand a piece of code,
developers turn first to the piece of code itself, and when that fails, follow up
social clues to their personal network. Also among the top problems that de-
velopers face when working with source code are: being aware of changes that
happen somewhere else (61%), understanding the history of a piece of code
(51%), understanding who owns a piece of code (50%), and finding the right
person to talk to (39%).

Ko, Deline and Venolia [104] studied the day-to-day information needs of
software engineers by observing developers and transcribing their activities in
90-minute sessions. They identified twenty-one information types and cata-
logued the outcome and source when each type of information was sought. The
most frequently sought information was awareness about artifacts and cowork-
ers. The most often deferred searches included knowledge about design and
program behavior, such as why code was written in a particular way, what a
program was supposed to do, and the cause of a program state. Developers
often had to defer tasks because the only source of knowledge was unavailable
coworkers.

The identified programmer questions span seven categories of tasks: writing
code, submitting a change, triaging bugs, reproducing a failure, understand-
ing execution behavior, reasoning about design, and maintaining awareness.
The most frequently information needs were: did I make any mistakes in my
own code? what have my coworkers been doing? what caused this program
state? in what situations does this failure occur? what is this program supposed
to do? Their ranking might be biased though as most study participants were
in a bug fixing phase.

Coworkers were the most frequent source of information, accessed at least
once for 13 of the 21 information needs. The information needs where coworkers
were most often consulted were episodic design knowledge and about execution
behavior. Developers consulted coworkers because in most cases design knowl-
edge was only in the coworker’s mind. Even when design documentation was
available developers still turned to coworkers when they questioned the accuracy
of the documentation.

Sillito, Murphy and De Volder [170] studied which questions software engi-
neers ask when evolving a code base. They conducted two qualitative studies,
one study involving newcomers and the other involving professional developers.
Based on the studies they collected and categorized 44 questions that developers
ask and how they find answers to these questions. They categorized the ques-
tions as follows: finding initial focus points (for example, which type represents
this domain concept?), building on those points (for example, which types is
this type part of?), understanding a subgraph of the system (for example, what
is the behavior these types provide together?), and questions comparing groups
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of subgraphs (for example, what is the mapping between these user interface
types and these domain model types?). They list the different features of the
development environment that were used by programmers to answer these ques-
tions (such as search by keyword or using the debugger to verify a hypothesis
about the program’s behavior) and report that there were also times when no
tool could provide direct assistance. Alas the study does not report on the use
of other resources to answer questions, such as turning to the social network of
programmers or using web search to find answers on the internet.

Fritz and Murphy [70] ran a series of interviews with software engineers and
identified 78 questions that developers ask that are hard to answer. In their
interviews, they focused on the variety and richness of questions rather than on
their frequency. They grouped the questions by people-specific questions, code-
specific questions concerning code change and ownership, question regarding the
progress of work items, broken builds and test cases, as well as questions that
refer to information found on the internet. The questions span eight domains
of information: source code, change sets, teams, work items, websites and wiki
pages, comments on work items, exception stack traces, and test cases. Because
most questions require information from more than one domain of information,
they present an information fragment model and a prototype tool that allows
developers to combine information from different sources. They report that 94%
of developers are able to easily answer selected question using their prototype
tool.

Storey, Fracchia and Müller [175] propose a series of cognitive features that
should be considered when designing software exploration (that is code orien-
tation) tools. They propose that tools should: enhance bottom-up compre-
hension, enhance top-down comprehension, integrate bottom-up and top-down
approaches, facilitate navigation, provide orientation clues, and reduce disorien-
tation effects. They present SHriMP, a tool prototype that addresses all these
issues and report on an evaluation with user studies.

The list of tools features as proposed by Storey et al. is based on program
comprehension models taken from theoretical literature on program comprehen-
sion models. The bottom-up program comprehension model by Shneiderman
and Pennington proposes that understanding is built by reading source code
and then mentally chunking or grouping those statements into higher-level ab-
stractions [169, 153]. The top-down program comprehension model by Brooks,
Soloway and Ehrlich proposes that developers understand a complete program
by reconstructing knowledge about the domain of the program and mapping
that to the actual code [37, 173]. The knowledge-based program comprehen-
sion model by Letovsky views developers as opportunistic processors capable of
exploiting both bottom-up and top-down clues [124]. The systematic and as-
needed program comprehension models by Littman and Soloway is based on the
observation that developers either read all code in detail to gain a global under-
standing or that they focus only on the code related to their current task [128].
Von Mayrhauser and Vans synthesize Soloway’s top-down model with Pennign-
ton’s model in an integrated model of program comprehension: the combined
model consists of a top-down comprehension model of the domain, a bottom-up
comprehension model of the source code and a situation-based comprehension
model of the execution behavior, plus a knowledge base of the programmers
knowledge [189].

Common to all these comprehension models is that they consider program
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comprehensions as a task performed by single engineers who are typically con-
sidered to be new to a system, rather than as a collaborative activity of engineers
that have knowledge both about the parts of the system they own as well as
knowledge about who owns other parts of the system. Social and episodic clues
are thus typically not included in these theoretical models.

When this research was published internet-scale search has not been available
to developers. As we show in our user study in Chapter 3 the internet has since
become the prime source of answers for developers when they are lost in third-
party code. Theories such as Pirolli’s information foraging theory [156, 155]
might thus be more appropriate to model the program comprehension strategies
of today’s software engineers. Information foraging draws an analogy between
human behavior when searching for information and the foraging mechanisms
that evolved to help our ancestors find food. It has been proposed to use this
analogy to better support information needs in user interfaces.

Also, to our best knowledge, there is no empirical research on generational
differences in software engineering, except a brief discussion in Andrew Hunt’s
“Pragmatic Thinking and Learning” [95]. There might be generational differ-
ences that impact the application of findings from eighties on today’s generation
of software engineers in particular given the adoption of agile methodologies by
the younger generation.

2.2 Lexical Information

Using data mining to exploit lexical information found in source code has re-
ceived quite some attention in recent years. Publications on this topic are typi-
cally solution-driven and apply information retrieval algorithms on source code
that are taken from work on natural language text. Latent semantic indexing
[49] and, more recently, latent dirichlet analysis [18] have been adopted by the
software maintenance community.

There have been attempts to apply ontologies to the lexical information
found in source code. However, based on communication with other researchers
and personal experience, there have been no successful application in this direc-
tion. The vocabulary found in source code is typically rather technical and uses
too many broken metaphors, such as “storing persons in a tree,” that ontologies
would be able to infer a meaning domain model without human supervision.

The use of information retrieval techniques for software comprehension dates
back to the late eighties. Frakes and Nejmeh proposed to apply them to source
code as if it were a natural language text corpus [68]. They applied an IR system
based on keyword matching, which supported simple searches using wildcards
and boolean operators. More recently, Antoniol et al. have published a series
of papers on recovering code to documentation traceability [6, 7].

Maletic and Marcus were the first to propose using LSI (latent semantic
indexing) to analyze software systems. In a first work they categorized the
source files of the Mosaic web browser and presented in several follow ups other
applications of LSI in software analysis [134]. Their work is a precursor of our
work presented in Chapter 4, as they proved that LSI is a usable technique to
compare software source documents. In follow up work, Marcus and Maletic
used LSI to detect high-level conceptual clones, that is they go beyond just
string based clone detection using the LSI capability to spot similar terms [136].
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They select a known implementation of an abstract datatype, and manually
investigate all similar source documents to find high-level concept clones. The
same authors also used LSI to recover links between external documentation
and source code by querying the source code with queries from documentation
[135].

Kawaguchi et al. used LSI to categorize software systems into open-source
software repositories [102]. Their approach uses the same techniques as ours, but
with a different set up and other objectives. They present a tool that categorizes
software projects in a source repository farm, that is they use entire software
systems as the documents of their LSI space. They use clustering to provide
overlapping categorizations of software, whereas we use clustering to partition
the software into distinct topics. They use a visualization of they results with
the objective to navigate among categorizations and projects, similar to the
Softwarenaut tool [132], whereas we use visualizations to present an overview,
including all documents and the complete partition, at one glance.

Marcus et al. employed LSI to detect concepts in source code [138]. They
used LSI as a search engine and searched in the code the concepts formulated
as queries. Their article also gives a good overview of the related work. Marcus
et al. also use LSI to compute the cohesion of a class based on the semantic
similarity of its methods [137]. In our work, we extend this approach and
illustrate on the correlation matrix both semantic similarity within a cluster
and the semantic similarity between clusters.

De Lucia et al. introduce strategies to improve LSI-based traceability de-
tection [47]. They use three techniques of link classification: taking the top-n
search results, using a fixed or a variable threshold. Furthermore they create
separate LSI spaces for different document categories and observe better re-
sults that way, with best results on pure natural language spaces. Lormans and
Deursen present two additional links classification strategies [130], and discuss
open research questions in traceability link recovery.

Di Lucca et al. also focus on external documentation, automatically assign-
ing maintenance requests to teams [56]. They compare approaches based on
pattern matching and clustering to information retrieval techniques, of which
clustering performs better.

Huffman-Hayes et al. compare the results of several information retrieval
techniques in recovering links between document and source code to the results
of a senior engineer [93]. The results suggest that automatic recovery performs
better than human analysis, both in terms of precision and recall and with
comparable signal-to-noise ratio.

Čubranić et al. build a searchable database with artifacts related to a soft-
ware system, both source code and external documentation [46]. They use a
structured meta model, which relates bug reports, news messages, external doc-
umentation and source files to each other. Their goal is to support software
engineers, especially those new to a project, with a searchable database of what
they call “group memory”. They implemented their approach in an eclipse
plug-in called Hipikat.

Anslow et al. [5] visualized the evolution of words in class names in Java
version 1.1 and Java version 6.0. They illustrated the history in a combined word
cloud that contains terms from both versions. Each word is printed twice, font
size represents word frequency and color the corpus. As such they compared
word counts, which assumes normal distribution and is thus not as sound as
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using log-likelihood ratios (see Chapter 5).
Linstead et al. [127] analysed the vocabulary of over 10,000 open source

projects from Sourceforge and Apache. They provide strong evidence of power-
law behavior for word distribution across program entities. In addition, they
analyse the vocabulary of structural entities (class, interface, method, field) and
report the top-10 most frequent terms, as well as the top-10 unique terms for
each structural category.

Lexical information of source code has further proven useful for various tasks
in software engineering (for example [9, 137, 159]). Many of these approaches ap-
ply Latent Semantic Indexing and inverse-document frequency weighting, which
are well-accpeted techniques in Information Retrieval but are according to Dun-
ning “only justified on very sketchy grounds [64].”

Baldi et al. [18] present a theory of aspects (the programming language
feature) as latent topics. They apply Latent Dirichlet Analysis (LDA) to detect
topic distributions that are possible candidates for aspect-oriented program-
ming. They present the retrieved topics as a list of the 5 most likely words.

2.3 Social Information

In this section we first discuss work related to trustability in code search engines
and the work related to modelling developer expertise and bug triage.

Since the rise of internet-scale code search engines, searching for reusable
source code has quickly become a fundamental activity for developers [15]. How-
ever, in order to establish search-driven software reuse as a best practice, the
cost and time of deciding whether to integrate a search result must be mini-
mized. The decision whether to reuse a search result or not should be quickly
taken without the need for careful (and thus time-consuming) examination of
the search results.

Credibility (sometimes also referred to as trustability) is a major concern
for reusing code. When a developer reuses code from an external sources he has
to trust the work of external developers who are unknown to him. This is not
to be confused with trustworthy computing, where clients are concerned with
security and reliability of a computation service.

For a result to actually be helpful and serve the purpose originally pursued
with the search it is not enough to just match the entered keywords. It is
essential that the developer know at least the license under which certain source
code was published, otherwise he will not be able to use it legally. Furthermore,
it is very helpful to know from which project a search result is taken when
assessing its quality. User studies have shown that developers rely on both
technical and human clues to assess the trustability of search results [73]. For
example developers will prefer results from well-known open source projects over
results from less popular projects.

The issue of providing meta-information alongside search results and thereby
increasing trustabilty has not been widely studied and we are trying to address
this with our work.

In recent years special search engines for source code have appeared, namely
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Google Code Search 9, Krugle 10 and Koders 11. They all focus on
full-text search over a huge code base, but lack detailed information about the
project. Search results typically provide a path to the version control repository
and little meta-information on the actual open source project; often, even such
basic information as the name and homepage of the project are missing.

Sourcerer 12 by Bajracharya et al. [16] and Merobase 13 by Hummel et
al. [94] are research projects with an internet-scale code search-engine. Both
provide the developer with license information and project name. Merobase also
provides a set of metrics such as cyclomatic- and Halstead complexity.

In addition to the web user interface, both Sourcerer and Merobase are also
accessible through Eclipse plug-ins that allow the developer to write unit tests.
These are then used as a special form of query to search for matching classes/
methods, that is classes that pass the tests[94]. Using unit tests as a form of
formulating queries is a way of increasing technical trustability: Unit-tested
search results are of course more trustable, however at the cost of a more time
consuming query formulation (that is additionally writing the unit tests). The
kind of results returned are also limited to clearly-defined and testable features.
A combination of technical trustability factors (for example unit tests) and
human trustability factors might be promising future work.

Ichii et al. used collaborative filtering to recommend relevant components to
users [96]. Their system uses browsing history to recommend components to the
user. The aim was to help users make cost-benefit decisions about whether or not
those components are worth integrating. Our contribution beyond the state-of-
the-art is our focus on human factors and the role of cross-project contributors.

Mockus and Herbsleb [144] compute the experience of a developer as a func-
tion of the number of changes he has made to a software system so far. Addi-
tionally, they compute recent experience by weighting recent changes more than
older ones. The experience is then used to model the expertise of a developer.
Furthermore, they examine the time that a developer needs to find additional
people to work on a given modification request. Based on the results, they
report that finding experts is a difficult task.

Fritz et al. [71] report on an empirical study that investigates whether
a programmer’s activity indicates knowledge of code. They found that the
frequency and recency of interaction indicates the parts of the code for which
the developer is an expert. They also report on a number of indicators that
may improve the expertise model, such as authorship, role of elements, and the
task being performed. In our work, we use the vocabulary of frequently and
recently changed code to build an expertise model of developers. By using the
vocabulary of software changes, lexical information about the role of elements
and the kind of tasks are included in our expertise model.

Siy et al. [171] present a way to summarize developer work history in terms
of the files they have modified over time by segmenting the CVS change data
of individual Eclipse developers. They show that the files modified by develop-
ers tend to change significantly over time. However, they found that most of
the developers tend to work on files within the same directory. Gousios et al.

9http://www.google.com/codesearch
10http://www.krugle.org
11http://www.koders.com
12http://sourcerer.ics.uci.edu
13http://www.merobase.org

http://www.google.com/codesearch
http://www.krugle.org
http://www.koders.com
http://sourcerer.ics.uci.edu
http://www.merobase.org
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[77] present an approach for evaluating developer contributions to the software
development process based on data acquired from software repositories and col-
laboration infrastructures. However, their expertise model does not include the
vocabulary of software changes and is thus not queryable using the content of
bug reports. Alonso et al. [2] describe an approach using classification of the
file paths of contributed source code files to derive the expertise of developers.

Schuler and Zimmerman [165] introduce the concept of usage expertise,
which manifests itself whenever developers are using functionality, for exam-
ple by calling API methods. They present preliminary results for the Eclipse
project indicating that usage expertise is a promising complement to implemen-
tation expertise (such as our expertise model).

Mailing lists are a valuable source of developer expertise. It has been shown
that the frequency with which software entities (functions, methods, classes, etc)
are mentioned in the mail correlated with the number of times these entities are
included in changes to the software [152]. It has been shown that about 70% of
the vocabulary used in source code changes is found in mailing lists as well [22].

While research in the mining of software repositories has frequently ignored
commits that include a large number of files; Hindle et al. [87] perform a case
study that includes the manual classification of large commits. They show that
large commits tend to be perfective while small commits are more likely to be
corrective. Commits are not normalized in our expertise model, thus the size of
a commit may affect our model.

Hill et al. [86] present an automatic mining technique to expand abbrevia-
tions in source code. Automatically generated abbreviation expansions can be
used to enhance software maintenance tools that utilize natural language infor-
mation, such as our approach. If the same abbreviations are used in both souce
code and bug reports then our approach is not affected by this issue, nevertheless
we plan to include automatic abbreviation expansion as future work.

Currently our expertise model is limited to the granularity of commited soft-
ware changes, a more fine grained acquisition of the model could be achieved by
using a change-aware development environment [150, 163] that records developer
vocabulary as the software is written.

Bettenburg et al. [26] present an approach to split bug reports into natural
text parts and structured parts, that is source code fragments or stack traces.
Our approach treats both the same, since counting word frequencies is applicable
for natural-language text as well as source code in the same way.

Recommending experts to assign developers to bug reports is a common
application of developer expertise models. Anvik et al. [11] build developers’
expertise from previous bug reports and try to assign current reports based on
this expertise. They label the reports. If a report cannot be labeled, it is not
considered for training. Additionally, reports involving developers with a too
low bug fixing frequency or involving developers not working on the project
anymore are filtered. They then assign bug reports from a period of lower
than half a year. To find possible experts for their recall calculation, they look
for the developers who fixed the bug in the source code (by looking for the
corresponding bug ID in the change comments). They reach precision levels
of 57% and 64% on the Eclipse and Firefox development projects respectively.
However, they only achieve around 6% precision on the Gnu C Compiler project.
The highest recall they achieve is on average 10% (Eclipse), 3% (Firefox) and
8% (gcc). Please note that the recall results are not directly comparable to ours,
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since they use different configurations of bug-related persons to compute recall.
Cubranic and Murphy [187] propose to use machine learning techniques to

assist in bug triage. Their prototype uses supervised Bayesian learning to train
a classifier with the textual content of resolved bug reports. This is then used
to classify newly incoming bug reports. They can correctly predict 30% of the
report assignments, considering Eclipse as a case study.

Canfora and Cerulo [41] propose an Information Retrieval technique to assign
developers to bug reports and to predict the files impacted by the bug’s fix. They
use the lexical content of bug reports to index source files as well as developers.
They do not use vocabulary found in source files, rather they assign to source
files the vocabulary of related bug reports. The same is done for developers.
For the assignments of developers, they achieve 30%–50% top-1 recall for KDE
and 10% to 20% top-1 recall for the Mozilla case study.

Similar to our work, Di Lucca et al. use Information Retrieval approaches to
classify maintenance requests [56]. They train a classifier on previously assigned
bug reports, which is then used to classify incoming bug reports. They evaluate
different classifiers, one of them being a term-documents matrix using cosine
similarity. However, this matrix is used to model the vocabulary of previous
bug reports and not the vocabulary of developers.

Anvik and Murphy evaluate approaches that mine implementation exper-
tise from a software repository or from bug reports [12]. Both approaches are
used to recommend experts for a bug report. For the approach that gathers
information from the software repository, a linkage between similar reports and
source code elements is required. For the approach that mines the reports it-
self, amongst others, the commenters of the reports (if they are developers) are
estimated as possible experts. Both approaches disregard inactive developers.
Both recommendation sets are then compared to human generated expert sets
for the bug report.

Minto and Murphy’s Emergent Expertise Locator (EEL) [143] recommends
a ranked list of experts for a set of files of interest. The expertise is calculated
based on how many times which files have been changed together and how
many times which author has changed what file. They validate their approach
by comparing recommended experts for files changed for a bug fix with the
developers commenting on the bug report, assuming that they “either have
expertise in this area or gain expertise through the discussion” [143].

2.4 Story-telling Visualization

Story-telling visualizations are a branch of information visualization that has
been popularized by the political information graphics of newspapers such as the
New York Times and the Guardian. A story-telling visualization is supposed
to invite its reader to get engaged with the visualized data by establishing a
personal connection between the reader and the presented data [167].

Analyzing the way developers interact with the system has only attracted
few research. A visualization similar to the Ownership Map is used to visualize
how authors change a wiki page by Viega and Wattenberg [188].

Xiaomin Wu et al. visualize [195] the change log information to provide an
overview of the active places in the system as well as of the authors activity.
They display measurements like the number of times an author changed a file,
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or the date of the last commitment.
Measurements and visualization have long been used to analyze how soft-

ware systems evolve. Ball and Eick [19] developed multiple visualizations for
showing changes that appear in the source code. For example, they show what
is the percentage of bug fixes and feature addition in files, or which lines were
changed recently. Eick et al. proposed multiple visualizations to show changes
using colors and a third dimension [65]. Chuah and Eick proposed a three visu-
alizations for comparing and correlating different evolution information like the
number of lines added, the errors recorded between versions, number of people
working etc. [44].

Rysselberghe and Demeyer use a scatter plot visualization of the changes
to provide an overview of the evolution of systems and to detect patterns of
change[185]. Jingwei Wu et al. use the spectrograph metaphor to visualize how
changes occur in software systems [194]. They used colors to denote the age of
changes on different parts of the systems. Jazayeri analyzes the stability of the
architecture [98] by using colors to depict the changes. From the visualization
he concluded that old parts tend to stabilize over time.

Lanza and Ducasse visualize the evolution of classes in the Evolution Matrix
[119]. Each class version is represented using a rectangle. The size of the
rectangle is given by different measurements applied on the class version. From
the visualization different evolution patterns can be detected such as continuous
growth, growing and shrinking phases etc.

Another relevant reverse engineering domain is the analysis of the co-change
history. Gall et al. aimed to detect logical coupling between parts of the system
[72] by identifying the parts of the system which change together. They used this
information to define a coupling measurement based on the fact that the more
times two modules were changed at the same time, the more they were coupled.
Zimmerman et al. aimed to provide mechanism to warn developers about the
correlation of changes between functions. The authors placed their analysis at
the level of entities in the meta-model (for example methods) [198]. The same
authors defined a measurement of coupling based on co-changes [197]. Hassan et
al. analyzed the types of data that are good predictors of change propagation,
and came to the conclusion that historical co-change is a better mechanism than
structural dependencies like call-graph [83].

2.5 Spatial Representation

In this section we discuss work related to the spatial representation of abstract
information spaces such as source code. Using multidimensional scaling to visu-
alize information based on the metaphor of cartographic maps is by no means
a novel idea. Topic maps, as they are called, have a longstanding tradition in
information visualization [190]. The work in Chapter 6 was originally inspired
by Michael Hermann’s and Heiri Leuthold’s work on the political landscapes of
Switzerland [85]. Reader who are not know knowledgeable in German may refer
to Hermann’s recent TED talk on his work, which is available online14.

In the same way, stable layouts have a long history in information visualiza-
tion, as a starting point see for example the recent work by Frishman and Tal

14http://tedxzurich.com/2010/09/05/michael-hermann-visualizes-politics

http://tedxzurich.com/2010/09/05/michael-hermann-visualizes-politics
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on online dynamic graph drawing [69]. They present an online graph drawing
approach, which is similar to the online pipeline presented in this work.

ThemeScape is the best-known example of a text visualization tool that uses
the metaphor of cartographic maps. Topics extracted from documents are or-
ganized into a visualization where visual distance correlates to topical distance
and surface height corresponds to topical frequency [193]. The visualization is
part of a larger toolset that uses a variety of algorithms to cluster terms in
documents. For laying out small document sets MDS is used; for larger docu-
ment sets a proprietary algorithm, called “Anchored Least Stress”, is used. The
digital elevation model is constructed by successively layering the contributions
of the contributing topical terms, similar to our approach.

In the software visualization literature however, topic maps are rarely used.
Except for the use of graph splatting in RE Toolkit by Telea et al. [177], we
are unaware of their prior application in software visualization. And even in the
case of the RE toolkit, the maps are not used to produce consistent layouts for
thematic maps or to visualize the evolution of a software system.

Most software visualization layouts are based on one or more of the following
approaches: UML diagrams, force-based graph drawing, tree-map layouts, and
polymetric views.

UML diagrams generally employ no particular layout and do not continu-
ously use the visualization pane. The UML standard itself does not cover the
layout of diagrams. Typically a UML tool will apply an unstable graph drawing
layout (for example based on visual optimization such a reducing the number
of edge crossings) when asked to automatically layout a diagram. However, this
does not imply that the layout of UML diagrams is meaningless. UML diagrams
are carefully created by architects, at least those made during the design pro-
cess, so their layouts do have a lot of meaning. If you change such a diagram
and re-show it to its owner, the owner will notice the change, since he invested
time in drawing the diagram a certain way! Alas, this layout process requires
manual effort.

Gudenberg et al. have proposed an evolutionary approach to layout UML
diagrams in which a fitness function is used to optimize various metrics (such
as number of edge crossings) [183]. Although the resulting layout does not
reflect a distance metric, in principle the technique could be adapted to do so.
Andriyevksa et al. have conducted user studies to assess the effect that different
UML layout schemes have on software comprehension [3]. They report that the
layout scheme that groups architecturally related classes together yields best
results. Which is consistent with our user study on software maps presented in
Chapter 7. They conclude that it is more important that a layout scheme convey
a meaningful grouping of entities, rather than being aesthetically appealing.
Byelas and Telea highlight related elements in a UML diagram using a custom
“area of interest” algorithm that connects all related elements with a blob of
the same color, taking special care to minimize the number of crossings [40].
The impact of layout on their approach is not discussed.

Graph drawing refers to a number of techniques to layout two- and three-
dimensional graphs for the purpose of information visualization [190, 101]. Noack
et al. offer a good starting point for applying graph drawing to software visual-
ization [149]. Jucknath-John et al. present a technique to achieve stable graph
layouts over the evolution of the displayed software system [99], thus achieving
consistent layout, while sidestepping the issue of reflecting meaningful position
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or distance metrics.
Graph splatting is a variation of graph drawing, which produced visualiza-

tions that are very similar to thematic maps [184]. Graph splatting represents
the layout of graph drawing algorithms as a continuous scalar field. Graph
splatting combines the layout of graph drawing with the rendering of thematic
maps. Each vertex contributes to the field with a Gaussian shaped basis func-
tion. The elevation of the field thus represents the density of the graph layout at
that position. Telea et al. apply Graph splatting in their RE toolkit to visualize
software systems [177]. However, they are not concerned with stable layouts.
Each run of their tool may yield a different layout.

