
Parsing For Agile Modeling

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Jan Kurš
von Tschechien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Institut für Informatik

Parsing For Agile Modeling

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Jan Kurš
von Tschechien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät
angenommen.

Bern, 25.10.2016 Der Dekan:

Prof. Dr. Gilberto Colangelo

This dissertation can be downloaded from scg.unibe.ch.

Copyright c© 2016 by Jan Kurš

This work is licensed under a Creative Commons Attribution-Non-Commercial-No
derivative works 2.5 Switzerland license. To see the license go to
http://creativecommons.org/licenses/by-sa/2.5/ch/

Attribution–ShareAlike

scg.unibe.ch
http://creativecommons.org/licenses/by-sa/2.5/ch/

Abstract

Agile modeling refers to a set of methods that allow for a quick initial
development of an importer and its further refinement. These requirements
are not met simultaneously by the current parsing technology. Problems
with parsing became a bottleneck in our research of agile modeling.

In this thesis we introduce a novel approach to specify and build parsers.
Our approach allows for expressive, tolerant and composable parsers with-
out sacrificing performance. The approach is based on a context-sensitive
extension of parsing expression grammars that allows a grammar engineer
to specify complex language restrictions. To insure high parsing perfor-
mance we automatically analyze a grammar definition and choose differ-
ent parsing strategies for different parts of the grammar.

We show that context-sensitive parsing expression grammars allow for
highly composable, tolerant and variable-grained parsers that can be easily
refined. Different parsing strategies significantly insure high-performance
of parsers without sacrificing expressiveness of the underlying grammars.

2

Contents

1 Introduction 8
1.1 Agile Modeling . 9
1.2 Parsing Obstacles of Agile Modeling 12
1.3 Thesis . 13
1.4 Our Contribution . 13

2 Overview of Parsing Technologies 15
2.1 Parsing in the Wild . 15

2.1.1 Expressive Power . 15
2.1.2 Composability . 17
2.1.3 Tolerant Grammars and Semi-Parsing 18
2.1.4 Performance . 19
2.1.5 Parsing Frameworks . 20

2.2 Existing Limitations . 22
2.3 Our Solution . 23

3 Parsing Expression Grammars and PetitParser 24
3.1 Parsing Expression Grammars . 24

3.1.1 PEG Analysis . 25
3.1.2 Parser Combinators . 26

3.2 PetitParser . 29

4 Context Sensitivity in Parsing Expression Grammars 32
4.1 Motivating Example . 33
4.2 Parsing Contexts . 34

4.2.1 Context-Sensitive Extension 35
4.2.2 Indentation Stack . 35

4.3 Parsing Contexts in Parsing Expression Grammars 37
4.3.1 Parser Combinators . 40
4.3.2 CS-PEG analysis . 40

4.4 Implementation . 43
4.4.1 Performance . 44

4.5 Case Studies . 47
4.5.1 Python . 47
4.5.2 Markdown . 49

4.6 Related Work . 52
4.7 Conclusion . 54

4

CONTENTS 5

5 Semi-Parsing with Bounded Seas 55
5.1 Motivating Example . 56

5.1.1 Why not use Regular Expressions? 56
5.1.2 A Naı̈ve Island Grammar . 57
5.1.3 An Advanced Island Grammar 57

5.2 Bounded Seas . 59
5.2.1 The Sea Boundary . 60
5.2.2 The Context Sensitivity of Bounded Seas 61

5.3 Bounded Seas in Parsing Expression Grammars 62
5.3.1 The Water Operator . 63
5.3.2 The NEXT function . 67
5.3.3 BS-PEG analysis . 71

5.4 Implementation . 72
5.4.1 Performance . 73

5.5 Java Parser Case Study . 73
5.5.1 Without Nested Classes . 75
5.5.2 With Nested Classes . 75
5.5.3 With Return Types . 76
5.5.4 Performance . 77

5.6 Related Work . 79
5.7 Conclusion . 82

6 Adaptable Parsing Strategies 83
6.1 Motivating Example . 84

6.1.1 Composition Overhead . 86
6.1.2 Superfluous Intermediate Objects 86
6.1.3 Backtracking Overhead . 87
6.1.4 Context-Sensitivity Overhead 87

6.2 A Parser Combinator Compiler . 88
6.2.1 Adaptable Strategies . 88

6.3 Parser Optimizations . 90
6.3.1 Regular Optimizations . 92
6.3.2 Context-Free Optimizations 94
6.3.3 Context-Sensitive Optimizations 96

6.4 Performance analysis . 100
6.4.1 PetitParser compiler . 100
6.4.2 Benchmarks . 101
6.4.3 Parsing Strategies Impact . 103
6.4.4 Scanner Impact . 105
6.4.5 Memoization Impact . 107
6.4.6 Java Parsers Comparison . 108
6.4.7 Smalltalk Parsers Comparison 108

6.5 Related Work . 109
6.6 Conclusion . 110

7 Ruby Case study 112
7.1 Ruby Structure . 112

7.1.1 The Dangling End Problem 113
7.1.2 Measurements . 115

7.2 Ruby Method Calls . 116

CONTENTS 6

7.2.1 Measurements . 117
7.3 Performance . 119
7.4 Conclusion . 121

8 Conclusion 123

A Formal development of PEGs 136

B Bounded Seas Examples 141
B.1 Example of Dynamic NEXT computation 141
B.2 Example of Static NEXT computation 142
B.3 Overlapping Seas Example . 147

C Implementation 152
C.1 Bounded seas . 152

D Layout Sensitivity in the Wild 159
D.1 Haskell . 159
D.2 Python . 160
D.3 F# . 161
D.4 YAML . 162
D.5 OCaml . 162
D.6 CoffeeScript . 163
D.7 Grace . 163
D.8 SRFI 49 — Indentation-Sensitive Scheme 164
D.9 Elastic Tabstops . 164

E Scanner 166
E.1 Scanners in PEG-based parsers . 166

E.1.1 Tokens and Scannable Parsing Expressions 166
E.1.2 Scannable Choices . 167
E.1.3 Scanner . 167

E.2 Regular Parsing Expressions . 170
E.3 Regular Parsing Expression Languages 172
E.4 Finite State Automata . 175

E.4.1 Construction of finite state automata from regular parsing ex-
pressions (FSA) . 178

E.4.2 Determinization of the automata with epsilons and priorities (D) 181

F Measurements 183
F.1 Summary . 183
F.2 Strategies Details . 187

F.2.1 Expressions . 190
F.2.2 IS Expressions . 191
F.2.3 CF Python . 192
F.2.4 Python . 193
F.2.5 Smalltalk . 194
F.2.6 Java . 195
F.2.7 Java Sea . 196

F.3 Scanner Impact . 197
F.3.1 Expressions . 199

CONTENTS 7

F.3.2 Smalltalk . 200
F.4 Memoization Details . 201
F.5 Smalltalk Parsers . 202
F.6 Java Parsers . 203

G CommonMark Grammar Definition 204

1
Introduction

It is widely accepted that software developers spend more time reading code than writ-
ing it [LVD06]. Reading code not only promotes program comprehension, but helps
developers understand the impact of their changes on the existing system. Neverthe-
less there are numerous questions developers ask that cannot simply be answered by
reading code, such as “which code implements this feature?”, or “what is the impact
of this change?”, and for which dedicated analyses are needed [SMDV06, NL12].

Dedicated platforms exist to model and analyze software systems, such as Moose
[NDG05] and Rascal [KvdSV09]. A prerequisite for using such tools, however, is
that a model importer exists for the programming language (or languages) in which
the system is developed. Constructing a model importer from scratch is a major ef-
fort, and the large up-front investment hampers initiatives for many commercial tool
builders [LV01, BBC+10]. Adapting an existing parser for the host language is often
not an option especially for proprietary and legacy languages, or for sources mixed
from different languages.

We use the term agile modeling to refer to a set of methods that allow for a quick
initial development of an importer and its further refinement. The goal of agile mod-
eling is to build a coarse model of a software system in the morning, analyze it in
the afternoon, and refine it the next day. The repeated refinement eventually leads to
a complete model built through a series of more and more fine-grained models. The
methods of agile modeling utilize specific properties of programming languages, their
similarities and expert knowledge to achieve the goal of agile modeling.

Agile modeling raises many questions, such as “what entities are in the source
code?”, “what are efficient ways to discover the mapping between code and model
entities?”, “how can we leverage expert knowledge in the least intrusive way?”, or
. “what is a suitable parsing technology to quickly develop a parser?”. This work
focuses on this last question — the parsing aspect of agile modeling.

In this chapter we inspect in detail agile modeling and its goals; we investigate the
requirements for a parser that can support agile modeling; and in the end we briefly
describe our contribution to parsing from the perspective of agile modeling.

8

CHAPTER 1. INTRODUCTION 9

1.1 Agile Modeling
By agile modeling we refer to the ability to (i) quickly build a coarse model of a soft-
ware system suitable for an initial analysis; and (ii) easily refine the model for subse-
quent and more detailed analyses. To achieve its goals, agile modeling trades precision
for time. We believe that initial and quick construction of a model is feasible for the
following reasons:

• Models do not need to be precise because an imprecise model can suffice for
many analyses. It takes less effort to specify an imprecise model importer than a
complete and precise one.

• Model constraints are known in advance. Each analysis operates on entities and
relations that are known beforehand. Furthermore, many programming langu-
ages share common concepts and features such as control structures or program-
ming abstractions.

• Model importers can be trained. In any given project, a considerable quantity of
existing and valid code is available as “training data”. The common features
together with readily available knowledgeable developers can be used to guide a
training process.

Additionally, we believe that the refinement of a model for more detailed analyses
is feasible for the following reasons:

• New details are added to an already existing model that is known and verified.
For each refinement step, there is not a combinatorial explosion of possibilities.

• Models are hierarchical and their components are self-contained. Adding a new
detail does not affect currently existing parts of a model, but fills in the empty
spaces.

• Modern parsing technology allows for modular and composable grammar spec-
ifications. Most of analyzed inputs are in a context-free form and new grammar
rules do not affect currently existing ones.

Unfortunately, when we have tried to prove our ideas we face problems in an unex-
pected area; current parsing technology does not fulfill the flexibility and performance
requirements of agile modeling. Let us first describe agile modeling in detail and focus
on the parsing obstacles in the following section.

Agile Modeling in Detail
Agile modeling is a process of refinement. Each refinement step builds on the previous
iteration. The initial iteration, i.e., an initial build of a coarse model, builds on general
knowledge about programming languages.

Let us inspect a single iteration of agile modeling. Consider a depth inheritance
analysis (DIT) [SJC02]. It operates on classes and superclass relations — this is our
meta-model. The concrete results are obtained from the sources with concrete classes
and superclasses — this is our model. Depending on a programming language, classes
and superclass relations are somehow encoded in source code, e.g., using a class

keyword followed by an identifier and an extends keyword followed by another
identifier.

CHAPTER 1. INTRODUCTION 10

In “traditional” modeling, as depicted in Figure 1.1, the relations between a meta-
model and sources are provided by an expert. The expert is fully responsible for dis-
covering these relations as well as for providing the parser that extracts the concrete
model from sources.

If there is another analysis to perform, for example weighted methods per class
(WMC) [SJC02], the meta-model has to be extended with methods and their relation
to a class. The expert has to extend the existing parser to extract methods as well.

are
represented

by

Sources

Model

Parser

Expert

Meta-Model

Im
p

le-
m

en
ts

Knows
how

Knows
how

is
encoded

in

Figure 1.1: Traditional modeling schema, the burden is on expert who
implements the parser based on her knowledge.

The traditional approach imposes a big burden on an expert. In agile modeling,
as depicted in Figure 1.2, this burden is lowered by using heuristics, automation and
general or previous knowledge. The heuristics try to guess the relations between a
meta-model and sources and generate the parser. An expert verifies the results. If the
results are incorrect, heuristics try another guess until the correct results are obtained.
The whole process is semi-automated and is directed by an expert to reach the correct
results faster.

CHAPTER 1. INTRODUCTION 11

For example, we experimented with automated extraction of language keywords
based on their occurrences in source code. By using a completely language-agnostic
analysis, Guggisberg found around fifty percent of Java, Shell and Haskell keywords [Gug15].
This information can be used by heuristics of agile modeling without questioning the
expert, thus saving her time.

are
represented

by

Sources

Model

Parser

Previous
Knowledge

Expert

Meta-Model

Heuristics

Semi-
Automation

Know
how

Knows
how

is verified by

is
encoded

in

Im
p

le-
m

e
n

t

Figure 1.2: In agile modeling heuristics and automation are used to implement a
parser. The burden on expert is lowered, because she only verifies results or

guides decisions of heuristics.

If there is another analysis to be performed, the meta-model is extended with new
entities required by the new analysis. The same tools are then used to obtain new
entities from the sources building on top of the information harvested from the previous
iteration.

An early example of agile modeling is a parsing by example approach utilized in
CodeSnooper [Kob05]. CodeSnooper shows fragments of input to an expert who high-
lights program structures such as blocks or classes. A grammar is then inferred from
these examples and a constructed parser attempts to recognize as much code as possi-

CHAPTER 1. INTRODUCTION 12

ble. If the recognition attempt fails, the CodeSnooper tool prompts an expert with fur-
ther examples. Unfortunately, CodeSnooper utilizes an LALR parser generator, which
has limited composability and quickly causes problems with grammar ambiguities.

1.2 Parsing Obstacles of Agile Modeling
Agile modeling has specific requirements on the parsing technology used [NK15].
Based on our own experience with agile modeling, we identify the following obsta-
cles for a parser that can support agile modeling.

Expressiveness obstacles There are no limitations (within the domain of software sys-
tems) on syntax of the analyzed source. Any existing syntax has to be supported
including uncommon features such as indentation sensitivity or various forms of
context-sensitivity.

For example, where does the doc heredoc from Listing 1.1 end? If it is Ruby,
it depends on the identifier after leading ’<<’ , which happens to be context-
sensitive. Once an expert decides to interpret the text of heredoc as Markdown,
is the Position class part of the list, or not? It depends on its indentation.

Tolerance obstacles Because initial phases of agile modeling produce a coarse
grained model, it is very likely that fragments of sources will not be specified
and therefore a parser has to tolerate unknown input.

What if an expert starts with the class hierarchy analysis of the code in List-
ing 1.1? Does she need to define grammar rules for instance variables, method
definitions and method bodies?

Composability obstacles The process of refinement is an essential part of agile mod-
eling. An inferred parser can be at any time extended with a new functionality
that should not break the functionality already in place. A parser must be refin-
able without imposing any significant effort.

What if an expert decides to explore a method call graph for the code in List-
ing 1.1? Can she easily extend the existing parser with code that parses method
calls? Can she embed a new parser to parse Markdown inside the heredoc
strings?

Efficiency obstacles The agile modeling process is by its own nature based on a trial
and error method and each trial can be verified after the parsing phase. There is a
possibly large code base to be parsed and it has to be parsed in reasonable time.
Though it is not the primary focus, a parser for agile modeling must provide
good performance.

The first three obstacles relate to flexibility, while the last challenge relates to per-
formance. Yet, performance and flexibility tend to contradict each other. Performance
optimizations are usually based on specific expectations that are not always valid in ag-
ile modeling (e.g., non-deterministic grammars, context-sensitive fragments, etc.). In
addition, performance optimizations tend to tie code fragments together, which limits
composability.

CHAPTER 1. INTRODUCTION 13

class Square < Shape
@length = 1

def draw(canvas)
raise "Error" if canvas.nil?
canvas.drawRectangle(

Position(0,0),
Position(length,length)

)
end

@doc = <<heredoc
Include the following:
- @color instvar
- inner class ‘Position‘:

class Position
@x = 0
@y = 0

end
heredoc

end

Listing 1.1: Example of a ruby code with embedded Markdown

1.3 Thesis
In this thesis we argue that the seemingly contradictory needs of a parser for agile
modeling can be satisfied in a single parsing framework. We formally state our thesis
as follows:

Flexible grammars with efficient parsers can be achieved with context-
sensitivity and dynamic adaptation of parsing strategies.

We show that context-sensitive grammars can provide the flexibility required from a
parser that can support agile modeling and that performance comparable to non-flexible
parsers can be achieved using adaptive parsing strategies in a single parser.

1.4 Our Contribution
We suggest two context-sensitive extensions of parsing expression grammars and a
parser compiler. These context-sensitive extensions are parsing contexts [KLN14b]
and bounded seas [KLN14a]. The context-sensitive extensions improve the flexibility
of parsing expression grammars to overcome the first three obstacles of a parser for
agile modeling. The parser compiler [KVG+16] is an ahead-of-time source-to-source
optimizer that addresses the last challenge of a parser for agile modeling.

As a proof of concept introduced in this thesis we extend PetitParser [RDGN10,
KLR+13] — a PEG-based parser combinator framework. In our work we show that
with parsing contexts and bounded seas it is possible to quickly prototype a coarse-
grained imprecise parser. We also show that it is possible to incrementally refine the
parser by adding more features without any significant engineering overhead. Last but

CHAPTER 1. INTRODUCTION 14

not least, we show that with dynamic parsing strategies we achieve significant perfor-
mance speedup, which allows us to quickly extract data from analyzed sources. The
resulting performance is comparable to a top-down hand-written and optimized parser.

2
Overview of Parsing Technologies

In this section we review available parsing technology from the perspective of chal-
lenges for agile modeling. We choose the most suitable ones and identify their limita-
tions. Last but not least, we briefly introduce our solution.

2.1 Parsing in the Wild
In this section we review parsing formalisms and technologies related to the expres-
siveness, composability, tolerance to an unknown input and performance of a parser.

2.1.1 Expressive Power
There is a well-established hierarchy of grammars, the Chomsky hierarchy [Cho57],
depicted in Figure 2.1. The least powerful languages in Chomsky hierarchy, regular
languages, are equivalent to finite automata while the most powerful ones, recursively
enumerable languages, are equivalent to the universal Turing machine. Let us inspect
these parsing formalisms roughly from the least to the most powerful ones.

Regular Expressions A regular expression is an expression used to identify a subset
of strings matching that expression. Regular expressions can describe infinite langu-
ages, but they are not suitable for describing structured languages. Common applica-
tions include data validation, data scraping (especially web scraping), data wrangling,
simple parsing, the production of syntax highlighting systems etc. Regular expressions
are often used in a traditional parsing to split input into tokens.

Deterministic Context-Free Grammars Deterministic context-free languages
(DCFLs) such as LL(k) or LR(k) [AU72] are a popular class of languages because of
their balance between expressiveness and parseability. Many programming languages
are designed to fit into this class. The DCFLs can be recognized by a parser in a form
of deterministic pushdown automata. Semantic and syntactic predicates [PQ94] and

15

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 16

Recursively Enumerable

Context-Sensitive

Context-Free

Regular

Figure 2.1: Chomsky Hierarchy

attributes [Knu68] or affixes [Kos91] extend the expressiveness of LL(k)- and LR(k)-
based parsers beyond the context-free boundary.

Context-Free Grammars Any context-free languages [Cho57] are recognized by
more powerful parsing algorithms such as Generalized LR (GLR) [Tom85], Gener-
alized LL (GLL) [SJ10], CYK [You67], and Earley parsing [Ear70]. Parsing Expres-
sion Grammars (PEGs) [For04] provide an alternative formalism for describing syntax,
and the class of parsing expression languages includes context-free and some context-
sensitive languages. LL(*) grammars are an extension of LL(k) grammars with unlim-
ited lookahead, reaching the expressiveness of PEGs, in some cases beyond GLR and
PEGs [PF11].

Context-sensitive Grammars Definite Clause Grammars (DCGs) [PW86] offer a
way of expressing grammars in a logic programming language such as Prolog. In
pure Prolog normal DCGs can only express context-free grammars, however context-
sensitive languages can be expressed in DCGs if extended with extra arguments.

The class of context-sensitive languages is equivalent to a linear bounded
non-deterministic Turing machine [HU69]. The mildly context-sensitive formal-
isms [Jos85] such as tree adjoining grammars [JS97], linear context-free rewriting
systems [VSWJ87], or multiple context-free grammars [SMFK91] generate a subset
of context-sensitive languages. Adaptable grammars, either for CFGs [Chr09] or for
PEGs [RVB+12], can describe context-sensitive languages as well.

Parser Combinators [HM96, LM01] are used to build expressive parsing frame-
works [Swi01]. Such frameworks can handle context-sensitive languages by a recur-
sive descent of higher order functions [Bur75] with the full power of a functional lan-
guage available to define new combinators for special applications, e.g., layoutsensi-
tivity [Lan66, AA14]

Layoutsensitivity, a special case of context-sensitivity, has been integrated into a
popular languages such as Python, Haskell or F#. Recently, formal approaches have
been suggested to integrate support for indentation into the existing parsing frame-
works [ERKO12, Ada13]. These approaches do not offer the full expressiveness of a
context-sensitive parser and focus only on the indentation aspect.

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 17

2.1.2 Composability
To achieve good composability, a parsing formalism has to describe nested structures
and be closed under union. If a parsing formalism cannot describe nested structures, it
cannot describe programming languages. If languages described by a parsing formal-
ism are not closed under union, it is hard to add new sentences into the language and
hence extend it with new constructs.

We will demonstrate the issues with composability on a Ruby example. Ruby con-
tains instance methods (defn):

def getColor
return color

end

There are also static methods (defs);

def self.RED
return Color.new(255,0,0)

end

while methods can contain other methods:

def getColor
def printColor

puts color
end
printColor
return color

end

Regular Expressions Regular languages are closed under union, concatenation and
intersection. Let us suppose there is a rule to describe defn :

def [a-z]+.?end

and a rule to describe defs :

def self\.[a-z]+.?end

The rules can be composed to describe either defn or defs :

(def self\.[a-z]+.*?end)|(def [a-z]+.*?end)

On the other hand, method definitions based on regular expressions can never describe
methods that contain other methods because regular expressions cannot refer to them-
selves.

Context-free Grammars Deterministic context-free languages [AU72] are not
closed under union while context-free languages and parsing expression languages are
both closed under union.

For example in case of CodeSnooper [Kob05], which utilized a deterministic parser,
it is possible to describe methods in methods:

defn → ’def’ id stmt+ ’end’
stmt → defn | defs | ...

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 18

On the other hand, the union of two deterministic languages defn|defs causes a

conflict, because both rules start with ’def’ . A deterministic parser with the one-
token lookahead cannot decide if it sees defs or defn and raises an error. Unless
we use a non-deterministic parsing formalism (or increase the lookahead), refactoring
of the grammar is needed to parse union of defs and defn .

Scannerless parsing Traditional scanner-parser pipelines [AU72] impose composi-
tional challenges due to lexical ambiguities (e.g., token conflicts of embedded lan-
guages). Scannerless grammars [SC89, Vis97b] and packrat parsing [For02b, For04]
solve this problem by integrating lexical and context-free syntax into one grammar.
Scannerless generalized LR, packrat-based LL grammars or PEGs support easy and
seamless grammar composition.

To demonstrate issues with a scanner-parser pipeline, consider Ruby code parsed
with the scanner-parser pipeline. In such a case, methods cannot be named ’def’

because of the conflict with the ’def’ keyword. Actually, even the highlighter,
which is based on a lexical definition, of the following code snippet cannot distinguish
between a keyword and a method name:

def def
puts ’I would like to be a method named "def"’

end

This would not be an issue when using a scannerless parsing formalisms.

Left Recursion Top-down technologies such as LL and PEGs suffer from problems
with left recursion, yet recently solutions have been proposed to tackle this prob-
lem [FHC07, WDM08, Tra10]. Parser combinator frameworks [HM96, LM01] offer
great composability, but their top-down nature implies the same problems (and solu-
tions) regarding left recursion.

For example, problems with left recursion prevent or complicate the following def-
initions of arithmetic expressions (e.g., ’1+2-3’):

expr → expr + expr |
expr - expr |
[0-9]+

The grammar, when parsed with a top-down parser, has to be either refactored or a
mechanism that can avoid an infinite recursive descent has to be implemented.

2.1.3 Tolerant Grammars and Semi-Parsing
A semi-parser, the term coined by Dean et al. [DCMS03], is a parser that parses frag-
ments of input while leaving others unparsed. Depending on a degree of tolerance,
there are different approaches to semi-parsing. Zaytsev provides a comprehensive
list of semi-parsing techniques [Zay14]. The list ranges from ad-hoc lexical analy-
sis [KLV05] using grep or sed to practical and precise parsing [ALSU06] that
skips only whitespace and comments. The two main application areas of semi-parsing
are reverse engineering and error recovery. We call a formal definition of a semi-parser
a tolerant grammar.

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 19

Reverse Engineering Techniques Some semi-parsing techniques are focused on re-
verse engineering, such as island grammars [Moo01], a method to deal with irregular-
ities in the artifacts that are typical for reverse engineering. Island grammars combine
the detailed specification possibilities of grammars (islands) with the liberal behavior
of lexical approaches (water). A noise skipping parser GLR* [LT93] is a tolerant ver-
sion of GLR that nondeterministically skips some word(s) in input and returns the parse
with the fewest skipped words.

Island grammars are utilized in the agile parsing [DCMS03] paradigm using the
non-greedy operators known from regular expressions1 and syntactic predicates to ex-
tract embedded languages. Skeleton grammars [KL03] represent another semi-parsing
approach to deal with different dialects of a programming language. In both cases the
semi-grammar is inferred from a baseline grammar.

Error Recovery Techniques Other approaches are focused primarily on error recov-
ery. The fuzzy parser used in Sniff [Bis92], a commercial C++ IDE, recovers on sym-
bol declarations such as classes, functions and variables when dealing with incomplete
C++ programs. Permissive grammars [KdJNNV09, JKSV12] are grammars derived
from baseline grammars to deal with syntactical errors such as missing closing brack-
ets etc. These techniques can also be complemented with bridge parsing [NNEH09],
a lightweight recovery algorithm that extends an island grammar with the notion of
bridges and reefs , which are used as synchronization tokens during error recovery.
Reefs are obtained by layout-sensitive preprocessing of input and corresponding reefs
are connected with bridges.

2.1.4 Performance
Naturally, the more expressive a parser is, the worse is its performance. Though the
least powerful parsing formalisms such as DCFGs have reached their theoretical limits,
there is a space for improvements for more powerful formalisms.

Regular Expressions Regular expressions are equivalent to finite state automata and
can be implemented efficiently with linear asymptotical performance O(n) [Cox07].

Deterministic Context-free Grammars Parsing algorithms for deterministic con-
text-free languages can offer linear asymptotic performanceO(n) (where n is the input
size) because they are equivalent to deterministic pushdown automata. There are table-
driven parser generators for LL(k) or LR(k) grammars such as: SmaCC [BR], Happy
[GM95] or Yacc [Joh75] and Lexx [LS75], or recursive ascent/descent parser genera-
tors such as Bison and Flex[Lev09], JavaCC,2 ANTLR [PQ95], or ScalaBison [BS10].

Even in the class of deterministic parsers with linear asymptotic performance the
constant overhead is significant and recursive descent/ascent approaches provide better
performance than their table-driven variants [Pen86].

Context-free Grammars PEG parsers when combined with memoization [For02a]
run in linear O(n) time as well. Memoization can be also utilized by other top-down
approaches [FS96].

1http://www.webcitation.org/6k62faBSX
2http://www.webcitation.org/6k60x69Ga

http://www.webcitation.org/6k62faBSX
http://www.webcitation.org/6k60x69Ga

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 20

It has been proven that the best performance for general context-free grammars can
be O(nlog7), i.e., approximately O(n2.807) [Val75]. GLR [Tom85] is tuned for deter-
ministic grammars where it performs in linear time O(n), or cubic O(n3) in the worst
case. The cubic O(n3) asymptotic time holds for CYK [You67] and Earley [Ear70].
The GLL performance is also O(n3) [AI15] in the worst case.

Context-sensitive Grammars When parsing beyond context-free grammars, the
general PSPACE complexity [GJ79] led developers to search for alternatives. There
exists a class of mildly context-sensitive grammars [Jos85], which has polynomial
complexity O(nk) (where n is an input size and k is some constant) by definition.
This class includes tree adjoining grammars [JS97], linear context-free rewriting sys-
tems [VSWJ87], or multiple context-free grammars [SMFK91].

In the domain of programming languages, context-sensitive features (such as in-
dentation) do not impose any asymptotic performance overhead when suitably imple-
mented, e.g., in Python [Pyt] a scanner contains stack of indentation levels to emit
indent and dedent tokens. The grammar itself is then defined in a context-free

form.

Parser Combinators The outstanding computation power and composability of
parser combinators are obtained at the cost of performance. A parser combinator uses
the full power of a Turing-equivalent formalism to recognize even simple languages
that could be recognized by finite state machines or pushdown automata.

In Scala [Ode07], parser combinator libraries [MPO08] are optimized using macros
[Bur13] and staging [RO10]. Both of the approaches lead to significant run-time
speedup [BJ14, JCS+14] as much of the overhead of parser combinators is removed
thanks to pre-computations in a static phase. Other approaches battle performance
problems using more efficient structures, macros etc. (see Parboiled 2,3 attoparsec4 or
FParsec5).

Scannerless Grammars The expressive power of the scannerless parsing formalism
comes at a price of lesser efficiency as well. Tokens are recognized using a more power-
ful yet more time and memory intensive parsing algorithm. The problem was addressed
for scannerless GLR utilizing an adapted version of the Right-Nulled Generalized LR
(RNGLR) parsing algorithm [EKV09].

2.1.5 Parsing Frameworks
Not all the technologies discussed in the previous section can be combined in a single
parsing framework. To provide an overview how these techniques are used in real-
world frameworks, we briefly describe existing frameworks and technologies imple-
mented by these frameworks.

Yacc Family Yet Another Compiler Compiler (Yacc) [Joh75] is an LR parser gen-
erator used as the default generator on most Unix systems. Yacc is part of a standard
scanner-parser pipeline, lexical analysis being performed by Lex [LS75]. The output of
Yacc is a table-driven parser. There are many variants of Yacc, such as Bison [Lev09],

3http://www.webcitation.org/6k6195CiS
4http://www.webcitation.org/6k61DC2EA
5http://www.webcitation.org/6k61HcnHU

http://www.webcitation.org/6k6195CiS
http://www.webcitation.org/6k61DC2EA
http://www.webcitation.org/6k61HcnHU

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 21

JavaCC,6 SmaCC [BR], or Coco/R [Ter05]. The modern variants of Yacc utilize recur-
sive descent/ascent rather than the original table-driven approach.

ANTLR ANother Tool for Language Recognition (ANTLR) [PQ95, Par07] is an
expressive parser generator for processing structured text or binary files. ANTLR em-
ploys a standard scanner-parser pipeline. The generated parser has the top-down nature
and utilizes a variant of LL recursive-descent parsing LL(*) [PF11], syntactic and se-
mantic predicates [PQ94], and actions. ANTLR is used in many projects, e.g., Groovy,
Hibernate, Jython, and the Xtext [EV06] environment.7

TXL TXL [CHP88, Cor06] is a programming language specifically designed for ma-
nipulating and experimenting with programming language notations. The paradigm of
TXL consists of taking a baseline grammar and specifying syntactic modifications to
the grammar representing new language features or extensions.

TXL is based on a top-down parser resembling the generalized LL parser
of ANTLR with backtracking similar to the Prolog’s Definite Clause Grammars
(DCG) [PW86]. TXL adopts technologies such as robust parsing [BG82], island gram-
mars [Moo01], and agile parsing [DCMS03].

Syntax Definition Formalism The Syntax Definition Formalism (SDF) [HHKR89,
Vis97a] is a formalism for definition of syntax which is an alternative to BNF.
Contrary to BNF, SDF provides a wider scope, covers both lexical and abstract
syntax and offers modular definitions. SDF is supported by Scannerless Gener-
alized LR Parsing [Vis97b]. SDF utilizes indentation based divide-and-conquer
approach to error recovery [dJNNKV09]. SDF is used in environments such as
ASF+SDF [Kli93, BDH+01], RascalIMPL [KvdSV09], Spoofax [KV10], or Strate-
go/XT [VeaB98, Vis02].

Happy Happy [GM95, Hap10] is a functional parser generator for Haskell similar to
Yacc. It takes a BNF specification and produces a Haskell module containing a parser
for the grammar.

Parsec Parsec [LM01] is a library for writing parsers in Haskell based on monadic
higher-order parser combinators [HM96]. Contrary to a functional parser generator
(e.g., Happy) that offers a fixed set of combinators, Parsec allows for definitions of new
combinators that fit the application domain. There exist various implementations for
other languages such as Scala [MPO08], Erlang, Java, or OCaml.

Rats! Rats!8 is a parser generator supporting extensible syntax. Rats! utilizes a
modular version of PEGs [For04] with semantic actions. Rats! is used in the xtc
framework.9

PetitParser PetitParser [RDGN10, KLR+13] is a PEG-based, parser combinator li-
brary for Smalltalk. PetitParser is used in the Moose analysis environment [ND04,
G1̂0].

6http://www.webcitation.org/6k60x69Ga
7A framework for development of programming and domain-specific languages.
8http://www.webcitation.org/6k61Ps1QO
9http://www.webcitation.org/6k61WrLRC

http://www.webcitation.org/6k60x69Ga
http://www.webcitation.org/6k61Ps1QO
http://www.webcitation.org/6k61WrLRC

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 22

OMeta OMeta [WP07] is a specialized object-oriented programming language for
pattern matching. OMeta is based on PEGs [For04], which have been extended to
handle arbitrary kinds of data.

2.2 Existing Limitations
Given the state of the art, we see the following problems: (i) current parsing frame-
works do not support parsing formalisms to express context-sensitive restrictions of
programming languages; (ii) support for layoutsensitivity is not part of any of existing
parsing frameworks (however research in this area is emerging); (iii) generalized pars-
ing provides a set of results and requires an additional post-processing phase; (iv) with-
out a baseline grammar island grammars do not provide the composability required by
agile modeling; and (v) scannerless parsing and parser combinators impose noticeable
overhead on parser performance.

As a suitable base framework for agile modeling, we decided to use PetitParser. It
is based on the following technologies that, from the perspective of a parser for agile
modeling, offer the following advantages: (i) parsing expression grammars have a good
expressive power, are unambiguous and are closed under union; (ii) scannerless
parsing provides a unified parsing formalism for grammar definitions and improves
composability; (iii) packrat parsing ensures a linear asymptotic performance of parsing
expression grammars; and (iv) parser combinators allow PEGs to be extended with
specialized functionality.

On the other hand we have to deal with (i) missing support for context-sensitive
definitions; (ii) limited composability of island grammars; and (iii) poor performance
of scannerless parsing and parser combinators.

The issues cannot be avoided by choosing a different framework. None of the
frameworks from subsection 2.1.5 supports context-sensitive grammar definitions.
There are no high-performance and flexible alternatives to scannerless parsing or parser
combinators. From the point of agile modeling, there is no better alternative to island
grammars. A noise skipping parser is not deterministic and does not allow a grammar
engineer to control the skipped input. Agile parsing and skeleton grammars require a
baseline grammar, which is not available in the context of agile modeling. We discuss
the issues of PetitParser from the perspective of agile modeling in the remainder of this
section.

Context-Sensitivity in Programming Languages

Although many programming languages are designed with parsing in mind and they
fit into the context-free class, not all of them are context-free. And other sources (e.g.,
domain specific languages) interesting for agile modeling might not be context-free as
well.

For example, Haskell, Python, or F# use indentation to specify block boundaries, an
extra stack of opened elements is required to recognize an XML-like language without
a schema, Ruby has no formal grammar specification whatsoever (only a c-like file10),
similarly to Markdown, which is specified by a set of examples.11

Parsing expression grammars cannot express these languages on their own and ex-
isting ad hoc solutions do not fit the needs of agile modeling, which aims to remove the

10http://www.webcitation.org/6k62SaBg8
11http://www.webcitation.org/6k61x4RSO

http://www.webcitation.org/6k62SaBg8
http://www.webcitation.org/6k61x4RSO

CHAPTER 2. OVERVIEW OF PARSING TECHNOLOGIES 23

implementation burden from an expert. Agile modeling requires formalized context-
sensitive definitions that allow for an efficient parsing.

Island Grammars

An island grammar precisely defines only a subset of a language syntax (islands), while
the rest of the syntax (water) is defined imprecisely. Usually water is defined as the
negation of islands. Albeit simple, such a definition of water is naı̈ve and impedes
composition of islands. When developing an island grammar, sooner or later a language
engineer has to create water tailored to each individual island.

Such an approach increases the burden on the language engineer. This again contra-
dicts the goal of agile modeling. Agile modeling requires composable island grammars
that do not require human intervention for different types of composition.

Performance Issues

The unified parsing algorithm of scannerless parsers and the universality and flexibil-
ity of parser combinators introduce a noticeable performance overhead. Speed-wise
a parser based on these technologies cannot compete with a scanner-parser pipeline
generated by well-performing parser generators or an optimized hand-written parser.

This is again against the goal of agile modeling, which aims to save the expert’s
time, not to waste it. Agile modeling requires well-performing and flexible parsers.

2.3 Our Solution
In this thesis, we address the issues with context-sensitivity, island grammars and per-
formance problems. First we describe parsing expression grammars, parser combina-
tors and PetitParser in chapter 3. Based on these technologies, we propose the follow-
ing extensions:

Parsing Contexts extend parsing expression grammars with extra stacks to allow for
context-sensitive definitions, e.g., indentation (see chapter 4).

Bounded seas are a context-sensitive extension inspired by island grammars, which
provides composable, robust, reusable and easy way to extract information from
source code (see chapter 5).

Dynamic Parsing Strategies choose the minimal and most efficient parsing strategy
required to parse a given grammar fragment. This greatly improves parser perfor-
mance while imposing no limitations on the underlying grammar (see chapter 6).

In chapter 7 we present a case-study in which we prototype a Ruby parser for a class
hierarchy analysis and we extend it for a call graph analysis. We implement the parser
with context-sensitive rules in several iterations constantly improving precision and
recall. We show that with our extensions a language engineer can extract useful data
from early stages of parser development. The precision and recall improve as more
grammar rules are specified. Thanks to dynamic parsing strategies, the performance
of the parser is improved by factor of nine, which significantly shortens the feedback
loop.

3
Parsing Expression Grammars and

PetitParser

For reasons summarized in section 2.2 we decided to use PetitParser, which is based
on parsing expression grammars, as a suitable framework for agile modeling. In this
section we provide a brief summary of parsing expression grammars and PetitParser.

3.1 Parsing Expression Grammars
Parsing expression grammars (PEGs) developed by Ford [For04] are an alternative,
recognition-based formal foundation for language syntax. PEGs are stylistically similar
to CFGs with regular expression-like features, similarly to the Extended Backus-Naur
Form (EBNF) notation [Wir77, ISO96]. The key difference is that in place of the
unordered choice operator | used to indicate alternative expansions for a non-terminal

in EBNF, PEGs use the prioritized choice operator / . This operator lists alternative
patterns to be tested in order, unconditionally using the first successful match. The
EBNF rules

A → a b | a
A → a | a b

are equivalent in CFGs, but the PEG rules

A ← a b / a
A ← a / a b

are different. The second alternative in the latter PEG rule will never succeed because
the first choice is always taken if the input string to be recognized begins with ’a’ .

A PEG may be viewed as a formal description of a top-down parser. PEGs have
more syntactic expressiveness than the LL(k) language class typically associated with
top-down parsers, however, and can express all deterministic LR(k) languages and

24

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 25

many others, including some context-sensitive languages. All PEGs can be parsed
in linear time using a packrat parser [For02b].

Operator Description
′ ′ Literal string
[] Character class
• Any Character
e? Optional
e∗ Zero or more
e+ One or more
&e And-predicate
!e Not-predicate
e1 e2 Sequence
e1/e2 Prioritized Choice

Table 3.1: PEG operators

The set of operators used to express PEG definitions is in Table 3.1. An example
of a definition describing identifiers looks as in Listing 3.1.

id ← idStart idCont* spacing
idStart ← [a-zA-Z]
idCont ← idStart / [0-9]
spacing ← space*
space ← ’ ’ / ’\t’ / ’\n’ / ’\r\n’ / ’\r’

Listing 3.1: Example of a PEG definition

Thy syntax resembles the EBNF notation the differences being (i) already discussed
prioritized choice / ; (ii) syntactic predicates ! and & ; and (iii) non-terminal assign-
ment ← instead of → . The semantics is also similar, yet with important differences:
(i) PEGs use the PEG formalism (instead of regular expressions) to describe the lex-
ical syntax; (ii) choice is prioritized (ordered); and (iii) repetitions are greedy. The
unified syntax frees lexical elements from the restrictions of regular languages (e.g.,
a language engineer can express Pascal-like nested comments as tokens).1 Moreover
prioritized choices, greedy repetitions and syntactic predicates allow one to express
disambiguation meta-rules on the grammar definition level (e.g., syntax of lambda ab-
stractions, let expressions and conditionals in Haskell [Has] that are ambiguous in
CFGs and have to be disambiguated by the longest-match meta-rule).

3.1.1 PEG Analysis
Parser implementors often would like to analyze the behavior of a particular grammar
over arbitrary input strings. While many interesting properties of PEGs are undecid-
able in general, conservative analysis proves useful and adequate for many practical

1e.g., (* this is (* a nested comment *) which continues here *)

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 26

purposes, especially for grammar optimizations. We briefly discuss possible optimiza-
tions in this section and we describe them in detail later in chapter 6.

The first set from traditional parsing theory [GJ08a, pp. 235-361] can be computed
even for PEs [Red09]. For example, any character in the [a− zA− Z] character class

is in the first set of id (see Listing 3.1). We provide the formal definition of the first
set for PEGs used in this work in Definition A.5. The first set can be used to optimize
superfluous invocations, for example, to fail id directly if the peek character of the
input is not a letter avoiding a superfluous invocation of the underlying sequence of
idStart , idCont∗ and spacing .

Furthermore, PEs can be interpreted abstractly to decide if an expression can accept
an empty string, can succeed on some string or can fail on some string. For example,
idCont can succeed on some input, e.g., ’a’ . It can also fail on some input, e.g.,
’*’ and it can never accept an empty string ε . On the other hand, idCont∗ can

succeed on some input, e.g., ’a’ and cannot fail on any input because it can accept
ε . Because an abstract simulation does not depend on the input string, and there is

a finite number of expressions in a grammar, we can compute an abstract simulation
over any grammar [For04]. We provide the formal definition of an abstract simulation
in Definition A.6. The abstract simulation can be used to optimize superfluous mem-
oization, for example, to omit memoization before parsing idCont∗ because, based
on the abstract simulation, idCont∗ cannot fail and the created memento is therefore
never used.

3.1.2 Parser Combinators
Primarily, combinators in PetitParser are used to implement the PEG operators. The
advantage of parsing expressions being implemented as parser combinators is in the
composability of such a solution. All the parsing expressions or possible extensions
form a composite pattern [Gam97]. Each expression can be treated uniformly and can
accept an arbitrary sub-expression.

Therefore, combinators are used by clients to implement custom extensions of Pe-
titParser. For example there exists a custom longest-match choice combinator, which,
contrary to the ordered choice, unconditionally evaluates both alternatives and returns
the result of the alternative that consumes most characters from the input. Last but not
least, combinators are useful to define special expressions such as a start of a line or an
end of a word, which are not part of a standard PEG formalism.

Parser combinators in general can have arbitrary behavior, however, throughout
this thesis, we slightly restrict the behavior of parser combinators. For example, parser
combinators used in this work delegate only to a single parsing expression and therefore
they are unable to implement parsing expressions such as sequences or choices. We
impose restrictions on parser combinators to simplify definitions and formalism. In
practice, the restrictions can be avoided (as in PetitParser, which we discuss in the
following section 3.2).

Because of naming conflicts we use k for parser combinator functions. We formal-
ize parser combinators as follows:

Definition 3.1 (Parser Combinator). A parser combinator k is a function that accepts a
pair (e, x) as input and returns an output pair (o, y), where e is a parsing expression e,
x is input x ∈ Σ∗, o indicates the result of the combinator, and y ∈ Σ∗ is the remainder
of input. The distinguished symbol f indicates failure.

