
Augmenting Type Inference with
Lightweight Heuristics

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nevena Lazarević
von Serbien

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut für Informatik

Universität Bern

Augmenting Type Inference with
Lightweight Heuristics

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nevena Lazarević
von Serbien

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut für Informatik

Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 21.06.2017.
Der Dekan:
Prof. Dr. Gilberto Colangelo

This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2017 by Nevena Lazarević

This work is licensed under the terms of the Creative Commons Attribution
– ShareAlike 2.5 Switzerland license. The license is available at
http://creativecommons.org/licenses/by-sa/2.5/
ch/

Attribution–ShareAlike

scg.unibe.ch
http://creativecommons.org/licenses/by-sa/2.5/ch/
http://creativecommons.org/licenses/by-sa/2.5/ch/

To my parents who always support my every decision.
To my husband who always understands me.

Mojim roditeljima koji me uvek u svemu podržavaju.
Mom suprugu koji uvek ima razumevanja za mene.

Acknowledgements

First of all, I would like to thank Oscar Nierstrasz, for giving me
the opportunity to work as a part of the Software Composition Group. I
am eternally thankful to him for guiding me through the PhD life, for
encouraging the research I was doing, and for giving desperately needed
advice whenever necessary. I really enjoyed being a member of SCG, and
solving every one of the coffee puzzles!

I am very grateful to Stéphane Ducasse, first and foremost for agreeing
to be on my PhD committee, and for providing me with his comments on
my work. I thank Gerhard Jäger for chairing the PhD committee.

A big thank you to all of the guys from SCG, who shared their time
with me. Thank you, Mircea, for making every day shiny, joyous and
colourful, even when it poured like hell. :) Thank you, Claudio, for finding
time to read my work numerous times, and especially for sharing the office
with me for, hm, eight months. :) Thank you, Haidar, for being a good
friend, giving me tips for my travels and singing with me. Thank you,
Boris, for all of our discussions in Serbian. Thank you, Andrei, for always
asking how my research is going. :) Thank you, Andrea, for always smiling
and being positive. Thank you, Jan, for always having a calm word and a
piece of advice. Thank you, Leonel, for your precious advice regarding my
trips to Chile and Argentina. Thank you, Mohammad, for always forcing
me to perform better, even when I did not believe it was possible. :) Thank
you, Yuriy, for all the laugh during coffee breaks. Thank you, Manuel, for
always being ready for a cup of coffee. I also thank Erwann for the advice
he shared with me at the beginning of my PhD. And, thank you, Cédric
and Oliver for being my officemates for a couple of months.

I am very thankful to Iris for her huge help during my PhD journey,
and all the nice chats we had at SCG. She made all the administrative stuff
so easy!

I also thank David Röthlisberger and Romain Robbes for allowing me
to visit and work for a month in Chile. It was an incredible experience!

i

One thank you to Clément Béra, for his collaboration and help regarding
some of the work presented in this thesis.

I want to use this opportunity to thank my parents, who always believe
in me and support me. I hope I made them proud. An enormous thank you
to my husband for standing (by) me even when I was unbearable (who
hasn’t been like that at least once during PhD?!), and for always giving me
courage and support.

I want to thank all of my friends from Čačak and Belgrade for always
being there for me, and for helping home feel like home: Neda Niketić,
Kaća Petrović, Ana Gutić, Isidora Čpajak, Jelena Petronijević, Jovana
Pavlović, Mladen Pavlović, Jelena Ilić, Nina Radojičić, Ivana Milović,
Stefan Mišković and Ðord̄e Bojović. Big thank you to all of my friends in
Zürich for making Switzerland feel like home: Anja and Filip (and for all
the board-games-playing weekends we had), Džimi and Alica, Marković
and Irena. I am very thankful to my friends in Paris, Igor and Alina, for
making my every trip to Paris enjoyable and for making me wish to be a
student there again.

I thank all the people who directly, or indirectly, contributed to this
thesis, and made it possible. Let the journey begin!

Audaces fortuna iuvat.

April 03, 2017
Nevena Lazarević

ii

Abstract

Static type information facilitates program comprehension and analy-
sis. Yet, such information is absent in dynamically-typed languages, and
that increases the time needed for software maintenance. Type inference
algorithms may provide type information to developers, but in order to be
fast and assist in development phase, they sacrifice the precision for speed.
One of the biggest obstacles for their precision is polymorphism presence.

In this thesis we first analyse the prevalence of polymorphism in object-
oriented software, to assess the criticality it imposes on simple type infer-
ence. We find that polymorphism is omnipresent in object-oriented code,
and that static analysis in dynamically-typed languages is also hampered
by the usage of cross-hierarchy polymorphism, i.e., duck typing. As this
big obstacle for static code analysis cannot be bypassed, we propose the
need for lightweight heuristics to tackle the problem of imprecision of
simple type inference algorithms.

Four lightweight heuristics are employed to improve the performance
of two simple and fast type inference approaches. These heuristics are
founded on the source code and run-time information that are easy to
collect without interrupting the workflow of a developer.

The heuristics are evaluated and compared with the underlying algo-
rithms based on their inference time and precision. All of them show a
significant improvement when compared to the basic algorithm. They in-
troduce a negligible overhead on the inference time, thus we deem them
usable during regular coding tasks.

iii

iv

Contents

1 Introduction 1
1.1 Thesis statement . 5
1.2 Contributions . 6

1.2.1 A large-scale software study on the prevalence of
polymorphism in statically and dynamically-typed
languages . 6

1.2.2 Lightweight heuristics for improving simple type
inference algorithms 7

1.3 Outline . 10

2 State of the art 11
2.1 Gradual typing . 11
2.2 Optional typing . 13
2.3 Static type inference . 14
2.4 Dynamic type inference 17

2.4.1 Code instrumentation 17
2.4.2 Inline caches . 18

2.5 Other techniques . 19

3 Study of polymorphism prevalence 21
3.1 Introduction . 21
3.2 Related Work . 26
3.3 Terminology . 27
3.4 Experimental Setup . 32

3.4.1 Data processing 33
3.4.2 Data analysis . 33

3.5 Experimental Results . 34
3.5.1 Implementing polymorphism 34
3.5.2 Using polymorphism 35

v

3.5.3 Cardinality of polymorphic message sends 37
3.5.4 Implementing duck typing 39
3.5.5 Using duck typing 40

3.6 Threats to Validity . 41
3.7 Discussion . 43
3.8 Conclusion . 45

4 Static class usage frequency heuristics 47
4.1 Introduction . 47
4.2 Overview . 49
4.3 Heuristics and Approaches 53

4.3.1 Terminology . 53
4.3.2 Heuristics . 57
4.3.3 Assigned types vs. selector types 60
4.3.4 Approaches . 61

4.4 Evaluation . 62
4.4.1 Class instantiation heuristic 64
4.4.2 Name occurrence heuristic 70
4.4.3 Comparison with EATI 71

4.5 Discussion and threats to validity 74
4.6 Conclusion and future work 76

5 Mining inline caches for class usage 77
5.1 Introduction . 77
5.2 Gathering of dynamic type information 79

5.2.1 Execution of message sends 79
5.2.2 Run-time type information gatherer built 80

5.3 Type inference algorithm 81
5.3.1 Dynamic information 81

5.4 Evaluation . 82
5.4.1 Inline caching type gathering 82
5.4.2 Projects used for evaluation 83
5.4.3 Overall results — Hierarchy-Based approach . . . 83
5.4.4 Difference between the basic algorithm and ICTI . 85
5.4.5 Not guessed variables 86
5.4.6 Position of the correct type 89
5.4.7 Overall results — Class-Based approach 90

5.5 Threats to validity . 91
5.6 Conclusion . 92

vi

6 Exploiting Type Hints in Method Argument Names 93
6.1 Introduction . 93
6.2 Motivation . 95
6.3 Algorithm . 98

6.3.1 The Cartesian Product Algorithm 98
6.3.2 Type hints from method argument names 102
6.3.3 Upgraded CPA — CPA∗ 103

6.4 Implementation . 103
6.4.1 CPA . 103
6.4.2 Type Hints in Smalltalk 104

6.5 Evaluation . 106
6.5.1 Argument names without inferred type hint 110

6.6 Threats to validity . 112
6.7 Conclusion . 113

7 Conclusion 115
7.1 Contributions . 116

7.1.1 Large-scale polymorphism study 116
7.1.2 Lightweight heuristics 116

7.2 Future work and open questions 117
7.2.1 Choice of the basic algorithms 117
7.2.2 Choice of the heuristics 117
7.2.3 Combination of heuristics 118
7.2.4 Language idioms 118
7.2.5 Beyond Smalltalk 118

7.3 Summary . 119

Appendices 121

A Implementation and Usage of the Type Inference Tool in
Pharo 123

A.0.1 Tool for ordering classes based on the heuristics
presented in Chapter 4 and Chapter 5 123

A.1 Assessment of the heuristics presented in Chapter 4 and
Chapter 5 . 127

A.2 Assessment of CPA∗ . 128

vii

viii

1
Introduction

Due to the lack of static type information, developers in dynamically-
typed languages need more time for software maintenance than devel-
opers in statically-typed languages [KHR+12, HKR+14]. Static type in-
formation is essential when it comes to understanding software control
flow [SMDV08, KBR14], the core of the program comprehension pro-
cess [RNDB09, SES05].

In an object-oriented language, regardless of whether it is statically-
or dynamically-typed, the difficulty of control flow analysis depends, to
a great extent, on the usage of inheritance and polymorphism in the code.
Polymorphism enables genericity and extensibility by decoupling clients
from providers, while inheritance allows code reuse. Yet, together they may
cause the parts of the software that are semantically close to be scattered
over various places in the code. If a class inherits or extends methods from
its superclass, the intended behaviour of the class cannot be understood
without understanding the behaviour of its superclass. It has been observed
that a high use of inheritance poses serious complexity issues on program
comprehension [Ous98].

This is particularly true in dynamically-typed languages where high use
of polymorphism, combined with the lack of static type information, causes

1

an increase of navigation actions [RNDB09, KBR14], and consequently
maintenance time. Let us consider the example in Listing 1. The example1

is written in Smalltalk.

1 GLMLoggedObject subclass: #GLMPane
2 instanceVariableNames: '... presentations ...'
3 classVariableNames: ''
4 category: 'Glamour-Core'
5

6 GLMPane>>update
7 ...
8 self presentations do: [:each | each update]

Listing 1: The run-time type of the block argument each cannot be
statically detected by the traditional approach

Lines 1-4 define a new class GLMPane which has an instance vari-
able presentations, while the set of lines 6-8 define a method named
update, responsible for updating each of the elements of the instance
variable presentations. Let us suppose that the developer wants to un-
derstand how the update is performed. Smalltalk is a dynamically-typed
language, thus there is no static type information. In order to navigate from
a message send2 update in the line 8 to the message implementation, the
developer has at her disposal only the message selector, that is update.
By using this traditional approach, the developer will obtain the list of sev-
enteen3 methods implementing the selector update, in thirteen different
class hierarchies. In the situations like this, the developer is sometimes
reluctant to explore all the method candidates statically, due to the possibly
long list of selector implementors [KBR14].

The developer then usually attempts to acquire the type of the receiver
and then seek the class implementing the corresponding message [KBR14].
If she fails, she is then forced to run the code to obtain the desired informa-
tion, whereas static type information would eliminate the cost of running

1This code snippet is actual code from the Glamour-Core system:
http://www.smalltalkhub.com/#!/~Moose/Glamour/packages/
Glamour-Core

2In the rest of the thesis, we will mainly use Smalltalk terminology. In Smalltalk ter-
minology, to invoke a service of an object, one “sends it a message”. A message consists
of a “selector” (the name of the message) and the arguments. The receiver is then free to
decide which “method” that implements the corresponding “selector” to use to respond to
that message.

3The system used for this example is Pharo 5.0, version 50761. The actual number of
implementations may vary in the other systems.

2

http://www.smalltalkhub.com/#!/~Moose/Glamour/packages/Glamour-Core
http://www.smalltalkhub.com/#!/~Moose/Glamour/packages/Glamour-Core

the software. Besides, running the code just yields one possible software
execution and hinders thorough understanding of the code [PTP07].

Even type information without explicit static type checking has a
positive impact on development time [SH14]. However, wrong type
information increases development time more than no type informa-
tion [SH14]. It causes the developer to explore wrong parts of code,
thus leads to the pollution of the working space and wasted develop-
ment time [RND09]. Returning to the example in Listing 1, one would as-
sume that the presentation-like objects would be stored in the instance
variable presentations. This may lead the developer to explore the
GLMPresentation class, which belongs to the same project as the code
in the example, and its method update. However, the actual run-time type
of an element of the presentations instance variable is a subclass of the
GLMPresentation class. This subclass contains its own implementation
of the update selector. We can conclude that the false type assumption
would cause the wrong direction of the work flow, hence it would increase
the development time. This emphasises the importance of precision for
type information. Type information also needs to be obtained fast, in or-
der not to disrupt the work flow [RNDB09, RND09, SH14, RL08]. This
stresses the importance of speed for the underlying type inference.

For static type analysis to be precise, it must closely track control and
data flow. These analyses provide the developer with the most reliable
results possible, but they depend on the analysis of the whole program,
making them slow and expensive. Modern software not only depends
heavily on libraries, but is often a part of a distributed system, so the whole
program may not even be available at analysis time. Furthermore, this kind
of analysis has scalability issues [SS04].

Simple analyses statically track variable assignments and messages
sent to a variable, and consequently pose constraints on the variable, the
resolution of which would result in the set of possible types for the vari-
able. Since they are neither control-flow nor data-flow sensitive, these
approaches tend to be very fast. They are usable during coding tasks, since
they would not break the developer’s workflow. However, they tend to be
less precise. Due to the trade-off of accuracy for speed, their precision is
heavily hampered by polymorphism usage [Age95].

Yet little is known about the actual polymorphism presence in object-
oriented software. While the observed difficulties in program comprehen-
sion in dynamically-typed languages [SMDV08, KBR14] are likely to be
the direct consequence of the lack of static type information, they may also

3

suggest larger presence of polymorphic code in dynamically-typed than in
statically-typed languages.

We therefore set out to investigate the actual usage of polymorphism
in open source object-oriented software by studying two large corpora
of open source software systems: one statically- and one dynamically-
typed. The study revealed a high usage of polymorphism in both corpora,
and a significant degree of scatteredness throughout the system. It pro-
vides us with two main conclusions: first — polymorphic code is om-
nipresent in both language corpora, and second — it is more present in
dynamically-typed software, though the difference is not as large as are
the differences in program comprehension in statically- and dynamically-
typed software [SMDV08, KBR14]. Dynamically-typed code also makes
a use of cross-hierarchy polymorphism, i.e., usage of the same selector for
methods defined in classes without a common superclass implementing
that selector.

These findings suggest the importance of static type information for
program comprehension. But, they also confirm the high presence of one
of the biggest obstacles for static type inference. One of the fastest static
type inference approaches, RoelTyper [PMW09], is directly hampered by
the presence of (cross-hierarchy) polymorphism. The more the code is
polymorphic, the more likely it is that this algorithm will over-approximate
the set of possible types for a variable, that is, it will infer as possible types
false positives, i.e., classes that understand the interface of the variable (set
of messages sent to the variable), but do not represent its run-time type.

We argue that lightweight heuristics may be employed to improve the ac-
curacy of control-flow and data-flow insensitive type inference algorithms,
that is, to mitigate the number of false positives, without a significant loss
of speed. These heuristics are founded on the information that is easily
accessible from the source code either statically or at run time. By perform-
ing lightweight code analysis, we believe that it is possible to augment the
precision of a simple type inference algorithm, while preserving its sim-
plicity and swiftness. Hence, they would remain fast and practical during
coding tasks, without breaking work flow.

In order to illustrate this, we have implemented three of these heuristics
on top of RoelTyper and one heuristic on top of the Cartesian Product Algo-
rithm (abbreviated CPA) [Age95], which statically models type flow at run
time. Our choice falls on these two algorithms, since they are fast enough to
be usable during coding tasks. One more advantage is that they work with
nominal types, as structural types burden program comprehension [Str].

4

The heuristics are based on static or run-time information. Proof-of-concept
prototypes are implemented for Pharo4, a dialect of Smalltalk, a highly
reflective dynamically-typed language [GR83], that enables fast and easy
implementation of analysis tools [FJ89]. We used these implementations
to evaluate our claim. In both cases, we compared the results with the
underlying algorithms, and demonstrated that the usage of heuristics in-
creased the precision without significant overhead. To assess the criticality
that polymorphism imposes on these simple algorithms, we measured the
number of possible hierarchies to which types of the variables may belong.
When using RoelTyper, more than 70% of variables have statically-inferred
types that belong to two or more class hierarchies. This clearly indicates the
degree of polymorphism usage throughout the code used for the purpose
of evaluation. Implemented heuristics are able to correctly infer the types
even for variables whose interface is understood by more than one hundred
classes.

In the case of RoelTyper, we additionally compared the obtained results
with EATI (Ecosystem-aware type inference), an approach also built on
top of RoelTyper [SLN14]. It uses the information from the language
ecosystem to increase the precision of RoelTyper. While EATI needs more
time and resources, it is less accurate than the implemented heuristics. We
measured the time needed to provide a type feedback to assess whether
these heuristics are fast enough to be used for program comprehension.
The introduced overhead is less than 5% in case of RoelTyper and about
10% in case of CPA, which we deem acceptable.

1.1 Thesis statement
We formally state our thesis as follows:

Even in highly polymorphic code, the precision of simple type inference
algorithms can be substantially improved by the use of lightweight
heuristics established on easily accessible static and run-time information,
while preserving the algorithm speed.

This thesis statement opens several research questions regarding the
choice of type inference algorithms used as the basis, the choice of heuris-
tics, the choice of the information from the source code used for the

4http://www.pharo.org

5

http://www.pharo.org

definition of the heuristics etc.

1.2 Contributions

In this section, we outline the main contributions of this thesis. The first con-
tribution consists of a large-scale study of polymorphism in dynamically-
typed languages, compared with its presence in statically-typed languages.
The second contribution consists of the implementation of several heuris-
tics on top of the existing simple type inference algorithms, and their
evaluations. These contributions led to the publication of several scientific
papers.

1.2.1 A large-scale software study on the prevalence of
polymorphism in statically and dynamically-typed
languages

The extent to which polymorphism is used in real programs, and its im-
pact on program comprehension and development tools are not very well
understood [DDM+03, DRW00, RHV+09, HLBAL05, WH92]. Even so,
polymorphism represents one of the main obstacles for simple static anal-
ysis [PMW09, Age95, TP00]. To assess the criticality of polymorphism
regarding program comprehension and static analysis, we investigated
how prevalent its use is in object-oriented software. We analysed software
systems written in Smalltalk, a representative of dynamically-typed lan-
guages, and in Java, one of the most widespread statically-typed languages.
Since dynamically-typed languages pose more difficulties on developers
than statically-typed languages in terms of program comprehension, we
investigate whether the distribution of polymorphism is different in two
language corpora. We have also analysed the extent of cross-hierarchy
polymorphism usage in Smalltalk, also known as duck typing. The study
shows that polymorphism is omnipresent in both language corpora and
that it is more present in dynamically- than in statically-typed languages,
though the difference is not large. Also, duck typing is used in almost all
of the analysed dynamically-typed projects.