Treemaps represent tree-structured information using nested rectangles [190].
Though treemaps make continuous use of the visualization pane, the interpre-
tation of position and distance is implementation dependent. Classical treemap
implementations are known to produce very narrow and thus distorted rectan-
gles. Balzer et al. proposed a modification of the classical treemap layout using
Voronoi tessellation [20]. Their approach creates aesthetically more appealing
treemaps, reducing the number of narrow tessels. There are some treemap vari-
ations (for example the strip layout or the squarified layout) that can, and do,
order the nodes depending on a metric. However, nodes are typically ordered on
a local level only, not taking into account the global co-location of bordering leaf
nodes contained in nodes that touch at a higher level. Many treemaps found in
software visualization literature are even applied with arbitrary order of nodes,
such as alphanumeric order of class names.

Polymetric views visualize software systems by mapping different software
metrics on the visual properties of box-and-arrow diagrams [120, 121]. Many
polymetric views are ordered by the value of a given software metric, so that
relevant items appear first (whatever first means, given the layout). Such an
order is more meaningful then alphabetic (or worse, hash-key ordering), but on
the other hand only as stable as the used metric. The System Complexity view
is by far the most popular polymetric view, and is often used as a base layout
where our requirements for stability and consistence apply (see for example [78]).
The layout of System Complexity uses graph drawing on inheritance relations,
and orders the top-level classes as well as each layer of subclasses by class names.
Such a layout does not meet our desiderate for a stable and consistent layout.

A number of tools have adopted metaphors from cartography in recent years
to visualize software. Usually these approaches are integrated in a tool with an
interactive, explorative interface and often feature three-dimensional visualiza-
tions.

MetricView is an exploratory environment featuring UML diagram visual-
izations [180]. The third dimension is used to extend UML with polymetric
views [120]. The diagrams use arbitrary layout, so do not reflect meaningful
distance or position.

White Coats is an explorative environment also based on the notion of poly-
metric views [142]. The visualizations are three-dimensional with position and
visual-distance of entities given by selected metrics. However they do not incor-
porate the notion of a consistent layout.

CGA Call Graph Analyser is an explorative environment that visualizes a
combination of function call graph and nested modules structure [31]. The tool
employs a 2 1

2 -dimensional approach. To our best knowledge, their visualizations
use an arbitrary layout.
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CodeCity is an explorative environment building on the city metaphor [191].
CodeCity employs the nesting level of packages for their city’s elevation model,
and uses a modified tree layout to position the entities, that is packages and
classes. Within a package, elements are ordered by size of the element’s visual
representation. Hence, when changing the metrics mapped on width and height,
the overall layout of the city changes, and thus, the consistent layout breaks.

VERSO is an explorative environment that is also based on the city metaphor
[118]. Similar to CodeCity, VERSO employs a treemap layout to position their
elements. Within a package, elements are either ordered by their color or by
first appearance in the system’s history. As the leaf elements have all the same
base size, changing this setting does not change the overall layout. Hence, they
provide consistent layout, however within the spatial limitations of the classical
treemap layout.

Software Cities by Steinbrückner et al. is a more recent explorative envi-
ronment built on the city metaphor [174]. Software cities use a custom layout
mechanism that is consistent and stable over time. New packages are added as
orthogonal streets to the city layout, new classes are added to existing streets
by extending them in length. While not being stable in terms of mathematical
metrics, the resulting layout is perceived as being stable over time by humans.



Chapter 3

User Study on API
Learning

Modern software development requires a large investment in learning application
programming interfaces (APIs). Recent research found that the learning materi-
als themselves are often inadequate: developers struggle to find answers beyond
simple usage scenarios. Solving these problems requires a large investment in
tool and search engine development. To understand where further investment
would be the most useful, we ran a study with 19 professional developers to
understand what a solution might look like, free of technical constraints. In this
chapter, we report on design implications of tools for API learning, grounded
in the reality of the professional developers themselves. The reoccurring themes
in the participants’ feedback were trustworthiness, confidentiality, information
overload and the need for code examples as first-class documentation artifacts.

Modern application programming interfaces (APIs) allow developers to reuse
existing components. API learning is a continuous process. Even when a de-
veloper makes a large initial investment in learning the API, for example, by
reading books or going through online tutorials, the developer will continue to
consume online material about the API throughout the development process.
These materials include reference documentation from the API provider, sample
code, blog posts, and forum questions and answers.

Indeed, seeking online API information has become such a pervasive part
of modern programming that emerging research tools blend the experiences of
the browser and the development environment. For example, Codetrail auto-
matically links source code and the web pages viewed while writing the code
[76]. Blueprint allows a developer to launch a web query from the development
environment and incorporate code examples from the resulting web pages [36].
While these new tools help reduce the cost of (re)finding relevant pages and in-
corporating information from them, this addresses only a portion of developers’
frustrations. In a recent study of API learning obstacles among professional
developers, Robillard found that the learning materials themselves are often in-
adequate [164]. Bajracharya and Lopes analysed a year’s worth of search queries
and found that current code search engines address only a subset of develop-
ers needs [14]. For example, developers struggled to find code examples beyond
simple usage scenarios, to understand which parts of an API support which pro-

35



36 CHAPTER 3. USER STUDY ON API LEARNING

Figure 3.1: The five solution designs as narrated to the participants (from left
to right): Zoomable UML, Concept Map, Faceted Search, and on the last panel
Rich Intellisense (above) and Interactive Snippets (below). Pen color has been
used to distinguish the designs (green) from the participant’s input (red). The
stick notes are the participant’s votes.

gramming tasks, and to infer the intent behind the API’s design. Solving these
systematic problems requires a large investment, either in the API provider’s
official documentation, the API users’ community-based documentation, or in
the search engines that unite the two [36, 91]. Any of these changes is difficult
and expensive.

To understand where further investment would be the most useful, we ran
a study with 19 professional developers from Microsoft Corporation, with the
goal of understanding what an “ideal” solution might look like, free from tech-
nical constraints. We invited randomly chosen members of a corporate email
list of Silverlight users to participate in one-hour sessions for small gratuities.
Silverlight is a large API for creating web applications, with hundreds of classes
for data persistance, data presentation, and multimedia. All participants were
male with an average of 12.2 years of professional experience.

Borrowing from participatory design, we asked the participants to act as our
partners in designing a new user experience for learning Silverlight. We ran two
types of sessions. In the first, we interviewed participants to learn their common
learning materials and most challenging learning tasks and then asked them to
sketch a design for a new learning portal. We compiled these ideas into five
exploratory designs. In the second type of session, we ran focus groups to get
feedback on our descriptions of their learning tasks and the five designs.

This chapter’s main contributions are a compilation of design implications
for API learning tools, grounded in the reality of the professional developers
themselves. We report on the recurring themes in the participants’ feedback:
trustworthiness, confidentiality, information overload and the need for code ex-
amples as first-class documentation artifacts.

3.1 First Study: Current Practice

In the first type of study session, we met singly with nine participants, and
ran each through three activities. First, we asked the participant to describe
all the materials he used for learning Silverlight, as we recorded them on the
whiteboard. Next, we asked him to consider this as a set of “ingredients” and to
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sketch a design for a learning portal that presents some or all of these ingredients
to help developers learn Silverlight. Finally, we asked him to review the design
by comparing the experience of learning Silverlight by using the design versus
his own experience learning Silverlight.

3.1.1 Learning Sources

We asked the participant to describe all the materials he used for learning
Silverlight, as we recorded them on the whiteboard. Some of the learning sources
are obvious and readily reported by participants, such as books and web search.
To learn about non-obvious learning sources, we asked developers “did you ever
find an answer to a technological question that is not listed here,” which led to
answers like reverse engineering or social networking. Their reported learning
sources are the following:

“Off the top of my head” is by far the most common way developers find
answers on the job. Most participants reported that they set aside dedi-
cated time for learning. Typical off-the-job learning sources are: lurking
on mailing lists and forums, watching videos and reading books. Most
knowledge however is based on experience and acquired through learning-
by-doing on the job. One participant refers to this a “growing your own
folklore.”

Web search was reported by all participants as the first place to go when
they have an information need. Among the search results participants are
typically looking for are: blog posts, discussion forums, official reference
documentation, mailing list archives, bug reports and source repositories
(listed in order of typical access patterns). Participants prefer results with
code examples over results without code examples, which is supported by
existing research on API learning barriers [164].

Intellisense (that is auto-completion of identifiers) was reported as a tool for
the discovery of unknown APIs by all developers. One participant called
this “digging through the namespaces.” Discovering unknown APIs is an
appropriation of auto-completion, originally conceived to help recall names
from familiar APIs.

Prototyping, reverse engineering and many more forms of tinkering were re-
ported by all participants as a last resort when all above sources failed to
provide an answer. Some participants even resort to reverse engineering
when documentation is available, as they prefer source code over natural
language documentation. Developers typically use prototyping both as an
explorative tool and to verify hypotheses about the APIs. All participants
reported that having to “get your hands dirty” is an integral part of their
learning experience.

Asking another person was reported by most participants as a last resort.
Developers follow a “due diligence” process before asking another person
for an answer. It is important to them to have put enough personal effort
into finding an answer before asking on a mailing list or reaching out to a
person from their social network. Also, they reported to prefer immediate
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results, such as those provided by web search, over waiting for the reply
of asynchronous communication such as email and discussion forums.

These findings are consistent with Robillard’s study of learning obstacles [164],
but provide a more complete catalog of learning materials. Both studies found
that developers strive to stay within the programming patterns and use cases
that the API provider intends (even when that intent is undocumented) and that
developers typically lack documentation when using an API for a less common
task. Somewhat surprisingly, we found that developers prefer the community-
based learning materials on the web, like blogs, forum posts, and tutorials, over
more “authoritative” learning material, like books and reference documenta-
tion. Developers also prefer active but potentially time-consuming information
seeking, like iterative web search and reverse engineering, to waiting for answers
from others, because they perceive the answers as more immediate.

3.1.2 Learning Categories

Based on the design sketches that participants produced, we elicited three broad
categories of learning tasks:

Technology selection is about learning about an API’s fundamental capabil-
ities (“Can Silverlight play video in this codec?”) and about comparing
capabilities (“Is DirectX or Silverlight better for my game?”). Sometimes
the selection decision is about growing skills rather than project require-
ments.

Mapping task to code includes both discovery of unfamiliar APIs as well as
remembering relevant identifier names in previously learned APIs. Getting
an answer to this type of questions typically falls in two phases. Initially
developers search based on natural language task descriptions (e.g. “how
to implement a zoomable canvas”) and skim through many search results
to stumble on relevant identifier names. Once they have a concrete iden-
tifier, their search behavior becomes more focused and may be as simple
as looking up the identifier’s reference documentation.

Going from code to better code is a major concern of professional develop-
ers. All participants reported that they spend considerable effort getting
answers to performance questions. Other use cases are robustness and
idiomatic, that is intended, use of an API, in particular with regard to
breaking changes of newly released API versions or different target plat-
forms.

The kind of learning categories impacts the preferred learning sources and
strategies of developers. For technology selection, participants sometimes use
web search to learn about available technologies, but eventually prefer personal
recommendations from their social network. For mapping task to code, partici-
pants strongly prefer search results with code examples over those without code
examples. For getting to better code however, such as troubleshooting a perfor-
mance problem, participants prefer solving the problem themselves (including
reverse engineering) but sometimes ask others to double-check the answers they
find.
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3.2 Second Study: Solution Elements

For the second type of session, we compiled the user feedback from the first ses-
sions into five exploratory designs. We ran 10 participants in three focus groups
(with three, three, and four members) and asked them to provide feedback on
the five designs. In each session, we drew each design on its own whiteboard
and encouraged participants to ask questions, provide feedback, and to add their
own ideas as we explained the design.

Figure 3.1 shows a photograph of the whiteboards with the five designs,
taken at the end of a focus group’s session. In the following the designs are
described in the order they were presented to the participants in that session:

Design: Zoomable UML This design draws from the spatial software rep-
resentation of CodeCanvas [54] and addresses answering complex reachability
questions [122] as you code. The design extends the IDE with a zoomable UML
diagram. The diagram opens zoomed on locally reachable types of the API and
shows their dependencies and interaction. The user can zoom out to get a larger
picture of the API, up to the level of namespaces.

Design: Concept Map The API is presented as a zoomable map, organized
around programming domain concepts (e.g. “controls”, “media content”). As
the user zooms in, the concepts become more refined (e.g. “streaming video”).
At the lowest zoom level, the map shows web-based content about that con-
cept, including blogs, forum posts, tutorials, and the people who author these.
The map is searchable and keeps track of user interaction as well as the user’s
learning progress. Users can bookmark locations and share their bookmarks.
Documentation editors can use the same feature to share tutorials as “sight-
seeing tours.”

Design: Faceted Search This design unifies web search and asking people
questions. The user types a question into a textbox. As she types, related search
results are pulled in from various sources (web sites, bug reports, code examples,
mailing list archives, etc). Search results are grouped by facets, such as type of
sources, type of content or semantic concepts. Besides the results, a tag cloud
appears with extracted identifier names. Search results are summarized using
code examples, if possible. In addition, the results include suggested people
and mailing lists that are experts on the topic of the questions, to which the
question can be posted.

Design: Rich Intellisense This design extends auto-completion of identi-
fiers with search results that are automatically pulled from the world wide web.
The results are “localized” to the current context of the IDE, such as imported
libraries and reachable types [92]. Results are shown in the same pop-up win-
dows as the auto-completion suggestions. If possible, search results are displayed
as code examples ready for incorporating into the code, as in Brandt et al [36].

Design: Interactive Snippets This design attaches an execution context
to code examples on the web. Code examples include hidden meta-information
with all context that is required to execute. Examples are editable, debuggable
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and can be executed live in the browser. With a single click, users can download
examples into their IDEs. Similarly, users can upload the code in their IDE as
runnable examples on the web, for inclusion in blogs or discussion forums.

3.3 Feedback

After we explained all five designs, we then handed each participant a pen and
sticky notes and gave them 10 minutes to annotate the designs, either with a
blank sticky note to mean “I like this part” or with their own comments (typical
ones were smiley faces, frowny faces, “NO”, etc).

The votes are summarized in Table 9.1: the most popular designs are “Faceted
Search” and for learning activities the “Concept Map” design. Participants
downvoted the “Zoomable UML” and “Rich Intellisense” due to concerns about
information overload, the same happening with “Interactive Snippets“ due to
concerns about missing confidentiality.

Design Up-Votes Down-Votes
Zoomable UML ? ? ? ? ∗ ∗ ∗ ∗ ∗
Concept Map ? ? ? ? ? ? ∗ ∗ ∗
Faceted Search ? ? ? ? ? ? ? ? ? ∗
Rich Intellisense ? ? ? ∗ ∗ ∗ ∗ ∗ ∗ ∗
Interactive Snippets ? ? ? ∗

Table 3.1: At the end of the second type of sessions, participants voted with
sticky notes for the designs. Faceted Search received the most up votes, Rich
Intellisense the most down votes.

There were several recurring themes in our participants’ feedback which cut
across the various designs. The four top-most recurring themes are discussed
and summarized as design implications for tool builders in the following:

3.3.1 Code Examples

We got very positive feedback on the emphasis on code examples and identifier
names in the “Faceted Search” design. Participants prefer results with code
examples over results without code examples, which is supported by existing re-
search on API learning barriers [164]. When mapping a task to code, developers
typically use web search and linearly go through all results until they find one
with a code example or an identifier; often repeating this process a dozen times
until they find a working answer. Participants liked about the facetted search
design that it extracts code examples and identifiers from top search results.
One participant even said that the summary tag cloud with identifiers, by itself,
would be reason to use it.

Implication for tool builders: Developers need the heterogeneous learning
materials that web search provides, but want it to be more targeted and or-
ganized. Search engines for API learning should extract code examples and
identifiers found in natural text documents, and present them to the developers
in a more accessible way. This implication is supported by related work on code
examples [36, 91, 92].
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3.3.2 Credibility

Credibility of web sources appeared as a major concern with all designs that
included content taken from the web. For the participants, credibility is mostly
a function of where the information comes from. For example, participants
reported that search results from blogs are often more relevant, but typically
less credible than official reference documentation. They also rely on the social
reputation of its source rather than technical factors, which supports existing re-
search [82]. In particular with the “Faceted Search” design, which automatically
summarizes search results, participants emphasized the importance of seeing the
information source to judge credibility.

Implication for tool builders: Tools should show both credibility and rele-
vance when presenting search results, so that the developers can make an in-
formed decision when using API information and code examples from the web.
To assess the credibility of API information tools should prefer social factors,
such as the credibility of the information’s author, rather than technical statis-
tics, such as code metrics.

3.3.3 Confidentiality

Confidentiality appeared as a major concern with all designs that share local
information with a global audience. In particular with the “Interactive Snip-
pets” design, which publishes an example’s execution context on the web, par-
ticipants were concerned with leaking proprietary information, like the use of
certain libraries. One participant was also concerned that publicly inquiring
about technologies could accidentally reveal business strategies.

Implication for tool builders: When automatically sharing local information
with the web, tools must be careful to protect proprietary information, such
as confidential code and libraries being used. Tools should give developers full
control over shared information, for example by letting them review the list of
automatically included terms before issuing the search query. Or alternatively,
only sharing information that is on a user controlled white list.

3.3.4 Information Overload

Information overload was the major reason why participants rejected the “Zoom-
able UML” and the “Rich Intellisense” designs. We got strong feedback that
pulling more information into the IDE is not welcome unless it is highly task-
and context specific. Participants were also concerned that adding more features
to Intellisense’s popup will use too much screen real estate and slow down the
IDE.

Implication for tool builders: Any tool that pulls additional information into
the IDE must be highly selective and should only show information that is
specific to the developer’s current task and context. The ability to further filter
down the information is crucial, as well as not slowing down the IDE and using
screen real estate sparingly.

3.3.5 Threats to validity

We selected all participants from the same corporation, whose common hiring
practices and corporate culture may bias the results. In particular, the partici-
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pants all work for the same company that produces the Silverlight API, which
gives the participants unique access to the API creators. Therefore, the par-
ticipants may not be representative of all professional developers. Nonetheless,
participants mostly accessed public learning outside the company and many ex-
pressed hesitation about asking questions of fellow employees for fear of harming
their reputation. The study is also based on a single API. While this choice al-
lowed us to compare participants’ experiences and gave them common ground
during the focus groups, there may be issues in learning Silverlight that do not
generalize to other APIs.

3.4 Conclusion

Web search is the predominant form of information seeking, but in many cases
is frustrating and error-prone. Developers need the heterogeneous learning ma-
terials that web search provides, but want it to be more targeted and organized.
Therefore, API learning tools that bring web search and development environ-
ments closer together 1) should leverage examples and identifiers found in nat-
ural text documents as first-class results, 2) should communicate the credibility
of aggregated results, 3) most not shared confidential information without the
user’s consent, and 4) should filter search results by task and context to avoid
information overload.



Chapter 4

Lexical Clustering

Aim Refinding and discovering topics.
Reach Local codebase of a system.
Clues Lexcial (established through lexical information).
Query Visual analytics and fuzzy keyword search.

Keyword matching and regular expressions are powerful means for code ori-
entation by lexical clues. However, current tool support fails to meet the devel-
oper needs when following up on fuzzy lexical clues. For example, for refinding
tasks it may be that developers do not recall the exact name, or even more
common for discovery tasks developers can typically only guess which name
other developers have picked for the concept that they are looking for. Just
the same, when attempting to find all implementations of the same concept,
often the source code uses synonymous but not identical identifier names. And
further, when encountering a system for the first time, developers have a need
to cluster the system by topics so they can start establishing a mental model of
the services provided by the system and of how these services depend upon one
another.

In this chapter we present an approach to model a system’s lexical informa-
tion in a fuzzy text model that resolves synonymy and polysemy with unsuper-
vised learning. No user input or ontologies are required to resolve ambiguous
lexical clues. Software engineers make frequent use of broken metaphors (as for
example “storing persons in a tree”) so that common natural language ontolo-
gies fall short of being applicable to lexical information found in source code.
We use the fuzzy text model to cluster the parts of a system by topic, and vi-
sualize the topics using correlation matrices and distribution maps to illustrate
the distribution of topics of the static structure of the system. Furthermore,
even though not discussed in this chapter, our approach allows to query the
system with fuzzy search terms that are able resolve synonymy and polysemy.

Acquiring knowledge about a software system is one of the main activities
in software reengineering. It is estimated that up to 60 percent of software
maintenance is spent on comprehension [1]. This is because a lot of knowledge
about the software system and its associated business domain is not captured
in an explicit form. Most approaches that have been developed focus on pro-
gram structure [60] or on external documentation [133, 7]. However, there is
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another fundamental source of information: the developer knowledge contained
in identifier names and source code comments.

The informal linguistic information that the software engineer deals
with is not simply supplemental information that can be ignored because
automated tools do not use it. Rather, this information is fundamental.
[. . . ] If we are to use this informal information in design recovery tools,
we must propose a form for it, suggest how that form relates to the formal
information captured in program source code or in formal specifications,
and propose a set of operations on these structures that implements the
design recovery process [28].

Languages are a means of communication, and programming languages are
no different. Source code contains two levels of communication: human-machine
communication through program instructions, and human to human communi-
cations through names of identifiers and comments.

Many of the existing approaches in Software Comprehension focus on pro-
gram program structure or external documentation. However, by analyzing
formal information the informal semantics contained in the lexical information
of source code are overlooked. To understand software as a whole, we need to
enrich software analysis with the developer knowledge hidden in the code nam-
ing. This chapter proposes the use of information retrieval to exploit linguistic
information found in source code, such as identifier names and comments. We
introduce Lexical Clustering, a technique based on Latent Semantic Indexing
and clustering to group source artifacts that use similar vocabulary. We call
these groups lexical clusters and we interpret them as linguistic topics that re-
veal the intention of the code. We provide automatically retrieved labels, and
use a visualization to illustrate how they are distributed over the system. Our
approach is language independent as it works at the level of identifier names.
To validate our approach we applied it to several case studies, two of which we
present in this chapter.

We call our clusters linguistic topics since they are derived from language use.
Some linguistic topics do map to the domain and others do map to application
concepts, however, this mapping is never complete. We refrain from speaking of
“linguistic concepts” since there is no guarantee that lexical clustering locates
all or even any externally defined domain concept.

In this chapter, we use information retrieval techniques to derive topics from
the lexical information at the source code level. Apart from external documen-
tation, the location and use of source-code identifiers is the most frequently
consulted source of information in software maintenance [106]. The objective
of our work is to analyze software without taking into account any external
documentation. In particular we aim at:

• Providing a first impression of an unfamiliar software system.
A common pattern when encountering an unknown or not well known
software for the first time is “Read all the Code in One Hour” [55]. Our
objective is to support this task, and to provide a map with a survey of
the system’s most important topics and their location.

• Revealing the developer knowledge hidden in identifiers. In prac-
tice, it is not external documentation, but identifer names and comments
where developers put their knowledge about a system. Thus, our objective
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is not to locate externally defined domain concepts, but rather to derive
topics from the actual use of lexical information in source code.

• Enriching Software Analysis with informal information. When
analyzing formal information (for example structure and behavior) we get
only half of the picture: a crucial source of information is missing, namely,
the vocabulary contained in the lexical information of source code. Our
objective is to reveal components or aspects when, for example, planning
a large-scale refactoring. Therefore, we analyze how the code naming
compares to the code structure: What is the distribution of linguistic
topics over a system’s modularization? Are the topics well-encapsulated
by the modules or do they cross-cut the structure?

Our approach is based on Latent Semantic Indexing (LSI), an information
retrieval technique that locates linguistic topics in a set of documents [49, 138].
We apply LSI to compute the linguistic similarity between source artifacts (for
example packages, classes or methods) and cluster them according to their simi-
larity. This clustering partitions the system into linguistic topics that represent
groups of documents using similar vocabulary. To identify how the clusters are
related to each other, we use a correlation matrix [126]. We employ LSI again
to automatically label the clusters with their most relevant terms. And finally,
to complete the picture, we use a map visualization to analyze the distribution
of the concepts over the system’s structure.

We implemented this approach in a tool called Hapax1, which is built on
top of the Moose reengineering environment [59, 148], and we apply the tool to
several case studies, two of which are presented in this work: JEdit2 and JBoss3.

This chapter is based on our previous work, in which we first proposed
lexical clustering (back then still called “semantic clustering” [109]. The main
contributions of the current chapter are:

• Topic distribution analysis. In our previous work we introduced lexical
clustering to detect linguistic topics given by parts of the system that use
similar vocabulary. We complement the approach with the analysis of how
topics are distributed over the system using a Distribution Map [58].

• Case studies. In our previous work, we showed the results of the clustering
and labeling on different levels of abstraction on three case studies. In this
chapter we report on other two case studies.

4.1 Latent Semantic Indexing

As with most information retrieval techniques, Latent Semantic Indexing (LSI)
is based on the vector space model approach. This approach models documents
as bag-of-words and arranges them in a term-document matrix A, such that ai,j
equals the number of times term ti occurs in document dj .

LSI has been developed to overcome problems with synonymy and polysemy
that occurred in prior vectorial approaches, and thus improves the basic vector

1The name is derived from the term hapax legomenon, that refers to a word occurring only
once a given body of text.

2http://www.jedit.org/
3http://www.JBoss.org/
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space model by replacing the original term-document matrix with an approx-
imation. This is done using singular value decomposition (SVD), a principal
components analysis (PCA) technique originally used in signal processing to
reduce noise while preserving the original signal. Assuming that the original
term-document matrix is noisy (the aforementioned synonymy and polysemy),
the approximation is interpreted as a noise reduced – and thus better – model
of the text corpus.