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 27

For example, we define the negation operator of PEGs as a parser combinator as
in Algorithm 3.1. When used with an expression e, the optional combinator evaluates
e. Based on the result o it returns o or, if o is failure, ε . .

function NEGATION(e, x)
(o, y) = parseOn(e, x) . evaluate e for input x
if o = f then
↑ (ε, x)

else
↑ (f, x)

Algorithm 3.1: Negation parser combinator. If o is failure it returns ε , it returns
f otherwise.

Let us extend the standard definition of PEGs (see Definition A.1) with parser com-
binators and we formalize their semantics (see Definition A.2).

Definition 3.2. (Parsing Expression Grammar with Parser Combinators) A parsing
expression grammar with parser combinators is a 5-tuple G = (N,Σ, R, es,K) where
N is a finite set of nonterminals, Σ is a finite set of terminal symbols, R is a finite set
of rules, K is a finite set of combinators, es is a starting expression.

Each rule r ∈ R is a pair (A, e) which we write A ← e, A ∈ N and e is a parsing
expression. Parsing expressions (PEs) are defined inductively, if e1 and e2 are parsing
expressions, then so are the following:

• ε , an empty string

• ′t+′ , any literal, t ∈ Σ

• [t+] , any character class, t ∈ Σ

• A , any nonterminal, A ∈ N

• e? , an optional expression

• e1e2 , a sequence

• e1/e2 , a prioritized choice

• e∗ , a zero-or-more repetitions

• !e , a not-predicate

• &e , an and-predicate

• k(e) , a parser combinator, k ∈ K

Definition 3.3 (Parser Combinator Semantics). Parser combinator expression k(e)

is a partially evaluated combinator function k. We extend the semantics of PEGs as
defined in Definition A.2 with the semantics of a parser combinator expression as fol-
lows:

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 28

Parser
Combinator

(success):

k(e, x) = (o, y)

(k(e), x)⇒ (o, y)

Parser
Combinator

(failure):

k(e, x) = (f, x)

(k(e), x)⇒ (f, x)

We already discussed that parser combinators used in this work wrap only a single
expression. Another restriction imposed on parser combinators is that parser combi-
nators have to behave as first set terminals. For this reason k(e) cannot implement a
repetition operator, because there is ε in the first set of a repetition operator (see Def-
inition A.5).

Definition 3.4 (First Set of Parser Combinators). We extend the definition of first
(see Definition A.5) with parser combinators. They behave as first set terminals:

Combinator
FIRST(k(e)) = k(e)

For example, consider a PEG rule that requires an identifier on the beginning of a
line: ˆ id (where ˆ stands for start of a line). The first set of the rule is a set with the
single element: start of a line ˆ .

The definition of an abstract simulation is permissive and allows for abstract result
of a parser combinator. The abstract simulation of parser combinators is defined as
follows:

Definition 3.5 (Abstract Simulation of Parser Combinators). We extend the standard
definition of an abstract simulation (see Definition A.6) with parser combinators. The
abstract result of a parser combinator can be anything:

8. (a) k(e) ⇀ 0

(b) k(e) ⇀ 1

(c) k(e) ⇀ f

For example, the abstract result of an abstract simulation of the ˆ rule is
{0 1 f} , meaning that a start of a line combinator can succeed while consuming

no input, can succeed while consuming some input and can fail. It is not true that a
start of a line combinator can succeed while consuming some input; this is a drawback
of such a definition and the price for the flexibility of combinators.

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 29

3.2 PetitParser
PetitParser [RDGN10, KLR+13] is a parser combinator framework [HM96] that uti-
lizes packrat parsing [For02b], scannerless parsing [Vis97b] and parsing expression
grammars (PEGs) [For04]. PetitParser is implemented in Pharo,2 Smalltalk/X,3 Java4

and Dart.5

Operator Description
′ ′ Literal string
[] Character class

[] negate Complement of a character class
• Any Character
#letter Characters [a-zA-Z]
#digit Characters [0-9]

#space Characters [\t\n]
ˆ Start of a line
e? Optional
e∗ Zero or more
e+ One or more
&e And-predicate
!e Not-predicate
e1 e2 Sequence
e1/e2 Prioritized Choice
e trim Trim spacing
e token Trim spacing and build a token
e map : action Semantic Action
e memoize Packrat parser

Table 3.2: PetitParser operators

PetitParser uses an internal DSL similar to a standard PEG syntax as briefly de-
scribed in Table 3.2. As an example, consider a snippet

id ← #letter (#letter / #digit)*

that creates a nonterminal id , which consists of a letter followed by an arbitrary num-
ber of letters and digits (similarly to the id defined in pure PEG syntax in Listing 3.1).

Trimming and Tokenization PetitParser is scannerless [Vis97b], but dedicated To
kenParser and TrimParser are at hand to deal with spacing (see Listing 3.1).
These parsers trim the whitespaces (or even comments if specified) from input before
and after a parse attempt. TokenParser returns a Token instance holding the

2http://smalltalkhub.com/#!/˜Moose/PetitParser
3http://www.webcitation.org/6k62sGRlg
4http://www.webcitation.org/6k62uAxHz
5http://www.webcitation.org/6k62vRsWA

http://smalltalkhub.com/#!/~Moose/PetitParser
http://www.webcitation.org/6k62sGRlg
http://www.webcitation.org/6k62uAxHz
http://www.webcitation.org/6k62vRsWA

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 30

parsed string in the inputValue instance variable and its start and end positions
(see Listing C.8). A token can be created using the token keyword:

id ← #letter (#letter / #digit)*
idToken ← id token

Parser Invocation When a root parser is asked to perform a parse attempt on input by
calling parse: input , three things happen: (i) a context object represent-

ing an input stream is created from input ; (ii) parseOn: context is called
on the root parser; and (iii) the result of this call is returned. During an invocation
parser combinators delegate their work to the underlying combinators. As an example,
consider the action on the idToken :

id ← #letter (#letter / #digit)*
idToken ← id token
lcIdToken ← idToken map: [:t | t inputValue asLowercase]

The map: keyword creates an Action parser, the implementation of which can

be found in Listing C.1. The Action parser invokes the underlying idToken and
converts the result of inputValue to lowercase by invoking the action block. In

case idToken fails and returns an instance of Failure , Action returns this
failure immediately without invoking the action block.

Backtracking and Memoization PetitParser utilizes backtracking. Thanks to its
backtracking capabilities, a top-down combinator-based parser is not limited to LL(k)
grammars [AU72] but instead it can handle unlimited lookahead.

In PetitParser, before every possible backtracking point, the current context is re-
membered in a Memento instance. In case a decision turns out to be a wrong one,
the context is restored from the memento. The same memento is used when memoiz-
ing the result of a parse attempt (to allow for packrat parsing [For02b]). A dedicated
Memoizing parser combinator creates a memento, performs the parse attempt and

stores a memento-result pair into a buffer. Later, if the memoizing parser is invoked
again and the memento-result pair is found in the buffer, the result is returned directly.

To see how PetitParser backtracks, consider the Sequence parser implementa-
tion in Listing C.6. A sequence must iterate over all its children, collect their results
and return a collection of the results. In case of failure, the context is restored to the
original state and an instance of Failure is returned. Note that a parser returning
failure from parseOn: is responsible for restoring the context to its initial state, i.e.,
as it was before the parseOn: invocation.

Parser Combinators The strength of PetitParser is its flexibility and extensibility.
PetitParser uses PEGs with parser combinators as defined in Definition 3.2. Any object
that understands parseOn: context and follows its contract can be used as a
parser combinator. All the standard operators of PEGs are implemented as a subclass
of an abstract class Parser that defines the combinator interface. Users can imple-
ment their own combinators, e.g., a start of a line combinator, either by subclassing
Parser or by using a dedicated Wrapping parser (see Listing C.9), which serves

as an adapter [GHVJ93] from a block closure interface to a parser combinator interface.

CHAPTER 3. PARSING EXPRESSION GRAMMARS AND PETITPARSER 31

Restrictions imposed on parser combinators in this work are overcome in the case
of PetitParser. PetitParser allows a combinator to specify the output of a PEG analysis
(see subsection 3.1.1). For example, a repetition combinator of PetitParser modifies
the default behavior of a first set analysis and adds ε into the output of the analysis.

4
Context Sensitivity in Parsing Expression

Grammars

The domain of context-free languages has been extensively explored and there exist
numerous techniques for parsing (all or a subset of) context-free languages. These
techniques have been implemented in numerous parser generator frameworks, are well-
understood and widely used in language compilers and interpreters. Unfortunately, not
all programming languages or other sources interesting for agile modeling are context-
free.

For example, Haskell, Python, or F# use indentation to specify block boundaries,
C and C++ differentiate between typedef and identifiers,1 an extra stack of opened
elements is required to recognize an XML-like language without a schema, heredoc
string literals of Ruby are context-sensitive,2 in Markdown the beginning of a line
associates the remaining content with arbitrarily interleaved lists and quoted blocks,3

HTTP headers contain lenght field that specifies the length of the request body,4

YAML allows one to specify block indentation in a block header,5 and even an if-
then-else statement produces a LR shift-reduce conflict.6

Without a formalized and well-performing approach to handle context-sensitivity,
context-sensitive languages are excluded from agile modeling. Furthermore, as we
argue in the next chapter, it is the context-sensitivity that allows for composable and
flexible semi-parsers. Last but not least, it is a context-sensitive feature — layout —
that is a good proxy to a document structure [HGH08], which can be leveraged by a
parser for agile modeling.

Because of poor understandability, difficult parseability and insufficient seman-

1http://www.webcitation.org/6h0WvYD2B
2http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#

label-Here+Documents
3http://www.webcitation.org/6k61x4RSO
4http://www.webcitation.org/6k62Jw6Qi
5http://www.webcitation.org/6h0Xnc1m9
6http://www.webcitation.org/6k62MaMAT

32

http://www.webcitation.org/6h0WvYD2B
http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Here+Documents
http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Here+Documents
http://www.webcitation.org/6k61x4RSO
http://www.webcitation.org/6k62Jw6Qi
http://www.webcitation.org/6h0Xnc1m9
http://www.webcitation.org/6k62MaMAT

CHAPTER 4. CONTEXT-SENSITIVITY 33

tic suitability of context-sensitive grammars, implementors of programming langu-
ages use standard context-free parsing techniques and adopt various ways to express
context-sensitive features, including ad hoc approaches like hand-written parsers, pre-
processing and specialized lexers, post-processing of ambiguous parser output, or
more formal approaches like attributes [Knu68], affixes [Kos91], and grammar adapta-
tions [Chr09, RVB+12].

In our work we propose an extension of the PEG formalism to express context-
sensitive languages — parsing contexts [KLN14b]. Parsing contexts are a straightfor-
ward extension of top-down parsers and do not require any pre- or post-processing of
an input stream. Definition rules remain in a simple context-free form A → α. Pars-
ing contexts use stacks of values to steer the parser decisions with context-sensitive
restrictions and are designed to allow for an efficient implementation.

4.1 Motivating Example
To illustrate the problem with context-sensitivity, consider Ruby strings. Ruby pro-
vides a lot of different string literals some of which require context-sensitive parsing.
An example is the here document,7 as we briefly discussed in Listing 1.1. It allows a
programmer to write multi-line blocks of text by delimiting them with an identifier of
her choosing as seen in Listing 4.1.

string = <<foobar
This is a string

foobar

anotherString = <<end
This is also a string

end

Listing 4.1: Two Ruby strings delimited by an arbitrary identifier.

A PEG definition of heredoc that a beginner could attempt to write looks as
in Listing 4.2. The openHeredoc rule reads the open sequence. The content rule

reads any character (•) as long as there is closeHeredoc . The closeHeredoc

rule closes the string by consuming the final identifier.
This obviously does not work because any word consisting of letters is an identifier,

including ’This’ — the first word in the string. The ID rule in closeHeredoc

is context-sensitive and depends on the result of ID from openHeredoc .
The problem of context-free grammars is that they are not capable of expressing an

arbitrary number of long-range relations.8 If heredoc of Ruby had a pre-defined set of
openings and closings9, e.g., longstring , langtextli and dlouhytextik , the

heredoc rule might look like this:

7http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#
label-Here+Documents

8For example the anbnan, n > 0 language, as can be proven using the pumping lemma (see http:
//www.webcitation.org/6k7i6ZAdX).

9which would be equivalent to n limited by a constant in anbman

http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Here+Documents
http://ruby-doc.org/core-2.3.0/doc/syntax/literals_rdoc.html#label-Here+Documents
http://www.webcitation.org/6k7i6ZAdX
http://www.webcitation.org/6k7i6ZAdX

CHAPTER 4. CONTEXT-SENSITIVITY 34

ID ← #letter+

heredoc ← openHeredoc
content

closeHeredoc
openHeredoc ← ’<<’ID
content ← (!closeHeredoc •)*
closeHeredoc ← ID

Listing 4.2: Naive definition of heredoc . It does not work, because heredoc

is context sensitive and this definition does not take this into account.

heredoc ← ’<<’longtext content1 longtext /
’<<’langtextli content2 langtextli /
’<<’dlouhytextik content3 dlouhytextik

Listing 4.3: Grammar for heredoc with finite number of openings and
closings

Yet, Ruby’s heredoc allows for an arbitrary identifier ID to begin and end the
heredoc element. In order to express such a context-sensitive restriction, the result of
ID in openHeredoc has to be stored and compared in closeHeredoc . We now

present a mechanism to do so.

4.2 Parsing Contexts
Parsing contexts extend PEGs (see Definition 3.2) with the notion of stacks. Stacks
can hold arbitrary values and are manipulated using dedicated push O and pop M
operators. Stacks can keep track of an arbitrary number of nested context-sensitive
restrictions (e.g., indentation, etc.) Stacks can be accessed by parser combinators, but,
for the purposes of this work, we restrict parser combinators from modifying these
stacks.10 Combinators that access stacks are used to express the context-sensitive re-
strictions and to steer parser decisions.

Parsing contexts are an extension of PEGs, they do not modify the standard se-
mantics of PEGs and they use the same form of rules: A ← α. This preserves
the advantages of context-free definitions: understandability, parsability and semantic
suitability. Parsing contexts extend the formalism of PEGs with two new operators:
push O and pop M . The standard algorithms for the first set (see Definition A.5)
and the abstract simulation (see Definition A.6) can be extended to support for these.
The fact that the parsing context is manipulated only via rather ‘low-level’ push and
pop operators opens a space for analyses that allow for context-sensitive performance
optimizations (as we show in chapter 6).

10This restriction can be avoided in the case of PetitParser by using properties as discussed in section 3.2.

CHAPTER 4. CONTEXT-SENSITIVITY 35

4.2.1 Context-Sensitive Extension
With parsing contexts, we have a toolbox to define context-sensitive grammars using
the PEG formalism. Let us now revisit the problem with the Ruby’s here documents.

When parsing the open rule, we store the parsed value using the push O operation

to a stack. When parsing closeHeredoc , we compare the parsed value with the value
on the top of the stack. To perform the comparison, we specify a parser combinator
cmp that compares the top of a given stack with the return value of a given expression

and returns failure if they are not equal (see Algorithm 4.2 for precise definition). Last
but not least we clear the top of the stack with pop M if comparison succeeds.

The context-sensitive PEG definition of Ruby’s heredoc is in Listing 4.4. The
openID rule opens heredoc and saves the result of ID (e.g., ’foobar’) into the

stack identified by the here identifier.11 The closeID rule compares the result of
ID with the top of the here stack and if they match, the top is popped from the
here stack, closeId fails otherwise.

ID ← #letter+

heredoc ← openHeredoc
content

closeHeredoc
openHeredoc ← ’<<’openID
content ← (! closeHeredoc •)*
closeHeredoc ← closeID

openID ← Ohere(ID)
closeID ← cmphere(ID) Mhere

Listing 4.4: Context-sensitive heredoc definition.

Note that the cmp combinator can be reused for other purposes such as enforcing
the correct close tag in XML-like languages. On the other hand, cmp itself is not
sufficient to recognize Python-like indent and dedent tokens or other forms of
indentation. For these other combinators are needed.

4.2.2 Indentation Stack
There are many variants of indentation (see Appendix D for more details). All of them
are based on Landin’s offside rule [Lan66], inspired by an offside in soccer. Once the
offside line is set, the code (just like a player) is not allowed to cross the offside line.12

As with soccer, the trick is to know where the line is and not get ahead of it.
Parsing contexts support indentation rules by offering an indentation stack. The

indentation stack serves as a store for offside lines, which are naturally manipulated
via push O and pop M operators.

11Because we use a special stack (identified by here) for the context-sensitive restrictions of of the here
document, another context-sensitive restriction can be expressed independently using a different stack.

12We assume that only spaces are used. If tabulators are used, they are replaced by a predefined number
of spaces.

CHAPTER 4. CONTEXT-SENSITIVITY 36

Offside Rule

The offside line is set in different cases, depending on a language. Once an offside line
is set, code might appear in three positions: i. aligned; directly on the offside line if
the column of code is the same as the column of the offside line; ii. in onside; to the
right of the offside line if the column of code is strictly greater than the column of the
offside line; and iii. in offside; to the left of the offside line if the column of code is
strictly smaller than the column of the offside line.

In Python, for example, it is the first statement of a block that sets the offside line.
The remaining statements of the block must be aligned, i.e., must be directly on the
offside line. Any other placement is invalid (see Listing 4.5).

while (count < 9):
print ’The count is:’, count # sets the offside line
count = count + 1 # aligned
print ’loop ends’ # invalid alignment

Listing 4.5: Python block example.

Since blocks of code can be arbitrarily nested, offside lines can be nested as well.
If an inner block sets the new offside line, the offside line of the outer block is remem-
bered. If code appears in an offside position of the inner block, the offside line of the
outer block is restored.

In Python, for example, blocks can be nested as depicted in Listing 4.6. If a state-
ment appears in an offside position of an inner block, the block is terminated and the
previous offside line is restored.

while (count < 9):
print ’The count is:’, count # sets the offside line
if (count % 2) == 0:

print ’The count is event’ # new offside line is set
count = count + 1

else: # offside line restored
print ’The count is odd’ # new offside line is set
count = count + 1

Listing 4.6: Nested blocks in Python.

Offside Rule with Parsing Contexts

Givi [Giv13] implemented the indentation-sensitive rules by adding indentation-
specific support to PetitParser. Building on this work, we embed the support into the
more general concept of parsing contexts.

The offside rule operates with a concept of columns that is unknown to PEGs.
Therefore, we provide a dedicated combinator col returning an integer representing
the current column in the input string (the combinator is defined in Algorithm 4.1).

When provided with compare (cmp as in Algorithm 4.2), greater than (gt as
in Algorithm 4.3) and smaller than (st as in Algorithm 4.4) combinators, a language
engineer can set the offside line and verify the alignment as shown in Listing 4.7.

CHAPTER 4. CONTEXT-SENSITIVITY 37

Note that rules in Listing 4.7 use a separate indentation stack IS and they can be used
independently on other context-sensitive rules.

setOL ← OIS(col) // set the offside line
removeOL ← MIS // remove the offside line

aligns ← cmpIS(col) // aligns to the offside line?
offside ← stIS(col) // in offside?
onside ← gtIS(col) // in onside?

Listing 4.7: PEG definitions of set, remove and align to offside line.

4.3 Parsing Contexts in Parsing Expression Grammars
In this section we provide a formal definition of Context-Sensitive PEGs (CS-PEGs)
and specify parser combinators utilized to parse context-sensitive languages. Last but
not least we provide an analysis to determine if an expression changes context or not.

Definition 4.1 (Context-Sensitive PEGs (CS-PEGs)). A context-sensitive parsing ex-
pression grammar is a 6-tuple G = (N,Σ, R, es,K,Cs) where N is a finite set of
nonterminals, Σ is a finite set of terminal symbols, R is a finite set of rules, es is a
starting expression, K is a finite set of combinators, and Cs is an initial context — a
finite set of an identifier to stack mappings. Each context entry c ∈ C is a pair (id, S).
id identifies a particular stack S, we write this as Sid.

Each rule r ∈ R is a pair (A, e) which we write A ← e, A ∈ N and e is a parsing
expression. Parsing expressions (PEs) are defined inductively, if e1 and e2 are parsing
expressions, then so is:

• ε , an empty string

• ′t+′ , any literal, t ∈ Σ

• [t+] , any character class, t ∈ Σ

• A , any nonterminal, A ∈ N

• e? , an optional expression

• e1e2 , a sequence

• e1/e2 , a prioritized choice

• e∗ , a zero-or-more repetitions

• !e , a not-predicate

• &e , an and-predicate

• k , a parser combinator, k ∈ K

CHAPTER 4. CONTEXT-SENSITIVITY 38

• O
id
e , a push to the stack S, (id, S) ∈ C

• M
id

, a pop from the stack S, (id, S) ∈ C

Definition 4.2 (CS-PEG Semantics). To formalize the semantics of a context-sensitive
grammar G = (N,Σ, R, es,K,Cs), we define a relation ⇒ from triples of the form
(e, x, C) to the output triples (o, y, C ′), where e is a parsing expression, x ∈ Σ∗ is an
input string to be recognized, o indicates the result of a recognition attempt, y ∈ Σ∗ is
a remainder of input, and C,C ′ are context mappings.

The standard PEG operators as defined in Definition A.2 extend straightforwardly:

Empty: x ∈ T ∗
(ε, x, C)⇒ (ε, x, C)

Terminal
(success):

a ∈ T, x ∈ T ∗

(a, ax,C)⇒ (a, x, C)

Terminal
(failure):

a 6= b, (a, b, C)⇒ (f, a, C)

(a, bx, C)⇒ (f, bx, C)

Nonterminal: A← e ∈ R (e, x, C)⇒ (o, y, C ′)

(A, x,C)⇒ (o, y, C ′)

Sequence
(success case):

(e1, x, C)⇒ (o1, y1, C1) (e2, y1, C1)⇒ (o2, y2, C2)

(e1e2, x, C)⇒ (o1o2, y2, C2)

Sequence
(failure 1):

(e1, x, C)⇒ (f, x, C)

(e1e2, x, C)⇒ (f, x, C)

Sequence
(failure 2):

(e1, x, C)⇒ (o, y, C1) (e2, y, C1)⇒ (f, y, C1)

(e1e2, x, C)⇒ (f, x, C)

Choice
(option 1):

(e1, x, C)⇒ (o, y, C ′)

(e1/e2, x, C)⇒ (o, y, C ′)

Choice
(option 2):

(e1, x, C)⇒ (f, x, C) (e2, x, C)⇒ (o, y, C ′)

(e1/e2, x, C)⇒ (o, y, C ′)

Repetitions
(repetition):

(e, x, C)⇒ (o1, y1, C1) (e∗, y1, C1)⇒ (o2, y2, C2)

(e∗, x, C)⇒ (o1o2, y2, C2)

Repetitions
(termination):

(e, x, C)⇒ (f, x, C)

(e∗, x, C)⇒ (ε, x, C)

CHAPTER 4. CONTEXT-SENSITIVITY 39

Not predicate
(success):

(e, x, C)⇒ (o, y, C ′)

(!e, x, C)⇒ (f, x, C)

Not predicate
(failure):

(e, x, C)⇒ (f, x, C)

(!e, x, C)⇒ (ε, x, C)

Definition 4.3 (Context Manipulation Semantics). Only the push and pop operations
can modify a context: If S is a stack of elements on : ... : o2 : o1 : [], [] denotes an
empty stack, o1 is the bottom element, on is the top element and (o:S) denotes a stack S
with o on top, {..

C
, Sid} denotes a parsing context C = {(i1, s1), (i2, s2), ..., (in, sn),

(id, S)} where ..
C

is a shorthand for (i1, s1), (i2, s2), ..., (in, sn), the semantics of
stack manipulation parsing expressions is defined as follows:

Push O

(success):

(e, x, C)⇒ (o, y, {..
C′ , Sid})

(O
id
e, x, C))⇒ (o, y, {..

C′ , (o:S)id})

Push O

(failure):

(e, x, C)⇒ (f, x, C)

(O
id
e, x, C))⇒ (f, x, C)

Pop M
success: (M

id
, x, {..

C
, (o:S)id}))⇒ (o, x, {..

C
, Sid})

Pop M

(empty case): (M
id
, x, {..

C
, []id}))⇒ (f, x, {..

C
, []S})

Definition 4.4 (Context-Sensitive Parser Combinator). A context-sensitive parser com-
binator is a function k that accepts a quadruple (id, e, x, C) where id is a stack identi-
fier, e is a parsing expression, x is input x ∈ Σ∗, C is a context, and returns an output
triple (o, y, C ′), where o indicates a result of the combinator, y ∈ Σ∗ is remainder of
input and C ′ is a new context. The distinguished symbol f indicates failure.

Definition 4.5 (Context-Sensitive Parser Combinator Semantics). A context-sensitive
parser combinator expression kid(e) is a partially evaluated combinator function k
where id refers to a stack identifier and e to an underlying parsing expression. The
semantics is defined as follows:

Parser
Combinator

(success):

k(e, id, x, C) = (o, y, C ′)

(kid(e), x, C)⇒ (o, y, C ′)

Parser
Combinator

(failure):

k(e, id, x, C) = (f, x, C)

(kid(e), x, C)⇒ (f, x, C)

CHAPTER 4. CONTEXT-SENSITIVITY 40

We impose one more restriction on parser combinators. Parser combinators in this
work do not modify a parsing context, they only read it. Again, this restriction is not
essential,13 it simplifies the formalism used in this work.

4.3.1 Parser Combinators
To implement context sensitive features, we utilize several context-sensitive operations.
First of all is a column col operator (see Algorithm 4.1), which is essential to bring
the notion of columns into PEGs. Because the col parser combinator does not de-

pend on any underlying expression e, it will be used with e = ε : col (ε) , for

simplicity we omit ε and write only col .
The function getColumnOf(x) in col returns the current column of input x.

Its implementation is up to the implementor of an input stream. For example, an input
stream can increment the column with each increment of a stream position and set the
column to zero after each newline character.

function COL(e, id, x, C) . Column parser combinator
col = getColumnOf(x)
↑ (col, x, C)

Algorithm 4.1: Column parser combinator. Returns the column of x in input.

To compare column returned by the col combinator with the column of the off-
side line, three different combinators are needed: equals = , greater than > , and
smaller than < (see Algorithm 4.2, Algorithm 4.3 and Algorithm 4.4). They all sim-
ply compare the result o with the top of a stack S and return either o or failure f .

function CMP(S, o, y) . Compare parser combinator
(o, y, {..

C′ , Sid}) = parseOn(e, x, C) . evaluate e for input x in context C
if (Sid = (p : S′id)) && o = p then ↑ (o, y, C ′) . Success, S contains o
else ↑ (f, x)C . Failure otherwise

Algorithm 4.2: Compare parser combinator. Checks if the top of a stack Sid in
context contains the same value as the result of e.

4.3.2 CS-PEG analysis
In this section we extend the definitions of the first set (see Definition A.5) and the ab-
stract simulation (see Definition A.6) to support CS-PEGs. Furthermore, we introduce
a new context manipulation analysis, which can be used for parser optimizations as
demonstrated later in chapter 6.

13In PetitParser combinators are expected to modify the context. The implementors of combinators can
nevertheless override this default behavior.

CHAPTER 4. CONTEXT-SENSITIVITY 41

function GT(e, id, x, C)
(o, y, {..

C′ , Sid}) = parseOn(e, x, C)
if (Sid = (p : S′id)) && o > p then ↑ (o, y, C ′)
else ↑ (f, x, C)

Algorithm 4.3: Greater-than parser combinator. Checks if the result of e has a
greater value than the top of a stack Sid.

function ST(e, id, x, C)
(o, y, {..

C′ , Sid}) = parseOn(e, x, C)
if (Sid = (p : S′id)) && o < p then ↑ (o, y, C ′)
else ↑ (f, x, C)

Algorithm 4.4: Smaller-than parser combinator. Checks if the result of e has a
smaller value than the top of a stack Sid.

First of push and pop operators

Because O pushes the result of an underlying combinator onto a stack, the first set
of O is the first set of the underlying combinator. The M simply pops from a stack
and, from the point of the first set analysis, behaves as ε . For example, the first set of
O(col) is { col } and the first set of M is { ε }. The formal definition is provided

in Definition 4.6.

Definition 4.6 (Context-Sensitive First). We extend the definition of first (see Defini-
tion A.5) with push O and pop M operators.

Push
FIRST(O(e)) = FIRST(e)

Pop
FIRST(M) = {ε}

Context-Sensitive Abstract Simulation

The O operator does not modify the result of an underlying combinator. Therefore the
abstract result of an abstract simulation of O is the abstract result of the underlying
combinator. The M operation can fail if a stack to be popped is empty, therefore there
are two possible abstract results of M ; either M succeeds while consuming no input

(i.e., the abstract result is 0) or it can fail (i.e., the abstract result is 1). The formal
definition of the abstract simulation of O and M is in Definition 4.7.

Definition 4.7 (Context-Sensitive Abstract Simulation). To support the abstract simu-
lation in CS-PEGs, we extend the relation ⇀ from Definition A.6 as follows:

CHAPTER 4. CONTEXT-SENSITIVITY 42

9. (a) O(e) ⇀ 0 if e ⇀ 0.

(b) O(e) ⇀ 1 if e ⇀ 1.

(c) O(e) ⇀ f if e ⇀ f .

10. (a) M⇀ 0.

(b) M⇀ f .

Push-Pop Analysis

The push–pop analysis shows how a particular expression changes a stack in a context.
Based on the push–pop analysis, there are four possible outputs:

1. If an expression e does not modify the stack, the result is 0 . This is the case
of the standard parsing expressions or, for example, the aligns expression
from Listing 4.7, which reads a stack, but does not modify it.

2. If an expression e pushes to a stack, the result is O . This happens, for example,

in the case of setOL from Listing 4.7.

3. If an expression e pops from a stack, the result is M . This happens, for example,

in the case of removeOL from Listing 4.7.

4. If an expression modifies a stack in some other way, e.g., removeOL∗ , which
pops all the elements from a stack and we don’t know how many elements are
popped, the result of the push–pop analysis is 1 .

The formal definition of the push–pop analysis is in Definition 4.8.

Definition 4.8 (Push–pop analysis). We define a push–pop relation ↪→ consisting of
triples (e, S, o), where e is an expression, S is a stack in a parsing context and o ∈
{0,O,M, 1}. e ↪→

S
0 means that e does not modify the stack S. e ↪→

S
O means that

e pushes an element to the stack S. e ↪→
S
M means that e pops an element from the

stack S. e ↪→
S

1 means that e modifies the stack S in some other way than push or
pop. We define the push-pop relation ↪→ as follows:

1. ε ↪→
S

0.

2. t ↪→
S

0, t ∈ T .

3. (a) O(e) ↪→
S
O if e ↪→

S
0

(b) O(e) ↪→
S

1 otherwise

4. M ↪→
S
M

5. A ↪→
S
o if e ↪→

S
o and A← e is a rule of the grammar G.

6. (a) e1e2 ↪→S
0 if e1 ↪→S

0 and e2 ↪→S
0.

(b) e1e2 ↪→S
0 if e1 ↪→S

O and e2 ↪→S
M.

(c) e1e2 ↪→S
O if e1 ↪→S

O and e2 ↪→S
0.

(d) e1e2 ↪→S
O if e1 ↪→S

0 and e2 ↪→S
O.

CHAPTER 4. CONTEXT-SENSITIVITY 43

(e) e1e2 ↪→S
M if e1 ↪→S

M and e2 ↪→S
0.

(f) e1e2 ↪→S
M if e1 ↪→S

0 and e2 ↪→S
M.

(g) e1e2 ↪→S
1 otherwise

7. (a) e1/e2 ↪→S
0 if e1 ↪→S

0 and e2 ↪→S
0

(b) e1/e2 ↪→S
O if e1 ↪→S

O and e2 ↪→S
O

(c) e1/e2 ↪→S
M if e1 ↪→S

M and e2 ↪→S
M

(d) e1/e2 ↪→S
1 otherwise

8. (a) e∗ ↪→
S

0 if e ↪→
S

0

(b) e∗ ↪→
S

1 otherwise

9. !e ↪→ 0

10. k(e) ↪→ o if e ↪→
S
o

As a practical example, consider the heredoc rule from Listing 4.4:

heredoc ← openHeredoc
content

closeHeredoc

The openHeredoc and closeHeredoc rules are push O and pop M respectively.
Based on the rule 8(a), the push–pop analysis outcome of content is 0, because the
push–pop analysis outcome of !closeHeredoc • is 0 (based on the rule 9). The

whole heredoc sequence does not change the context, because the initial push in the
rule openHeredoc is reverted by the last pop in closeHeredoc . Accordingly, the
result of abstract simulation is 0 because of the rule 6(b).

4.4 Implementation
The advantage of parsing contexts is their straightforward implementation. In Petit-
Parser it suffices to modify context not to represent only an input stream, but an in-
put stream and a set of mappings of identifiers to stacks. The Context class contains
two instance variables, an input stream stream and a set of mappings stacks .

Object subclass: #Context
instanceVariables: ’stacks stream’

For convenience, the new Context has the same interface as the old Context
and the new one is interchangeable with the old one. Therefore the existing parsers of
PetitParser do not need to be modified.

The memento of a parsing context is a position in the stream and a deep copy
of all the stacks (see Listing 4.8). The copy is needed in remember as well as in
restore: to preserve immutability of a memento. If a stack S in context is restored

from a memento without the copy and S is modified, the memento is modified as well.
If the memento is accessed in the future for another restore operation, we will need the
unmodified version of S.

CHAPTER 4. CONTEXT-SENSITIVITY 44

Context>>remember
↑ Memento new

position: stream position;
stacks: stacks deepCopy;
yourself

Context>>restore: memento
stream position: memento position.
stacks ← memento stacks deepCopy.

Listing 4.8: Memoization of Context .

The push and pop operators are implemented as in Listing 4.9 and Listing 4.10. The
Push parser contains a stack identifier stackID and a reference to a delegate,

from which a value to be pushed on the stack is obtained. The Pop parser just pops
from a stack identified by stackID .

Parser subclass: #Push
instanceVariables: ’stackID delegate’

Push>>parseOn: context
| result |
result ← delegate parseOn: context.
result ifSuccess: [
context stackNamed: stackID push: result

].
↑ result

Listing 4.9: Push parser implementation.

Parser subclass: #Pop
instanceVariables: ’stackID’

Pop>>parseOn: context
| result |
(context stackNamed: stackID) ifEmpty: [
↑ Failure new: ’Cannot pop an empty stack’

]
↑ (context stackNamed: stackID) pop.

Listing 4.10: Pop parser implementation.

4.4.1 Performance
In this section we briefly report on the performance of parsing contexts in PetitParser.
Suppose s is the number of elements in all the context stacks, c is the number of pos-
sible stack states of stacks, n is the length of input, m is the number of keys into the

CHAPTER 4. CONTEXT-SENSITIVITY 45

memoization table of a packrat parser, and o is the number of parsing expressions in
a grammar. A context-free parser has s = 0 because there are no context-sensitive
restrictions. This means a memento is created in constant time. Furthermore m = n
because a key to the memoization table is a position in an input stream. Last but not
least o is a constant because grammar definitions are finite. With a packrat parser, each
expression is invoked at most once per memoization key. Therefore the complexity of
a context-free parser is O(m ∗ o) = O(n).

The time to remember and restore the context of a context-sensitive parser is s.
In typical scenarios the number of elements in stacks is limited by a constant. The
time complexity is also linear, because there is a constant number of possible stack
states. Therefore there are n∗ c possible keys to a memoization table (for each position
in input at most c states of stacks). The time complexity of such a grammar is then
O(s ∗ n ∗ c ∗ o), which is O(n).

For example, in case of a layout-sensitive grammar the level of nesting and there-
fore the number of offside lines in stacks is limited by p, the maximum nesting in code.
Therefore time to remember a stack is p, s = p (supposing there is no other stack in
a context). The stack can contain from zero to p offside lines and because an offside
line is typically strictly further to the right than the previous one, there are p different
states of an indentation stack. If there is no other stack in a parsing context, c equals p.
Therefore there is a limited number of keys to a memoization table, for each position p
different stacks, which is m = n ∗ p keys. At each position there is a limited amount
of memoizations, in the worst case o, the number of parsing expressions in a grammar.
The overall complexity is thenO(n∗p∗p∗o) where only n is not a constant, therefore
the complexity is O(n).

In unusual scenarios s can be an arbitrary number. Furthermore the linear complex-
ity of packrat parsing cannot be guaranteed. If a stack S contains at most s elements
and each of these elements is, for example, an integer, there are very high (intmax)s

possible states of the stack S, where intmax is the maximum value of an integer. More-
over, in theory, s can be asymptotically larger than n. This means, if stacks can contain
only integers, the complexity is O(n ∗ (intmax)s ∗ s ∗ o), where only o is a constant.

Nevertheless, agile modeling does not focus on the worst-case scenario and we are
not aware of any practical grammar with such bad time complexity. Based on our mea-
surements all the practical grammars14 presented in this work have linear asymptotic
complexity.

As an example of an unusual grammar, consider a grammar that stores every char-
acter into the context and performs one backtrack per character. The parse time is
O(n ∗ (s + s)), one remember (s) and one restore (s) per each character, i.e., O(n2),
because s = n.

To measure overhead of mementos in PetitParser, we micro-benchmark two
context-sensitive grammars and their context-free counterparts. The grammar defi-
nitions can be viewed and measurements can be reproduced from the Smalltalk image
available online.15

Consume-All is a benchmark of a parser that consumes the whole input character
by character. Before a character is consumed the and predicate is invoked:
(& •) . The and predicate utilizes backtracking and a memento is created for

14Except the consume-all grammar from the following text, which we use only to demonstrate the over-
head of memoization.

15http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

CHAPTER 4. CONTEXT-SENSITIVITY 46

each character (see Listing C.2). If we don’t use the and predicate, there is no
memoization and we would not measure any memoization overhead. The input
consists of random words. Context-Free Consume-All is the context-free version
of Consume-All that simply consumes any character in input: ((& •) •)∗ .
Context-Sensitive Consume-All is the context-sensitive version of Consume-All
that stores every character into the parsing context: ((& •) O

S
•)∗ .

Expressions is a benchmark of a parser that recognizes an arithmetic expressions with
operators + , - and parentheses () , for example ’2*(3+4)’ . The un-
derlying grammar is in a deterministic form. Input consists of random arithmetic
expressions. Context-Free Expressions is the context-free version of Expressions
that simply recognizes arithmetic expressions. Indentation-Sensitive Expressions
is a context-sensitive version of Expressions that utilizes indentation instead of
opening and closing brackets () . For example, ’2*(3+4)’ is represented
as follows:

2*
3+4

The Context-Sensitive Consume-All benchmark in Figure 4.1 shows that the over-
head of mementos kicks-in almost immediately resulting in very high parse-time even
for small inputs. The expressions benchmark in Figure 4.2 shows linear parse-time for

-200

0

200

400

600

800

1000

1200

1400

10k 20k

Ti
m

e
 [

m
s]

Input size [bytes]

Context Complexity

CF Consume All
CS Consume All

Figure 4.1: Dependency of parse time on the input size for context-free and
context-sensitive variants of Consume-all.

both versions, though the indentation sensitive version has approximately five times
worse performance.

Unfortunately, overhead is higher the more complicated the underlying grammar
is (as can be seen in the Python Case Study in subsection 4.5.1 where the indentation
overhead increases parse time by a factor of ten!). This is undesirable behavior and the
overhead of mementos must be reduced. How to do this, we show in chapter 6.

CHAPTER 4. CONTEXT-SENSITIVITY 47

0

50

100

150

200

250

10k 20k 30k 40k 50k

Ti
m

e
 [

m
s]

Input size [bytes]

Context Complexity

CF Expressions
CS Expressions

Figure 4.2: Dependency of parse time on the input size for for context-free and
context-sensitive variants of Expressions.

The cause for the measured overhead is backtracking. Instead of an integer, which
is sufficient to restore the state of a context-free parser, the deep copy of stacks is
needed to restore the state of a context-sensitive parser. The more complex a grammar
is, the more backtracking happens and more time is spent in memoizations. In chapter 6
we reduce the memoization overhead by smarter memoization: we avoid the full copy
of stacks if we can guarantee that the stacks will not be modified and thus do not need
to be restored.

4.5 Case Studies
To evaluate parsing contexts in real world scenarios, we present two case studies. The
Python case study focuses on indentation. The Markdown case study challenges the
flexibility of parsing contexts.

4.5.1 Python
The official Python grammar16 is defined in a context-free form. It uses two
indentation-sensitive tokens indent and dedent 17 produced by a specialized
scanner that uses a stack of indentation levels to emit indent and dedent tokens.

In Python, the offside line is set by the first non-whitespace character on a line. The
indent token is recognized when the first non-whitespace character of the current

line is in onside. The dedent token is recognized when the first non-whitespace
character of the current line is in offside. After dedent code must be aligned to the
previous offside line. Neither indent nor dedent are recognized in case lines

16http://www.webcitation.org/6k633YacT
17http://www.webcitation.org/6k637RJ7V

http://www.webcitation.org/6k633YacT
http://www.webcitation.org/6k637RJ7V

CHAPTER 4. CONTEXT-SENSITIVITY 48

are joined explicitly (using \) or implicitly (in parentheses () , square brackets []

and curly braces {}):

if 1900 < year < 2100 and 1 <= month <= 12 \ # join
and 1 <= day <= 31 and 0 <= hour < 24 \ # join
and 0 <= minute < 60 and 0 <= second < 60:

return 1 # indent

month_names = [
’Januari’, ’Februari’, ’Maart’, # These are the
’April’, ’Mei’, ’Juni’, # Dutch names
’Juli’, ’Augustus’, ’September’, # for the months
’Oktober’, ’November’, ’December’] # of the year

Indentation is also ignored in short- and long-strings:

’’’
I am a very long Python string

spreading over multiple lines!
’’’

The scannerless nature of PEGs prevents a language engineer from recognizing
indents and dedents in a lexical phase and instead indents and dedents have to be rec-
ognized during parsing. With offside line operations as defined in Listing 4.7, INDENT

and DEDENT can be defined as in Listing 4.11. The align rule consumes whitespace

from the beginning of a line up-to the offside line. INDENT is recognized when there is
an extra whitespace after the leading whitespace (consumed by align). DEDENT is
recognized if after consuming whitespace and popping from the indentation stack, the
current character is aligned (single dedent) or in offside (if there are two consecutive
dedents, the first one is in offside and the second one is aligned).

// consume whitespace until aligned
align ← ˆ(!aligns #space)*

INDENT ← align #space+ setOL
DEDENT ← #space* removeOL (offside / aligns)

Listing 4.11: Python’s indent and dedent tokens.

The only rule of the Python grammar utilizing indent and dedent is suite :

suite → #newline INDENT stmt+ DEDENT

It is used in if , for , try and with statements and in class and function defini-
tions.

Validation

To validate our approach, we implemented a semi-parser that extracts all the elements
of Python that utilize indentation.18 We extracted the structure of these programs as
nested lists. For example, the following structure

18i.e., if stmt , for stmt , try stmt , with stmt , classdef and funcdef

CHAPTER 4. CONTEXT-SENSITIVITY 49

(<class>Shape(
<def>draw (if())
<class>Position ()

))

refers to a class Shape , with a method draw and an inner class Position ,

where draw contains an if statement. We used the Jython parser19 to extract the
reference structure. We compared the structure of our parser to the structure produced
by the Jython parser.

We ran our validation on 917 files from three popular github projects: Django 20,
Reddit 21 and Tornado 22. We did not detect any differences between the two compared
outputs.

Performance

Now we briefly report on performance of Python grammar implemented with parsing
contexts, with focus on the overhead caused by indentation. We compare three parsers
implemented by the author of this thesis: Python Preprocessor, Context-Free Python
(CF Python) and Python. The Python preprocessor recognizes only indent and de
dent in Python code skipping over the rest of input.23 The Context-Free Python parser
requires the Python preprocessor to insert indent and dedent into the file. The
Python parser detects the indent and dedent tokens on its own utilizing parsing
contexts and indentation stack.