These findings were published in the proceedings of a technical
track [MCL+15] and in the proceedings of an early research achievements
track [MGN17b] of an international conference.

6

1.2.2 Lightweight heuristics for improving simple type
inference algorithms

We present four heuristics developed to improve precision of simple type
inference algorithms, by using easily retrievable information from the code.
We implemented for each of the heuristics a proof-of-concept prototype,
used for the evaluation. Each heuristic is based on a different kind of
information that can be used for the improvement.

The simplest approach to infer types for a variable is to track down
the assignments and set of messages sent to the variable [PMW09]. Even
though this approach may be thought of as naive, it is very fast and precise
for almost 60% of variables.

Since the approach does not track any flow of information throughout
the code, one of its main obstacles is polymorphism usage. When the inter-
face of a variable consists of popular selectors, implemented in multiple
independent hierarchies, this approach offers ambiguous results. Since it
concentrates on inferring a class hierarchy for the variable, rather than the
concrete class, it may produce an excessive degree of false positives, i.e.,
classes that understand the interface of the variable, but do not represent
its run-time type. Each of the inferred types for a variable is more or less
likely to represent its type at run time.

We do not want to change the design of an algorithm itself as it would
increase its complexity, and the time needed for the analysis. That is why
we propose ordering of the resulting classes. As each of the classes inferred
as possible types for a variable is more or less likely to be correct, we
explore possible heuristics for their sorting. Naturally, object that exists at
run time needs to be created at some point during program execution. This
can be achieved in any of the following ways:

1. invoking a constructor

2. invoking a (factory) method that plays the role of a constructor, but
is not a constructor per se

3. via reflection

Our hypothesis is that the more frequently the class is instantiated in
the code, the more likely it will represent a type of a variable at run time.
Since this can be done in three different ways, we propose three heuristics
implemented on top of RoelTyper.

7

On the other hand, in the presence of reflection, or dynamic class
loading [HH09, RLBV10, RHBV11, CRTR13], static type inference algo-
rithms miss certain types, hence they lose type information. Rather than
over-approximating the set of possible types for a variable, they under-
approximate it. This means that they suffer from the problem of false
negatives, i.e., they omit from the results the classes that represent a vari-
able type at run time. We propose the fourth heuristic built on top of CPA,
to improve its precision in the presence of reflection.

The following subsections present three heuristics for ordering classes,
and the heuristic used to recover missed types, respectively.

Heuristic based on the class instantiation frequency

First, we propose ordering the inferred classes (or hierarchies) for a variable
based on the frequency of constructor calls for a class. We have imple-
mented a prototype and used it to evaluate the approach. The heuristic
showed more than twofold improvement when compared with the basic
approach.

The results obtained from the prototype implementation and evalua-
tion have been published in the proceedings of an international confer-
ence [MN16].

Heuristic based on the class name occurrence frequency

While an instance of a class may be created by explicitly invoking a
constructor of the desired class, it may also be created by the usage of a
factory method [GHJV95]. Some languages do not pose restrictions on
constructor naming [Bec97], thus it may be difficult to statically track all
constructor invocations. Any method may play the role of a constructor.

We propose also to explore a heuristic of ordering possible types for a
variable based on the frequency of class name occurrence in source code,
rather than on the class instantiation frequency. We have implemented a
proof-of-concept prototype, used to evaluate the heuristic.

Interestingly, this heuristic showed slightly better results than the previ-
ous one. We have compared it with EATI, an approach also built on top of
the same basic algorithm [PMW09], which uses the information collected
throughout the language ecosystem to order possible types for a variable.
We show that with less effort, this heuristic outperforms EATI.

8

The results obtained from the proof-of-concept implementation have
been published in the proceedings of an international conference, together
with the results of the previously listed heuristic [MN16].

Heuristic based on the class frequency from inline caches

In some languages, like Smalltalk, Objective-C, Python and Ruby, classes
can be used as first-class objects, e.g., to receive a message or as an ar-
gument of a message send [BDN+09, PW88]. Recent studies show that
reflective features are quite frequently used in dynamically-typed lan-
guages [HH09, RLBV10, RHBV11, CRTR13]. Due to dynamic class load-
ing or high use of reflection, static analysis can miss the use of certain
types [LSS+15]. This imposes difficulties for static analysis, as sometimes
it cannot be known at compile-time which class will be instantiated or even
created.

In the presence of dynamic binding, many virtual machines for dynamic
languages employ Just-in-Time compilers to speed up the execution [DS84,
HCU91a]. These compilers use inline caches, which locally store the
information about methods previously executed for a message send. Beside
method information, these caches also contain the information about the
type of the receiver for a message send.

We hypothesise that the class usage frequency as a type of the receiver
at run-time, read from the inline caches, may serve as a reliable proxy for
the likelihood of a variable being of a certain type. This information can
be used to order statically-inferred types. As run-time information is easily
accessible from the virtual machine, no instrumentation is required.

We have implemented a proof-of-concept prototype, used to evaluate
our hypothesis. The evaluation showed results very similar to those of the
heuristics based on purely static information.

Results of this study have been published in the proceedings of an
international workshop [MBGN16] and have been under review for a
publication in an international journal.

Heuristic based on the type hints from method argument names

In the presence of reflection, or dynamic class loading, static type inference
algorithms may under-approximate set of possible types for a variable.

On the other hand, in order to partially compensate for the lack of static
type information, a common idiom in dynamically-typed languages is to

9

provide a type annotation for method arguments [Bec97, Zan13, Bol10].
These annotations are mainly intended to improve program comprehension,
but they are also used as an input for some development tools, e.g., code
completion [BDN+09], in order to improve the results.

We hypothesise that these annotations from method argument names
may be employed to improve the precision of a type inference in cases
where the type of the variable cannot be statically inferred by traditional
approaches. We propose a heuristic to augment a type inference algorithm
whose precision significantly depends on the correctly inferred types for
method arguments [Age95].

We have implemented a prototype used for evaluation. The obtained
results show that the augmented algorithm outperforms the basic one
significantly.

The results obtained from the prototype implementation and evalua-
tion have been published in the proceedings of an international confer-
ence [MGN17a].

1.3 Outline
This dissertation is organised as follows:

Chapter 2 provides an overview of the related work with focus on differ-
ent type inference techniques in dynamically-typed languages.

Chapter 3 presents the findings of the study of (cross-hierarchy) polymor-
phism presence in statically- and dynamically-typed languages and
its possible impact on program comprehension and static analysis.

Chapter 4 presents two heuristics based on purely statically collected
information about class usage and instantiation frequency, and pro-
vides the results of the evaluation.

Chapter 5 presents the heuristic based on the class usage information
collected from inline caches and the corresponding evaluation.

Chapter 6 presents the heuristic based on the collected type hints from
method argument names and its evaluation.

Chapter 7 concludes the thesis and discusses future work.

10

2
State of the art

In this chapter, we present the state of the art of current type inference
techniques used in dynamically-typed languages. We start from the most
exhaustive techniques and proceed towards simple ones. The chapter is
divided into five sections, each of which covers a different approach of
type inference. While the first two sections cover type inference techniques
dependent on whole program analysis, the remaining sections are focused
on partial type inference techniques.

2.1 Gradual typing

Gradual typing [ST06, ST07] represents a type system that can be enhanced
over time. It allows some of the variables to be typed statically, while the
rest of the software may be left untyped. Correctness of the typed part of
the software is checked at compile time, thus the type system ensures that
these types are respected at run time. If a run-time type error is raised,
the corresponding untyped part of the software is indicated [WF07]. With
gradual typing, a type error may originate only in the untyped part of the
code or at the border of statically-typed and untyped code. If the complete

11

program is statically-typed, then no type error may arise at run time. Since
gradual typing enforces type checks at compile time, it represents a halfway
point between statically- and dynamically-typed languages.

Gradual typing has been implemented for Racket, a multi-paradigm
programming language, which is originally untyped [THSA]. Typed Racket
includes ways to type different language idioms, thus providing an easy
transition from untyped Racket code. For example, if the predicate function
string? is used for the purpose of dispatching, Typed Racket incorporates
the corresponding type information in the two subsequent branches based
on the provided answer, that is in the then branch the predicate returns
true value, while in the else branch the returned value is false. Typed
Racket then uses this information for the further analysis. In order to ensure
soundness in the transition between untyped and typed part of the software,
it installs contracts on the boundaries.

Typed Racket has been used as an inspiration for Gradualtalk, a grad-
ual type system for Smalltalk, developed by Allende et al. [ACF+13].
Gradualtalk is based on extensive research of a large number of Smalltalk
projects in order to accommodate a variety of programming features, like
metaclasses and dynamic and reflective features. It includes nominal and
structural types, as well as union types.

A gradual type system called DRuby [FAFH09, Fur09] has been imple-
mented for Ruby, allowing developers to annotate and type check selected
parts of the code base. Beside type annotation, it also employs type in-
ference, in order to gradually provide a type for every object in the code.
DRuby employs dynamic analysis for the sake of dynamic checking, that
is to be able to check types in the presence of dynamic coding.

Typed Scheme offers a gradual typing for Scheme [TF11], similar to
DRuby. It introduces occurrence typing, i.e., different types assigned to
distinct occurrences of the same variable, depending on the control flow.
Like DRuby, it uses dynamic checks on the transition between untyped and
typed code to ensure type soundness. Typed Scheme has been designed in
a way to accommodate different language idioms and features, for example
multiple value return option and the use of variable-arity functions.

Reticulated Python is a gradual type system for Python [VKSB14].
It includes structural types, as well as dynamic types and open types.
Dynamic types have also been used in Gradualtalk [ACF+13] to accom-
modate any type that can be observed at run time. It provides an advantage
over the Object type, since it does not require explicit casts in the code.
Open types represent a form of union of two or more types, in a sense that

12

implicit downcasts are allowed.
Gradual typing has also been used in industry, via ActionScript, a

gradual typing system for JavaScript [RCH12, Moo07].
All of these gradual type systems depend, in the first place, on the

developer’s type annotations, and then, gradually, may provide type infor-
mation for the rest of the code, based on the type inference. Since gradual
typing enforces static type checks, compiler will raise an error if type con-
straints are violated. This does not leave any space for imprecision, hence
the employed type inference needs to be flow sensitive and, consequently,
time-consuming. Also, if a part of the code is changed, the type inference
needs to reanalyse the untyped part of the code from the start, in order to
acquire precise information. Furthermore, we are interested in fast type
inference techniques, intended for program comprehension, that do not
need a whole program analysis in order to provide a type information, and
that can be used in projects with no type information.

2.2 Optional typing
Optional typing grants to a developer the opportunity to specify the type
of a variable when deemed necessary. While there is a static type checker
in gradual typing, to ensure type correctness, optional typing does not
guarantee the absence of type errors at run time [Bra04]. Even in the
presence of a type error it would issue the report, but not prevent execution.

Three optional type systems have been developed for Smalltalk:
Strongtalk [GJ90, BG93], Pegon [Smi] and TypePlug [HDN07]. Strongtalk
supports structural types. It was used for optimisation purposes. Pegon
represents an upgrade of Strongtalk, by performing type inference. Type-
Plug is an optional type system for Smalltalk that provides the possibility
to insert type annotations and enables type checking on demand. Gradu-
altalk may also serve as an optional type system, in which case, run-time
checking is deactivated.

Groovy offers the possibility of optional typing without static type
checking [Sub13]. A recent study revealed the way developers use optional
typing in Groovy [SF14]. Developers with less background in dynamically-
typed languages tend to use type annotations more often, mostly in method
definitions. Furthermore, types are less used in frequently changed code.

The Dart1 programming language also offers an optional type checker

1http://www.dartlang.org/

13

http://www.dartlang.org/

that can be enabled on demand. An empirical experiment performed with
Dart developers showed that type annotations serve as a kind of documen-
tation [FNT15].

TypeScript is an optional type checker for JavaScript [BAT14] that
aims to host different language idioms, like covariance of a property, and
enables an easy transition from untyped JavaScript code.

Vitousek et al. present a way to transition from optional to gradual
typing in Python by inserting checks to ensure that there is no type er-
ror [VKSB14]. This approach was then also applied to TypeScript [VS16].

Maidl et al. present an optional type system for the scripting language
Lua [MMI14], which offers some uncommon features like functions with
unfixed number of arguments.

A pluggable type system allows a language to support multiple, op-
tional type systems [Bra04, ANMM06]. Similar to gradual typing, the
main drawback of an optional type system from our research perspective
is that the corresponding type inference is focused on complex whole-
program analysis, whereas we aim for fast type inference algorithms that
do not depend on the developer’s input.

2.3 Static type inference
The pioneer in this field was Milner [Mil78], who developed a type infer-
ence algorithm for ML, a functional programming language. The algorithm
supports parametric polymorphism, but not subtyping. It infers the type of
a variable using constraints based on the usage of a variable. The algorithm
is sound: if an ML program is well-typed, it will not produce run-time type
errors. Since it does not take subtyping into consideration, it is of limited
interest to us.

Another type inference algorithm is proposed for the functional lan-
guage FL [AM91]. FL is a dynamically-typed language, in which a type is
considered to be a set of normal-form expressions. Instead of computing
types as sets of values, they are computed as sets of expressions, thus using
an operational view of expressions. One of the main issues is performance.
However, in this thesis we concentrate on the inference of nominal types,
since structural types burden developer’s reasoning [Str].

Inferring types of an expression from the set of constraints imposed on
the expression was performed by Palsberg et al.. It was first developed for
a language similar to Smalltalk, but which avoids some of the commonly

14

used Smalltalk features [PS91]. The algorithm is named the Basic Algo-
rithm. It was later implemented for the Self programming language [US87]
by Agesen et al. [APS93]. Self is based on cloning objects rather than
instantiating classes, and it offers a support for dynamic and multiple in-
heritance. This is the first algorithm to consider dynamic and multiple
inheritance.

Agesen continued his work on type inference for the Self programming
language. In order to optimise his previous type inference algorithm for
Self, he developed the Cartesian Product Algorithm [Age95]. The Carte-
sian Product Algorithm, known as CPA, exploits the fact that the type of
the return value of a method usually depends on the types of the method
arguments. Thus, whenever a new message send is to be analysed, the
algorithm creates the Cartesian product of all of the inferred types of the
method arguments, including the receiver types, and analyses each of the
tuples separately. Thus, it provides more precise information for a method’s
return type than the Basic Algorithm.

Starkiller [Sal04] is a type inference algorithm for Python, based on
the Cartesian Product Algorithm. It tries to reconstruct a flow of types
in order to model the run-time behaviour of a software. Each variable is
represented by a node that holds information about possible types that a
variable may assume at run time.

Ecstatic [MSK07] is an implementation of type inference for Ruby
programming language based on CPA, adapted for various Ruby program-
ming idioms, for example block usage, as there are seven distinct block
syntaxes.

CPA was initially developed for Self, a prototype-based programming
language, thus its implementation in class-based languages is hampered by
polymorphism usage [Age95]. This issue was addressed in DCPA [WS01],
an implementation of CPA for Java that deals with data polymorphism.
This implementation is used to check whether downcasts in Java are correct.
It showed a significant improvement in precision when compared to CPA,
while the efficiency remained on the same level.

The precision of CPA heavily depends on the correctly inferred types
for method arguments. As most type inference algorithms lose their pre-
cision in the presence of reflection and dynamic coding [LSS+15], com-
monly used features in OO languages [CRTR13, BSS+11, RLBV10], it
is also the case with CPA. We consider that this algorithm would ben-
efit the most from type annotations in method argument names used in
dynamically-typed languages [Bec97, Zan13, Bol10]. Since CPA is very

15

fast, thus usable for program comprehension, we choose it as the basic
algorithm on top of which we implement the heuristic based on type hints
from method argument names.

Spoon et al. have developed Chuck, one of the most precise type
inference algorithms [SS04, SS05]. It is a demand-driven algorithm that
uses subgoal pruning. The information used for type inferencing is analysed
on demand, and the precision of the algorithm decreases if some of the
subgoals required for type inference need to be discarded for complexity
reasons. The main problems are scalability and performance, thus its usage
during development is questionable.

JS0 represents a type inference algorithm for JavaScript [AGD05] with
the support for dynamic features like field or method additions at run time.
The algorithm uses the notion of structural types. Our focus is on nominal
types.

One of the simplest but fastest approaches for static type inference,
the RoelTyper algorithm, was developed by Wuyts et al. [PMW09]. Even
though the algorithm may be considered naive, since type inference is
based only on statically tracking down the set of messages sent to a variable
and on assignments to it, it has shown promising results. However, for a
significant portion of variables, the offered results are ambiguous. Since
the approach is not flow-sensitive in any way, i.e., it is neither control- nor
data-flow sensitive, its precision suffers in the presence of polymorphic
and duck-typed code. Since the approach is mainly intended for program
comprehension, it is acceptable, but due to the false positives in its results
it may lead to wasted developer’s effort [KBR14].

RoelTyper is a very fast type inference algorithm, with space for pos-
sible improvement in the presence of polymorphic and duck-typed code,
thus we opt for its improvement in Chapters 4 and 5.

This approach was also used as a basis for the prototype implementation
of the EATI (Ecosystem-aware type inference) algorithm, which advocates
the idea of using the information available in the language ecosystem
to increase the precision [SLN14]. It statically tracks the frequency of
messages being sent to the instances of different classes in the language
ecosystem. Based on these frequencies and the set of messages sent to
a variable, it calculates the likelihood of the variable being of a certain
type. EATI has shown almost 100% improvement when compared with
RoelTyper.

EATI offers a way to improve the precision of a simple type inference
technique. We used it as an inspiration for the heuristics implemented on

16

top of RoelTyper. However, since it depends on the data collected from the
ecosystem and queried from a central repository, in our experience, it takes
a more time than the implemented heuristics to compute type information.
We strived to acquire a faster and more precise approach.

2.4 Dynamic type inference
Beside using statically collected information, type inference approaches
may also employ information collected at run time, i.e., from a program
execution. This information can be collected either through code instru-
mentation [LB94] or from the virtual machine directly [HCU91a, HU94].
We divide this section into two parts, accordingly.