As an example, a typical search engine covers a text corpus with millions of
web pages, containing some tens of thousands of terms, which is reduced to a
vector space with 200-500 dimensions only. In Software Analysis, the number
of documents is much smaller and we typically reduce the text corpus to 20-50
dimensions.

Even though search engines are the most common uses of LSI [23], there is a
wide range of applications, such as automatic essay grading [67], automatic as-
signment of reviewers to submitted conference papers [63], cross-language search
engines, thesauri, spell checkers and many more. In the field of software engi-
neering LSI has been successfully applied to categorized source files [134] and
open-source projects [102], detect high-level conceptual clones [136], recover
links between external documentation and source code [47, 137] and to com-
pute the class cohesion [137]. Furthermore LSI has proved useful in psychology
to simulate language understanding of the human brain, including processes
such as the language acquisition of children and other high-level comprehension
phenomena [117].

Figure 4.1 schematically represents the LSI process. The document collection
is modeled as a vector space. Each document is represented by the vector
of its term occurrences, where terms are words appearing in the document.
The term-document-matrix A is a sparse matrix and represents the document
vectors on the rows. This matrix is of size n ×m, where m is the number of
documents and n the total number of terms over all documents. Each entry ai,j
is the frequency of term ti in document dj . A geometric interpretation of the
term-document-matrix is as a set of document vectors occupying a vector space
spanned by the terms. The similarity between documents is typically defined as
the cosine or inner product between the corresponding vectors. Two documents
are considered similar if their corresponding vectors point in the same direction.

LSI starts with a raw term-document-matrix, weighted by a weighting func-
tion to balance out very rare and very common terms. SVD is used to break
down the vector space model into fewer dimensions. This algorithm preserves as
much information as possible about the relative distances between the document
vectors, while collapsing them into a much smaller set of dimensions.

SVD decomposes matrix A into its singular values and its singular vectors,
and yields – when truncated at the k largest singular values – an approxima-
tion A′ of A with rank k. Furthermore, not only the low-rank term-document
matrix A′ can be computed but also a term-term matrix and a document-
document matrix. Thus, LSI allows us to compute term-document, term-term
and document-document similarities.

As the rank is the number of linear-independent rows and columns of a
matrix, the vector space spanned by A′ is of dimension k only and much less
complex than the initial space. When used for information retrieval, k is typi-
cally about 200-500, while n and m may go into millions. When used to analyze
software on the other hand, k is typically about 20−50 with vocabulary and doc-



4.2. LEXICAL CLUSTERING: GROUPING SOURCE DOCUMENTS 47

D1
T1

D2 D3 D4 D5 D6 ... Dm

T2
T3
...
Tn

LSI

Tn

Dm

...
D5

D2

D1 T1

T2

T3

D6

D3

documents
te
rm
s

Term-document matrix LSI vector space

Figure 4.1: LSI takes as input a set of documents and the terms occurrences, and
returns as output a vector space containing all the terms and all the documents.
The similarity between two items (that is terms or documents) is given by the
angle between their corresponding vectors.

uments in the range of thousands only. And since A′ is the best approximation
of A under the least-square-error criterion, the similarity between documents
is preserved, while in the same time mapping lexically related terms on one
axis of the reduced vector space and thus taking into account synonymy and
polysemy. In other words, the initial term-document-matrix A is a table with
term occurrences and by breaking it down to much fewer dimension the latent
meaning must appear in A′ since there is now much less space to encode the
same information. Meaningless occurrence data is transformed into meaningful
concept information.

4.2 Lexical Clustering: Grouping Source Docu-
ments

The result of applying LSI is a vector space, based on which we can compute
the similarity between both documents or terms. We use this similarity mea-
surement to identify topics in the source code.
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Figure 4.2: Lexical clustering of software source code (for example classes, meth-
ods).

Figure 4.2 illustrates the first three steps of the approach: preprocessing,
applying LSI, and clustering. Furthermore we retrieve the most relevant terms
for each cluster and visualize the clustering on a 2D-map, thus in short the
approach is:



48 CHAPTER 4. LEXICAL CLUSTERING

1. Preprocessing the software system. In subsection 4.2.1, we show how we
break the system into documents and how we build a term-document-
matrix that contains the lexical information of the system.

2. Applying Latent Semantic Indexing. In subsection 6.2.1 we use LSI to
compute the similarities between source code documents and illustrate
the result in a correlation matrix [126].

3. Identifying topics. In subsection 4.2.3 we cluster the documents based on
their similarity, and we rearrange the correlation matrix. Each cluster is
a lexical topic.

4. Describing the topics with labels. We use LSI again to retrieve for each
cluster the top-n most relevant terms. For more information on labeling
please refer to Chapter 5.

5. Comparing the topics to the structure. In Section 4.3 we illustrate the
distribution of topics over the system on a Distribution Map [58].

4.2.1 Preprocessing the Software System

When we apply LSI to a software system we partition its source code into
documents and we use the lexical information found therein as terms. The
system can be split into documents at any level of granularity, such as packages
or classes and methods. Other slicing solutions are possible as well, for example
execution traces [114], or we can even use entire projects as documents and
analyze a complete source repository [102].

To build the term-document-matrix, we extract the lexical information from
the source code: we use both identifier names and the content of comments.
Natural language text in comments is broken into words, whereas compound
identifier names are split into parts. As most modern naming conventions use
camel case, splitting identifiers is straightforward: for example FooBar becomes
foo and bar.

We exclude common stopwords from the vocabulary, as they do not help to
discriminate documents. In addition, if the first comment of a class contains a
copyright disclaimer, we exclude it as well. To reduce words to their morpholog-
ical root we apply a stemming algorithm: for example entity and entities both
become entiti [157]. And finally, the term-document matrix is weighted with
tf-idf to balance out the influence of very rare and very common terms [62].

When preprocessing object-oriented software systems we take the inheritance
relationship into account as well. For example, when applying our approach at
the level of classes, each class inherits some of the vocabulary of its superclass.
If a method is defined only in the superclass we add its vocabulary to the current
class. Per level of inheritance a weighting factor of w = 0.5 applies to the term
occurrences, to balance out between the abstractness of high level definitions
and concrete implementations.

4.2.2 Using Latent Semantic Indexing to Build the Simi-
larity Index

We use LSI to extract linguistic information from the source code, which results
in an LSI-index with similarities between source documents (that is packages,
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classes or methods). Based on the index we can determine the similarity between
source code documents. Documents are more similar if they cover the same
topic, terms are more similar if they denote related topics.

In the vector space model there is a vector for each document. For example,
if we use methods as documents, there is a vector for each method and the cosine
between these vectors denotes the lexical similarity between the methods. In
general cosine values are in the [−1, 1] range, however when using an LSI-index
the cosine between its element never strays much below zero. This is since
the LSI-index is derived from a term-document matrix that contains positive
occurrence data only.

First matrix in Figure 4.3. To visualize similarities between documents we
map them to gray values: the darker, the more similar. The similarities between
elements are arranged in a square matrix called correlation matrix or dot plot.
A correlation matrix is a common visualization tool to analyze patterns in a set
of entities [126]. Each dot ai,j denotes the similarity between element di and
element dj . Put in other words, the elements are arranged on the diagonal and
the dots in the off-diagonal show the relationship between them.

Figure 4.3: From left to right: unordered correlation matrix, then sorted by
similarity, then grouped by clusters

4.2.3 Clustering: Ordering the Correlation Matrix

Without proper ordering the correlation matrix looks like television tuned to a
dead channel. An unordered matrix does not reveal any patterns. An arbitrary
ordering, such as for example by the names of the elements, is generally as
useful as random ordering [24]. Therefore, we cluster the matrix to put similar
elements near each other and dissimilar elements far apart.

A clustering algorithm groups similar elements together and aggregates them
into clusters [97]. Hierarchical clustering creates a tree of nested clusters, called
a dendrogram, which has two features: breaking the tree at a given threshold
groups the elements into clusters, and traversing the tree imposes a sort order
upon its leaves. We use these two features to rearrange the matrix and to group
the dots into rectangular areas.

Second and third matrix in Figure 4.3. Each rectangle on the diagonal rep-
resents a lexical cluster: the size is given by the number of classes that belong
to a topic, the color referring to the semantic cohesion [137] (that is the av-
erage similarity among its classes4). The color is the darker the more similar

4Based on the similarity sim(a, b) between elements, we define the similarity between cluster
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two clusters are, if it is white they are not similar at all. The position on the
diagonal is ordered to make sure that similar topics are placed together.

The clustering takes the focus of the visualization from similarity between
elements to similarity between clusters. The tradeoff is, as with any abstraction,
that some valuable detail information is lost. Our experiments showed that one-
to-many relationships between an element and an entire cluster are valuable
patterns.

4.3 Analyzing the Distribution of Lexical Clus-
ters

The lexical clusters help us grasp the topics implemented in the source code.
However, the clustering does not take the structure of the system into account.
As such, an important question is: How are these topics distributed over the
system?

To answer this question, we use a Distribution Map [182, 58]. A Distribution
Map visualizes the distribution of properties over system parts that is a set of
entities. In this chapter, we visualize packages and their classes, and color these
classes according to the lexical cluster to which they belong.

For example, in Figure 4.4 we show an example of a Distribution Map repre-
senting 5 packages, 37 classes and 4 lexical clusters. Each package is represented
by a rectangle, which includes classes represented as small squares. Each class
is colored by the lexical cluster to which it belongs.

package 1 package 2 package 3

package 4package 5

Figure 4.4: Example of a Distribution Map.

Using the Distribution Map visualization we correlate linguistic information
with structural information. The lexical partition of a system, as obtained by
lexical clustering, does generally not correspond one-on-one to its structural
modularization. In most systems we find both topics that correspond to the
structure as well as topics that cross-cut it. Applying this visualization to
several case studies, we identified the following patterns:

• Well-encapsulated topic – if a topic corresponds to system parts, we call
this a well-encapsulated topic. Such a topic is spread over one or multiple
parts and includes almost all source code within those parts. If a well-
encapsulated topic covers only one part we speak of a solitary topic.

A and cluster B as 1
|B|×|A|

P P
sim(am, bn) with a ∈ A and b ∈ B and in the same way the

similarity between an element a0 and a cluster B as 1
|B|

P
sim(a0, bn) with B ∈ B.
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• Cross-Cutting topic – if a topic is orthogonal to system parts, we call
this a cross-cutting topic. Such a topic spreads across multiple parts, but
includes only one or very few elements within each parts. As linguistic in-
formation and structure are independent of each other, cross-cutting iden-
tifiers or names do not constitute a design flaw. Whether a cross-cutting
topic has to be considered a design smell or not depends on the particular
circumstances. Consider for example the popular three-tier architecture:
It separates accessing, processing and presenting data into three layers;
where application specific topics – such as for example accounts, transac-
tions or customers – are deliberately designated to cross-cut the layers.
That is, it emphasizes the separation of those three topics and deliberately
designates the others as cross-cutting concerns.

• Octopus topic – if a topic dominates one part, as a solitary does, but also
spreads across other parts, as a cross-cutter does, we call this an octopus
topic. Consider for example a framework or a library: there is a core part
with the implementation and scattered across other parts there is source
code that plugs into the core, and hence uses the same vocabulary as the
core.

• Black Sheep topic – if there is a topic that consists only of one or a few
separate source documents, we call this a black sheep. Each black sheep
deserves closer inspection, as these documents are sometimes a severe
design smell. Yet as often, a black sheep is just an unrelated helper class
and thus not similar enough to any other topic of the system.

4.4 Case studies

To show evidence of the usefulness of our approach for software comprehension,
in this section we apply it to two case studies. First, we exemplify each step of
the approach and discuss its findings in the case of JEdit, a text editor written
in Java. This case study is presented in full length. Secondly, we present JBoss,
an application-server written in Java, which includes interesting anomalies in
its vocabulary.

Case Study language type docs terms parts rank sim
Ant Java Classes 665 1787 9 17 0.4
Azureus Java Classes 2184 1980 14 22 0.4
JEdit Java Classes 394 1603 9 17 0.5
JBoss Java Classes 660 1379 10 16 0.5
Moose5 Smalltalk Classes 726 11785 – 27 –
MSEModel Smalltalk Methods 4324 2600 – 32 0.75
Outsight Java Classes 223 774 10 12 0.5

Figure 4.5: The statistics of sample case studies, JEdit and JBoss are discussed
in this work, for the other studies please refer to our previous work [109, 107].

Figure 4.5 summarizes the problem size of each case study. It lists for each
case study: (lang) the language of the source code, (type) the granularity of
documents, (docs) the number of documents, (terms) the number of terms,

5The Moose case study in [109] did not use stemming to preprocess the text corpus, hence
the large vocabulary.
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(parts) the number of found topics, (rank) the dimension of the LSI-index, and
(sim) the threshold of the clustering.

4.4.1 On the Calibration of Parameters and Thresholds

Our approach depends on several parameters, which may be difficult to choose
for someone not familiar with the underlying technologies. In this section we
present all parameters, discuss their calibration and share our experience gained
when performing case studies using the Hapax tool.

Weighting the term-document-matrix. To balance out the influence
of very rare and very common terms, it is common in information retrieval
to weight the occurrence values. The most common weighting scheme is tf-
idf, which we also use in the case studies, others being entropy or logarithmic
weighting [62].

When experimenting with different weighting schemes, we observed that the
choice of the weighting scheme has a considerable effect on the similarity values,
depending on weighting the distance within the complete text corpus becomes
more compact or more loose [145]. Depending on the choice of the weighting
scheme, the similarity thresholds may differ significantly: as a rule of thumb,
using logarithmic weighting and a similarity threshold of δ = 0.75 is roughly
equivalent to a threshold of δ = 0.5 with tf-idf weighting [146].

Dimensionality of the LSI-space. As explained in Section 4.1, LSI re-
places the term-document matrix with a low-rank approximation. When work-
ing with natural language text corpora that contain millions of documents and
some tens of thousands of terms, most authors suggest to use an approximation
between rank 200 and 500. In Software Analysis the number of documents is
much smaller, such that even ranks as low as 10 or 25 dimensions yield valuable
results. Our tool uses rank r = (m ∗ n)0.2 by default for an m× n-dimensional
text corpus, and allows customization.

Choice of clustering algorithm. There is a rich literature on different
clustering algorithms [97]. We performed a series of experiments using different
algorithms and we decided to use a hierarchical average-linkage clustering as it
is a common standard algorithm. Further studies on the choice of clustering
algorithm are open for future work.

Breaking the dendrogram into clusters. Hierarchical clustering uses a
threshold to break the dendrogram, which is the tree of all possible clusters, into
a fixed partition. Depending on the objective, we break it either into a fixed
number of clusters (for example for the Distribution Map, where the number of
colors is constrained) or at a given threshold (for example for the correlation
matrix). In the user interface of the Hapax tool, there is a slider for the threshold
such that we can immediately observe the effect on both correlation matrix and
Distribution Map interactively.

4.4.2 Lexical Clustering applied on JEdit

We exemplify our approach using the case of JEdit, an open-source Text editor
written in Java. The case study contains 394 classes and uses a vocabulary of
1603 distinct terms. We reduced the text corpus to an LSI-space with rank
r = 15 and clustered it with a threshold of δ = 0.5 (the choice of parameters is
discussed in subsection 4.4.1).
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In Figure 4.6, we see nine clusters with a size of (from top right to bottom
left) 116, 63, 26, 10, 68, 10, 12, 80, and 9 classes. The system is divided into
four zones: (zone 1) the large cluster in the top left, (zone 2) two medium sized
and one small clusters, (zone 3) a large cluster and two small clusters, and (zone
4) a large and a small cluster. The two zones in the middle are both similar to
the first zone but not to each other, and the fourth zone is not similar to any
zone.

In fact, there is a limited area of similarity between the Zone 2 and 3. We
will later on identify the two counterparts as topics Pink and Cyan, which are
related to text buffers and regular expression respectively. These two topics
share some of their labels (that is start, end, length and count), however they
are clustered separately since LSI does more than just keyword matching. LSI
is taking the context of term usage into account as well, that is the co-location
of terms with other terms.

This is a common pattern that we often encountered during our experiments:
zone 1 is the core of system with domain-specific implementation, zone 2 and 3
are facilities closely related to the core, and zone 4 is an unrelated component
or even a third-party library. However, so far this is just an educated guess and
therefore we will have a look at the labels next.

Figure 4.6 lists for each cluster the top-7 most relevant labels, ordered by
relevance. The labels provide a good description of the clusters and tell same
story as the correlation matrix before. We verified the labels and topics by
looking at the actual classes within each cluster.

• Zone 1: topic Red implements the very domain of the system: files and
users, and a user can load, edit and save files.

• Zone 2: topic Green and Magenta implement the user interface, and topic
Pink implements text buffers.

• Zone 3: topic Cyan is about regular expressions, topic Yellow provides
XML support and topic DarkGreen is about TAR archives.

• Zone 4: topic Blue and Orange are the BeanShell scripting framework, a
third-party library.

user, run, load, message, file, buffer, util 

property, AWT, edit, show, update, sp, set

start, buffer, end, text, length, line, count

action, box, component, event, button, layout, GUI

start, length, integer, end, number, pre, count 

XML, dispatch, microstar, reader, XE, register, receive
current, buffer, idx, review, archive, endr, TAR

BSH, simple, invocation, assign, untype, general, arbitrary 

maximum, label, link, item, code, put, vector

Figure 4.6: The lexical clusters of JEdit and their labels.
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All these labels are terms taken from the vocabulary of the source code and
as such they do not always describe the topics in generic terms. For example,
event though JEdit is a text-editor, the term text-editor is not used on the source
code level. The same applies for topic Cyan, where the term regular expression
does not show up in the labels.

Figure 4.7 shows the distribution of topics over the package structure of
JEdit. The large boxes are the packages (the text above is the package name),
the squares are classes and the colors correspond to topics (the colors are the
same as on Figure 4.6).

Figure 4.7: The Distribution Map of the lexical clusters over the package struc-
ture of JEdit.

For example, in Figure 4.7 the large box on the right represents the package
named bsh, containing over 80 classes most of which implement the topic referred
to by Blue. The package boxes are ordered by their similarity, so that related
packages are placed near to each other.

Topic Red, the largest cluster, shows which parts of the system belong to the
core and which do not. Based on the ordering of the packages, we can conclude
that the two UI topics (Green and Yellow) are more closely related to the core
than for example topic Cyan, which implements regular expressions.

The three most well-encapsulated topics (for example Orange, Blue and
Cyan) implement separate topics such as scripting and regular expressions.
Topic Yellow and Pink cross-cut the system: Yellow implements dockable win-
dows, a custom GUI-feature, and Pink is about handling text buffers. These
two topics are good candidates for closer inspection, since we might want to
refactor them into packages of their own.

4.4.3 First Impression of JBoss: Distribution Map and
Labels

This case study presents the outline of JBoss, an application-server written in
Java. We applied lexical clustering and partitioned the system into ten topics.
The system is divided into one large cluster (colored in red), which implements
the core of the server, and nine smaller clusters. Most of the small clusters
implement different services and protocols provided by the application server.

The Distribution Map is illustrated in Figure 4.8, and the top-7 labels are
listed in figure Figure 4.9 in order of relevance. We verified the clustering by
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Figure 4.8: The Distribution Map of the linguistic clusters over the package
structure of JBoss.

Color Size Labels
red 223 invocation, invoke, wire, interceptor, call, chain, proxy, share
blue 141 jdbccmp, JDBC, cmp, field, loubyansky, table, fetch
cyan 97 app, web, deploy, undeployed, enc, JAR, servlet
green 63 datetime, parenthesis, arithmetic, negative, mult, div, AST
yellow 35 security, authenticate, subject, realm, made, principle, sec
dark magenta 30 expire, apr, timer, txtimer, duration, recreation, elapsed
magenta 20 ASF, alive, topic, mq, dlq, consume, letter
orange 20 qname, anonymous, jaxrpcmap, aux, xb, xmln, WSDL
purple 16 invalid, cost, September, subscribe, emitt, asynchron, IG
dark green 15 verify, license, warranty, foundation, USA, lesser, fit

Figure 4.9: The labels of the lexicel clusters of JBoss.

looking the source code, and present the results as follows.
Topic Red is the largest cluster and implements the core functionality of

the system labeled with terms such as invocation, interceptor, proxy and share.
Related to that, topic Cyan implements the deployment of JAR archives.

The most well-encapsulated topics are DarkGreen, Orange, Green and Blue.
The first three are placed apart from Red, whereas Blue has outliers in the
red core packages. The labels and package names (which are printed above the
package boxes in the Distribution Map) show that DarkGreen is a bean verifier,
that Orange implements JAX-RPC and WDSL (for example web-services), that
Green implements an SQL parser and that Blue provides JDBC (for example
database access) support. These are all important topics of an application
server.

The most cross-cutting topic is Yellow speading across half of the system.
The labels reveal that this is the security aspect of JBoss, which is reasonable
as security is an important feature within a server architecture.

Noteworthy is the label loubyansky in topic Blue, it being the name of a
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developer. Based on the fact that his name appears as one of the labels, we
assume that he is the main developer of that part of the system. Further
investigation proved this to be true.

Noteworthy as well are the labels of topic DarkGreen, as they expose a
failure in the preprocessing of the input data. To exclude copyright disclaimers,
as for example the GPL licence, we ignore any comment above the package
statement of a Java class. In the case of topic DarkGreen this heuristic failed:
the source files contained another licence within the body of the class. However,
repeating the same case study with an improved preprocessing resulted in nearly
the same clustering and labeled this cluster as RMI component: event, receiver,
RMI, RMIiop, iiop, RMIidl, and idl.

The topics extracted from the source code can help improving comprehen-
sion. If a maintainer is seeking information, lexical clustering helps in identifying
the related code. This is similar to the use of a search engine, for example if the
web-service interface has to be changed, the maintainer can immediately look
at the Orange concept, and identify the related classes. Much in the same way,
to maintain the database interface a developer may look at the Blue concept.

4.5 Discussion

In this section we evaluate and discuss success criteria, strengths and limitations
of the proposed approach. We discuss how the approach depends on the quality
of the identifer naming. Furthermore we discuss the relation between linguistic
topics and domain or application concepts.

4.5.1 On the Quality of Identifier Names

In the same way as structural analysis depends on correct syntax, lexical analysis
is sensitive to the quality of the naming. Since we derive our topics solely based
on the use of identifer names and comments, it does not come as a surprise that
our approach depends on the quality of the source code naming.

Our results are not generalizable to arbitrary software systems. Good nam-
ing convention and well chosen identifiers yields best results, whereas bad nam-
ing (that is too generic names, arbitrary names or cryptic abbreviations) is one
of the main threats to external validation. The vocabulary of the case studies
presented in this work is of good quality, however, when performing other case
studies we learned of different facets that affect the outcome, these being:

On the use of naming conventions. Source following state-of-the-art
naming conventions, as for example the Java Naming Convention, is easy to
preprocess. In case of legacy code that uses other naming conventions (for
example the famous Hungarian Notation) or even none at all, other algorithms
and heuristics are to be applied [42, 4].

On generic or arbitrarily named identifiers. However, even the best
preprocessing cannot guess the meaning of variables which are just named temp
or a, b and c. If the developers did not name the identifiers with care, our
approach fails, since the developer knowledge is missing. Due to the strength of
LSI in detecting synonymy and polysemy, our approach can deal with a certain
amount of such ambiguous or even completely wrongly named identifiers – but
if a majority of identifiers in a system is badly chosen, the approach fails.
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On abbreviated identifier names. Abbreviated identifers are commonly
found in legacy code, since early programming languages often restrict the dis-
crimination of identifer names to the first few letters. But unlike generic names,
abbreviations affect the labeling only and do not threaten our approach as whole.
This might come as a surprise, but since LSI is solely based on analyzing the sta-
tistical distribution of terms across the document set, it is not relevant whether
identifiers are consistently written out or consistently abbreviated.

However, if the labeling task comes up with terms such as pma, tcm, IPFWDIF
or sccpsn this does not tell a human reader much about the system. These terms
are examples taken from a large industry case study, which is not included in
this chapter, where about a third of all identifiers were abbreviations. In this
case a more useful labeling can be achieved using approaches that recover ab-
breviations [4].

On the size of the vocabulary. The vocabulary of source code is very
small, smaller than that of a natural language text corpus. Intuitively explained:
LSI is like a child learning language. In the same way as a human with a
vocabulary of 2000 terms is less eloquent and knowledgeable than a human with
a vocabulary of 20,000 terms, LSI performs better the larger the vocabulary.
The smaller the vocabulary the stronger the effect of missing or incorrect terms.
In fact, LSI has been proven to be a valid model of the way children acquire
language [117].

On the size of documents. On average there are only about 5-10 distinct
terms per method body, and 20-50 distinct terms per class. In a well commented
software system, these numbers are higher since comments are human-readable
text. This is one of the rationales why LSI does not perform as accurately on
source code as on natural language text [47], however the results are of sufficient
quality.

On the combination of LSI with morphological analysis. Even
though the benefit of stemming (that is removing the morphological suffix of
words) is not without controversy, we apply it as part of the preprocessing step
[13]. Our rationale is: analyzing a software system at the level of methods is
very sensitive to the quality of input, as the small document size threatens the
success of LSI. Considering these circumstances, we decided to rely on stemming
as it is well known that the naming of identifers often includes the same term in
singular and plurals: for example setProperty and getAllProperties or addChild
and getChildren.

4.5.2 On using Lexical Clustering for Topic Identification

One of our objectives is to compare linguistic topics to domain and application
concepts [29]. We derive linguistic topics from the vocabulary usage of source
code instead from external definitions. In this section we clarify some questions
concerning the relation between derived topics and externally defined concepts:

On missing vocabulary and ontologies. Often the externally defined
concepts are not captured by the labeling. The rationale for this is as follows.
Consider for example a text editor in whose source code the term text-editor
is never actually used, but terms like file and user. In this case our approach
will label the text-editor concepts with these two terms, as a more generic
term is missing. As our approach is not based on an ontological database, its
vocabulary is limited to the terms found in source code and if terms are not
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used our approach will not find accurate labels. We suggest to use ontologies
(that is WordNet) to improve the results in these cases.