We measure the time required to parse 229 randomly selected files, from three pop-
ular github projects: Django, Reddit and Tornado. The dependency between input size
and parse time is shown in Figure 4.3. The Python parser is approximately ten times
slower than its context-free counterpart, average time per character of Python parser
being 15µs and average time per character of CF Python is 1.5µs. The performance
of the Python preprocessor is comparable to the performance of the CF Python parser.
The Python preprocessor and the CF Python parser in a pipeline are still five times
faster than the Python parser. The extra time needed by the Python parser is spent in
memoization of the indentation stack.

The measurements suggest linear asymptotic parse time in respect to the input size.
However, the constant overhead is high. The optimization of the Python parser is
discussed in chapter 6.

4.5.2 Markdown
The original syntax of Markdown by Gruber24 is not formally specified, however there
is an ongoing effort to formalize it, known as CommonMark.25 In this section we refer
to the CommonMark 0.19 specification.26

19http://www.webcitation.org/6k63EtVgf
20http://www.webcitation.org/6k63SAh1M
21http://www.webcitation.org/6k63U3rAH
22http://www.webcitation.org/6k63V40FG
23To validate the PythonPreprocessor we compared its output to that of Jython’s tokenizer
24http://www.webcitation.org/6k61x4RSO
25http://www.webcitation.org/6k63cVKbG
26http://spec.commonmark.org/0.19/

http://www.webcitation.org/6k63EtVgf
http://www.webcitation.org/6k63SAh1M
http://www.webcitation.org/6k63U3rAH
http://www.webcitation.org/6k63V40FG
http://www.webcitation.org/6k61x4RSO
http://www.webcitation.org/6k63cVKbG
http://spec.commonmark.org/0.19/

CHAPTER 4. CONTEXT-SENSITIVITY 50

0

200

400

600

800

1000

1200

10k 20k 30k 40k 50k 60k

Ti
m

e
 [

m
s]

Input size [bytes]

Python Performance

Python Preprocessor
Context-Free Python

Python

Figure 4.3: Dependency of parse time on the input size for Python, CF Python
and Python Preprocessor.

CommonMark does not use a variation of Landin’s offside rule, and contrary to
many other languages that utilize indentation to delimit one kind of structure (i.e.,
blocks), CommonMark uses a beginning of a line to delimit two kinds of structures:
quoted blocks and lists. Furthermore, indentation of CommonMark does not operate
with the concept of columns. It relies on the prefix of a content to assign the content to
the corresponding structure element.

Quoted blocks and lists of CommonMark can be arbitrarily nested within each
other. Any valid CommonMark can be a content of a list item or a quoted block. For
this reason CommonMark uses not only whitespace , but also > to denote structure
delimiters (see Listing 4.12).

Each structure has its own prefix and the structure remains valid as long as its prefix
appears at the beginning of a line. A quoted block has to start with > . The first line
of a list item has to start with the item delimiter (e.g., ′−′) and the following lines
have to start with enough spaces to align with the first line. If quoted blocks and list
items are nested, the prefix is concatenation of the nested elements.

An example is in Listing 4.12. Line 9 nicely demonstrates the prefix of a content.
Even though > if is aligned to the innermost quotes, the outer quotes are missing.
For this reason > if (...) is not part of the outermost quoted block and the out-
ermost block is ended. Four spaces are considered to be a code block indicator and
therefore the text is rendered as code (see Figure 4.4).

CommonMark is a great parsing challenge as it is not formally defined. Common-
Mark is specified in the form of rules, each of which provides an expected output for
the given input. The CommonMark parsing strategy is separated into two phases: (i) a
block structure pass that recognizes block structures such as quoted blocks, lists, nested
lists code blocks, etc. utilizing the context-sensitive rules; and (ii) an inline pass that
recognizes text decorations such as emphasis, bold, underline etc.

CHAPTER 4. CONTEXT-SENSITIVITY 51

1 > - Ernest Hemingway:
2 > > But man is not made
3 > > for defeat
4 > - Donald Knuth:
5 > > 1. Every day is like programming,
6 > > I Guess.
7 > > 1. An algorithm must be seen,
8 > > to be believed.
9 > if (name == "Hemingway") //line prefix differs

Listing 4.12: Indentation rules of CommonMark.

Figure 4.4: Rendering of the quoted list from Listing 4.12.

Implementation We focus on the indentation-sensitive part of CommonMark. In
our parsing approach, a content is consumed line by line, the initial prefix being an
empty string ε . Whenever a quoted block or a list item starts, its prefix is pushed
onto the stack S. The content after a line prefix belongs to the the block or list item as
long as the prefix corresponds to the prefix on the stack S. The prefix is checked by
matching all the elements on the stack starting from the beginning of a line. For this
we implemented a dedicated prefix combinator (see Algorithm 4.5).

function PREFIX(e, id, y1y2...yny
′, C)

list = stackAsList(S)
for ∀xi ∈ list do

if yi 6= xi then ↑ (f, y1y2...yny
′, C)

↑ (y1y2...yn, y
′, C ′)

Algorithm 4.5: Prefix parser combinator. Compares the current input with the
elements on the stack. Succeeds if input starts with all of the elements, fails

otherwise.

With the prefix combinator, a simplified grammar of CommonMark looks as
in Listing 4.13. The start rule is content . The content rule is a sequence of lines
with the given prefix. If a new structure starts (i.e., quoteBlock or listItem),
the prefix of the structure (i.e., > or) is pushed to S. Such an element is valid as

CHAPTER 4. CONTEXT-SENSITIVITY 52

long as there is a content with the new prefix. The listItem starts with ’- ’ , yet
spaces ’ ’ are pushed to the stack S so the remaining lines are aligned with the first
line of the item.

content ← (prefix contentLine)*
contentLine ← quoteBlock /

list /
paragraph /
...

quoteBlock ← OS(’> ’) contentLine // a quote block starts
content

MS // a quote block ends
list ← listItem+

// a list item starts
listItem ← ’- ’ OS(ε map: [’ ’]) contentLine

content
MS // a list item ends

Listing 4.13: Simplified version of CommonMark that can parse arbitrarily
nested lists and quoted blocks.

Results We implement a CS-PEG grammar for the context-sensitive phase of Com-
monMark. Its slightly simplified definition with descriptions can be found in Ap-
pendix G and the full grammar can be found in the prepared image available online.27

We validated our implementation on the complete set of 226 examples28 of the
context-sensitive phase with all the cases passing.

4.6 Related Work
In this section we briefly report on other technologies for context-sensitive parsing:

Context-Sensitive Grammars

There are multiple ways to express context-sensitive constraints in grammars. One of
them is to use context-sensitive rules, i.e., αAβ → αγβ form, where A ∈ N,α, β ∈
(N ∪Σ)∗ and γ ∈ (N ∪Σ)+. Such rules, even though equivalent to the linear bounded
Turing machines, are not really intuitive, impose serious challenges on a parsing tech-
nology (complex and with exponential times in general) and do not support semantic
actions easily.

Consider the language anbncn whose grammar is in Listing 4.14. If a grammar
engineer tries to extend it to anbncndn she finds out that it is not a straightforward
task. Furthermore, if she tries to construct an abstract syntax tree out of this grammar,
she will have a hard time to figure out where to attach semantic actions to build the
tree.

27http://scg.unibe.ch/research/parsingForAgileModeling
28http://spec.commonmark.org/0.19/

http://scg.unibe.ch/research/parsingForAgileModeling
http://spec.commonmark.org/0.19/

CHAPTER 4. CONTEXT-SENSITIVITY 53

S → aSBc | abc
cB → Bc
bB → bb

Listing 4.14: Context-Sensitive BNF Grammar for a language anbncn.

Attribute and Affix Grammars

Attribute [Knu68, Knu90] and affix [Kos91] grammars extend context-free grammars
with inherited and synthesized attributes and evaluation rules (in the case of attribute
grammars) or predicates (in the case of affix grammars). Attributes and evaluation
or predicate rules might be used to verify context-sensitive constraints, for example
by counting the number of ’a’ , ’b’ and ’c’ characters and checking for their
equality as demonstrated in Listing 4.15.

S → A(n) B(n) C(n) { check(A.n == B.n),
check(A.n == C.n) }

A1 → a { A1.n = 1 }
| aA2 { A1.n = A2.n+1 }

B1 → b { B1.n = 1 }
| bB2 { B1.n = B2.n+1 }

C1 → c { C1.n = 1 }
| cC2 { C1.n = C2.n+1 }

Listing 4.15: Attribute grammar for anbncn.

Parsing contexts are close to attribute grammars. The attributes can be perceived
as values in a context and parser combinators accessing the context values as evalua-
tion rules. Nevertheless, parsing contexts give more power to parser combinators than
attribute grammars give to evaluation rules. Parser combinators can access input or
even consume input. This opens a space for definition of indentation rules (accessing
the current column in input) as we did in Python subsection 4.5.1 or consuming line
prefixes (by consuming all input as defined in elements of prefix stack) as we did in
Markdown subsection 4.5.2.

Two-Level Grammars We already mentioned that context-free grammars can ex-
press long-range relations but they are not capable of expressing an infinite number of
them (see Listing 4.3). Unless we provide a grammar with an infinite number of rules.
The idea of two-level grammars is to provide such an infinite grammar. The trick is to
derive an infinite grammar from a finite definition.

An example of two-level grammars is VW grammars [Wij69], which were used in
the definition of the programming language Algol 68. A VW grammar consists of a
finite set of meta-rules, which are used to derive possibly infinitely many production
rules and are implemented, for example, by the yo-yo parser.29

Tree-Adjoining Grammars (TAGs) Tree adjoining grammars [Jos85, JS97] fall
into the class of mildly context-sensitive languages. They are related to context-

29http://www.webcitation.org/6k63lw3OE

http://www.webcitation.org/6k63lw3OE

CHAPTER 4. CONTEXT-SENSITIVITY 54

free grammars, but the elementary unit of rewriting is a tree rather than a symbol.
Whereas context-free grammars have rules for rewriting symbols, tree-adjoining gram-
mars rewrite nodes of trees. TAGs are more powerful than CFGs but less powerful than
CSGs. TAGs are typically applied in linguistics.

Boolean Grammars Boolean grammars [HS91, Okh04] obtain more than context-
free power by extending context-free grammars with boolean operators negation and
intersection. Heilbrunnen and Schmitz [HS91] provided an O(n3) recognizer for
Boolean grammars based on an adapted Earley parser. Okhotin [Okh05] shows how
to use them to enforce context-sensitive restrictions in a simple C-like programming
language, including checks for use of undefined identifiers, multiple definitions, and
calling a function with a wrong number of parameters.

Adaptable Grammars Adaptable grammars [Chr09, RVB+12] explicitly provide
mechanisms within the parsing formalism to allow their own production rules to be
manipulated. This can be used to express context-sensitive restriction, including inden-
tation. The parser combinator nature of PetitParser allows for adaptability. However,
the fact that a grammar can be adapted at any point complicates grammar analyses and
consequent optimizations.

4.7 Conclusion
In this chapter we presented parsing contexts — a simple extension of PEGs that al-
lows a language engineer to define context-sensitive restrictions such as indentation
or context-sensitive behavior of MarkDown. Parsing contexts do not modify the se-
mantics of existing PEGs and are easy to implement. Parsing contexts do not ensure
linear asymptotic performance. However, according to our experience, parsing con-
texts perform in linear asymptotic time for languages typical in software engineering.
Unfortunately, a parser utilizing parsing contexts suffers from high constant overhead.

The implementation, tests, validations, benchmarks and measurements this chapter
can be re-run. The prepared image is available online.30

30http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

5
Semi-Parsing with Bounded Seas

Island grammars [Moo01] offer a way to parse input without complete knowledge of
the target grammar. They are especially useful for extracting selected information from
source files, reverse engineering and similar applications. The approach assumes that
only a subset of the language syntax is known or of interest (the islands), while the rest
of the syntax is undefined (the water). During parsing, any unrecognized input (water)
is skipped until an island is found.

A common misconception is that water should consume everything until some is-
land is detected. Rules for such water are easy to define, but they cause composabil-
ity problems. Consider a parser where local variables are defined as islands within a
method body. Now suppose a method declaring no local variables is followed by one
that does. In this case the water might consume the end of the first method as well
as the start of the second method until a variable declaration is found. The method
variables from the second method will then be improperly assigned to the first one.

In practice, language engineers define many small islands to guide the parsing pro-
cess. However it is difficult to define such islands in a robust way so that they function
correctly in multiple contexts. As a consequence they are neither reusable nor compos-
able.

To prevent our variable declaring island from skipping to another method, we have
to make its water stop at most at the end of a method. In general, we have to analyze
and update water of each particular island, depending on its context. Yet island-specific
water is fragile, hard to define and it is not reusable. It is fragile, because it requires re-
evaluation by a language engineer after any change in a grammar. It is hard to define,
because it requires the engineer’s time for detailed analysis of a grammar. It is not
reusable, because island-specific water depends on rules following the island, thus it is
tailored to the context in which the island is used — it is not general.

We propose a new technique for island parsing: bounded seas [KLN14a]. Bounded
seas are composable, reusable, robust and easy to use. The key idea of bounded seas
is that specialized water is defined for each particular island (depending on the context
of the island) so that an island can be embedded into any rule. To achieve such com-
posability, water is not allowed to consume any input that would be consumed by the

55

CHAPTER 5. SEMI-PARSING 56

following rule. To prevent fragility and to improve reusability, we compute rules for
water automatically, without user interaction.

The chapter is organized as follows: Section 5.1 motivates this work by presenting
the limitations of island grammars with an example. Section 5.2 presents our solution
to overcome these limitations by introducing bounded seas. Section 5.3 introduces a
sea operator for PEGs, which creates a bounded sea from an arbitrary PEG expression.
Section 5.4 presents our implementation of bounded seas in PetitParser. Section 5.5
analyzes how well bounded seas perform compare to other island parsers. Section
5.6 surveys other semi-parsing techniques and highlights similarities and differences
between them and bounded seas. Finally, section 5.7 concludes this chapter.

5.1 Motivating Example
Let us consider the source code in Listing 5.1 written in Ruby. We don’t have a gram-
mar specification for the code, because the parser was written using ad hoc techniques,
and though we do have access to its implementation, we want to use a different pro-
gramming language. Let us suppose that our task is to extract class and method names.
Classes may be contained within other classes and we need to keep track of which class
each method belongs to.

class Shape
@position

def getPosition
return position

end

@uid = UIDGenerator.newUID
end

Listing 5.1: Source code of the Shape class in Ruby.

5.1.1 Why not use Regular Expressions?
To extract a flat list of method names, we could use regular expressions. We need,
however, to keep track of the nesting of classes and methods within classes. Regular
expressions are only capable of keeping track of finite state, so are formally too weak
to analyze our input. To deal with nested structures, we need at least a context-free
parser.

Modern implementations of regular expression frameworks can parse more than
regular languages (e.g., using recursive patterns as in Ruby,1 Perl2 or PCRE3). Such
powerful frameworks can handle our rather simple task. However regular expressions
are not meant to specify complex grammars.

1http://ruby-doc.org/core-2.0.0/Regexp.html
2http://www.webcitation.org/6k63y2Dqf
3http://www.webcitation.org/6k64HgWs5

http://ruby-doc.org/core-2.0.0/Regexp.html
http://www.webcitation.org/6k63y2Dqf
http://www.webcitation.org/6k64HgWs5

CHAPTER 5. SEMI-PARSING 57

5.1.2 A Naı̈ve Island Grammar
To write a parser, we need a grammar. Because a grammar can easily consist of a
hundred rules (e.g., ≈ 80 for Python, ≈ 160 for Ruby, ≈ 180 for Java) and since we
are only interested in specific parts of the grammar, we define an island grammar with
fewer than ten rules as in Listing 5.2. We initially assume that each class body contains
just one method. Since we are interested in extracting method names, we define the
method rule as an island inside of the methodInWater rule which surrounds it with

water. The methodInWater rule is defined imprecisely: water skips everything until
the string ’method’ is found. We also define the methodBody rule, which skips

everything until ’end’ is found.

start ← class
class ← ’class’ id classBody ’end’
classBody ← methodInWater

methodInWater ← (!’def’ •)* method (!’end’ •)*

method ← ’def’ id methodBody
methodBody ← (!’end’ •)* ’end’

id ← #letter+

Listing 5.2: Our first island grammar.

Composability Problems.

The methodInWater rule in the grammar in Listing 5.2 uses a naı̈ve definition of
water. It will work as long as we do not complicate the grammar.

Suppose that in order to allow for multiple classes in a single file we modify the
start allowing repetitions:

start ← class*

Parsing the input in Listing 5.3 should fail because Shape does not contain a method.

The result, however, is only one class — Shape (instead of Shape and Circle)

— with one method getDiameter , which is wrong. We see that our water is
too greedy here, trying to find method at any cost and ignoring ’end’ and the
Circle definition.

Things do not get better when we allow multiple repetitions of methodInWater

within classBody (classBody← methodInWater∗). The parser stays confused,
and the result stays incorrect. A language engineer has to use predicates to prevent the
incorrect decisions of PEGs.

5.1.3 An Advanced Island Grammar
To make the methodInWater rule composable we must make it possible for it to
be embedded into optional (?) or repetition (+ , ∗) rules. We consequently define

CHAPTER 5. SEMI-PARSING 58

class Shape
@uid = UIDGenerator.newUID;

end

class Circle
@diameter

def getDiameter
return diameter

end
end

Listing 5.3: Source code of Shape and Circle classes.

the grammar as in Listing 5.4. This new definition can properly parse multiple classes
in a file with an arbitrary number of methods in a class. We achieve composability
by forbidding water in methodInWater to go beyond the ’end’ keyword and by
forbidding water to consume any method definition.

start ← class*
class ← ’class’ id classBody ’end’
classBody ← methodInWater+ / (!’end’ •)*

methodInWater ← (!’def’ !’end’ •)*
method

(!’def’ !’end’ •)*
method ← ’def’ id methodBody
methodBody ← blockBody ’end’

blockInWater ← (!’if’ !’while’ !’for’ !. . . !’end’ •)*
block

(!’if’ !’while’ !’for’ !. . . !’end’ •)*
block ← ’if’ blockBody ’end’ /

’while’ blockBody ’end’ /
’for’ blockBody ’end’ /
. . .

blockBody ← blockInWater+ / (!’end’ •)*

id ← #letter+

Listing 5.4: Complete and final island grammar.

One can see that the syntactic predicates in methodInWater are more compli-
cated. They are inferred from the rest of the grammar by analyzing which tokens can
appear after the method island.

This might be particularly tiresome in the case of blockInWater . Once a lan-
guage engineer realizes that almost any control flow structure in Ruby ends with
’end’ , she has to define many other block structures (see block) to properly

pair ’end’ and update corresponding water rules (see blockInWater). Such

CHAPTER 5. SEMI-PARSING 59

blockInWater cannot be easily reused, e.g., in classes with curly brackets { } ,

because the water predicates are missing the !′{′ and !′}′ rules.
Since everything is working as we expect, it is time to to allow for nested classes,

i.e., we extend the rule classBody to:

classBody ← (methodInWater / classInWater)*

We have to revise the predicates of methodInWater and add the !′class′ predicate.
We have to find the proper predicates for the classInWater rule as well. This is
becoming tiresome even in our toy example.

Ease of Use, Robustness, and Reusability Problems.

The limitations of defining methodInWater and classInWater by hand illustrate
the general problems of semi-parsing [DCMS03, Zay14] with island grammars:

1. Water rules are hard to define correctly because they require the entire grammar
to be analysed.

2. The definition of water is fragile because predicates need to be re-evaluated after
any change in a grammar.

3. Finally, the water rules are tailored just for a specific grammar and cannot be
reused in another grammar with different rules.

5.2 Bounded Seas
We have shown that water must be tailored both to the island within the water and to
the surroundings of the water (e.g., methodInWater in Listing 5.4). In our work we
define a bounded sea to be an island surrounded by context-aware water.

To automate the definition of bounded seas we introduce a new operator for build-
ing tolerant grammars: the sea operator. We use the notation ∼island∼ to create
a sea from island , which can be a terminal or non-terminal. Instead of having to
produce a complex definition of a sea, a language engineer can use the sea operator
which will do the hard work. Listing 5.5 shows how the grammar of Listing 5.4 can be
defined using the sea operator.

A rule defined with the sea operator (e.g., ∼method∼) maintains the composabil-
ity property of the advanced grammar since by applying the sea operator we search for
the island in a restricted scope. Moreover, such a rule is reusable, robust, and simple to
define. Bounded seas are based on two ideas:

1. Water never consumes any input from the right context of the bounded sea, i.e.,
any input that can appear after the bounded sea. This is very different from the
water of “traditional” island grammars, where water might not consume a part
of a valid input (cf. section 5.1.2). The water of bounded seas is unambiguous,
thus improving composability.

2. Everything is fully automated. The sea is created using the sea operator, i.e.,
∼island∼ . Once a sea is placed in a grammar, the grammar is analyzed and

appropriate water is created without user interaction. This way a sea can be

CHAPTER 5. SEMI-PARSING 60

start ← class*
class ← ’class’ id classBody ’end’
classBody ← ∼method∼+ / ∼ε∼

method ← ’def’ id methodBody
methodBody ← blockBody ’end’

block ← ’if’ blockBody ’end’ /
’while’ blockBody ’end’ /
’for’ blockBody ’end’ /
. . .

blockBody ← ∼block∼+ / ∼ε∼

id ← #letter+

Listing 5.5: Island Grammar from Listing 5.4 rewritten with the sea operator.

placed in any grammar. In case the grammar is changed, the water is recom-
puted automatically. Automatic water computation eases grammar definition,
and ensures robustness and reusability of rules.

Since bounded seas are designed to be integrated into a PetitParser, they have to
handle the flexibility of parser combinators.

5.2.1 The Sea Boundary
Ideally water should never consume any input that can appear after a bounded sea, i.e.,
it should never consume input from its right context. We will call the right context the
boundary of a sea.

The right context of a sea consists of inputs accepted by parsing expressions that

appear after the island of the sea. In the case of A← ∼′a′∼ (B/C) , the right context

of ∼′a′∼ is any input accepted either by B or by C .
Being aware of the boundary, a tolerant parser can search for methods in a class

without the risk that other classes will interfere. Bounded seas would correctly parse
the input in Listing 5.3 because water of a method sea would not be allowed to consume
′end′ , which is a boundary of ∼method∼ .

The island-specific water has to stop in two cases: first, when an island is reached;
second, when a boundary is reached. If a boundary is reached before an island is found,
the sea fails. The fact that a sea can fail implies that a sea can be embedded into optional
or repetition expressions without ambiguous results. For example, we can define the
superclass specification as an optional island:

∼classDef∼ ∼superclassSpec∼? classBody ’end’

If superclassSpec is not present for the particular class, it will simply fail upon

reaching classBody instead of searching for superclassSpec further and further.
The same holds for repetitions.

classBody ← ∼method∼*

CHAPTER 5. SEMI-PARSING 61

This rule will consume methods only until it reaches ’end’ in the input string, since
′end′ is in the boundary of ∼method∼ . This means methods in another class cannot

be inadvertently consumed.

Definition 5.1 (Bounded Sea). We first define bounded seas generally, and subse-
quently provide a PEG-specific definition. A bounded sea consists of a sequence of
three parsing phases:

1. Before-Water: Consume input until an island or the right context appears. Fail
the whole sea if the right context appears. Continue if island is reached.

2. Island: Consume an island.

3. After-Water: Consume input until the right context is reached.

5.2.2 The Context Sensitivity of Bounded Seas
In order to preserve the unambiguity of water in bounded seas, they need to be context-
sensitive. A bounded sea recognizes different substrings of input depending on what
surrounds the sea. There are two cases where context-sensitivity emerges:

1. A bounded sea recognizes different input depending on the right context — what
immediately follows the sea.

2. A bounded sea recognizes different input depending on the left context — what
immediately precedes the sea.

Let us demonstrate the context sensitivity of bounded seas using the rules from
Listing 5.6 and two inputs: ’..a..b..’ and ’..a..c..’ . On its own, A

recognizes any input with ′a′ and B recognizes any input with ′b′ (see rows 1-4 in
Table 5.1), because they are not bounded by anything.

A ← ∼’a’∼
B ← ∼’b’∼

R1 ← A R2 ← B
R3 ← A ’b’ R4 ← A ’c’
R5 ← A B

Listing 5.6: Rules for demonstrating context-sensitive behavior.

However, when the two islands are not alone, their boundary can differ, depending
on the context. The right context of A is ′b′ in R3 , and the right context of A is
′c′ in R4 . Therefore A consumes different substrings of input depending whether

it is called from R3 or R4 (see rows 5-8 in Table 5.1).

CHAPTER 5. SEMI-PARSING 62

Rule Input Result
1 R1← A ’..a..b..’ A recognizes ’..a..b..’
2 R1← A ’..a..c..’ A recognizes ’..a..c..’
3 R2← B ’..a..b..’ B recognizes ’..a..b..’
4 R2← B ’..a..c..’ B fails

5 R3← A′b′ ’..a..b..’ A recognizes ’..a..’ ′b′ recognizes ’b’
6 R3← A′b′ ’..a..c..’ A recognizes ’..a..b..’ ′b′ fails
7 R4← A′c′ ’..a..b..’ A recognizes ’..a..b..’ ′c′ fails
8 R4← A′c′ ’..a..c..’ A recognizes ’..a..’ ′c′ recognizes ’c’

9 R5← AB ’..a..b..’ A recognizes ’..a..’ B recognizes ’b..’
10 R5← AB ’..a..c..’ A recognizes ’..a..c..’ B fails

Table 5.1: The seas A and B recognize different inputs depending on the
context.

Overlapping seas

A more complex case of context-sensitivity, which we call the overlapping sea prob-
lem, arises when one sea is immediately followed by another. Consider, for example,
the rule R5 , where the sea A has as its right context B , which is also a sea. Note
that the before-water of B should consume anything up to its island ′b′ or its own
right context, including the island of its preceding sea A . Now, the before-water of
A should consume anything up to either its island ′a′ or its right context B . But the

very search for the right context will now consume the island we are looking for, since
before-water of B will consume ′a′ ! We must therefore take special care to avoid a
“shipwreck” in the case of overlapping seas by disabling the before-water of the sec-
ond sea. Therefore B recognizes ’..a..b..’ when called from R2 and ’b..’

when called from R5 (see rows 3 and 9 in Table 5.1). For the detailed example of the
∼a∼∼b∼ sequence, see section B.3.

5.3 Bounded Seas in Parsing Expression Grammars
Starting from the context-sensitive definition of PEGs (see Definition 4.1), we now
show how to add the sea operator to PEGs while avoiding the overlapping sea problem.
To define the sea operator, we first need the following two abstractions:

The water operator consumes uninteresting input. Water (≈) is a new PEG prefix
operator that takes as its argument an expression that specifies when the water
ends. We discuss this in detail in subsection 5.3.1.

The NEXT function approximates the boundary of a sea. Intuitively, NEXT(e) re-
turns the set of expressions4 that can appear directly after a particular expression
e. The details of the NEXT function are given in subsection 5.3.2.

4The NEXT function is modeled after FOLLOW sets from parsing theory, except that instead of returning
a set of tokens, it returns a set of expressions.

CHAPTER 5. SEMI-PARSING 63

Definition 5.2 (Sea Operator). Given the definitions of ≈ and NEXT , we define the
sea operator as follows: ∼e∼ is a sequence expression

≈(e / next1 / next2 / ... / nextn)
e
≈(next1 / next2 / ... / nextn)

where NEXT(e) = {next1, next2, . . . , nextn}.

That is, the before-water consumes everything up to the island or the boundary, and
the after-water consumes everything up to the boundary.

5.3.1 The Water Operator
The purpose of a water expression is to consume uninteresting input. Water consumes
input until it encounters the expression specified in its argument (i.e., the boundary).
We must, however, take care to avoid the overlapping sea problem.

If two seas overlap (one sea is followed by another), the right boundary of the first
sea starts with the second sea. Yet it should only start with the island of the second sea
as illustrated in subsection 5.2.2. In order to do so, the second sea has to simply disable
its before-water.

We detect overlapping seas as follows: if sea s2 is invoked from the water of another
sea s1, it means that the water of s1 is testing for its boundary s2 and thus s2 has to
disable its before-water. To distinguish between nested seas (e.g., ∼′x′(∼′y′∼)′z′∼)

and overlapping seas (e.g., ∼′x′∼ ∼′y′∼), we test the position where this sea was

invoked. In the case of nested seas the positions differ, and in the case of overlapping
seas they are the same.

Definition 5.3. (PEGs with Bounded Seas (BS-PEGs)) A parsing expression grammar
with bounded seas — an extension of CS-PEGs (see Definition 4.1) — is a 6-tuple
G = (N,Σ, R, es,K,Cs) where N is a finite set of nonterminals, Σ is a finite set of
terminal symbols,R is a finite set of rules, es is a starting expression,K is a finite set of
combinators, Cs is an initial context — a finite set of an identifier to a stack mappings.
Each context entry c ∈ C is a pair (id, S). id identifies a particular stack S, we write
this as Sid, i identifies an invocation stack.

Each rule r ∈ R is a pair (A, e) which we write A ← e, A ∈ N and e is a parsing
expression. Parsing expressions (PEs) are defined inductively, if e1 and e2 are parsing
expressions, then so is:

• ε , an empty string

• ′t+′ , any literal, t ∈ Σ

• [t+] , any character class, t ∈ Σ

• A , any nonterminal, A ∈ N

• e? , an optional expression

• e1e2 , a sequence

CHAPTER 5. SEMI-PARSING 64

• e1/e2 , a prioritized choice

• e∗ , a zero-or-more repetitions

• !e , a not-predicate

• &e , an and-predicate

• k , a parser combinator, k ∈ K

• O
id
e , a push to the stack S, (id, S) ∈ C

• M
id

, a pop from the stack S, (id, S) ∈ C

• ≈ , a water operator

Definition 5.4 (Semantics of BS-PEGs). In order to detect overlapping seas and to
compute the NEXT set, we extend the semantics of context-sensitive PEGs (see Defini-
tion 4.2) with a stack of invoked expressions and their positions SI . For standard PEG
operators there is no change except that an explicit invocation stack SI is maintained.
The relation⇒ has same inputs and outputs: from a triple of the form (e, x, C) to the
output triples (o, y, C ′), where e is a parsing expression, x ∈ Σ∗ is an input string to
be recognized, o indicates the result of a recognition attempt, y ∈ Σ∗ is a remainder of
input, C,C ′ are context mappings.

As in Definition 4.3, {..
C
, Sid} denotes a parsing context C =

{(i1, s1), (i2, s2), ..., (in, sn), (id, S)} where ..
C

is a shorthand for (i1, s1),
(i2, s2), ..., (in, sn). Each context entry c ∈ C is a pair (id, S). id identifies a
particular stack S, we write this as Sid,

SI ∈ C is an invocation stack of expression–position tuples (en, pn) : ... :
(e2, p2) : (e1, p1) : [], [] denotes an empty stack, (e1, p1) the bottom element, (en, pn)
the top element, ((e, p) : S) denotes a stack with tuple (e, p) on the top and stack S
below. SI is initialized with the pair (es, 0).

A function pos : Σ∗ × Σ∗ → N returns the position of y in the input = xyz
and, as a shorthand, we write px to refer to pos(x, input). The distinguished symbol
f indicates failure. We define⇒ inductively as follows (without any semantic changes
for standard PEG operators):

Empty: x ∈ Σ∗

(ε, x, {..
C
, SI})⇒ (ε, x, {..

C
, SI})

Terminal
(success):

a ∈ Σ, x ∈ Σ∗

(a, ax, {..
C
, SI})⇒ (a, x, {..

C
, SI})

Terminal
(failure):

a, b ∈ Σ, x ∈ Σ∗

(a, bx, {..
C
, SI})⇒ (f, bx, {..

C
, SI})

Nonterminal:

S′I = ((A, px) : S)I A← e ∈ R
(e, x, {..

C
, S′I})⇒ (o, y, {..

C′ , S
′
I})

(A, x, {..
C
, SI})⇒ (o, y, {..

C′ , SI})

CHAPTER 5. SEMI-PARSING 65

Sequence
(success case):

S′I = ((e1e2, px) : S)I
(e1, x, {..C , S′I})⇒ (o1, y1, {..C1

, S′I})
(e2, y1, {..C1

, S′I})⇒ (o2, y2, {..C2
, S′I})

(e1e2, x, {..C , SI})⇒ (o1o2, y2, {..C2
, SI})

Sequence
(failure 1):

S′I = ((e1e2, px) : S)I
(e1, x, {..C , S′I})⇒ (f, x, {..

C
, S′I})

(e1e2, x, {..C , SI})⇒ (f, x, {..
C
, SI})

Sequence
(failure 2):

S′I = ((e1e2, px) : S)I
(e1, x, {.., S′I})⇒ (o, y1, {..C1

, S′I})
(e2, y1, {..C1

, S′I})⇒ (f, y1, {..C1
, S′I})

(e1e2, x, {.., SI})⇒ (f, x, {..
C
, SI})

Choice
(option 1):

S′I = ((e1/e2, px) : S)I
(e1, x, {..C , S′I})⇒ (o, y, {..

C′ , S
′
I})

(e1/e2, x, {..C , SI})⇒ (o, y, {..
C′ , SI})

Choice
(option 2):

S′I = ((e1/e2, px) : S)I
(e1, x, {..C , S′I})⇒ (f, x, {..

C
, S′I})

(e2, x, {..C , S′I})⇒ (o, y, {..
C′ , S

′
I})

(e1/e2, x, {..C , SI})⇒ (o, y, {..
C′ , SI})

Repetitions
(repetition):

S′I = ((e∗, px) : S)I
(e, x, {..

C
, S′I})⇒ (o1, y1, {..C1

, S′I})
(e∗, y1, {..C1

, SI})⇒ (o2, y2, {..C2
, SI})

(e∗, x, {..
C
, SI})⇒ (o1o2, y2, {..C2

, SI})

Repetitions
(termination):

S′I = ((e∗, px) : S)I
(e, x, {..

C
, S′I})⇒ (f, x, {..

C
, S′I})

(e∗, x, {..
C
, SI})⇒ (ε, x, {..

C
, SI})

Not predicate
(success):

S′I = ((!e, px) : S)I
(e, x, {..

C
, S′I})⇒ (o, y, {..

C′ , S
′
I})

(!e, x, {..
C
, SI})⇒ (f, x, {..

C
, SI})

Not predicate
(failure):

S′I = ((!e, px) : S)I
(e, x, {..

C
, S′I})⇒ (f, x, {..

C
, S′I})

(!e, x, {..
C
, SI})⇒ (ε, x, {..

C
, SI})

Parser combinators remain also unaffected. The parser combinator semantics is defined
as follows:

Parser
Combinator

(success):

S′I = ((kS(e), px) : S)I
(e, x, {..

C
, S′I , SS})⇒ (o1, y1, {..C′ , S

′
I , S
′
S})

k(S′S , o1, y1) = (o2, y2)

(kS(e), x, {..
C
, SI , SS})⇒ (o2, y2, {..C′ , SI , S

′
S})

CHAPTER 5. SEMI-PARSING 66

Parser
Combinator

(failure 1):

S′I = ((kS(e), px) : S)I
(e, x, {..

C
, S′I , SS})⇒ (o1, y, {..C′ , S

′
I , S
′
S})

k(S′S , o1, y) = (f, y′)

(kS(e), x, {..
C
, SI , SS})⇒ (f, x, {..

C
, SI , SS})

Parser
Combinator

(failure 2):

S′I = ((kS(e), px) : S)I
(e, x, {..

C
, S′I , SS})⇒ (f, x, {..

C
, S′I , S

′
S})

(kS(e), x, {..
C
, SI , SS})⇒ (f, x, {..

C
, SI , SS})

The context manipulation operators operates as usually as well:

Push O

(success):

S′I = ((O
S
e, px) : S)I

(e, x, {..
C
, S′I , SS})⇒ (o, y, {..

C′ , S
′
I , S
′
S})

(O
S
e, x, {..

C
, SI , SS})⇒ (o, y, {..

C′ , SI , (o : S′)S})

Push O

(failure):

S′I = ((O
S
e, px) : S)I

(e, x, {..
C
, S′I , SS})⇒ (f, x, {..

C
, S′I , SS})

(O
S
e, x, {..

C
, SI , SS})⇒ (f, x, {..

C
, SI , SS})

Pop M

(success:)

SS = (e : S′)S

(M
S
, x, {..

C
, SI , SS})⇒ (o, x, {..

C
, SI , S

′
S})

Pop M

(empty case):

SS = []S

(M
S
, x, {..

C
, SI , SS})⇒ (f, x, {..

C
, SI , S

′
S})

A detailed example demonstrating how is SI manipulated can be found in section B.3.

Definition 5.5 (Seas Overlap). We define a function SO as follows:

SO(SI) =

{
true SI = ((≈e, p) : S′I) ∧ (≈e′, p) ∈ S′I
false otherwise

In other words, two seas overlap if there are two waters invoked at the same position,
one of which is on the top of invocation stack SI .

Definition 5.6 (Water Operator). With the BS-PEGs we can define a prefix water op-
erator ≈ . It searches for a boundary and consumes input until it reaches a boundary.
If the water starts a boundary of another sea, it stops immediately.

CHAPTER 5. SEMI-PARSING 67

Water ≈
(overlapping):

SO(S′I)

(≈ e, x, {..
C
, SI})⇒ (ε, x, {..

C
, SI})

Water ≈
(boundary):

S′I = ((≈ e, px) : S)I
(e, y, {..

C
, S′I})⇒ (o, y′, {..

C′ , S
′
I})

(e, x′′y, {..
C
, S′I})⇒ (f, x′′y, {..

C
, S′I})

∀x′x′′ : x = x′x′′

(≈ e, xy, {..
C
, SI})⇒ (x, y, {..

C
, SI})

The boundary case of water consumes the shortest possible prefix x from input xy such
that e succeeds on y.

Nested seas In the case of directly nested seas (e.g., ∼∼island∼∼) we obtain the
same behavior as with ∼island∼ . Two seas overlap in the case a sea is directly
invoked from another sea without consuming any input. Applying the rule overlapping
from Definition 5.6, water of the inner sea is eliminated and the boundary is the same
for the both seas. Therefore ∼∼island∼∼ is equivalent to ∼island∼ .

5.3.2 The NEXT function
Any input that can appear after a sea forms the boundary of the sea. The NEXT function
returns a set of expressions that can appear directly after a particular expression. The
NEXT set is inspired by the FOLLOW set from the standard parsing theory [GJ08b],
which can be modified for PEGs [Red09]. Contrary to the follow set, which returns
only terminal expressions, the next set returns terminal or composite expressions.

Consider the grammar in the example from Listing 5.7. The code rule is defined
in such a way that it accepts an arbitrary number of class and structure islands in the
beginning (classes and structures can be in any order) and there is a main method at the
end. Intuitively, another class island, a structure island or a main method can appear
after a class island.

The NEXT set approximates the boundary. Its expressions recognize prefixes of the
boundary and not necessarily the whole boundary. The reason for using NEXT is the
limited backtracking ability of PEGs. PEGs are not capable of taking globally correct
decisions because they are not able to revert choices that have already been taken.5

For practical reasons, elements of NEXT cannot accept an empty string. For ex-
ample, an optional expression is not a suitable approximation of a boundary because it
succeeds for any input. Consider a simple expression:

∼island∼ ’a’? ’b’

The ′a′? can appear after the ∼island∼ but ′b′ as well if ′a′ fails. Therefore
NEXT has to return ′a′? ′b′ , not just ′a′? . We use the abstract simulation (see Defi-
nition A.6) in order to recognize an expression that accepts an empty string as defined
in Definition A.8.

5See for example: http://www.webcitation.org/6YrGmNAi7

http://www.webcitation.org/6YrGmNAi7

CHAPTER 5. SEMI-PARSING 68

code ← (∼class∼ / ∼struct∼)* mainMethod
class ← ’class’ ID classBody
stuct ← ’struct’ ID structBody
mainMethod ← ’public’ ’def’ ’main’ block

classBody ← ...
structBody ← ...
block ← ...
ID ← ...

Listing 5.7: Definition of code that consists of classes and structures followed by
main method.

Static vs Dynamic NEXT

Similarly to FOLLOW, NEXT can be computed statically [GJ08a, Red09] or dynam-
ically [SD96]. The dynamic way is more precise, but imposes run-time overhead be-
cause it requires as a parameter the up-to-date invocation stack SI , which is available
only at runtime. The static one is less precise, but does not impose any run-time over-
head because it requires as parameters grammar G and expression e, which are avail-
able at any time. The better precision of the dynamic NEXT set is caused by the fact
that dynamic NEXT knows from which parent an expression e is invoked. Static NEXT
has to consider all the possible parents and take the union of the results of each of them.
We present a computation for both versions, dynamic and static:

Definition 5.7 (Dynamic NEXT). Let S be an invocation stack of (expression, position)
pairs representing positions and invoked parsing expressions, where S = ((e, p) : S′)

represents an S′ with a (e, p) on top, $$ is a special symbol signaling end of input,
and E1 × E2 is a product of two sets of parsing expressions E1 and E2, such that
E1 × E2 = {eiej | ei ∈ E1, ej ∈ E2}, we define the dynamic NEXT set ND(S) as a
set of expressions such that:

Nonterminal S = (e, p) : (A← e, p′) : S′

ND(S) = ND((A, p′) : S′)

Sequence
(case 1):

S = (e1, p) : (e1e2, p
′) : S′ e2 6⇀ 0

ND(S) = {e2}

Sequence
(case 2):

S = (e1, p) : (e1e2, p
′) : S′ e2 ⇀ 0

ND(S) = ({e2} × ND((e1e2, p) : S′)

Sequence
(case 3):

S = (e2, p) : (e1e2, p
′) : S′

ND(S) = ND((e1e2, p) : S′)

Choice
(option 1):

S = (e1, p) : (e1/e2, p
′) : S′

ND(S) = ND((e1/e2, p) : S′)

Choice
(option 2):

S = (e2, p) : (e1/e2, p
′) : S′

ND(S) = ND((e1/e2, p
′) : S′)

CHAPTER 5. SEMI-PARSING 69

Repetition
(case 1):

S = (e, p) : (e∗, p′) : S′ e 6⇀ 0

ND(S) = {e} ∪ ND((e∗, p′) : S′)

Repetition
(case 2):

S = (e, p) : (e∗, p′) : S′ e2 ⇀ 0

ND(S) = {e} × ND((e∗, p′) : S′)

Not Predicate S = (e, p) : (!e, p′) : S′

ND(S) = {$$}

Combinator S = (e, p) : (k(e), p′) : S′

ND(S) = ND((k(e), p′) : S′)

Push S = (e, p) : (O(e), p′) : S′

ND(S) = ND((O(e), p′) : S′)

Pop S = (e, p) : (M(e), p′) : S′

ND(S) = ND((M(e), p′) : S′)

Empty Stack
(termination):

S = {}
ND(S) = {$$}

Definition 5.8 (Static NEXT). If G = (N,Σ, R, es,K,Cs) is a BS-PEG, PEG is a
set of all parsing expressions in the grammar G, S is a subset of PEG, S ⊆ PEG,
where S = {e : S′} represents an S with an element e and S′ = S \ {e}, $$ is
a special symbol signaling end of input, P is a parent function (see Definition A.4),
and E1 × E2 is a product of two sets of parsing expressions E1 and E2, such that
E1 × E2 = {eiej | ei ∈ E1, ej ∈ E2}, we define the static NEXT set NS(e, PEG) of
an expression e in a grammar G as a set of expressions such that:

Not a parent S = {e′ : S′} ¬P(e, e′)

NS(e, S) = NS(e, S′)

Nonterminal S = {e′ : S′} e′ ← e e ∈ Σ

NS(e, S) = NS(e′, PEG) ∪NS(e, S′)

Sequence
(case 1):

S = {e′ : S′} e′ = e1e2 e2 6⇀ 0

NS(e1, S) = {e2} ∪ NS(e1, S
′)

Sequence
(case 2):

S = {e′ : S′} e′ = e1e2 e2 ⇀ 0

NS(e1, S) = ({e2} × NS(e′, PEG)) ∪NS(e1, S
′)

CHAPTER 5. SEMI-PARSING 70

Sequence
(case 3):

S = {e′ : S′} e′ = e1e2

NS(e2, S) = NS(e′, PEG) ∪NS(e2, S
′)

Choice
(option 1):

S = {e′ : S′} e′ = e1/e2

NS(e, S) = NS(e′, PEG) ∪NS(e1, S
′)

Choice
(option 2):

S = {e′ : S′} e′ = e1/e2

NS(e, S) = NS(e′, PEG) ∪NS(e2, S
′)

Repetition
(case 1):

S = {e′ : S′} e′ = e∗ e 6⇀ 0

NS(e, S) = {e} ∪ NS(e′, PEG) ∪NS(e, S′)

Repetition
(case 2):

S = {e′ : S′} e′ = e∗ e2 ⇀ 0

NS(e, S) = ({e} × NS(e′, PEG)) ∪NS(e′, PEG) ∪NS(e, S′)

Not Predicate S = {e′ : S′} e′ =!e

NS(e, S) = {$$} ∪ NS(e, S′)

Combinator S = {e′ : S′} e′ = k(e)

NS(e, S) = NS(e′, PEG) ∪NS(e, S′)

Push S = {e′ : S′} e′ = O(e)

NS(e, S) = NS(e′, PEG) ∪NS(e, S′)

Pop S = {e′ : S′} e′ = M(e)

NS(e, S) = NS(e′, PEG) ∪NS(e, S′)

Start Expression e = es
NS(e, S) = {$$} ∪ NS(e, S′)

Empty Set
(termination):

S = {}
NS(e, S) = {}

Examples of dynamic and static computation can be found in section B.1 and sec-
tion B.2

FOLLOW vs. NEXT

The NEXT function introduces extra complexity into bounded seas, even though it
resembles the FOLLOW function from LL parsing theory [GJ08a, pp. 235-361]. The
key difference between FOLLOW and NEXT is that the former returns only terminals,
while the latter returns parsing expressions.