2.4.1 Code instrumentation

Rubydust is a constraint-based type inference algorithm for Ruby, de-
pendent on source code instrumentation and dynamic execution of the
program, developed by An et al. [ACFH11]. The approach uses as input
types recorded during the execution of the program for which the types
need to be inferred. Rubydust observes the usage of variables, for example
as message receivers, and subsequently generates subtyping constraints
based on the variable types observed at run time. In order for the analysis
to be sound, the program execution must cover all possible paths in the
control-flow graph. Hence, as the authors state, the current execution over-
head introduced with this analysis is quite high. Type inference information
is, afterwards, introduced statically, based on the information collected
during program runs.

Type inference that relies on dynamic collection of data has been
developed for Smalltalk [RBFDD98]. The algorithm observes types of
objects at run time and incrementally updates static type information. The
main assumption made for this work is that test coverage is “complete”
and that the program of interest is in a runnable state. Obviously, the more
frequently the variable has been encountered during a program run, the
more precise the type information will be.

JavaScript is of interest when it comes to type inference based on types
observed at run time. Odgaard et al. present a way of annotating JavaScript
code based on the run-time type information collected from running unit
tests [Odg14]. The two main problems in this work are memory usage and

17

performance.
Pradel et al. implemented TypeDevil, a tool that informs developer

about type inconsistency at run time [PSS15]. TypeDevil records types
of variables and functions at run time and informs a developer if the
corresponding types are inconsistent.

From our research perspective, dynamic type inference based on code
instrumentation has two drawbacks: execution overhead and the need to
run the code. Some dynamically-typed languages, e.g., Smalltalk, do not
have a fixed entry point (like, for example, the main method in Java), thus
any method in the project can be used as starting point for the execution.
Having to run the code in order to obtain type information can be a burden
for a developer that we aim to bypass. It forces the developer to redirect
her focus from the analysed code to something else and break her work
flow. Furthermore, due to the execution overhead, it is not convenient for
use in time-sensitive applications.

2.4.2 Inline caches
Hölzle et al. were the first to advocate the usage of polymorphic inline
caches for the sake of type feedback [HCU91b]. One of the first uses of
inline caching as a way to statically reconstruct the type of a variable from
a running system was in Self [HU94]. The authors collect run-time receiver
types observed at each message send, and feed this information back to the
compiler for optimization purposes. They predict the type of the receiver
based on the receiver’s types observed during previous program runs.

Types collected from inline caches, i.e., type feedback has been used
for optimisation purposes in C++ programs [AH96]. The authors combined
it together with Class Hierarchy Analysis [DGC95, Fer95] to reduce the
number of virtual function calls. Class Hierarchy Analysis is an algorithm
used to construct a call graph from a program. It creates a set of method
candidates for a function call based on the statically-declared type of the
receiver. The algorithm reduced significantly the number of virtual function
calls and it improved the performance, i.e., decreased the execution time
by 40% on average.

Agesen et al. preformed a comparison between type feedback, i.e.,
obtaining types from the program execution, and type inference, as per-
formed by the Cartesian product algorithm [AH95] on a set of twenty three
Self programs. In their benchmarks, both techniques inlined about 95% of
virtual call sites.

18

While running instrumented code mostly introduces significant over-
head in program execution, this is not the case when it comes to the
information collected directly from the virtual machine. As for code in-
strumentation, the main drawback from our perspective is that this kind of
type feedback requires program execution, which may burden the devel-
oper. However, since it does not introduce execution overhead, we used
inline caches in order to collect type information over time (and not at the
moment of type inference). We then employ it on top of the static type
inference algorithm. This way we do not burden the developer with the
need to run the project herself.

2.5 Other techniques
The combination of static and run-time analysis is known as hybrid analy-
sis [Fla06, KF10]. The key idea in this approach is to infer conservative
information by the use of static analysis, which is further fine-tuned by
information collected at run time. These approaches are useful in cases
where static analysis tends to produce too conservative data, or where it is
unsound due to dynamic class loading or reflection.

Fast and precise hybrid type inference has been presented for
JavaScript [HG12]. It tries to infer sound type information by customising
static type information to also deal with the types recorded at run time.

Soft typing also represents one form of the combination of static and
dynamic typing [CF91], implemented for Scheme. Different from hybrid
analysis, this approach can statically check the program and insert run-time
checks for the variables for which it cannot surely infer the type. It was
later implemented for Erlang [Nys03].

19

20

3
Study of polymorphism prevalence

3.1 Introduction
Polymorphism in programming languages indicates the possibility of using
the same variable to holds values of different types. In object-oriented
languages, subtype polymorphism (also known as data polymorphism)
means that the set of messages that can be sent to a variable is determined
based on its (declared) type, while at run time the variable may point to
an instance of a subtype of its (declared) type. Since there is no static type
declaration in dynamically-typed languages, a variable can hold instances
of any type at run time (preferably understanding the messages sent to that
variable), even if these types are unrelated.

Polymorphism represents the essence of object-oriented coding
style. Even though it allows developers to write easily extensi-
ble software [MH90, DRW00], it also burdens program comprehen-
sion [DDM+03, DRW00, KBR14]. A particular selector may be imple-
mented in related classes that are scattered throughout the code. Since a
class may inherit a complete method from a superclass or may extend it,
the intended behaviour of the class cannot be understood without analysing
the corresponding method of the superclass.

21

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

Figure 3.1: Sample class hierarchy from JHotDraw, with multiple imple-
mentations of the operation basicDisplayBox(Point, Point).

To better understand the impact polymorphism has on program com-
prehension and analysis, let us consider the classes in Figure 3.1 from
JHotDraw1, a Java framework for editing structured graphics. The class
diagram shows a subset of the JHotDraw Figure hierarchy2. A developer
is trying to understand the behaviour of AbstractFigure, one of the key
classes of JHotDraw.

The snippet in Listing 2 shows an instance of the tem-
plate method design pattern. The receiver of the message send
basicDisplayBox(Point, Point) (line 6, Listing 2) is the implicit
variable this, which can be bound to any subtype of AbstractFigure.

1JHotDraw is a reimplementation by Eric Gamma of HotDraw, originally developed by
John Brant in VisualWorks Smalltalk.

2The complete hierarchy under AbstractFigure contains 35 classes.

22

1public abstract class AbstractFigure
2implements Figure {
3//...
4public void displayBox(Point origin,Point corner){
5willChange();
6basicDisplayBox(origin, corner);
7changed();
8}
9//...
10}

Listing 2: A polymorphic message send

Since the method basicDisplayBox(Point, Point) in the
AbstractFigure class is abstract and any subtype of AbstractFigure
can provide its own implementation, the method that will be actually
invoked cannot be statically determined.

The developer could set a breakpoint in the code and observe which of
the multiple implementations are invoked at run time, but this usually gives
just a narrow selection of all possible invocations [PTP07], and introduces
the costs of running the software [Ous98].

In situations like this, in dynamically-typed languages developers some-
times resist using the IDE navigation tools, because they suspect that the
results would be polluted by faulty data [RHV+11], due to the lack of
static type information [KBR14]. Although object-oriented systems highly
depend on the polymorphism [RHV+09], very simple type inference al-
gorithms that may be used as input for these tools, are able to produce
unambiguous results for a bit less than 60% of variables [PMW09]. The
information for the rest of the variables is far too broad to be used for
program comprehension, i.e., contains false positives. This is an indicator
of a significant number of selectors implemented in unrelated classes, i.e.,
in classes which do not have a common superclass implementing the same
selector. It is obvious that polymorphic code would greatly benefit from
type information, yet it represents one of the biggest obstacles for static
type analysis.

We continue by defining terms that will be used in the rest of the
chapter. We call the number of methods that could potentially be invoked
by message send at run time the cardinality of the message send. With a
slight abuse of terminology, we consider a message send to be polymorphic

23

if its cardinality is greater than one, a selector polymorphic if it is the
selector of a polymorphic message send, and a method polymorphic if it
implements a polymorphic selector (see Section 3.3).

Returning to the example in Figure 3.1, the cardinality of the poly-
morphic message send willChange() equals just two, while the car-
dinality of the message send basicDisplayBox(origin, corner)

is 18. A higher cardinality leads to more behaviour being scattered
through the system, and this will likely impact program understand-
ing [DDM+03, DRW00, HLBAL05, WH92].

We investigate in this chapter the prevalence of polymorphism in object-
oriented software. To the best of our knowledge, there is no large-scale
study on the prevalence of polymorphism in open source software. We
therefore set out to investigate the actual usage of polymorphism in open
source software by studying two large corpora of open source software
systems, and by posing the following research questions:

RQ1) How prevalent are polymorphic methods in object-oriented sys-
tems?

RQ2) How common are polymorphic message sends?

RQ3) What is the distribution of the cardinality of polymorphic message
sends?

For the purpose of this study we consider only static information,
that is, we do not consider how much polymorphism actually occurs at
run time. Although this will only give us an upper bound on the actual
polymorphism presence, we argue that this provides a good estimate of the
challenges faced by a programmer reading the source code and obstacles
that polymorphism imposes on static type analysis.

Answering the first question will reveal how big is the part of the
software involved in defining polymorphic selectors, i.e., how big is the
part of software which possibly affects the ambiguity in program compre-
hension and analysis. The response to the second question will estimate
how likely it is to encounter a polymorphic message send, and with the
answer to the third question we can estimate the difficulty of the analysis
of a polymorphic message send.

Nevertheless, program comprehension and analysis in dynamically-
typed languages is further hampered by cross-hierarchy polymorphism,
i.e., duck typing [TFH09]. The name refers to the “duck test”, by James

24

Whitcomb Riley: “When I see a bird that walks like a duck and swims like
a duck and quacks like a duck, I call that bird a duck”. Duck typing refers
to the usage of a variable to point to the objects of distinct classes that
understand the same set of messages, without a common superclass under-
standing those messages. A classic example of duck typing in Smalltalk is
the interchangeable usage of Symbol and BlockClosure classes, since
instances of both classes understand the message value:. In other words,
a Symbol object can behave like a BlockClosure object (i.e., it may
“quack like a duck”) by responding to the value: message. These vari-
ables usually demand flow-sensitive algorithms for their precise inference.
Duck typing can be mimicked also in statically-typed languages, with the
use of interfaces. Yet, the statically-declared type of a variable explicitly
states and restricts the variable’s type to a certain interface, preventing it
to be a subtype of any other interface declaring the same selector. This
information is omitted in dynamically-typed languages and the variable
may hold an instance of any available class that, supposedly, understands
the interface of the variable. Therefore, in addition to the first three research
questions, we address one more concern in dynamically-typed languages:
the prevalence of duck typing. We say that a method is duck-typed if it has
the same selector as another method, neither of which overrides a method
with the same selector of a common parent. Consequently, the method
selector is considered to be duck-typed, and a message send is duck-typed if
its selector is duck-typed. Hence, we ask the following research questions:

RQ4) How prevalent are duck-typed methods in dynamically-typed soft-
ware?

RQ5) How prevalent are duck-typed message sends in dynamically-typed
software?

The rest of this chapter is organised as follows: we discuss the related
work in the Section 3.2, then define our terminology in Section 3.3. Next
we introduce our experimental methodology and the analysis infrastructure
in Section 3.4. In Section 3.5 we report on the findings regarding the
prevalence of polymorphism in practice. We then describe potential threats
to the validity in Section 3.6. In Section 3.7 we discuss the implications our
results entail and propose a series of questions to pursue in the follow-up
study before concluding in Section 3.8.

25

3.2 Related Work

The influence of the depth of inheritance on code maintenance has been
researched by Daly et al. [DBM+96]. They found that a system with
three levels of inheritance was easier to maintain than a corresponding
system with no inheritance. Yet, a system with five levels was found to
take longer to modify than the corresponding system with up to three
levels of inheritance. These results were contradicted by Cartwright et al.
and Harrison et al., who replicated Daly et al.’s study [Car98, HCN00].
Cartwright et al. found inheritance to have a positive effect on maintenance
time [Car98], whereas the study of Harrison et al. revealed that a system
with zero inheritance was easier to modify than the equivalent systems
with three or five levels of inheritance [HCN00].

Tempero et al. focused on the presence of inheritance in Java code,
rather than on its influence of code maintainability [TNM08]. They anal-
ysed the code in 97 Java systems. Their work showed a high use of inheri-
tance, differences in the use of inheritance between interfaces and classes,
and a different use of inheritance when applied to external libraries. While
in their work the aim was the study of inheritance in general, we focus
on the investigation of polymorphic methods in the context of inheritance
hierarchies.

A similar empirical study in the terms of the size of analysed software
was performed by Grechanik et al. [GMD+10]. Their study focused on
the analysis of common source code patterns in a large-scale open source
code repository, composed of 2080 Java projects from Sourceforge. They
discovered that most inheritance hierarchies are flat, i.e., have a depth of
one and that almost half of the classes do not inherit from any superclasses,
but just the implicit class Object. They also discovered that few methods
are overridden, and that most methods have zero or one argument. Even
though they analysed various aspects of object-oriented development, they
did not focus their attention on polymorphism presence in OO code, as we
do.

First study about method overriding — a concept closely related to
polymorphism — was performed by Briand et al. [BWDP00]. They anal-
ysed how fault-prone is the code containing overriden methods in C++
code.

Tempero et al. conducted an empirical study of method overriding in a
corpus of 100 open source Java systems [TAD+10]. Even though they anal-
ysed various aspects of method overriding, e.g., the number of overriding

26

methods, the number of inherited methods, and the number of classes with
replaced implementations, their focus was not on polymorphism usage.
They did not focus on the call site analysis, as we do in this study. Their
study showed that most subclasses override at least one method and many
classes only declare overriding methods.

The usage of parametric polymorphism was studied by Parnin et al.
in Java code [PBMH11]. They found that it was used by developers after
its release, though mainly by one developer among all contributors to the
code. Also, the old code was not often converted to use generics. Our
study differs from theirs as we analyse subtype polymorphism only, as
parametric polymorphism is more concerned with genericity. In addition,
Smalltalk does not support parametric polymorphism.

Duck typing has been analysed on a set of 36 Python programs [ÅW15].
Based on the recorded run-time types of variables, the authors state that
most variables are monomorphic, i.e., point to objects of only one type at
run time. However, most of the rest of the variables do point to the objects
of unrelated types, i.e., duck typing is used at run time. We are not aware
of any large-scale study concerning the prevalence of duck typing.

3.3 Terminology

In this section we make precise the notion of subtype polymorphism and
duck typing. To this end, we introduce the following simple set-theoretic
model summarised by the UML diagram in Figure 3.2.

msg : MS→ S (3.1)
defms : MS→M (3.2)

sel : M → S (3.3)
defm : M → C (3.4)

sup : C → C (3.5)
rec : MS→ T (3.6)

impl : T → P(I) (3.7)
selt : T → P(S) (3.8)

Given all source code of a system, C is the set of all classes, I is the
set of all interfaces, T the set of all types, M the set of all methods. S is
the set of all selectors, i.e., method names in Smalltalk (since we do not

27

Call Site

Selector

Method

1
1

1…*

Class

0…*

1

Interface
0…*

Type0…1

superclass
0…*

implements

is selected by

defined in

1

has receiver

has
selector

defined in

1

defines
selectors

1…*

Figure 3.2: The core model in UML. The entities Interface and Type are
relevant for Java, but not Smalltalk.

know the static type of method parameters) and method signatures in Java.
MS is the set of all message sends3 in the system.

Each message send ms has a selector s = msg(ms) (3.1) and is
defined in a unique method m = defms(ms) (3.2). We say that the method
m defines the message send ms and that method m sends the message s.
Each method m has a unique selector s = sel(m) (3.3), and is defined in
a unique class c = defm(m) (3.4). Class c either has a unique superclass

3Message send refers to a call site in Java terminology.

28

c′ = sup(c) (3.5) or does not have a superclass.4 We denote by c∗ the
superclass-chain of the class c (3.9), and we consider sup0(c) = c (3.10).
A set of classes H ⊂ C is a hierarchy if every two classes c1, c2 ∈ H have
at least one common class in their superclass-chains, the intersection of
their superclass-chains is also contained in H , and for every class c ∈ H
there is no “gap” in its superclass-chain within H (3.11).

c∗ = sup∗(c), sup∗(c) =
⋃
k≥0

supk(c) (3.9)

supk(c) = sup(supk−1(c)), k ∈ N (3.10)

(∀c1, c2 ∈ H)((c∗1 ∩ c∗2 6= ∅) ∧ (c∗1 ∩ c∗2 ⊂ H)
∧

(∀c ∈ H)(@k, n ∈ N0)(n > k)(supn(c) ∈ H ∧ supk(c) /∈ H))
(3.11)

In Java, each message send ms has the static type of the receiver
t = rec(ms) (3.6). The type of the receiver can be either an interface or a
class. Each type t has a set of interfaces it implements it = impl(t)5 (3.7),
and a set of selectors it defines st = selt(t) (3.8). This information is not
available for Smalltalk, and is not modeled.

Consider the example in Listing 2. For the message send in line
6, ms = basicDisplayBox(origin, corner) the selector (a Java
signature) is msg(ms) = basicDisplayBox(Point, Point),
the receiver type is rec(ms) = AbstractFigure, and
the message send is defined in the method defms(ms) =
AbstractFigure>>displayBox(Point, Point).

We can now query the model to compute the metrics necessary to
answer our research questions, as summarised in Figure 3.3.

Definition 1. A message send ms is polymorphic if there is more than one
method that can be invoked at ms at run time.

We determine this in slightly different ways in Smalltalk and Java,
since we lack static type information in Smalltalk. In order to find all

4sup is a partial function, since we consider only classes defined locally in the correspond-
ing project (i.e., ignoring classes from external frameworks or the base system — e.g., class
Object).

5To avoid the usage of another function, we say that an interface implements another
interface.

29

subh(t) =

(sup−1)∗(t) ∪ t, if t ∈ C
{(sup−1)∗(t′), t′ ∈ t∗ ∩ C} ∪ t∗

where t∗ = t ∪ (impl−1)∗(t), if t ∈ I
(3.12)

impl(t, s) = {m ∈M | sel(m) = s ∧ (3.13)
defm(m) ∈ subh(t)}

Smalltalk:
undr(c, s) = s ∈ selt(c) ∨ undr(sup(c), s) (3.14)

intr(s) = {m ∈M | sel(m) = s ∧ (3.15)
¬undr(sup(defm(m)), s)}

isp(ms) = (∃m ∈ intr(msg(ms))) s.t. (3.16)
(|impl(defm(m),msg(ms))| > 1)

isp(s) = (∃m ∈ intr(s)) s.t. (3.17)
(|impl(defm(m), s)| > 1)

duck-typed(s) = |intr(s)| > 1 (3.18)
duck-typed(ms) = |intr(msg(ms))| > 1 (3.19)

Java:
ispt(ms) = |impl(t,msg(ms))| > 1 (3.20)

ispt(s) = (∃t ∈ T) s.t. (|impl(t, s)| > 1) (3.21)

Figure 3.3: Computing polymorphism metrics

polymorphic message sends we first introduce the function that maps a
type t to its complete subhierarchy (3.12).