On the congruence between topics and domain. When starting this
work, one of our hypotheses was that lexical clustering will reveal a system’s do-
main semantics. But our experiments disproved this hypothesis: most linguistic
topics are application concepts or architectural components, such as layers. In
many experiments, our approach partitioned the system into one (or sometimes
two) large domain-specific part and up to a dozen domain-independent parts,
such as for example input/output or data storage facilities. Consider for exam-
ple the application in Figure 4.10, which is divided into nine parts as follows:

Figure 4.10: The Distribution Map of Outsight, a web-based job portal appli-
cation [107].

Only one topic out of nine concepts is about the system’s domain: job
exchange. Topic Red includes the complete domain of the system: that is users,
companies and CVs. All other topics are application specific components: topic
Blue is a CV search engine, topic DarkGreen implements PDF generation, topic
Green is text and file handling, topic Cyan and Magenta provide access to the
database, and topic DarkCyan is a testing and debugging facility. Additionally
the cross-cutting topic Yellow bundles high-level clones related to time and
timestamps.

On the congruence between topics and packages. In section Sec-
tion 4.3 we discussed the relation between topics and packages. Considering
again the case study in Figure 4.10 as an example, we find occurrences of all
four patterns: Topic DarkGreen for example is well-encapsulated, whereas topic
Yellow cross-cuts the application. Then there is topic Blue, which is an octopus
with the conditions package as its body and tentacles reaching into six other
packages, and finally we have in the logic package an instance of a black sheep.

On source documents that are related to more than one topic. If
we want to analyze how the topics are spread across some type of documents
(for example packages, classes or methods) we have to break the system into
documents one level below the target level. For example, if we want to ana-
lyze the topic distribution over packages, we break the system into classes and
analyze how the topics of classes are spread over the packages.



Chapter 5

Code Summarization

Aim Refinding and discovering topics.
Reach Part of a system’s codebase or history.
Clues Lexcial and episodic (established through lexical information).
Query Visual analytics of word clouds.

Source code rarely comes with an executive summary. When developers
encounter a piece of source code for the first time they are typically not presented
with a high-level summary of the code’s topics. Looking at package and class
names might help to make an educated guess but does often not give away the
complete picture. Furthermore, when comparing two pieces of source code or
when comparing two versions of the same system, developers are missing a high-
level summary that distills the difference in a short textual summarization. The
need for software summarization is obvious.

In the following chapter we present an approach to summarize source code
as a word cloud. When summarizing part of a system the word cloud consists of
the statistically most significant terms that set this part of system apart from
the rest. The same approach can be use to compare two parts of a system or
to compare two versions of the same system. When comparing version, both
statistically significant additions and removals are shown using two different
colors. Presenting those word clouds to the developer helps them to lexically
query the topics, as well as when presenting all words clouds of a system’s
versions to recover and tell the story of a system’s history and thus enabling
developers to draw from episodic memories that they possibly never experienced
first-hand themselves.

In recent years, lexical information found in source code has proven to be
a valuable source for software analysis, often including the retrieval of labels
[18, 89, 110]. However, labeling software is not without pitfalls. The distribution
of words in software corpora follows the same power-law as word frequencies in
natural-language text [127]. Most of the text is made up of a small set of
common terms, whereas content-bearing words are rare. Analysis of software
vocabulary must deal with the reality of rare terms, thus statistical tests that
assume normal distribution are not applicable. For example, textual comparison
based on directly counting term frequencies is subject to overestimation when
the frequencies involved are very small.

59
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Our approach uses log-likelihood ratios of word frequencies to automatically
provide labels for software components. We present a prototype implementation
of our labeling/comparison algorithm and provide examples of its application.
In particular, we apply the approach to detect trends in the evolution of a
software system. For text analysis the use of log-likelihood ratio improves the
statistical results. Likelihood tests do not depend on assumptions of normal
distribution, instead they use the asymptotic distribution of binomial likelihood
[64]. Using log-likelihood ratios allows comparisons to be made between the
significance of occurrences of both common and rare terms.

The approach that we present can be applied i) to compare components with
each other, ii) to compare a component against a normative corpus, and iii) to
compare different revisions of the same component. We present a prototype
implementation and give examples of its application. In particular, we apply
the approach to detect trends in the evolution of the JUnit software system.

5.1 Log-Likelihood in a Nutshell

This section explains how log-likelihood ratio is applied to analyse word frequen-
cies. The explanations are kept as concise as possible. We provide the general
background and just enough details such that a programmer may implement
the algorithm. Please refer to Ted Dunning’s work [64] for more background.

The idea behind log-likelihood ratio is to compare two statistical hypotheses,
of which one is a subspace of the other. Given two text corpora, we compare the
hypothesis that both corpora have the same distribution of term frequencies with
the “hypothesis” given by the actual term frequencies. Because we know that
terms are not equally distributed over source code, we use binomial likelihood

L(p, k, n) = pk(1− p)n−k

with p = k
n , where k is the term frequency (that is number of occurrences) and

n the size of the corpus. Taking the logarithm of the likelihood ratio gives 1

−2 log λ = 2
[

logL(p1, k1, n1) + logL(p2, k2, n2)

− logL(p, k1, n1)− logL(p, k2, n2)
]

with p = k1+k2
n1+n2

. The higher the value of −2logλ the more significant is the
difference between the term frequencies in of both text corpora. By multiplying
the −2logλ value with the signum of p1−p2 we can further distinguish between
terms specific to the first corpus and terms specific to the second corpus. Terms
that are equally frequent in both corpora have a −2logλ value close to zero and
thus fall in between.

Example. Let C1 be the corpus of a software project with size n1 = 106,
where the words ‘rare’, ‘medium’, and ‘common’ appear respectively 1, 100,
and 1× 104 times; and let C2 be the corpus of one of the project’s classes with

1In some publications (for example [160]) we found that the last two terms were omitted
(since their values tend to be orders of magnitude smaller than the corresponding values of
the first two terms). The results presented in this chapter, however, are obtained using the
complete log likelihood ratio formula.
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size n2 = 1000, where each word appears 10 times. Then the log-likelihood ratio
values are

p1 p2 −2logλ χ2

rare 10−6 10−2 131.58 9.08
medium 10−4 10−2 71.45 0.89
common 10−2 10−2 0.00 0.00

The column χ2 lists the value of Pearson’s chi-square test, which assumes
normal distribution. As we can see, there is an overestimation when the frequen-
cies involved are very small. Therefore, text analysis should use log-likelihood
ratios to compare the occurrences of common and rare terms [64].

5.2 Applications

In this section we present two example applications of log-likelihood ratio for
software analysis. There are two main types of corpus comparison: comparison
of a sample corpus to a larger corpus, and comparison of a two equally sized
corpora. In the first case, we refer to the large corpus as a normative corpus
since it provides as norm against which we compare.

Applications of these comparisons are

• Providing labels for components. Comparing a component’s vocabulary
with a large normative corpus (as for example Sourceforge, Github, or
Sourcerer [17]), we obtain labels that describe the component. In the
same way, we can compare a class’s vocabulary against the containing
project.

• Comparing components to each other. Comparing two components, we
obtain labels to describe their differences as well as commonalities. This
is applicable at any level of granularity, from the level of projects down to
the level of methods.

• Documenting the history of a component. Comparing subsequent revisions
of the same component, we obtain labels to describe the evolution of that
component. (Using multinominal distribution we could even compare all
revisions at once, although such results are harder to interpret [64].)

• Describing the results of software search. Code-search engines have re-
cently received much attention, both commercial engines (as for example
Krugle) and academic engines (as for example Sourcerer [17]) are publicly
available. The result of a search query is typically provided by present-
ing a peep-hole view on the matching source line and its context to the
user. Comparing each result, or the class/project that contains the result,
against the entire index we can provide labels that may help users to make
better use of these results.

• Analysing the structural use of vocabulary. There has been much confusion
regarding which parts of the software vocabulary are to be considered
in software analysis. Some approaches consider the entire source code
including comments, keywords and literals (for example [115, 110]), other
approaches consider class and methods names only (for example [18, 89]).
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java.io java.text java.util

read 521.99 pattern 228.92 iterator 306.91
write 481.93 format 209.40 entry 301.90
skip 154.61 digits 183.24 next 237.82
close 113.41 FIELD 167.58 E 222.33
mark 111.47 instance 127.16 contains 187.69
println 99.66 fraction 104.98 sub 166.49
UTF 85.27 integer 102.77 of 165.57
flush 80.96 index 93.43 K 154.07
desc 69.19 run 90.99 T 154.30
TC 68.88 currency 91.55 key 145.10
prim 61.48 decimal 86.34 all 145.74
char 61.28 contract 84.92 V 142.15
buf 60.15 separator 72.11 remove 128.59
stream 56.86 grouping 62.26 last 128.09
fields 52.38 parse 56.93 map 115.68
bytes 47.99 collation 56.60 clear 114.03
. . . . . . . . .
border -28.35 UI -23.07 create -62.67
set -33.89 border -22.77 listener -62.42
remove -37.49 property -24.23 action -63.83
listener -39.79 remove -30.11 UI -64.68
accessible -40.97 accessible -32.91 border -63.83
paint -44.90 listener -31.97 accessible -92.25
value -59.10 type -32.18 paint -101.11
get -64.38 paint -36.07 get -164.14

Table 5.1: Labels retrieved for three Java packages using the full Java 6.0 API
as normative corpus.

A recent study compared the vocabulary of different structural levels using
techniques that assume normal distribution [127]. Log-likelihood ratios
provide a statistically more sound means to study these phenomena.

5.2.1 Labeling the Java API

In this example, we compare the packages java.io and java.text and java.util
with the normative corpus of the full Java 6.0 API. We use the Java Compiler
(JSR 199) to parse the byte-code of the full Java API and then extract the
vocabulary of all public and protected elements. We extract the names of pack-
ages, classes (including interfaces, annotations, and enums), fields, methods and
type parameters. We split the extracted names by camel-case to accomodate to
the Java naming convention.

Results are shown in Table 5.1. For each package we list the most specific
words and the least specific words. All three packages are characterized by not
covering UI code, in addition java.io and java.util have obviously substan-
tially fewer get-accessors than is usual for the Java API. The remaining findings
offer no further surprises, except maybe for the uppercase letters in java.util
which are generic type parameters; obviously the majority of the Java 6.0 API
makes less use of generic types than the collection framework.

5.2.2 The Evolution of JUnit

In this example, we report on the vocabulary trends in the history of the JUnit2

project. We use a collection of 14 release distributions of JUnit and parse the
source code of each release. We compare the vocabulary of each two subsequent

2http://www.junit.org

http://www.junit.org
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JUnit 2logλ Top-10 terms (with −2logλ > 10.0)
3 -8.21

54.11 count, writer, wrapper
3.2 -382.80 money, CHF, assert, case, USD, equals, test, fmb,

result, currency
114.21 tree, model, constraints, combo, reload, swing,

icon, pane, browser, text
3.4 -19.48 stack, util, button, mouse

15.73 preferences, base, zip, data, awtui
3.5 -38.78 param, reload, constraints

69.34 view, collector, context, left, cancel, values,
selector, views, icons, display

3.6 -1.20
8.72

3.7 -8.25
2.79

3.8 -13.30 deprecated
23.40 printer, boo, lines

4.0 -349.34 constraints, grid, bag, set, label, panel, path,
icon, model, button

350.47 description, code, nbsp, org, annotation,
notifier, method, request, runner, br

4.1 -1.43
61.90 link, param, check

4.2 -288.53 nbsp, br
20.03 link, builder, pre, li

4.3.1 -8.91
53.36 array, actuals, expecteds, multi, dimensional,

arrays, values, javadoc
4.4 -34.32 introspector, code, todo, multi, javadoc,

dimensional, array, runner, test, fix
151.98 matcher, theories, experimental, hamcrest,

matchers, theory, potential, item, supplier,
parameter

4.5 -30.11 theory, theories, date, result, static, validator,
pointer, string, assert, experimental

124.28 statement, model, builder, assignment, block,
errors, unassigned, evaluate, describable,
statements

Table 5.2: Evolution of JUnit: for each release we list the removed and the
added words, large 2logλ values indicate more significant changes.

releases and report on the most significant changes in the vocabulary. We ex-
tract all words, including comments; split by camel-case, and exclude English
stopwords but not Java keywords.

Results are shown in Table 5.2. For each release we list the top removed
terms and the top added terms, as well as the −2logλ value of the top-most
term. Large −2logλ values indicate substantial changes.

The top 7 change trends (that is −2logλ > 100.0) in the history of JUnit are
as follows. In 3.2 removal of MoneyBag example and introduction of graphical
UI; in 4.0 removal of graphical UI and introduction of annotation processing;
in 4.2 removal of HTML tags from Javadoc comments; in 4.4 introduction of
theory matchers and hamcrest framework; in 4.5 introduction of blocks and
statements. We manually verified these findings with the release notes of JUnit.
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Chapter 6

Software Cartography

Aim Code orientation in general.
Reach Local codebase and possibly history of a system.
Clues Spatial (established through lexical and structural information).
Query Visual analytics of a cartographic visualization.

Current tool support for code orientation by spatial clues is ad hoc at best,
most striking is the lack of spatial on-screen representations of source code.
Without such a representation developers are barely able to draw on the strong
spatial capability of the human brain.

We provide a cartographic on-screen visualization such that developers can
start using spatial clues for code orientation. Since software has no inherent
spatial structure we use lexical and structural information found in the source
code to establish a spatial layout of the local code base. The created software
maps are stable over time and can be shared among members of a team to
establish a common mental model of the system. We implemented our approach
in a prototype, evaluated it in a user study, and found that it is most helpful
for spatially exploring search results and call hierarchies.

Software visualization can provide a concise overview of a complex soft-
ware system. Unfortunately, since software has no physical shape, there is no
“natural” mapping of software to a two-dimensional space. As a consequence
most visualizations tend to use a layout in which position and distance have no
meaning, and consequently layout typically diverges from one visualization to
another. We propose an approach to consistent layout for software visualiza-
tion, called Software Cartography , in which the position of a software artifact
reflects its vocabulary, and distance corresponds to similarity of vocabulary. We
use a vector-space model to map software artifacts to a vector space, and then a
combination of the Isomap algorithm [179] and Multidimensional Scaling [33] is
used to map this vector space down to two dimensions. The resulting consistent
layout allows us to develop a variety of thematic software maps that express
very different aspects of software while making it easy to compare them. The
approach is especially suitable for comparing views of evolving software, since
the vocabulary of software artifacts tends to be stable over time. We present a
prototype implementation of Software Cartography, and illustrate its use with
practical examples from numerous open source case studies.

65
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6.1 Spatial Representation of Software

Software visualization offers an attractive means to abstract from the complexity
of large software systems. A single graphic can convey a great deal of informa-
tion about various aspects of a complex software system, such as its structure,
the degree of coupling and cohesion, growth patterns, defect rates, and so on
[57, 103, 162, 176]. Unfortunately, the great wealth of different visualizations
that have been developed to abstract away from the complexity of software
has led to yet another source of complexity: it is hard to compare different
visualizations of the same software system and correlate the information they
present.

We can contrast this situation with that of conventional thematic maps found
in an atlas. Different phenomena, ranging from population density to industry
sectors, birth rate, or even flow of trade, are all displayed and expressed using
the same consistent layout. It easy to correlate different kinds of information
concerning the same geographical entities because they are generally presented
using the same kind of layout. This is possible because (i) there is a natural
mapping of position and distance information to a two-dimensional layout1, and
(ii) because by convention North is normally considered to be on the top.2

Software artifacts, on the other hand, have no natural layout since they have
no physical location. Distance and orientation also have no obvious meaning for
software. It is presumably for this reason that there are so many different and
incomparable ways of visualizing software. A cursory survey of recent Softvis
and Vissoft publications shows that the majority of the presented visualiza-
tions feature arbitrary layout, the most common being based on alphabetical
order and arbitrary hash-key order. (Hash-key order is what we get in most
programming languages when iterating over the elements of a Set or Dictionary
collection.)

Robert DeLine’s work on software navigation [50, 51] closely relates to Soft-
ware Cartography. His work is based on the observation that developers are
consistently lost in code [52] and that using textual landmarks only places a
large burden on cognitive memory. He concludes the need for new visualization
techniques that allow developers to use their spatial memory while navigating
source code.

DeLine proposes four desiderata [50] that should be satisfied by spatial soft-
ware navigation: 1) the display should show the entire program and be con-
tinuous, 2) the display should contain visual landmarks such that developers
can find parts of the program perceptually rather than relying on names, 3) the
display should remain visually stable during navigation [and evolution], and
4) the display should be capable of showing global program information over-
lays other than navigation. An ad-hoc algorithm that satisfies the first and
fourth properties is presented in the same work.

Our work satisfies all above desiderata, and completes them with a fifth

1Even if we consider that the Earth is not flat on a global scale, there is still a natural
mapping of position and distance to a two-dimensional layout; see the many types of carto-
graphic projections (for example the Mercator projection) used during centuries to do that.
In fact, this is true for a large class of manifolds.

2The orientation of modern world maps, that is North on the top, has not always been the
prevailing convention. On traditional Muslim world maps, for example, South used to be in
the top. Hence, if Europe would have fallen to the Ottomans at the Battle of Vienna in 1683,
all our maps might be drawn upside down by now [88].
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desideratum that visual distance should have a meaningful interpretation. The
scope of Software Cartography is broader than just navigation, it is also in-
tended for reverse engineering and code comprehension in general. We can thus
generalize the five desiderata for spatial representation of software as follows:

1. The visualization should show the entire program and be continuous.

2. The visualization should contain visualization landmarks that allow the
developers to find parts of the system perceptually, rather than relying on
name or other lexical clues.

3. The visualization should remain visually stable as the system evolves.

4. The visualization should should be capable of showing global information
overlays.

5. On the visualization, distance should have a meaningful interpretation.

6.2 Software Cartography

Consistent layout for software would make it easier to compare visualizations
of different kinds of information. But what should be the basis for position-
ing representations of software artifacts within a “cartographic” software map?
What we need is a semantically meaningful notion of position and distance for
software artifacts, a spatial representation of software in a multi-dimensional
space, which can then be mapped to consistent layout on the 2-dimensional
visualization plane.

We propose to use vocabulary as the most natural analogue of physical po-
sition for software artifacts, and to map these positions to a two-dimensional
space as a way to achieve consistent layout for software maps. Distance between
software artifacts then corresponds to distance in their vocabulary. We use a
combination of the Isomap algorithm [179] and Multidimensional Scaling [33] to
projection the high-dimensional vector space model onto the two-dimensional
visualization pane. Finally we use cartographic techniques (such as digital ele-
vation, hill-shading and contour lines) to generate a landscape representing the
frequency of topics. We call our approach Software Cartography , and call a
series of visualizations Software Maps, when they all use the same consistent
layout created by our approach.

Why should we adopt vocabulary as distance metric, and not some struc-
tural property? First of all, vocabulary can effectively abstract away from the
technical details of source code [110] by capturing the key domain concepts of
source code. Software entities with similar vocabulary are conceptually and
topically close. Lexical similarity has proven useful to detect high-level clones
[136] and cross-cutting concerns [18] in software. Furthermore, it is known that
over time vocabulary tends to be more stable than the structure of software
[8], and tends to grow rather than to change [186]. Although refactorings may
cause functionality to be renamed or moved, the overall vocabulary tends not to
change, except as a side-effect of growth. This suggests that vocabulary will be
relatively stable in the face of change, except where significant growth occurs.
As a consequence, vocabulary not only offers an intuitive notion of position that
can be used to provide a consistent layout for different kinds of thematic maps,
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LSI MDS Rendering 

source files term-document matrix scatter plot thematic map 

Figure 6.1: Software Cartography in a nutshell: left) the raw text of source files
are parsed and indexed, center) the high-dimensional term-document-matrix is
mapped down to two dimensions using Multidimensional Scaling and Isomap,
and right) cartographic visualization techniques are used to render the final
map.

but it also provides a robust and consistent layout for mapping an evolving
system. System growth can be clearly positioned with respect to old and more
stable parts of the same system.

In the following we present the techniques that are used to achieve a consis-
tent layout for software maps. The general approach of Software Cartography,
as illustrated in Figure 6.1, is as follows:

Information Retrieval We parse the vocabulary of source files into term-
frequency histograms. All text found in raw source code is taken into
account, including not only identifiers but also comments and literals.

2-Dimensional Embedding A metric distance is used to compute the pair-
wise dissimilarity of software artifacts (typically source code files). A
combination of the Isomap algorithm [179] and Multidimensional Scaling
[33] is used to embed all software artifacts on the visualization pane. Other
than with Lexical Clustering, as presented in Chapter 4, we do not apply
Latent Semantic Indexing as it has been found to have little impact on the
final embedding, if at all. The application of Isomap is an improvement
of the embedding in order to assist MDS with the global layout. The final
embedding minimizes the error between the dissimilarity values and the
visual distances.

Early prototypes of Codemap used a distance metric that was based on
lexical similarity only. However, our user study revealed that developers
tend to interpret visual distance as a measure of structural dependencies,
even though they were aware of the underlying lexical implementation.
Based on this observation, we developed an improved distance metric that
takes both lexical similarity and structural distance (based on the “Law
of Demeter” [125]) into account.

Digital Elevation Model In the next step, a digital elevation model is cre-
ated. Each software artifact contributes a Gaussian shaped basis function
to the elevation model according to its KLOC size. The contributions of
all software artifacts are summed up and normalized.

Cartographic rendering In the final step, hill-shading is used to render the
landscape of the software map. Please refer to previous work for full
details [115]. Metrics and markers are rendered in transparent layers on
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top of the landscape. Users can toggle separate layer on/off and thus
customize the codemap display to their needs.

We implemented a prototype of our approach, Codemap, which is available as
an open source project. Codemap was originally programmed in Smalltalk, in
the mean time development has been moved to Java. Codemap is available as
an Eclipse plug-in3.

6.2.1 Lexical Similarity between Source Files

As motivated in the introduction, the distance between software entities on
the map is based on the lexical similarity of source files. Lexical similarity is
an Information Retrieval (IR) technique based on the vocabulary of text files.
Formally, lexical similarity is defined as the cosine between the term frequency
vectors of two text documents. That is, the more terms (that is identifier names
and operators, but also words in comments) two source files share, the closer
they are on the map.

First, the raw source files are split into terms. Then a matrix is created,
which lists for each document the occurrences of terms. Typically, the vocab-
ulary of source code consists of 500–20’000 terms. In fact, studies have shown
that the relation between term count and software size follows a power law [196].
For this work, we consider all text found in raw source files as terms. This in-
cludes class names, methods names, parameter names, local variables names,
names of invoked methods, but also words found in comments and literal val-
ues. Identifiers are further preprocessed by splitting up the camel-case name
convention which is predominantly used in Java source code. Note that since
our approach is based on raw text, any programming language that uses textual
source files might be processed.

6.2.2 Multi-dimensional Scaling

In order to visualize the lexical similarity between software entities, we must
find a mapping that places source files (or classes, or packages, depending in
our definition of a document) on the visualization pane. The placement should
reflect the lexical similarity between source files.

We use a combination of the Isomap algorithm [179] and Multidimensional
Scaling [33] in order to map from the previously established multi-dimensional
term-document matrix down to two dimensions. Multidimensional Scaling tries
to minimize a stress function while iteratively placing elements into a low-
level space. Multidimensional Scaling yields the best approximation of a vector
space’s orientation, that is it preserves the distance relation between elements
as best as possible. This is good for data exploration problems.

6.2.3 Cartographic Visualization Techniques

Eventually, we use hill-shading [39] to render an aesthetically appealing land-
scape. Figure 6.2 illustrates the final rendering steps of Software Cartography.
On the final map, each source file is rendered as a hill whose height corresponds
to the entity’s KLOC size.

3http://scg.unibe.ch/codemap

http://scg.unibe.ch/codemap
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Figure 6.2: Construction steps: left) the projection step placement of files on
the visualization pane, middle) circles around each file’s location, based on class
size in KLOC, right) digital elevation model with hill-shading and contour lines.
Sidebox on digital elevation model) each file contributes a Gaussian shaped basis
function to the elevation model according to its KLOC size. The contributions
of all files are summed up to a digital elevation model.

Hill-shading uses a digital elevation model (DEM) to render the illumina-
tion of a landscape. The digital elevation model is a two-dimensional scalar
field. Each each entity contributes a Gaussian shaped basis function to the el-
evation model. To avoid that closely located entities occlude each other, the
contributions of all files are summed up as shown in Figure 6.2.

A map without labels is of little use. On a software map, all entities are
labeled with their name (class or file name). Labeling is a non-trivial problem,
as an algorithm is needed to ensure that labels do not overlap. Also labels
should not obscure important landmarks. Most labeling approaches are semi-
automatic and need manual adjustment, an optimal labeling algorithm does not
exist [172].

For locations that are near to each other it is difficult to place the labels
so that they do not overlap and hide each other. For software maps it is even
harder due to often long class names and clusters of closely related classes. This
work uses a greedy brute-force algorithm for labeling. Labels are placed in order
of hill size, that is the name of the largest file is placed first, and so on. If a
to-be placed label would overlap with an already placed label, the to-be placed
label is omitted. Thus, the labels of smaller files are typically omitted in favor
of the labels of larger files.

6.3 On the Choice of Vocabulary

The decision to use a distance based on lexical similarity does, indeed, create a
distribution of distances that should not change a lot in time. This is because
programmers will not use a completely new set of lexical tokens in each new
version of the software. In fact, it has been shown that over time vocabulary
tends to be more stable than the structure of software [8]. However, this also
will create software maps that naturally only can show how items are similar
from a lexical point of view.