Why is it not sufficient to use the well-known FOLLOW sets instead of the more
complicated NEXT function? The reason is that the right context (boundary) of a sea

CHAPTER 5. SEMI-PARSING 71

is in general an LL(k), k ≥ 1 language, and a simple FOLLOW set is not usually
sufficient to recognize the boundary.

As an example, consider the grammar from Listing 5.7. The boundary of class

is NEXT(class) = { ∼class∼ , ∼struct∼ , mainMethod }. Suppose that in-
stead we take as the boundary of class its FOLLOW set, i.e., FOLLOW(class) =

{ ′class′ , ′struct′ , ′public′ }. If there are other elements in the input that

start with ′public′ (e.g., ’public int i = 0;’), they will be indistinguish-

able from the mainMethod and the water of bounded seas would finish in an invalid
position.

Bounded seas are supposed to work only with a skeleton of an original grammar
with as little information as possible. Therefore, information about other input that can
interfere with a boundary (e.g., ’public int i = 0;’) is not usually available.
If bounded seas are are provided with a baseline grammar this would not be problem
as the techniques described by Klusener and Lämmel [KL03] can then be applied.

5.3.3 BS-PEG analysis
In this section we extend the definitions of a first set, an abstract simulation, and a
push–pop analysis to support BS-PEGs.

Definition 5.9 (First set with Bounded Seas). To support the first set analysis of BS-
PEGs, we extend the definition of first (see Definition 4.6) with a first rule for a water
operator.

Water Operator
FIRST(≈(e)) = {x | ∀x ∈ Σ} ∪ {ε}

Meaning that water can start with anything or can accept an empty string, no matter
what is the underlying expression e.

Definition 5.10 (Abstract Simulation with Bounded Seas). To support the abstract sim-
ulation in BS-PEGs, we extend the relation ⇀ from Definition 4.7 as follows:

11. (a) ≈(e) ⇀ 1

(b) ≈(e) ⇀ 0

Meaning water never fails and may accept an empty string.

Definition 5.11 (Push–pop analysis with Bounded Seas). Even though the BS-PEGs
manipulate the invocation stack, the rules always keep the stack in its original state,
i.e., in the state as upon invocation. Therefore, the push–pop analysis does not change
and we extend the relation ↪→ from Definition 4.8 with water operator ≈ as follows:

11. ≈(e) ↪→ o if e ↪→
S
o

Meaning water (though context-sensitive) does not modify context and always keeps it
in the state as upon invocation.

CHAPTER 5. SEMI-PARSING 72

5.4 Implementation
We implement the sea operator in a single combinator that represents the water–island–
water sequence. The BoundedSea parser is defined as in Listing C.11. Even though
a bounded sea consists of a sequence of three parsers, it has only one instance variable
island (see Listing C.10), before-water and after-water being created automatically

depending on the grammar. The parseOn: method of BoundedSea is in List-
ing C.11. The three phases of parseOn: correspond to the phases in Definition 5.1.
The check for overlapping seas is in parseBeforeWater: (see Listing C.12).
The remaining semantics of water is a simple search for a boundary represented by a
goUpTo: method.

The NEXT function

We experimented with both implementations of NEXT: dynamic NEXT (see Defi-
nition 5.7) and static NEXT (see Definition 5.8). To compute the dynamic NEXT
set we use the method invocation stack (do not confuse with the invocation stack
in Context), which is a first class entity in Pharo and which is accessed using
the thisContext pseudo-variable and is managed by the Pharo runtime. The
dynamic NEXT implementation follows straightforwardly from the recursive Defini-
tion 5.7 (see Listing C.13). We use acceptsEpsilon to determine if a parser can
succeed without consuming input (as defined in Definition A.8).

To compute static NEXT , we hook into the parse: method of a root parser
(see section 3.2). From this root, we access all the parsing expressions PE and com-
pute static NEXT . The static NEXT implementation follows straightforwardly from the
recursive Definition 5.8 (see Listing C.14).

Our current implementation utilizes the static NEXT set. The static NEXT provides
better performance, because the overhead can be moved from parse time to compile
time. Nevertheless, the language engineers should not reuse the same instance of a sea
from multiple nonterminals to obtain better precision as discussed in subsection 5.3.2.

Overlapping Seas

The implementation of bounded seas in PetitParser requires an invocation stack in the
parsing context (represented by the Context class) to detect overlapping seas. Con-
trary to the method invocation stack, the invocation stack in the parsing context contains
invocation positions. The context invocation stack is managed by the following meth-
ods of Context : invoked: , return: , and fail: that push to and pop from
the invocation stack the positions of bounded seas (see Listing C.15). Overlapping seas
can be detected trivially (see Listing C.16) by comparing the two top positions.

Memoization

For recursive structures such as nested blocks, bounded seas tend to invoke the same
sea on the same position over and over again. This leads to exponential parse times.
We use the idea of packrat parsing [For02a] to prevent this. We implement a memoized
version of seas, which remembers a result after being invoked at a given position and
returns the cached result in a subsequent invocation for that position, the same way as
the memoizing parser (see section 3.2) works.

CHAPTER 5. SEMI-PARSING 73

5.4.1 Performance
In this section we briefly report on the performance of bounded seas. We use static
NEXT and the memoized version of seas. We focus on the time complexity of the three
different placements of a sea: standalone seas, repetition of a sea and a nested sea. In
order to show the overhead of our implementation of bounded seas, we compare with
equivalent island grammars (i.e., using an “advanced” type of an island grammar as
in Listing 5.4). We perform measurements on the following parsers and inputs:

Stand-alone sea ∼′a′∼ searches for the island ’a’ in input. Input consists of
randomly generated string of dots . (representing water) and a single character
’a’ at a random position.

Repetition of a sea ∼′a′+∼ searches for sequences of islands ’a’ in input. In-
put consists of a randomly generated string of dots . (representing water) and
island characters ’a’ , e.g., ’..a.....a....a...aa..’ .

Nested sea block← ∼′{′block + /∼ ε ∼ ′}′∼+ searches for sequences of nested

blocks in input. Input consists of blocks starting with ’{’ and ending with

’}’ . A block contains a possibly empty sequence of other blocks, for example:

’{...{}.{.{..}.}...}’ .

Figure 5.1 shows that, in the case of all the tested grammars, the time complexity of
seas is linear compared to the input size. For all the sea grammars used in this work we
measure the linear asymptotic time. Nevertheless the parse time is high, approximately
ten times higher than its island variant. This is rather high price for the comfort that
bounded seas offer. We show how to completely eliminate the overhead of bounded
seas in subsection 6.4.6.

5.5 Java Parser Case Study
The goal of this case study is to demonstrate the suitability of bounded seas for extract-
ing data from Java sources without any baseline grammar provided. First we focus on
a simpler task without considering nested classes. Because bounded seas target exten-
sibility we subsequently investigate the effort required to extend the parser with nested
classes. In the last step we focus on extracting return types of methods.

We compare four kinds of Java parsers and we measure how well can they extract
classes and their methods from a Java source code:

Java Parser is an open-source Java parser using PetitParser [RDGN10] provided by
the Moose analysis platform community [NDG05]. We used version 167.6

Naı̈ve Islands is an island parser with water defined simply as the negation of the
island we are searching for. The sea rules in this parser can be reused, because
they do not consider their surroundings and they are grammar-independent. The
sea rules are defined in a simple form: consume input until an island is found,
then consume an island.

6http://smalltalkhub.com/#!/˜Moose/PetitJava/

http://smalltalkhub.com/#!/~Moose/PetitJava/

CHAPTER 5. SEMI-PARSING 74

0

500

1000

1500

2000

50k 100k 150k 200k 250k

Ti
m

e
 [

m
s]

Input size [bytes]

Bounded Seas Complexity (All)

~a~
~a~ +

~block~ +
a island

a island +
block island +

Figure 5.1: The performance comparison of memoized bounded seas for a

stand-alone sea ∼′a′∼ , a repetition of a sea ∼′a′∼ + and for a nested sea
and their island variants on randomly generated inputs.

Advanced Islands is a more complex version of the naı̈ve island parser. The water is
more complicated to prevent the most frequent failures of island parsers. The sea
rules in this parser are hard-wired to the grammar and cannot be reused. The sea
rules are customized for a particular islands.

Sea Parser is a parser written using bounded seas. The sea rules were defined using
the sea operator.

The Java Parser parses Java 6 code. All the semi-parsers (naı̈ve, advanced and sea)
are identical, with approximately 20 rules per each and are written by the author of
this thesis. They differ only in the way the seas and islands are constructed. PetitJava
itself contains over 200 rules. The semi-parsers were designed to extract classes and
the methods that belong to them.

It is very likely that the advanced island parser can be modified to achieve better
precision, but at the cost of considerable engineering work. We demonstrate that naı̈ve
water rules do not work and that the advanced version of water is needed. We further
show that with bounded seas we can obtain high precision and performance without
needing to define an advanced island parser, outperforming even the PetitJava parser
because semi-parsers provide more robustness. Finally, we show that extending an
island parser is a highly demanding task, unless bounded seas are used.

Test Data For our case study selected 1129 files defining a class (N) from the JDK
6 library. These files contain 1666 classes and subclasses and 20828 methods M in
total. We extract the reference data using the VerveineJ7 parser and store it as a Moose
model [ND04].

7http://www.webcitation.org/6k64XjAki

http://www.webcitation.org/6k64XjAki

CHAPTER 5. SEMI-PARSING 75

Each parser returns an AST containing JavaDefinition nodes with a list
of JavaMethod nodes out of which we extract a set of m fully-qualified method
names,8 some of which are true positives mtp. If a parser fails, the set of extracted
methods is empty. We measure precision P = |mtp|/|m|) and recall R = |mtp|/|M |.

5.5.1 Without Nested Classes
First of all, we evaluate our parsers on extracting method names without considering
the nested classes and their methods. We can easily skip the nested classes by defining
properly paired blocks starting with ′{′ and ending with ′}′ and ignoring everything
inside.

Results As we see in Figure 5.2, the Java Parser provides perfect precision, but recall
is bad because of many failures.9 On the other hand, all the island parsers (island,
advanced and bounded) are very robust, they almost never fail, but neither precision nor
recall are perfect, even though they are relatively high. Amongst the imprecise parsers,
the Bounded parser provides the best precision and recall, even outperforming the Java
Parser in terms of F1-measure.10 The detailed numbers are provided in Table 5.2.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.9

0.95

1

P
re

ci
si

o
n

f1
-m

e
a
su

re

Recall

Precision and Recall (Without Inner Classes)

Java Parser

Naive Islands

Advanced Islands

Sea Parser

Figure 5.2: Precision and recall of different versions of Java parser in extracting
method names, the nested classes are excluded.

5.5.2 With Nested Classes
In this step, we extend our island parsers to include nested classes and their methods.
We do this by making a single change, where we extend the classBody rule from

8http://www.webcitation.org/6k64hqyyu
9The Java Parser failures are due to bugs in the grammar specification.

10http://www.webcitation.org/6k64iiBRB

http://www.webcitation.org/6k64hqyyu
http://www.webcitation.org/6k64iiBRB

CHAPTER 5. SEMI-PARSING 76

Parser Precision Recall
Java Parser 1.00 0.84
Islands 0.84 0.98
Advanced islands 0.89 0.98
Sea Parser 0.96 0.98

Table 5.2: Precision and recall of the four tested parsers without considering
nested classes.

this:11

classBody ← ’{’ method island * ’}’

to this:

classBody ← ’{’ (method / class) island * ’}’

Results As we see in Figure 5.3 the Java Parser performs as in the previous case. Yet
the imprecise parsers (Island, Advanced) start to struggle. Their recall has dropped. On
the other hand, the Sea Parser maintains high precision and recall and still outperforms
the Java Parser.

We also measured the Refined parser, which made use of refined rules for water to
take into account the grammar changes.12 This improved recall and parsing time. We
would, however, need to invest even more effort to reach the quality of the Sea Parser.
The detailed numbers are provided in Table 5.3.

Parser Precision Recall
Java Parser 1.00 0.82
Islands 0.83 0.77
Advanced Islands 0.87 0.70
Refined Islands 0.88 0.86
Sea Parser 0.94 0.98

Table 5.3: Precision and recall of the four tested parsers with considering nested
classes.

5.5.3 With Return Types
Some might object that the results of the naı̈ve parser are reasonably good considering
the low effort to implement such a parser. This is because the naı̈ve parser is very good
in searching for the identifier–brackets pattern, since methods are defined as follows:

methodDef ← (modifiers island) (returnType island) id args

Such a definition of a naı̈ve parser works when detecting method names, but it does
not work well with return types. In a typical scenario methodDef accepts (i) an empty

11 island creates either an island, an advanced island or a bounded sea depending on the parser we
use.

12We investigated the reasons for failures and added an extra boundary to classBody .

CHAPTER 5. SEMI-PARSING 77

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.9

0.95

1

P
re

ci
si

o
n

f1
-m

e
a
su

re

Recall

Precision and Recall (With Inner Classes)

Java Parser

Naive Islands

Advanced Islands

Sea Parser

Refined Islands

Figure 5.3: Precision and recall of different versions of Java parser in extracting
method names, the nested classes are included.

string as modifiers; (ii) any identifier as a return type; and (iii) skips almost anything
until another identifier followed by arguments is found. Other parsers do not suffer
from this problem because their boundaries prevent them from skipping over relevant
parts of input.

Results The result with nested classes can be seen in Figure 5.4. The naı̈ve parser
cannot extract the return type, while all the other parsers work reasonably well without
any modifications. The decreased precision (see Table 5.4) is caused by array types
that are not properly handled either by the Java parser or by the island or sea parsers.

Parser Precision Recall
Java Parser 0.94 0.77
Islands 0.05 0.05
Advanced Islands 0.79 0.64
Refined Islands 0.80 0.79
Sea Parser 0.89 0.93

Table 5.4: Precision and recall of the four tested parsers with considering nested
classes and return types.

———————————————————-

5.5.4 Performance
To compare the performance of the bounded seas with other parsers we present a graph
measuring the time to extract method names with return types and nested classes based
on the file size. We visualize the dependency between the file size and time to parse
for Java, naı̈ve, advanced′ and sea parsers in Figure 5.5. Time-wise, the bounded seas

CHAPTER 5. SEMI-PARSING 78

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

f1
-m

e
a
su

re

Recall

Precision/Recall (With Inner Classes and Return Types)

Java Parser

Naive Islands

Advanced Islands

Sea Parser

Refined Islands

Figure 5.4: Precision and recall of different versions of Java parser in extracting
method names and return types. The nested classes are included.

perform approximately three times slower than the their island variant and with linear
asymptotic complexity. We discuss performance optimizations in subsection 6.4.6.

0

200

400

600

800

1000

1200

1400

50k 100k

Ti
m

e
 [

m
s]

Input size [bytes]

Java Sea Parser Complexity

Java Parser
Java Sea Parser

Refined Island Parser
Naive Parser

Figure 5.5: Dependency between parse time and input size for different versions
of Java parsers.

CHAPTER 5. SEMI-PARSING 79

5.6 Related Work
In this section we discuss other semi-parsing approaches.

Agile Parsing

Agile parsing [DCMS03] is a paradigm for source analysis and reverse engineering
tools. In agile parsing the effective grammar used by a particular tool is a combination
of two parts: the standard base grammar for the input language, and a set of explicit
grammar overrides that modify the parse to support the task at hand. There are sev-
eral agile parsing idioms: i. rule abstraction (grammar rules can be parametrized);
ii. grammar specialization (grammar rules can be specialized based on the semantic
needs); iii. grammar categorization (to deal with context-free ambiguities); iv. union of
grammars (to unify multiple grammars); v. markup (to match and mark chunks of in-
terest); vi. semi-parsing (to define islands and lakes); and vii. data structure grammars
(separate grammars that hold auxiliary data structures).

The semi-parsing idiom [DCMS03] uses the not predicate to prevent water from
consuming islands. This approach is the same as that taken by bounded seas. Con-
trary to the semi-parsing idiom, bounded seas are able to infer the predicates on their
own. The agile parsing idioms are based on a transformation of a well-defined baseline
grammar, whereas bounded seas do not expect such a well-defined grammar and must
infer the predicates only from the available skeleton.

Island Grammars

Island grammars were proposed by Moonen [Moo01] as a method of semi-parsing
to deal with irregularities in the artifacts that are typical for the reverse engineering
domain. Island grammars make use of a special syntactic rule called water that can
accept any input. Water is annotated with a special keyword avoid that will ensure
that water will be accepted only if there is no other rule that can be applied.

Contrary to Moonen, we propose boundaries (based on the NEXT function) that
limit the scope in which water can be applied. Because each island has a different
boundary, our solution does not use the single water rule; instead our water is tailored
to each particular island. Therefore bounded seas offer much better composability than
island grammars.

Non-Greedy Rules

Non-greedy operators are well-known from regular expressions introduced in Perl. 13

?? , *? , and +? are non-greedy versions of ? , * and + , which match as little
of a string as possible while preserving the overall match. The backtracking algorithm
admits a simple implementation of non-greedy operators: try the shorter match before
the longer one. For example, in a standard backtracking implementation, e? first tries
using e and then tries not using it; e?? uses the other order.14

Non-greedy operators are also available in ANTLR as parser operators. A non-
greedy parser matches the shortest sequence of tokens that preserves a successful parse
for a valid input sentence. Contrary to regular expressions, a non-greedy parser never
makes a decision that will ultimately cause valid input to fail later on during the parse.

13http://www.webcitation.org/6k63y2Dqf
14http://www.webcitation.org/6ivDnxZIf

http://www.webcitation.org/6k63y2Dqf
http://www.webcitation.org/6ivDnxZIf

CHAPTER 5. SEMI-PARSING 80

The central idea is to match the shortest sequence of tokens that preserves a successful
parse for a valid input sentence.15

Bounded seas are distinct from non-greedy rules in two ways. First, bounded seas
do not require globally correct decisions, since they are not available in traditional
PEGs. Though PEGs can backtrack while choosing between alternatives, once the
choice is made it cannot be changed, thus making a globally correct decision impos-
sible. In order to realize non-greedy repetitions, PEGs utilize predicates, which have
to be specified by a language engineer (as illustrated in section 5.1). Bounded seas
remove the burden of predicates from a language engineer by computing the NEXT set
automatically.

Second, bounded seas target transparent composability. A language engineer can
treat a bounded sea like any other PEG rule. For example, we can define a sea with
an island as ∼island∼ and use the sea from any parsing expression. With such a
definition we can change the body rule in the following grammar

start ← (’begin’ body ’end’)*
body ← sea
sea ← ∼island∼

to body← sea∗ , body← sea? or body← sea?sea? without any further modi-
fications.

When using the lazy predicates of context-free grammars, the definitions of the
rules are more complicated and differ for each of the body variants.

If we define sea using non-greedy repetition ∗? , The EBNF equivalent of
body← sea is defined as:

start → (’begin’ body ’end’)*
body → sea
sea → •*? ’body’ •*?

The EBNF equivalent of body← sea? is defined as:

start → (’begin’ body)*
body → sea
sea → •*? (’body’|’end’)

The EBNF equivalent of body← sea∗ is defined as:

start → (’begin’ body ’end’)*
body → sea
sea → (’body’| •)*?

And the EBNF equivalent of a sequence of two optional seas body← sea?sea? as:

start → (’begin’ body)*
body → sea1
sea1 → •*?(’body1’ sea2 | ’body2’ ’end’ | ’end’)
sea2 → •*?(’body2’ ’end’ | ’end’)

The snippets illustrate that bounded seas offer much easier and more transparent
composability compared the non-greedy operators of CFGs.

15http://www.webcitation.org/6ivEIY4AO

http://www.webcitation.org/6ivEIY4AO

CHAPTER 5. SEMI-PARSING 81

Noise Skipping Parser

GLR* is a noise-skipping parsing algorithm for context-free grammars able to parse
any input sentence by ignoring unrecognizable parts of the sentence [LT93]. The parser
nondeterministically skips some words in a sentence and returns the parse with fewest
skipped words. The parser is a modification of the Generalized LR (Tomita) parsing
algorithm [Tom85].

The GLR* application domain is parsing of spontaneous speech. Contrary to
bounded seas, GLR* itself decides what is noise (water in our case) and where it is. In
the case of bounded seas the placement of noise (water) is explicitly stated. While noise
skipping parsers are tailored to GLR and speech recognition, bounded seas target agile
modeling, can be used with PEGs, are deterministic and allow a grammar engineer to
control when to skip input.

Fuzzy Parsing

The term fuzzy parser was coined for Sniff [Bis92], a commercial C++ IDE that uses a
hand-made top-down parser. Sniff can process incomplete programs or programs with
errors by focusing on symbol declarations (classes, members, functions, variables) and
ignoring function bodies. In linguistics or natural language processing [Asv95], the
notion of fuzzy parsing corresponds to an algorithm that recognizes fuzzy languages.

The semi-formal definition of a fuzzy parser was introduced by Koppler [Kop97].
Fuzzy parsers recognize only parts of a language by means of an unstructured set of
rules. Compared with whole-language parsers, a fuzzy parser remains idle until its
scanner encounters an anchor in the input or reaches the end of the input. Thereafter
the parser behaves like a normal parser. In the fuzzy parsing framework, islands can
occur in any order, always start with a terminal and everything between them is ignored;
in the bounded seas paradigm, islands are constrained by the context-free structure of
the grammar, which makes bounded seas more suitable when extracting structured data
and thus more suitable for agile modeling.

Skeleton Grammars

Skeleton grammars [KL03] address the issue of false positives and false negatives when
performing tolerant parsing by inferring a tolerant (skeleton) grammar from a precise
baseline grammar.

Our approach tackles the same problem as skeleton grammars: improving the preci-
sion of island grammars. They both maintain the composability property and both can
be automated. Skeleton grammars use the standard first and follow sets known from
standard parsing theory [GJ08a, pp. 235-361] for synchronization with the baseline
grammar.

Bounded seas, however, do not require a precise baseline grammar and they have to
find the point of synchronization based only on the the main grammar itself. Therefore
the main grammar has to contain all the relevant information (e.g., when extracting
classes and methods with bounded seas block definitions are essential to place meth-
ods properly). Because the main grammar of bounded seas is typically far from com-
plete, bounded seas use the NEXT set (instead of first and follow) to reach the required
precision. If bounded seas are provided with a baseline grammar, boundaries can be
precisely computed from the baseline. The fact that bounded seas do not require the
baseline grammar makes them suitable for agile modeling, which focuses on incremen-
tal development of a grammar from scratch.

CHAPTER 5. SEMI-PARSING 82

Bridge Parsing

Bridge parsing is a novel, lightweight recovery algorithm that complements existing
recovery techniques [NNEH09]. Bridge parsing extends an island grammar with the
notion of bridges and reefs. Islands denote tokens that open or close scopes. Reefs are
attributed tokens that add information (e.g., indentation) to nearby islands. Islands and
reefs are created in a tokenizing phase. Bridges connect matching opening and closing
islands in a bridge-building phase. The corresponding islands are searched with the
help of reefs (e.g., indentation can be used to find matching brackets). If some islands
are not connected (e.g., if the opening or closing scope island is missing), the bridge
repair phase tries to repair them with the help of information from reefs.

The focus of bounded seas is on data extraction rather than on error recovery and
bounded seas are missing advanced error-recovery techniques available in the bridge
parsing. Bounded seas are meant to be used on valid inputs without errors. If an erro-
neous chunk appears, bounded seas skip such a chunk until a valid chunk is found. To
our best knowledge, techniques used in bridge parsing are complementary to bounded
seas and might help improve precision of bounded seas on erroneous inputs.

Permissive Grammars The idea of a permissive grammar [KdJNNV09, JKSV12] is
to extend an existing baseline grammar so that it accepts inputs with minor errors (e.g.,
missing brackets, semicolons, etc.). A permissive grammar is also a normal grammar
and can be tweaked by a language engineer. Using a specialized version of the GLR
algorithm, both syntactically correct and incorrect programs can be efficiently parsed
using these grammars [KdJNNV09].

Contrary to bounded seas, which target the area of rapid data extraction, permis-
sive grammars are supposed to help IDE developers with interactive parsing and error
recovery as the user is writing a program. Similarly to bounded seas, permissive gram-
mars extend the concept of island grammars and use water for error recovery. Even
though bounded seas can be used to skip over noise in input, a bounded sea handles
missing or misspelled input simply by ignoring the whole erroneous chunk until a valid
chunk is found. Permissive grammars try to find the best way to fix an erroneous chunk
(and not only skip over it). Bounded seas fit better the domain of agile modeling, as
they do not target error recovery, can skip large chunks of code and do not require a
baseline grammar.

5.7 Conclusion
In this chapter we introduced bounded seas — a composable, reusable, robust and
easy to use semi-parsing technique focused on reverse engineering. We show that with
bounded seas it is possible to create a robust, precise and easy to extend parser for
extracting data from a source code without any baseline grammar provided. In the
concrete example of Java parsers in Pharo, bounded seas outperform any other parser
available in terms of precision and recall. Because of context-sensitivity of bounded
seas, they suffer from a worse performance than their island counterparts.

The implementation, tests, validations, benchmarks and measurements from this
chapter can be re-run. The prepared image is available online.16

16http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

6
Adaptable Parsing Strategies

In the previous chapters we focused on flexibility of a framework for agile modeling.
We use scannerless parsing to reduce compositional obstacles and deal with lexical
ambiguities and we utilize a PEG-based parser combinator framework to allow for
modularity and extensibility. We extended PEGs with (i) context-sensitive operators to
allow for indentation and other context-sensitive grammar definitions; and (ii) bounded
seas to allow for tolerant and composable grammar definitions.

Yet, these technologies comes at a price of lesser efficiency. With the scannerless
nature of PEGs their complex formalism is used to parse tokens that could be rec-
ognized by finite state machines. Unlimited lookahead of PEGs comes at a cost of
constant backtracking even when parsing deterministic languages. With the context-
sensitive extension complex context-aware mementos are used even in cases when a
context is not modified and for the same reason bounded seas suffer from a worse
performance compared to their island variants. Last but not least, there is a powerful
Turing-equivalent formalism behind every parser combinator while only a fraction of
its capabilities is utilized most of the time.

Scanning parsers offer excellent performance thanks to the scanner-parser pipeline,
which utilizes two different parsing strategies. First a lexical strategy recognizes reg-
ular elements — tokens — and later these tokens are used to recognize a context-free
structure. Such an approach is however static, as the two phases are strictly separated
and the set of applicable grammars is limited.

In our approach we extend the idea of different parsing strategies. We combine
multiple parsing strategies in a single parsing framework that switches between these
strategies dynamically, back and forth, during a single parsing phase. The framework
selects the most appropriate parsing strategy for each nonterminal and switches to the
selected strategy whenever the nonterminal is being parsed.

We present a parser compiler, a source-to-source translator that applies different
parsing strategies for different parts of a grammar. Based on a compile-time analy-
sis of a grammar, a parser compiler switches between a parser and a recognizer to
avoid superfluous object allocations, applies simpler and more efficient parsing strate-
gies to recognize tokens, optimizes choices to minimize backtracking, applies context-

83

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 84

sensitive memoization only when necessary, and reduces the composition overhead of
parser combinators while preserving their flexibility.

The result of “compilation” is an optimized top-down parser that provides perfor-
mance comparable to a hand-written code. In particular, based on our benchmarks
covering several different grammars for PetitParser,1 a parser compiler offers a per-
formance improvement by a factor ranging from two to twenty-five, depending on a
grammar. Based on our Smalltalk case study, our approach is 10% slower compared to
a highly-optimized, hand-written parser.

The chapter is organized as follows: We explain parsing overhead of parser com-
binators on a concrete example of a grammar defined in PetitParser in section 6.1.
In section 6.2 we introduce a parser compiler, which eliminates the overhead of Pe-
titParser. In section 6.3 we describe in detail how do we identify and apply different
parsing strategies. In section 6.4 we analyze performance of a parser compiler in differ-
ent configurations. In section 6.5 we briefly discuss related work and finally, section 6.6
concludes this chapter.

6.1 Motivating Example
A grammar fragment written in DSL used by PetitParser (see Table 3.2) describing a
simple programming language is shown in Listing 6.1.

letterOrDigit← #letter / #digit
identifier ← (#letter letterOrDigit*)
idToken ← identifier token
classToken ← (’class’ &#space) token

class ← classToken idToken body
map: [:classToken :idToken :body |

ClassNode new
name: idToken value;
body: body

]
body ← indent

(class / method)*
dedent

program ← class+

Listing 6.1: Simple grammar in PetitParser DSL.

A program in this grammar consists of a non-empty sequence of classes. A
class starts with a classToken , followed by an idToken and a body . The

classToken rule is a ’class’ keyword followed by a space. Identifiers start
with a letter followed by any number of letters or digits. Class keyword and identifiers
are transformed into instances of Token , which keep information about start and end
positions and the string value of a token. There is a semantic action associated to a
class rule that creates an instance of ClassNode filled with an identifier value

and a class body.

1arithmetic expressions, Java, Smalltalk and Python

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 85

A class body is indentation-sensitive, i.e., indent and dedent determine the
scope of a class (instead of commonly used brackets e.g., { and }). The indent

and dedent rules determine whether a line is indented, i.e., on a column strictly
greater than the previous line or dedented, i.e., on a column strictly smaller than the
previous line. The class body contains a sequence of classes and methods.

Combinators Composition Figure 6.1 shows a composition of parser combinators
that are created after evaluating the code in Listing 6.1. In the case of PetitParser, this
composition is created “ahead-of-time” before a parse attempt takes place and can be
reused for multiple parse attempts.

map:

Plus
program

Token
classToken

Token
idToken

Sequence
body

Action
class

Sequence
identifier

Sequence

ClassNode new
 id: idToken value
 body: body

CharClass
#letter

Choice
letterOrDigit

CharClass
#digit

Star

…
indent

Star
dedent

Choice

Action
method

…

Figure 6.1: The structure of parser combinators created after evaluating the code
of Listing 6.1.

The root program rule is translated into a Plus parser referencing the class

combinator. The class rule is an Action parser — a parser that evaluates a
block — specified by a map: parameter, the arguments being collected from the re-
sult of an underlying Sequence parser. The idToken and classToken rules

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 86

are Token parsers, which consume whitespace and create token instances. The
′class′ rule is a Literal parser, which is a leaf combinator and does not refer

to any other combinators. The classToken rule contains a sequence of Literal

and AndPredicate combinators (omitted in the Figure 6.1). The identifier

rule is a sequence of CharClass and Star parsers. The Choice parser from
the letterOrDigit rule shares the CharClass parser with its identifier

grand-parent. The body rule is a sequence of indent , Star and dedent , where

indent and dedent are Python-like indent and dedent as we defined earlier
in Listing 4.11. The class combinator is shared by program and body . The

structure of method has been omitted.
Though straightforward and easy to understand, such a composition of parser com-

binators suffers from several performance issues as discussed in the following sections.

6.1.1 Composition Overhead
Composition overhead is caused by calling complex objects (parsers) even for simple
operations.

For example, consider the grammar shown in Listing 6.1 and letterOrDigit∗
in identifier . This can be implemented as a simple loop, but in reality many meth-
ods are called. For each character, the following parsers are invoked: A Star parser
(see Listing C.7 in Appendix C), a Choice parser (see Listing C.4 in Appendix C)
and two CharClass parsers (see Listing C.3 in Appendix C). Each of these parsers
contains at least five lines of code, averaging twenty lines of code per recognized char-
acter.

The same situation can be observed when parsing &#space . AndPredicate

(see Listing C.2) and CharClass (see Listing C.3) are invoked during parsing. The
and predicate creates a memento and the char operator moves in the stream just to be
moved back by the and predicate in the next step. Ideally, the result can be determined
with a single comparison of a stream peek.

6.1.2 Superfluous Intermediate Objects
Superfluous intermediate objects are allocated when an intermediate object is created
but not used. A terminal combinator typically returns a literal (e.g., character) and non-
terminal combinator returns a composition of its children (e.g., in collection). Together,
they build a concrete syntax tree (CST),2 which is later transformed into a more
appropriate representation. Yet in some cases, this CST is never used or its usage is
needlessly complicated.

For example, consider input ’Petit’ parsed by idToken . The return value
of idToken is a Token object containing ’Petit’ as a value and 1 and 7

as start and end positions. Yet before a Token is created, a Star parser (see List-
ing C.7) and a Sequence parser (see Listing C.6) create intermediate collections

resulting in (P,(e,t,i,t)) nested arrays that are later flattened into ’Petit’

in TokenParser (see Listing C.8) again.

2http://www.webcitation.org/6k64scfyi

http://www.webcitation.org/6k64scfyi

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 87

Another example is the action block in the class . The classToken creates
an instance of Token . Yet the token is never used and its instantiation is interesting
only for a garbage collector. Moreover, the Sequence parser wraps the results into

a collection and the Action parser unwraps the elements from the collection in the
very next step in order to pass them to the action block as arguments (see Listing C.1).

Furthermore some mementos in sequences are never used because an underly-
ing parser never fails (it is nullable as explained in Definition A.7). For example,
Sequence in idToken creates a memento that is never used because the second

part of the identifier sequence, i.e., letterOrDigit∗ , is nullable.

6.1.3 Backtracking Overhead
Backtracking overhead arises when a parser enters a choice alternative that is predes-
tined (based on the next k tokens) to fail. Before failure, intermediate structures, me-
mentos and Failure instances are created and time is wasted.

Consider input ’123’ and the idToken rule, which starts only with a letter.
Before failure, the following parsers are invoked: TokenParser (see Listing C.8),
Sequence (see Listing C.6), CharClass (see Listing C.3). Furthermore, as

TokenParser tries to consume a whitespace (e.g., using #space∗), another

Star (see Listing C.7) and CharClass (see Listing C.3) are invoked. During
the process, two mementos are created. These mementos are used to restore a context
even though nothing has changed, because parsing has failed on the very first character.
Last but not least, a Failure instance is created.

As a different example, consider letterOrDigit or the more complex choice

variant class/method that can be (for clarity reasons) expanded to:

((’class’ token) idToken body) /
((’def’ token) idToken body)

The choice always invokes the first alternative and underlying combinators before
the second alternative. In some cases, e.g., for input ’def bark ...’ , based on
the first character of input, it is valid to invoke the second alternative without entering
the first one. In other cases, e.g., for input ’package Animals ...’ , it is valid
to fail the whole choice without invoking any of the parsers.

Yet the choice parser invokes both alternatives creating superfluous intermediate
collections, mementos and failures before it actually fails.

6.1.4 Context-Sensitivity Overhead
In the case of PetitParser, the context-sensitivity overhead appears when a context con-
tains non-empty stacks (e.g., an indentation stack, an invocation stack, etc.). When
memoizing a parser, deep copies of stacks are created (see Listing 4.8).

This is the right approach in some cases, e.g., the body sequence where indent

modifies the indentation stack (see for example Listing 4.11). If any of the subsequent
rules in body fails, the original stack has to be restored. However, in other cases, e.g.,

the identifier sequence where none of the underlying combinators modifies the
indentation stack, the deep copy of a context is superfluous.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 88

6.2 A Parser Combinator Compiler
The goal of a parser compiler is to provide a high-performance parser from a parser
combinator while preserving all the advantages of parser combinators. To achieve its
goal, a parser compiler analyzes the given PEG grammar, selects the most appropriate
parsing strategy for each of its rules and creates a top-down parser where each method
represents a rule of the grammar with the selected strategy implemented in the method
body.

Figure 6.2 shows the work-flow of parser development with the parser compiler
we present. First, flexibility and comprehensibility of combinators is utilized (proto-
type phase). Then, a parser compiler applies domain-specific optimizations, builds a
top-down parser (compile phase) and allows an expert to further modify the compiled
parser at her will3 to further improve the performance (hand-tune phase). In the end,
the resulting parser can be deployed as an ordinary class and used for parsing with peak
performance (deployment phase).

 Compile
 Hand-
tune

 Prototype

Comprehension
& Flexibility

Expert’s
Insight

 Optimizations

 Deploy

Performance

Figure 6.2: In the prototype phase a language engineer utilizes the advantages of
parser combinators that are later compiled to a high performance parser, possibly

tuned by the engineer and deployed.

The idea of a parser compiler fits well into agile modeling and addresses the perfor-
mance problems of a parser for agile modeling. The parser compiler does not restrict
grammars it can optimize (in the worst case it simply does not optimize). It works auto-
matically without user interaction and the output can be further customized if needed.

6.2.1 Adaptable Strategies
As mentioned in section 6.1 there are four different kinds of overhead: (i) compo-
sition overhead; (ii) superfluous intermediate objects; (iii) backtracking overhead; and
(iv) context-sensitivity overhead. The different parsing strategies target these four kinds
of overhead and reduce it.

The parser compiler can work in two different modes: a scannerless mode and a
scanning mode. The scanning mode provides better performance but cannot be used
for all the grammars,4 therefore the scannerless mode serves as a fallback option. The
parsing strategies recognized and utilized by a parser compiler in a scannerless mode
are visualized in Figure 6.3 and the strategies utilized in a scanning mode are in Fig-
ure 6.4.

3A parser compiler recognizes a hand-tuned code and does not override it unless explicitly stated.
4As we explain in Appendix E.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 89

Different languages are parsed by different strategies. For example, some combina-
tors describing regular languages can be optimized by specializations, parsing expres-
sions and recognizers in the scannerless mode and by regular parsing expressions in
the scanning mode. The recognizers strategy of a scannerless mode can be combined
with both; specializations and parsing expressions.

The combinators describing context-free languages are optimized by LL(1)
choices, nondeterministic choices and, again, by parsing expressions. Furthermore,
combinators can be optimized to use only context-free memoizations, thus there are
also context-free combinators.

There is not much space to optimize combinators describing context-sensitive lan-
guages; some of them can be optimized using context-sensitive parsing expressions.

A parser compiler in a scanning mode utilizes a scanner (see Appendix E) to parse
regular parsing expressions (see section E.2) and to guide choices to choose the correct
alternative based on the next token. In case a scanner cannot be used a parser compiler
falls back to a scannerless mode with character-based alternatives. A short description
of all the strategies applied by a parser compiler follows:

Combinators serve as a fallback option. Whenever a parser compiler does not identify
a suitable strategy, the original combinator is used. This way it is ensured that
the parser compiler works even for unknown combinators.

Context-Sensitive Parsing Expressions (CS-PEs) reduce composition overhead, be-
cause they perform loop unrolling5 of choices (see the implementation in List-
ing C.4) and sequences (see the implementation in Listing C.6).

Parsing Expressions (PEs) reduce composition overhead of context-sensitive com-
binators and context-sensitivity overhead. They reduce composition overhead
because they perform loop unrolling. They reduce context-sensitivity overhead
because they use only context-free mementos instead of more complex context-
sensitive ones.

Nondeterministic Choices reduce backtracking overhead, because they reject an al-
ternative based on the next character (or token) of input.6

Deterministic Choices reduce backtracking overhead, because they choose the cor-
rect alternative based on the next character (or token) of input.

Regular Parsing Expressions (RPEs) reduce composition overhead by replacing a
hierarchy of combinators by a finite state automaton, which can be implemented
more efficiently than a recursive top-down parser.

Specializations reduce composition overhead by replacing a hierarchy of combinators
by a simple programming construct such as a loop or a comparison, which are
more efficient than interactions of combinators.

Recognizers reduce superfluous intermediate allocations because they avoid interme-
diate representations. Recognizers return only true or false instead of CST.
This improves performance since object initialization methods do not need to be
run and because it improves the efficiency of a typical Smalltalk garbage collec-
tor [Wil92].

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 90

Specializations

Scannerless
LL(1) Choices

Parsing Expressions

Context-Sensitive
Parsing Expressions

R
eg

ular
C

o
ntext -F

re
e

C
on

text -S
en

sit ive

Context-Free Combinators

R
ec

og
ni

ze
rs

Nondeterministic
Scannerless LL(1) Choices

Combinators

Parsing Expressions

Figure 6.3: Parsing strategies applied in a scannerless mode. The recognizer
strategy can be combined with both, specializations and recognizers.

While Figure 6.3 and Figure 6.4 serve as an overview, they are neither precise nor
exhaustive. For example, scannerless choices can exist in a context-free and a context-
sensitive variant. In reality the borders between regular, context-free and context-
sensitive parsing expressions are not as clear as visualized. We avoid such details
to improve comprehensibility of the overview. In the following section we describe in
detail when and how the parser compiler applies these strategies and how the final code
looks like.

6.3 Parser Optimizations
Parser combinators form a graph with cycles. A parser compiler uses this graph of com-
binators as its intermediate PEG-aware representation. The optimizations themselves
are implemented as a series of passes over the graph, each performing a transformation
using pattern matching. Particular nodes are moved, replaced with more appropriate
alternatives, or changed and extended with additional information. In the final phase,
these nodes are visited by a code generator to implement the selected strategy in the

5http://www.webcitation.org/6k65AygCX
6They are not deterministic because even if an alternative is rejected, it is not clear which of the remaining

alternatives should be selected.

http://www.webcitation.org/6k65AygCX

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 91

Nondeterministic
LL(1) Choices

Regular Parsing
Expressions

LL(1) Choices

Context-Sensitive
Parsing Expressions

R
eg

ular
C

o
ntext -F

re
e

C
on

text -S
en

sit ive

Context-Free Combinators

Combinators

Parsing Expressions

Figure 6.4: Parsing strategies applied in a scanning mode.

host code. Code generation results in a class where each method represents a combi-
nator in the modified graph of parser combinators.