Consider the example in Figure 3.1. For t = RectangleFigure sub-
hierarchy is the set of classes

subh(t) = {RectangleFigure, DiamondFigure,
DiamondFigureGeometricAdapter}

while for t = AttributeFigure

subh(t) = {AttributeFigure, PolygonFigure,
PolygonFigureGeometricAdapter, RectangleFigure,
DiamondFigure, DiamondFigureGeometricAdapter,

TextAreaFigure, HTMLTextAreaFigure}

30

We also introduce the function impl(t, s) which yields the set of meth-
ods implementing the selector s and defined in the subhierarchy of the type
t (3.13).

In Smalltalk we do not know the type of the receiver at compile time,
so we must investigate each message send based only on its selector. To
do this, we use the function undr(c, s) to determine whether the class c
understands the selector s, either because it defines the method m such
that sel(m) = s or because one of the classes in its superclass-chain does
(3.14). We also use the function intr(s) to find all the methods introducing
the selector s, i.e., such that sel(m) = s and being defined in the class that
does not have the superclass which understands the selector s (3.15). We
then say that the message send ms is polymorphic, written isp(ms), if
there exists a method m introducing the selector msg(ms) and having at
least one more method with the selector s in the subhierarchy of its class
defm(m) (3.16). In Smalltalk we do not consider as polymorphic those
methods implementing the same selector, but defined in classes without a
common superclass also defining that selector, i.e., duck-typed methods.
These methods are explored separately.

In Java, for each message send ms we know the compile-time type of
the receiver, t = rec(ms), so we need to define the polymorphic message
send with respect to t. We say that the message send ms is polymorphic
if there are at least two methods implementing the selector msg(ms) and
being defined in the subhierarchy of the type t (3.20), regardless whether t
is an interface or a class. Our decision to treat a message send the same in
both cases and possible threats to validity are discussed in the Section 3.6.

Definition 2. A selector s is polymorphic if it can be a selector of a
polymorphic message send. By extension, we consider a polymorphic
method to be a method that implements a polymorphic selector.

Again, since in Smalltalk we do not have the information about the
static type of the receiver, this means that the selector s is polymorphic
if there is at least one class c defining a method m such that sel(m) = s
and having at least one class in its subhierarchy defining another method
with the same selector (3.17). In Java, we define the term of polymorphic
selector with respect to the possible type of the receiver (3.21).

Consider the example in Listing 2. The selector
s = basicDisplayBox (Point, Point) is not polymor-
phic with respect to the possible type of the receiver
t ∈ {HTMLTextAreaFigure, DiamondFigure}, but ispt(s) = true,

31

for t ∈ {TextAreaFigure, AbstractFigure}.
To assess the criticality that potential duck typing imposes on code

analysis and understanding in dynamically-typed languages, we explore
the methods that have the same selector, but defined in classes without a
common superclass defining the same selector, and messages sends having
these selectors.

Definition 3. A selector s is duck-typed if there are at least two methods
in the system introducing that selector s.

This definition is modelled by Equation 3.18. Consequently, elements
of the set intr(s) are duck-typed methods.

Definition 4. A message send ms is duck-typed if its selector msg(ms) is
duck-typed.

This definition is modelled with the Equation 3.19. The degree of
message send ms with regard to duck typing is equal to the number of
methods introducing the selector of ms, i.e., |intr(msg(ms))|.

3.4 Experimental Setup
Our study covers 111 systems written in Java and 1,128 systems written in
Smalltalk.

We chose Smalltalk for its reputation as a “pure” object-oriented lan-
guage (Smalltalk goes as far as implementing conditionals as polymorphic
methods in the Boolean class hierarchy), and Java as a representative of
a widely used, pragmatic object-oriented language. We statically analyse
these systems to gather information about the usage of polymorphism and
complexity it imposes on code analysis.

• For the Smalltalk part, we took a snapshot of all the 1’850 software
projects stored in the SqueakSource repository in early 2010. At
that time SqueakSource contained the majority of all projects imple-
mented in the open-source Smalltalk dialects Squeak and Pharo and
hence provided a representative set of Smalltalk projects from both
industry and academia. We limit our analysis to projects containing
more than 50 classes in order to exclude student projects and other
small and likely less relevant projects. Out of the 1’850 projects,
1’128 projects meet this criterion. These projects contain 125’825
classes and 1’637’228 methods in total.

32

• For Java we selected 111 open-source projects from the Qualitas Cor-
pus — a curated collection of software systems representing widely
known open-source Java software systems and libraries [TAD+10].
Although we suspect so, we cannot guarantee that the selection is
representative of well-engineered and maintained open source Java
software. The corpus consists of over 130’000 classes and 1’086’000
methods. For the Java corpus, we use the Pangea analysis infrastruc-
ture [CCSL14] which enables us to easily deploy our analysis on the
entire Qualitas corpus.

3.4.1 Data processing
Each project is parsed in order to extract the relevant metrics. We employed
Ecco and Monticello as parsers for the Smalltalk corpus [RLR12], and
VerveineJ and Moose for the Java corpus [DGN05]. The data processing
consisted of two steps:

1. Method analysis. To measure how polymorphism is used we tra-
verse the body of every class in the system, each class c having a
list of methods def−1m (c) it implements. We keep track of the set
of methods implemented in the project, as well as of the set of all
methods that are either overridden or are overriding, and the set of
their selectors. These are polymorphic selectors. We also store the in-
formation about methods that introduce a selector. We then calculate
the metrics related to polymorphism and duck typing, such as which
methods in a system are involved in polymorphic and duck-typed
message sends.

2. Message send analysis. In the second step, we traverse the body
of each method, detecting all message sends within the method
body. We then collect separately all the message sends ms for
which isp(ms) = true and all the message sends for which
duck-typed(ms) = true, as well as their cardinality and degree,
respectively.

3.4.2 Data analysis
We are primarily concerned with the distribution of the metrics over the
corpus, and, as a secondary concern regarding polymorphism, whether
they are distributed similarly in Smalltalk and in Java. To this aim, we

33

use box-plots to summarise the distribution of the metrics in the studied
systems. When possible, we analyze varying degrees of aggregation (e.g.,
methods, classes and hierarchies) in order to evaluate how the results hold
at each level of granularity, and to avoid ecological fallacies, which can
occur when one studies the data at the wrong abstraction level [PFD11].

3.5 Experimental Results
In this section we discuss in turn the research questions that we proposed
in Section 3.1. For both Smalltalk and Java 99% of the inspected projects
define polymorphic methods and polymorphic message sends. As for duck
typing, 99% of the inspected Smalltalk projects define duck-typed methods
and duck-typed message sends.

3.5.1 Implementing polymorphism
Figure 3.4 shows the proportion of polymorphic methods, i.e., methods
whose selectors are polymorphic for both Smalltalk (left) and Java (right).
This information is then aggregated to the level of classes and hierarchies.

Figure 3.4 shows that, for Smalltalk:

• At least one out of four methods (31%) in the project implements
a polymorphic selector.

• 63% of all classes in the project implement at least one of those
methods

• Almost all class hierarchies (97%) in the project include at least
one polymorphic selector

Figure 3.4 shows that for Java the numbers are lower but they still
reveal that:

• At least one out of five methods (24%) in a project implements a
polymorphic selector

• Almost half (44%) of the classes in the project implement at least
one of those methods

• More than three quarters (76%) of all class hierarchies in the
project include at least one polymorphic selector

34

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

Defining Polymorphic Selectors

 0

20

 4

0

 6

0

 8

0

10

0
 %

 0

20

 4

0

 6

0

 8

0

10

0
 %

Figure 3.4: Distribution of the proportions of methods, classes and hierar-
chies defining polymorphic selectors: in (a) Smalltalk and (b) Java

Based on this data, we can now answer the first research question in
the chapter by stating that:

In a majority of projects in both Smalltalk and Java more than a
quarter of the methods are implementations of polymorphic selectors.
Polymorphic methods are more present in Smalltalk than in Java.

3.5.2 Using polymorphism

In Figure 3.5 we present the proportion of all message sends that are
polymorphic as well as the proportion of all methods and classes defining
at least one polymorphic message send (on the left for Smalltalk, on the
right for Java).

For Smalltalk, Figure 3.5 shows that:

35

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

Proportion of Polymorphic Message Sends

(a) Smalltalk (b) Java
 0

20

 4
0

 6
0

 8
0

10
0

 %

 0

20

 4

0

 6

0

 8

0

10

0
 %

Figure 3.5: Distribution of the proportion of polymorphic message sends,
as well as methods and classes having them: in (a) Smalltalk and (b) Java

• A quarter of all the message sends in the project (24%) are con-
sidered to be polymorphic

• A third of the methods in a project (32%) contain a message send
considered to be a polymorphic

• Three quarters of the classes in a project (78%) contain a polymor-
phic message send.

For Java, Figure 3.5 shows that:

• 16% of all message sends in a project cannot be resolved at compile
time using the analysis we have explained in the Terminology section

• 12% of all methods in a project include a message send which is
considered not capable of being resolved at compile time

• 30% of classes in a project have at least one polymorphic message
send

36

Cardinality of Polymorphic Message Sends

(a) Smalltalk (b) Java

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 362 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

10000

10000

5000

20000

15000

20000

30000

40000

Figure 3.6: The cardinality of the polymorphic message sends in the
Smalltalk and the Java corpus, respectively

Surprisingly, in Java the proportion of methods defining a polymor-
phic message send is lower than the proportion of polymorphic message
sends. We hypothesise that polymorphic message sends cluster in methods,
although this would have to be verified in future studies.

We can now answer the second research question in the chapter as
follows:

For a majority of the projects, more than one in seven (for Java)
and one in five (for Smalltalk) of the message send in a system are
considered to be polymorphic.

This means that the issue presented in the example in Section 3.1 is
frequently encountered by developers working in both languages. Tools to
support program understanding in the presence of polymorphism are even
more important in the Smalltalk context than in the Java context.

3.5.3 Cardinality of polymorphic message sends
The cardinality of a polymorphic message send is defined as the size of the
set defined earlier as impl(t,msg(ms)) (3.13), i.e., the number of methods

37

implementing that message.
The distribution of the cardinality of polymorphic message sends in

Smalltalk is presented in Figure 3.6, on the left. We observe that:

• More than 75% of polymorphic message sends have cardinality two
or three.

• Most of the message sends (90%) that cannot be resolved at com-
pile time using the implemented analysis have strictly less than 6
candidates.

Figure 3.6 shows on the right the results of running a similar analysis
for Java. Based on the analysis of 71K polymorphic message sends in the
corpus, we observe that:

• There are fewer message sends with two candidates than with three
candidates.

• More than 50% of the message sends have a cardinality of two or
three

• More than 75% of polymorphic message sends have cardinality less
than seven

• Most of the message sends (90%) have less than 12 candidates

In some cases, there are message sends with a very large cardinality.
Table 3.1 presents several of the extreme cases we have investigated. In all
the cases we have more than 100 potential selector implementations for a
message send. We can observe some design patterns that are responsible
for this, including Visitor (for jruby) and Command (for ant).

Table 3.1: The largest cardinalities in the Java corpus
System Method Name Cardinality
weka-3.7.5 RevisionHandler.getRevision() 545
spring-3.0.5 InitializingBean.afterPropertiesSet() 216
ant-1.8.2 Task.execute() 201
weka-3.7.5 CapabilitiesHandler.getCapabilities() 167
jruby-1.5.2 Node.interpret(Ruby,ThreadContext,...) 148

38

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cardinality of duck-typed method definitions

0

35000

70000

105000

140000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 49

Distribution of duck-typed methods
(a)

Degree of duck-typed selectors
(b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

35000

70000

105000

140000

 0

 2
0

 4

0

 6
0

 8

0

 1
00

 %

degree

Figure 3.7: Implementing duck-typed selectors in Smalltalk

Several of the polymorphic message sends with large cardinalities (e.g.
the ones in Table 3.1) also happen to occur a significant number of times.
This is probably the result of a given message send occurring in multiple
places in a given project.

To finally answer the research question, we conclude:

In both languages a strong majority (75%) of the polymorphic
message sends have a cardinality of up to six and a vast majority
(90%) have a cardinality of less than twelve. Corner cases can have
hundreds of candidates.

3.5.4 Implementing duck typing
Figure 3.7 (a) shows the proportion of methods in Smalltalk whose selec-
tors are duck-typed. We can observe that:

• for half of the analysed projects at least one of six methods (17%)
in a project implements a duck-typed selector

• most of the analysed projects contain up to 22% of duck-typed
methods

39

(a)
0.
00

0.
05

0.
10

0.
15

Cardinality of duck-typed call-sites

0

200000

400000

600000

800000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

(b)
Distribution of duck-typed

message sends

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree of duck-typed message sends

20000

40000

60000

80000

degree

 0

 5

 1
0

 1
5

 %

Figure 3.8: Using duck-typed selectors in Smalltalk

However, there are strong outliers with more than 50% of methods
implementing duck-typed selectors.

We have also measured the degree of each of the duck-typed selectors,
i.e., |intr(s)|. The results are presented in Figure 3.7 (b).

We can observe that:

• 75% of duck-typed signatures are implemented in up to five distinct
hierarchies, i.e., have a degree of up to five

• some outliers have more than 200 cross-hierarchy implementations

Based on this data, we can now answer the fourth research question in
the chapter by stating that:

In half of the projects in Smalltalk more than one sixth of the
methods represent implementations of duck-typed selectors. Three
quarters of duck-typed selectors have cardinality of up to five.

3.5.5 Using duck typing
In Figure 3.8 (a) we present the proportion of the message sends in
Smalltalk that are duck-typed.

40

We can state that:

• In half of the analysed projects, more than 0.55% of message sends
are duck-typed

• In around one fifth of the analysed projects, more than 1% of message
sends are duck-typed.

• Almost all of the analysed projects contain up to 15% of duck-typed
message sends.

• There are strong outliers where around 18% of message sends are
duck-typed.

We have also measured the degree of duck-typed message send, i.e.,
the number |intr(msg(ms))|. Our findings are presented in Figure 3.8 (b).
We observe that:

• 37% of duck-typed call sites have degree of two

• about 30% of duck-typed call sites have degree of three or four

• about 28% of call sites have degree varying from five to 17

There are strong outliers with degree of more than 200.
We can now answer the fifth research question in the chapter with:

All projects contain to some extent duck-typed message sends.
Most of them have up to 1% of message sends which can be duck-
typed. Degrees of these message send vary from two to more than
200.

3.6 Threats to Validity
Construct Validity. The best way to detect polymorphic and duck-typed
methods would be to use a combination of both static and dynamic analysis.
This threatens the validity of our study since we are unable to know whether
the resulting methods are parts of “hot spots” in the source code, or whether
they are actually never executed. However, our goal was to look at the

41

problem from the perspective of the IDE where only static information is
normally available.

The static analysis algorithms that we have used represent other threats
to the validity of our results. In this analysis we used the CHA algorithm
(Class Hierarchy Analysis) [DGC95] for Java and a modified version for
Smalltalk to calculate the candidates for the message sends regarding poly-
morphism. We have encountered cases where there are more than 100
method candidates for a polymorphic message send. With more advanced
techniques of static analysis, like the RTA algorithm (Rapid Type Analy-
sis) [BS96], it might be possible to get more precise results. While CHA
finds the possible method candidates at the message send based only on the
declared type of the receiver, RTA takes into account the set of all classes
instantiated until the corresponding moment in the analysis. It could be
that more advanced analyses would provide more precise results. However,
our goal was to assess the criticality of polymorphism on program under-
standing from the perspective of a developer using common IDEs, and the
burden it poses on simple static analysis techniques.

Our decision to treat a message send in Java in the same way, regardless
of whether the statically-declared type of the receiver is an interface or a
class may influence our research, since we also include abstract methods in
the results. However, we wanted to estimate the challenges that are faced
by a developer when analysing the code. Abstract methods are usually
included in the results of static analysis, e.g., navigation action, since
present IDEs do not typically include advanced analyses.

One final threat to construct validity concerns possible imprecisions in
detecting polymorphic methods, due to cross-hierarchy polymorphism (i.e.,
duck typing) in Smalltalk, since we are not able to statically determine
the type of the receiver. Due to cross-hierarchy polymorphism, the results
may contain false positives, i.e., message sends marked as polymorphic,
whereas they are not.

Internal Validity. We consider only user-defined polymorphism, and not
polymorphism defined in libraries being employed by the analysed projects,
nor the usage of these polymorphic library methods. Moreover, we consider
polymorphism only within the boundaries of a system, without taking into
consideration library classes being extended in the subject systems, thus
there might be more user-defined polymorphic methods whose superclass
implementations are outside of project boundaries.

External Validity. Since our study features only open-source projects, we

42

cannot generalise our findings to industrial projects. For the Smalltalk
corpus, we only considered projects that are found in the SqueakSource
repository. Although SqueakSource was at that time the de facto standard
source code repository for Squeak and Pharo developers, we cannot be sure
to what extent the results generalise to Smalltalk code outside of Squeak-
Source, such as Smalltalk code produced by VisualWorks developers. We
only take into account Smalltalk projects with more than 50 classes to filter
out projects that might be toy or experimental projects. We believe such
filtering increases the representativeness of our results, however, it might
also impose a threat. Similarly, our corpus of Java systems contains only
open-source code, and is built based on the availability of systems. As
such, we cannot make strong claims about its representativeness. It does
however contain popular applications, such as ArgoUML, components of
Apache, FindBugs, etc.

The two sub-corpora exhibit different characteristics: notably, poly-
morphism is much more prevalent in Smalltalk — a “pure object-oriented”
language — than in Java. Extending the study to other OO languages may
yield other insights.

3.7 Discussion
The study presented above only considers the prevalence of polymorphism
in open source software. As such, it represents only the first step. In this
section we consider a series of further research questions that the results of
the study raise.
How To Improve Simple Analysis Techniques? While there is not a big
difference between the portion of methods that implement polymorphic
selectors in Smalltalk and Java, there is quite a difference between message
sends that our algorithm found to be polymorphic in both corpora. Since
in Smalltalk there is no notion of static type of the receiver, some of
the found polymorphic message sends may not actually be polymorphic,
due to the receiver always being of the same type. Again, to be able to
infer the type for the receiver, static analysis encounters an obstacle in
the form of polymorphism. There is a research question of how static
analysis techniques may be improved in the presence of (cross-hierarchy)
polymorphism.
Duck Typing. This kind of language idiom is usually encountered in
dynamically-typed programming languages, but can be simulated also in

43

statically-typed languages with the use of interfaces. Instances of classes
that model distinct domain objects, but implement the same interface, might
be interchangeably used whenever the interface type is expected. Hence,
an interface selector may be implemented in both classes, even though
the intended behaviours may differentiate. These implementations may be
considered as duck-typed. It would be important to empirically quantify
the impact of duck typing on program understanding. We expect duck
typing to actually have a more drastic impact on program comprehension.
While we have measured separately polymorphism and duck typing usage,
it is more likely that these two dimensions of polymorphism are combined
in the code implementation. That is, we expect to find duck-typed selectors
being also overridden, hence heavily influencing type inference analysis.
As such, they present an even greater threat to program comprehension
and static analysis techniques.