The map layout as presented in this work can, of course, be used to see how
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items are related from the point of view of some other distance metric, such
as considering structural similarity, similarity with regard to a complexity or
testability metric. In that case, the distance may vary a lot over time during
the evolution of a product, and this will create unstable layouts. The focus of
this work, however, is the creation of maps that help programmers to establish
a stable mental model of their software system under work. In any case, if maps
based on other metrics are ever to be used in conjunction with vocabulary-based
Software Cartography maps, we strongly recommend to visually distinguish
them by using another rendering scheme. This helps to reduce the likeliness that
programmers confuse the spatial layout of these other maps, with the mental
model acquired through the use of Software Cartography maps.

As mentioned above, Software Cartography is vocabulary-based because vo-
cabulary can effectively abstract away from the technical details of source code
[110] by capturing the key domain concepts of source code. The assumption
is that software entities with similar vocabulary are conceptually and topically
close. Consider, for example, programming languages and software where meth-
ods may be overloaded. Even though overloaded methods differ in their imple-
mentation strategy, they will typically implement the same concept using the
same vocabulary. In fact, lexical similarity has proven useful to detect high-level
clones [136] and cross-cutting concerns [18] in software.

Although refactorings may cause functionality to be renamed or moved, the
overall vocabulary tends not to change, except as a side-effect of growth [196,
186]. Consider the example of a rename refactoring. Two effects may occur. In
the first case, all occurrences of a symbol are replaced with new symbol. This
will not affect the map, since lexical similarity is based on statistical analysis
only. Replacing all occurrences of one term with a new term is, from the point
of these IR technologies, a null operation. In the second case, some occurrences
of a symbol are replaced with another symbol which is already used. This will
indeed affect the layout of the map. Given that the new name was well chosen
by the programmer, the new layout will constitute a better representation of
the system. On the other hand, if the new name is a bad choice, the new layout
will be flawed. However, what constitutes bad naming is not merely a matter
of taste. Approaches that combine vocabulary with structural information can
indeed assess the quality of naming. Please refer to Høst’s recent work on
debugging method names for further reading [90].

Not considered in the present work is the relative weight of different lexical
tokens. For example, it seems reasonable to weight local identifiers differently
than identifiers in top-level namespaces. Also, one may treat names coming
from library functions different from the ones coming from the actual user code.
Given the absence of evaluation benchmarks, we decided to use equal weighting
for all lexical tokens. Also, preliminary experiments with different weighting
schemes indicate that relative weights below boost level, that is below a factor
of 10, do often not significantly affect the overall layout.

6.4 Example: the Story of Ludo

In this section we present an example of Software Cartography. Figure 6.3
shows the complete history of the Ludo system, consisting of four iterations.
Ludo is used in a first year programming course to teach iterative development.
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Figure 6.3: From left to right: each map shows four iterations of the same soft-
ware system. As all four views use the same layout, a user can build up a mental
model of the system’s spatial structure. For example, Board/LudoFactory is
on all four views located in the south-western quadrant. See also Figure 5 and
6 for more views of this system.

The 4th iteration is the largest with 30 classes and a total size of 3-4 KLOC.
We selected Ludo because in each iteration, a crucial part of the final system is
added.

• The first map (Figure 6.3, leftmost) shows the initial prototype. This
iteration implements the board as a linked list of squares. Most classes are
located in the south-western quadrant. The remaining space is occupied
by ocean, nothing else having been implemented so far.

• In the second iteration (Figure 6.3, second to the left) the board class is
extended with a factory class. In order to support players and stones, a few
new classes and tests for future game rules are added. On the new map the
test classes are positioned in the north-eastern quadrant, opposite to the
other classes. This indicates that the newly added test classes implement
a novel feature (that is testing of the game’s “business rules”) and are
thus not related to the factory’s domain of board initialization.

• During the third iteration (Figure 6.3, second to the right) the actual
game rules are implemented. Most rules are implemented in the Square
and Ludo class, thus their mountain rises. In the south-west, we can notice
that, although the BoardFactory has been renamed to LudoFactory, its
position on the map has not changed considerably.

• The fourth map (Figure 6.3, rightmost) shows the last iteration. A user
interface and a printer class have been added. Since both of them depend
on most previous parts of the application they are located in the middle
of the map. Since the new UI classes use vocabulary from all parts of the
system, the islands are joined into a continent.

The layout of elements remains stable over all four iterations. For example,
Board/LudoFactory is on all four views located in the south-western quadrant.
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6.5 Discussion

Software Cartography, as presented in this chapter, is a spatial representation
of software. Our approach visualizes software entities using a consistent layout.
Software maps present the entire program and are continuous. Software maps
contain visual landmarks that allow developers to find parts of the system per-
ceptually rather then relying on conceptual cues, for example names. Since all
software maps of a system use the same layout, maps with thematic overlays
can be compared to each other.

The layout of software maps is based on the lexical similarity of software
entities. Our algorithm uses a vector-space model to position software entities
in an multi-dimensional space, and a combination of the Isomap algorithm [179]
and Multidimensional Scaling [33] to map these positions on a two-dimensional
display. Software maps can be generated to depict evolution of a software sys-
tem over time. We evaluated the visual stability of iteratively generated maps
considering four open source case studies.

In spite of the aesthetic appeal of hill shading and contour lines, the main
contribution of this chapter is not the cartographic look of software maps. The
main contribution of Software Cartography is (i) that cartographic position
reflects topical distance of software entities, and (ii) that consistent layout allows
different software maps to be easily compared. In this way, software maps reflect
world maps in an atlas that exploit the same consistent layout to depict various
kinds of thematic information about geographical sites.

Software maps at present are largely static. In a more interactive environ-
ment the user can “zoom and pan” through the landscape to see features in
closer detail, or navigate to other views of the software. The CodeCanvas
prototype by Deline and Rowan offers this feature [53]. All source code is put
on a large zoomable canvas and developers zoom and pan around on this can-
vas as they work on the system. Depending on the zoom level of the canvas
a different semantic view of the system is shown. For example, as the canvas
is zoomed out the source code fades off and labels with colored icons appear
instead to mark the signature of methods.

Selectively displaying features would make the environment more attractive
for navigation. Instead of generating all the labels and thematic widgets up-
front, users can annotate the map, adding comments and waymarks as they
perform their tasks. The CodeBubbles prototype by Bragdon and Reiss offers
this feature [34]. Instead of offering one global representation, a custom spatial
layout of separate method bodies is unfolded as the developer works on the
code. For each working context, that is task, a new view is generated. They
offer specialized views for debugging contexts, including a differential debugging
mode. They are evaluating their prototype in an ongoing series of user studies,
on the first of which is being reported in their current publications [35, 34].

Orientation and layout are presently consistent for a single project only.
The usefulness of conventions for establishing consistent layout and orientation
(that is “testing” is North-East) that will work across multiple projects, possibly
within a reasonably well-defined domain, is an open issue. However, given the
findings of the user study presented in the next chapter, we consider it to be
more worthwhile to invest in customizable layouts rather than predefined global
layouts.
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Chapter 7

User Study on Software
Cartography

Software visualization can be of great use for understanding and exploring a
software system in an intuitive manner. Spatial representation of software is a
promising approach of increasing interest. However, little is known about how
developers interact with spatial visualizations that are embedded in the IDE.
In this chapter, we present a pilot study that explores the use of Software Car-
tography for program comprehension of an unknown system. We investigated
whether developers establish a spatial memory of the system, whether cluster-
ing by topic offers a sound base layout, and how developers interact with maps.
We report our results in the form of observations, hypotheses, and implications.
Key findings are a) that developers made good use of the map to inspect search
results and call graphs, and b) that developers found the base layout surpris-
ing and often confusing. We conclude with concrete advice for the design of
embedded software maps.

In the past decade the software visualization community has developed a
rich wealth of visualization approaches [57] and provided evidence of their use-
fulness for expert tasks, such as reverse engineering, release management or
dynamic analysis (for example [178, 48, 161, 151]). Typically, these visualiza-
tion approaches had been implemented in interactive tools [168]. However most
of these tools are stand-alone prototypes that have never been integrated in an
IDE (integrated development environment). Little is thus known about the ben-
efits of software visualization for the “end users” in software engineering, that
is for everyday programmers. What is lacking is how these techniques support
the day to day activities of software developers [176].

In this chapter, we report on a pilot study of a spatial software visualization
that is embedded in the IDE. The spatial visualization is based on the Software
Cartography approach that has been presented and introduced in previous work
[116, 111, 66]. Spatial representation of software is a promising research field
of increasing interest [192, 53, 34, 174, 139, 149], however the respective tools
are either not tightly integrated in an IDE or have not yet been evaluated in a
user study. Spatial representation of software is supposed to support developers
in establishing a long term, spatial memory of the software system. Developers
may use spatial memory to recall the location of software artifacts, and to put

75
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thematic map overlays in relation with each other [111].
The scenario of our user study is first contact with an unknown closed-source

system. Our main question was whether and how developers make use of the
embedded visualization and if our initial assumptions made when designing the
visualization (as for example the choice of lexical similarity as the map’s base
layout, see Section 6.3) are based on a valid model of developer needs. Partic-
ipants had 90 minutes to solve 5 exploratory tasks and to fix one bug report.
We used the think-aloud protocol and recorded the voices of the participants
together with a screen capture of their IDE interactions. We took manual notes
of IDE interaction sequences and annotated the sequences with the recorded
think-aloud transcripts.

Results are mixed — some support and some challenge our assumptions on
how developers would use the embedded visualization. Participants found the
map most useful to explore search results and call graphs, but only rarely used
the map for direct navigation contrary to our expectations.

7.1 The Codemap Prototype

Software Cartography uses a spatial visualization of software systems to provide
software development teams with a stable and shared mental model. The basic
idea of cartographic visualization is to apply thematic cartography [172] to
software visualization. That is, to show thematic overlays on top of a stable,
spatial base layout. Features on a thematic map are either point-based, arrow-
based or continuous. For software this could be the dispersion of design flaws
as visualized using icons; a call graph is visualized as a flow map (as illustrated
on Figure 7.1); and test coverage is visualized as a choropleth map, that is a
heat map.

Software Cartography is most useful when it supports as many development
tasks with spatial location awareness as possible. We therefore integrated our
prototype into the Eclipse IDE so that a map of the software system may always
be present. This helps developers to correlate as many development tasks as
possible with their spatial location.

At the moment, the Codemap plug-in for Eclipse supports the following
tasks:1

• Navigation within a software system, be it for development or analysis.
Codemap is integrated with the package explorer and editor of Eclipse.
The selection in the package explorer and the selection on the map are
linked. Open files are marked with an icon on the map. Double clicking
on the map opens the closest file in the editor. When using heat map
mode, recently visited classes are highlighted on the map.

• Comparing software metrics to each other, for example to compare bug
density with code coverage. The map displays search results, compiler
errors, and (given the Eclemma plug-in is installed) test coverage infor-
mation. More information can be added through a plug-in extension point.

• Social awareness of collaboration in the development team. Codemap
can connect two or more Eclipse instances to show open files of other

1http://scg.unibe.ch/codemap

http://scg.unibe.ch/codemap
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developers. Colored icons are used to show the currently open files of all
developers. The icons are updated in real time.

• Understand a software system’s domain. The layout of Codemap is based
on clustering software by topic [110], as it has been shown that, over time,
the lexicon of source code is more stable than its structure [8]. Labels
on the map are not limited to class names, but include automatically
retrieved keywords and topics.

• Exploring a system during reverse engineering. Codemap is integrated
with Eclipse’s structural navigation features, such as search for callers,
implementers, and references. Arrows are shown for search results. We
apply the Flow Map algorithm [154] to avoid visual clutter by merging
parallel arrow edges. Figure 7.1 shows the result of searching for calls to
the #getSettingOrDefault method in the MenuAction class.

7.2 Methodology

We evaluated our approach in a pilot study with professional developers and
students. The scenario investigated by the experiment is first contact with an
unknown software system. Participants have 90 minutes to solve 5 program
comprehension tasks and to fix one bug report. After the experiment, partici-
pants are asked to sketch their mental map of the system.

Our goal for the present pilot study was to learn about the usability of
Codemap for program comprehension. We have been seeking to answer several
questions. How can we support developers in establishing a spatial memory
of software systems? How do we best support the developers spatial memory
using software visualization? How to best embed spatial software visualization
in the IDE? When provided with spatial representation of search results and
call graphs, how do developers make use of them?

Not covered in this study, and thus open for future user studies, are the
shared team awareness and long term memory claims of the Software Cartog-
raphy approach [111].

7.2.1 Design of the Study

The study consists of six programming tasks. The training task introduced
the participants to the Codemap plug-in. The first five tasks were program
comprehension tasks, starting with general questions and then going into more
and more detailed questions. Eventually, the last task was to fix an actual bug
in the system. Participants were asked to use the map whenever they saw fit,
but otherwise they were free to use any other feature of Eclipse they wanted.

Task 1, Domain and Collaborators “Find the purpose of the given appli-
cation and identify the main collaborators. Explore the system, determine its
domain, and fulfil the following tasks: a) describe the domain, b) list the main
collaborators, c) draw a simple collaboration diagram, d) identify the main fea-
ture of the application.”
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Figure 7.1: Thematic codemap of a software system. Here the Codemap tool
itself is shown. Arrow edges show incoming calls to the #getSettingOrDefault
method in the MenuAction class, which is currently active in the editor and thus
labeled with a tool-tip.
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Task 2, Technologies “In this task we are interested in the technologies used
in the application. List the main technologies, such as for example Ajax, XML,
or unit testing.”

Task 3, Architecture “In this task we are going to take a look at the ar-
chitecture of the application. Reverse engineer the architecture by answering
the following questions: a) which architectural paradigm is used (as for example
pipes and filters, layers, big ball of mud, etc)? b) what are the main architectural
components? c) how are those components related to one another? d) draw a
UML diagram at the level of components.”

Task 4, Feature Location “In this task we are interested in classes that
collaborate in a given feature. Please locate the following features: a) Interactive
users are reminded after some months, and eventually deleted if they do not log
in after a certain number of months, b) Depending on the kind of user, a user
can see and edit more or less data. There are permission settings for each kind
of user that are checked whenever data is accesses, and c) Active search: the
system compares the curriculum vitae of the users with stored searches of the
companies and mails new matches to the companies.”

Task 5, Code Assessment “In this task we want to assess the code quality
of the application. Please answer the following questions: a) what is the degree
of test coverage? b) are there any god classes? c) are the classes organized
in their proper packages? Should certain classes be moved to other packages?
Please list two to three examples.”

We provided a code coverage plug-in with the experiment, as well as a defi-
nition of what constitutes a god class [121].

Task 6, Bug Fixing In this task we provided an actual bug report and asked
“Describe how you would handle the bug report, that is how and where you would
change the system and which classes are involved in the bug fix. You are not
asked to actually fix the bug, but just to describe how you would fix it.”

7.2.2 Participant Selection

Participants were selected through an open call for participation on Twitter2 as
well as through flyers distributed at a local Eclipse event. Subjects were required
to be medium level Java programmers with at least one year of experience with
both Java and Eclipse programming. The six tasks had been designed so that the
participants did not need to be knowledgeable with the provided application, but
rather that they explore it as they go along. Seven participants took part in the
experiment: 4 graduate students and 3 professional developers from industry.
None of the participants was familiar with the provided application or with
the Codemap plugin; even though some had attended a 15 minute presentation
about the Codemap plugin at the Eclipse event mentioned above.

2http://twitter.com/codemap

http://twitter.com/codemap
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7.2.3 Study Setting

The study consisted of three main parts. The first part was the training task in
which the participants were given a short presentation of Codemap and a tutorial
document that explained all features of the Codemap plug-in. The tutorial
explained all features mentioned in Section 7.1 using walk-through descriptions
of their use. The participants were given 20 minutes to explore a small example
program using the Codemap plug-in. When they felt ready, we started part two
of the experiment.

The second part consisted of the actual programming tasks. A fixed amount
of time was allotted to each task. Participants were asked to spend no more
than 15 minutes on each task. All subjects had access to the Codemap plugin
as our aim was to explore their use of the plugin rather than to compare a
controlled parameter against the baseline.

Eventually, in a third part we held a debriefing session. We asked partici-
pants to draw a map (with any layout or diagram language whatsoever) of how
they would explain the system under study to another developer. We asked the
participants for feedback regarding their use of the Codemap plugin and how
the plugin could be improved.

7.3 Data Collection

We asked the participants to think aloud, and recorded their voice together with
a captured video of their computer screen using the Camtasia software3. We
reminded the participants to think aloud whenever they fell silent: we told them
to imagine a junior programmer sitting beside them to whom they are to explain
their actions (Master/Apprentice [27]). The participants were asked to respond
to a survey while performing the study. The survey consisted of their answers
to the tasks, as well as the perceived difficulty of the tasks and whether they
found the Codemap plugin useful for the task at hand. We used a combination
of semantic differential statements and Likert scales with a 5 point scale.

We measured whether or not subjects were successful in completing a pro-
gramming task. We used three success levels to measure the success and failure
of tasks: a task could be a success, a partial success or a failure. We further
subdivided tasks 4 and 5 into three subtasks and recorded success levels for each
individual subtask. We asked one of the original authors of the system to assess
the success levels. As this was a think-aloud study, we did not measure time,
but alloted a fixed 15 minute slot to each task.

Our main interest was focused on how the participants used the IDE to
solve the tasks, independent of their success level. To do this, we transcribed
important quotes from the recorded participant voices and screen captures and
took notes of the actions that the participants did during the tasks. For each
task we tracked the use of the following IDE elements:

• Browsing the system using the Package Explorer and Outline view. This
includes both drill-down as well as linear browsing of package, class and
method names.

3http://www.techsmith.com/camtasia

http://www.techsmith.com/camtasia
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• Browsing the system using the spatial visualization of the Codemap plu-
gin. This includes both opening single classes, selecting a whole cluster of
classes on the map, as well as reading class name labels on the map.

• Reading source code in the editor pane, including documentation in the
comments of class and method headers.

• Navigating the structure of the system using the Type Hierarchy and Call
Hierarchy view. We tracked whether they explored the results of these
searches in Eclipse’s tabular result view or using the flow-map arrows
displayed on the spatial visualization of Codemap.

• Searching the structure of the system with either the Open Type or Java
Search dialog. This allows users to search for specific structural ele-
ments such as classes, methods or fields. Again, we tracked whether they
explored the results in Eclipse’s result view or on the visualization of
Codemap.

• Searching the system with the unstructured text search, either through the
Java Search dialog or the immediate search bar of the Codemap plugin.
Also here, we tracked whether they explored the results in Eclipse’s result
view or on the visualization of Codemap.

Replicability: the raw data of our analysis is available on the Codemap
website at http://scg.unibe.ch/codemap.

7.4 Results

After analyzing our data, we observed different degrees of interaction with the
Codemap plug-in. We focused our analysis on interaction sequences that in-
cluded interaction with the Codemap plug-in, but also on those interaction
sequences that challenged our assumptions about how developers would make
use of the plug-in.

The presentation of results is structured as follows. First, we briefly cover
how each task was solved. Then present an in-depth analysis of our observations,
structured by triples of observation, hypothesis, and implication. Implications
are directed at improving the design and usability of spatial visualizations that
are embedded in an IDE.

7.4.1 Task Performance

Task 1, Domain and Collaborators Participants used an approach best
described as a “reverse Booch method” [32]. Given a two-sentence description
of the system that we’ve provided, they searched for nouns and verbs using
Eclipse’s full text search. Most participants used Codemap to assess quantity
and dispersion of search results, and also to directly select and inspect large
classes. Then they looked at the class names of the matches to learn about
the domain and collaborators of the system. Students also read source code,
whereas professional participants limited their investigation to using the package
explorer and class outline.

http://scg.unibe.ch/codemap
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Task 2, Technologies This task showed the most uniform behavior from
both student and professional participants. They inspected the build path node
and opened all included JAR libraries. Professional developers typically raised
the concern that possibly not all of these libraries were (still) used and started
to explore whether they were used. Typically they would carry out a search to
do so, but one developer showed a very interesting pattern: He would remove
the libary “on purpose” and then look for compile errors as an indicator of its
use. Students seems to implicitly assume that all libraries were actually used,
at least they never raised such a concern. We interpret this as a sign that
professionals are more cautious [105] and thus more aware of the typical decay
caused by software evolution, which may include dead libraries.

Task 3, Architecture Typically participants drilled-down with the package
explorer and read all package names. All professionals started out by formulat-
ing the hypothesis of a layered three-tier architecture, and then start fitting the
packages to the different layers. Most participants used Codemap to look at
the dispersion of a package’s classes (when selecting a package in the package
explorer, the contained classes are highlighted on the map).

To learn about the architectural constraints, professionals, for the first time
in the experiment, started reading source code. They also did so quite differently
from the way that students did. Whereas students typically read code line by
line, trying to understand what it does, the professionals rather used the scroll-
wheel to skim over the code as it flies by on the screen, thereby looking for
“landmarks” such as constructor calls, method signatures and field definitions.
Professionals made much more use of “open call hierarchy” and “open type
hierarchy”. Interestingly enough, only one participant opened a type hierarchy
of the whole project.

Task 4, Feature Location For this task, participants made most frequent
and more interesting use of Codemap than for any other task. As in task 1,
participants used a reversal of the Booch method. They searched for nouns
and verbs found in the feature description. Again, they used the map to assess
quantity and dispersion of search results. Also two participants used the map
to select and inspect search matches based on their context in the map.

Participants now began to read more source code than before. In particular,
when they found a promising search result they used the “open call hierarchy”
feature to locate related classes. All participants reported that Codemap flow-
map overlay helped them to work with the call graph. For some developers
there was an actual “Aha moment” where one glance at the Codemap helped
them to solve the current subtask immediately without further investigation.
Figure 7.2 illustrates one particular moment as encountered by participant T
during the location of the security feature.

Task 5, Code Assesment This set of tasks made it most obvious that Code-
map’s layout was not based on package structure. Participants reported that
they had a hard time to interpret the thematic maps as they could not map
locations on the map to packages. In particular the professional participants
expressed concerns regarding the use of KLOC for hill size. They expressed
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Figure 7.2: Screen capture of “Aha moment” as encountered by participant T
during task 4-b (location of security features): Upon opening the call hierarchy of
Grant’s constructor, a huge call-arrow appeared on the map: indicating dozens
of individual calls that connect the security-related archipelago in the south-west
with the TreeFactory island in the east. Given the visual evidence of this arrow,
participant T solved the task without further investigation.
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concerns that this might be misleading since lines of code is not always an
indicator of importance or centrality on the system’s design.

Task 6, Bug Fixing Participants mainly used the same approach as for the
feature location tasks. They first located the implementation of the feature in
which the bug occurs, and then fixed the bug. Professional participants did so
successfully, whereas student participants did not manage to find the correct
location in the source code.

Wrap-up session In general, participants reported that Codemap was most
useful when it displayed search results, callers, implementers, and references.
A participant reported: “I found it very helpful that you get a visual cue of
quantity and distribution of your search results”. In fact, we observed that that
participants rarely used the map for direct navigation but often for search and
reverse engineering tasks.

Another observation was that inexperienced developers (that is students)
are more likely to find the map useful than professional developers. This might
be explained by the hypothesis that to power users any new way of using the
IDE is likely to slow them down, and conversely to beginners any way of using
the IDE is novel. The only exception to this observation was Codemap’s search
bar, a one-click interface to Eclipse’s native search, that was appreciated and
used by all participants but one who preferred to use the search dialog.

One participant also provided us feedback comparing his experience with
Codemap to that with the Moose analysis tool [148]. He uses Moose at work
after having attended a tutorial by a consultant. He said he prefers the immedi-
ate feedback of Codemap, and reported that “the gap between Moose and IDE is
just too large, not to mention the struggle of importing Java code. Moose helps
you to for example find god-classes but this is typically not new to developers
that know a system. Codemap seems more interesting as it integrates with what
you actually do in the IDE as you program.”

7.4.2 Observations, Hypotheses, Implications

In this section, we present an in-depth analysis of our observations, structured
by triples of observation, hypothesis, and implication. Implications are directed
at improving the design and usability of spatial visualizations that are embedded
in an IDE.

Observation 7.1: When thinking aloud, developers spoke of the sys-
tem’s architecture in spatial terms The think-aloud protocol revealed
that participants refer to the system’s architecture in spatial terms. Profes-
sional participants referred to packages as being above, below, or at the some
level as one another. Some of them even did so before recovering the system’s
3-tier architecture in task #3. Most professionals referred to utility packages a
being spatially beside or outside the layered architecture.

For example, participant T located all utility packages in the upper left
corner, separated by a jagged line. While doing so, he made a gesture as if
pushing the utility classes away and stated, “I am putting them up here because
to me they are somehow beside the system.”
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Students on the other hand made much fewer references to the system’s ar-
chitecture, both spatial as well as in general. They were typically reasoning
about the system at the level of classes and source lines, rather than in archi-
tectural terms. The maps drawn by students in the wrap-up phase, however,
showed similar spatial structure to those of the professionals. It remains thus
open whether students established a genuine spatial model while working with
the code (as we observed for professionals) or only because they were asked to
draw the wrap-up maps.

Hypothesis 7.1: Professional developers establish a spatial mental
model of the system’s architecture Based on above observations there is
evidence to assume that professional developers establish a spatial mental model
of the system’s architecture as they work with code. Furthermore, they do so
even without visual aids, since they use spatial terms and thinking even before
being asked to draw a diagram of the system’s architecture.

Implication 7.1: Developers should be able to arrange the layout
according to their mental model This has implications on the design of a
system’s spatial visualization. Developers should be able to arrange the layout
according to their mental model. Developers should be able to drag and move
parts of the map around as they wish, rather than having to stick with the
automatically established layout. Code Canvas [53] and Code Bubbles [34] both
already address this implication. In those tools, the user may drag individual
elements around and arrange them according to his mental model.