Contrary to other representations used for performance optimizations (e.g., AST,7

Bytecode,8 SSA9 or LLVM IR10) the intermediate representation of a parser compiler
is high-level, directly represents the target domain and therefore allows for domain-
specific optimizations. For example, a parser compiler can directly check if an expres-
sion is nullable or a choice is deterministic. This would be close to impossible with
low-level representations.

The following section describes the optimizations in detail. We use the following
syntax for rewriting rules. The specific class of combinator is in angle brackets <> ,
e.g., all the character class combinators are marked as <CharClass> . Any parser
combinator is <Any> . A parser combinator that is a child of a parent P is marked

P→∗<Any> . We use this syntax to refer to all the successors of a given parent P .

For example, program→∗<Any> refers to all the parsing expressions in the gram-

mar from Listing 6.1.
A parser combinator with a property is marked with : and the property name, e.g.,

7http://www.webcitation.org/6k64zYXWe
8http://www.webcitation.org/6k650GihL
9http://www.webcitation.org/6k651b8Pg

10http://www.webcitation.org/6k652NVlc

http://www.webcitation.org/6k64zYXWe
http://www.webcitation.org/6k650GihL
http://www.webcitation.org/6k651b8Pg
http://www.webcitation.org/6k652NVlc

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 92

<Any:nullable> . Adding a property to a parser combinator is marked with +

sign and the property name, for example <Any+nullable> adds a nullable
property.

Delegating parsers embed the parser which they delegate to in angle brackets, e.g.,
<Sequence<Any><Any>> represents a sequence of two arbitrary combinators.

An alternative syntax for sequences and choices and other delegating operators is to
re-use the PEG syntax, e.g., <Any> <Any> is also a sequence of two arbitrary com-
binators. The rewrite operation is⇒. Merging a choice of two character classes into a
single one is written as:

<CharClass> / <CharClass> ⇒ <CharClass>

6.3.1 Regular Optimizations
Intuitively, regular optimizations are performed on a token level, i.e., on expressions
recognizing identifiers, numbers or keywords. Some of these expressions can be ex-
pressed by finite state automata, but since PEGs are scannerless and have different
semantics than regular expressions this is not always possible.

Regular Parsing Expressions

Regular parsing expressions (see section E.2) are expressions recognizable by finite
state automata (FSAs). FSAs can be implemented more efficiently than parsing expres-
sions, without backtracking, composition overhead, or superfluous object allocations.

During a dedicated optimization phase, all expressions are analyzed for their “reg-
ularity” and marked as regular +regular . All the regular expressions are wrapped
with a <Scanner> combinator.

<Any:regular> ⇒ <Scanner<Any>>

A <Scanner> combinator represents a traditional scanner that uses an imple-
mentation of an FSA to parse input. For example, identifier is a regular parsing
expression and can be parsed with <Scanner> :

identifier ⇒ <Scanner<#letter <#letter / #digit>*>

In the final phase, the code generator produces the following code from the
identifier sequence:

scanner scan_identifier

Details about the scanner and its integration into a parser are provided in Appendix E.

Specializations

Specializations reduce composition overhead by replacing a hierarchy of combinators
by a simple programming construct such as a loop or a comparison.

Returning to the problem with letterOrDigit∗ in subsection 6.1.1 (let us sup-
pose that a scanner is not utilized), the whole rule is specialized as an instance of the
<CharClassStar> combinator. The #digit / #letter rule is specialized

using a single CharClass combinator [a-zA-Z0-9] , and a repetition of the

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 93

character class is replaced by a specialized CharClassStar combinator, which
can be implemented as a while loop. The letterOrDigit∗ rule is rewritten to the
following:

letterOrDigit* ⇒ <CharClassStar[a-zA-Z0-9]>

In the final phase, the code generator produces the following code, which contains only
three lines of code per consumed character:

letterOrDigitStar
| retval |
retval ← OrderedCollection new.
[context peek isLetter or:
[context peek isDigit]] whileTrue: [

retval add: context next.
].
↑ retval

Returning to the problem with &#space in subsection 6.1.1, the whole rule

is specialized as a single AndCharClass combinator. The classToken rule is
rewritten as follows:

classToken ← ’class’ <AndCharClass[\t\n]

In the final phase, the code generator produces for AndCharClass the following
code, which does not create any mementos and does not invoke any extra methods:

↑ (context peek isSpace) ifFalse: [
Failure message: ’space expected’.

]

We implement several similar specializations, including the following:

• A new <CharClass> is created from a choice of char classes:

<CharClass> / <CharClass> ⇒ <CharClass>

• A new CharClass is created from the negation of a char class:

<CharClass> negate ⇒ <CharClass>

• CharClassStar is created from a star repetition of a char class (as we show
in the example):

<CharClass>* ⇒ <CharClassStar>

• CharClassPlus is created from a plus repetition of a char class:

<CharClass>+ ⇒ <CharClassPlus>

• AndCharClass (or NotCharClass) is created from char class predi-
cates:

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 94

&<CharClass> ⇒ <AndCharClass>
!<CharClass> ⇒ <NotCharClass>

• AndLiteral (or NotLiteral) is created from literal predicates:

&<Literal> ⇒ <AndLiteral>
!<Literal> ⇒ <NotLiteral>

• TokenCharClass is created from a single-character token:

<CharClass> token ⇒ <TokenCharClass>

Recognizers

Recognizers target the problem of superfluous object allocations. Combinators form-
ing a Token parser are marked to avoid generating intermediate representations
(+recognizer) because tokens do not have an internal structure (as described

in section 3.2). The same happens in the case of and & and not ! predicates, which
return only true or false and discard their result. Recall that P →∗<Any> refers
to all the children of P .

<Token>→∗<Any> ⇒ <Token>→∗<Any+recognizer>
<AndPredicate>→∗<Any> ⇒ <AndPredicate>→∗<Any+recognizer>
<NotPredicate>→∗<Any> ⇒ <NotPredicate>→∗<Any+recognizer>

As an example, the CharClassStar parser specialized from
letterOrDigit∗ inside the idToken is marked to avoid generating an inter-

mediate representation:

letterOrDigit* ← <CharClassStar[a-zA-Z0-9]:recognizer>

In the final phase, the code generator produces the following code:

letterOrDigitStar
[context peek isLetter or:
[context peek isDigit]] whileTrue: [

context next.
].

6.3.2 Context-Free Optimizations
Optimizations on this level focus primarily on lookahead and backtracking. PEG
choices are analyzed and backtracking reduced, if possible.

Deterministic choices

Deterministic choices limit invocations and allocations caused by backtracking. Dur-
ing a dedicated optimization phase, character-based or token-based first sets [Red09,
GJ08b] are computed. If all n choice alternatives a1/a2/.../an have distinct first

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 95

set (i.e., their first sets do not overlap) a choice is marked as a deterministic choice
(+dch) and choices with dch property are replaced with a deterministic choice
combinator.

<Choice <Any> <Any>:dch> ⇒ <DeterministicChoice <Any> <Any>>

For example the class/method choice is marked as dch and the whole body

is rewritten to:

body ⇒ indent
<DeterministicChoice <class> <method>>*

dedent

In the final phase, the code generator produces the following code from this choice:

classOrMethod
| result |
(context peek == $c) ifTrue: [↑ self class].
(context peek == $d) ifTrue: [↑ self method].

Or if a scanner is utilized:

classOrMethod
| token |
token ← scanner scan_classOrMethod.
(token == #class) ifTrue: [↑ self class].
(token == #def ifTrue: [↑ self method].

Nondeterministic choices

Nondeterministic choices partially prevent invocations and allocations caused by back-
tracking. In case alternatives of a choice overlap and the choice is not determinis-
tic, it still might be optimized using guards. Guards allow for an early failure of a
parse attempt using the peek character or the next token. When suitable (e.g., the
character-based first set is reasonably small) choice alternatives are marked for a guard
(+guard). Any choice alternative marked for guarding <Any:guard> is wrapped
with Guard. Some alternatives do not need to be guarded:

<Any:guard> / <Any:guard> ⇒ <Guard<Any>> / <Guard<Any>>
<Any:guard> / <Any> ⇒ <Guard<Any>> / <Any>
<Any> / <Any:guard> ⇒ <Any> / <Guard<Any>>

Guard is a combinator that prepends an underlying combinator with a code that
fails immediately, without entering the underlying combinator. As an example, let us
slightly modify class and method from Listing 6.1 to allow for private definitions:

method ← privateToken? defToken idToken ...
class ← privateToken? classToken idToken ...

privateToken ← ’private’ token

In such a case, the alternatives of a class/method are wrapped with Guard.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 96

body ← indent
<Choice <Guard<class>> <Guard<method>)*

dedent

In the final phase, the code generator produces the following code from the choice of
class and method :

classOrMethod
| result |
(context peek == $c or: [context peek == $p]) ifTrue: [

(result ← self class) isFailure ifFalse: [
↑ result

]
].
(context peek == $d or: [context peek == $p]) ifTrue: [

(result ← self method) isFailure ifFalse: [
↑ result

]
].
↑ Failure message: ’no suitable alternative found’

Or if a scanner is utilized:

classOrMethod
| result memento |
memento ← scanner remember
(scanner guard_privateOrClass) ifTrue: [

(result ← self class) isFailure ifFalse: [
↑ result

]
scanner restore: memento.

].
(scanner guard_privateOrMethod) ifTrue: [

(result ← self method) isFailure ifFalse: [
↑ result

]
scanner restore: memento.

].
↑ Failure message: ’no suitable alternative found’

6.3.3 Context-Sensitive Optimizations
Optimization on this level addresses performance problems of parser combinators that
are too generic, and superfluous context-sensitive memoizations.

Context-Sensitive Parsing Expressions

In a combinator implementation the children of sequences and choices are called in a
loop (see Listing C.6 and Listing C.4). The parser compiler improves performance of
sequences and choices by loop unrolling.

The choices are simply unrolled; no further analysis is performed. However, the
children of sequences are analyzed for the nullability property (see Definition A.7) and

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 97

marked as nullable (+nullable) if so. Nullable expressions never fail (see Defi-
nition A.6) and error handling can be omitted. The restore after the first element of
a sequence is also omitted. It is superfluous, because in case of failure the underlying
code will have restored the context already (see the parseOn: contract in section 3.2).
We replace the sequences with their nullable variants:

<Sequence <Any> <Any:nullable>>
⇒ <SecondNullableSequence <Any> <Any>>

There is no <FirstNullableSequence> because a restore after the first element
of a sequence is superfluous. In practice, the sequences can have more children. The
rewrite rules for sequence with three children extend straightforwardly:

<Sequence <Any> <Any:nullable> <Any>>
⇒ <SecondNullableSequence <Any> <Any>>

<Sequence <Any> <Any> <Any:nullable>>
⇒ <ThirdNullableSequence <Any> <Any>>

<Sequence <Any> <Any:nullable> <Any:nullable>>
⇒ <SecondAndThirdNullableSequence <Any> <Any>>

For example, the repetition in the body rule is marked as nullable:

body ⇒ indent
<Star <class/method>:nullable>

dedent

and the body rule is rewritten as follows:

body ⇒ <SecondNullableSequence <indent>
<Star <class/method>:nullable>

<dedent>>

However, in practice when sequences have any number of children, we do not rewrite
sequences. Instead the parser compiler checks the nullable property of each child
and omits the restore code if the nullable property is set. In the final phase, the
code generator produces the code in Listing 6.2.

Context-Free Memoization

Context-free memoization reduces the overhead of context-sensitive expressions by
turning them into the context-free expressions. The context-free expressions use only a
position in a stream as a memento. The deep copy of a context is performed only when
necessary, i.e., for the context-sensitive parts of a grammar.

We describe two approaches. The first one is more universal and can be applied to a
context-sensitive grammar, e.g., a grammar utilizing grammar rewriting. The other one
is tailored to our context-sensitive extension utilizing the push O and M operators
and is based on the push–pop analysis (see Definition 4.8).

The context-sensitive analysis traverses the combinators and marks a combinator
as context-sensitive (+cs) whenever a combinator performs context-sensitive opera-
tions. This might be, for example, a combinator depending on an external context or
performing some sort of a grammar modification. If a combinator refers to a context-
sensitive combinator, the combinator is marked as context-sensitive as well:

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 98

body
| memento indent dedent classOrMethodCollection |
memento ← context remember.

[indent ← self indent] isFailure ifTrue: [
"no context restore needed here"
↑ indent

]

"classOrMethodStar is nullable, no error handling needed"
classAndMethodCollection ← self classOrMethodStar.

[dedent ← self dedent] isFailure ifTrue: [
context restore: memento.
↑ dedent

]

↑ Array with: indent
with: classAndMethodCollection
with: dedent

Listing 6.2: The code produced from the body sequence after applying the
context-sensitive parsing expressions optimization.

<Any>→∗<Any:cs> ⇒ <Any+cs>→∗<Any:cs>

The push–pop analysis also traverses the combinators, but it performs the push–pop
analysis and marks each combinator as push +push , pop +pop , context-sensitive
+cs or context-free +cf .

With push–pop analysis more expressions are marked as context-free, because con-
secutive O and M result in a context-free expression (in a sense the expression does
not change the context). Furthermore, a sequence can restore after push O by calling
pop M . Only expressions in sequences after the pop must be restored using the full

context-sensitive memento.For example, consider INDENT and DEDENT from List-
ing 4.11. After INDENT , which pushes to the indentation stack, the indentation stack
can be restored to the state before INDENT by popping the top of the indentation stack.
On the other hand, after DEDENT , which pops an element from the indentation stack,
the popped element cannot be be restored by push, because we don’t know what to
push. The solution we use is to restore from the full context-sensitive memento.

As an example of a push–pop analysis, consider the body sequence, which is
marked as context-free by push–pop analysis:

body ← <<indent:push>
<Star<classOrMethod>:cf>

<dedent:pop>:cf>

Even though the body sequence contains the context-sensitive rules indent and

dedent , no context-sensitive memento is used in the generated code:

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 99

body
| memento indent dedent classAndMethodCollection |
memento ← context position.

[indent ← self indent] isFailure ifTrue: [
"no context restore needed here, indent did it"
↑ indent

]

"classOrMethodStar is nullable, no error handling needed"
classAndMethodCollection ← self classOrMethodStar.

(dedent ← self dedent) isFailure ifTrue: [
context indentationStack pop.
context position: memento.
↑ dedent

]

↑ Array with: indent
with: classAndMethodCollection
with: dedent

Listing 6.3: The code produced from the body sequence after applying the
context-free memoizaton optimization.

For this optimization, we don’t use any rewrite rules, because the context-free mem-
oization can be combined with almost any combinator and we would have to intro-
duce a context-free and context-sensitive variants for each of the combinators. This
is a typical use case for the strategy pattern [Gam97], which we use to implement
the context-free memoizations. We use two memoization strategies (context-free and
context-sensitive) that are assigned to each of the combinators based on the result of
a push–pop analysis. The memoization strategies are used by a parser compiler to
generate appropriate remember and restore code.

Combinators

Combinators are the last resort if no other parsing strategy can be applied. This can hap-
pen, for example, if a parser compiler optimizes a bounded sea combinator (see List-
ing C.11) whose semantics is unknown to it.

The semantics of the unknown combinator is performed by the combinator itself.
Because many of combinators delegate to their children, the parser compiler optimizes
children of the unknown combinator and replaces them with a dedicated Bridge

combinator. The Bridge combinator is a standard parser combinator that forwards
the parsing logic to the compiled and optimized code. This way some parts of a parser
are executed using the compiled and optimized code while the unknown parts remain
unchanged.

If <Unknown> represents a combinator unknown to a parser compiler, the rewrite
rule is

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 100

<Unknown <Any>> ⇒ <Unknown <Bridge<Any>>>

As an example, let us suppose we define body as a bounded sea of classes or
methods:

body ← ∼(class/method)*∼

This definition of body is transformed to the following combinator graph (the rule

class/method is compiled as usually):

body ← <BoundedSea<Bridge<(class/method)*>>>

In the final phase, the code generator produces the following code, where unknown is
an instance of a BoundedSea parser:

body
↑ unknown parseOn: context

Inside the unknown>>parseOn: an island is called (see Listing C.11). The

island is replaced by a Bridge combinator that forwards to the compiled code:

Bridge>>parseOn: context
"in our example, the selector is ‘classOrMethodStar’"
↑ compiledParser perform: selector

6.4 Performance analysis
In this section we briefly introduce the PetitParser compiler, our implementation of
a parser compiler for PetitParser. We report on performance of parsers compiled by
the PetitParser compiler compared to the performance of plain PetitParser. We also
report on impact of a particular parsing strategy on the overall performance, we ana-
lyze performance of bounded seas and last but not least we compare several different
implementations of a Smalltalk parser with that compiled by the PetitParser compiler.

6.4.1 PetitParser compiler
PetitParser compiler is an implementation of a parser compiler for PetitParser. The
PetitParser compiler applies the parser compiler techniques and outputs a class that
serves as a top-down parser equivalent to the input combinator.

The PetitParser compiler is available online11 for Pharo and Smalltalk/X.12 It is be-
ing used in real environments, for example a language for Live Robot Programming13

and the Pillar markup language.14

11http://www.webcitation.org/6k65PNNfm
12http://www.webcitation.org/6k62sGRlg
13http://www.webcitation.org/6k65Q8jg9
14http://smalltalkhub.com/#!/˜Pier/Pillar

http://www.webcitation.org/6k65PNNfm
http://www.webcitation.org/6k62sGRlg
http://www.webcitation.org/6k65Q8jg9
http://smalltalkhub.com/#!/~Pier/Pillar

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 101

Validation. The PetitParser compiler is covered by three thousand tests. Further-
more, it is validated against several existing PetitParser combinators and comparing
their results with the results produced by the compiled variant of a particular parser. In
particular, the results are validated for:

• Java parser15 on OpenJDK 6 source code,16

• Smalltalk parser17 on Pharo source code,18

• Ruby and Python semi-parsers19 on several GitHub projects: Cucumber, Dias-
pora, Discourse, Rails, Vagrant, Django, Reddit and Tornado.

6.4.2 Benchmarks
We focus on performance of the following grammars, most of which we have already
analyzed in the previous chapters:

Expressions is a benchmark measuring performance of parsing arithmetic expres-
sions used in the performance analysis of parsing contexts (see section 4.4). In-
put consists of expressions with operators (,) , * , + and integer numbers.
The brackets must be balanced. The operator priorities are considered. The
grammar is in a deterministic form. The parser contains eight rules.

Indentation-Sensitive Expressions (IS Expressions) is an indentation-sensitive ver-
sion of the previous used in the performance analysis of parsing contexts
(see section 4.4). Input consists of expressions with operators * , + , integer
numbers and indent, dedent instead of brackets. The parser utilizes pars-
ing contexts and the offside line rule as described in chapter 4. For example,
’2*(3+4)’ is represented as follows:

2*
3+4

Context-Free Python (CF Python) is a benchmark measuring performance of the
Python parser used in the Python case study (see section 4.5). Input consists
of several GitHub Python projects20 that are preprocessed and explicit indent
and dedent tokens are inserted. The parser contains approximately forty rules.
The parser utilizes islands [Moo01] but not bounded seas — it extracts structural
elements and skips the rest.

Python is a benchmark measuring performance of an indentation-sensitive Python
parser used in the Python case study (see section 4.5). It does not require pre-
processing; the parser determines indent and dedent on its own. The parser
utilizes islands [Moo01], parsing contexts and the offside line rule.

15http://smalltalkhub.com/#!/Moose/PetitJava/
16http://download.java.net/openjdk/jdk6
17http://smalltalkhub.com/#!/˜Moose/PetitParser
18http://files.pharo.org/get-files/50/sources.zip
19http://smalltalkhub.com/#!/˜JanKurs/PetitParser
20Django, Tornado and Reddit.

http://smalltalkhub.com/#!/Moose/PetitJava/
http://download.java.net/openjdk/jdk6
http://smalltalkhub.com/#!/~Moose/PetitParser
http://files.pharo.org/get-files/50/sources.zip
http://smalltalkhub.com/#!/~JanKurs/PetitParser

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 102

Smalltalk is a benchmark measuring performance of a Smalltalk parser. Input con-
sists of a source code from a Pharo 5 image.21 The parser contains approximately
eighty rules.

Java is a benchmark measuring performance of a Java parser provided by the Moose
analysis platform community [NDG05] used in the bounded seas Java case-study
(see section 5.5). Input consists of standard JDK library files. The parser con-
tains approximately two hundred rules.

Java Sea is a benchmark measuring performance of a Java sea parser utilizing
bounded seas used in the bounded seas Java case-study (see section 5.5). The
parser contains approximately twenty rules.

The presented benchmarks cover a variety of grammars varying from small ones
to complex ones with size from eight to two hundred rules. Some grammars are
deterministic (arithmetic expressions) and some utilize longer lookahead (Smalltalk
and Java).22 They also cover standard grammars (Expressions, Smalltalk and Java),
context-sensitive grammars (IS Expressions and Python), island grammars (CF Python,
Python) and a bounded sea grammar (Java Sea).

How we measure. We run each benchmark ten times using the latest release of the
Pharo VM for Linux.23 All the parsers and inputs are initialized in advance, then we
measure time to parse.

We report on speedup (the ratio between original PetitParser serving as a baseline
and its compiled version) and time per character. When measuring speedup, we con-
sider the best time. To estimate impact of a garbage collector, we collect both times,
with and without the garbage collection. When showing time per character, we visu-
alize five-number summary, median is represented by a bar, lowest value, first, third
quartiles and highest value are represented by a box with whiskers. In this chapter we
show only the most important graphs; all the remaining graphs with more details can
be found in Appendix F.

Results. The speedup of a compiled version compared to the original version is
in Figure 6.5 (its zoomed-in version is in Figure F.2). The speedup ranges from two to
twenty-five. Most of the parsers have speedup in a range from two to five. The excep-
tions are the Python parser and the Java Sea parser, for which we measure twenty-five
times and ten times better performance.

Surprisingly, the speedup of IS Expressions is significantly lower compared to the
speedup of other-context-sensitive parsers, i.e., Python and Java Sea. This is caused by
a significantly larger number of context-sensitive mementos created in Python and Java
Sea parsers.

In terms of time per character as visualized in Figure 6.6 (its zoomed-in version is
in Figure F.4) all the compiled parsers are in a range from 0.3 to 1.1µs per character.
The Python parser is performing almost as well as its context-free variant and the per-
formance of the Java Sea parser is close to the performance of the Java parser. In case
of IS Expressions, the difference is still rather high. This is caused by the simplicity of

21http://files.pharo.org/get-files/50/sources.zip
22The implementors did not bother to make it deterministic.
23from October 7, 2016

http://files.pharo.org/get-files/50/sources.zip

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 103

0

5

10

15

20

25

30

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p
e
e
d
u
p

Speedup of Dynamic Strategies

GC excluded
GC included

Figure 6.5: The speedup of compilation for different grammars.

the Expressions grammar where the overhead caused by indentation (even though op-
timized) is still significant because indentation context-sensitive rules consume a large
part of input.

0

5

10

15

20

25

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

Standard
GC time

Compiled
GC time

Figure 6.6: The time-per character for different grammars.

6.4.3 Parsing Strategies Impact
We report on speedup (ratio between original PetitParser and the compiled version)
and time per character. When compiling we enable different parsing strategies and we

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 104

report on these. Because of the way the PetitParser compiler is implemented, some
parsing strategies cannot be applied without transforming the parser into the context-
sensitive parsing expressions (PE). Therefore the context-sensitive parsing expressions
are always included. We use the following configurations:

PE transforms combinators of PetitParser to context-sensitive parsing expressions per-
forming loop unrolling as described in section 6.3.3.

PE+RE applies all the transformations from subsection 6.3.1 to the context-sensitive
parsing expressions (PE). If possible a scanner is utilized, otherwise specializa-
tions and recognizer strategies are utilized. The context-sensitive mementos are
used, choices are not optimized.

PE+CF applies all the transformations from subsection 6.3.2 to the parsing expres-
sions (PE). Only character-based deterministic choices and guards are utilized
because regular parsing expressions are not detected and a scanner cannot be
used to optimize choices. The context-sensitive mementos are used.

PE+CS applies all the transformations from subsection 6.3.3 to the parsing expres-
sions (PE). The parsing expressions are analyzed with the push–pop analysis
and a context-free memoization is used whenever possible. Regular expressions
and choices are not optimized.

PE+RE+CF applies transformations from subsection 6.3.1 and subsection 6.3.2 to
the parsing expressions (PE). If possible a scanner, token-based determinis-
tic choices and guards are utilized. Otherwise specializations, recognizers,
character-based deterministic choices and guards are utilized. The context-
sensitive mementos are created.

PE+RE+CS applies transformations from subsection 6.3.1 and subsection 6.3.3 to the
parsing expressions (PE). If possible a scanner is utilized, otherwise specializa-
tions and recognizers are utilized. The parsing expressions are analyzed with the
push–pop analysis and a context-free memoization is used whenever possible.
Choices are not optimized.

PE+CF+CS applies transformations from subsection 6.3.2 and subsection 6.3.3 to the
parsing expressions (PE). Only character-based deterministic choices and guards
are utilized because regular parsing expressions are not detected and a scanner
cannot be used to optimize choices. The parsing expressions are analyzed with
the push–pop analysis and a context-free memoization is used whenever possi-
ble. The regular expressions are not optimized.

All applies all the transformations. If possible a scanner and token-based determin-
istic choices and guards are utilized. Otherwise specializations, recognizers,
character-based deterministic choices and guards are utilized. The parsing ex-
pressions are analyzed with the push–pop analysis and a context-free memoiza-
tion is used whenever possible.

The speedup of a particular configuration is shown in Figure 6.7 (its zoomed-in
version is in Appendix, Figure F.8). The baseline is the plain PetitParser version. The
graphs illustrate how much a particular configuration contributes to the overall perfor-
mance. Times per character and detailed graphs for each of the grammars are in Ap-
pendix F.2.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 105

0

5

10

15

20

25

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p

e
e
d

u
p

Speedup of Dynamic Strategies

PE
PE+RE

PE+CF
PE+CS

PE+RE+CF
PE+RE+CS

PE+CF+CS
All

Figure 6.7: Speedup against plain PetitParser for different configurations.

Different strategies have different impact on each of the parsers. Regular expres-
sion strategies (PE+RE), for example, optimize the Smalltalk and Java Sea parsers
well, on the other hand, they are worse than standalone parsing expressions (PE) in
the case of Expressions. This is caused by a scanner that provides the best perfor-
mance when combined with the context-free optimizations as we illustrate in subsec-
tion 6.4.4. Context-free strategies (PE+CF) affect the most the CF Python, Python
and Java parsers. Context-sensitive strategies (PE+CS) significantly affect the context-
sensitive parsers such as the IS Expressions, Python and Java Sea parsers. In other
cases context-sensitive strategies slightly improve performance because mementos are
integers and not objects.

6.4.4 Scanner Impact
The current implementation of a scanner limits its usage to the Expressions parser and
the Smalltalk parser. Other grammars either do not use token to consume input
(CF Python and Java Sea), are context-sensitive sensitive (IS Expressions and Python),
or do not contain regular expressions in tokens (Java, which uses tokens composed
of other tokens). The speedup using a scanning strategy is approximately 10-15%
(see Figure 6.8). The baseline is a parser that does not utilize a scanning strategy.

In order to investigate in detail the impact of a scanner on Expressions and
Smalltalk, we measure performance in the following configurations with and without a
scanner:

PE transforms combinators of PetitParser to context-sensitive parsing expressions per-
forming loop unrolling as described in section 6.3.3.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 106

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Expressions

Smalltalk

S
p
e
e
d
u
p

Speedup of Tokenization

GC excluded GC included

Figure 6.8: Speedup of a scanning strategy when applied on the Expressions and
Smalltalk parsers.

PE+SRE applies the scannerless strategies from subsection 6.3.1 to the parsing ex-
pressions (PE). There is no token analysis, only specializations and recognizers
are applied. Choices are not optimized.

PE+TRE applies the tokenizing (scanning) strategy from subsection 6.3.1 to the pars-
ing expressions (PE). Expressions are analyzed for tokens and a scanner is uti-
lized. The context-sensitive mementos are used, choices are not optimized.

PE+SRE+CF applies the scannerless strategies from subsection 6.3.1 and choice
strategies subsection 6.3.2 to the parsing expressions (PE). There is no token
analysis, only specializations and recognizers are applied. Scannerless character-
based deterministic choices and guards are utilized.

PE+TRE+CF applies the tokenizing (scanning) strategy from subsection 6.3.1 and
choice strategies subsection 6.3.2 to the parsing expressions (PE). Expressions
are analyzed for tokens and a scanner is utilized, as well as the token-based
deterministic choices and guards.

The results for Expressions are in Figure 6.9 and for Smalltalk in Figure 6.10.
The baseline is plain PetitParser. In the case of the Expressions parser, a stan-
dalone tokenization (PE+TRE) provides worse performance than its scannerless variant
(PE+SRE), but when combined with the context-free optimizations (PE+TRE+CF),
the token strategy outperforms the scannerless variant (PE+SRE+CF). In the case of
the Smalltalk parser, a standalone tokenization (PE+TRE) is better than its scannerless
variant (PE+SRE). The probable reason being the higher complexity of tokens that are
better optimized by the scanner than by the specializations and recognizers.

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 107

1

1.2

1.4

1.6

1.8

2

2.2

2.4

PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

S
p
e
e
d
u
p

Speedup of Different Configurations for Expressions

GC excluded
GC included

Figure 6.9: Speedup of Expressions against the plain PetitParser for different
configurations with scannerless or tokenizing strategies.

1

1.5

2

2.5

3

3.5

4

PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

S
p
e
e
d
u
p

Speedup of different configurations for Smalltalk

GC excluded
GC included

Figure 6.10: Speedup of Smalltalk against the plain PetitParser for different
configurations with scannerless or tokenizing strategies.

6.4.5 Memoization Impact
The context-sensitive optimizations affect the most the context-sensitive parsers: IS
Expressions, Python and Java Seas. In order to investigate in detail the impact of
the context-sensitive analysis and push–pop analysis as described in subsection 6.3.3
we compare performance of parsers based on both of these analyses. The baseline
is a configuration without any context-sensitive optimizations, i.e., the PE+RE+CF

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 108

configuration.
The impact of the context-sensitive analysis and the push–pop analysis on perfor-

mance is visualized in Figure 6.11. In the case case of IS Expressions and Python, the
push–pop analysis doubles the speedup of the context-sensitive analysis. The push–
pop analysis does not improve performance of the Java Sea parser, the context-sensitive
analysis is sufficient since Java Sea does not utilize push and pop operators.

0

0.5

1

1.5

2

2.5

3

3.5

IS Expressions

Python
Java Sea

S
p
e
e
d
u
p

Speedup of Memoization Strategies

CS Analysis Push-Pop Analysis

Figure 6.11: The impact of context-sensitive analysis and push–pop analysis on
context-sensitive memoization.

6.4.6 Java Parsers Comparison
In the Java case study in chapter 5 the Java Sea parser performs several times worse
than its island variants. The overhead is caused by the context-sensitive mementos and
can be avoided by applying the context-free memoizations.

We investigate the impact of context-free memoization strategy on Java Seas in the
CS configuration, i.e., in the configuration we apply only the context-free memoization
from subsection 6.3.3 to parser combinators (not to parsing expressions, thus CS, not
PE+CS).

There is performance of a Java Sea parser, a Java Sea parser with the context-free
memoization strategy (CS), and a Refined parser compared to performance of a Java
parser, which serves as a baseline, in Figure 6.12. All the parsers are in their plain form,
not transformed by PetitParser compiler. The Java Sea parser in the CS configuration
uses a special version of combinators that do not deep-copy the data for bounded-seas
unless invoked from a bounded sea combinator. As can be seen, the Java Sea parser
with context-free memoizations is as fast as its island variant.

6.4.7 Smalltalk Parsers Comparison
In this section we compare performance of a Smalltalk parser compiled by a PetitParser
compiler (serves as a baseline) with other implementation of Smalltalk parser available

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Java Sea Java Sea (CS) Refined Island

S
p
e
e
d
u
p

Parse time of semi-parsers compared to the Java Parser

GC included
GC excluded

Figure 6.12: Performance of Java semi-parsers compared to the Java parser

in the Pharo environment. All of the parsers create an identical abstract syntax tree
from the given Smalltalk code. The parsers are:

1. PetitParser is an implementation of a Smalltalk parser in PetitParser.

2. PetitParser Compiled is version of the above parser compiled with the Petit-
Parser compiler. This parser serves as a baseline.

3. Smalltalk SmaCC is a scanning table-driven parser compiled by SmaCC [BR]
from a LALR(1) Smalltalk grammar.

4. Hand-written parser is a parser used natively by Pharo. It is a hand-written
and optimized parser and utilizes a scanner. It is probably close to the optimal
performance of a hand-written parser as it is heavily used throughout the system
and has therefore been extensively optimized by Pharo developers.

The speedup comparison is shown in Figure 6.13. Average time per character for
each of the parsers is shown in Appendix, Figure F.35. The PetitParser is approximately
three times slower than the parser compiled by a PetitParser compiler. The hand-written
parser is approximately 10% faster than the parser compiled by a PetitParser compiler.
The SmaCC parser is approximately two times slower than the parser compiled by a
PetitParser compiler. Time per character of the compiled parser is 0.29µs, 1.04µs for
the PetitParser, 0.26µs for the hand-written parser and 0.59µs for a parser generated
by SmaCC.

6.5 Related Work
There has been recent research in Scala parser combinators [Ode07, MPO08] that is
closely related to our work. The general idea is to perform compile-time optimizations

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 110

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

PetitParser Hand-written SmaCC

S
p
e
e
d
u
p

Parse time of Smalltalk parsers compared to the Compiled Parser

GC included
GC excluded

Figure 6.13: Performance speedup of Smalltalk parsers

to avoid unnecessary overhead of parser combinators at run-time. In the work Acceler-
ating Parser Combinators with Macros [BJ14] the authors argue to use macros [Bur13]
to remove the composition overhead. In Staged Parser Combinators for Efficient Data
Processing [JCS+14] the authors use a multi-stage programming [Tah03] framework
LMS [RO10] to eliminate intermediate data structures and computations associated
with a parser composition. Both works lead to a significant speedup at least for the
analyzed parsers: an HTTP header parser and a JSON parser.

Similarly to our approach, ahead-of-time optimizations are applied to improve the
performance. In contrast, our work does not utilize meta-programming to manipulate
compiler expression trees in order to optimize parser combinators. Instead we im-
plemented a dedicated tool from scratch. In our work, we consider several types of
optimizations guided by a need to produce fast and clean top-down parsers.

Other approaches leading to better combinator performance are memoiza-
tion [FS96] and Packrat Parsing [For02b] (already utilized by PetitParser). In Efficient
combinator parsers [KP98] Koopman et al. use the continuation-passing style to avoid
intermediate list creation.

There are table-driven or top-down parser generators such as Yacc [Joh75], Bi-
son [Lev09], ANTLR [PQ95] or Happy [Hap10] that provide excellent performance
but they do not easily support context-sensitivity.

Our work is also related to compilers supporting custom DSLs and providing in-
terfaces for optimizations, e.g., Truffle [HWW+14]. Yet our approach is focused on
concrete optimization techniques for parser combinators and we do not aspire for gen-
eral DSL support.

6.6 Conclusion
In this chapter, we introduced a concept of adaptable parsing strategies, which we im-
plemented in the PetitParser compiler. Based on a static analysis of a grammar the

CHAPTER 6. ADAPTABLE PARSING STRATEGIES 111

PetitParser compiler applies different parsing strategies for different parts of a gram-
mar. This approach leads to a significant performance speedup ranging from two to
twenty-five, depending on a grammar. According to our performance analyses, perfor-
mance overhead of parsing context and bounded seas can be eliminated by applying
context-sensitive aware memoizations. Furthermore, by applying the techniques de-
scribed in this chapter, performance of a parser based on the PEG definition can reach
the performance of a hand-written scanning parser.

The implementation, tests, validations, benchmarks and measurements this chapter
can be re-run. The prepared image is available online.24

24http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

7
Ruby Case study

It is generally agreed that parsing Ruby is everything but an easy task. There is no
existing grammar and some rules are context sensitive. It is a major engineering task
to extract information from Ruby code.1

In this case study we utilize concepts presented in this work to trade precision for
time while extracting information from Ruby code. We prototype a Ruby semi-parser
while utilizing techniques of agile modeling and extensions presented in this work:
(i) we implement the parser in multiple iterations and for each of them we measure
precision and recall of extracted information;2 (ii) we use indentation to recognize
structural elements; (iii) we utilize a parsing context to define context-sensitive rules;
(iv) we use bounded seas to skip over unknown parts; and (v) we use a parser compiler
to speedup the development cycle.

Our study confirms that indentation serves as a good proxy [HGH08] and we reach
high precision and recall quickly. Adding context-sensitive rules for strings and com-
ments we reach the limits of our indentation-based approach. We also extract method
calls with high precision as well. However, several iterations are needed to improve re-
call. The parser based on PetitParser is relatively slow and the performance is improved
by a factor of nine when utilizing dynamic strategies.

The chapter is organized as follows: In section 7.1 we implement a parser to rec-
ognize structural elements of Ruby code (modules, classes and methods) utilizing in-
dentation. In section 7.2 we iteratively extend the parser to recognize method calls
and we iteratively improve its results. In section 7.3 we investigate performance of the
implemented parser and finally section 7.4 concludes this paper.

7.1 Ruby Structure
The standard approach to recognize structure of input is to track all the language ele-
ments that affect the structure. We use this approach in the Java case study (see subsec-

1http://www.webcitation.org/6k65YVVOG
2We use the JRuby parser as an oracle.

112

http://www.webcitation.org/6k65YVVOG

CHAPTER 7. RUBY CASE STUDY 113

tion 6.4.6) where we define a rule for blocks. It turns out to be a much harder problem
in the case of Ruby, because of the dangling end problem, which we describe in the
following section.

7.1.1 The Dangling End Problem
Ruby poses interesting parsing challenges not only for a traditional parsers, but even
for semi-parsers. The problem we faced when recognizing structure is the dangling end
problem. Normally a control structure like an if statement terminates with ’end’ .
However there is also an if modifier which does not require ’end’ :

return error if check?

There exist numerous such modifiers in Ruby,3 which resemble conditional blocks,
but have a different syntax. Such modifiers pose a problem for parsing. From the
perspective of an imprecise parser, it is hard to distinguish between a modifier and a
loop or a conditional block.

Ruby structures (such as classes, methods, blocks) end with the ′end′ keyword
(see Listing 7.1). To capture the structure of Ruby code, we need to define rules for
these structural elements, including conditional blocks and others, such as loops, do
blocks, and brace pairs.

class Shape
def draw
if (x > 0)
do_something()

end
end

end

Listing 7.1: Example of a Ruby code.

Ruby modifiers are not paired with any ′end′ as we can see in Listing 7.2. If
we incorrectly pair ′end′ , we change the structure of a program. Unfortunately, it is
hard to precisely recognize when ′if′ belongs to a modifier and when to a conditional
block unless we specify an almost complete grammar to recognize all the constructs.

class Shape
def draw
return error if check?
if (x > 0)
do_something

end
end

end

Listing 7.2: Example of Ruby code where ′if′ is not paired with any ′end′ .

3 if , unless , while and until (see http://www.webcitation.org/6k7fivIGJ)

http://www.webcitation.org/6k7fivIGJ

CHAPTER 7. RUBY CASE STUDY 114

Lookbehind

Iyadurai extracted structure with the help of an island parser, which consists of forty
parsing rules [Iya16]. This approach is based on the observation that, in the test data we
used, the only case where the starting keyword of a conditional block is in the middle
of a line, is to assign its result with an equals sign. Therefore a lookbehind for ’=’
suffices to differentiate a modifier keyword from a regular keyword.

Indentation

In this work we focus on indentation. We exploit the fact that indentation is a good
proxy for structure. We define a context-sensitive parser that uses indentation to differ-
entiate modifiers from a regular keyword. From the perspective of indentation, modi-
fiers look like loops or conditional blocks with a single line scope. As we shall see, the
use of indentation-sensitive rules simplifies the implementation of the parser.

We define a context-sensitive grammar that recognizes modules, classes, methods
and class methods in Ruby code by utilizing indentation and bounded seas. The scope
of a module, class or method extends as far as code appears to the right of the module,
class or method declaration (i.e., in the onside position). In the terminology of bounded
seas, the right boundary of seas is code in the offside position.

The definition of onside content is in Listing 7.3. We reuse the layout-sensitive
onside definition from Listing 4.7. The definition of module is in Listing 7.4.

Similarly we define class and method . The final grammar can be expressed on a
single page (see Listing 7.5). The advantage of the grammar utilizing indentation is
that a language engineer does not need to specify the rules for block elements (e.g.,
for , if-then-else , etc.) and can focus only on the parts of her interest. The

disadvantage is that this approach expects code to be properly indented.

primary ← class /
module /
method

content ← ∼(onside, primary)∼+ / ∼ε∼

Listing 7.3: Indentation sensitive definition of a Ruby structure.

module ← setOL ’module’ cpath
content

end, removeOL

end ← &#letter (aligns/offside) / #eof

Listing 7.4: Definition of a Ruby module.

CHAPTER 7. RUBY CASE STUDY 115

primary ← class /
module /
method

content ← ∼(onside, primary)∼+ / ∼ε∼

module ← setOL ’module’ cpath
content

end, removeOL

class ← setOL ’module’ cpath
content

end removeOL

method ← defn / defs

defs ← setOL identifier ’.’ fname
content

end, removeOL

defs ← setOL fname
content

end, removeOL

end ← &#letter (aligns/offside) / #eof

identifier ← #leter (#leter / #digit / ’_’)*
cpath ← identifier (’::’ identifier)*
fname ← (identifier (’?’ / ’!’ / ’=’)) /

’..’ / ’!’ / ’ˆ’ / ’<=>’ / ’==’ /
...

Listing 7.5: Indentation sensitive definition of a Ruby structure.

7.1.2 Measurements
To measure precision and recall, we use jruby-parser4 as a reference parser. We com-
pare the structure (modules, classes, methods and class methods) of Ruby code detected
by jruby-parser with the structure detected by our parser. To compare structure, we list
elements forming the structure (i.e., modules classes and methods). Each element in
the list is identified by a unique path determined by the placement of the element. For
example

<module>Graphics
<class> Graphics::Shape
<defn> Graphics::Shape.draw

refers to a method draw defined in a class Shape . Shape belongs to a

Graphics module. Another example

4http://www.webcitation.org/6k65g9UGW

http://www.webcitation.org/6k65g9UGW

CHAPTER 7. RUBY CASE STUDY 116

<class>Shape
<class>Shape::Renderer
<defs> Shape::Renderer.instance

refers to a class-side method instance of the inner class Renderer nested in a
Shape class.

Test Data We perform our study on a sample of N =5055 files of five popular
projects on GitHub: Rails5, Discourse6, Diaspora7, Cucumber8 and Valgrant.9 The
files contain in total 41522 classes and methods.

Results

The grammar from Listing 7.5 recognizes structure of code with 0.933 precision and
0.985 recall. The result can be further improved by specifying string (including
heredoc as described in subsection 4.2.1) and comment .10 This results in 0.997 pre-
cision and 0.995 recall. The perfect precision and recall cannot be reached, because
some code is not indented properly and thus assigned to a wrong class. Moreover, a
problem are strings representing regular expressions. They have the following syn-
tax: /regex/). Such a string is, without further information, indistinguishable from
two consecutive / operators, e.g., not/regex/but/path , which misleads the
parser.