Static and dynamic detection: What is the Ground Truth? As we have
already explained, we have used variations of CHA algorithm for both
Java and Smalltalk, in order to calculate the polymorphism metrics. CHA
represents one of the simplest static algorithms for call graph construction,
and it is commonly plugged in the IDE analysis. However, even with the
most advanced static analysis, there will be cases where a message send
cannot be resolved statically. The downside of static analyses are the false
positives, i.e., potential polymorphism might not occur in practice [RMR03,
RKG04, Dmi04], while dynamic analyses suffer from false negatives,
i.e., some polymorphic calls may be missed in any given run [PTP07].
This leads us to the question of the best technique to detect polymorphic
message sends: what is the ground truth, and which technique yields the
best approximation?

Impact on Program Understanding. Given that the presence of polymor-
phic message sends is so high, based on the results of the second research
questions, it would be important to discover to what extent polymorphic
message sends pose a problem for program understanding. These results
also bring up the question of how polymorphism influences the quality of
the source code, e.g., whether it is more comprehensible for developers to
use type checking or polymorphism.

On the other hand, it would be important to assess the differences
in program comprehension in statically- and dynamically-typed software
which exercise polymorphism to the same degree. This would provide a
precise estimation of how much static type information helps developers

44

to understand polymorphic code.
With the cardinality of a polymorphic message send measure we tried

to estimate the complexity of understanding a given polymorphic message
send. However, the cardinality is a preliminary measure. For example,
often the methods that could be invoked by a given message send will also
contain polymorphic message sends in their turn. A user would have to
follow such a polymorphic call chain to fully understand the software.

A better proxy for the difficulty of understanding a polymorphic mes-
sage send would take into account also a tree-like structure of polymorphic
call chains. Such a metric would be the equivalent of cyclomatic complex-
ity computed on the call graph induced by the compound polymorphic
calls. In preliminary studies we observed some extreme polymorphic call
chains that span dozens of methods.

Polymorphic call chains could be combined with other measures to
eventually quantify the impact of polymorphism on comprehension. Even-
tually, empirical studies would have to validate such metrics.

3.8 Conclusion

We have performed an empirical study of polymorphism on two corpora
of open source systems written in Smalltalk and Java, respectively. We
found that polymorphism is frequently used in both languages: nearly all
projects we analysed take advantage of polymorphism by implementing
polymorphic selectors and by invoking such selectors.

We learned that in Java, half of the polymorphic message sends have a
cardinality of two or three, and three quarters have a cardinality of less than
seven. Smalltalk uses polymorphism to a greater extent: more than 60% of
all classes implement a polymorphic selector in Smalltalk projects, while
around 40% do the same in Java projects. As for methods, 31% of methods
in Smalltalk implement polymorphic selector compared to 24% in Java.
Since one fifth of all message sends in Smalltalk projects are polymorphic,
and one third of all methods are implementations of a polymorphic selector,
solving the problems associated with understanding polymorphic message
sends is of higher priority for Smalltalk than for Java.

Even though there is a significant difference in polymorphism usage
in the two corpora it is not as drastic as the consequent difference in
program comprehension difficulties in dynamically- and statically-typed
languages [SMDV08, KBR14]. We may suppose how big is the impact of

45

the lack of static type information on program comprehension.
As another dimension of polymorphism, we have measured the pres-

ence of cross-hierarchy polymorphism in Smalltalk. Our findings are that
all of the analysed projects exercise to some extent duck typing, and that
most of the duck-typed message sends have cardinality of up to 17. On the
other hand, methods that implement a duck-typed selector count for about
one fifth of all the methods in a project.

These findings also indicate clearly the extent of difficulties polymor-
phism poses on static analysis techniques, and allow us to estimate the
source of difficulties of simple type inference algorithms.

46

4
Static class usage frequency

heuristics

4.1 Introduction
There are various techniques that attempt to reconstruct the types of vari-
able in code. While some of them rely solely on the information collected
statically from the code, i.e., without program execution, others collect
information at run time, and feed it back to the algorithm. Some approaches
tend to be more precise, while others trade precision for speed. Some ap-
proaches depend on typing the whole program, while others handle an
isolated variable on its own. Many dimensions may be drawn in order to
classify the field of type inference algorithms.

To offer precise type information, a type inference algorithm should
analyse data flow, which is heavily intertwined with the control flow of the
software. One cannot reason about the one without the other. While the
execution of the program offers precise control- and data-flow information,
it offers just a narrow view of the possible execution paths [PTP07], and
introduces execution overhead.

Static type inference analysis is less expensive, but suffers from the

47

problem of false positives. In general, precise data-flow analysis is NP-hard
for either flow-insensitive [Sus97] static analyses, or flow-sensitive [LR91,
Lan92, Ram94] ones. Any attempt to construct the type of a variable by
static analysis suffers from some level of imprecision. As expected, more
precise algorithms depend on the analysis of the whole program, making it
slow and expensive.

Simple approaches tend to pose certain constraints on a variable (or
a program expression) whose resolution would result in the set of possi-
ble types for that variable (expression). These constraints constitute, for
example, of the set of messages sent to the variable, i.e., locally used
interface of the variable, or the possible type flow at run time. The main
purpose of these approaches is to be used for program comprehension and
provide a developer with fast information. Due to their simplicity, and
sometimes slightly naive approach, they are not intended to be used for
the compiler optimisation. Because of the plain analysis their precision is
hampered by the usage of object-oriented features, like different kinds of
polymorphism and dynamic features. For example, by statically tracking
down the set of messages sent to the variable, it is possible to uniquely
determine possible types for less than 60% of variables [PMW09]. The
usage of popular interfaces for the rest of the variables generates a large
number of false positives, i.e., classes inferred as potential types for a
variable, but not representing its actual type at run time. This is a direct
consequence of high usage of polymorphism combined with duck typing
in object-oriented code. However, these approaches are mainly intended
for program comprehension, thus offer a reasonable compromise between
speed and precision.

One of the problems for simple algorithms is that popular interfaces
result in large number of possible types for a variable, therefore introducing
ambiguity. Presenting the list of possible types for a variable in no particular
order, where most of them cannot actually represent the variable type
during run time, is not helpful to a developer. Meddling with the algorithm
would increase its complexity, and subsequently the time needed to perform
the analysis. That is why we propose ordering the resulting set of classes to
indicate those more likely to be correct. All of these classes are more or less
likely to represent the actual type of the variable at run time. Regardless
how complicated is the control flow of a software, all the instances to which
the variable may be bound at run time must be created somewhere in the
code. The usual way is to invoke a constructor of the desired class, leading
us to suppose that the more frequently the class is instantiated throughout

48

the code, the more likely it is that it will represent a variable type at run
time.

Classes are not only used to instantiate a new object, but also to invoke
class methods that perform utility functions, which may also result in
instance creation. We hypothesise that class usage frequency serves as a
reliable proxy for the likelihood that a variable may be bound to an instance
of that class at run time. Thus, we explore two heuristics for ordering the
list of possible types for a variable: according to how frequently classes are
instantiated in the code and according to how frequently class name occurs
in the source code. The information about class presence in the source
code is easy to retrieve, thus preserving the proposed approach as simple
and swift. Types of a variable are primarily inferred statically based on the
messages sent to it and from the assignments to the variable. We have used
RoelTyper [PMW09] for this purpose. The approach is explained in details
throughout the section Section 4.3.

We have implemented a proof-of-concept prototype in Pharo Smalltalk
and used it to evaluate the proposed heuristics. First, the evaluation showed
an overhead of 4.56%, due to the sorting function, which we deem ac-
ceptable. The most of the overhead comes from the calculations of the
value for each class, which we use to sort them. Second, it proved that the
implemented heuristics led to a significant improvement when compared
to the basic approach. Third, the heuristic that showed better results, i.e.,
the heuristic based on the frequency of class occurrence in the code, was
compared to an existing improvement of the same underlying type infer-
ence technique, and introduced an improvement of the results with fewer
requirements. The improvement is achieved in 58.6% of the cases.

The rest of the chapter is organised as follows: We start by giving an
overview of the problem in Section 4.2. Next we define the used terminol-
ogy and implemented heuristics in Section 4.3; Section 4.4 shows results
of the evaluation of the prototype. We then describe potential threats to the
validity in Section 4.5 before concluding in Section 4.6.

4.2 Overview
To better understand the contribution of the chapter, let us expend the
example presented in Chapter 1 (Listing 1). The example is repeated in
Listing 3.

49

1 GLMLoggedObject subclass: #GLMPane
2 instanceVariableNames: '... presentations ...'
3 classVariableNames: ''
4 category: 'Glamour-Core'
5

6 GLMPane>>update
7 ...
8 self presentations do: [:each | each update]

Listing 3: The run-time type of the argument each cannot be statically
detected by the traditional approach

Lines 1-4 define a new class GLMPane which has an instance variable
presentations, while lines 6-8 define a method named update that
performs an update operation on each of the elements of the instance
variable presentations.

Let us suppose that the developer wants to know the possible type of
the argument each in Listing 3, as she is interested to know the types of
the individual elements added to the instance variable presentations.
Since Smalltalk is a dynamically typed language, the developer cannot
determine statically the potential type of the argument each.

The simple (standard) approach to infer variable types for this variable
would be to traverse the list of messages sent to it and find all the classes
in the image1 that understand the interface of the variable, i.e., in this case
update selector.

Using the traditional approach, the developer will be offered the list of
121 possible classes2 grouped by their twenty hierarchies. These classes
are represented in no particular order. Thus, she will obtain a list of 121
possibilities, with no particular knowledge of how likely it is that any of
the classes is the correct one. Evidently, this information is not helpful to
the developer. Even if the developer would restrict the search of the types
to the package in which the class GLMPane occurs, it would still leave her
with 52 classes to examine, organised in three hierarchies.

In order to narrow down the list, we note that each is an element of
presentations, which is presumably a collection. By further inspection
of the class GLMPane, we can see which other messages are sent to these
elements.

1The term “Pharo image” is used to denote a snapshot of the running Pharo system.
2The system used with this example is Moose 5.0, a platform for software and data analysis

based on Pharo. The actual number of implementations may vary in the other systems.

50

9GLMPane>>resetAnnouncer
10super resetAnnouncer.
11self presentations do:
12[:each | each resetAnnouncer]
13

14GLMPane>>addPresentationSilently: each
15^ presentations
16add: (each pane: self; yourself)

Listing 4: Access to the elements of the variable presentations

In Listing 4 we observe in line 12 that message resetAnnouncer is
sent to the elements of presentations. In line 16 we observe that the
argument each of the method named addPresentationSilently: is
added to the instance variable presentation. This argument needs to
understand messages pane: and yourself, hence elements of the vari-
able presentations need to understand them as well. After taking this
information into account, there are still 63 possible types for the elements
of the variable each. (Bear in mind that this kind of analysis requires
control and flow analysis, thus is more difficult to perform automatically.)

17GLMPane>>addPresentations: aCollection
18self notingPresentationChangeDo: [
19aCollection do: [:each |
20self addPresentationSilently: each
21]
22]
23

24GLMPresentation>>pane
25^ pane ifNil: [
26pane := (GLMPane named: 'root'
27in: GLMNoBrowser new)
28addPresentationSilently: self;
29yourself
30]

Listing 5: Senders of the method addPresentations:

Analysing senders of addPresentationSilently: does not yield
much insight into the type of the argument each. In lines 20 and 28 in
Listing 5 we can see that the method is invoked twice within the source
code. Line 20 provides no information about the elements each of the

51

method argument aCollection. In line 28, the argument that is passed
is self, which is an object either of type GLMPresentation or any of
its subtypes, which leaves us again with 63 possible types for the method
argument in line 6 in Listing 3. As previously explained, this kind of
analysis depends on control flow, hence is difficult to perform automatically
in dynamically typed languages [Sus97].

One can reasonably suppose that the name of the instance vari-
able presentations reveals the type of its elements, since the class
GLMPresentation is present in the project. In this case the name is not
of a much help, since the class GLMPresentation has 63 subclasses.

We propose to exploit information about the usage of the classes rep-
resenting possible types of the variable each to highlight which classes
are more likely to represent the variable’s actual type(s) at run time. We
argue that the degree of usage of the classes throughout the source code
is strongly related to the likelihood of the class being used as a type for
a particular variable. We have developed a couple of heuristics based on
the different ways of class usage with the aim to improve type inference
techniques.

One of the heuristics sorts the possible types based on the number of
occurrences of the class name throughout the image. In the example from
the Listing 3, the list of possible types for the argument each contains 121
classes in the following order, sorted by the frequency of the class names
occurring in the image:

1. GLMTabulator

2. GLMCompositePresentation

3. GLMFinder

4. GLMPaneAdded

5. MooseFinder

...

121. PaneAbstractLine

As a result, a developer will be issued with the above presented list of
121 possible types in the specified order. The actual type of the variable at
run time is GLMTabulator in multiple runs of the system, which is at the
top of the list. We argue that it is possible to introduce accurate information

52

about the type of a variable with such heuristics, avoiding false positives,
and that this will provide more insightful information to developers for
program comprehension.

4.3 Heuristics and Approaches

4.3.1 Terminology

To explain the heuristics, we introduce a simple set-theoretic model in
Figure 4.1 that captures key properties for the entities shown in the UML
diagram in the Figure 4.2.

msg : V → P(S) (4.1)
sel :M → S (4.2)

defm :M → C (4.3)
sup : C → C ∪ {null} (4.4)

assign_types : V → P(C) (4.5)
undr : C ∪ {null} × S → {true, false} (4.6)

Figure 4.1: The core model.

Given a target program language, C is the domain of all classes, M is
the domain of all methods, S is the domain of all selectors. V is the domain
of all variables, including instance variables, method arguments and local
variables.

Each variable v has a (possibly empty) set of messages msg(v) sent
to it in its lexical scope (4.1) either directly or through the getter method.
Note that we consider the lexical scope for instance variables only to be the
methods of the class in which it is defined, but not its subclasses. In case of
the instance variables inherited from superclass, we choose to treat them as
instance variables defined in the subclass. The implications of this decision
are discussed in Section 4.5. We call this set of messages the interface of
the variable v. Each method m has a unique selector s = sel(m) (4.2), and
is defined in a unique class c = defm(m) (4.3). Each class c has a unique

53

Selector

Method

1

1…*

Class

0…*

1

Variable

0…1

superclass 0…*

has selector

defined in

0…*1

receives
0…*

0…*

0..*
is assigned

Figure 4.2: The core model in UML

superclass c′ = sup(c) (4.4). We define the superclass of Object to be
null, i.e., sup(Object) = null.

Consider the example class hierarchy in Figure 4.3.
In this example there is a class RTGlobalBuilder with an instance

variable named properties and methods addProperty:, execute and
initialize. Within these three methods messages sent to the instance
variable properties are

msg(properties) = {add:, do:}

Also, each variable v may have one or more assigned types c ∈
assign_types(v) (4.5) if the variable v is the left side of an assignment
where the right side of the same assignment is a message send to a class
that results in creating a new object, i.e., is a call to a constructor or this
newly created object has been assigned to the variable via setter method. Re-
turning to the example, in the method RTGlobalBuilder>>initialize
there is an assignment to the instance variable properties of the newly
created object of type OrderedCollection, which means that

assign_types(properties) = {OrderedCollection}

We have used a couple of heuristics to guess the type of the expression
result assigned to the variable, as done with RoelTyper [PMW09]. These

54

RTGlobalBuilder

- properties
+ addProperty:

+ execute
+ initialize

addProperty: aOneOrTwoArgBlock
properties add: aOneOrTwoArgBlock

execute
 properties do: #value

initialize
…
properties := OrderedCollection new

Collection
+ add:
+ do:
+ asBag
+ asOrderedCollection

Bag
SequencableCollection

OrderedCollection

+ do:

+ add:
+ do:
+collector

+ add:
+ do:

+ add:

Object

Collection>>asBag
^ Bag withAll: self

Collection>>asOrderedCollection
^ self as: OrderedCollection

AbstractAdapter

+ add:
+ do:

GLMCompositePresentation

GTInspector

GTMoldableDebugger

Figure 4.3: Sample class hierarchy

heuristics are listed in the Table 4.1. Having multiple assignments to the
same variable is possible, but it is beyond the scope of our small example.

We can now query the model to ascertain the set of possible types
for every variable. Each class c can either understand the selector s or
not (4.6). The class c understands selector s if this class defines a method
m ∈ def−1m (c) such that sel(m) = s or its superclass sup(c) understands it
(4.7). We also define that undr(null, s) = false. The interface of the class c
is a set intr(c) of all the selectors s that class c understands (4.8). The class
c is a possible type for the variable v if class c understands the interface
of the variable v (4.9). For a set of classes C ′ we infer as roots the classes

55

undr(c, s) = s ∈ sel(def−1m (c)) ∨ undr(sup(c), s) (4.7)
intr(c) = {s ∈ S|undr(c, s)} (4.8)

sel_all_types(v) = {c ∈ C|msg(v) ⊆ intr(c)} (4.9)
roots(C ′) = {c ∈ C ′|∀n > 0, supn(c) /∈ C ′}, C ′ ∈ P(C)

(4.10)

sel_types(v) = roots(sel_all_types(v)) (4.11)

Figure 4.4: Computing possible types for a variable.

from the same set without having a superclass in C ′ (4.10). At the end,
we infer roots of hierarchies to which possible types for a variable may
belong (4.11). To this set of classes, as well as to the set assign_types(v)
we will apply ordering. For now we focus on the set of root classes, since
RoelTyper [PMW09], as well as the technique built on top of it [SLN14]
both infer only possible hierarchies. We will later discuss the set of all
classes that may represent a variable type.

In the example in Figure 4.3 we see that the class Collection un-
derstands the selector add:, as do all of its subclasses and the class
AbstractAdapter, while undr(RTGlobalBuilder, add:) = false.