We observed that developers referred to architectural components, but not
classes, in spatial terms. The needs of developers might thus be even better
served by providing them more high-level means of arranging the map. Our next
prototype will use anchored multidimensional scaling such that developers may
initialize the map to their mental model. Anchored MDS allows the developer
to define anchors which influence the layout of the map [38, Sec 4.4]. Any
software artifact can be used as an anchor (as long as we can compute a its
distance to artifacts on the map), even for example external libraries. In this
way, developers might for example arrange the database layer in the south and
the UI layer in the north using the respective libraries as anchors.

Observation 7.2: Participants used Codemap to assess quantity and
dispersion of search results and call graphs The feature of Codemap that
was used most often, by both professionals and students, was the illustration
of search results and call graphs. Participants reported that they liked the
search-result support of the map, explaining that it gives them much faster
initial feedback than Eclipse’s tabular presentation of search results. Many
participants reported that it was “as if you could feel the search results,” and
that “you get an immediate estimate how much was found, whether it is all one
place or scattered all over the place.”

Figure 7.2 illustrates one particular “Aha moment” as encountered by par-
ticipant T during task 4-b, that is location of security features: Upon opening
the call hierarchy, a huge call-arrow appeared on the map: indicating dozens of
individual calls that connect the security-related archipelago in the south-west
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with the TreeFactory island in the east. Given the visual evidence of this ar-
row, the participant solved the task immediately without further investigation
of the system.

Hypothesis 7.2: Intuitive visualizations to show quantity and disper-
sion of search results (as well as call graphs) address an important
need of developers Given the above observation it seems clear that devel-
opers have urgent needs for better representation of search results than tabular
lists. We found that both students and professionals used the map to get an
immediate estimation of search results. This is most interesting since otherwise
their use of the tabular search results differed: Professionals glanced at the re-
sults, inspected one or maybe two results, and then either accepted or rejected
their hypothesis about the system, while students would resort to a linear search
through all search results, not daring to reject a hypothesis on the grounds of
one or two inspected results only.

Given the map’s illustration of search results however, the behavior of both
groups changed. Students dared to take quick decisions from a mere glance
at the map, whereas professionals were more likely to inspect several results.
One professional reported that he “inspected more results than usual, because
the map shows them in their context and that this helps him to take a more
informed choice on which results are worth inspection and which ones not.”

Implication 7.2: Tools should put search results into a meaningful
context, so developers can take both quicker and better-informed de-
cisions The need for better presentation of search results has implications
beyond the design of spatial visualizations. Work on presentation of search re-
sults goes beyond spatial maps [84], for example results can be presented as
a graph. Poshyvanyk and Marcus [158] have taken one such approach (repre-
senting search results as a lattice) and applied it to source code search with
promising results.

For our next prototype we plan to integrate search results into the package
explorer view, just as is already done with compile errors (which are, from this
point of view, just like the search results of a complex query that is run to find
syntax errors). This planned feature addresses another implication of our study
as well, as we have found that some developers establish a spatial memory of
the package explorer view. It therefore makes sense to mark search results both
on our map as well as in the explorer view.

Observation 7.3/a: When interacting with the map, participants were
attracted to isolated elements, rather than exploring clusters of closely
related elements We found that participants are more likely to inspect eas-
ily discernible elements on the map. They are more likely to notice and interact
with an isolated island rather than with elements that are part of a larger con-
tinent. Unfortunately, it is exactly dense and strongly correlated clusters that
contain the most interesting parts of the system! When investigating this issue,
participants answered that “those (isolated) elements looked more important as
they visually stick out of the rest of the map.”

Also, when working with another system that had (unlike the present study)
a large cluster in the middle surrounded by archipelagos on the periphery, we
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found that users started their exploration with isolated hills in the periphery,
only then working their way towards the more dense cluster in the middle.

Hypothesis 7.3/b: Participants rarely used Codemap to return to pre-
viously visited locations, instead using package explorer and “Open
Type” to do so Contrary to our assumptions, participants did not use the
map to return to previously visited locations by recalling them from spatial
memory. Some would use the map, but only for exposed classes that are easily
recognizable and clickable. This observation is related to the previous one.

We found however some participants established a spatial memory of the
package explorer — and did so in addition to their spatial model of the system’s
architecture! For example, participant S would drill down with the explorer
saying “let’s open that class down there” or “there was this class up here.”
Over the course of the experiment he got quicker at navigating back to previ-
ously visited classes in the package explorer. Other participants, as for example
participant T, relied on lexical cues and made extensive use of Eclipse’s “Open
Type” dialog to find their way back to previously visited classes.

Usability glitches will of course worsen the effect of (or might even be the
main cause of) not using the map for navigation and revisiting classes. From
this it follows that:

Hypothesis 7.3: Developers avoided clusters of closely related ele-
ments because they are difficult to identify and select on the map
All participants had difficulties to open files by clicking on the map. They had
difficulties to select classes on the map when they are in a crowded cluster. They
would click in the middle of a label, but often the labels are not centered, which
is an unavoidable artifact of any labeling algorithm, and thus the clicks would
open a different (unlabeled) class.

Codemap does provide tooltips, however participants did not use them.
From observing their work it was obvious why: both students and professionals
were working at such a speed that waiting for a tooltip to appear would have
totally taken them out of their workflow.

Implication 7.3: The map’s layout should be such that all elements
are easily discernable and easy to click Real estate on a computer screen
is limited, and even more so in an IDE with all its views and panels. As
tool builders we have limited space available for an embedded visualization.
Given our goal of establishing a global layout we face the challenge of having to
visualize all elements of a system in that very limited space.

The current implementation of Codemap has one level of scale only, which
may yield crowded clusters where elements are placed just pixels apart. A
zoomable map as provided by Code Canvas [53] addresses this issue.

The fact that we are attracted by elements that are visually detached has
two impacts: one is that we tend to look at isolated elements as being of low
significance, the other being that it is hard to identify elements in the cluster.
These impacts are very different, but can both be addressed in a common way.
For instance, a threshold could be used to not show isolated elements at all, but
only significant clusters. Alternatively, colors may be used to display isolated
elements so that they do not draw our attention so readily.
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Observation 7.4: Participants rarely used Codemap to return to pre-
viously visited locations, instead using package explorer and “Open
Type” to do so

Hypothesis 7.4: Developers failed to establish a spatial memory of
the map not due to its layout but also due to missing visual cues In
general, the issue of usability is orthogonal to the map’s layout. For example,
offering “search as you type” might help to raise map interaction for those
developers that mainly rely on lexical cues, no matter which base layout is used.
It was our impression that any exploratory user study of embedded software
visualization will be dominated just as by usability issues as by technical factors,
such as your choice of layout algorithm.

Implication 7.4: It should be possible to bookmark classes as “top
landmarks,” both manually and automatically based on usage statis-
tics What might help as well to ease the retrieval of previously visited classes
is a “top landmarks” feature where you can manually (but also automatically
based on visits) set markers on the map as starting points for further activities.
We plan to work on this for our next prototype.

Observation 7.5: Participants used Codemap as if its layout were
based on package structure — even though they were aware of the un-
derlying topic-based layout Developers assume that packages are a valid
decomposition of the system and expect that the layout of the spatial visual-
ization corresponds to the package structure. We found that clustering classes
by topic rather than packages violates the “principle of least surprise.” We
observed that participants tended to interpret visual distance as a measure of
structural dependencies — even though they were aware of the underlying lexical
implementation!

Participants expected the layout to reflect at least some structural property.
Most of them reacted surprised or confused when for example the classes of a
package were not mostly in the same place. For example, Participant S reported
in the wrap-up, “this is a very useful tool but the layout does not make sense”.
Another participant stated during task 3 (that is the architecture recovery) with
confusion that “the classes contained in packages are scattered on the map, it is
not obvious what their spatial connection is.”

Hypothesis 7.5: From the developers view, the predominant mental
decomposition of a system is package structure Given the general stance
of reverse engineering research [148, 110, 61] we had come to distrust package
decomposition, however it seems that developers like to rely on the packaging
that other developers have made when designing the system.

One problem raised by research in re-packaging legacy systems is that pack-
ages play too many roles: as distribution units, as units of namespacing, as
working sets, as topics, as unit of architectural components, etc. However, as
an opposing point of view, we can relate packaging to the folksonomies of the
Web 2.0, where users label elements with unstructured tags that are then ex-
ploited by other users to search for elements. In the same way, we could say
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that putting trust into a given package structure is a way of collaborative fil-
tering. Developers assume that other developers had made the same choice as
they would when packaging the system.

Implication 7.5: The map layout should be based on code structure
rather than latent topics only. However, non-structural data should
be used to enrich the layout When running the user study, it became
quickly apparent that we should revise our initial assumption that lexical simi-
larity is a valid dissimilarity metric for the spatial layout. This was the strongest
feedback, and as is often the case in exploratory user studies, already obvious
from watching the first professional participant for five minutes only. From all
participants we got the feedback that they expect the layout to be structural
and that our clustering by topics kept surprising them even after working with
the map for almost two hours.

Still we think that spatial layouts that go beyond package structure are
worthwhile. Therefore, we propose to enrich structure-based layout with non-
structural data, such as design flaws. For future work, we are about to refine
our layout algorithm based on that conclusion. The new layout is based on
both lexical similarity and the ideal structural proximity proposed by the “Law
of Demeter” (LOD). This is a design guideline that states that each method
should only talk to its friends, which are defined as its class’s fields, its local
variables and its method arguments. Based on this we can defined an idealized
call-based distance between software artifacts. Given a LOD-based layout, soft-
ware artifacts are close to one another if they are supposed to call one another
and far apart if they better should not call one another. Thus we get the de-
sired property that visualizing call-graphs conveys meaningful arrow distances.
On a LOD-based map, any long-distance-call has a diagnostic interpretation
that helps developers to take actions: Long flow-map arrows indicate calls that
possibly violate the “Law of Demeter”.

7.5 Threats to Validity

This section summarizes threats to validity. The study had a small sample
size (3 students, 4 professionals) and might thus not be representative. We
manually evaluated the data, results might thus be biased. Nevertheless, results
are promising and running a pilot think-aloud study with a small user group
is a state-of-the-art technique in usability engineering to learn learn about the
reactions of users. Such pilot studies are typically used as feedback for further
iteration of the tool and to assess the usefulness of its application [147].

7.6 Conclusion

In this chapter we presented an evaluation of spatial software visualization in
the IDE. We embedded a prototype of the Software Cartography approach [116,
66, 111], the Codemap plug-in, in the Eclipse IDE and ran an exploratory user
study which included both students and professionals.

Software maps are supposed to help developers with a visual representation
of their software systems that addresses their spatial thinking and memory.



90 CHAPTER 7. USER STUDY ON SOFTWARE CARTOGRAPHY

The scenario of our user study was first contact with an unknown closed-source
system. Results were as follows:

• Participants made good use of the map to inspect search results and call
graph. They reported that the spatial visualization provided them with
an immediate estimate of quantity and dispersion of search results.

• Participants found the layout of the map (which uses lexical information
to cluster classes by topic) surprising and often confusing. This led to the
revision of our initial assumption that lexical similarity is sufficient to lay
out the cartographic map.

We drew the following four main observations, and concluded from these the
following implications:

• All participants used a form of spacial thinking to understand the sys-
tem. It would be best to allow developers to rearrange the initial layout
according to their spatial memory.

• Immediate estimate of quantity and dispersion of search results is useful
and the map suits this well.

• Participants are distracted by isolated elements, which do not appear
in textual/tabular representation. This is the drawback of visualization,
which must find the right balance between the power of visualization and
the pitfall of visualization. The map should be improved to mitigate that.

• The coexistence of two models for the software (one structural, one concep-
tual) causes some confusion. With the present map and implementation,
participants were puzzled by non-structural nature of the map.

Developers intuitively expect that the map meets their mental model of the
system’s architecture. We observed that if this is not given, developers are not
able to take advantage of the map’s consistent layout. So for example, even
though north/south and east/west directions had clear (semantic) interpreta-
tions in the map used for the user study, developers did not navigate along these
axes.

However, even with the most perfect layout, developers might not be able
to take advantage of the map if the elements are barely discernable, and thus
difficult to inspect.

Based on the results of our user study, we conclude with the working hy-
pothesis that the map should incorporate structural information and be improved
from point of usability and that we need more work to make two models (one
structural, one conceptual) co-exists without creating confusion.

In order to achieve this, we propose the following changes to the Software
Cartography approach:

• Compute the initial layout so that distance reflects structural correlation,
since this is what the developers expect (that is “principle of least aston-
ishment”).

• Use anchored multi-dimensional scaling for the layout so that developers
may rearrange the map according to their spatial model of the system.
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• Use architectural components as anchors for rearrangement of the map,
since spatial thinking of developers is strongest at the architectural level.

• Improve the usability experience of inspecting and selecting of elements
on the map, possibly using a zoomable user interface.
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Chapter 8

Stories of Collaboration

Aim Learning about team collaboration.
Reach Team of a project’s local codebase.
Clues Episodic (established through social and historical information).
Query Visual analytics of a story-telling visualization.

Episodic clues are of great help to developers when finding their way through
a system. However episodic memory is only available to those developers who
know a system’s history first-hand. For most software systems, the tribal folklore
of the team is the only record on the system’s history beside the version control
system. The tribal folklore is hard to query because it is only present in the
team’s minds. The version control system is hard to query because it is typically
only present as a series of textual low-level changes to the system’s source code.
There is a need for better means of recovering and telling a system’s story to
both new hires and seasoned team members.

In this chapter we present an approach to visualize a system history and its
team’s collaboration as a story-telling visualization. Story-telling visualizations
are a branch of information visualization that has been popularized by the infor-
mation graphics of newspapers such as the New York Times and the Guardian.
A story-telling visualization is supposed to invite its reader to get engaged with
the visualized data by establishing a personal connection between the reader and
the presented data. Our approach uses social and historical information taken
from the version control system to establish an episodic visualization of the
system’s history. We show the lifeline of files ordered by code ownership, thus
telling the story of the team’s collaboration. Teams are typically getting very
engaged and excited when shown the visualization of their own system. Both
new hires and seasoned team members can use this visualization to learn about
episodes from the system’s history in order to take better technical decisions
when working with the system in the future.

As systems evolve their structure changes in ways not expected upfront. As
time goes by, the knowledge of the developers becomes more and more critical for
the process of understanding the system. That is, when we want to understand
a certain issue of the system we ask the knowledgeable developers. Yet, in large
systems, not every developer is knowledgeable in all the details of the system.
Thus, we would want to know which developer is knowledgeable in the issue at

93
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hand. In this chapter we make use of the mapping between the changes and the
author identifiers (for example user names) provided by versioning repositories.
We first define a measurement for the notion of code ownership. We use this
measurement to define the Ownership Map visualization to understand when
and how different developers interacted in which way and in which part of the
system1. We report the results we obtained for several large systems.

Software systems need to change in ways that challenge the original design.
Even if the original documentation exists, it might not reflect the code anymore.
In such situations, it is crucial to get access to developer knowledge to under-
stand the system. As systems grow larger, not all developers know about the
entire system, thus, to make the best use of developer knowledge, we need to
know which developer is knowledgeable in which part of the system.

From another perspective, Conway’s law [45] states that “Organizations
which design systems are constrained to produce designs which are copies of
the communication structures of these organizations.” That is, the shape of the
organization reflects on the shape of the system. As such, to understand the
system, one also has to understand the interaction between the developers and
the system [55].

In this chapter we aim to understand how the developers drove the evolution
of the system. In particular we provide answers to the following questions:

• How many authors developed the system?

• Which author developed which part of the system?

• What were the interactions between the developers?

In our approach, we assume that the original developer of a line of code is the
most knowledgeable in that line of code. We use this assumption to determine
the owner of a piece of code (for example a file) as being the developer that
owns the largest part of that piece of code. We make use of the ownership to
provide a visualization that helps to understand how developers interacted with
the system. The visualization represents files as lines, and colors these lines
according to the ownership over time.

Contrary to similar approaches [185], we give a semantic order to the file axis
(that is we do not rely on the names of the files) by clustering the files based
on their history of changes: files committed in the same period are related [72].

We implemented our approach in Chronia, a tool built on top of the Moose
reengineering environment [59]. Our implementation relies on the CVS version
control system. Our aim was to provide a solution that gives fast results, there-
fore, our approach relies only on information from the CVS log without checking
out the whole repository. As a consequence, we can analyze large systems in
a very short period of time, making the approach usable in the early stages of
reverse engineering.

To show the usefulness of our solution we applied it for several large case
studies. We report here some of the findings and discuss different facets of the
approach.

The contributions of the chapter are:

• The definition of file ownership.
1The visualizations in this chapter make heavy use of colors. Please obtain a color-printed

or electronic version for better understanding.
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• The clustering of files based on their commit history.

• A characterization of developer behaviors.

• The Ownership Map visualization.

8.1 Data Extraction from CVS log

This section introduces a measurement to characterize the code ownership. The
assumption is that the original developer of a line of code is the most knowl-
edgeable in that line of code. Based on this assumption, we determine the owner
of a piece of code as being the developer who owns the most lines of that piece
of code.

Our approach is based on incremental line change information taken from
the log files of the version control system. We approximate the ownership of
files from this information. An advantage of this approach is that we can work
with the log files only and do not need to retrieve the entire version history.
Other than more modern systems like Git and Subversion, the CVS protocol
does not provide an easy way to mirror an entire repository [30].

Below we present a snippet from a CVS log. The log lists for each version
fn of a file, termed revision in CVS, the time tfn

of its commit, the name of
its author αfn

, some state information and finally the number of added and
removed lines as deltas afn and rfn . We use these numbers to recover both the
file size sfn , and the code ownership ownαfn

.

----------------------------

revision 1.38

date: 2005/04/20 13:11:24; author: girba; state: Exp; lines: +36 -11

added implementation section

----------------------------

revision 1.37

date: 2005/04/20 11:45:22; author: akuhn; state: Exp; lines: +4 -5

fixed errors in ownership formula

----------------------------

revision 1.36

date: 2005/04/20 07:49:58; author: mseeberg; state: Exp; lines: +16 -16

Fixed math to get pdflatex through without errors.

----------------------------

8.1.1 Measuring File Size

Let sfn be the size of revision fn, measured in number of lines. The number
of lines is not given in the CVS log, but can be computed from the deltas afn

and rfn
of added and removed lines. Even though the CVS log does not give

the initial size sf0 , we can give an estimate based on the fact that one cannot
remove more lines from a file than were ever contained. We define sfn as in
Figure 8.1: we first calculate the sizes starting with an initial size of 0, and then
in a second pass adjust the values with the lowest value encountered in the first
pass.

This is a pessimistic estimate, since lines that never changed are not covered
by the deltas in the CVS log. This is an acceptable assumption since our main
focus is telling the story of the developers, not measuring lines that were never
touched by a developer. Furthermore in a long-living system the content of files
is entirely replaced or rewritten at least once if not several times. Thus the
estimate matches the correct size of most files.
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time

size

s'f0 = 0 =

sf0
 = 

s′f0 := 0
s′fn

:= s′fn−1
+ afn−1 − rfn

sf0 := |min{s′x}|
sfn

:= sfn−1 + afn
− rfn

Figure 8.1: The computation of the initial size.

8.1.2 Measuring Code Ownership

A developer owns a line of code if he was the last one who committed a change
to that line. In the same way, we define file ownership as the percentage of lines
he owns in a file. And the overall owner of a file is the developer who owns the
largest part of it.

Let ownδfn
be the percentage of lines in revision fn owned by author δ. Given

the file size sfn
, and both the author δfn

who committed the change and afn

the number of lines he added, we defined ownership as:

ownδf0 :=
{

1, δ = δf0
0, else

ownδfn
:= ownδfn−1

sfn
− afn

sfn

+
{ afn

sfn
, δ = δfn

0, else

In the definition we assume uniform distribution of removed lines rfn among
the preceding owners of fn−1. A better estimate than ownαfn

can be retrieved
by checking out the content of each revision and using a diff algorithm to find
out to whom the removed lines actually belonged. But this natively supported
by the CVS protocol and this time consuming.

8.2 The Ownership Map View

We introduce the Ownership Map visualization as in Figure 8.2. The visualiza-
tion is similar to the Evolution Matrix [119]: each line represents a history of a
file, and each circle on a line represents a change to that file.

The color of the circle denotes the author who made the change. The size of
the circle reflects the proportion of the file that got changed. That is, the larger
the change the larger the circle. And the color of the line denotes the author
who owns most of the file.

Bertin [25] assessed that one of the good practices in information visualiza-
tion is to offer to the viewer visualizations that can be grasped at one glance.
The colors used in our visualizations follow visual guidelines suggested by Bertin,
Tufte [181], and Ware [190] - for example we take into account that the human
brain is not capable of processing more than a dozen distinct colors.

In a large system, we can have hundreds of developers. Because the human
eye is not capable of distinguishing that many colors, we only display the authors
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who committed most of all changes using distinct colors; the remaining authors
are represented in gray. Furthermore, we also represent those files with gray
that came into the CVS repository with the initial import. Imported files are
usually sources from another project with unknown authors and are thus not
necessarily created by the author that performed the import. In short, a gray
line represents either an unknown owner, or an unimportant one.

File A

File B

commit by the green author
followed by the ownership

small commit by the blue author.
the file is still ownedby the green author

file removed by 
the blue author

file present from
the first import

file created by the
green author

Time

Figure 8.2: Example of ownership visualization of two files.

In the example from Figure 8.2, each line represents the lifetime of a file; each
circle represents a change. File A appears gray in the first part as it originates
from the initial import. Later the green author significantly changed the file,
and he became the owner of the file. In the end, the blue author deleted the file.
File B was created by the green author. Afterwards, the blue author changed
the file, but still the green author owns the larger part, so the line remains
green. At some point, the red author committed a large change and took over
the ownership. The file was not deleted.

Takeover
by the Green author

Teamwork
between the Green and Red authors

Familiarization
of the Blue author

Edit
by the Green author

Bug-fix
by the Yellow author

Expansion
of the Blue author

Monologue
of the Green author

Figure 8.3: Example of the Ownership Map view. The view reveals different
patterns: Monologue, Familiarization, Edit, Takeover, Teamwork, Bug-fix.
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8.2.1 Ordering the Axes

Ordering the Time Axis. Subsequent file revisions committed by the same
author are grouped together to form a transaction of changes that is a commit.
We use a single linkage clustering with a threshold of 180 seconds to obtain
these groups. This solution is similar to the sliding time window approach of
Zimmerman et al. when they analyzed co-changes in the system [198]. The
difference is that in our approach the revisions in a commit do not have to have
the same log comment, thus any quick subsequent revisions by the same author
are grouped into one commit.

Ordering the Files Axis. A system may contain thousands of files; further-
more, an author might change multiple files that are not near each other if we
would represent the files in an alphabetical order. Likewise, it is important to
keep an overview of the big parts of the system. Thus, we need an order that
groups files with co-occurring changes near each other, while still preserving the
overall structure of the system. To meet this requirement we split the system
into high-level modules (for example the top level folders), and order inside each
module the files by the similarity of their history. To order the files in a mean-
ingful way, we define a distance metric between the commit signature of files
and order the files based on a hierarchical clustering.

Let Hf be the commit signature of a file, a set with all timestamps tfn
of each

of its revisions fn. Based on this the distance between two commit signatures
Ha and Hb can be defined as the modified Hausdorff distance 2 δ(Ha, Hb):

D(Hn, Hm) :=
∑
n∈Hn

min2{|m− n| : m ∈ Hm}

δ(Ha, Hb) := max{D(Ha, Hb), D(Hb, Ha)}

With this metric we can order the files according to the result of a hierarchical
clustering algorithm [97]. From this algorithm a dendrogram can be built: this is
a hierarchical tree with clusters as its nodes and the files as its leaves. Traversing
this tree and collecting its leaves yields an ordering that places files with similar
histories near each other and files with dissimilar histories far apart of each
other.

The file axis of the Ownership Map views shown in this chapter are ordered
with average linkage clustering and larger-clusters-first tree traversal. Never-
theless, our tool Chronia allows customization of the ordering.

8.2.2 Behavioral Patterns

The Overview Map reveals semantical information about the work of the de-
veloper. Figure 8.3 shows a part of the Ownership Map of the Outsight case
study (for more details see subsection 8.3.1). In this view we can identify several
different behavioral patterns of the developers:

2The Hausdorff metric is named after the german mathematician Felix Hausdorff (1868-
1942) and is used to measure the distance between two sets with elements from a metric
space.
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• Monologue. Monologue denotes a period where all changes and most files
belong to the same author. It shows on an Ownership Map as a unicolored
rectangle with change circles in the same color.

• Dialogue. As opposed to Monologue, Dialogue denotes a period with
changes made by multiple authors and mixed code ownership. On an
Ownership Map it is denoted by rectangles filled with circles and lines in
different colors.

• Teamwork. Teamwork is a special case of Dialogue, where two or more
developers commit a quick succession of changes to multiple files. On
an Ownership Map it shows as circles of alternating colors looking like a
bunch of bubbles. In our example, we see in the bottom right part of the
figure a collaboration between Red and Green.

• Silence. Silence denotes an uneventful period with nearly no changes at
all. It is visible on an Ownership Map as a rectangle with constant line
colors and no or just few change circles.

• Takeover. Takeover denotes a behavior where a developer takes over a
large amount of code in a short amount of time, that is the developer
seizes ownership of a subsystem in a few commits. It is visible on an
Ownership Map as a vertical stripe of single color circles together with
an ensuing change of the lines to that color. A Takeover is commonly
followed by subsequent changes made by the same author. If a Takeover
marks a transition from activity to Silence we classify it as an Epilogue.

• Familiarization. As opposed to Takeover, Familiarization characterizes
an accommodation over a longer period of time. The developer applies
selective and small changes to foreign code, resulting in a slow but steady
acquisition of the subsystem. In our example, Blue started to work on
code originally owned by Green, until he finally took over ownership.