7.2 Ruby Method Calls
Regarding code structure we reach promising results quickly. In the next step we try a
more challenging task: extracting method calls. We start with a naive implementation
of a method call:

call ← ’.’ identifier

However this does not allow a parser to detect receivers, so we extend it with a naive
implementation of a call with cpath receiver:

call ← cpath ’.’ identifier

Unfortunately, this implementation has rather low recall, approximately 0.8. In the
following steps, we iteratively identify elements that are missed by our implementation
and extend the definition with more and more information. We (i) add support for
array accessors (e.g., colors[2]) and special selectors (e.g., >>); (ii) add support
for prefix selectors (e.g., !true); (iii) add support for functions as receivers (e.g.,
getColor().asHex); (iv) extend function arguments with seas of calls to detect

method calls in between brackets () and [] ; (v) add support for assignments to

5http://www.webcitation.org/6k65olp6x
6http://www.webcitation.org/6k65pVD7m
7http://www.webcitation.org/6k65qF4wC
8http://www.webcitation.org/6k65qupqe
9http://www.webcitation.org/6k65rjikI

10The correct implementation of all the variants of Ruby strings was actually the major tasks when devel-
oping the parser..

http://www.webcitation.org/6k65olp6x
http://www.webcitation.org/6k65pVD7m
http://www.webcitation.org/6k65qF4wC
http://www.webcitation.org/6k65qupqe
http://www.webcitation.org/6k65rjikI

CHAPTER 7. RUBY CASE STUDY 117

distinguish them from method calls (e.g., to reject color.red = 25); and last but
not least (vi) extend the definition of strings with seas of escaped code to detect method
calls inside strings, for example:

"the value of color is: #{getColor().asHex}"

All these extensions result in fifteen additional rules to the parser, three of which11 are
implemented utilizing bounded seas.

7.2.1 Measurements
To measure precision and recall, we again use jruby-parser. We compare the call nodes
of Ruby code detected by jruby-parser with the call nodes detected by our parser. To
compare the call nodes, we describe it as a list of receivers and selectors. Each element
of the list is identified by a unique path determined by the placement of the element.
For example

<const> Graphics::Shape.draw+color
<call> Graphics::Shape.draw->rgb
<call> Graphics::Shape.draw->asCMYK

refers to a method call color.rgb.asCMYK , i.e., two calls, color as a receiver
and rgb as a selector. In the case of the asCMYK selector, the receiver is the method

call color.rgb . The calls are in a draw method of a Graphics::Shape
class.

Test Data We perform our study on the same sample of N =5015 files of the same
projects on Github: Rails, Discourse, Diaspora, Cucumber andValgrant. The files con-
tain 141537 receivers and 196758 selectors.

Results

When detecting selectors, the naive approach results in 0.964 precision and 0.798 re-
call. With all the extensions we describe, the precision and recall reach 0.987 and 0.966
respectively. All the intermediate stages are visualized in Figure 7.1. The intermediate
stages improve recall except for the cpath step, which just detects receivers having no
effect on selectors, and the assign step, which improves precision. The function inter-
mediate step even decreases recall, but the recall is fixed in the following arguments
step (it better describes function arguments). The reason for imperfect precision are
errors in detected structure and mismatch between regex strings and consecutive /
operators. The main cause of imperfect recall are features that we have not imple-
mented yet or have been implemented only partially, e.g., the parser misses method
calls in strings escaped with #[] (we implemented only #{}).

When detecting receivers, the cpath step results in 0.968 precision and 0.789 re-
call. With all the described extensions, the precision and recall reach 0.984 and 0.973
respectively. All the intermediate stages are visualized in Figure 7.2. The intermediate
stages improve recall except for the assign step, which improves precision of detected
selectors and does not affect receivers. The reason for imperfect precision are errors

11round bracket arguments, square bracket arguments and strings

CHAPTER 7. RUBY CASE STUDY 118

0.95

0.96

0.97

0.98

0.99

1

0.8 0.85 0.9 0.95 1

1

P
re

ci
si

o
n

f1
-m

e
a
su

re

Recall

Precision and Recall (Selector)

Naive

Cpath
Special

Prefix
Function Arguments

Assign String

Figure 7.1: Precision and recall of detected selectors in various stages of our
method call implementation.

in detected structure and improperly handled infix operators (e.g., in arithmetic expres-
sions). The main cause of imperfect recall are features that we have not implemented
yet, for example calls with method nodes as receivers.

0.95

0.96

0.97

0.98

0.99

1

0.8 0.85 0.9 0.95 1

1

P
re

ci
si

o
n

f1
-m

e
a
su

re

Recall

Precision and Recall (Receiver)

Cpath

Special

Prefix Function Arguments
Assign String

Figure 7.2: Precision and recall of detected receivers in various stages of our
method call implementation.

CHAPTER 7. RUBY CASE STUDY 119

7.3 Performance
In this section we focus on performance of the implemented parser. We investigate the
impact of additional rules on the performance of the parser as well as the impact of
a parser compiler. We also visualize dependency between the input size and time to
parse.

How we measured We measure performance on a random sample of N =312 files
of the same projects on Github: Rails, Discourse, Diaspora, Cucumber, Valgrant, Ty-
phoeus. We run each benchmark ten times using the latest release of the Pharo VM for
Linux.12 All the parsers and inputs are initialized in advance, then we measure time to
parse.

We report on speedup (the ratio between original PetitParser serving as a baseline
and its compiled version) and time per character. When measuring speedup, we con-
sider the best time. To estimate impact of a garbage collector, we collect both times,
with and without the garbage collection. When showing time per character, we visu-
alize five-number summary, median is represented by a bar, lowest value, first, third
quartiles and highest value are represented by a box with whiskers.

Results Average time per character of the Ruby parser in PetitParser is 50µs. The
parser compiler offers approximately nine times speedup resulting in 8µs per character.
Majority of time of the compiled version is spent in the sea memoization and in the
search for a boundary. Speedup and time per character are in Figure 7.3 and Figure 7.4
respectively.

0

1

2

3

4

5

6

7

8

9

10

Structure Structure and Calls

S
p
e
e
d
u
p

Speedup of Dynamic Strategies

GC excluded
GC included

Figure 7.3: Speedup of dynamic strategies against plain PetitParser for the Ruby
parsers from section 7.1 (Structure) and section 7.2 (Structure and calls).

The performance of the Ruby parser that extracts only structure is better than the
performance of the parser that extracts structure and calls. On the other hand, the Ruby

12from October 7, 2016

CHAPTER 7. RUBY CASE STUDY 120

0

10

20

30

40

50

60

70

80

Structure Structure and Calls

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

Standard
GC time

Compiled
GC time

Figure 7.4: Time per character of Ruby parsers from section 7.1 (Structure)
and section 7.2 (Structure and calls) for both plain PetitParser and its compiled

variant with dynamic strategies.

parser that extracts only structure and that is compiled with dynamic strategies has
worse performance than the parser that extracts all the information and that is compiled
with dynamic strategies. The extra information allows to apply more efficient parsing
strategies, which results in better overall performance. The dependency between parse
time and input size is linear as shown in Figure 7.5.

0

50

100

150

200

250

300

350

10k 20k 30k 40k

Ti
m

e
 [

m
s]

Input size [bytes]

Ruby Parsers Complexity

Ruby Parser

Figure 7.5: The dependency between the input size and time to parser for the
Ruby parser.

CHAPTER 7. RUBY CASE STUDY 121

Compared to the Python island parser and the Java Sea parser (used in case stud-
ies in chapter 4 and chapter 5 respectively), the Ruby parser is significantly slower
(see Figure 7.6). Based on our analysis, this is caused by three to four times more full
mementos created per character when compared to the Python and Java parsers. Fur-
thermore, the amount of seas invoked per character is also three times higher compared
to the Java parser, which results in more memoizations in the sea implementation. Last
but not least, the Ruby parser is backtracking more than the Python and Java parsers,
which again negatively affects performance.

0

50

100

150

200

250

300

350

10k 20k 30k 40k 50k

Ti
m

e
 [

m
s]

Input size [bytes]

Ruby Parsers Complexity

Ruby Parser
Python Parser

Java Sea Parser

Figure 7.6: Dependency between the input size and parse time of the Ruby
bounded sea parser, the Python island parser and the Java bounded sea parser.

7.4 Conclusion
In this chapter we implemented a semi-parser for Ruby that utilizes indentation,
bounded seas and context-sensitive definitions of Ruby strings. We extract structure
with 0.99 precision and 0.99 recall and we recognize receivers and selectors with pre-
cision above 0.95. We improve the initially low recall of extracted method calls in
several iteration by adding more information. This results in 0.95 recall. With dynamic
strategies we reach speedup by the factor of nine. According to our observations, pre-
cision, recall and performance are better, the more grammar rules are specified.

The resulting parser contains approximately ten rules to describe structural ele-
ments (modules, classes and method definitions), fifteen rules to describe method calls
and another ten rules that describe comments, strings and other helper rules. Though
the parser described in this chapter is far from complete, with the help of technologies
introduced in this work it is able to provide feedback from the very early stages of the
development.

We do not apply any heuristics or semi-automation techniques to specify the parser.
All the work is done by the parser developer. We reduce the burden placed on the de-
veloper with indentation-sensitive rules and bounded seas and we speedup the devel-

CHAPTER 7. RUBY CASE STUDY 122

opment cycle thanks to the dynamic parsing strategies.
The implementation, tests, validations and measurements from this chapter can be

re-run. The prepared image is available online.13

13http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

8
Conclusion

Agile modeling imposes specific requirements on the parsing technology used, espe-
cially in the areas of expressiveness, composability, tolerance and performance. Un-
fortunately, these requirements are not met by the current state of the art parsing tech-
nology. The main problem lies in the fact that current parsing algorithms try to find
a compromise between flexibility and performance. They limit the expressiveness of
grammars to improve performance while using relatively simple parsing algorithms.

In this work we (i) extend PEGs with context-sensitive definitions to improve the
expressiveness of PEGs; (ii) extend PEGs with bounded seas, a novel and composable
approach to tolerant parsing; and finally (iii) we introduce a parser compiler; a source-
to-source code translator that combines multiple parsing strategies in a single parser.

Parsing contexts (see chapter 4) allow for context-sensitive grammar definitions
while preserving understandability and semantic suitability of context-free grammars.
Parsing contexts manipulate elements in a context via push and pop operations thanks
to which the parsing contexts are easy to optimize; based on our measurements the
push–pop analysis doubles the speedup of context-free optimizations (see Figure 6.11).
Parsing contexts allow a grammar engineer to specify layout-sensitive definitions
(see subsection 4.5.1) as well as to formalize the CommonMark grammar (see Ap-
pendix G).

Bounded seas (see chapter 5) introduce a non-ambiguous operator to PEGs that
can skip an unknown input until a desired input is found. Bounded seas are highly
composable and can be easily integrated into any grammar structure. Parsers based
on bounded seas are robust and can extract information from source code with high
precision and recall, low effort and can be easily extended. When extracting structure
from Java code, the sea parser even outperforms a traditional parser (in precision and
recall as well as in effort required by a grammar engineer) as demonstrated in sec-
tion 5.5. Moreover, bounded seas can be used with layout-sensitive parsing to simplify
a grammar definition and to further improve precision and and recall of extracted data
(see section 7.1).

The novelty of a parser compiler (see chapter 6) is that to parse input a sophisticated
runtime environment is used instead of a single parsing algorithm. The parser com-

123

CHAPTER 8. CONCLUSION 124

piler analyzes a grammar, chooses the most appropriate parsing strategy and generates
a top-down parser from a PEG definition. The parser compiler significantly reduces
overhead of parser combinators, scannerless parsing and context-sensitive definitions
while preserving their expressiveness. In the case of PetitParser the speedup of a parser
compiled by a parser compiler ranges from two to five for context-free grammars and
five to twenty-five for context-sensitive grammars. Based on our case study, the perfor-
mance of a parser compiled from a PEG-based Smalltalk grammar is comparable to a
hand-written optimized scanner-parser pipeline (see subsection 6.4.7).

To validate our ideas, we integrate parsing contexts, bounded seas and a compiler
into the PetitParser framework.1 We use the extended version of PetitParser in the Ruby
case study (see chapter 7).

We use parsing contexts to define a layout-sensitive grammar that detects structure
of Ruby code. We also utilize parsing contexts to specify context-sensitive parts of
Ruby (e.g., here documents). To save time we utilize bounded seas to extract only
information of our interest, without specifying the complete grammar. Based on the
ideas of agile modeling, we incrementally refine the grammar and extract more infor-
mation with better precision, recall and even performance. To increase the grammar
engineer’s comfort, we use a parser compiler, which significantly reduces parse time
and speeds up the development cycle. In the end we are able to extract structure with
both precision and recall over 0.99 and to extract method calls and their receivers with
both precision and recall over 0.95 while the complete grammar definition does not
contain more than thirty rules.

1http://scg.unibe.ch/research/parsingForAgileModeling

http://scg.unibe.ch/research/parsingForAgileModeling

Bibliography

[AA14] Michael D. Adams and Ömer S. Ağacan. Indentation-sensitive parsing
for Parsec. In Proceedings of the 2014 ACM SIGPLAN Symposium on
Haskell, Haskell ’14, pages 121–132, New York, NY, USA, 2014. ACM.

[Ada13] Michael D. Adams. Principled parsing for indentation-sensitive lan-
guages: Revisiting Landin’s offside rule. In Proceedings of the 40th
annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’13, pages 511–522, New York, NY, USA, 2013.
ACM.

[AI15] Ali Afroozeh and Anastasia Izmaylova. Faster, practical GLL parsing.
In Bjorn Franke, editor, Compiler Construction, volume 9031 of Lecture
Notes in Computer Science, pages 89–108. Springer Berlin Heidelberg,
2015.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2Nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison Wesley, Reading, Mass., 1986.

[Asv95] P.R.J. Asveld. A fuzzy approach to erroneous inputs in context-free
language recognition. In Proceedings of the Fourth International Work-
shop on Parsing Technologies IWPT’95, pages 14–25, Prague, Czech
Republic, 1995. Institute of Formal and Applied Linguistics, Charles
University.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Transla-
tion and Compiling Volume I: Parsing. Prentice-Hall, 1972.

[Bac79] Roland C. Backhouse. Syntax of Programming Languages: Theory and
Practice. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1979.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Daw-
son Engler. A few billion lines of code later: using static analysis to find
bugs in the real world. Commun. ACM, 53(2):66–75, February 2010.

[BDH+01] M. G. J. Brand, A. Deursen, J. Heering, H. A. Jong, M. Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. Compiler Construction: 10th International
Conference, CC 2001 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April

125

BIBLIOGRAPHY 126

2–6, 2001 Proceedings, chapter The ASF+SDF Meta-environment: A
Component-Based Language Development Environment, pages 365–
370. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[BG82] Philip A. Bernstein and N. Goodman. A sophisticate’s introduction to
distributed concurrency control. In Proceedings of the Eighth Interna-
tional Conference on Very Large Data Bases, pages 62–76, 1982.

[Bis92] Walter R. Bischofberger. Sniff: A pragmatic approach to a C++ pro-
gramming environment. In C++ Conference, pages 67–82, 1992.

[BJ14] Eric Béguet and Manohar Jonnalagedda. Accelerating parser combina-
tors with macros. In Proceedings of the Fifth Annual Scala Workshop,
SCALA ’14, pages 7–17, New York, NY, USA, 2014. ACM.

[BM06] Leonhard Brunauer and Bernhard Mühlbacher. Indentation sensi-
tive languages. http://www.cs.uni-salzburg.at/ ck/content/classes/TCS-
Summer-2006/index.html, 2006.

[BR] John Brant and Don Roberts. SmaCC, a Smalltalk Compiler-Compiler.
http://www.refactory.com/Software/SmaCC/.

[BS10] John Boyland and Daniel Spiewak. Tool paper: ScalaBison recursive
ascent-descent parser generator. Electron. Notes Theor. Comput. Sci.,
253:65–74, September 2010.

[Bur75] William H. Burge. Recursive programming techniques. The systems
programming series. Addison-Wesley, Reading (Mass.), 1975.

[Bur13] Eugene Burmako. Scala macros: Let our powers combine!: On how rich
syntax and static types work with metaprogramming. In Proceedings of
the 4th Workshop on Scala, SCALA ’13, pages 3:1–3:10, New York,
NY, USA, 2013. ACM.

[Cho57] Noam Chomsky. Syntactic Structures. Mouton and Co, The Hague,
1957.

[CHP88] James R. Cordy, Charles D. Halpern, and Eric Promislow. TXL: A rapid
prototyping system for programming language dialects. In Proceedings
of The International Conference of Computer Languages, pages 280–
285, Miami, FL, October 1988.

[Chr09] Henning Christiansen. Adaptable grammars for non-context-free lan-
guages. In Joan Cabestany, Francisco Sandoval, Alberto Prieto, and
JuanM. Corchado, editors, Bio-Inspired Systems: Computational and
Ambient Intelligence, volume 5517 of Lecture Notes in Computer Sci-
ence, pages 488–495. Springer Berlin Heidelberg, 2009.

[Cor06] James R. Cordy. The TXL source transformation language. Sci. Com-
put. Program., 61(3):190–210, 2006.

[Cox07] R. Cox. Regular expression matching can be simple and fast (but is slow
in Java, Perl, PHP, Python, Ruby, ...), 2007. http://swtch.com/
˜rsc/regexp/regexp1.html.

http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html

BIBLIOGRAPHY 127

[DCMS03] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and Kevin A.
Schneider. Agile parsing in TXL. Autom. Softw. Eng., 10(4):311–336,
2003.

[dJNNKV09] Maartje de Jonge, Emma Nilsson-Nyman, Lennart C. L. Kats, and Eelco
Visser. Natural and flexible error recovery for generated parsers. In
Mark G. J. van den Brand and Jeff Gray, editors, Software Language
Engineering (SLE 2009), Lecture Notes in Computer Science, Heidel-
berg, oct 2009. Springer.

[Ear70] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94–102, 1970.

[EKV09] Giorgios Economopoulos, Paul Klint, and Jurgen Vinju. Compiler Con-
struction: 18th International Conference, CC 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, chapter Faster
Scannerless GLR Parsing, pages 126–141. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[ERKO12] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. Layout-sensitive generalized parsing. In SLE, pages 244–263,
2012.

[EV06] Sven Efftinge and Markus Völter. oAW xText: A framework for tex-
tual DSLs. In Workshop on Modeling Symposium at Eclipse Summit,
volume 32, pages 1–4, September 2006.

[FHC07] Richard A. Frost, Rahmatullah Hafiz, and Paul C. Callaghan. Modu-
lar and efficient top-down parsing for ambiguous left-recursive gram-
mars. In Proceedings of the 10th International Conference on Parsing
Technologies, IWPT ’07, pages 109–120, Stroudsburg, PA, USA, 2007.
Association for Computational Linguistics.

[FM13] Roberto Ierusalimschy Fabio Mascarenhas, Sérgio Medeiros. On the
relation between context-free grammars and parsing expression gram-
mars. CoRR, abs/1304.3177, 2013.

[For02a] Bryan Ford. Packrat parsing: a practical linear-time algorithm with
backtracking. Master’s thesis, Massachusetts Institute of Technology,
2002.

[For02b] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, func-
tional pearl. In ICFP 02: Proceedings of the seventh ACM SIGPLAN in-
ternational conference on Functional programming, volume 37/9, pages
36–47, New York, NY, USA, 2002. ACM.

[For04] Bryan Ford. Parsing expression grammars: a recognition-based syntac-
tic foundation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
111–122, New York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 128

[FS96] Richard A. Frost and Barbara Szydlowski. Memoizing purely functional
top-down backtracking language processors. Science of Computer Pro-
gramming, 27(3):263–288, November 1996.

[G1̂0] Tudor Gı̂rba. The Moose book, 2010.

[Gam97] Erich Gamma. Extension object. In Pattern languages of program de-
sign 3, pages 79–88. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[GHVJ93] Erich Gamma, Richard Helm, John Vlissides, and Ralph E. Johnson.
Design patterns: Abstraction and reuse of object-oriented design. In Os-
car Nierstrasz, editor, Proceedings ECOOP ’93, volume 707 of LNCS,
pages 406–431, Kaiserslautern, Germany, July 1993. Springer-Verlag.

[Giv13] Attieh Sadeghi Givi. Layout sensitive parsing in the PetitParser frame-
work. Bachelor’s thesis, University of Bern, October 2013.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. Freeman, San Francisco, 1979.

[GJ08a] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques — A Practical
Guide. Springer, 2008.

[GJ08b] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques — A Practi-
cal Guide, chapter 8: Deterministic Top-Down Parsing, pages 235–361.
Volume 1 of Gries and Schneider [GJ08a], 2008.

[GM95] Andy Gill and Simon Marlow. Happy: the parser generator for haskell.
University of Glasgow, 1995.

[Gra] Grace. http://gracelang.org/documents/grace-spec031303.pdf.

[Gug15] Joël Guggisberg. Automatic token classification — an attempt to mine
useful information for parsing. Bachelor’s thesis, University of Bern,
December 2015.

[Hap10] Happy — the parser generator for Haskell, 2010. http://tfs.cs.tu-
berlin.de/agg/index.html.

[Has] Haskel 98 Report.

[HGH08] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Reading
beside the lines: Indentation as a proxy for complexity metrics. In ICPC
’08: Proceedings of the 2008 The 16th IEEE International Conference
on Program Comprehension, pages 133–142, Washington, DC, USA,
2008. IEEE Computer Society.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax defi-
nition formalism SDF – reference manual–. SIGPLAN Not., 24(11):43–
75, November 1989.

[HM96] Graham Hutton and Erik Meijer. Monadic parser combinators. Techni-
cal Report NOTTCS-TR-96-4, Department of Computer Science, Uni-
versity of Nottingham, 1996.

BIBLIOGRAPHY 129

[HS91] Stephan Heilbrunner and Lothar Schmitz. An efficient recognizer for
the boolean closure of context-free languages. Theoretical Computer
Science, 80(1):53 – 75, 1991.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their
Relation to Automata. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1969.

[HWW+14] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß,
and Thomas Würthinger. A domain-specific language for building self-
optimizing AST interpreters. SIGPLAN Not., 50(3):123–132, Septem-
ber 2014.

[ISO96] Information Technology – Syntactic metalanguage – Extended BNF,
1996.

[Iya16] Rathesan Iyadurai. Parsing Ruby with an island parser. Bachelor’s the-
sis, University of Bern, April 2016.

[JCS+14] Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf,
and Martin Odersky. Staged parser combinators for efficient data pro-
cessing. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications -
OOPSLA ’14, pages 637–653, New York, New York, USA, 2014. ACM
Press.

[JKSV12] Maartje de Jonge, Lennart C. L. Kats, Emma Soderberg, and Eelco
Visser. Natural and flexible error recovery for generated modular lan-
guage environments. ACM Transactions on Programming Languages
and Systems, 34(4), December 2012. Article No. 15, 50 pages.

[Joh75] S.C. Johnson. Yacc: Yet another compiler compiler. Computer Science
Technical Report #32, Bell Laboratories, Murray Hill, NJ, 1975.

[Jos85] Aravind K.. Joshi. Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural descriptions?
Cambridge University Press, 1985.

[JS97] Aravind Joshi and Yves Schabes. Tree-adjoining grammars, 1997.

[KdJNNV09] C. L. Lennard Kats, Maartje de Jonge, Emma Nilsson-Nyman, and
Eelco Visser. Providing rapid feedback in generated modular lan-
guage environments. Adding error recovery to scannerless generalized-
LR parsing. In Gary T. Leavens, editor, Proceedings of the 24th ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA 2009), ACM SIGPLAN Notices,
New York, NY, USA, October 2009. ACM Press.

[KL03] Steven Klusener and Ralf Lämmel. Deriving tolerant grammars from a
base-line grammar. In Proceedings of the International Conference on
Software Maintenance (ICSM 2003), pages 179–188. IEEE Computer
Society, September 2003.

BIBLIOGRAPHY 130

[Kli93] Paul Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2(2):176–201, 1993.

[KLN14a] Jan Kurš, Mircea Lungu, and Oscar Nierstrasz. Bounded seas: Island
parsing without shipwrecks. In Benoı̂t Combemale, David J. Pearce,
Olivier Barais, and Jurgen J. Vinju, editors, Software Language Engi-
neering, volume 8706 of Lecture Notes in Computer Science, pages 62–
81. Springer International Publishing, 2014.

[KLN14b] Jan Kurš, Mircea Lungu, and Oscar Nierstrasz. Top-down parsing
with parsing contexts. In Proceedings of International Workshop on
Smalltalk Technologies (IWST 2014), 2014.

[KLR+13] Jan Kurš, Guillaume Larcheveque, Lukas Renggli, Alexandre Bergel,
Damien Cassou, Stéphane Ducasse, and Jannik Laval. PetitParser:
Building modular parsers. In Deep Into Pharo, page 36. Square Bracket
Associates, September 2013.

[KLV05] A.S. Klusener, R. Lämmel, and C. Verhoef. Architectural modifications
to deployed software. Sci. Comput. Program., 2005.

[Knu68] DonaldE. Knuth. Semantics of context-free languages. Mathematical
systems theory, 2(2):127–145, 1968.

[Knu90] Donald E. Knuth. The genesis of attribute grammars. In Proceedings of
the International Conference WAGA on Attribute Grammars and their
Applications, pages 1–12, London, UK, UK, 1990. Springer-Verlag.

[Kob05] Markus Kobel. Parsing by example. Diploma thesis, University of Bern,
April 2005.

[Kop97] Rainer Koppler. A systematic approach to fuzzy parsing. Software:
Practice and Experience, 27(6):637–649, 1997.

[Kos91] C. H. A. Koster. Attribute Grammars, Applications and Systems: In-
ternational Summer School SAGA Prague, Czechoslovakia, June 4–13,
1991 Proceedings, chapter Affix grammars for programming languages,
pages 358–373. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

[KP98] Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers.
In In Implementation of Functional Languages, LNCS, pages 122–138.
Springer-Verlag, 1998.

[KRS08] Richard Kelsey, Jonathan Rees, and Mike Sperber. The incomplete
Scheme 48 reference manual for release 1.8, February 2008.

[KV10] Lennart C. L. Kats and Eelco Visser. The Spoofax language work-
bench. Rules for declarative specification of languages and IDEs. In
Martin Rinard, editor, OOPSLA’10: Proceedings of the 25th Interna-
tional Conference on Object-Oriented Programming, Systems, Langu-
ages, and Applications, pages 444–463, Reno/Tahoe, NV, USA, Octo-
ber 2010.

BIBLIOGRAPHY 131

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A domain
specific language for source code analysis and manipulation. In Source
Code Analysis and Manipulation, 2009. SCAM ’09. Ninth IEEE Inter-
national Working Conference on, pages 168–177, 2009.

[KVG+16] Jan Kurš, Jan Vraný, Mohammad Ghafari, Mircea Lungu, and Oscar
Nierstrasz. Optimizing parser combinators. In Proceedings of Inter-
national Workshop on Smalltalk Technologies (IWST 2016), 2016. To
Appear.

[Lan66] P.J. Landin. The next 700 programming languages. Communications of
the ACM, 9(3):157–166, March 1966.

[Lev09] J. Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, 2009.

[LM01] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combina-
tors for the real world, 2001.

[LS75] M.E. Lesk and E. Schmidt. Lex — A lexical analyzer generator. Com-
puter Science Technical Report #39, Bell Laboratories, Murray Hill, NJ,
1975.

[LT93] Alon Lavie and Masaru Tomita. GLR* — an efficient noise-skipping
parsing algorithm for context free grammars. In In Proceedings of the
Third International Workshop on Parsing Technologies, pages 123–134,
1993.

[LV01] Ralf Lämmel and Chris Verhoef. Cracking the 500-language problem.
IEEE Software, 18(6):78–88, November 2001.

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining
mental models: a study of developer work habits. In ICSE ’06: Pro-
ceedings of the 28th international conference on Software engineering,
pages 492–501, New York, NY, USA, 2006. ACM.

[Moo01] Leon Moonen. Generating robust parsers using island grammars. In
Elizabeth Burd, Peter Aiken, and Rainer Koschke, editors, Proceed-
ings Eighth Working Conference on Reverse Engineering (WCRE 2001),
pages 13–22. IEEE Computer Society, October 2001.

[MPO08] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser combina-
tors in Scala. Technical report, Department of Computer Science, K.U.
Leuven, February 2008.

[ND04] Oscar Nierstrasz and Stéphane Ducasse. Moose – a language-
independent reengineering environment. European Research Consor-
tium for Informatics and Mathematics (ERCIM) News, 58:24–25, July
2004.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of
Moose: an agile reengineering environment. In Proceedings of the Eu-
ropean Software Engineering Conference (ESEC/FSE’05), pages 1–10,
New York, NY, USA, September 2005. ACM Press. Invited paper.

BIBLIOGRAPHY 132

[NK15] Oscar Nierstrasz and Jan Kurš. Parsing for agile modeling. Science of
Computer Programming, 97, Part 1(0):150–156, 2015.

[NL12] Oscar Nierstrasz and Mircea Lungu. Agile software assessment. In
Proceedings of International Conference on Program Comprehension
(ICPC 2012), pages 3–10, 2012.

[NNEH09] Emma Nilsson-Nyman, Torbjörn Ekman, and Görel Hedin. Practical
scope recovery using bridge parsing. In Dragan Gašević, Ralf Lämmel,
and Eric Van Wyk, editors, Software Language Engineering, volume
5452 of Lecture Notes in Computer Science, pages 95–113. Springer
Berlin Heidelberg, 2009.

[Ode07] Martin Odersky. Scala language specification v. 2.4. Technical report,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzer-
land, March 2007.

[Okh04] Alexander Okhotin. Boolean grammars. Information and Computation,
194(1):19 – 48, 2004.

[Okh05] Alexander Okhotin. On the existence of a boolean grammar for a simple
programming language. In Proceedings of AFL 2005 (May 17-20, 2005,
Dobogoko, 2005.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Programmers, May 2007.

[Pen86] Thomas J. Pennello. Very fast LR parsing. SIGPLAN Not., 21(7):145–
151, July 1986.

[PF11] Terence Parr and Kathleen Fisher. LL(*): The foundation of the ANTLR
parser generator. In Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’11,
pages 425–436, New York, NY, USA, 2011. ACM.

[PQ94] Terence J. Parr and Russell W. Quong. Adding semantic and syntactic
predicates to LL(k): pred-LL(k). In CC ’94: Proceedings of the 5th
International Conference on Compiler Construction, pages 263–277,
London, UK, 1994. Springer-Verlag.

[PQ95] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k)
parser generator. Software Practice and Experience, 25:789–810, 1995.

[PW86] F Pereira and D Warren. Readings in natural language processing. In
Barbara J. Grosz, Karen Sparck-Jones, and Bonnie Lynn Webber, edi-
tors, Readings in Natural Language Processing, chapter Definite Clause
Grammars for Language Analysis, pages 101–124. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1986.

[Pyt] Python 3.0 Grammar. https://docs.python.org/3/reference/grammar.html.

[RDGN10] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz.
Practical dynamic grammars for dynamic languages. In 4th Workshop
on Dynamic Languages and Applications (DYLA 2010), pages 1–4,
Malaga, Spain, June 2010.

BIBLIOGRAPHY 133

[Red09] Roman R. Redziejowski. Applying classical concepts to parsing expres-
sion grammar. Fundam. Inf., 93(1-3):325–336, January 2009.

[RO10] Tiark Rompf and Martin Odersky. Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled dsls. In
Proceedings of the Ninth International Conference on Generative Pro-
gramming and Component Engineering, GPCE ’10, pages 127–136,
New York, NY, USA, 2010. ACM.

[RVB+12] dos Santos Reis, Leonardo Vieira, da Silva Bigonha, Roberto, Di Io-
rio, Vladimir Oliveira, de Souza Amorim, and Luis Eduardo. Adapt-
able parsing expression grammars. In FranciscoHeron de Carvalho Ju-
nior and LuisSoares Barbosa, editors, Programming Languages, vol-
ume 7554 of Lecture Notes in Computer Science, pages 72–86. Springer
Berlin Heidelberg, 2012.

[SC89] D. J. Salomon and G. V. Cormack. Corrections to the paper: Scan-
nerless NSLR(1) parsing of programming languages. SIGPLAN Not.,
24(11):80–83, nov 1989.

[SD96] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-
correcting combinator parsers. In Advanced Functional Programming,
Second International School-Tutorial Text, pages 184–207, London,
UK, UK, 1996. Springer-Verlag.

[SJ10] Elizabeth Scott and Adrian Johnstone. GLL parsing. Electron. Notes
Theor. Comput. Sci., 253(7):177–189, September 2010.

[SJC02] Frederick T Sheldon, Kshamta Jerath, and Hong Chung. Metrics for
maintainability of class inheritance hierarchies. Journal of Software
Maintenance and Evolution: Research and Practice, 14(3):147–160,
2002.

[SMDV06] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions pro-
grammers ask during software evolution tasks. In Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, SIGSOFT ’06/FSE-14, pages 23–34, New York, NY,
USA, 2006. ACM.

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars. Theoretical Computer Science,
88(2):191 – 229, 1991.

[Swi01] S.D. Swierstra. Combinator parsers: From toys to tools. Electronic
Notes in Theoretical Computer Science, 41(1):38 – 59, 2001. 2000
ACM SIGPLAN Haskell Workshop (Satellite Event of PLI 2000).

[Tah03] Walid Taha. A gentle introduction to multi-stage programming. In
Domain-Specific Program Generation, pages 30–50, 2003.

[Ter05] P. Terry. Compiling with C# and Java. Pearson education.
Pearson/Addison-Wesley, 2005.

BIBLIOGRAPHY 134

[Tho68] Ken Thompson. Programming techniques: Regular expression search
algorithm. Commun. ACM, 11(6):419–422, June 1968.

[Tom85] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Al-
gorithm for Practical Systems. Kluwer Academic Publishers, Norwell,
MA, USA, 1985.

[Tra10] Laurence Tratt. Direct left-recursive parsing expression grammars.
Technical Report EIS-10-01, School of Engineering and Information
Sciences, Middlesex University, oct 2010.

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic
time. Journal of Computer and System Sciences, 10(2):308 – 315, 1975.

[VeaB98] Eelco Visser and Zine el-abidine Benaissa. A core language for rewrit-
ing. In Electronic Notes in Theoretical Computer Science, pages 1–4.
Elsevier, 1998.

[Vis97a] Eelco Visser. A family of syntax definition formalisms. Technical Re-
port P9706, Programming Research Group, University of Amsterdam,
jul 1997.

[Vis97b] Eelco Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam, July
1997.

[Vis02] Eelco Visser. Meta-programming with concrete object syntax. In Don
Batory, Charles Consel, and Walid Taha, editors, Generative Program-
ming and Component Engineering (GPCE’02), volume 2487 of Lecture
Notes in Computer Science, pages 299–315, Pittsburgh, PA, USA, oct
2002. Springer-Verlag.

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing
structural descriptions produced by various grammatical formalisms. In
Proceedings of the 25th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’87, pages 104–111, Stroudsburg, PA, USA,
1987. Association for Computational Linguistics.

[WDM08] Alessandro Warth, James R. Douglass, and Todd Millstein. Packrat
parsers can support left recursion. In Proceedings of the 2008 ACM
SIGPLAN symposium on Partial evaluation and semantics-based pro-
gram manipulation, PEPM ’08, pages 103–110, New York, NY, USA,
2008. ACM.

[Wij69] A. van Wijngaarden. Report on the Algorithmic Language ALGOL 68.
Printing by the Mathematisch Centrum, 1969.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques, 1992.

[Wir77] Niklaus Wirth. What can we do about the unnecessary diversity of no-
tation for syntactic definitions? Commun. ACM, 20(11):822–823, 1977.

BIBLIOGRAPHY 135

[WP07] Alessandro Warth and Ian Piumarta. OMeta: an object-oriented lan-
guage for pattern matching. In DLS ’07: Proceedings of the 2007
symposium on Dynamic languages, pages 11–19, New York, NY, USA,
2007. ACM.

[You67] Daniel H. Younger. Recognition and parsing of context-free languages
in time n3. Information and Control, 10(2):189 – 208, 1967.

[Yu97] Sheng Yu. Handbook of Formal Languages: Volume 1 Word, Language,
Grammar, chapter Regular Languages, pages 41–110. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[Zay14] Vadim Zaytsev. Formal foundations for semi-parsing. In Software Main-
tenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on, pages 313–317, Febru-
ary 2014.

A
Formal development of PEGs

In section 3.1 we briefly introduced PEGs. In this chapter we recapitulate the formal
definition of PEGs, their semantics and which expressions are syntactic sugar. We also
recapitulate the abstract simulation of a PEG expression and define the first set for
PEGs.

Definition A.1. (Parsing Expression Grammar (PEG)) A parsing expression grammar
is a 4-tuple G = (N,Σ, R, es) where N is a finite set of nonterminals, Σ is a finite set
of terminal symbols, R is a finite set of rules, es is a starting expression.

Each rule r ∈ R is a pair (A, e) which we write A ← e, A ∈ N and e is a parsing
expression. Parsing expressions (PEs) are defined inductively: if e1 and e2 are parsing
expressions, then so are the following:

• ε , an empty string

• ′t+′ , any literal, t ∈ Σ

• [t+] , any character class, t ∈ Σ

• A , any nonterminal, A ∈ N

• e? , an optional expression

• e1e2 , a sequence

• e1/e2 , a prioritized choice

• e∗ , aa zero-or-more repetitions

• !e , a not-predicate

• &e , an and-predicate

136

APPENDIX A. FORMAL DEVELOPMENT OF PEGS 137

Definition A.2 (PEG Semantics). To formalize the semantics of a grammar G =
(N,Σ, R, es), we define a relation⇒ from pairs of the form (e, x) to the output pairs
(o, y), where e is a parsing expression, x ∈ Σ∗ is an input string to be recognized, o
indicates the result of a recognition attempt, and y ∈ Σ∗ is a remainder of input. The
distinguished symbol f indicates failure.

Empty:
(ε, x)⇒ (ε, x)

Terminal
(success):

a ∈ Σ
(a, ax)⇒ (a, x)

Terminal
(failure):

a 6= b

(a, bx)⇒ (f, bx)

Nonterminal: A← e ∈ R (e, x)⇒ (o, y)

(A, x)⇒ (o, y)

Sequence
(success case):

(e1, x)⇒ (o1, y1) (e2, y1)⇒ (o2, y2)

(e1e2, x)⇒ (o1o2, y2)

Sequence
(failure 1):

(e1, x)⇒ (f, x)

(e1e2, x)⇒ (f, x)

Sequence
(failure 2):

(e1, x)⇒ (o, y) (e2, y)⇒ (f, y)

(e1e2, x)⇒ (f, x)

Choice
(option 1):

(e1, x)⇒ (o, y)

(e1/e2, x)⇒ (o, y)

Choice
(option 2):

(e1, x)⇒ (f, x) (e2, x)⇒ (o, y)

(e1/e2, x)⇒ (o, y)

Repetitions
(repetition):

(e, x)⇒ (o1, y1) (e∗, y1)⇒ (o2, y2)

(e∗, x)⇒ (o1o2, y2)

Repetitions
(termination):

(e, x)⇒ (f, x)

(e∗, x)⇒ (ε, x)

Not predicate
(success):

(e, x)⇒ (o, y)

(!e, x)⇒ (f, x)

Not predicate
(failure):

(e, x)⇒ (f, x)

(!e, x)⇒ (ε, x)

APPENDIX A. FORMAL DEVELOPMENT OF PEGS 138

Syntactic sugar The following expressions are syntactic sugar and can be expressed
as follows [For04]: (i) an optional expression e? is equivalent to e/ε ; (ii) one or

more repetitions e+ is equivalent to ee∗ ; (iii) a character class is equivalent to

a choice of one-character literals ′a′/′b′/′c′/... ; and (iv) an and-predicate &e is

equivalent to a double negation !(!e)

Reductions of repetitions As in CFGs, repetition expressions can be eliminated
from a PEG by converting them into right-recursive nonterminals [For04]. If expres-
sion e in repetiton e∗ accepts ε , the nonterminal is left-recursive and cannot be
handled by PEGs in general.

Parsing Expression Languages Expression e accepts a string x if ∃(e, x) ⇒+

(o, ε). Expression e succeeds on a string xy if ∃(e, xy)⇒+ (o, y).

Definition A.3. (Parsing Expressions Languages (PELs)) A parsing expression lan-
guage L(e) of a parsing expression e over the alphabet Σ is the set of strings x ∈ Σ∗

for which the e succeeds on x:

L(e) = {xy | (e, xy)⇒+ (o, y)}

Note that in this definition e does not necessarily consume all of xy, since even
partially consumed strings are in the language. For example a language for a trivial
expression ′a′ contains all the strings with ’a’ as a prefix (e.g., ’aloha’).

We use the following parent relation to compute the static next set (see Defini-
tion 5.8) used in bounded seas:

Definition A.4 (Parent Relation). The parent function P(e, e′) is a function that re-
turns true if e′ was directly constructed from e by applying one of the steps in Defini-
tion A.1, false otherwise.

As an example of a parent relation, consider the following grammar snippet where
defn is a parent of ′def′ , id and body :

defn ← ’def’ id body

The following first set analysis is used to optimize choices of parsing expressions
(see subsection 6.3.2):

Definition A.5 (First Set). We define the first set FIRST(e) of an expression e as a set
of expressions such that:

Nonterminal a ∈ Σ
FIRST(a) = {a}

Empty String
FIRST(ε) = {ε}

APPENDIX A. FORMAL DEVELOPMENT OF PEGS 139

Sequence
(case 1):

ε 6∈ FIRST(e1)
FIRST(e1e2) = FIRST(e1)

Sequence
(case 2):

ε ∈ FIRST(e1)
FIRST(e1e2) = FIRST(e1) ∪ FIRST(e2)

Choice
FIRST(e1/e2) = FIRST(e1) ∪ FIRST(e2)

Repetition
FIRST(e∗) = FIRST(e) ∪ {ε}

Not Predicate
case 1

ε 6∈ FIRST(e)
FIRST(!e) = {!f1 !f2 . . . !fn | fi ∈ FIRST(e)}

Not Predicate
case 2

ε ∈ FIRST(e)
FIRST(!e) = {}

Definition A.6 (Abstract Simulation). We define a relation⇀ consisting of pairs (e, o),
where e is an expression and o ∈ {0, 1, f}. If e ⇀ 0, then e can succeed on some input
string while consuming no input. If e ⇀ 1, then e can succeed on some input string
while consuming at least one terminal. If e ⇀ f , then e may fail on some input string.
We will use variable s to represent an abstract result either 0 or 1. We will define the
simulation relation ⇀ as follows:

1. ε ⇀ 0.

2. (a) t ⇀ 1, t ∈ T .

(b) t ⇀ f , t ∈ T .

3. A ⇀ o if e ⇀ o and A← e is a rule of the grammar G.

4. (a) e1e2 ⇀ 0 if e1 ⇀ 0 and e2 ⇀ 0.

(b) e1e2 ⇀ 1 if e1 ⇀ 1 and e2 ⇀ s.

(c) e1e2 ⇀ 1 if e1 ⇀ s and e2 ⇀ 1.

(d) e1e2 ⇀ f if e1 ⇀ f

(e) e1e2 ⇀ f if e1 ⇀ s and e2 ⇀ f .

5. (a) e1/e2 ⇀ 0 if e1 ⇀ 0

(b) e1/e2 ⇀ 1 if e1 ⇀ 1

(c) e1/e2 ⇀ o if e1 ⇀ f and e2 ⇀ o.

6. (a) e∗⇀ 1 if e ⇀ 1

(b) e∗⇀ 0 if e ⇀ f

7. (a) !e ⇀ f if e ⇀ s

APPENDIX A. FORMAL DEVELOPMENT OF PEGS 140

(b) !e ⇀ 0 if e ⇀ f

For example, consider an abstract simulation of the following expressions:

’a’ / ε
’b’ ’c’

Because of the recursive nature of the definition, we first compute ⇀ for terminals
and later we infer ⇀ for more complex expressions:

′a′ ⇀ 1 (rule 2a), same for ′b′ and ′c′
′a′ ⇀ f (rule 2b), same for ′b′ and ′c′

ε ⇀ 0 (rule 1)
′a′/ε ⇀ 0 (rule 5b)
′a′/ε ⇀ 1 (rule 5c)
′b′ ′c′ ⇀ 1 (rule 4b)
′b′ ′c′ ⇀ f (rule 4d)
′a′∗ ⇀ 1 (rule 6a)
′a′∗ ⇀ 0 (rule 6b)

Nullable and accepts epsilon analyses are utilized in a parser compiler to reduce
overhead of backtracking. There might be different definitions of nullability [Bac79,
FM13]; we define nullability with the help of an abstract simulation:

Definition A.7 (Nullable Expression). We call an expression e nullable, if

e ⇀ 0 ∧ e 6⇀ f

In other words, e is nullable if it can succeed on some input string while consum-
ing no input and cannot fail. For example, zero or more repetitions of a Ruby class
(class∗) is a nullable expression. A repetition accepts an empty string (zero repeti-
tions are allowed) and it never fails (see Definition A.2).