We can now calculate the interfaces of the classes. For the sake of
brevity, we only list those messages that are relevant for this example,
rather than the complete interfaces that hold more than 400 selectors:

intr(Collection) = intr(Bag) = intr(SequenceableCollection) =
{add:, do:, asBag, asOrderedCollection}

intr(OrderedCollection) =
{add:, do:, collector, asBag, asOrderedCollection}

intr(AbstractAdapter) = {add:}

intr(GLMCompositePresentation) = intr(GTInspector) =
intr(GTMoldableDebugger) = {add:, do:}

From the previous equations, we see that

msg(properties) ⊆ intr(Collection)

56

Expression Inferred
type

x = y x == y x ∼= y x < y x > y x <= y
x >= y x = y

Boolean

x msg y, where msg is any of the arithmetic, logarith-
mic or trigonometric functions or functions used to round
a number

Number

Table 4.1: Heuristics used to infer the type of the expression

msg(properties) ⊆ intr(Bag)
msg(properties) ⊆ intr(SequenceableCollection)
msg(properties) ⊆ intr(OrderedCollection)
msg(properties) 6⊆ intr(AbstractAdapter)
msg(properties) ⊆ intr(GLMCompositePresentation)
msg(properties) ⊆ intr(GTInspector)
msg(properties) ⊆ intr(GTMoldableDebugger)

Classes that understand the interface of variable properties all be-
long to two distinct hierarchies with the root classes Collection and
GLMCompositePresentation, thus

sel_types(properties) =
{Collection, GLMCompositePresentation}

4.3.2 Heuristics

The first intuition was that the classes instantiated the most throughout the
source code are more “present” in the source code, and they are more likely
to represent the types of the variable than classes that are less “present”
in the source code. Classes can be used to instantiate new objects or
they can be used “on their own”, as independent objects. Hence, we have
implemented and evaluated two possible heuristics:

1. Class instantiation heuristic

2. Name occurrence heuristic

57

We continue by explaining the evaluated heuristics used for ordering
the possible types of a variable v. We use each heuristic to order separately
two sets of classes: assign_types(v) and sel_types(v).

Class instantiation

The intuition is that the more frequently the class is instantiated throughout
the source code, the more likely it is that it represents the type of a variable.
This heuristic is founded on the calculation of the occurrences of class
instantiation throughout the source code.

The usual way to create a new object in Smalltalk is to send a message
new to a class. Besides the methods with the selector new, all the methods
that belong to any of the protocols3 initialize, initialization and
instance creation are considered to be constructors, i.e., result in the
creation of a new object. So, we count all the occurrences of class usage
like OrderedCollection new or any other message send to a class
that results in invoking a method from any of the previously mentioned
protocols.

Returning to the example in Figure 4.3, the only place in the
source code where a class is instantiated is within the method
RTGlobalBuilder>>#initialize, where a new object of the type
OrderedCollection is created and assigned to the instance variable
properties. Based on this information, we can count the corresponding
frequency of class instantiation for each class:

class_inst(Collection) = class_inst(Bag) =
class_inst(SequenceableCollection) = 0

class_inst(OrderedCollection) = 1

class_inst(GLMCompositePresentation) =
class_inst(GTInspector) = class_inst(GTMoldableDebugger) =

0

As we infer root classes based on the variable interface, we calculate
the value based on which sel_types(v) are sorted as following: for class
c ∈ sel_types(v) the value of the class is the sum of class_inst(c′) for
each subclass c′ of the class c (4.12). As for the classes that belong to
the set assign_types(v), we consider them as truthful, i.e., without taking

3Methods in Smalltalk are organised in protocols, i.e., groups of related methods.

58

subclasses into account. Thus, these classes are sorted purely based on
their own values, i.e., class_value_assign(c), for class c ∈ assign_types(v)
is equal to class_inst(c) (4.13).

class_value_sel(c) =
∑

c=supn(c′),n∈N
c′∈C

class_inst(c′) (4.12)

class_value_assign(c) = class_inst(c) (4.13)

Figure 4.5: Calculating class values for selector and assignment types

We can now calculate values for classes in sel_types(properties):

class_value_sel(Collection) = 1
class_value_sel(GLMCompositePresentation) = 0

We can now sort the possible types for the variable properties. As
we have mentioned at the beginning of Subsection 4.3.2 for each variable
v we sort independently the lists assign_types(v) and sel_types(v). In
the example, the list assign_types(properties) has only one element,
so there is no need for sorting. The list sel_types(properties) has two
elements that will be sorted as follows:

1. Collection

2. GLMCompositePresentation

Name occurrence

Since a class can be used as an object itself, e.g., to invoke a class method
that does not necessarily need to be a constructor, in this heuristic we focus
on all the places in source code where a class name is used, except for class
definitions. We count these occurrences and use the relative frequency to
sort the possible types of a variable.

In our example in Figure 4.3, we encounter two occurrences of
the class OrderedCollection: in the methods RTGlobalBuilder>>#
initialize and Collection>>#asOrderedCollection. Hence,

name_occ(OrderedCollection) = 2

59

The class Bag is used as a receiver for a message send withAll: in
the method Collection>>asBag, hence

name_occ(Bag) = 1

Classes Collection and SequenceableCollection are men-
tioned nowhere in the code, as the classes GLMCompositePresentation,
GTInspector, GTMoldableDebugger, except for its declaration, which
we do not count, so

name_occ(Collection) = name_occ(SequenceableCollection) =
name_occ(GLMCompositePresentation) =
name_occ(GTInspector) =
name_occ(GTMoldableDebugger) = 0

Thus, values of the classes inferred as types based on the message
sends to the variable properties are

class_value_sel(Collection) = 3
class_value_sel(GLMCompositePresentation) = 0

As in the previous heuristic, there is only one assigned type to
the variable properties, so there is no need for sorting the list as-
sign_types(properties). However, the sorted list sel_types(properties
) will look like the following:

1. Collection

2. GLMCompositePresentation

4.3.3 Assigned types vs. selector types

In our evaluation we give the priority to the assigned type, since we believe
that this information is inserted by a developer with a high accuracy. As
a result of the inference process, for each variable v two lists will be
presented, namely, assign_types(v) and sel_types(v), so that a developer
has a notion of types explicitly being assigned to the variable, and the
types that are implicitly determined. If there are no assignment types for a
variable v, only selector types are presented and vice versa.

60

4.3.4 Approaches
In our opinion, it is important for the developer to know the hierarchy of
classes to which the run-time type of the variable may belong, but also to
have a notion of the specific type of a variable. For that reason, we have
developed both a hierarchy-based approach and a class-based one. To the
best of our knowledge, this is one of the most simple algorithms that tries
to infer the precise type for variables, and not just the class hierarchy. As
the tool is intended mainly to assist developers in program comprehension,
we consider it important to infer both possible classes and hierarchies to
which the type of the variable may belong. Names of a root class and a
subclass may be very different and developer is sometimes expecting a
class of a certain name [KBR14]. For that reason, we deem it important to
present her with the list of root classes as well as the list of all classes.

For each variable v both approaches collect the messages sent to the
variable v. The main difference thereafter is in computing the set of classes
that understand the interface of the variable, that it sel_types(v).

Hierarchy-Based Approach

This approach is explained in the example in Figure 4.3 throughout Subsec-
tion 4.3.1. Let us remember that in the example in Figure 4.3 the interface
of the instance variable properties was understood by two root classes:
Collection and GLMCompositePresentation.

Class-Based Approach

While it is important for a developer to know the possible hierarchy to
which the type of a variable may belong, it is sometimes also important
to infer the precise class that represents the run-time type of the variable.
Many of the analysed variables have an interface understood by many in-
dependent hierarchies, i.e., hierarchies whose roots do not have a common
superclass understanding the same interface, thus we wanted to verify how
successfully heuristics would infer the precise class. A variable can have
an interface understood by tens, hundreds, or even thousands of classes.
Obviously, such information presented to a developer is not helpful. Hence
we order them so that we promote the correct class (or classes) towards the
top of the list.

Most of the existing simple type inference algorithms for dynamically-
typed languages focus on the type hierarchy rather than on the precise

61

type.
The class-based approach takes into account all the possible classes

inferred based on the variable’s interface. This means that sorting classes is
now applied on sel_all_types(v) rather than on sel_types(v). This indicates
that class_value_sel(c) = class_inst(c) (or name_occ(c), depending on the
heuristic) for any class c, since we are considering each class separately as
a possible type.

In the example in Figure 4.3, the sets of possible types for the variable
properties are

assign_types(properties) = {OrderedCollection}

sel_types(properties) = {Collection, Bag,
SequenceableCollection, OrderedCollection,
GLMCompositePresentation, GTInspector,
GTMoldableDebugger}

Let us emphasise here that no change is made to the set assign_types(v),
but only to the set sel_types(v). We consider the set of explicitly assigned
types to a variable to be truthful, as it is. The implications of this decision
are discussed in Section 4.5.

4.4 Evaluation
We have implemented a proof-of-concept for Pharo Smalltalk.

In order to evaluate our assumptions, we have used five open-source
projects, written in Pharo, for which we were able to collect run-time
information that closely depicts their real usage: Roassal4 [ABC+13],
Glamour5 [Bun09], Bloc6, Morphic [FS07] and Moose7 [NDG05, G1̂0,
DGLD05, DLT00]. Roassal is an agile visualisation engine which graphi-
cally renders objects using short and expressive Smalltalk expressions (i.e.,
an internal DSL). Glamour is a framework to describe the navigation flow
of browsers. Bloc is a redesign of Morphic, a user unterface construction
kit. Moose is a platform for software analysis. We wanted to avoid the
use of unit tests, because there is no guarantee that they will reflect the

4http://smalltalkhub.com/#!/~ObjectProfile/Roassal
5http://www.smalltalkhub.com/#!/~Moose/Glamour
6http://www.smalltalkhub.com/#!/~AlainPlantec/Bloc
7http://www.smalltalkhub.com/#!/~Moose/Moose

62

http://smalltalkhub.com/#!/~ObjectProfile/Roassal
http://www.smalltalkhub.com/#!/~Moose/Glamour
http://www.smalltalkhub.com/#!/~AlainPlantec/Bloc
http://www.smalltalkhub.com/#!/~Moose/Moose

complete picture of the project’s usage. Four of these projects (Roassal,
Glamour, Morphic and Bloc) provide a number of example methods that
reflect the real usage of the corresponding project: Roassal has 948, Glam-
our 68, Morphic 29 and Bloc 202 of these methods. These methods are
created by project developers to demonstrate the potential usage of the
corresponding project. They serve as “main” methods and when executed
provide an example of how the project may be employed. We ran them to
record the run-time information about types of variables, i.e., classes that
represent the type of the object stored in the variable, during the execution
of these methods. Run-time data for the Moose project was collected by
actually performing software analysis on a couple of projects.

By instrumenting the source code of the projects to log the types of
the variables, including instance variables, method and block arguments,
and method and block temporary variables, and running these examples,
we have recovered the run-time types of the variables. For this purpose
we have used a mechanism to track the types of variables at run time,
built on top of Reflectivity8 [Den08], a tool used to annotate AST nodes
with metalinks. We consider these types to be the actual, real types of the
variables at run time, and hold those types to be ground truth to which
results provided by the heuristics are compared.

The types of these variables are then inferred using the two heuristics.
We have statically and dynamically collected enough information to infer
the types of 5246 variables in these five projects and evaluated the results.
This means that at least one message is sent to a variable, or at least
one assignment of the newly created object to a variable is encountered
in the source code during static analysis and that we had access to the
run-time information about the types of these variables. Examples that
we used to collect the run-time information about types covered 6009
variables in Roassal, 259 variables in Glamour, 1006 variables in Morphic,
220 variables in Bloc and 378 variables in Moose, thus in total 7872
variables. For 2626 variables, there was not enough information to infer
types statically, i.e., there was no assignment to the variable, nor any
message sent.

We have measured the time needed to infer types for a variable, and
the time needed to order possible types. The introduced overhead is 4.56%
which we deem acceptable. The average time to infer and order types for
a variable is 0.11 seconds, thus the approach remains fast and usable for

8http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

63

http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

program comprehension purpose.
The evaluation section is divided into three parts. First two part each

focus on one of the used heuristics, and the last one presents a comparison
with one existing approach to augment the precision of the same basic
approach. We endeavour to answer the following research questions:

1. How successful is each of the heuristics?

2. For what kind of types, e.g., library or project-related types, are the
results correct?

3. How much does it improve the basic approach?

4.4.1 Class instantiation heuristic

●●●
●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●

●●●●●●

●

●

●●●●●

0

50

100

150

200

X0Figure 4.6: Distribution of the number of possible hierarchies for each
statically analysed variable

Figure 4.6 shows the distribution of the number of possible hierarchies
for each statically analysed variable. More than half of the variables (55%)
have an interface understood by more than 4 independent hierarchies, and at

64

least 25% of the variables may have a run-time type belonging to more than
14 hierarchies. This is a consequence of cross-hierarchy polymorphism.

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 4143 2584 557 620 382
Bloc 220 105 60 39 16
Glamour 136 84 6 12 34
Moose 150 68 8 44 30
Morphic 597 364 55 77 101
TOTAL 5246 3205

(61.09%)
686
(13.07%)

792
(15.09%)

563
(10.73%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 2584 1429 1155
Bloc 105 78 27
Glamour 84 39 45
Moose 68 54 14
Morphic 364 193 171
TOTAL 3205 1793

(55.94%)
1412
(44.06%)

Correctly inferred types
Basic algorithm Class-instantiation heuristic
1120 3205

Table 4.2: Class instantiation heuristic — hierarchy-based approach

65

Hierarchy-based approach

If the class at the top of the list of sorted types is a superclass of the class
that represents the actual run-time type of a variable, we label such a vari-
able as guessed. If the variable has n run-time types, where n > 1, we
consider it to be guessed if the first m classes of the statically inferred list
include in their subhierarchies all run-time types of the variable. m ≥ 1
is the size of the smallest set of statically inferred classes whose com-
bined subhierarchies include all run-time types of the variable. We use
the following example to explain the concepts used for the evaluation. If
a variable has Rectangle and Square as run-time types, then n = 2.
Let us suppose that the statically-inferred list of types for that variable
includes in the first three positions, respectively, Square, Rectangle and
Triangle. The first two classes include in their combined subhierarchies
both run-time types, thus m = 2. Let us now suppose that the list of the
statically-inferred types contains the same classes in the first three spots,
but the first two classes in the reverse order, i.e., it would be Rectangle,
Square and Triangle. Since Square is a subclass of the Rectangle

class, both run-time types would now be contained in the subhierarchy of
the Rectangle class which is at the top of the statically-inferred types.
Hence, in this case m = 1. We name this set of m classes correct types.

A summary of the evaluation results is given in Table 4.2. Results
are presented per package, as well as in total. The results show that for
3205, i.e., 61.09% variables, the heuristic is able to guess the hierarchy of
possible types. Additional analysis revealed that the heuristic worked better
for library types than for project-related types, with the corresponding
percentages of 55.94% and 44.06% (table beneath in Table 4.2).

If the heuristic fails to guess the type of a variable, but the correct type
is present in the top three classes, we call such a variable near-guessed. If
the variable has n run-time types, where n > 1, we consider it as near-
guessed if the set of first m + 2 classes of the statically inferred list of
types include correct types. For example, if a variable has Rectangle
and Square as run-time types (the same as in the example before), and
the statically-inferred list of types includes in the first three positions, re-
spectively, Circle, Triangle and Parallelogram, we consider it to be
near-guessed. In this case m = 1, since hierarchy of the Parallelogram
class includes the classes Rectangle and Square. The Parallelogram
class is present at the third spot in the list, which is contained in the m+ 2
first spots. If, instead, the statically-inferred list of types includes in the first

66

four spots Circle, Triangle, Square and Rectangle, respectively, we
also consider it to be near-guessed. In this case m = 2 as two statically-
inferred classes (Square and Rectangle, and in that order) are needed to
cover all run-time types. For 686 variables, i.e., 13.07%, correct run-time
types were nearly-guessed, thus for 74.16% in total the heuristic offers
reasonably sorted list of possible types.

In any other case, that is if the correct types would not be present in
the first m+ 2 spots in the list, or if the inference would fail to cover the
correct types, the variable is defined as incorrectly-guessed.

To measure the improvement of the class-instantiation heuristic over the
basic algorithm, we have compared the obtained results with the situations
in which the basic algorithm was able to infer only the correct type, thus
the results are unambigous. The comparison is presented as the last one
in Table 4.2. These results show that the class-instantiation heuristic almost
tripled the number of correctly inferred types.

Object type. As for the remaining 25.84% of variables, we have discov-
ered that for almost a half, i.e., 563 variables, the algorithm was not able to
provide any information about the assigned types, and all the messages sent
to these variables were defined in the Object class. Thus there was only
enough static information to conclude the possible type as Object. We
argue that these results could be discarded since they are easily identifiable
and they do not provide any useful information to the developer. Beside 441
already defined methods in the Object class in Pharo, it is also possible
with class extensions to add user-defined methods to the Object class.
These messages can be sent to any Smalltalk object. Messages commonly
sent to these 563 variables are:

• rtValue: which is specific to the Roassal project, but is defined
as an extension method to the Object class and behaves in the
same way as the message value, i.e., returns the object to which the
message is sent.

• comparison messages, like =, ==, ! = etc.

• message value whose implementation in Object class returns the
object to which the message is sent

• message at: which assumes that the receiver is indexable and an-
swers the value of an indexable element of the receiver

67

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 4143 2008 362 1391 382
Bloc 220 87 32 85 16
Glamour 136 52 5 45 34
Moose 150 45 17 58 30
Morphic 597 181 62 253 101
TOTAL 5246 2373

(45.23%)
478
(9.11%)

1832
(34.92%)

563
(10.73%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 2008 963 1045
Bloc 87 67 20
Glamour 52 31 21
Moose 45 36 9
Morphic 181 136 45
TOTAL 2373 1233

(51.96%)
1140
(48.04%)

Table 4.3: Class instantiation heuristic — class-based approach

• messages which check whether the object is null, e.g., ifNil:,
ifNotNil: etc.

Class-based approach

As in the class-based approach we consider each of the possible types
(both the recorded run-time types and the statically-inferred ones) as a
class per se, that is without its subclasses, we emphasise that n = m in
this approach.

Results of the class-based approach are presented in Table 4.3. As

68

expected, the control- and data-flow insensitivity of the algorithm took
their toll. The results show that in about 45.23% of cases, i.e., for 2373
variables, by using this simple heuristic we can successfully infer the
correct classes that represent the types of the variable. We emphasise that
in this case the type inference heuristics are inferring the correct classes,
since simple approaches developed for dynamically typed languages, e.g.,
RoelTypes [PMW09] and EATI [SLN14] infer solely the hierarchy of
classes that represent the potential type of the variable. By analysis of the
inferred types, we have established that this heuristic is working well both
for project-related types, as well as for the types from the standard library,
since 1123 of the correctly inferred types are library types, and 1140 are
project-related ones.

For 478 additional variables, i.e., 9.11% of variables, the heuristic
failed to promote the correct types to the top of the list, but the correct
types are present in the top n+ 2 spots where n is the number of recorded
run-time types. These are near-guessed variables.

Incorrectly-guessed types. For 1832 variables the correct types were not
in the top n+2 types in the list. For 26 variables the approach did not have
enough information to conclude anything but types UndefinedObject or
Object. The UndefinedObject class represents its sole instance, nil,
used as a value for uninitialised variables. We argue that these types can be
also discarded.