• Expansion. Not only changes to existing files are important, but also the
expansion of the system by adding new files. In our example, after Blue
familiarized himself with the code, he began to extend the system with
new files.

• Cleaning. Cleaning is the opposite of expansion as it denotes an author
who removes a part of the system. We do not see this behavior in the
example.

• Bugfix. By bug fix we denote a small, localized change that does not affect
the ownership of the file. On an Ownership Map it shows as an isolated
circle in a color differing from its surrounding.

• Edit. Not every change necessarily fulfills a functional role. For example,
cleaning the comments, changing the names of identifiers to conform to
a naming convention, or reshaping the code are sanity actions that are
necessary but do not add functionality. We call such an action Edit, as it
is similar to the work of a book editor. An Edit is visible on an Ownership
Map as a vertical stripe of unicolored circles, but in contrast to a Takeover
neither the ownership is affected nor is it ensued by further changes by
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the same author. If an Edit marks a transition from activity to Silence we
classify it as an Epilogue.

8.3 Validation

We applied our approach for several large case studies: Outsight, Ant, Tomcat,
JEdit and JBoss. We report the details from the Outsight case study, and we
give an overall impression on the other four well-known open-source projects.

Outsight. Outsight is a commercial web application written in Java and
JSP. The CVS repository goes back three years and spans two development
iterations separated by half a year of maintenance. The system is written by
four developers and has about 500 Java classes and about 500 JSP pages.

Open-source Case Studies. We choose Ant, Tomcat, JEdit, and JBoss
to illustrate different fingerprints systems can have on an Ownership Map. Ant
has about 4500 files, Tomcat about 1250 files, JEdit about 500 files, and JBoss
about 2000 files. The CVS repository of each project goes back several years.

8.3.1 Outsight

Figure 8.4: Number of commits per team member in periods of three months.

The first step to acquire an overview of a system is to build a histogram of
the team to get an impression about the fluctuations of the team members over
time. Figure 8.4 shows that a team of four developers is working on the system.
There is also a fifth author contributing changes in the last two periods only.

Figure 8.5 shows the Ownership Map of our case study. The upper half
are Java files, the bottom half are JSP pages. The files of both modules are
ordered according to the similarity of their commit signature. For the sake of
readability we use S1 as a shorthand for the Java files part of the system, and
S2 as a shorthand for the JSP files part. Time is cut into eight periods P1 to
P8, each covering three months. The paragraphs below discuss each period in
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Figure 8.5: The Ownership Map of the Outsight case study.
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detail, and show how to read the Ownership Map in order to answer our initial
questions.

The shorthands in parentheses denote the labels R1 to R15 as given on Fig-
ure 8.5.

Period 1. In this period four developers are working on the system. Their
collaboration maps the separation of S1 and S2: while Green is working by
himself on S2 (R5), the others are collaborating on S1. This is a good example
of Monologue versus Dialogue. A closer look on S1 reveals two hotspots of
Teamwork between Red and Cyan (R1,R3), as well as large mutations of the file
structure. In the top part multiple Cleanings happen (R2), often accompanied
by Expansions in the lower part.

Period 2. Green leaves the team and Blue takes over responsibility of S2.
He starts doing this during a slow Familiarization period (R6), which lasts until
P3. In the meantime Red and Cyan continue their Teamwork on S1 (R4) and
Red starts adding some files, which foreshadow the future Expansion in P3.

Period 3. This period is dominated by a big growth of the system, the
number of files doubles as large Expansions happen in both S1 and S2. The
histogram in Figure 8.4 identifies Red as the main contributor. The Expansion
of S1 evolves in sudden steps (R9), and as their file base grows the Teamwork
between Red and Cyan becomes less tight. In contrast the Expansion of S2

evolves in small steps (R8), as Blue continues familiarizing himself with S2 and
eventually takes over ownership of most files in this subsystem (R6). Also an
Edit of Red in S2 can be identified (R7).

Period 4. Activity moves down from S1 to S2, leaving S1 in a Silence only
broken by selective changes. Figure 8.4 shows that Red left the team, which
consists now of Cyan and Green only. Cyan acts as an allrounder providing
changes to both S1 and S2, and Blue is further working on S2. The work of
Blue culminates in an Epilogue marking the end of this period (R8). He has
now completely taken over ownership of S2, while the ownership of subsystem
S1 is shared between Red and Cyan.

Period 5 and 6. Starting with this period the system goes into mainte-
nance. Only small changes occur, mainly by author Blue.

Period 7. After two periods of maintenance the team resumes work on
the system. In Figure 8.4 we see how the composition of the team changed:
Blue leaves and Green comes back. Green restarts with an Edit in S2 (R11),
later followed by a quick sequence of Takeovers (R13) and thus claiming back
the ownership over his former code. Simultaneous he starts expanding S2 in
Teamwork with Red (R12).

First we find in S1 selective changes by Red and Cyan scattered over the
subsystem, followed by a period of Silence, and culminating in a Takeover by
Red in the end that is an Epilogue (R14). The Takeover in S1 stretches down
into S2, but it consists of a mere Edit. Furthermore we can identify two selective
Bug-fixes (R10) by author Yellow, being also a new team member.

Period 8. In this period, the main contributors are Red and Green: Red
works in both S1 and S2, while green remains true to S2. As Red finished in the
previous period his work in S1 with an Epilogue, his activity now moves down
to S2. There we find an Edit (R15) as well as the continuation of the Teamwork
between Red and Green (R12) in the Expansion started in P7. Yet again, as in
the previous period, we find small Bug-fixes applied by Yellow.
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To summarize these finding we give a description of each author’s behavior,
and in what part of the system he is knowledgeable.

Red author. Red is working mostly on S1, and acquires in the end some
knowledge of S2. He commits some edits and may thus be a team member being
responsible for ensuring code quality standards. As he owns a good part of S1

during the whole history and even closed that subsystem at end of P7 with an
Epilogue, he is the developer most knowledgeable in S1.

Cyan author. Cyan is the only developer who was in the team during all
periods, thus he is the developer most familiar with the history of the system.
He worked mostly on S1 and he owned large parts of this subsystem till at end
of P7. His knowledge of S2 depends on the kind of changes Red introduced
in his Epilogue. A quick look into the CVS log messages reveals that Red’s
Epilogue was in fact a larger than usual Edit and not a real Takeover: Cyan is
as knowledgeable in S1 as Red.

Green author. Green only worked in S2, and he has only little impact on
S1. He founded S2 with a Monologue, lost his ownership to Blue during P2 to
P6, but in P7 he claimed back again the overall ownership of this subsystem. He
is definitely the developer most knowledgeable with S2, being the main expert
of this subsystem.

Blue author. Blue left the team after P4, thus he is not familiar with
any changes applied since then. Furthermore, although he became an ex-
pert of S2 through Familiarization, his knowledge might be of little value since
Green claimed that subsystem back with multiple Takeovers and many following
changes.

Yellow author. Yellow is a pure Bug-fix provider.

8.3.2 Ant, Tomcat, JEdit and JBoss

Figure 8.5 shows the Ownership Map of four open-source projects: Ant, Tomcat,
JEdit, and JBoss. The views are plotted with the same parameters as the map
in the previous case study, the only difference being that vertical lines slice the
time axis into periods of twelve instead of three months. Ant has about 4’500
files with 60’000 revisions, Tomcat about 1’250 files and 13’000 revisions, JEdit
about 500 files and 11’000 revisions, and JBoss about 2’000 files with 23’000
revisions.

Each view shows a different but common pattern. The paragraphs below
discuss each pattern briefly.

Ant. The view is dominated by a huge Expansion. After some time of
development, the very same files fall victim to a huge Cleaning. This pattern
is found in many open-source projects: Developers start a new side-project and
when grown up it moves to its own repository, or the side-project is terminated
and removed from the repository. In this case, the spin-off is the Myrmidon
project, a ceased development effort planned as successor to Ant.

Tomcat. The colors in this view are, apart from some large blocks of Si-
lence, well mixed. The Ownership Map shows much Dialogue and hotspots with
Teamwork. Thus this project has developers that collaborate well.

JEdit. This view is dominated by one sole developer, making him the
driving force behind the project. This pattern is also often found in open-source
projects: the work of a single author contributed about 80% of the code.
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Ant

JBossJEdit

Tomcat

Figure 8.6: The Ownership Map of Ant, Tomcat, JEdit, and JBoss.

JBoss. The colors in this view indicate that the team underwent large
fluctuations. We see twice a sudden change in the colors of both commits
and code ownership: once mid 2001 and once mid 2003. Both changes are
accompanied by Cleanings and Expansions. Thus the composition of the team
changed twice significantly, and the new teams restructured the system.

8.4 Discussion

On the exploratory nature of the implementation. We implemented our
approach in Chronia, a tool built on top of the Moose reengineering environment
[59]. Figure 8.7 emphasizes the interactive nature of our tool.

On the left of Figure 8.7 we see Chronia visualizing the overall history of
the project, which provides a first overview. Since there is too much data
we cannot give the reasoning only from this view, thus, Chronia allows for
interactive zooming. For example, in the window on the lower right, we see
Chronia zoomed into the bottom right part of the original view. Furthermore,
when moving the mouse over the Ownership Map, we highlight the current
position on both time and file axis in the panel on the right. The panel lists all
file names and the timestamps of all commits. As Chronia is build on top of
Moose, it makes use of the Moose contextual menus to open detailed views on
particular files, modules or authors. For example, in the top right window we
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see a view with metrics and measurements of a file revision.

Chronia - the overall picture

Chronia - a zoomed part and a contextual menu 

Moose - details on the selected File

Figure 8.7: Chronia is an interactive tool.

On the scalability of the visualization. Although Chronia provides
zooming interaction, one may lose the focus on the interesting project periods.
A solution would be to further abstract the time and group commits to versions
that cover longer time periods. The same applies to the file axis grouping related
files into modules.

On the decision to rely on the CVS log only. Our approach relies only
on the information from the CVS log without checking out the whole repository.
There are two main reasons for that decision.

First, we aim to provide a solution that gives fast results; for example build-
ing the Ownership Map of JBoss takes 7,8 minutes on a regular 3 GHz Pentium
4 machine, including the time spent fetching the CVS log information from the
Apache.org server.

Second, it is much easier to get access to closed source case studies from
industry, when only metainformation is required and not the source code itself.
We consider this an advantage of our approach.

On the shortcomings of CVS as a versioning system. As CVS lacks
support for true file renaming or moving, this information is not recoverable
without time consuming calculations. To move a file, one must remove it and
add it later under another name. Our approach identifies the author doing the
renaming as the new owner of the file, where in truth she only did rename it. For
that reason, renaming directories impacts the computation of code ownership
in a way not desired. More recent version control system such as Subversion
and Git do not have those limitations [30].

On the perspective of interpreting the Ownership Map. In our
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visualization we sought answers to questions regarding the developers and their
behaviors. We analyzed the files from an author perspective, and not from a
file perspective. Thus the Ownership Map tells the story of the developers and
not of the files for example concerning small commits: subsequent commits by
a different author to one file do not show up as a hotspot, while a commit by
one author across multiple files does. A pattern that we termed Edit.

Also from a project manager point of view the Ownership Map can give
valuable hints. Knowing whether a developer tends more to Takeover or more
to Familiarization is a good indicator to whom the responsibility of subsystem
should be given. If a subsystem need rewrites and restructuring the Takeover
type is a good choice, otherwise if a subsystem is a good base to be built up on
the Familiarization type is a good choice.

But classifications of the authors have to be interpreted in their context. If a
developer ly takes over subsystems this does not mean that he will always tend
to Takeovers. In our case study (Figure 8.5) Green’s Takeover of S2 in P7 must
be seen in the context of the system history: Blue left the team and Green was
the original developer of S2. He might have acted differently if Blue were still
in the team.



Chapter 9

Discovery of Experts

Aim Discovery of experts.
Reach Experts who committed to local codebase.
Clues Social (established through lexical and historical information).
Query Fuzzy problem description given as natural language text.

Given current tool support, social clues have to be followed up through the
lexical proxy of a person’s name. However, often developers are facing a problem
where they need help but do not know an expert by name. Maybe they are not
aware that someone from their personal network is actually on expert on that
matter, or because they simply do not know an expert on that matter. There
is a clear need for establishing a link between fuzzy problem descriptions and
experts, so that developers may follow up social clues that are otherwise out of
their reach.

In this chapter we present an approach to discover experts without having
to know their name. Given a problem description, such as a work item or
a bug report, we provide an automated means of linking to the person with
the expertise on that matter. Our work deals with assigning incoming bug
reports to developers, however the techniques that we developed can be used to
establish links from any fuzzy problem description to known experts. To model
the expertise of developers, we require a recorded history of their changes to
a system’s source base. This information can be taken from a version control
system. We use lexical information found in those contributions in order to
model the developer’s expertise.

For popular software systems, the number of daily submitted bug reports is
high. Triaging these incoming reports is a time consuming task. Part of the
bug triage is the assignment of a report to a developer with the appropriate
expertise. In this chapter, we present an approach to automatically suggest
developers who have the appropriate expertise for handling a bug report. We
model developer expertise using the vocabulary found in their source code con-
tributions and compare this vocabulary to the vocabulary of bug reports. We
evaluate our approach by comparing the suggested experts to the persons who
actually worked on the bug. Using eight years of Eclipse development as a case
study, we achieve 33.6% top-1 precision and 71.0% top-10 recall.

Software repositories of large projects are typically accompanied by a bug
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report tracking system. In the case of popular open source software systems,
the bug tracking systems receive an increasing number of reports daily. The
task of triaging the incoming reports therefore consumes an increasing amount
of time [10]. One part of the triage is the assignment of a report to a developer
with the appropriate expertise. Since in large open source software systems the
developers typically are numerous and distributed, finding a developer with a
specific expertise can be a difficult task.

Expertise models of developers can be used to support the assignment of
developers to bug reports. It has been proposed that tasks such as bug triaging
can be improved if an externalized model of each programmer’s expertise of the
code base is available [71]. Even though approaches for expertise models based
on software repository contributions are available, existing recommendation sys-
tems for bug assignment typically use expertise models based on previous bug
reports only [11, 41, 187, 144, 131]. Typically a classifier is trained with previ-
ously assigned bug reports, and is then used to classify and assign new, incoming
bug reports. Our approach differs in that we train our recommendations system
with all source code contributions up to the reporting date of the bug and then
use the bug report’s textual description as a search query against the expertise
model’s term-author-matrix.

In this chapter, we propose an expertise model based on source code con-
tributions and apply in it a recommendation system that assigns developers to
bug reports. We compare vocabulary found in the diffs of a developer’s contri-
butions with the vocabulary found in the description of a bug report. We then
recommend developers whose contribution vocabulary is lexically similar to the
vocabulary of the bug report.

We implemented our approach as a prototype called Devlect and evaluate
the recommendation system using the Eclipse project as a case study. We
develop and calibrate our approach on a training set of bug reports. Then we
report the results of evaluating it on a set of reports of the remaining case study.

The contributions of this chapter are as follows:

• We propose a novel expertise model of developers. The approach is based
on the vocabulary found in the source code contributions of developers.

• We propose a recommendation system that applies the above expertise
model to assign developers to bug reports. We evaluate the system using
eight years of Eclipse development as a case study.

• We report on the decay of developer expertise, observed when calibrating
our approach. We apply two weighting schemes to counter this effect.

9.1 Our Approach in a Nutshell

In this chapter we present i) the construction of an expertise model of developers
and ii) the application of a recommendation system that uses this expertise
model to automatically assign developers to bug reports. Our approach requires
a versioning repository to construct the expertise model as well as a bug tracking
facility to assign developers to bug reports. We realized the approach as a
prototype implementation, called Devlect.
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Figure 9.1: Architecture of the Devlect recommendation system: (left)
bug reports and versioning repositories are processed to produce term vectors
and term-author-matrices; (right) the cosine angle between vector and matrix
columns is taken to rank developers in the suggested list of experts.

In his work on automatic bug report assignment, John Anvik proposes eight
types of information sources to be used by a recommendation system [10]. Our
recommendation system focuses on three of these types of information: the in-
formation of the textual description of the bug (type 1), that of the developer
who owns the associated code (type 6), and the information of the list of devel-
opers actively contributing to the project (type 8). We refine information type 6
to take into account the textual content of the code owned by a developer. Our
recommendation system is based on an expertise model of the developer’s source
code contributions. For each developer, we count the textual word frequencies
in their change sets. This includes deleted code and context lines, assuming
that any kind of change (even deletions) requires developer knowledge and thus
familiarity with the vocabulary.

Our system currently does not consider the component the bug is reported
for (type 2), the operation system that the bug occurs on (type 3), the hardware
that the bug occurs on (type 4), the version of the software the bug was observed
for (type 5), or the current workload of the developers (type 7). Information
types 2–4 are indirectly covered, since textual references to the component,
operation system, or hardware are taken into account when found in bug reports
or source code. Information of type 7 is typically not publicly available for
open source projects and thus excluded from our studies. Furthermore, we
deliberately disregard information of type 5, since developer knowledge acquired
in any version pre-dating the bug report might be of use.

Given a software system with a versioning repository, the creation of the
expertise model works as illustrated in Figure 9.1:

1. For each contributor to the versioning repository, we create an empty bag
of words.

2. For each contribution to the versioning repository, we create a diff of all
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changed files and count the word frequencies in the diff files. We assign
the word frequencies to the contributor’s bag of words.

3. We create a term-author-matrix Mn×m, where n is the global number
of words and m the number of contributors. Each entry mi,j equals the
frequency of the word ti in the contributions of the contributor aj .

Given the above term-author-matrix and a bug tracking facility, the assign-
ment of developers works as follows:

1. We count the word frequencies in the bug report and create a query vector
of length n where vi equals the frequency of word ti in the bug report.

2. For each developer in the term-author-matrix, we take the cosine of the
angle between the query vector and the developer’s column of the matrix.

3. We rank all developers by their lexical similarity and suggest the top k
developers.

To evaluate our approach we use Eclipse as a case study. We train our
system with weekly summaries of all CVS commits from 2001 to 2008, and use
the resulting expertise-model to assign developers to bug reports. We evaluate
precision and recall of our approach by comparing the suggested developers to
the persons who eventually worked on the bug and its report.

For example, for a report that was submitted in May 2005, we would train
our system with all commits up to April. Then we would evaluate the suggested
developers against those persons who worked on the bug and its report in May
or later on to see if they match.

9.2 The Develect Expertise Model

Given the natural language description of a bug report, we aim to find the
developer with the best expertise regarding the content of the bug report. For
this purpose, we model developer expertise using their source code contributions.

Developers gain expertise by either writing new source code or working on
existing source code. Therefore we use the vocabulary of source code contri-
butions to quantify the expertise of developers. Whenever a developer writes
new source code or works on existing source code, the vocabulary of mutated
lines (and surrounding lines) are added to the expertise model. These lines are
extracted from the version control system using the diff command.

Natural language documents differ from source code in their structure and
grammar, thus we treat both kind of documents as unstructured bags of words.
We use Information Retrieval techniques to match the word frequencies in bug
reports to the word frequencies in source code. This requires that developers
use meaningful names for example for variables and methods, which is the case
given modern naming conventions [110].

Given a bug report, we rank the developers by their expertise regarding the
bug report. The expertise of a developer is given by the lexical similarity of his
vocabulary to the content of the bug report.
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9.2.1 Extracting the Vocabulary of Developers from Ver-
sion Control

To extract the vocabulary of a specific developer we must know which parts of
the source code have been authored by which developer.

We extract the vocabulary in two steps, first building a Chronia model of
the entire repository [74] and then collecting word frequencies from the diff
of each revisions. The diff command provides a line-by-line summary of the
changes between two versions of the same file. The diff of a revision summarizes
the changes made to all files that changed in that revision of the repository.
The identifier names and comments that appear on these lines give us evidence
of the contributor’s expertise in the system. Thus, we add the word frequencies
in a revision’s diff to the expertise model of the contributing developer.

Word frequencies are extracted as follows: the lines are split into sequences
of letters, which are further split at adjacent lower- and uppercase letters to
accommodate the common camel case naming convention. Next stopwords are
removed (that is common words such as the, and, etc). Eventually stemming is
applied to remove the grammatical suffix of words.

The comment message associated with a revision is processed in the same
way, and added to the expertise model of the contributing developer as well.

9.2.2 Modeling the Expertise of Developers as a Term-
Author-Matrix

We store the expertise model in a matrix that correlates word frequencies with
developers. We refer to this matrix as a term-author-matrix, even though tech-
nically it is a term-document-matrix where the documents are developers. (It
is commonly used in Information Retrieval to describe documents as bags of
words, thus our model is essentially the same, with developers standing in for
documents.)

The term-author-matrix has dimension n×m, where n is the global number
of words and m the number of contributors, that is developers. Each entry
mi,j equals the frequencies of the word ti summed up over all source code
contributions provided by developer aj .

We have found that results improve if the term-author-matrix is weighted
as follows:

• Decay of Vocabulary. For each revision, the word frequencies are weighted
by a decay factor that is proportional to the age of the revision. In the
Eclipse case study, best results are obtained with a weighting of 3% per
week (which accumulates to 50% per half year and 80% per annum).
Please refer to Section 10.3 for a detailed discussion.

9.2.3 Assign Developers to Bug Reports regarding their
Expertise

To assign developers to bug reports, we use the bug report’s textual content as a
search query to the term-author-matrix. Given a Bugzilla bug report, we count
the word frequencies in its textual content. In particular we process both short
and all long descriptions (for threats to validity see Section 10.3). We disregard
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attachments that are Base-64 encoded, such as attached images, as well as fields
that refer to persons. From the extracted word frequencies, we create a term
vector that uses the same word indices as the term-author-matrix. We then
compute the lexical similarity between two term vectors by taking the cosine
of the angle between them. The similarity values range from 1.0 for identical
vectors to 0.0 for vectors without shared terms. (Negative similarity values are
not possible, since word-frequencies cannot be negative either.)

We compare the term vector of the bug report with the term vectors of all
developers (that is the columns of the term-author-matrix) and create a ranking
of developers. For the assignment of bug reports to developers, a suggestion list
of the top-k developers with the highest lexical similarities is then provided.

We have found that the results improve if the term-author-matrix is further
weighted as follows:

• Inactive Developer Penalty. If a developer has been inactive for more than
three months, the lexical similarity is decreased by a penalty proportional
to the time since his latest contribution. In the Eclipse case study, best
results are obtained with a penalty of 0.2 per annum. Please refer to
Section 10.3 for a detailed discussion.

9.3 Case Study: Eclipse platform

To evaluate our approach we take Eclipse as a case study. Eclipse is a large
open source software project with numerous active developers. Eclipse has been
developed over several years now. Therefore, its version repository contains a
great deal of source code developed by many different authors. Furthermore,
Eclipse uses Bugzilla as its bug tracking system, storing bug reports dating back
to nearly the beginning of the project. We evaluate our results by comparing
the top-k developers with the persons who eventually worked on the bug report.

Our case study covers the Eclipse project between April 22, 2001, and
November 9, 2008. The source code contributions of Eclipse are stored in a
CVS repository1, the bug reports in a Bugzilla database2. This represents al-
most eight years of development, including 130,769 bug reports and 162,942
global revisions (obtained from CVS’s file versions using a sliding time-window
of 2 minutes [198]). During this time, 210 developers contributed to the project.

9.3.1 Setup of the Case Study

The setup of the Eclipse case study consists of two different parts. The first
part is about the change database, where we use all changes before the actual
bug report. The second part is about the bug database, where we make 10
partitions of which two are used in this case study. We process and evaluate
both parts in weekly iterations as follows:

• We create a Devlect expertise model based on contributions between
April 22, 2001, and the last day of the previous week.

• We generate a suggested list of the top-10 experts for all bug reports
submitted in the current week.

1:pserver:anonymous@dev.eclipse.org/cvsroot/eclipse
2https://bugs.eclipse.org/bugs
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• We evaluate precision and recall by comparing the suggestion list with the
developers who, between the first day of the next week and November 9,
2008, eventually worked on the bug report.

For example, for a bug report submitted on May 21, 2005, we would train
our system with all commits between April 22, 2001 and May 15, 2005, and then
evaluate the list of suggested experts against the set of developers who, between
May 23, 2005, and November 9, 2008, eventually handled the bug report.

We use systematic sampling to create 10 partitions of 13,077 bug reports
(ordered by time) that span the entire time of the project. One partition is
used as training set for the development of our approach, and another partition
is used as validation set to validate our approach. We applied the approach
to the validation set only after all implementation details and all calibration
parameters had been finally decided on. The other partitions remain untouched
for use as validation sets in future work.

In this section, we report on our results obtained on the validation partition
#2. In Section 10.3 we report on results obtained from the training partition
#1 while calibrating the approach.

9.3.2 Precision and Recall

We evaluate our approach by comparing the suggested list of experts with the
developers who eventually worked on the bug report. We report on precision
and recall for different sizes of suggested lists, between k = 1 and k = 10.
Comparing our results to the persons who eventually worked on the bug is not
optimal. For example, the person could have been assigned to the bug report
by some factor other than expertise. Obtaining a better list of experts requires
personal interrogation of the development team.

Precision is the percentage of suggested developers who actually worked on
the bug report. Recall is the percentage of developers who worked on the bug
who were actually suggested. It is typical for Information Retrieval approaches
that there is a trade-off between precision and recall.

Getting the list of persons who eventually worked on a bug report is tricky.
The assigned-to field does not always denote a person who eventually solved
the bug report [187, 11, 12]. Therefore we compare our results against three
configurations (C1–C3) of bug-related persons:

1. Developers who committed an actual bug fix to the software repository.
For Eclipse, this information is not stored in the Bugzilla database, there-
fore we must rely on information from CVS commit messages. In the
validation set, this information is provided for 14.3% of the bug reports
only. This configuration evaluates how well we perform in suggesting ex-
perts who provide actual bug fixes.