Definition A.8 (Accepts Epsilon). We say that an expression e accepts epsilon, if

e ⇀ 0

In other words, e accepts epsilon if it can succeed on some input string while con-
suming no input. For example, start of a line ˆ is accepts epsilon. If invoked in start
of a line position, it succeeds while consuming no input, but it can also fail when in
other positions.

B
Bounded Seas Examples

In this chapter we provide detailed examples of definitions introduced in chapter 5.

B.1 Example of Dynamic NEXT computation
Let us compute the dynamic NEXT (see Definition 5.7) of the ∼method∼ expres-
sion defined in the bounded sea grammar in Listing 5.5. Let us suppose a parser has
aplready consumed ’class Foo’ in the input ’class Foo end’ . The invo-
cation stack SI looks as in Figure B.1.

3 (∼method∼ ,9)

2 (∼method∼ + / ∼nil∼ ,9)

1 (classBody← ∼method∼ + / ∼ε∼ ,9)

0 (′class′ id classBody ′end′ ,0)

Figure B.1: State of a stack after parsing ’class Foo’ in the input
’class Foo end’ .

To parse ∼method∼ we compute the dynamic next (ND) of ∼method∼ . We
do this in the following steps:

1. First, ND(SI) is called.

2. This results in the repetition case as in Figure B.2. This case adds ∼method∼
into the set and invokes ND recursively on the remainder of SI .

3. The new call results in the choice case as in Figure B.3, which again invokes the
ND function.

141

APPENDIX B. BOUNDED SEAS EXAMPLES 142

4. This results in the sequence case as in Figure B.5, which adds ′end′ into the set
and terminates.

5. In the end, the complete ND(∼method∼) = { ∼method∼ ′end′ } .

Repetition (case 1):

1. S =

4 (∼method∼ ,9)

3 (∼method∼ + ,9)

2 (∼method∼ + / ∼nil∼ ,9)

1 (classBody← ∼method∼ + / ∼ε∼ ,9)

0 (′class′ id classBody ′end′ ,0)

2. S′ =
2 (classBody← ∼method∼ + / ∼ε∼ ,9)

1 (classBody ,9)

0 (′class′ id classBody ∗ ′end′ ,0)

3. method ⇀ {1, f}

ND(S) = { ∼method∼ } ∪ ND(((∼method∼ + , 9) : S′))

Figure B.2: The repetition (case 1) inference when computing dynamic NEXT .

Choice (option 1):

1. S =

3 (∼method∼ + ,9)

2 (classBody← ∼method∼ + / ∼ε∼ ,9)

1 (classBody ,9)

0 (′class′ id classBody ′end′ ,0)

2. S′ =
1 (classBody← ∼method∼ + / ∼ε∼ ,9)

0 (′class′ id classBody ′end′ ,0)

ND(S) = ND(((∼method∼ + / ∼nil∼ , 9) : S′))

Figure B.3: The choice (option 1) inference when computing dynamic NEXT .

B.2 Example of Static NEXT computation
Let us compute the static next (see Definition 5.8) of the ∼method∼ expression de-
fined in the bounded sea grammar in Listing 5.5. The set of all the grammar rules PE

APPENDIX B. BOUNDED SEAS EXAMPLES 143

Nonterminal:

1. S =

2 (∼method∼ + / ∼ε∼ ,9)

1 (classBody← ∼method∼ + / ∼ε∼ ,9)

0 (′class′ id classBody ′end′ ,0)

2. S′ = 0 (′class′ id classBody ′end′ ,0)

ND(S) = ND(((classBody , 9) : S′))

Figure B.4: The nonterminal inference when computing dynamic NEXT .

Sequence (case 1):

1. S =
1 (classBody ,9)

0 (′class′ id classBody ′end′ ,0)

2. ′end′ ⇀ {1, f}

ND(S) = { ′end′ }

Figure B.5: The sequence (case 1) inference when computing dynamic NEXT .

looks as in Figure B.6. To parse ∼method∼ we compute the static next (NS) of

PE =



start← class∗
class←′ class′ id classBody ′end′

′class′ id classBody ′end′

classBody← ∼method∼ + / ∼ε∼

∼method∼ + / ∼ε∼

∼method∼ +

method

method←′ def′ id methodBody

...

...


Figure B.6: Parsing expressions of the grammar from Listing 5.5.

∼method∼ . We do this in the following steps:

1. First, NS(PE, ∼method∼) for all the parsing expressions PE is called.

APPENDIX B. BOUNDED SEAS EXAMPLES 144

2. This results in the not a parent case as in Figure B.7, because the start nonter-
minal in start← class∗ is not a parent of ∼method∼ . This case invokes
NS on all the remaining expressions except for the first one.

3. The not a parent case is repeated until ∼method∼ + is selected from the set
of parsing expressions as in Figure B.8. This is the repetition case, which adds
∼method∼ to the set and merges it withNS of ∼method∼ on the remaining

expressions and with NS of ∼method∼ + NS(PE, ∼method∼ +).

4. The rest of theNS computation of ∼method∼ ends up in the not a parent case,
because there are no more parent expressions of ∼method∼ .

5. The NS(PE, ∼method∼ +) consumes expressions from PE until it finds

∼method∼ + /ε , the only parent of ∼method∼ + .

6. Based on the choice (option 1) a NS(PE, ∼method∼ + /ε) is invoked.

7. Based on the nonterminal case a NS(PE, classBody) is invoked.

8. Eventually,NS for classBody ends in the sequence case as in Figure B.9. This

case adds ′end′ into the set and finishes.

9. In the end, the complete NS(∼method∼ , PE) = { ∼method∼ ′end′ }

APPENDIX B. BOUNDED SEAS EXAMPLES 145

Not a parent

1. S =



start← class∗
class←′ class′ id classBody ′end′

′class′ id classBody ′end′

classBody← ∼method∼ + / ∼ε∼

∼method∼ + / ∼ε∼

∼method∼ +

method

method←′ def′ id methodBody

...



2. S′ =



class←′ class′ id classBody ′end′

′class′ id classBody ′end′

classBody← ∼method∼ + / ∼ε∼

∼method∼ + / ∼ε∼

∼method∼ +

method

method←′ def′ id methodBody

...


3.

NS(∼method∼ , S) = NS(∼method∼ , S′)

Figure B.7: The not a parent inference rule when computing static NEXT .

Repetition (case 1):

1. S=


∼method∼ +

method

method←′ def′ id methodBody

...


2. S’=


method

method←′ def′ id methodBody

...


NS(∼method∼ , S) =

{ ∼method∼ } ∪ NS(∼method∼ , S′) ∪NS(∼method∼ + , PE)

Figure B.8: The repetition (case 1) inference rule when computing static NEXT .

APPENDIX B. BOUNDED SEAS EXAMPLES 146

Sequence (case 1):

1. S=



′class′ id classBody ′end′

classBody← ∼method∼ + / ∼ε∼
method←′ def′ id methodBody

methodBody← blockBody ′end′

...


2. S’=


classBody← ∼method∼ + / ∼ε∼

method←′ def′ id methodBody

methodBody← blockBody ′end′

...


NS(classBody , S) = { ′end′ } ∪ NS(classBody , S′)

Figure B.9: The sequence (case 1) inference rule when computing static NEXT .

APPENDIX B. BOUNDED SEAS EXAMPLES 147

B.3 Overlapping Seas Example
Let us go through the overlapping seas problem for the following grammar:

S ← ∼a∼ ∼b∼

using ’..a..b..’ as input. The nonterminal expansion of S is in Figure B.10.
In the example we use the following notation: input to the left, output to the right, the
invocation stack SI in the middle, the parsing expression being interpreted is on the
top of SI . For clarity reasons the rest of a parsing context is omitted. The invocation
stack SI is initialized with (S, 0).

The whole result is ’..a..b..’ , because it is the result of the nonterminal ex-

pansion S← ∼a∼ ∼b∼ . The sequence on the top is straightforward, ∼a∼ con-

sumes ’..a..’ and ∼b∼ consumes ’b..’ . The result is then ’..a..b..’
(see Figure B.11).

Nonterminal:

1. S ← ∼a∼ ∼b∼ ∈ R

2.
..a..b..

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)
⇒

o =

..a..b..

..a..b.. 0 (S ,0) ⇒
o =

..a..b..

Figure B.10: The inference rule for nonterminal.

Sequence (success):

1. ..a..b..

2 (∼a∼ ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ x1 =
..a..

2. b..

2 (∼b∼ ,5)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o2 =

b..

..a..b..
1 (∼a∼ ∼b∼ ,0)

0 (S ,0)
⇒

o1o2 =

..a..b..

Figure B.11: The inference rule for sequence.

In order to get a result of ∼a∼ invoked in the position 0, we first follow Defini-
tion 5.2 (see Figure B.12). It is a sequence of three parsers (generalization from the
sequence of two to the sequence of three is straightforward). In Figure B.13 we see

APPENDIX B. BOUNDED SEAS EXAMPLES 148

that before-water consumes ’..’ , the island itself consumes the desired ’a’ and
another ’..’ is consumed by after-water.

Rewrite according to the Definition 5.2

1. ..a..b..

2 (∼a∼ ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o =
..a..

..a..b..

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o =
..a..

Figure B.12: Rewrite rule according to the Definition 5.2.

Sequence (success case):

1. ..a..b..

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o1 =
..

2. a..b..

3 (a ,2)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o2 =
a

3. ..b..

3 (≈ (NEXT(∼a∼)) ,3)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o3 =
..

..a..b..

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ o1o2o3 =
..a..

Figure B.13: The inference rule for sequence.

APPENDIX B. BOUNDED SEAS EXAMPLES 149

Let us investigate what happens in before-water of ∼a∼ . First of all, we need to
determine NEXT (∼a∼). In this case it is { ∼b∼ }. Once ∼a∼ knows its boundary,
before-water tries to find the island a or its boundary ∼b∼ in positions 0 and 1 until
it finds the island in the position 2 (see Figure B.14). Before-water returns a substring
from all the positions a boundary or an island failed, i.e., ’..’

Water (boundary):

1. ..a..b..

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

2. .a..b..

5 (a/ ∼b∼ ,1)

4 (≈ (a/NEXT(∼a∼)) ,1)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

3. a..b..

6 (a / ∼b∼ ,2)

5 (≈ (a/NEXT(∼a∼)) ,2)

4 (≈ (a/NEXT(∼a∼)) ,1)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ a
6= f

..a..b..

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ x =
..

Figure B.14: The inference rule for water.

Overlapping Seas The interesting question is, why does ∼b∼ fail in the position 0
when invoked from the water of ∼a∼ as can be seen in the first case of Figure B.14?
We have already explained the problem with overlapping seas in subsection 5.2.2 and
now we show the computation formally. First of all we expand the choice and rewrite
the sea on the top of the stack according to Definition 5.2. The new sequence on the
top of the stack fails because before-water returns ε and there is no b in the position
0 (see Figure B.15).

APPENDIX B. BOUNDED SEAS EXAMPLES 150

Sequence (failure case):

1. ..a..b..

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼))b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ ε

2. ..a..b..

6 (b ,0)

5 (≈ (b/NEXT(∼b∼))b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

..a..b..

5 (≈ (b/NEXT(∼b∼))b ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ f

Figure B.15: The inference rule for sequence (failure case).

The before-water of ∼b∼ returns ε because of the overlapping seas case. It an-
alyzes the invocation stack noticing the before-water of ∼a∼ invoked in the position
0 (using the SO function from Definition 5.5) and returns ε (see Figure B.16).

If there is no overlapping seas case in the semantics of bounded seas, the before-
water of ∼b∼ consumes ’..a..’ contrary to the correct parse ε (see Fig-
ure B.16). This means that the before-water of ∼a∼ (see Figure B.14) would
be x′ = ε . This would then fail the whole ∼a∼ and consequently the whole

∼a∼ ∼b∼ .

APPENDIX B. BOUNDED SEAS EXAMPLES 151

Water (overlapping):

1. SI=

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼))a ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

2. SO(SI) = true

..a..b..

6 (≈ (b/NEXT(∼b∼)) ,0)

5 (≈ (b/NEXT(∼b∼))a ≈ (NEXT(∼b∼)) ,0)

4 (a/ ∼b∼ ,0)

3 (≈ (a/NEXT(∼a∼)) ,0)

2 (≈ (a/NEXT(∼a∼))a ≈ (NEXT(∼a∼)) ,0)

1 (∼a∼ ∼b∼ ,0)

0 (S ,0)

⇒ ε

Figure B.16: The inference rule for overlapping seas.

C
Implementation

In this section we provide implementation of the combinators mentioned in this work to
help the reader better understand the PetitParser internals and its functionality. Further-
more, we provide implementation of methods from Context that are called from the
parser combinators.

Implementation of Action is in Listing C.1, implementation of And predicate is
in Listing C.2, implementation of CharClass is in Listing C.3, implementation of
Choice is in Listing C.4, implementation of Literal is in Listing C.5, implemen-
tation of Sequence of expressions is in Listing C.6, implementation of Star, i.e.,
zero-or-more repetitions, is in Listing C.7, implementation of Token is in Listing C.8,
and implementation of Wrapping, i.e., an adapter from block closure to a combinator,
is in Listing C.9.

Action>>parseOn: context
| result |
"evaluate the underlying combinator"
result ← child parseOn: context.
"return if failure"
result isFailure ifTrue: [↑ result]

"evaluate block with result as an argument"
↑ block withArguments: result

Listing C.1: Implementation of Action .

C.1 Bounded seas
Even though a bounded sea consists of before-water, island and after-water, it has only
one instance variable (see Listing C.10). The parseOn: method of a bounded sea

152

APPENDIX C. IMPLEMENTATION 153

AndPredicate>>parseOn: context
| memento |
memento ← context remember.
result ← parser parseOn: context.
context restore: memento.
↑ result isPetitFailure ifTrue: [
result

] ifFalse: [
nil

]

Listing C.2: Implementation of AndPredicate .

CharClass>>parseOn: context
(context atEnd not and:
[predicate value: context peek]) ifTrue: [
↑ context next

] ifFalse: [
↑ PPFailure message: ’Predicate expected’

]

Listing C.3: Implementation of CharClass .

Choice>>parseOn: context
| result |
self children do: [:child |
result ← child parseOn: context.
result isPetitFailure ifFalse: [
↑ result

]
].
↑ result

Listing C.4: Implementation of Choice .

Literal>>parseOn: context
| lookahead |
lookahead ← (context next: literal size).
(lookahead == literal) ifTrue: [
↑ lookeahead

] ifFalse: [
context back: literal size
↑ Failure message: ’literal expected’

]

Listing C.5: Implementation of Literal .

APPENDIX C. IMPLEMENTATION 154

Sequence>>parseOn: context
| memento retval result |
retval ← OrderedCollection new.
"memoize"
memento ← context remember.
children do: [:child |
"evaluate an underlying child"
result ← child parseOn: context.
"restore and return if failure"
result isFailure ifTrue: [
context restore: memento
↑ result

].
retval add: result

].
↑ retval

Listing C.6: Implementation of Sequence .

Star>>parseOn: context
| retval result |
retval ← OrderedCollection new.
[
result ← child parseOn: context.
result isPetitFailure

] whileFalse: [
retval add: result

]
↑ retval

Listing C.7: Implementation of Star .

is in Listing C.11. The before and after water are computed automatically, as demon-
strated in Listing C.12.

The NEXT set can be computed dynamically from the expression stack as demon-
strated in Listing C.13 or statically, before a parse attempt. The static approach hooks
into the interface method parse: (see section 3.2) and computes the NEXT set for
all the sea expressions as demonstrated in Listing C.14.

The Context methods invoked: , return: and fail: are used to
manage the expression stack. The overlapping seas are detected by comparison of
positions of two top waters (see Listing C.16).

APPENDIX C. IMPLEMENTATION 155

Token>>parseOn: context
| memento result |
memento ← context remember.
whitespace parseOn: context.
result ← parser parseOn: context.

result isPetitFailure ifTrue: [
context restore: memento
result

].
whitespace parseOn: context.

↑ Token new
value: result flatten;
start: memento position;
end: context position

Listing C.8: Implementation of Token .

Wrapping>>parseOn: context
↑ blockClosure value: context

Listing C.9: Implementation of wrapping parser to provide parseOn:
interface to block closures.

Parser subclass: #BoundedSea
instanceVariables: ’island’.

Listing C.10: BoundedSea has only one instance variable island ; before
and after-water are created dynamically.

APPENDIX C. IMPLEMENTATION 156

BoundedSea>>parseOn: context
| result1 result2 result3 memento |
context invoked: self.
memento ← context remember.

"Phase One"
result1 ← self parseBeforeWater: context.
result1 ifFailure: [

↑ context fail: ’boundary or island not found’
].

"Phase Two"
result2 ← island parse: context
result2 ifFailure: [

context restore: memento.
↑ context fail: ’island not found’

]

"Phase Three"
result3 ← self parseAfterWater: context.
result3 ifFailure: [

context restore: memento.
↑ context fail: ’boundary not found’

].

↑ context return: { resutl1 . result2 . result3 }

Listing C.11: Implementation of a parse: method in BoundedSea . The
three phases correspond to the phases in Definition 5.1.

BoundedSea>>parseBeforeWater: context
| next |
"Catch the overlapping seas"
context seasOverlap ifTrue: [

↑ nil
].

↑ self goUpTo: island / self next

Listing C.12: Implementation of a beforeWater: method in
BoundedSea .

APPENDIX C. IMPLEMENTATION 157

Context>>next
| stack |
stack ← self expressionStackFrom: thisContext.
↑ self next: stack into: Set new

Context>>next:stack into: set
...
"Sequence (case 1):"
(stack secondTop isSequence and: [
stack secondTop firstChild == stack top] and: [
stack secondTop secondChild acceptsEpsilon not]) ifTrue: [

set add: stack secondTop secondChild.
↑ set

]
...

Listing C.13: Fragment of a next method in Context , which can be
computed only in runtime.

Parser>>parse:input
...
self allChildren select: [:e | e isSea] thenDo: [:sea |

"compute next for each sea"
sea nextIn: self allChildren into: Set new

]
...

Parser>>nextIn: parsers into: aSet
| first withoutFirst |
first ← parsers first.
withoutFirst ← parsers removeFirst.

...
"Sequence (case 1):"
(first firstChild == self and: [
first secondChild acceptsEpsilon not]) ifTrue: [

aSet add: parser secondChild.
↑ self nextIn: withoutFirst into: aSet.

]
...

Listing C.14: A fragment from NEXT computation, which can be computed at
any time.

APPENDIX C. IMPLEMENTATION 158

Context>>invoked: parser
self invokedPositions push: self position

Context>>return: result
self invokedPositions pop.
↑ result

Context>>fail: message
self invokedPositions pop.
↑ Failure message: message on: self

Listing C.15: Implementation of invoked: , return: and fail:
methods in Context .

Context>>seasOverlap
↑ self invokedPositions top ==
self invokedPositions secondTop

Listing C.16: Implementation of a seasOverlap method in Context .

D
Layout Sensitivity in the Wild

The first layout-sensitive language, ISWIM (If you See What I Mean), was proposed by
Landin in 1966 [Lan66]. ISWIM introduced an offside rule in programming, inspired
by the offside rule from soccer. Once the offside line is set, the code (just like a player)
is not allowed to cross the offside line.1 As with soccer, the trick is to know where the
line is and not get ahead of it. Languages adjust the offside rule in different ways and
we report on these approaches in the following text.

D.1 Haskell
The Haskell grammar2 is defined in a context-free form. Haskell uses indentation to
(i) delimit expressions; and (ii) determine borders of a group of expressions.3 Haskell
uses a special stage in the scanner-parser pipeline to fill in missing tokens that corre-
spond to indentation.

The offside line is set by the first non-whitespace token after the keyword let ,
where , do , or if if the open brace is omitted. An expression aligned with the

offside line is an expression that starts at the column set by the offside line. An align-
ment with the offside line can be used as an expression delimiter (instead of semicolon)
in a group of expressions. A line starting further (a column greater than a column set
by the offside line) is the continuation of a previous line. An empty line has no ef-
fect. A group of expressions ends when an expression appears in the offside position
— on a column smaller than a column set by the offside line. Examples are shown in
Listing D.1.

1We assume that only spaces are used. If tabulators are used, they are replaced by a predefined number
of spaces.

2http://www.webcitation.org/6k7g6DgOR
3http://www.webcitation.org/6k7g7EC0P

159

http://www.webcitation.org/6k7g6DgOR
http://www.webcitation.org/6k7g7EC0P

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 160

do putStr "Hi"
putStr
"There" -- Continuation

if (x > 2) then do -- blocks can start anywhere
putStr "> 2" -- part of the then block
putStr "Hi There" -- still in the then block

Listing D.1: Indentation rules of Haskell.

D.2 Python
The Python grammar4 is also defined in a context-free form. It uses two special tokens
to describe indentation: indent and dedent .5 These two special tokens are in-
serted by a specialized lexer that uses a stack of indentation levels to emit indent

and dedent .
Python uses indentation to (i) delimit expressions; (ii) determine block borders; and

(iii) resolve ambiguity in if - then - else expressions. In Python, the offside line
is set by the first non-whitespace character on a line. indent is emitted when the
offside line of the current line is further right (on a greater column) than the offside line
of the previous line. dedent is emitted when the offside line of the current line is
closer to the left (on a smaller column) than the offside line of the previous line. After
dedent the offside line must match the previous offside line (the offside lines must

be on the same column).
Expressions can be delimited by placing them on separate lines without interleaving

indent or dedent . The beginning of a block is signaled by indent and the
end of a block is signaled by dedent . Blocks may contain empty lines. An else is
matched to the closest if at the same indentation level. Listing D.2 shows examples.

if x > 2:
print "> 2" # indented

else: # dedented
print "< 2" # indented

if x > 2:
print "> 2" # indented

else: # fail - else not aligned!
print "< 2"

if x > 2: print "> 2"
print x # unexpected indent

Listing D.2: Indentation rules of Python.

4http://www.webcitation.org/6k633YacT
5http://www.webcitation.org/6k637RJ7V

http://www.webcitation.org/6k633YacT
http://www.webcitation.org/6k637RJ7V

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 161

D.3 F#
The F# grammar6 is also defined in a context-free form. F# preprocesses the token
stream to insert special tokens such as $in , $done , $begin and $end . F# uses
indentation to (i) delimit expressions; (ii) determine block borders; and (iii) resolve
ambiguity in if - then expressions.

An expression aligned with the offside line is an expression that starts at the column
set by the offside line. An expression is in the offside position if it starts at a column
less than the column set by the offside line. An expression is in the onside position if it
starts at a column column equal to or greater than the column set by the offside line.

The offside line is set by the first non-whitespace token after the keywords let ,
then , else , try , finally , do and = in the let expression. Alignment

with the offside line can be used as a delimiter between expressions (instead of semi-
colon). An empty line has no effect. A block is finished by the first expression in the
offside position. An else token is related to the closest if with the else in
onside position. Relevant examples are in Listing D.3.

let f =
let x = 1 // this line sets

// the offside line to 4
let y = 2 // aligned, $in inserted
x + y // aligned

printfn "hi" // expression in offside,
// not part of let

if x > 2 then
if x < 10 then

printfn "2 < x < 10"
else // connected to

// the first if
printfn "x <= 2"

Listing D.3: Indentation rules of F#.

F# treats infix operators in a special way. Infix operators (such as + or >>) can
be in the offside position by their length plus one space. They can also be in an arbitrary
onside position, i.e., they don’t have to be aligned. Listing D.4 illustrates this feature.

let x = 1 // offside line set by 1
+ 2 // + a bit in offside position

// x = 1 + 2

let x = 1 // offside line set by 1
+ 2 // fails, too much in offside

Listing D.4: Infix operators in F# can be in an offside position.

6http://www.webcitation.org/6k7gNo8HA

http://www.webcitation.org/6k7gNo8HA

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 162

D.4 YAML
YAML is a data serialization language that aims to replace JSON and be more human-
friendly. The YAML grammar7 is defined using a parameterized BNF grammar, where
one of the parameters specifies the indentation level. A parser of YAML uses the ap-
proach proposed by Brunauer [BM06] based on an extension of context-free grammars
with counters.

YAML uses indentation (i) to determine structure of block styles;8 (ii) to distin-
guish comments from block contents in trailing lines; and (iii) to insert flow styles into
block styles. In YAML, indentation is defined as zero or more space characters at the
start of a line. The - , ? and : characters, which are used to denote block collec-
tion entries, are perceived by people to be part of the indentation and must be treated
as indentation as well. In the input, the indentation parameter may be specified explic-
itly (Listing D.5, line 13), otherwise it is determined automatically using auto-detect
function (Listing D.5, line 18). Indentation is irrelevant in flow styles, relevant in block
styles.

1 # nested list ("a" ("b" "c"))
2 - a
3 - - b
4 - c
5

6 # flow style in block
7 # list with one element ("a - b - c")
8 - a
9 - b # continuation of the previous line

10 - c
11

12 # string " a\n b"
13 |1 # explicit indentation
14 a # " a", the second space is not part of indentation
15 b # " b"
16

17 # string "a\nb"
18 | # implicit indentation
19 a # "a", auto-detect determines indentation to two
20 b # "b"

Listing D.5: Indentation rules of YAML.

D.5 OCaml
OCaml9 has a line-oriented preprocessor called “The Whitespace Thing” (TWT),10

which uses indentation (i) to delimit expressions in a group; (ii) to determine borders

7http://www.webcitation.org/6k7gY6Qiz
8Contrary to the explicit indicators of flow styles.
9http://www.webcitation.org/6k7geqiDX

10http://www.webcitation.org/6k7gfm7lm

http://www.webcitation.org/6k7gY6Qiz
http://www.webcitation.org/6k7geqiDX
http://www.webcitation.org/6k7gfm7lm

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 163

of a group; and (iii) to resolve ambiguity in nested let , if - then -else and try -
catch expressions.

Alignment with a former expression on a previous line can be used as a delim-
iter (instead of a semicolon). A group of expressions ends when an expression is not
aligned with the previous expressions. See examples in Listing D.6.

for i = 1 to 10 do
print-int i (* semicolon ommited *)
print-newline() (* still in the block *)

(* "done" not needed *)
print-string "done"

Listing D.6: Indentation rules of OCaml.

D.6 CoffeeScript
The CoffeeScript grammar11 is defined in a context-free form. CoffeeScript uses in-
dentation to (i) separate expressions; (ii) to determine block borders; (iii) to resolve
ambiguity in if - then - else expressions; and (iv) to create objects without ex-
plicit curly braces.

The lexer of CoffeeScript12 inserts the special tokens indent and outdent
using a stack of indentation levels. Indentation in multi-line strings is ignored.

if (x > 2)
if (x < 10)

alert(2 < x < 10)
else // conected to

// the first if
alert (x <= 2)

kids = // Curly braces ommited
son:
name: "Max"
age: 11

daughter:
name: "Ida"
age: 9

Listing D.7: Indentation rules of CoffeeScript.

D.7 Grace
The goal of the Grace programming language13 is to integrate proven newer ideas in
programming languages into a simple language for teaching. Grace does not use in-

11http://www.webcitation.org/6k7gnbzWr
12http://www.webcitation.org/6k7goQcOo
13http://www.webcitation.org/6k7gsNYsl

http://www.webcitation.org/6k7gnbzWr
http://www.webcitation.org/6k7goQcOo
http://www.webcitation.org/6k7gsNYsl

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 164

dentation to signal block boundaries. In Grace a line break followed by an increase in
the indent level implies a line continuation, whereas line break followed by the next
line at the same or lesser indentation implies a semicolon [Gra].

while {stream.hasNext} do {
print (stream.read) // semicolon ommited

} // auto-inserted on dedent

Listing D.8: Indentation rules of Grace.

D.8 SRFI 49 — Indentation-Sensitive Scheme
This SRFI 4914 is a Scheme Request For Implementation requesting for I-expressions
(indentation-sensitive S-expressions) in Scheme [KRS08]. The syntax uses indentation
to group expressions, and has no special cases for semantic constructs of the language.
I-expressions can be used both for program and data input.

SRFI 49 uses indent and dedent tokens to replace the begin and end of S-
expressions. indent is emitted when text on a new line starts at a column greater
than that of the previous line. dedent is emitted when text on a new line starts at a
column less than that of the previous line.

if
= x 0 ; condition
1 ; then branch

* x ; else branch
y

Listing D.9: SRFI 49 — Scheme With Indentation.

D.9 Elastic Tabstops
Elastic tabstops15 offer an alternative way to handle tabstops. Rather than saying that
a tab character places the text that follows it at the next N -th column (traditional fixed
tabstops), a tab character is a delimiter between table “cells”. The columns in the lines
above and below the “cell” that is being changed are always kept aligned.16

As an example see Listing D.10 with a matrix definition, the alignment servers as
a column delimiter. Space and tab characters are denoted respectively by and → .
Note that the tab character at line 3 is smart enough to align itself to the previous line,
no matter how far a number on the previous line is. Note also that the 123 and 456

on line 2 have an extra space between them in order to allow for 12345 from line
4 to fit in. In elastic tabstops there are more offside lines to which code is aligned to

14http://www.webcitation.org/6k7gxCzNE
15http://www.webcitation.org/6k7gxzfkg
16To easily understand this feature, we recommend to follow the previous link to a self-explanatory graph-

ical example.

http://www.webcitation.org/6k7gxCzNE
http://www.webcitation.org/6k7gxzfkg

APPENDIX D. LAYOUT SENSITIVITY IN THE WILD 165

(e.g., in our example there are three separate offside lines, one for each column of the
matrix).

1 matrix ←
2 123→ 456→789
3 1→ 4→ 7
4 12345→4→ 7890
5 123→ 4→ 7890 "Invalid row, 4 not aligned"

Listing D.10: Example of Elastic Tabstops, the numbers must be aligned.

E
Scanner

In this chapter we describe how to integrate a scanner into a PEG-based parser. Further-
more we inspect (i) regular parsing expressions; (ii) regular parsing languages, which
can be described by regular parsing expressions; and (iii) finite state automata, which
can recognize regular parsing languages.

E.1 Scanners in PEG-based parsers
The path from a PEG parser to a scanning PEG parser includes several steps: (i) the
expressions representing tokens and the expressions recognizable by a scanning parser
have to be identified; (ii) these expressions are then used to identify choices that can
be optimized with the help of a finite state automaton; and finally (iii) the automaton is
embedded into a scanner, which is consequently integrated into the parser.

E.1.1 Tokens and Scannable Parsing Expressions
Parsing expressions that describe regular parsing languages (RPELs) are regular pars-
ing expressions (RPEs) described in Appendix E.2. RPEs are recognizable by deter-
ministic finite state automata (DFSAs). Ordered choices of expressions in RPEs are
expressed as unions and complements of RPELs. We provide the detailed description
in Appendix E.3. The transformation of a RPE into a DFSA is described in sec-
tion E.4. A token is a regular parsing expression (RPE ∈ RPE) preceded and suc-
ceeded by whitespace, i.e., a regular parsing expression wrapped token operator:

RTPE = { RPE token | ∀RPE ∈ RPE}

Parsing expressions that can be recognized by a scanning PEG-based parser are
scannable parsing expressions (SPEs). We define a parsing expression e to be scann-
able if all its terminal subexpressions (empty string, literal and character class) are
parsing subexpressions of some regular token parsing expression RTPE ∈ RTPE. In

166

APPENDIX E. SCANNER 167

other words e is scannable if it is made of tokens, e.g., in the concrete case of PetitParser
using the token operator.

E.1.2 Scannable Choices
Based on a static analysis of a grammar, we can identify choices that can be optimized
with the help of a scanner. To describe this analysis, we use the following choice-
related terminology:

For a choice expression e = e1/e2, e1 and e2 are alternatives of a choice e. For
any scannable parsing expression (SPE ∈ SPE) we can compute a first set, first :
SPEs → P(RTPE) (where P(RTPE) is the power set of all trimmed RPEs, i.e., the
set of all subsets) using the standard first set algorithm as described in Definition A.5.1

Two expressions are distinct if there is no string s that is recognized by both of them. A
distinct expression set is a set of expressions where every two expressions are distinct.
And finally a distinct scannable parsing expression (DSPE) is a scannable parsing
expression that has a distinct first set.

Each choice is treated separately and has its own customized scan method. This
way the same string may represent different tokens depending on the actual rule being
parsed.

Deterministic Choice In some cases, the first set of the whole choice is distinct. In
such a case, the alternatives can be uniquely distinguished based on the next token.
Such a choice can be implemented without any memoization or backtracking, using a
PEG that is equivalent to LL(1) choice of LL(k) grammars [GJ08a]. A parsing expres-
sion e = e1/e2 is a deterministic choice if first(e) is a distinct expression set.

Nondeterministic Choice In case the first set of a choice is not distinct, an alternative
of a choice can still be guarded: an alternative is selected only if the next token is in
the first set of that alternative. A guard is applied only if the first set of the alternative
is distinct. The guard invokes a scanner, which uniquely determines the next token.
The guard allows parser to enter the alternative only if a token from the first set of
the alternative is found. If the first set of the option is not distinct, the guard cannot
be applied and the alternative has to handled as traditional (i.e., non-scanning) parsing
expression.

Even if a guard returns true and an alternative is entered, it is not guaranteed that
the alternative will succeed. PEGs are nondeterministic and it might happen that that
a parser backtracks after an arbitrarily long prefix of an input is consumed. Therefore,
even the scanner has to support backtracking to recover from an incorrectly chosen
alternative.

E.1.3 Scanner
The scanner as used in the previous section has to provide the following functionality.
It has to (i) provide guards for scannable parsing expressions; (ii) recognize a token
from a distinct set of RPEs; (iii) memoize and backtrack; and (iv) consume input. In
the following text, we describe this functionality in detail.

1The token expressions, i.e., expressions in a form etoken , serves as the first set terminals.

APPENDIX E. SCANNER 168

Scanner Guards A guard for a scannable parsing expression SPE checks if the
scanning function has been invoked, i.e., if there is a value assigned to the current
token. If so, it returns true when the current token is in first(SPE). If no value
is assigned to the current token,2 the scanner invokes a scanning method to recognize
which token from first(SPE) is in the input and returns its result. An implementation
of the guard guard privateOrClass used to parse the grammar from Listing 6.1
is shown in Listing E.1.

Scanner>>guard_privateOrClass
currentToken notNil ifTrue: [

↑ #(#’private’ #’class’) contains: currentToken
].
↑ #(#’private’ #’class’) contains: self scan_privateOrClass

Listing E.1: Implementation of privateOrClass guard.

Recognizing a token In case a token is not recognized, the scanning method itself
has to recognize the next token. For a scannable parsing expression SPE the scanning
method is defined as follows:

From first(SPE) = {t1, t2, ..., ti}, ti ∈ RTPE a deterministic automaton for a
regular expression of unordered choice of first tokens t1|t2|...|ti is created and com-
piled into a method.3

A scan method determines the token based on the current first set. The result of a
scan method is true if a token from the first set was found and false otherwise. If a
token is found, as a side-effect, the scan method stores its value (i.e., its representation
in input, e.g., ’var’) and its unique identifier (e.g., #VAR or #ID). If a token
is not found, a distinguished value #failure is set as its identifier. An example is
in Listing E.2.

Memoization and Backtracking The memoization method must store the state of a
scanner. In contrast to a PEG parser, the state of a scanner is not only a position in a
stream, but also the current token. The state of a scanner is a 4-tuple (s, p, t, v), where s
is an input string, p ∈ N is the current position in input, t is the current token identifier,
which is either nil (token undefined), failure (token not found), or t (token identified
by t found) and v, which is the string value of the current token, if t is not nil.

As shown in subsection 6.3.2, the state is remembered before a recognition attempt
of a non-deterministic choice and in case of failure, it is restored to its original value.
Implementation of the remember and restore methods is shown in Listing E.3. In the
PetitParser implementation, an instance of a scanner is created per input, therefore a
scanner remembers only the triple (p, t, v)

Consuming a token Once a parser reaches a token expression, its scanner is used to
consume input. As an example consider the classToken from the grammar in List-
ing 6.1 which is implemented as demonstrated in Listing E.4.

2This might happen at the very beginning, after the previous token has been consumed or after backtrack-
ing.

3Note that we use unordered choice, because our first algorithm returns an unordered set. Using ordered
sets is a research path we would like to explore in future.

APPENDIX E. SCANNER 169

Scanner>>scan_privateOrClass
((char ← self next) == $p) ifTrue: [

((char ← self next) == $r) ifTrue: [
"consumes the rest of the ’private’ token"
...
currentValue ← ’private’.
currentToken ← #’private’

] ifFalse: [
currentToken ← #’failure’

]
] ifFalse: [(char == $c) ifTrue: [

"consumes the rest of the ’class’ token"
...
currentValue ← ’class’.
currentToken ← #’CLASS’

] ifFalse: [
currentToken ← #’failure’

]].
↑ currentToken

Listing E.2: Implementation of the scan privateOrClass scanning method,
used in Listing E.1.

Scanner>>remember
↑ Array

with: stream position.
with: currentToken
with: currentValue

Scanner>>restore: memento
stream position: memento first.
currentToken ← memento second.
currentValue ← memento third.

Listing E.3: Implementation of the remember and restore methods.

ScanningParser>>classToken
↑ scanner consume_CLASS

Listing E.4: Implementation of classToken , used to parse the grammar
from Listing 6.1.

When consuming a token, the current token identifier is set to nil (i.e., the current
token is unknown), whitespace is consumed and the token value is returned. Eventually,
if the follow set is also distinct, a scanning method for the next set might be invoked.

APPENDIX E. SCANNER 170

Scanner>>consume_CLASS
currentToken ← nil.
self consumeWhitespace.
↑ currentValue

Listing E.5: Implementation of the consume CLASS method.

E.2 Regular Parsing Expressions
The traditional parsing technology is built on top of context-free grammars (CFGs) and
their subset, regular expressions (REs), which are equivalent to FSAs. In this work, we
focus on a PEG parsing technology and consequently we introduce a subset of parsing
expressions, regular parsing expressions, which are equivalent to FSAs as well.

However, there is a semantic gap between these two formalisms. PEGs use ordered
choice contrary to unordered choice of CFGs. Furthermore, PELs are defined as a set
of strings for which an expression succeeds (see Definition A.3), i.e., all the strings
which prefix is recognized by a given parsing expression. This is in contrast to CFLs,
in which partially consumed strings are excluded from the language. Last but not least,
there is no notion of failure in CFGs.

While ordered choice can be expressed using unordered choice and the difference
of REs (as we describe in section E.3), to deal with partially consumed strings and
failures would require to extend the FSA formalism.

In this work we do not extend FSAs and we adhere to standard automata because
they provide better performance than extensions with which we experimented so far.4

We overcome the problem with partially consumed strings by introducing a simplifica-
tion: once an expression e accepts a string x, it succeeds on any other string xy, i.e.,
it succeeds on any string with x as a prefix. This is reasonable simplification, which
does not pose any problems for practical applications, e.g., ′PetitParser′/′Petit′

where :

L(′PetitParser′/′Petit′) =


’Petit’

’PetitP’
...

’PetitParser’
...


On the other hand, in some cases the simplification would change the expected

results, e.g., (′PetitParser′/′Petit′)′P′ where:

L((′PetitParser′/′Petit′)′P′) =



’PetitP’

’PetitPa’
...

’PetitParse’

’PetitParserP’
...


but the string ’PetitParser’ is not in the language.

4An efficient implementation of FSAs that can deal with partially consumed strings remains a subject of
our further research.

APPENDIX E. SCANNER 171

To detect the cases when this simplification breaks the semantics, we define a con-
catenation prefix set that is a set of all expression tuples (e1, e2) whose concatenation
leads to the broken semantics. First of all, we introduce a prefix set:

Definition E.1 (Prefix Set). A non-empty string p is a prefix of a string u if the string
u = pv. A prefix set Pu is the set of all possible prefixes p of a string u:

Pu = {p | pv = u}

Definition E.2 (Concatenation Prefix Set (CP)). A concatenation of strings u, v is a
concatenation prefix of a string w if uv ∈ Pw.

A concatenation prefix set CP is a set of language pairs (L1, L2) for which there
exist strings u ∈ L1, v ∈ L2 such that uv is a concatenation prefix of some w ∈ L2:

CP = {(L1, L2) | ∃u∃w ∈ L1,∃v ∈ L2 : uv ∈ Pw}

For example, for expressions e1 = ′PetitParser′/′Petit′ and e2 = ′P′ , con-

catenation of ’Petit’ and ’P’ is a prefix of ’PetitParser’ . Therefore

(L(′PetitParser′/′Petit′ ,L(′P′)) ∈ CP

Definition E.3 (Regular Parsing Expressions (RPEs)). Regular parsing expressions
(RPEs) are defined inductively, if e1 and e2 are regular parsing expressions, then so is:

1. Empty string ε is a regular parsing expression.

2. Literal is a regular parsing expression.

3. Ordered choice e1/e2 is a regular parsing expression if e1, e2 are regular parsing
expressions.

4. Sequence e1e2 is a regular parsing expression if e1e2 are regular parsing expres-
sions, and their languages (L(e1),L(e2)) 6∈ CP

5. Repetition e∗ is a regular parsing expression if e is a regular parsing expression,
and the language (L(e),L(e)) 6∈ CP, and ε 6∈ L(e)

Theorem 1. Regular parsing expressions are a subset of parsing expressions,
RPEs ⊂ PEs.

Proof. From definition of regular parsing expressions: they are defined from the same
terminals using a subset of parsing expression operators excluding nonterminals.

APPENDIX E. SCANNER 172

E.3 Regular Parsing Expression Languages
Now we focus on languages described by RPEs. We show that RPELs are a subset of
RLs and thus they can be recognized by FSAs. In standard REs, choice and sequence
are equivalent to union and concatenation of their languages. For RPEs we define pri-
ority union and priority concatenations of their languages that are equivalent to priority
choice and priority sequence.

We start with priority union, follow with priority concatenation and finally we de-
fine regular parsing expression languages. First of all, we introduce a concept of union
and concatenation terminators. Intuitively a terminator is a prefix of another string, but
the terminator has higher priority and terminates the recognition attempt of the other
lower priority string.

Definition E.4 (Union Terminator). A string t is a union terminator t∪ of a string u if
t ∈ Pu, i.e., t is a prefix of u:

t∪(t, u) =

{
true t ∈ Pu
false otherwise

The union-terminated set T∪ of two languages L1 and L2 is the set of strings u ∈
L2 that are terminated by some string t ∈ L1:

T∪(L1, L2) = {u | ∃t ∈ L1 : t ∈ Pu, u ∈ L2}

Definition E.5 (Priority Union). The priority union of languages L1, L2 is defined as
the union of L1 and L2 excluding all the strings in L2 that have a string from L1 as a
prefix:

L1 ∪p L2 = L1 ∪ L2 \ (T∪(L1, L2))

Consider union of two languages { ’Petit’ } and { ’Bounded

Seas’ ’PetitParser’ }. The priority union results in { ’Petit’
’Bounded Seas’ } because ’Petit’ is a prefix of ’PetitParser’ , has

higher priority and is a union terminator of ’PetitParser’ .