There are 115 incorrectly-guessed variables that have assigned types not
corresponding to their run-time types. For example, one of the variables
has the assigned object of type OrderedCollection, while the run-time
types are Array and OrderedCollection. These two classes are com-
monly duck-typed in Smalltalk. Type Array is inferred based on the
selectors sent to the variables, but was not present in the n + 2 spots in
the list. Since both classes are subclasses of SequenceableCollection,
the hierarchy-based approach is useful in this situation.

We have looked into the number of classes and hierarchies that understand
the interface of these variables: at least half of the variables could have more
than 301 different types. Most of them have an interface that is understood
by multiple hierarchies. The number of these hierarchies ranges from 2 to
203 per variable, with a median of 11.

69

4.4.2 Name occurrence heuristic

Hierarchy-Based Approach

This heuristic works slightly better than the class instantiation heuristic.
When we apply the hierarchy-based approach, we can see that for 3299
variables (62.88%), the heuristic is able to correctly infer the hierarchy of
possible types for the variable. The corresponding results are presented in
Table 4.4.

We again discard the variables for which we have not been able to infer
any other type but Object. For 14.14% of variables, i.e., 742 variables
the correct hierarchy was not at the top of the list, but is present in the top
m+ 2 places, i.e., they are near-guessed.

Again, we provide comparison with the basic algorithm (Table 4.4).
The results are slightly better than the results of class instantiation heuristic.

Class-based approach

The results are similar to the previous heuristic i.e., in 46.03% of cases
(2415 variables) we succeeded to correctly infer the actual class that rep-
resents the type of the variable, as shown in Table 4.5. This heuristic also
works well both for project-related types, and for the types from the stan-
dard library: 1236 of the correctly inferred types are library types, and 1179
are project-related types. Another 536 variables, i.e., 10.22% of variables,
are near-guessed.

Incorrectly-guessed types. There are 1732 (33.02%) additional variables
for which the correct type was not in the top n+ 2 types in the list.

Twenty six of these variables have an assigned type of
UndefinedObject, and an interface consisting exclusively of messages
defined in the class Object. Thus, we can only infer their types as sets
of classes UndefinedObject and Object. These variables can be dis-
carded.

Again, 114 of the incorrectly-guessed variables have been assigned
in the source code multiple newly created objects whose types do not
correspond to the actual run-time type of the variable.

Most of the remaining variables, i.e., 1570 do not have any assigned
type, hence inferring their type depends solely on their interface. Half of
these variables have an interface understood by more than 323 classes and
their type may belong to more than nine different class hierarchies.

70

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 4143 2655 623 483 382
Bloc 220 114 55 35 16
Glamour 136 84 7 11 34
Moose 150 73 9 38 30
Morphic 597 373 48 75 101
TOTAL 5246 3299

(62.88%)
742
(14.14%)

642
(12.24%)

563
(10.73%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 2655 1464 1191
Bloc 114 87 27
Glamour 84 40 44
Moose 73 57 16
Morphic 373 204 169
TOTAL 3299 1852

(56.14%)
1447
(43.86%)

Correctly inferred types
Basic algorithm name occurrence heuristic
1120 3299

Table 4.4: Name occurence heuristic — hierarchy-based approach

4.4.3 Comparison with EATI

Since the name occurrence heuristic has shown better results among the
implemented heuristics, we compare it to EATI, a type inference technique
that uses information available in the language ecosystem [SLN14], in
contrast to approaches that use only information available in the project.

71

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 4143 2026 423 1312 382
Bloc 220 95 31 78 16
Glamour 136 53 5 44 34
Moose 150 48 18 54 30
Morphic 597 193 59 244 101
TOTAL 5246 2415

(46.03%)
536
(10.22%)

1732
(33.02%)

563
(10.73%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 2026 945 1081
Bloc 95 75 20
Glamour 53 32 21
Moose 48 38 10
Morphic 193 146 47
TOTAL 2415 1236

(51.18%)
1179
(48.82%)

Table 4.5: Name occurence heuristic — class-based approach

It has a simpler version of the fast type inference technique presented by
Pluquet [PMW09] as the basis for its prototype implementation. It collects
only messages sent directly to a variable, and not those sent through “getter”
methods, and likewise for the assignments and “setter” methods. EATI
gathers data about the frequency of message sends to instances of available
types from the software ecosystem, and stores it in a central repository,
for future queries. When possible types for a variable have been inferred,
the likelihood of the variable being of the actual type “is computed based
on how many times the messages sent to this variable have been observed
to be sent to each potential type throughout the ecosystem” [SLN14].

72

Both RoelTyper [PMW09] and EATI [SLN14] employ a hierarchy-based
approach for inferring types. That is why we compare it with the hierarchy-
based approach. EATI showed a twofold improvement when compared to
its basis, i.e., RoelTyper, so we have decided to compare our results with
the results produced by EATI.

Type
inference

#of
analysed
variables

#of
guessed
variables

#of
near-

guessed
variables

#of
Object

variables

Name
occurrence
heuristic —
hierarchy-

based

5246 3299 686 563

EATI 5246 2080 748 961

Table 4.6: Comparison with EATI

The results of our comparison are shown in Table 4.6. We have calcu-
lated the number of variables for which EATI succeeded to promote the
correct type of the variable to the top of the list, and compared it with the
number of variables for which name occurrence heuristic also succeeded to
promote the correct type to the top of the list (#of guessed variables). We
have also compared the number of variables for which both of the inference
approaches failed to promote the correct type to the top of the list, but the
correct type was among the first three on the list (number of near-guessed
variables). On the same set of variables, the name occurrence heuristic
performed significantly better: it correctly infers 58.6% more variables.

To be completely just, EATI does not employ getter and setter methods
to obtain information about variable, nor does use it the heuristics listed
in Table 4.1, thus this difference may be coming from there9. If we count
also near-guessed variables together with guessed (since they can be con-
sidered as reasonable results to present to developer) we can see that there
is an improvement of 40.9%. We deem these findings important, since our
heuristic yields better results, and they are obtained with less effort and
resources. In any case, EATI showed twofold improvement when com-

9By accident, this was not stated in the corresponding publication [MN16]

73

pared with the basic approach, while the heuristics presented here showed
almost threefold improvement. Thus, we feel that the presented heuristics
are certainly to some extent more precise than EATI. It should be noted
also that EATI does not work well for the project-related types as it lacks
awareness of these types, and focuses more on the types available broadly
in the ecosystem, while our heuristics produce reasonable results both for
project-related and library types.

4.5 Discussion and threats to validity

The main threat to validity comes from the run-time information we have
used to evaluate our heuristics. We have chosen the projects Roassal,
Glamour, Bloc, Morphic and Moose to evaluate the heuristics, since these
projects benefit from sets of realistic example methods. We have chosen
these examples over the unit tests, since we feel they illustrate the real
usage of the projects, thus providing more insight into the actual software
behaviour. It is an open question whether we have collected all possible
run-time types for variables.

Another threat arises from the use of dynamic features and type predi-
cates in Smalltalk. Dynamic features are seldom used in Smalltalk, but they
are used to the extent that they must be taken into consideration [CRTR11],
especially dynamic message send. Type predicates are prevalently used
in Smalltalk [CRT+14]. In the manual investigation of our results, we
have encountered variables queried for their type by sending the message
isKindOf: and then being treated differently based on the answer. Since
type inference heuristics presented in the paper are intended to be fast, they
are flow-insensitive.

Our consideration of the lexical scope of an instance variable may
have influenced the results. By all means, considering all the methods in
the class that declares the instance variable, along with the methods of
the subclasses, as the lexical scope of the variable may only improve the
results.

We chose to treat the assignment types of a variable to be truth-
ful as they are, without considering the subtypes. If the assigned type
is Collection, we do not consider Bag, OrderedCollection, nor
SequenceableCollection as the possible type of the variable (Fig-
ure 4.3). This choice is the same in both class-based and hierarchy-based
approach. If we would consider the assigned types along with all subtypes

74

in class-hierarchy approach, the number of correctly inferred types may
increase or decrease, due to the increased number of possible types for the
variable. If the assigned type has a low value that pushes it towards the
bottom of the list of inferred types, it increases the likelihood of it being
outside of the set of the first m+ 2 statically-inferred types.

We have used only intra-procedural analysis in our algorithm. Applica-
tion of inter-procedural analysis would certainly improve the results.

While our first idea was to explore the class instantiation heuristic
and name occurrence heuristic for type inference in dynamically typed
languages, we have also tried to evaluate the heuristic that sorts the classes
based on their number of live instances in the image. Since Pharo is a
highly reflective and interactive IDE that supports live programming, many
classes have live instances within the image, but this heuristic proved to be
the least precise. The problem with this approach was that only 744 out of
8321 classes have live instances, compared to 4066 classes whose name is
mentioned in the image, or 2906 classes that are instantiated somewhere
in the image. This can also explain why the name occurrence heuristic
performs slightly better than the class instantiation heuristic.

We intend to improve the class instantiation heuristic by analysing the
ways a developer can create a new object of a class. In this implementation,
we were only intercepting the messages that belong to any of the protocols
initialize, initialization and instance-creation. Smalltalk
is a highly reflective language, that includes dozens of ways to create a new
object, and also allows a developer to define new ways by implementing
class side methods.

One of the problems is also the set of available classes for every variable.
Since Smalltalk is a dynamically typed language without a main method,
determining the set of available classes for every variable requires control
and flow analysis. We have tried to apply the approach used to guess the
type of the method arguments in Smalltalk [SLN16], but the results were
on average 30% worse than without applying this approach.

During our evaluation, we have statically analysed 9732 variables and
collected run-time information to evaluate the types of 7872 variables. The
intersection of these two sets yielded 5246 variables. The reason for this
is that for 2626 variables for which we had run-time data there was not
enough static information to infer their type, i.e., no message had been
sent to the variables, and they had no assigned type. On the other hand, for
4486 variables for which we had static information, there was no available
dynamic information about their type. 49 of the variables have an interface

75

not understood by any single class in the image. We suppose that these 49
variables would only be inferable with a control-flow sensitive algorithm.
7099 of the analysed variables statically receive messages understood by
more than one hierarchy. We think that these variables have the possibility
of being duck-typed. This is a direct consequence of cross-hierarchy poly-
morphism. These results indicate a bigger presence of duck-typed message
sends than the results of the study presented in Chapter 3 suggest. That is
why we deem important for the future work to explore the actual usage of
duck-typed variables, for these variables can be considered as a challenge
to any type-inference algorithm.

4.6 Conclusion and future work
We have presented a couple of lightweight static heuristics that aim to
provide precise type information by using simple algorithms. The imple-
mented prototype for Pharo Smalltalk allows us to assess the proposed
heuristics.

Our heuristics produced results comparable with the existing type infer-
ence algorithms, and tend to work quite well both for library and project-
related types. While they can benefit from improvement, even in their
simple form they provide us with promising results. The hierarchy-based
approach is working better than class-based ones, which is to be expected.
One reason for this is that more than 72.94% of analysed variables have an
interface understood by more than one hierarchy.

During the analysis of the proposed heuristics, several opportunities
for improvement have been remarked. With more complex approaches, it
would be possible to identify the set of available classes for the project,
so that the set of possible types of a variable can be shortened. Lexical
similarities in between the variable name and class name may reveal the
possible type of the variable. Type predicates used to ask the variable for
its type can also give a hint about the possible type and improve heuristics.

76

5
Mining inline caches for class

usage

5.1 Introduction
In the previous chapter, we have investigated the manner of improving
the correctness of a flow-insensitive type inference algorithm by statically
analysing the frequency of class usage and class instantiation in the source
code. These heuristics focus on static rather than run-time data. Due to
dynamic class loading, or use of reflection, static analysis may miss the use
of certain types [LSS+15]. Hence, the usage of some classes may not even
be visible at compile time, but only at run time. For this reason, run-time
class usage information may be useful.

In order to speed up the execution in polymorphism presence, many
virtual machines make use of Just-In-Time compilers that use inline
caches [DS84, HCU91a]. Beside holding the information about meth-
ods previously executed at the message send, these caches also hold the
information about receiver types. This information could be easily ex-
ploited in order to improve current tools for program comprehension.
Inline caches have already been exploited for compiler optimisation pur-

77

poses [HCU91a, HU94], i.e., type information has been fed back to the
code, and in case of successful type checking at run time, the message
send is inlined, and the code executes faster. However, to the best of our
knowledge, it has still not been used to improve static type information
for other message sends, for which the receiver type has not been col-
lected from inline caches. We believe that this information collected during
execution of any program written in the same language would add produc-
tively to the statically collected knowledge used for inferring a variable’s
type. As run-time information has been read from the virtual machine, no
instrumentation is required.

We present an approach called inline cache type inference (ICTI) to
exploit type information collected from inline caches during program
runs from different systems written in the same language. We have again
used RoelTyper [PMW09] for this purpose. Type information collected
from inline caches is used to order statically inferred types of variables
based on the class usage frequency during program runs. We propose
that the frequency of class usage as the type of a receiver can serve as a
reliable proxy to identify the type of a variable at run time. ICTI is not
based on feeding the information collected from inline caches back to the
message send for which type information has been collected, but to collect
the information about the usage frequency of each class as a type of the
receiver over time and use it as a proxy for the receiver type.

We have implemented a proof-of-concept for Pharo Smalltalk. We
have used this implementation to evaluate our claim. The results show
that the implemented heuristic is reasonably precise for more than 75%
of the variables. The results of ICTI are compared to the unordered basic
approach that we have used to construct a set of possible types for a
variable [PMW09], and it more than doubled the number of correctly
guessed types for a variable.

The rest of the chapter is organised as follows: Section 5.2 explains
the virtual machine used for dynamic data collection. Next we define the
used terminology and the implemented heuristic in Section 5.3. Section 5.4
shows results of the evaluation of the prototype. We then describe the
potential threats to validity in Section 5.5 before concluding in Section 5.6.

78

5.2 Gathering of dynamic type information

Due to features, such as polymorphism, object-oriented languages represent
a challenge for static optimization. Thus, modern virtual machines often
rely on Just-in-Time (JIT) compilers which reason about receiver types
based on the types met in the previous runs of the code [PVC01]. This
design is used by Pharo Smalltalk virtual machine. We have built a run-time
type gatherer using the infrastructure to extract types from previous runs
of the JIT.

We explain briefly optimization of message send executions, and the
process to extract receiver type information from the message sends.

5.2.1 Execution of message sends

By definition, in order to execute a method, a virtual machine interprets
bytecode. When executing a message send, based on the type of the receiver
and the message selector, the targeted method is looked for in the global
look-up cache. If there is no cached method, the usual method look-up is
performed.

One step further in the optimisation process is to store the look-up
cache on the method level, rather than globally. This is performed by the
baseline JIT compiler. If a method is frequently executed, it is translated
directly to machine code, and the virtual machine will henceforth use the
machine code version of the method. This version contains cache data for
each message send separately, called an inline cache [DS84, HCU91b].
These caches hold information from previous method look-ups for the
corresponding message send. As a side effect, they also contain receiver
type information.

An inline cache can be in one of the following four states:

unused: when a method is translated for the first time, its inline caches
are in the unused state. Around 30% of inline caches are always
unused, because, for example, they belong to a never executed path
in the method.

monomorphic: after a message send with unused inline caches is exe-
cuted for the first time, the corresponding inline cache becomes
monomorphic, i.e., this cache holds one type of the receiver. 90%
of inline caches are monomorphic.

79

polymorphic: when a monomorphic inline cache encounters a different
receiver type than the one already registered, it becomes a poly-
morphic inline cache. 9% of all inline caches are polymorphic. A
polymorphic inline cache contains up to six1 different receiver types.

megamorphic: when an inline cache holds more than six different re-
ceiver types, it becomes megamorphic. 1% of all inline caches are
megamorphic.

Information about receiver types may be extracted from monomorphic
and polymorphic inline caches. Unused inline caches do not contain any
receiver type information, and there is no reliable way to extract receiver
type information from a megamorphic cache. The reason for this is of a
technical nature. Machine code of all the eligible methods is contained in
the machine code zone, memory of the fixed size contained in the virtual
machine. When this memory hits its capacity (and it has usually size of
up to 2MB), the virtual machine frees one quarter of the machine code
zone that contains the least frequently executed methods. Since the zone is
organised as a stack, it is then compacted to low addresses, in order for the
JIT compiler to be able to put the new methods on the top of the machine
code zone. All inline caches need to be relinked as the machine code
method they refer to were potentially moved. Since megamorphic caches
would have many addresses to relink, in order to avoid the performance
issues, the virtual machine flushes them.

5.2.2 Run-time type information gatherer built

The Pharo virtual machine has in production a baseline JIT, thus it is
possible through primitive methods2 to extract receiver type information
from the virtual machine, i.e., from inline caches for methods that are
translated to machine code.

Normally, from the virtual machine, it is possible to extract type infor-
mation along with a bytecode program counter for a message send. Since
the type inference algorithm is working on the AST level, we used a tool
provided by a compiler [BDB+13], and usually employed by the debug-

1This number differs from one virtual machine to the other. In the Pharo virtual machine,
it is set to six.

2Primitive methods are executed directly by the interpreter, and not by evaluating method
statements. Some of the primitive methods have no other way to be executed.

80

ger [CGN14], to map the bytecode program counter to the corresponding
AST node.

The run-time type gatherer is scheduled to run regularly (every second)
in the Pharo image, in order to ensure that collected data is up-to-date. The
gatherer queries the virtual machine for all the methods that have been
recently executed, and collects receiver type information of the message
sends within those methods.

5.3 Type inference algorithm
The algorithm and the terminology used are the same as in Chapter 4,
explained in the Subsection 4.3.1, so we will not repeat it here. We will
now explain the way to obtain class_value(c) for a class c.

5.3.1 Dynamic information
Let MS be the set of all message sends in the target programming language.
Each message send has a receiver and a selector sent to the receiver.

run-time_type : MS→ P(C) (5.1)
class_freq(c) = |{ms|c ∈ run-time_type(ms)}| (5.2)

class_value(c) =
∑

c=supn(c′),n∈N
c′∈C

class_freq(c′) (5.3)

Figure 5.1: Calculating class value.

Each class occurs as the type of a receiver for a message sent zero or
more times (5.1). Based on the inline cache information collected during
the image lifetime, we calculate the class_freq (5.2), as the number of
message sends for which this class occurred as a receiver type during
run time. class_freq is a global variable calculated per each class. Using
this information we calculate class_value(c) for a class c, as the sum of
class_freq(c′) for each class c′ which is a subclass of c (5.3). This informa-
tion is used to sort the classes that represent possible types for a variable.
We extract this information from the virtual machine, with the help of the

81

implemented run-time type information gatherer. Dynamically collected
information is used to order separately two sets of classes: assign_types(v)
and sel_types(v).