2. Persons given by the assigned-to field or a who field of the bug report.
That is, the eventual assignee (if this is a developer) and all developers
who ever discussed the bug in the comment section of the report. This
configuration evaluates how well we perform in suggesting experts who
are capable of understanding and discussing the bug. Note that resolving
a bug is not limited to providing code fixes; often the discussion is just as
important to the resolution of the bug.



114 CHAPTER 9. DISCOVERY OF EXPERTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10  20  30  40  50  60  70  80

P
re

c
is

io
n

Recall

k=1

k=10

bug fixer (C1)
related w/o reporter (C2)

related w/ reporter (C3)

Figure 9.2: Recall and precision of the Eclipse case study: configuration C1
scores best with 33.6% top-1 precision and 71.0% top-10 recall.

3. As in configuration #2, but additionally including the person identified by
the reporter field, if the reporter is a developer, that is has a CVS login.
This reflects the fact that bugs are sometimes resolved by the same people
who find and track them.

Please refer to Section 10.3 for further discussion of the above configurations
and their threats to validity.

9.3.3 Results

Figure 9.2 illustrates the results of the Eclipse case study. We compare lists of
suggested persons of list size 1 to 10 with set of “bug related persons” as given
by the three configurations (C1-3) above.

The figure illustrates that recall and precision of configuration C1 are better
than C2 and C3. When comparing the suggested list to the bug fixing per-
son (C1) we achieved the best score with 33.6% top-1 precision only and 71.0%
top-10 recall. Comparing of the suggested list to all related persons (C3) we
score 26.0% top-1 precision and 54.2% top-10 recall. When excluding the re-
porter of the bug report (C2) from the suggested list scores are at 22.3% top-1
precision and 57.4% top-10 recall.

The fact that configuration C3 scores slightly better then C2 indicates that
bug reporters are sometimes indeed experts regarding the reported bug and thus
should be considered when triaging bug reports. We can thus conclude that an
automatic assignment system should provide to the triaging person a suggested
list of people that may include the reporter.
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Figure 9.3: Decay of vocabulary: (left) decreasing quality of unweighted results,
compared to results with decay of vocabulary and inactive developer penalty
settings, (middle) precision and recall for different decay of vocabulary settings,
(right) precision and recall for different inactive developer penalty settings.

9.4 Discussion

In this section, we first discuss the calibration of our approach and then cover
threats to validity.

Compared to related work, an advantage of our approach is that we do not
require a record of previous bug reports. We are able to recommend developers
who did not work on bugs previously. For example, we do not require that
developers have worked on at least 10 resolved bug reports. On the other hand,
our approach requires at least a half to one year of versioning history in order
to suggest developers.

One obvious threat to validity is the quality of our evaluation benchmark.
We compare our suggested list against the developers who eventually worked
on the bug report and assume that these are the top experts. For example,
the bug report could have been assigned to a developer by some factor other
than expertise. This threat is hard to counter. A better list of experts can be
obtained by personal interrogation of the development team, but even this is
not a golden oracle.

Another threat to validity is that we use all long descriptions, including
comments, of a bug report as information sources. This may include discussions
that happened after the bug has been eventually assigned or fixed, information
which is not actually available when doing initial bug triage. This might impact
the performance of our approach.

9.4.1 On the Calibration of Devlect

We used 1/10th of the Eclipse case study as a training set to calibrate our
approach. The calibration results are summarized in Table 9.1.

The table lists top-1 precision and top-10 recall. On the first row, we list the
results before calibration (p = 19.7%, r = 42.6%), and on the last row the results
of the final calibration. Please note that the final results on the training set are
slightly better than the results reported in subsection 9.3.3 for the validation
set.

The output of the diff command consists of added, removed, and context
lines. We experimented with different weightings for these lines (weighted diff
in Table 1). However, we found that weighting all lines the same yields best
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Settings Precision Recall
reference 19.7 42.6
weighted diff 18.5 41.1
desc. fields only 16.7 37.7
with LSI 16.5 35.1
decay 0.03 20.5 43.2
decay 0.05 20.4 42.4
decay 0.10 20.5 41.5
decay 0.20 18.0 38.0
penalty 0.1 24.5 50.9
penalty 0.2 24.8 51.6
penalty 0.3 24.8 51.9
final calibration 26.2 54.6

Table 9.1: Summary of calibration of training set, for each settings top-1 preci-
sion and top-10 recall are given.

results.
As Bugzilla bug reports consist of many fields, we experimented with dif-

ferent selections of fields. We found that taking short and long descriptions
(“desc. fields only” in Table 9.1) yields worse results than selecting all fields
except those that refer to persons, or Base64 encoded attachments.

We also experimented with Latent Semantic Indexing (LSI), an Information
Retrieval technique typically used in search engines that detects polysemy and
synonymy by statistical means [49]. However, we found that LSI yields poor
results (“with LSI” in Table 9.1).

9.4.2 On the Decay of Vocabulary

In our experiments, we found that developer expertise decays over time. In our
approach we introduced two weighting schemes to counter this effect:

• Decay of Vocabulary. For each revision, the word frequencies are weighted
by a decay factor that is proportional to the age of the revision. Devel-
opers change their interests and by doing so change their expertise and
vocabulary. To take such a shift into account, we fade the old vocabu-
lary out bit by bit every week, so that the newest words are weighted
slightly more than older ones. With time, the old words eventually fade
out completely.

• Inactive Developer Penalty. If a developer has been inactive for more than
three months, the lexical similarity is decreased by a penalty proportional
to the time since his latest contribution to the software system. Inactive
developers will most likely not resolve bugs anymore. In order to only
recommend currently active developers (we assign bug reports during a
period of eight years), developers who did not recently make a change to
the software system receive a penalty.

Figure 9.3 illustrates the effect of these settings. On the left, the unbroken
curve illustrates the decreasing quality of unweighted results, whereas the dotted
curve shows the results obtained with weighting. Even though results improved
significantly, the quality of the weighted results still slightly decreases over time.
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We cannot fully explain this effect; it may be due to the increasing complexity
of Eclipse as a project, or perhaps the lack of mappings from CVS logins to
persons (see subsection 9.4.4) in the early years of the project impacts the
results. Another cause for the trend in the most recent year, that is 2008, might
be that the list of persons that worked on a bug is not yet completely known to
us, which may impact the evaluation.

In the middle of Figure 9.3, precision and recall for different decay of vocab-
ulary settings are given. On the right, precision and recall for different inactive
developer penalty settings are given.

Decay of vocabulary scores best results with a weighting of 3% per week
(which accumulates to 50% per half year and 80% per annum). This shows
that implementation expertise acquired one year ago or earlier does not help in
assigning developers to bug reports.

The inactive developer setting scores best results with a penalty of 0.2 per
annum. As a result of the penalty, the matching score of a developer who
has been inactive for a year is decreased. The matching scores are the lexical
similarity values (between 1.0 and 0.0). Decreasing this value by 0.1 or more is
typically enough to exclude a result from the top-10 list.

Interestingly, any penalty above 0.1 is better than none. The results obtained
with different penalty values are almost the same. Please note, that even though
the penalty removes inactive developers from the top of the suggested list, their
vocabulary is not lost. The results reported for the calibration of the penalty
do not make use of vocabulary decay. If a developer becomes active again, all
his past expertise is reactivated as well. Thus, we use a moderate penalty of 0.2
in combination with a decay of 3% as the final calibration settings.

9.4.3 On Grouping Diffs by Week

To cope with the size of our case study, we decided to run weekly iterations
rather than fine-grained iterations per bug report and revision. This reduced
the time complexity from over 160,000 iterations down to 394 weekly iterations.

Grouping diffs by both author and week introduces the following threats
to validity: If vocabulary is added and removed within the same week, it does
not add to the developer’s expertise. In the same way, if a file is added and
removed within the same week, it is not taken into account at all. If bug
reports are submitted late in the week, we might miss developers who acquired
novel expertise early in the week.

If several authors worked on the same file, we cannot tell their weekly con-
tributions apart. In this case, we weight the word frequencies by 1√

n
, where

n is the number of co-developers, and assign the weighted frequencies to all
co-developers. For the Eclipse case study, this applies to 3.6% of weekly file
changes.

9.4.4 On other Threats to Validity

Establishing an identity relationship between CVS logins and people mentioned
in bug reports is not trivial. The developer information in the CVS log is
provided as a mere login name. People mentioned in a Bugzilla bug report are
listed with their email address and sometimes additionally with their first and
last name. For Eclipse, the mapping between logins and active developers can
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be found on the Eclipse website3. However, the list of names of the former
Eclipse developers does not include their corresponding logins4. We could not
map 17.1% of the CVS logins and had thus to exclude 2.7% of the bug reports
from our evaluation.

Information about copy patterns is not available in CVS. Bulk renaming
of files appears in the change history of CVS as bulk removal of files followed
by bulk addition of files. Given our current implementation of Devlect, this
may lead to an incorrect acquisition of developer knowledge, since the entire
vocabulary of the moved files is assigned to the developer who moved the files.
We are thus in good shape to further improve our results by using a copy pattern
detection approach [43].

3http://www.eclipse.org/projects/lists.php
4http://www.eclipse.org/projects/committers-alumni.php



Chapter 10

Credibility of Code-Search

Aim Discovery of trustworthy projects.
Reach Open-source projects on the internet.
Clues Episodic (established through social and historical information).
Query Name of an open-source project.

Searching for code examples or libraries on the internet is a common code
orientation task. Developers do use code search engines to discover source code
that they need in order to answer a technical question, such as implementing
a given functionality. In interviews with developers, we have found that cred-
ibility is one of the major issues when copying source code from an external
and thus untrusted source such as the internet. Other than internal sources,
code examples taken from external sources are possibly written by an untrusted
author.

We found that developers follow up social clues rather than technical issues in
order to assess the trustworthiness of code search results. This is not surprising:
when developers copy-paste code, they do so because they either do not have the
time or do not have the expertise to technically understand the problem, thus
assessing trustworthiness based on social clues as a pragmatic alternative—given
the assumption that more trustworthy developers do write more trustworthy
source code. For example, we have found that developers are more likely to
assess a search result as trustworthy if it has been written by an author they
know or by an author who belongs to a company or to an open source project
that they value for its credibility. Automating this process may help reduce
the time and effort that developers have to spend on following up social clues
related to code search results.

The promise of search-driven development is that developers will save time
and resources by reusing external code in their local projects. To efficiently
integrate this code, users must be able to trust it, thus credibility of code search
results is just as important as their relevance. In this chapter, we introduce a
credibility metric to help users assess the trustworthiness of code search results
and therefore ease the cost-benefit analysis they undertake trying to find suit-
able integration candidates. The proposed credibility metric incorporates both
user votes and cross-project activity of developers to calculate a “karma” value
for each developer. Through the karma value of all its developers a project

119
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is ranked on a credibility scale. We present JBender , a proof-of-concept code
search engine which implements our credibility metric and we discuss prelimi-
nary results from an evaluation of the prototype.

Code search engines help developers to find and reuse software. However,
to support search-driven development it is not sufficient to implement a mere
full text search over a base of source code, human factors have to be taken into
account as well. At the SUITE 2009 workshop [108], suitability and credibility
(sometimes also referred to as trustability) have been major issues in search-
driven development, besides—of course—relevance of search results.

In this chapter we focus on the credibility of search results. Relevance of
code search results is of course paramount, but credibility in the results is just
as important. Before integrating a search result the developer has to assess its
trustworthiness to take a go-or-no-go decision. A well-designed search interface
allows its users to take this decision on the spot. Gallardo-Valencia et al. found
that developers often look into human rather than technical factors to assess
the credibility of search results [73]. For example developers will prefer results
from well-known open source projects over results from less popular projects.

In this chapter we present a credibility metric for search results. The cred-
ibility metric is based on human factors. We use data collected from Web 2.0
platforms to assess the trustworthiness of both projects and developers. Our
credibility metric is based on collaborative filtering of user votes and cross-
project activity of developers. For example, if a little-known project is written
by developers who also contributed to a popular open source project, the little-
known project is considered to be as trustworthy as the popular project.

As a feasibility study, we implemented the credibility metric in JBender , a
proof-of-concept code search engine. The index of our JBender installation cur-
rently contains credibility assessments for over 3,700 projects, based on 193,000
user votes and the cross-project activity of over 56,000 developers. In this chap-
ter, preliminary results from an evaluation of the prototype are discussed.

Contributions of this chapter are as follows.

• We introduce a credibility metric for software projects. The credibility
metric is based on human factors, and uses collaborative filtering of both
user votes and cross-project activity of developers.

• We present JBender , a proof-of-concept implementation of our credibility
metric and discuss preliminary results from an evaluation of the prototype.

10.1 Credibility Metric

In this section, we propose a credibility metric for code search results that uses
collaborative filtering of both user votes and cross-project activity of developers.

To assess the credibility of code search results we combine traditional full
text search with meta-information from Web 2.0 platforms. Our credibility
metric requires the following information:

• A matrix M = (cd,p) with the number of contributions per contributor d
to a project p.
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Figure 10.1: Architecture of the JBender prototype. JBender enhances search results

from source code with a credibility estimate that is based on social data collected from

the Ohloh Web 2.0 website.

Figure 10.2: Screenshot of a JBender search result with credibility estimate. On the

right there is the actual search result, with full name and code snippet. On the left

there is information about the originating project and the trust value calculated by

the credibility metric.
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• A vector V = (vp) with user votes for software projects to signal the users’
trust in projects. Gallardo-Valencia et al. refer to user votes as “fellow
users” [73].

We use collaborative filtering of both user votes and cross-project activity
of developers. For example, if a little-known project is written by developers
who have also contributed to a popular open source project, the little-known
project is considered to be as trustable as the popular project. Since both the
number of contributions per contributor and the number of votes per project
follow a power-law distribution, we use log weighting and tf-idf [13] weighting
where applicable.

First we define the karma of a contributor as

Kd =
∑
P

wd,p log vp where wd,p =
log cd,p

log df(d)

which is the sum of the votes of all projects, weighted by the number of con-
tributions to these projects and divided by the inverse project frequency of the
contributor (that is the number of projects to which the contributor contributed
at least one contribution).

Based on this, credibility of a project is defined as

Tp =
∑
D

wd,pKd where wd,p =
log cd,p∑

d′∈D log cd′,p

which represents the sum of the karma of all the projects contributors, weighted
by the number of their contributions. Note that we divide project credibility
by the total number of contributions, but not contributor karma. This is on
purpose, contributors are assumed to be more trustable the more they commit
(based on the assumption that all accepted commits require approval of a trusted
core developer, as is common in many open source projects) but projects are
not per se more trustable the larger they are.

To summarize, we consider a project to be trustable if there are significant
contributions by contributors who have also significantly contributed to projects
(including the project in question) that have received a high number of user
votes.

The proposed definition of credibility is dominated by cross-project contrib-
utors, that is contributors who contributed many times to many projects with
many votes. This is in accordance with empirical findings on open source that
have shown how cross-project developers are a good indicator of project success
[100]. This behaviour is also known as “the rich get richer” in the theory of
scale-free networks and is considered an inherent and thus common property of
most social networks [21].

10.2 The JBender Prototype

We have developed a prototype, called JBender , which enriches code search
results with credibility information. To add to the information content of search
results we combine two main sources to form the JBender code search engine.
On the one hand there is the actual code base of the search engine over which
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Top projects (by votes) Top Developer (by karma)

“firefox”, vp = 7207 “darins”, Kd = 71.97
“subversion”, vp = 5687 “amodra”, Kd = 70.11
“apache”, vp = 5107 “darin”, Kd = 69.09
“mysql”, vp = 4834 “nickc”, Kd = 67.14
“php”, vp = 4081 “Dani Megert”, Kd = 66.51
“openoffice”, vp = 3118 “mlaurent”, Kd = 66.14
“firebug”, vp = 3109 “Paul Eggert”, Kd = 65.89
“gcc”, vp = 2586 “kazu”, Kd = 65.78
“putty”, vp = 2519 “rth”, Kd = 65.25
“phpmyadmin”, vp = 2412 “hjl”, Kd = 65.04

Top projects (by credibility)

“grepWin”, Tp = 51.60, vp = 32
“GNU Diff Utilities”, Tp = 51.18, vp = 645
“Eclipse Ant Plugin”, Tp = 49.76, vp = 136
“Eclipse Java Development Tools”, Tp = 48.36, vp = 647
“Crimson”, Tp = 42.41, vp = 2
“GNU binutils”, Tp = 42.18, vp = 525
“syrep”, Tp = 42.12, vp = 2
“GNU M4”, Tp = 41.85, vp = 54
“gzip”, Tp = 41.61, vp = 261
“Forgotten Edge OpenZIS”, Tp = 40.86, vp = 1

Figure 10.3: Top ten results for A) project ranking by Ohloh, B) karma of developers,

C) project ranking by trustabilty.

an index is created. On the other hand we have created a database of metadata
for the projects in the code base.

Figure 10.1 illustrates the architecture of JBender . JBender creates a
searchable index over the code base and provides a code search over it. Its
novelty however lies in the underlying metadata which is linked to the projects
in the searchable code base. Upon finding results from the latter JBender can
supply the meta information stored for the result’s originating project.

10.2.1 JBender’s Metadatabase

Our source of meta data is the Ohloh1 project. Ohloh is a social network-
ing platform for open source software projects where projects (or rather their
developers) can specify additional information. However Ohloh does not allow
users to actually search through or interact with the source code: Ohloh is not a
code search engine. Ohloh provides user contributed information on both open
source projects and their developers, composing valuable information for search
users. Users can vote for both projects and developers whether and how much
they like them by rating projects and giving kudos to certain developers. Fur-
thermore kudos are (automatically) given to developers who have worked for
successful projects, i.e. projects with large user bases.

For the JBender prototype we collected the credibility meta-information
from Ohloh. Metadata stored in the database includes (among others): De-
scription of original project, project homepage, rating of the project, list of

1http://www.ohloh.net

http://www.ohloh.net
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current repositories (type, url, last time of update, ...), licenses of files in the
project (exact type of license, number of files), employed programming languages
(percentage of total, lines of code, comment ratio, ...), the project’s users and
developers who worked on the project (kudos, experience, commits per project,
...).

10.2.2 JBender’s Codebase

In addition to the collected metadata, JBender also follows the links to the
version control repositories that are listed on Ohloh, creates local copies of
these repositories and parses the code in Java projects to build a search index
over them. JBender then provides a basic structured code search over various
parts of the indexed source code. Examples are method/class names and their
bodies, comments, visibility, dependencies and implemented interfaces.

10.2.3 Credibility enhanced results

The following data from Ohloh was directly used for the credibility metric:
As contributors we used the developers of the projects and as the number of
contributions we used the number of commits. As user votes we used the number
of developers who “stacked” a project, which is Ohloh’s terminology for claiming
to be an active user of a project.2 Thus in our case, both users and contributors
are open source developers. To be a user the developers must be registered on
Ohloh. This is not necessary for being a contributor, since that information is
taken from version control systems.

As explained in Section 10.1 this credibility metric takes into account several
of the collected meta parameters and calculates a trust metric for each result
according to which the results can be sorted.

Figure 10.2 shows a screenshot of a single search result from JBender . On
the right there is the actual search result, with full name and code snippet. On
the left there is information about the originating project and the trust value
calculated by the credibility metric. Currently the raw trust measurement is
displayed as a floating point number to the user. We might change that to a
ranked assessment that maps the credibility to a scale from 1 to 10 to improve
usability.

The layout of our search result is deliberately kept very simple and lucid in
order to be efficiently usable. It has been shown that efficient search requires
compact and well-arranged interfaces, which do not burden the user with too
much information or a complex information seeking process [84].

10.3 Discussion

Some preliminary results Figure 10.3 illustrates the top-10 results for a)
project ranking through votes by Ohloh, b) karma of developers, c) project
ranking by our credibility metric. Notice how the project ranking changed
through consideration of cross-project developer activity: grepWin for example
has only 32 users on Ohloh but is ranked by us with top credibility because its
developers are very active and have a high karma value.

2That is, we interpret “votes” as a user expressing his trust in a project by using it.
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Evidence of power law distribution We found that our input data (that
is the user-generated data that we crawled from Ohloh) follows a power law
distribution: the number of votes per project (r = 0.95157), the number of
commits per developer per project (r = 0.89207), as well as number of projects
per developer (r = 0.85029). Therefore we applied log and tf-idf weighting so
that the credibility metric is not dominated by high values. At the moment
project credibility ranges from zero to about 52, developer karma ranges from
zero to about 72.

A note on Ohloh’s kudo-rank The Ohloh website provides its own mea-
surement of developer “karma”, called kudo-rank. Kudo-ranks are based on a
mix of user votes for projects and of user votes for developers, called kudos.
User participation for kudos is very low and as a consequence a small clique of
developers can vote themselves up to top ranks. Therefore, we decided against
including kudo-ranks in our credibility function.

Possible weakness of karma ranking One must consider that develop-
ers may not use the same user names for all their commits through various
repository systems. In such a case Ohloh cannot automatically collect all the
developer’s commits into one account; the developer would have to register and
do this manually. Furthermore we blacklist commit bots. Finally the karma
value could be tampered with deliberately if a user was to do a huge number of
(small) commits to few highly ranked projects.
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Chapter 11

Conclusion

In this last chapter we summarize the contributions made by this dissertation
and point to directions for future work.

11.1 Contributions of the Dissertation

We set out to address the user needs of software engineers with regard to code
navigation and code understanding. We argued that development tools need to
tap unconventional information found in the source code in order to support
software developers with code orientation clues that would be out of their reach
without tool support.

Our key contributions are the following:

• We identified (Chapter 1) four fundamental categories of orientation clues
used by developers for code navigation and code understanding: lexical
clues referring to identifier names and concepts, social clues referring to a
developer’s personal network and to internet communities, episodic clues
referring to personal first-hand memories of a developer, and spatial clues
referring to the system’s architecture or to source code’s on-screen position
as displayed by development tools.

• We introduced Software Cartography (Chapter 6) an approach to create
spatial on-screen visualization of software systems based on non-spatial
properties. Software maps are stable over time, embedded in the devel-
opment environment, and can be shared among teams. We evaluated
(Chapter 7) the approach in a user study, using a prototype implementa-
tion, and showed that it supports code orientation by spatial clues.

• We investigated (Chapter 3) how software engineers find answers to techni-
cal questions in a series of user studies. We found that developers typically
proceed in two steps, first they narrow down their initial clue to a textual
clue, and then they query resources on the internet or local documentation
for an answer.

• We presented various prototype tools that tap on unconventional infor-
mation found in source code in order to provide software developers with
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code orientation clues that would otherwise be out of their reach. The
prototypes support code orientation by providing developers with: lexi-
cal clustering of software systems (Chapter 4), summarization of software
systems and their history (Chapter 5), a story-telling visualization of past
contributions to a software system (Chapter 8), recommendation of ex-
perts for work items (Chapter 9), and assessing the credibility of code
search results (Chapter 10).

11.2 Future Research Directions

Qualitative Studies on Developer Needs. Ethnographic research in soft-
ware engineering is a rather new field. There are still many open questions
regarding the user needs of developers. We investigated (Chapter 3) in a
qualitative user study into how developers find answers to questions and
discussed (Chapter 2) related work on developer needs, on questions that
developers ask and on frequent problems of developers. Further qualitative
studies on similar subjects are a promising research direction.

Hybridization of Global and Contextual Software Maps. Spatial repre-
sentation of software in the development environment has received quite
some attention in the past year (2010). In this dissertation, we introduced
Software Cartography (Chapter 6), an approach that provides a global
map of the entire system besides the code editor. Deline and Rowan in-
troduced CodeCanvas [53], an approach that embeds code editors on a
global map of the entire system. Bragdon et al. introduced CodeBub-
bles [35, 34], an approach that embeds code editors in contextual maps
that are created on the fly. User studies of these approaches suggest that
developers need both global and contextual maps. How to best address
the user needs of software engineers using a hybrid approach is an open
research question.

Summarization of Software Engineering Artifacts. How to best summa-
rize code examples and work items is an open research problem. In this
dissertation, we presented (Chapter 5) an approach for retrieving labels
for software systems by selecting them from the vocabulary found in the
source code. This approach is limited since the most descriptive umbrella
terms are typically not present in the source code. How to infer the terms
that best describe a source code entities is an open problem, just as is
providing natural language description of source code and work items.

Example-Centric Code Search. Search-driven software engineering is a new
and promising research field. Recent user studies, including the user study
presented in this dissertation (Chapter 3), have shown that developers
make extensive use of internet search engines in order to find and reuse
code examples. Current internet search engines, including dedicated code
search engines such as Krugle and Koders, do not address this use-case.
There seem to be at least three user needs to be addressed by example-
centric code search: a) developers prefer code examples found on plain
websites over those taken from code repositories , b) developers assess the
credibility of untrusted sources based on social clues and c) developers
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repetitively transform code example in order to suite their local coding
conventions

Story-Telling in Software Visualization. Story-telling in information visu-
alization has received popular attention in the past year (2010). There was
a one day workshop on telling stories with data (TSWD1) at the Visweek
2010 conference. In this dissertation, we presented (Chapter 8) a software
visualization that tells the story of past contributions to a software sys-
tem and how team members collaborated with one another. How to best
support the tribal knowledge and episodic memory of development teams
with story-telling visualizations is an open research question.

Social Media in Software Engineering. Most current development environ-
ments do not support code orientation by social clues. The recent rise of
social media on the internet provides software engineering research with
new inspiration on how to address the social needs of developers. For
example, in this dissertation, we presented (Chapter 10) a preliminary
approach on how to assess the credibility of code search results using col-
laborative filtering of user votes. Promising research directions are how
to better support awareness in teams, how to encourage developers to
share their knowledge with other developers and further research on how
to recommend experts in social networks.

1http://thevcl.com/storytelling

http://thevcl.com/storytelling
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