Theorem 2. Priority union ∪p of regular parsing expression languages is equivalent
to priority choice of regular parsing expressions:

L(e1) ∪p L(e2) ≡ L(e1/e2) ∀e1, e2 ∈ RPE

Proof. The definition of priority union (Definition E.5) follows the semantics of prior-
ity choice (Definition A.2):

• The option 1 is covered, because all the strings that are accepted by e1 are in the
union.

• The option 2: is covered, because all the strings that are accepted by e2 and for
which e1 fails are in the union.

If a string xy is accepted by e2 for which e1 does not fail, it means that ∃x : x ∈
L(e1), x is a terminator of xy and all such strings are by definition removed from
union.

APPENDIX E. SCANNER 173

Definition E.6 (Concatenation Terminator). A string t is a concatenation terminator
t◦ of two strings u, v, if t is a prefix of a sequence uv, but not prefix of u:

t◦(t, u, v) =

{
true t ∈ Puv and t 6∈ Pu
false otherwise

The terminated concatenation set T◦ of two languages L1 and L2 is a set of strings
uv : u ∈ L1, v ∈ L2 that are terminated by some string t ∈ L1:

T◦(L1, L2) = {uv | ∃t ∈ L1 : t◦(t, u, v), u ∈ L1, v ∈ L2}

Consider three strings ’PetitP’ , ’Petit’ and ’Parser’ . ’PetitP’

is a concatenation terminator of ’Petit’ and ’Parser’ because it is a prefix of
their concatenation ’PetitParser’ .

Definition E.7 (Priority Concatenation). The priority concatenation of a language L1

and L2 is defined as follows:

L1 ◦p L2 = L1 ◦ L2 \ T◦(L1, L2)

Consider a sequence of two expressions ′PetitP′/′Petit′ and ′Parser′ . They

are not in CP. Neither ’PetitPParser’ (the string recognized by concatenation
of ′PetitP′ and ′Petit′) nor ’PetitParser’ (the string recognized by con-
catenation of ′Petit′ and ′Parser′) is a prefix of ’PetitP’ or ’Petit’ . But
the language of this sequence contains only ’PetitPParser’ :

L((′PetitP′/′Petit′) ′Parser′) = { ’PetitPParser’ }

The input ’PetitParser’ is not in the language, because the ′PetitP′/′Petit′

rule consumes ’PetitP’ and the ′Parser′ rule fails on the remaining input
’arser’ resulting in failure as follows from Definition A.2, Sequence (failure 2).

Theorem 3. Priority concatenation ◦p is equivalent to a sequence of parsing expres-
sions:

L(e1) ◦p L(e2) ≡ L(e1e2) ∀e1, e2 ∈ RPE

Proof. The definition of priority concatenation (Definition E.7) follows the semantics
of sequence (Definition A.2):

• The success case of a sequence is in L(e1) ◦p L(e2) and is not in the terminated
concatenation set. If e1 accepts uv and e2 accepts wx and there is a string uvwx
in L(e1) ◦p L(e2) removed by the terminated concatenation set, it means that
there must be a string uvw in L(e1). Because of a greedy nature of PEs, e1 has
to consume the whole uvw and therefore uv and wx cannot be concatenated.

• The failure (case 1) of a sequence means, that there cannot be a string in L =
L(e1) ◦p L(e2) for which e1 fails. This must be true, because all the strings in L
start with a string accepted by e1.

APPENDIX E. SCANNER 174

• The (failure case 2) of a sequence means, that if e1 accepts uv and e2 rejects wx,
no string uvwx or its prefix is inL(e1)◦pL(e2). Because ◦p is not defined for the
expressions which concatenation is a prefix of uv and because the concatenation
terminator removes any uvw for such that e1 accepts u and e2 accepts vw, such
a string cannot be in the sequence L(e1) ◦p L(e2).

Definition E.8 (Regular Parsing Expression Languages (RPELs)). Finally we define
a regular parsing expression language. If L1, L2 ∈ RPEL, and Σ is an alphabet, we
define regular parsing expression languages inductively as follows:

1. Empty string {ε} is a regular parsing expression language.

2. Terminal {t | t ∈ Σ} is a regular parsing expression language.

3. Priority Union L1 ∪p L2 is a regular parsing expression language.

4. Priority Concatenation L1 ◦p L2 is a regular parsing expression language, if
(L1, L2) 6∈ CP.

5. Kleene Star L1
∗ is a regular parsing language if (L1, L1) 6∈ CP

Definition E.9 (Regular Languages (RLs)). If L1, L2 ∈ RL, and Σ is an alphabet,
parsing languages are inductively defined as follows:

1. Empty string ε is a regular language.

2. Terminal {t | t ∈ Σ} is a language.

3. Union L1 ∪ L2 is a regular language.

4. Concatenation L1 ◦ L2 is a regular language.

5. Kleene Star L∗1 is a regular language.

Theorem 4. Regular parsing expression languages are a subset of regular languages,
RPEL ⊂ RL.

Proof. The definition of RPELs mimics the definition of RLs with the following
differences:

• Instead of union, it uses priority union. Priority union results in a subset of union.

• Instead of sequence, it uses priority sequence. Priority sequence results in a
subset of sequence and is defined only for a subset of RPELs (a pairs of RPELs
that are not in CP).

Therefore, RPEL is a subset of RL.

Theorem 5. Regular parsing expressions are equivalent to regular parsing expression
languages.

APPENDIX E. SCANNER 175

Proof. Because the definition of RPEs mimics the structure of definition of RPELs and
because the operations on RPEs and RPELs are equivalent:

• The priority union is equivalent to a priority choice of regular parsing expres-
sions.

• The priority concatenation is equivalent to a sequence of regular parsing expres-
sions.

Theorem 6. Contrary to PELs, priority sequence and priority choice are distributive
for RPELs.

Proof. For expression (e1/e2)e3 the distributivity (e1/e2)e3 ≡ (e1e3/e2e3) is violated
for a string uvwxy if:

1. uvw ∈ L(e1), x 6∈ L(e3),
u ∈ L(e2), v ∈ L(e3)

2. uvw ∈ L(e1), x 6∈ L(e3),
u ∈ L(e2), vw ∈ L(e3)

3. uvw ∈ L(e1), x 6∈ L(e3),
u ∈ L(e2), vwx ∈ L(e3)

If e1 and e2, e3 ∈ RPE, cases 1) and 2) are covered by concatenation prefixes
CP, by definition the priority sequence is not defined for these. Case 3) is covered by
priority sequence definition, which excludes uvwx from the language because uvw is
a concatenation terminator of uvwx.

Summary In the previous section (section E.2) we have shown that RPEs are a subset
of PEs. In this section we have shown that RPEs describe RPELs and that RPELs are
a subset of RLs. It is already known, that RLs can be recognized by FSAs and because
RPELs are a subset of RLs, they can be recognized by FSAs as well.

E.4 Finite State Automata
Finite state automata (FSAs) are equivalent to RLs [Yu97]. And because RPELs are
subset of RLs (see Theorem 4), we can use FSAs to recognize RPEs as well.

First we provide standard definitions of finite state automata. Because priority
union and priority concatenation require union and concatenation terminators, we ex-
tend the automata with priorities and terminating states that are used for this purpose.
We describe how to transform automata with priorities to deterministic automata.

Definition E.10 (Deterministic Finite State Automata (DFSA)). A deterministic finite
state automaton is represented by a 5-tuple (Q,Σ, δ, qs, F) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• δ is a transition function δ : Q× Σ→ Q

APPENDIX E. SCANNER 176

• qs is a start state qs ∈ Q

• F is a set of final states

Definition E.11 (Nondeterministic Finite State Automata (NFSA)). A nondetermin-
istic finite state automaton is represented by a 5-tuple (Q,Σ,∆, qs, F) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• ∆ is a transition function δ : Q× Σ→ P(Q)

• qs is a start state qs ∈ Q

• F is a set of final states

where P(Q) is the power set of Q.

Definition E.12 (Nondeterministic Finite State Automata with ε-transitions (ε-FSA)).
A nondeterministic finite state automaton with ε-transitions is represented by a 5-tuple
(Q,Σ,∆, qs, F) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• ∆ is a transition function ∆ : Q× (Σ ∪ {ε})→ P(Q)

• qs is a start state qs ∈ Q

• F is a set of final states

To detect union and concatenation terminators, we extend FSAs with terminating
states and priorities. The terminating states represent the union and concatenation ter-
minators that terminate outgoing transitions of the low-priority states. In the context of
FSAs, the terminator state terminates the paths representing the low-priority alternative
of a choice.

Definition E.13 (Deterministic Finite State Automata with priorities (PDFSA)).
A deterministic finite state automaton with priorities is represented by a 7-tuple
(Q,Σ, δ, qs, F, T, π) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• δ is a transition function δ : Q× Σ→ Q

• qs is a start state qs ∈ Q

• F is a set of final states

• T is a set of terminating states

APPENDIX E. SCANNER 177

• π is a priority function π : Q→ {0,−1}

Definition E.14 (Nondeterministic Finite State Automata with priorities (PFSA)).
A nondeterministic finite state automaton with priorities is represented by a 7-tuple
(Q,Σ,∆, qs, F, T, π) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• ∆ is a transition function ∆ : Q× Σ→ P(Q)

• qs is a start state qs ∈ Q

• F is a set of final states

• T is a set of terminating states

• π is a priority function π : Q→ {0,−1}

Definition E.15 (Nondeterministic Finite State Automata with ε-transitions and pri-
orities (ε-PFSA)). A nondeterministic finite state automaton with ε-transitions and
priorities is represented by a 7-tuple (Q,Σ,∆, qs, F, T, π) where

• Q is a finite set of states

• Σ is a finite set of input symbols

• ∆ is a transition function ∆ : Q× (Σ ∪ {ε})→ P(Q)

• qs is a start state qs ∈ Q

• F is a set of final states

• T is a set of terminating states

• π is a priority function π : Q→ {0,−1}

The terminating states are tagged with superscript T , i.e., sT is a terminating state
s. The low-priority states are tagged with superscript –, i.e., s– is a low-priority state s.

Our method to construct a DFSA ∈ DFSA from a regular parsing expression
RPE is inspired by Thompson’s algorithm [Tho68]. We define a function DFSA :
RPE→ DFSA that converts a regular parsing expression to a deterministic finite state
automaton. The DFSA function is defined for different kinds of regular parsing ex-
pressions as follows:

DFSA(e) =



D(FSA(e)) if e = ε

D(FSA(e)) if e = x

D(FSA(DFSA(e1)/DFSA(e2)) if e = e1/e2

D(FSA(DFSA(e1) ◦p DFSA(e2)) if e = e1e2

D(FSA(DFSA(e)∗)) if e = e′

where 1. FSA is a function that transforms RPE to ε-PFSA; and 2. D is a determi-
nation function that transforms ε-PFSA to DFSA. In the remainder of this section
we provide a description of FSA and D.

APPENDIX E. SCANNER 178

E.4.1 Construction of finite state automata from regular parsing
expressions (FSA)

The FSA function is a function FSA : RPE → ε-PFSA that is defined for different
kinds of regular parsing expressions as described in the following text.

Empty string ε is represented by ε-PFSA with two states with an ε-transition be-
tween them. A schematic example is in Figure E.1.

FSA(ε) = ε-PFSA(Q,Σ,∆, qs, F, T, π))

where

• Q = {qs, qf}

• Σ = ∅

• ∆ = (qs, ε)→ qf

• F = {qf}

• T = ∅

• π = {q → 0 | ∀q ∈ Q}

qsstart qf
ε

Figure E.1: ε-PFSA for an empty string ε.

Literal string x is represented by a start state and a transition to the following state
for each character in the string. A schematic example is in Figure E.2.

FSA(x) = ε-PFSA(Q,Σ,∆, q1, F, T, π)

where

• x = c1c2..cn

• Q = {q1, ..., qn+1}

• Σ = {c1, ..., cn}

• ∆ = (qi, ci)→ qi+1,∀qi ∈ Q \ {qn+1}

• F = {qn+1}

• T = ∅

• π = {q → 0 | ∀q ∈ Q}

APPENDIX E. SCANNER 179

qistart q1 qn qn+1
c1 cnδ∗

Figure E.2: ε-PFSA for a string x = c1c2..cn.

Choice e1/e2 is represented by a start state qs with an epsilon transition to a start
state qs of FSA(e1) and qs of FSA(e2). The priorities of states in DFSA(e2) are
decreased. A schematic example is in Figure E.3.

FSA(e1/e2) = ε-PFSA(Q,Σ,∆, qs, F, π)

where

• DFSA(e1) = DFSA(Qe1 ,Σe1 ,∆e1 , qse1 , Fe1)

• DFSA(e2) = DFSA(Qe2 ,Σe2 ,∆e2 , qse2 , Fe2)

• Q = Qe1 ∪Qe2 ∪ {qs}

• Σ = Σe1 ∪ Σe2

• ∆ = ∆e1 ∪∆e2 ∪ {(qs, ε)→ {se1 , se2}}

• F = Fe1 ∪ Fe2

• T = Fe1

• π = {qe1 → 0} ∪ {qe2 → −1},∀qe1 ∈ Qe1 ,∀qe2 ∈ Qe2

qsstart

qse1

fT1

fTi

fTn

δ∗ δ∗
δ∗

DFSA(e1)

q–
se2

f –
1

f –
j

f –
m

δ∗ δ∗
δ∗

DFSA(e2)

ε ε

Figure E.3: ε-PFSA for a choice e = e1/e2.

Sequence e1e2 is represented by ε-PFSA where all the finite states {f1...fn} ∈ F
ofDFSA(e1) are connected by an epsilon transition to the start state qs ofDFSA(e2).
The priorities of states in DFSA(e2) are decreased. A schematic drawing is in Fig-
ure E.4.

FSA(e1e2) = ε-PFSA(Q,Σ,∆, qs, F, π)

where

APPENDIX E. SCANNER 180

• DFSA(e1) = DFSA(Qe1 ,Σe1 , δe1 , qse1 , Fe1)

• DFSA(e2) = DFSA(Qe2 ,Σe2 , δe2 , qse2 , Fe2)

• Q = Qe1 ∪Qe2
• Σ = Σe1 ∪ Σe2

• ∆ = ∆e1 ∪∆e2 ∪ {(qf , ε)→ {se1} | ∀qf ∈ Fe1}}

• qs = qse2

• F = Fe2

• T = Fe1

• π = {qe1 → 0} ∪ {qe2 → −1},∀qe1 ∈ Qe1 ,∀qe2 ∈ Qe2

qse1start

fT1

fTi

fTn

qs–
e2

f –
1

f –
i

f –
m

ε

ε

ε

δ∗

δ∗

δ∗

δ∗

δ∗

δ∗

DFSA(e1) DFSA(e2)

Figure E.4: ε-PFSA for a sequence e1e2.

Repetition e∗ is represented by FSA where all the finite states are connected by an
ε-transition to the start state. A schematic example is in Figure E.5.

FSA(e∗) = ε-PFSA(Q,Σ,∆, qs, F, T, π)

where

• DFSA(e) = DFSA(Qe,Σe, δe, qse , Fe)

• Q = Qe

• Σ = Σe

• ∆ = ∆e ∪ {(qf , ε)→ {se} | ∀qf ∈ Fe}}

• qs = qse

• F = Fe

• T = Fe

• π = {q → 0 | ∀q ∈ Q}

APPENDIX E. SCANNER 181

qs

f1

fi

fn

ε

ε

ε

δ∗

δ∗

δ∗

Figure E.5: ε-PFSA for a repetition e∗.

E.4.2 Determinization of the automata with epsilons and priori-
ties (D)

We call determinization a process that transforms ε-PFSA to DFSA. To transform
ε-PFSA to DFSA we perform three transformations:

D(ε-PFSA) = Rπ(R∆(Rε(ε-PFSA)))

1. ε-transitions removal with an ε removal functionRε : ε-PFSA→ PFSA

2. disambiguation with a disambiguation function (R∆) that removes all the am-
biguous statesR∆ : PFSA→ PDFSA; and

3. priority removal with a priority-removal function: Rπ : PDFSA→ DFSA

Epsilon transitions removal

ε-transitions are removed using a standard ε-transition removal method [ASU86]. Rε
is a functionRε : ε-PFSA→ PFSA:

Rε(ε-PFSA) = PFSA′

where

• ε-PFSA = (Q,Σ,∆, qs, F, T, π)

• PFSA’ = (Q,Σ,∆′, qs, F, π)

• ε-closure(q,∆) returns a set of states reachable through ε-transitions from state
q ∈ Q

• move(R,∆, s) returns all the the states reachable from a set of states R ⊆ Q on
symbol s ∈ Σ

• ∆′(q, s) = ∆(q, s) ∪move(ε-closure(q,∆), s),∀s ∈ Σ

• R ⊆ Q, q ∈ Q, s ∈ Σ

APPENDIX E. SCANNER 182

Disambiguation

To determine states we create a unique mapping m : P(Q) → Q′. Each state q′ ∈ Q′
represents a set P ∈ P(Q).

R∆(PFSA) = PDFSA

where

• PFSA = (Q,Σ,∆, qs, F, T, π)

• PDFSA = (Q′,Σ′, δ′, q′s, F
′, T ′, π′)

• Σ′ = Σ

• q′s = m(qs)

• δ′ is a transition function δ′ : Q′ × Σ′ → Q′

• F ′ ∈ P(Q′)

• T ′ = ∅

• π′ is a priority function π′ : Q′ → {0, 1}

δ′ pays special attention to priorities. In case q′ ∈ Q′ represents a state with a termini-
nating state, i.e., if m(P) = q′, where T ∩ P 6= ∅, only transitions from high priority
states are included:

δ′(q′, s) =

{
m(

⋃
(∆(p, s) | p ∈ P)) P ∩ T = ∅

m(
⋃

(∆(p, s) | π(p) = 0)) T ∩ F 6= ∅

The priority case mimics the logic of priority choice of PEGs — once a successful
option is found, no more options are tried. F ′ contains all the states q′ ∈ Q that
represents a P ∈ P(Q) that contains at least one final state:

F ′ = {qf | P ∩ F 6= ∅,m(P) = qf}

and π′ is the maximum priority of states that are represented by q′:

π′(q′) = max{π(p) | p ∈ P,m(P) = q′}

Priority removal

Removing the priorities is a trivial step. TheRπ is a functionRπ : PDFSA→ DFSA:

Rπ(Q,Σ, δ, qs, F, T, π) = (Q,Σ, δ, qs, F)

F
Measurements

In this chapter we show all the graphs and measurements that did not fit into chapter 6.
We provide a zoomed-in version of graphs, when necessary. We also report on time
per character and measurements of time spend in garbage collector. In section F.2 we
add graphs with speedup and time per character for each of the configurations for all
the measured parsers.

F.1 Summary
The overview of speedup of measurements is in Figure F.1, the zoomed-in version
is in Figure F.2, time per character and its zoomed-in version is in Figure F.3 and
in Figure F.4 respectively.

183

APPENDIX F. MEASUREMENTS 184

0

5

10

15

20

25

30

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p
e
e
d
u
p

Speedup of Dynamic Strategies

GC excluded
GC included

Figure F.1: The speedup of compilation for different grammars.

0

1

2

3

4

5

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p
e
e
d
u
p

Speedup of Dynamic Strategies (Zoom)

GC excluded
GC included

Figure F.2: The speedup of compilation for different grammars, the zoomed-in
version.

APPENDIX F. MEASUREMENTS 185

0

5

10

15

20

25

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

Standard
GC time

Compiled
GC time

Figure F.3: Time per character of plain PetitParser and its compiled version for
different grammars.

0

1

2

3

4

5

6

7

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character (zoom)

Standard
GC time

Compiled
GC time

Figure F.4: Time per character of plain PetitParser and its compiled version for
different grammars, the zoomed-in version.

APPENDIX F. MEASUREMENTS 186

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

GC Time per Character

Standard
Compiled

Figure F.5: Time spend in garbage collector for plain PetitParser and its compiled
version for different grammars.

0

0.05

0.1

0.15

0.2

0.25

0.3

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

GC Time per Character (zoom)

Standard
Compiled

Figure F.6: Time spend in garbage collector for plain PetitParser and its compiled
version for different grammars, the zoomed-in version.

APPENDIX F. MEASUREMENTS 187

F.2 Strategies Details
In this section we provide detailed graphs with impact of strategies from subsec-
tion 6.4.3 on all the measured parser. The grouped speedup is in Figure F.7, the
zoomed-in version is in Figure F.8, time per character and its zoomed-in version is
in Figure F.9 and in Figure F.10 respectively.

0

5

10

15

20

25

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p

e
e
d

u
p

Speedup of Dynamic Strategies

PE
PE+RE

PE+CF
PE+CS

PE+RE+CF
PE+RE+CS

PE+CF+CS
All

Figure F.7: Speedup against plain PetitParser for various configurations.

APPENDIX F. MEASUREMENTS 188

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

S
p

e
e
d

u
p

Speedup of Dynamic Strategies (Zoom)

PE
PE+RE

PE+CF
PE+CS

PE+RE+CF
PE+RE+CS

PE+CF+CS
All

Figure F.8: Speedup against plain PetitParser for various configurations, the
zoomed-in version.

0

5

10

15

20

25

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d

s]

Time per Character

PP
PE

PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS
PE+CF+CS

PE+RE+CF+CS

Figure F.9: Time per character of plain PetitParser and its compiled version for
various configurations.

APPENDIX F. MEASUREMENTS 189

0

1

2

3

4

5

6

7

Expressions

IS Expressions

CF Python

Python
Smalltalk

Java
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d

s]

Time Per Character (Zoom)

PP
PE

PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS
PE+CF+CS

PE+RE+CF+CS

Figure F.10: Time per character of plain PetitParser and its compiled version for
various configurations, the zoomed-in version.

APPENDIX F. MEASUREMENTS 190

F.2.1 Expressions
Speedup of different configurations compared to the plain PetitParser version of Ex-
pressions is in Figure F.11 and time per character is in Figure F.12.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of different configurations for Expressions

GC excluded
GC included

Figure F.11: Speedup of Expressions against PetitParser for various
configurations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Expressions

Compiled Parser
GC time

Figure F.12: Time per character of a plain and compiled Expressions parser for
various configurations.

APPENDIX F. MEASUREMENTS 191

F.2.2 IS Expressions
Speedup of different configurations compared to the plain PetitParser version of IS
Expressions is in Figure F.13 and time per character is in Figure F.14.

1

1.5

2

2.5

3

3.5

4

4.5

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of different configurations for IS Expressions

GC excluded
GC included

Figure F.13: Speedup of IS Expressions against PetitParser for various
configurations.

0

1

2

3

4

5

6

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of IS Expressions

Compiled Parser
GC time

Figure F.14: Time per character of a plain and compiled IS Expressions parser
for various configurations.

APPENDIX F. MEASUREMENTS 192

F.2.3 CF Python
Speedup of different configurations compared to the plain PetitParser version of CF
Python is in Figure F.15 and time per character is in Figure F.16.

1

1.5

2

2.5

3

3.5

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of Different Configurations for IS Python

GC excluded
GC included

Figure F.15: Speedup of CF Python against PetitParser for various
configurations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of IS Python

Compiled Parser
GC time

Figure F.16: Time per character of a plain and compiled CF Python parser for
various configurations.

APPENDIX F. MEASUREMENTS 193

F.2.4 Python
Speedup of different configurations compared to the plain PetitParser version of Python
is in Figure F.17 and time per character is in Figure F.18.

5

10

15

20

25

30

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of Different Configurations for Python

GC excluded
GC included

Figure F.17: Speedup of Python against PetitParser for various configurations.

0

5

10

15

20

25

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Python

Compiled Parser
GC time

Figure F.18: Time per character of a plain and compiled Python parser for
various configurations.

APPENDIX F. MEASUREMENTS 194

F.2.5 Smalltalk
Speedup of different configurations compared to the plain PetitParser version of
Smalltalk is in Figure F.19 and time per character is in Figure F.20.

1

1.5

2

2.5

3

3.5

4

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of Different Configurations for Smalltalk

GC excluded
GC included

Figure F.19: Speedup of Smalltalk against PetitParser for various configurations.

0

0.2

0.4

0.6

0.8

1

1.2

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Smalltalk

Compiled Parser
GC time

Figure F.20: Time per character of a plain and compiled Smalltalk parser for
various configurations.

APPENDIX F. MEASUREMENTS 195

F.2.6 Java
Speedup of different configurations compared to the plain PetitParser version of Java
is in Figure F.21 and time per character is in Figure F.22.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of Different Configurations for Java Parser

GC excluded
GC included

Figure F.21: Speedup of Java against PetitParser for various configurations.

0

0.5

1

1.5

2

2.5

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Java Parser

Compiled Parser
GC time

Figure F.22: Time per character of a plain and compiled Java parser for various
configurations.

APPENDIX F. MEASUREMENTS 196

F.2.7 Java Sea
Speedup of different configurations compared to the plain PetitParser version of Java
Sea is in Figure F.23 and time per character is in Figure F.24.

1

2

3

4

5

6

7

8

9

10

PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

S
p
e
e
d
u
p

Speedup of different configurations for Java Sea Parser

GC excluded
GC included

Figure F.23: Speedup of Java Seas against PetitParser for various configurations.

0

2

4

6

8

10

12

14

PP PE PE+RE
PE+CF

PE+CS
PE+RE+CF

PE+RE+CS

PE+CF+CS

All

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Java Sea Parser

Compiled Parser
GC time

Figure F.24: Time per character of a plain and compiled Java Seas parser for
various configurations.

APPENDIX F. MEASUREMENTS 197

F.3 Scanner Impact
Impact of a scanner on performance of Expressions and Smalltalk parsers is visualized
in Figure F.25, time per character is in Figure F.26 and gc time in Figure F.5.

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Expressions

Smalltalk

S
p
e
e
d
u
p

Speedup of Tokenization

GC excluded GC included

Figure F.25: Performance impact of a scanner.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Expressions

Smalltalk

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

Scannerless
GC time

Tokenized
GC time

Figure F.26: Time per character of scanning and non-scanning variants of
Expressions and Smalltalk parsers.

APPENDIX F. MEASUREMENTS 198

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Expressions

Smalltalk

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

GC Time per Character

Scannerless Tokenized

Figure F.27: Time spend in garbage collector of scanning and non-scanning
variants of Expressions and Smalltalk parsers.

APPENDIX F. MEASUREMENTS 199

F.3.1 Expressions
Impact of tokenizing (PE+TRE and PE+TRE+CF) and scannerless (PE+SRE and
PE+SRE+CF) configurations on Expressions is in Figure F.28 and time per character
in Figure F.29.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

S
p
e
e
d
u
p

Speedup of Different Configurations for Expressions

GC excluded
GC included

Figure F.28: Speedup of Expressions against PetitParser for various tokenizing
and scannerless configurations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PP PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Expressions

Compiled Parser
GC time

Figure F.29: Time per character of a plain and compiled variant of Expressions
for various tokenizing and scannerless configurations.

APPENDIX F. MEASUREMENTS 200

F.3.2 Smalltalk
Impact of various tokenizing (PE+TRE and PE+TRE+CF) and scannerless (PE+SRE
and PE+SRE+CF) configurations on a Smalltalk parser is in Figure F.30 and time per
character in Figure F.31.

1

1.5

2

2.5

3

3.5

4

PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

S
p
e
e
d
u
p

Speedup of different configurations for Smalltalk

GC excluded
GC included

Figure F.30: Speedup of Smalltalk against PetitParser for various tokenizing and
scannerless configurations.

0

0.2

0.4

0.6

0.8

1

1.2

PP PE PE+SRE
PE+TRE

PE+SRE+CF

PE+TRE+CF

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character of Smalltalk

Compiled Parser
GC time

Figure F.31: Time per character of a plain and compiled variant of Smalltalk for
various tokenizing and scannerless configurations.

APPENDIX F. MEASUREMENTS 201

F.4 Memoization Details
Speedup of the context-sensitive analysis and the push–pop analysis on the IS Expres-
sions, Python and Java Seas parsers is in Figure 6.11 and time per character in Fig-
ure F.33.

0

0.5

1

1.5

2

2.5

3

3.5

IS Expressions

Python
Java Sea

S
p
e
e
d
u
p

Speedup of Memoization Strategies

CS Analysis Push-Pop Analysis

Figure F.32: Impact of the context-sensitive analysis and the push–pop analysis
on the performance of context-sensitive parsers.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IS Expressions

Python
Java Sea

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

CS Analysis
Push-Pop Analysis

No CS Analysis

Figure F.33: Time per character of context-sensitive parsers with different
context analyses.

APPENDIX F. MEASUREMENTS 202

F.5 Smalltalk Parsers
Parse time of different Smalltalk parsers compared to the parser compiled by Petit-
Parser compiler is in Figure F.34 and time per character of each of the parsers in Fig-
ure F.35.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

PetitParser Hand-written SmaCC

S
p
e
e
d
u
p

Parse time of Smalltalk parsers compared to the Compiled Parser

GC included
GC excluded

Figure F.34: Performance speedup of Smalltalk parsers.

0

0.2

0.4

0.6

0.8

1

1.2

Compiled PetitParser Hand-written SmaCC

Ti
m

e
 p

e
r

C
h
a
ra

ct
e
r

[m
ic

ro
se

co
n
d
s]

Time per Character

Total Time
GC time

Figure F.35: Time per character of Smalltalk parsers.

APPENDIX F. MEASUREMENTS 203

F.6 Java Parsers
Parse time of different Java semi-parsers compared to the full Java parser is in Fig-
ure F.34 and time per character of each of the parsers in Figure F.35.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Java Sea Java Sea (CS) Refined Island

S
p
e
e
d
u
p

Parse time of semi-parsers compared to the Java Parser

GC included
GC excluded

Figure F.36: Performance of Java semi-parsers compared to the Java parser.

0

2

4

6

8

10

12

14

Java Java Sea Java Sea (CS) Refined Island

Ti
m

e
 p

e
r

C
h
a
ra

ct
e
r

[m
ic

ro
se

co
n
d
s]

Time per Character

Total Time
GC time

Figure F.37: Time per character of Java semi-parsers and the Java parser.

G
CommonMark Grammar Definition

In the following text we describe a slightly simplified grammar of a CommonMark 0.19
structure.1 The complete grammar with tests can be found in the prepared Smalltalk
image.2 The parsing of a CommonMark is separated into two phases; the first phase
recognizes structure elements and the second phase recognizes inline elements. We
present a context- and layout-sensitive grammar of structure elements.

The document structure of CommanMark code is in Listing G.1. The prefix

uses the prefix parser combinator as defined in Algorithm 4.5. There are several
types of content elements, such as rules, quoted blocks, code, lists, etc. The content of
these elements is valid as long as a line starts with the given prefix that is stored in the
SP stack.

The definition of a horizontal rule element is in Listing G.2. The rule definition is
straightforward; it expects three or more stars, minuses or underlines at the beginning
of a line. The horizontal rule (as any other content element) consumes the final line
end so that a new content element can at a new line.

The quoted block of CommonMark changes prefix stack. If a line starts with ’>’
it is pushed to the stack SP . In the end, the ’>’ is popped from SP .

There are two types of code block in CommonMark; indented and fenced (see List-
ing G.4). The indented code starts with four spaces. The fenced start with some indent
and is fenced by a sequence of three or more ’‘’ or ’˜’ . An example of indented
code looks like this:

I am a code.
So am I.

The indented code definition (indentedCode) is straightforward and consists of a
lines that are prefixed with four spaces.

The fenced code is more complicated. The problem is that a parser needs to re-
member (i) the initial indentation (see the rule codeFenceFirstIndent , which is

1http://spec.commonmark.org/0.19/
2http://scg.unibe.ch/research/parsingForAgileModeling.

204

http://spec.commonmark.org/0.19/
http://scg.unibe.ch/research/parsingForAgileModeling

APPENDIX G. COMMONMARK GRAMMAR DEFINITION 205

start ← document
document ← (prefix contentElem)*
prefix ← prefP
contentElem ← horizontalRule /

quoteBlock /
code /
list /
htmlBlock /
header /
linkRefDef /
paragraph /
emptyLine

content ← contentElement
(prefix contentElement)*

Listing G.1: A PEG definition of a CommonMark document.

horizontalRule ← (stars / minuses / unders) lineEnd
stars ← ’***’ ’*’*
minuses ← ’---’ ’-’*
minuses ← ’___’ ’_’*

Listing G.2: A PEG definition of a CommonMark horizontal rule.

quoteBlock ← quoteIndent
content

quoteDedent

quoteIndent ← OP(quote)
quoteDedent ← !prefix MP(quote)
quote ← ’>’

Listing G.3: A PEG definition of CommonMark quote blocks.

removed from the content (consumed by codeFenceIndent); and (ii) the fence to
properly detect end of fenced code, (see codeFenceStart and codeFenceStop).

As an example, consider fenced code with ’ I am a code’ :

‘‘‘
I am a code!

‘‘‘

And this is fenced code with ’I am a code’ . The leading whitespace is omitted
because of the initial indentation:

‘‘‘‘
I am a code!
‘‘‘‘

APPENDIX G. COMMONMARK GRAMMAR DEFINITION 206

Therefore two different stacks are used: SF for fence (see rules codeFenceStart

and codeFenceStop) and SFI for fenced code indentation (see rules

codeFenceFirstIndent) and codeFenceIndent).

code ← indentedCode / fencedCode

indentedCode ← codeIndent codeLine lineEnd
(prefix codeIndent codeLine lineEnd)*

codeIndent ← #space #space #space #space
codeLine ← (!lineEnd •)*

fencedCode ← codeFenceStart infoString? lineEnd
(

!(prefix codeFenceStop)
(prefix codeFenceIndent codeLine lineEnd

)*
(prefix codeFenceStop lineEnd) / !prefix

codeFenceStart ← codeFenceFirstIndent
OF(’˜˜˜’ ’˜’*) / (’‘‘‘’ ’‘’*)

codeFenceStop ← prefF &lineEnd MF

codeFenceFirstIndent← OFI(#space? #space? #space?)
codeFenceIndent ← prefFI

infoString ← (!(lineEnd / fenceStop) •)+

Listing G.4: A PEG definition of CommonMark code elements.

Lists in CommonMark can be ordered or unordered (see Listing G.5). The items
of unordered lists start with ’-’ , ’*’ or ’+’ bullets. The items of ordered ones
start with a bullet consisting of a number followed by either ’.’ or ’)’ . After
an item bullet there can be up to four spaces which should be part of the line prefix
(represented by the prefix rule). To verify that all the list items have the same bullet
formatting, we use an additional stack SL, which remembers what kind of item bullets
are used (see listBegin and listEnd).

However a numbered list item can start with an arbitrary number; there is possibly
infinite number of strings that can start a numbered list item:

1. first list item
3. second list item
124. third list item

In order to ensure that a list item starts with an expected expression, we store the
expression to SL (see listOrderedMark). Because we don’t store a string, but an
expression, we create a special combinator parse that parses the expression on the
top of the referenced stack and returns its result (see listMark).

Note that the continuation line has to be aligned to the text on the first line as in the
following example:

1. first list item
continuation of the item

APPENDIX G. COMMONMARK GRAMMAR DEFINITION 207

3. second list item
continuation of the item

The ’1. ’ or ’3. ’ is consumed by the listBullet rule, which pushes to
the prefix stack SP as many spaces as is the length of parsed input (using the spaces:
method). These spaces become a part of a line prefix. The spaces are popped from SP
in listItemEnd .

list ← listBegin listItem
(prefix listItem / listEmptyItem)*

listEnd
listBegin ← OL(&(listOrderedMark / listBulletMark))
listItem ← listBullet content listItemEnd
listEnd ← ML

listBulletMark ← ’-’ map: [:res | ’-’] /
’*’ map: [:res | ’*’] /
’+’ map: [:res | ’+’]

listOrderedMark ← listMarkDot map: [:res | listMarkDot] /
listMarkBracket map: [:res | listMarkBracket]

listMarkDot ← [0-9]+ ’.’
listMarkBracket ← [0-9]+ ’)’

// push as many spaces as the size of result
listBullet ← OP(listMark maxFourSpaces

map: [:r | self spaces: r size])
listItemEnd ← MP

listMark ← parseL

Listing G.5: A PEG definition of CommonMark lists.

HTML blocks consist of properly formated HTML code (see Listing G.6). How-
ever the line prefix has to be removed from, therefore htmlBlock parses its content
line by line while removing the prefix using the prefix rule.

htmlBlock ← &htmlTag htmlBlockLine lineEnd
(prefix htmlBlockLine lineEnd)*

htmlBlockLine ← (!lineEnd •)*
htmlTag ← ’<’ htmlTagContent ’>’
htmlTagContent ← ...

Listing G.6: A PEG definition of a CommonMark HTML block

There are two kinds of headers, ATXHeader or setextHeader (see List-
ing G.7). ATXHeader has six different levels, setextHeader has two different
levels.

Link references (see Listing G.8) consists of a label, a destination and an optional
title.

A paragraph is defined as in Listing G.9. The content of a paragraph is guarded by a
notAParagraph rule which ensures that the paragraph does not consume unwanted

APPENDIX G. COMMONMARK GRAMMAR DEFINITION 208

header ← ATXHeader / setextHeader
ATXHeader ← ATXHeaderL1 /

ATXHeaderL2 /
ATXHeaderL3 /
ATXHeaderL4 /
ATXHeaderL5 /
ATXHeaderL6

ATXHeaderL1 ← ’#’ ATXTitle ATXEnd
ATXHeaderL2 ← ’##’ ATXTitle ATXEnd
ATXHeaderL3 ← ’###’ ATXTitle ATXEnd
ATXHeaderL4 ← ’####’ ATXTitle ATXEnd
ATXHeaderL5 ← ’#####’ ATXTitle ATXEnd
ATXHeaderL6 ← ’######’ ATXTitle ATXEnd

ATXTitle ← (!ATXEnd •)*
ATXEnd ← (space ’#’+) lineEnd

setextHeader ← setextHeaderL1 /
setextHeaderL2

setextHeaderL1 ← !emptyLine setexLine lineEnd setexHeaderU1
setextHeaderL2 ← !emptyLine setexLine lineEnd setexHeaderU2
setextLine ← (!lineEnd •)*
setextHeaderU1 ← ’=’+
setextHeaderU1 ← ’-’+

Listing G.7: A PEG definition of a CommonMark header.

linkRefDef ← linkLabel ’:’ linkDestination
linkTitle? lineEnd

linkLabel ← ’[’ (!’]’ (’\]’ / •))* ’]’
linkDestination ← ’<’ (!’>’ •)* ’>’ /

’(’ (!’)’ •)* ’)’
linkTitle ← ’"’ (!’"’ •)* ’"’ /

’(’ (!’)’ •)* ’)’

Listing G.8: A PEG definition of a CommonMark link reference definition.

content. Furthermore, because paragraphs have relaxed rules for the line prefix, the
content of a paragraph can start either with prefix or with lazyPrefix .

Finally there are the helper rules for empty lines, whitespace etc. in Listing G.10.

APPENDIX G. COMMONMARK GRAMMAR DEFINITION 209

paragraph ← !emptyLine
paragraphLine lineEnd

(prefix / lazyPrefix) notAParagraph
paragraphLine lineEnd

paragraphLine ← (!lineEnd •)*
notAParagraph ← !(emptyLine /

ATXHeader /
horozontalRule /
fencedCode /
htmlBlock /
list /
quote)

lazyPrefix ← !(prefix quoteIndent) (quote / space)*

Listing G.9: A PEG definition of a CommonMark paragraph.

emptyLine ← space* &lineEnd
lineEnd ← #newline / #eof
space ← ’ ’
maxFourSpaces ← #space? #space? #space? #space? !#space

Listing G.10: A PEG definition of helper rules.

E r k l ä r u n g

gemäss Art. 28 Abs. 2 RSL 05

Name/Vorname:

Matrikelnummer:

Studiengang:

Bachelor  Master  Dissertation 

Titel der Arbeit:

LeiterIn der Arbeit:

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen

entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls

der Senat gemäss Artikel 36 Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996

über die Universität zum Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

Ich gewähre hiermit Einsicht in diese Arbeit.

Unterschrift

Ort/Datum

Kurs/Jan

11-118-908

Informatik

✔

Parsing for Agile Modeling

Prof. Dr. Oscar Nierstrasz

Curriculum Vitæ

Personal Information

Name Jan Kurš
Email kurs.jan@gmail.com

Education

2012–2016 PhD in Computer Science,
University of Bern, Switzerland
Thesis: Parsing For Agile Modeling

2007–2010 MSc in Informatics,
Czech Technical University, Czech Republic
Thesis: Introducing XML Schema Data Types into XQuery
Interpreter

2004–2007 BSc in Informatics,
Czech Technical University, Czech Republic
Thesis: Test pattern compression done with a help of evolu-
tionary algorithms

Work Experience

2012–2016 Research Assistant
University of Bern, Switzerland

2015 Software Engineering Intern
Google, Inc., California

2008–2012 Software Engineer
Certicon, a.s., Czech Republic

2006–2008 Startup Developer
Hledejceny.cz, Czech Republic

	Introduction
	Agile Modeling
	Parsing Obstacles of Agile Modeling
	Thesis
	Our Contribution

	Overview of Parsing Technologies
	Parsing in the Wild
	Expressive Power
	Composability
	Tolerant Grammars and Semi-Parsing
	Performance
	Parsing Frameworks

	Existing Limitations
	Our Solution

	Parsing Expression Grammars and PetitParser
	Parsing Expression Grammars
	PEG Analysis
	Parser Combinators

	PetitParser

	Context Sensitivity in Parsing Expression Grammars
	Motivating Example
	Parsing Contexts
	Context-Sensitive Extension
	Indentation Stack

	Parsing Contexts in Parsing Expression Grammars
	Parser Combinators
	CS-PEG analysis

	Implementation
	Performance

	Case Studies
	Python
	Markdown

	Related Work
	Conclusion

	Semi-Parsing with Bounded Seas
	Motivating Example
	Why not use Regular Expressions?
	A Naïve Island Grammar
	An Advanced Island Grammar

	Bounded Seas
	The Sea Boundary
	The Context Sensitivity of Bounded Seas

	Bounded Seas in Parsing Expression Grammars
	The Water Operator
	The NEXT function
	BS-PEG analysis

	Implementation
	Performance

	Java Parser Case Study
	Without Nested Classes
	With Nested Classes
	With Return Types
	Performance

	Related Work
	Conclusion

	Adaptable Parsing Strategies
	Motivating Example
	Composition Overhead
	Superfluous Intermediate Objects
	Backtracking Overhead
	Context-Sensitivity Overhead

	A Parser Combinator Compiler
	Adaptable Strategies

	Parser Optimizations
	Regular Optimizations
	Context-Free Optimizations
	Context-Sensitive Optimizations

	Performance analysis
	PetitParser compiler
	Benchmarks
	Parsing Strategies Impact
	Scanner Impact
	Memoization Impact
	Java Parsers Comparison
	Smalltalk Parsers Comparison

	Related Work
	Conclusion

	Ruby Case study
	Ruby Structure
	The Dangling End Problem
	Measurements

	Ruby Method Calls
	Measurements

	Performance
	Conclusion

	Conclusion
	Formal development of PEGs
	Bounded Seas Examples
	Example of Dynamic NEXT computation
	Example of Static NEXT computation
	Overlapping Seas Example

	Implementation
	Bounded seas

	Layout Sensitivity in the Wild
	Haskell
	Python
	F#
	YAML
	OCaml
	CoffeeScript
	Grace
	SRFI 49 — Indentation-Sensitive Scheme
	Elastic Tabstops

	Scanner
	Scanners in PEG-based parsers
	Tokens and Scannable Parsing Expressions
	Scannable Choices
	Scanner

	Regular Parsing Expressions
	Regular Parsing Expression Languages
	Finite State Automata
	Construction of finite state automata from regular parsing expressions (FSA)
	Determinization of the automata with epsilons and priorities (D)

	Measurements
	Summary
	Strategies Details
	Expressions
	IS Expressions
	CF Python
	Python
	Smalltalk
	Java
	Java Sea

	Scanner Impact
	Expressions
	Smalltalk

	Memoization Details
	Smalltalk Parsers
	Java Parsers

	CommonMark Grammar Definition