To present one list of possible types to a developer, we use Assignment-
FirstMerger from the basic approach [PMW09]. This means that we give
dominance to the assignment types rather than selector types. After sorting
both lists of types, namely assign_types(v) and sel_types(v), we iterate
through the list of sel_types(v) and remove all the classes that are related to
any of the classes from assign_types(v), i.e., are a superclass or a subclass
of any of the assignment types. We append the remainder of the sorted list
of selector types to the list of the assignment types.

Regarding the class-based approach, class_value(c) = class_freq(c)
for any class c, since we are considering each class separately as a possible
type.

5.4 Evaluation

5.4.1 Inline caching type gathering
In previous work type information from inline caches was fed back to the
compiler for the purpose of optimisation [HCU91a, HU94]. To the best
of our knowledge, this is the first experiment that explores to what extent
run-time type information from the other packages is useful when trying to
statically infer types in the packages separate from those whose run-time
types are collected.

In order to collect run-time type information from inline caching we
have run almost all the tests available in the Pharo image3. We ran 815
test classes, which left us with almost 12’000 test methods. These tests
allowed us to collect the frequency of classes as message receiver types
at run time for around 5’000 classes. The collected data has been used to
calculate the class value, class_value(c) of each class c. We have measured
the test execution times during data collection and compared them to the
test execution without inline cache data collection. The average overhead
introduced per test method is 0.6 milliseconds, i.e., a bit less than 40%. The
introduced overhead is acceptable, even though high, since we have run an
unoptimised version of the type gatherer. We have run all the tests cases
at once, and instructed the type gatherer to run every second, to collect

3Pharo 5.0 version 50761

82

enough data from inline caches. We believe that in reality the type gatherer
can be instructed to run less frequently, thus the introduced overhead would
be much smaller.

5.4.2 Projects used for evaluation
For the evaluation we have used four open-source Pharo projects that we
used also throughout the evaluation in Section 4.4: Roassal, Glamour,
Morphic and Moose. As before, we used example methods provided by
Glamour, Morphic and Roassal projects, and for Moose we have collected
run-time data by performing software analysis on the project.

Looking back at the inline cache type gathering phase, we run 815 tests
that are part of the standard Pharo image. Note that two of the projects
we have used for the evaluation, namely Glamour and Morphic, are part
of the default Pharo image. During the inline cache type gathering phase
we have omitted tests that belong to these projects. After removing the 76
tests belonging to these two projects from the 891 tests in the Pharo image,
we were left with 815 tests.

We use run-time type information collected by running example meth-
ods to represent the ground truth in the evaluation phase, and compare
them to statically inferred types. We do not collect any type information
from these four projects during the inline cache type gathering phase.

Types of these variables are then inferred using ICTI. Examples that we
used to collect the run-time information about types for which we were able
to statically infer the type, i.e., at least one message was sent to the variable,
or there was an assignment of a newly instantiated type to the variable,
covered 179 variables in Glamour, 257 variables in Moose, 1052 variables
in Morphic and 3998 variables in Roassal. The numbers of variables per
project are different from the previous section, since in between the two
evaluation, new versions of the projects became available, which allowed
us to increase the size of the set of variables used for evaluation.

5.4.3 Overall results — Hierarchy-Based approach
We repeat here the notion of guessed and near-guessed variables from
Section 4.4.1.

If the class at the top of the list of sorted types is a superclass of the
class that represents the actual run-time type of a variable, we label such
a variable guessed. If the variable has n run-time types, where n > 1, we

83

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 3998 2382 601 628 387
Glamour 179 103 25 13 38
Morphic 1052 684 174 52 142
Moose 257 155 33 33 36
SUM 5486 3324

(60%)
833
(15%)

726
(13%)

603
(11%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 2382 1396 983
Glamour 103 47 55
Morphic 684 428 256
Moose 155 141 14
SUM 3324 2012

(60%)
1308
(40%)

Table 5.1: ICTI — hierarchy-based approach

consider it to be guessed if the first m classes of the statically inferred list
include in their hierarchies all run-time types of the variable. m ≥ 1 is
the size of the smallest set of statically inferred classes whose combined
hierarchies include all run-time types of the variable. We name this set of
classes correct types.

If a variable is not guessed, but the correct type is present in the top
three classes, we call such a variable near-guessed. If the variable has n
run-time types, where n > 1, we consider it to be near-guessed if the set
of first m+ 2 types of the statically inferred list of types include correct
types.

Overall results are presented in Table 5.1. Results are presented per
package, as well as in total. The results show that the heuristic of ordering

84

Correctly inferred types
Basic algorithm ICTI
1453 3324

Table 5.2: Comparison with basic algorithm

types based on the frequency of a type being seen as the run-time type
is able to guess the correct type in around 60% of cases. Deeper analysis
revealed that, as expected, ICTI improved type inference of library types
more than type inference of project-related types.

ICTI was additionally able to near-guess the type for about 15% of the
variables, thus making the results optimal for 75% of variables in total.

As for the remaining set, we find 603 variables for which we were not
able to infer any other type but Object. This means that no assignment
was performed to the variable, nor any message other than messages
defined in the Object class. Again, we argue that these results could be
discarded since they are easily identifiable and they do not provide any
useful information to the developer.

As we can see, the overall results are very similar to the results of the
static heuristics from the previous chapter.

To be able to assess the improvement of ICTI compared to the basic
algorithm, we have compared these results with the scenarios in which
the basic algorithm infers nothing but the correct type of a variable. The
comparison is presented in Table 5.2. These results show that ICTI more
than doubled the number of correctly inferred types.

5.4.4 Difference between the basic algorithm and ICTI
The basic algorithm does not provide any ordering of the possible types
of variables but presents them in random order. When it infers as possible
types a set of classes that is a superset of the correct variable types, this
information may lead to wasted developer effort and cause more harm than
good. Promoting the correct type to the top of the list can be quite chal-
lenging without any flow analysis. We consequently investigate how large
are the lists of possible types for variables for which the basic algorithm
infers ambiguous results, and which were guessed by ICTI, i.e., for 1871
variables. In Figure 5.2 we can see that around 20% of variables, i.e., 375
variables out of 1871 have two statically inferred types. For the remaining

85

Fr
eq

ue
nc

y

0

100

200

300

400

Number of classes
2 4 6 8 10 12 14 16 18 20 24 26 28 31 45 47 55 62 71 1462 4 6 8 10 12 14 16 18 20 24 26 28 31 45 47 55 62 71 146

0

100

300

200

400
Fr

eq
ue

nc
y

Number of classes

Figure 5.2: Frequency of the number of statically-inferred classes per
variable

majority, the number of possible types is 3 or larger. If we remember that
these types represent only hierarchy roots, the importance of promoting
the right type to the top of the list is even higher. The median length of
these lists is seven, and the maximum is 146, indicating that ICTI was able
to promote the correct type to the top of the list even for lists larger than a
hundred.

5.4.5 Not guessed variables

We further provide a deeper analysis of the reasons why for 726, i.e., 13%
of variables ICTI was not able to correctly infer types.

86

1FAMIXNamedEntity>>
2moosechefEqualsTo: anEntity moduloScope: aScope
3| myselfRescoped |
4...
5myselfRescoped isCollection
6ifTrue: [...]
7ifFalse: [...]
8...

Listing 6: Type predicate isCollection usage example

Run-time types are not inferable without control-flow sensitive analy-
sis

A bit more than 6% of incorrectly guessed variables, i.e., 46, have an
interface that is not understood by any of their run-time types. Nine of
these variables have an interface which is not understood by any class in the
image. After closer investigation, we have discovered that these variables in
most cases have an interface containing type predicates, i.e., message sends
that ask the variable for its type and program execution continues based on
the provided answer. One of the most occurring examples is presented in
the Listing 6 where the temporary variable myselfRescoped is queried
for its type (line 5), and the execution flow is then divided according to
whether it is a Collection or not. In this example, the type predicate
isCollection is implemented in two classes: Collection, in which
the method simply returns true, and Object, in which it returns false.
This is the most common scenario, which indicates that these messages
can be understood by any class.

Recent analysis [CRT+14] revealed that type predicates are used in
almost all analysed projects in Smalltalk to perform an explicit type dis-
patch. Every 50th line of the code contains a type predicate. However, their
analysis remains beyond the simple approach we have used in the basic
algorithm.

Known duck-typed combinations

As already stated, duck-typing refers to the use of a variable to refer
to objects of distinct classes that understand the same set of messages,
without a common superclass understanding the same set. A classical ex-

87

ample of duck-typing in Smalltalk is the interchangeable usage of Symbol
s and BlockClosures, since instances of both classes understand the
message value:. Beside Symbols and BlockClosures, the most com-
monly occurring pairs of classes are Array and OrderedCollection,
and CompiledMethod and ReflectiveMethod. We have found 23 vari-
ables used to point to both of types included in a duck-typed pair. These
variables demand flow-sensitive algorithms for their precise inference. Oth-
erwise, the simple type inference algorithm may be improved for a specific
language by including common duck-typed pairs into analysis.

Method and block arguments

More than half of the remaining set of incorrectly guessed variables, i.e.,
356 are method and block arguments. We do not go into deeper analysis
but we propose a heuristic that combined with ICTI would improve the
precision. The number of the possible types for these variables goes up
to 124, with median of 18, thus being able to decrease the set of possible
types would increase the likelihood of promoting the correct type to the
top of the list.

A common practice in the Smalltalk community is to use method argu-
ment names to provide a hint at their expected type [GR83, Bec97]. For
example, the method argument named aString suggests that the method
expects an argument of type String. Type annotations in method argu-
ment names are also heavily used in other dynamically-typed languages
like Python [XZC+16], Groovy [SF14] and Dart [FNT15]. Recent studies
revealed that developers in Smalltalk do not practice this pattern consis-
tently [SLN16], but it is common enough that it can be used as a heuristic.
We have implemented the following heuristic:

1. first we extract the substring of the argument name starting from the
first uppercase character to the end, e.g., a variable named aBlock

would yield Block

2. among classes that are inferred from a variable’s interface, we would
select only those classes whose name matches the regular expression
".*", extracted substring ,".*"

We would then proceed by ordering the remaining classes, and merging
them with the assignment types. With this heuristic we are able to correctly
infer types for the additional 110 out of 657 variables, thus for 17% of the

88

0

83

166

Position of correct type
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105 111 117 123

0

83

166

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 111105 117 123
Position of correct type

Figure 5.3: Position of correct type in the list

remaining set of incorrectly guessed variables we are now able to promote
the correct type to the top of the list. These variables represent 31% of
incorrectly guessed argument types.

5.4.6 Position of the correct type

We have investigated what is the distribution of k where k is the position of
the correct type in the list of possible types. If we omit variables for which
it is not possible to infer any other type than Object, the distribution of k
reveals that in 85% of cases the correct type was present in the first three
places of the list. For 3324 variables the correct type was present at the top
of the list, while for 667 variables, the correct type was in the second place.
We present the distribution of positions three and onward in Figure 5.3. For
more than 90% of variables the correct type is present within the first ten
inferred types.

89

Project name
#of

analysed
variables

#of
guessed
variables

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 3’998 1529 320 1762 387
Glamour 179 71 17 53 38
Morphic 1052 345 105 460 142
Moose 257 97 28 96 36
SUM 5486 2042

(37%)
470
(9%)

2371
(43%)

603
(11%)

Distribution of guessed variables

Project name
#of

guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

Roassal 1529 587 941
Glamour 71 33 38
Morphic 345 254 90
Moose 97 93 4
SUM 2042 967

(48%)
1073
(52%)

Table 5.3: ICTI — class-based approach

5.4.7 Overall results — Class-Based approach

Results of the class-based approach are presented in Table 5.3. As expected,
control- and data-flow insensitivity of algorithm took their toll. ICTI was
able to correctly infer the precise type of the variable in 37% of cases,
and to near-guess it for only 9% more variables. These results are slightly
worse than those presented for class-based approaches in Subsection 4.4.1
and Subsection 4.4.2.

90

5.5 Threats to validity

Beside threats to validity explained in the Section 4.5 we list here threats
concerning the run-time type collection.

In order to implement ICTI for a dynamically-typed language, it suf-
fices to be able to query the structure of the code in order to create a list
of possible types for the variable, and to collect the type information from
inline caches.

The main threat to validity comes from the collected run-time informa-
tion from inline caches. If a class represents a variable’s run-time type, but
was not used during previous system runs, it would be missed, and results
would not be correct. We have tried to address this problem by running all
the tests in the image, to collect as much type information as possible.

There are a couple of drawbacks when it comes to the virtual machine.

Different object-oriented languages employ different performance opti-
misation techniques. Pharo Smalltalk uses a Just-In-Time compiler with
inline caches. Beside JIT compilers, execution speedup may be achieved
by employing a meta-tracing runtime compiler, e.g., for languages like
Lua and Python [Pal05, BCFR09]. Instead of storing the information about
frequently invoked methods locally for a message send, these compilers
store the information about linear sequences of methods that are frequently
executed. Since they operate in a different manner, we cannot claim that
our approach would work on top of them.

It may also happen that we do not collect all types encountered in
inline caches. In practice, there is no infinite memory, thus only a subset of
methods translated to machine code is accessible at a certain moment. The
virtual machine contains a memory of a fixed size, named the machine code
zone which contains the machine code of the most frequently executed
methods, along with inline caches. When this zone is full, the garbage
collector frees one quarter of it, removing the least frequently executed
methods. Hence, the type information from these methods will be lost. To
partially solve this problem, we have instructed the run-time type gatherer
to run every second, and we have doubled the size of the machine code
zone for our experiment. That is also why we deem that the introduced
overhead would be much smaller in practice.

91

5.6 Conclusion
In this chapter we have presented a simple heuristic (ICTI) that aims to
produce precise type information by using easily accessible information
from inline caches. It collects the information about the frequency of class
usage as receiver type from inline caches, and sorts statically inferred types
based on this frequency. This way we try to compensate for the types
that are used at run time, but are not visible statically in the code, due to
reflection usage, or dynamic class loading. ICTI needs no instrumentation.
It was evaluated using a prototype implemented in Pharo Smalltalk. We
have focused our attention not only on inferring the root type of a variable,
but also the correct subclass.

ICTI showed very similar results with the heuristics that use only
statically collected information to order possible types for a variable. ICTI
showed more than 100% improvement when compared with the basic
approach.

92

6
Exploiting Type Hints in Method

Argument Names

6.1 Introduction
In the previous two chapters we have explored heuristics used for the pre-
cision improvement of a simple flow-insensitive, intraprocedural approach
that suffers from the problem of false positives, i.e., classes that understand
the interface of the variable, but do not represent its run-time type. Hence,
it mostly over-approximates the results.

Other simple approaches perform interprocedural analysis, thus they
are sensitive to calling relationships in between methods [Age95]. In any
case, even these more complex static analyses tend to produce faulty re-
sults [LSS+15]. In the presence of reflection or dynamic class loading,
these algorithms usually under-approximate the set of possible types for
a variable, rather than over-approximating them [LSS+15]. This causes
certain types to be missed, thus introducing the problem of false negatives,
i.e., the classes that are not inferred as possible types for a variable, yet
represent the variable type at run time. A recent studies showed that de-
velopers in dynamically-typed languages often use dynamic and reflective

93

features [HH09, RLBV10, RHBV11, CRTR13], as well as in statically-
typed languages [BSS+11]. For instance, a reflective method invocation
is used in more than 60% of the analysed projects developed in Smalltalk,
and for almost all of them it is not possible to discover the selector of the
invoked method by only using simple static analyses [CRTR13].

In our experience, many developer communities strongly adhere to
certain naming conventions. For example, a common idiom in dynamically-
typed languages is to provide a type annotation for method arguments (i.e.,
formal parameters to methods) [Bra15, Zan13, Bol10], e.g., to name them
after their expected type [Bec97]. Type hints in method arguments have a
positive impact on program comprehension [SH14]. This is a motivation
for encouraging developers to use type hints in method argument names.

These annotations are mainly intended to support the developer’s rea-
soning about the variable, but they are also used by some development
tools, e.g., code completion [BDN+09]. The usage of identifier names
has been explored to suggest a new identifier name [ABBS14, ABBS15],
and study differences and similarities between formal method parame-
ter and method argument names [LLS+16]. A recent study revealed that
this annotating pattern is not strictly followed, but it may be successfully
upgraded with simple heuristics for about a half of the explored method
arguments [SLN16, XZC+16]. Groovy developers also quite heavily exer-
cise type annotations in method argument names [SF14], as well as Dart
developers [FNT15].

We believe that these hints can be of crucial importance for type infer-
ence in cases where the type of the variable cannot be statically inferred by
traditional approaches. We propose a heuristic that combines an existing
type inference algorithm with type hints from method argument names.
Even though these hints may be used by any traditional type inference al-
gorithm, we chose the Cartesian Product Algorithm (CPA) [Age95], whose
precision heavily depends on the correctly inferred types for method argu-
ments. CPA is a traditional type inference algorithm that was used as the
base approach for several other algorithms [WS01, MSK07]. We employ
an extension of the algorithm that is proposed by Spasojević et al. [SLN16]
in order to obtain the type information from type hints in method argument
names.

We have implemented a proof-of-concept prototype in Pharo Smalltalk
and used this prototype to evaluate our hypothesis. When it comes to CPA,
which depends on the type flow analysis, this heuristic showed significant
improvement in the number of method arguments for which we were able

94

to correctly infer types, as compared with the types recorded at run time. In
particular, the combination of CPA with type hints from method argument
names, which we call CPA∗ is able to increase the size of the correct call
graph by 30%, to analyse 52% more method arguments, and to correctly
infer types of up to 81% more of the method arguments.

Structure of the chapter. First we motivate our approach in Sec-
tion 6.2. We present the traditional algorithm that we used for the evalua-
tion, and we explain the proposed heuristic in Section 6.3. We explain our
prototype implementation in Section 6.4. Next we evaluate the approach
in Section 6.5. We discuss possible threats to validity in Section 6.6 and
conclude in Section 6.7.

6.2 Motivation
While type hints in identifiers are used in dynamically-typed languages,
they are mostly intended to support human reasoning about the software
at hand [BDN+09, SH14]. On the other hand, traditional type inference
algorithms usually depend only on the analysis of language constructs,
rather than on naming conventions. However, in the situations where the use
of reflection is involved, these algorithms lack the information needed to
infer types [LSS+15]. Further in this section, we emphasise the advantage
of type hints for type inference through a real code example taken from
Pharo Smalltalk1.

1ThreePhaseButtonMorph subclass:
#PluggableThreePhaseButtonMorph

2instanceVariableNames: 'pressedImage target
3pressedImageSelector'
4classVariableNames: ''
5package: 'Morphic-Widgets-Basic-Buttons'

Listing 7: A subclass definition with three fields.

Consider lines 1-5 in Listing 7 that define a class named
PluggableThreePhaseButtonMorph, a subclass of the class
ThreePhaseButtonMorph. This class is a part of the package Morphic,
a user interface construction kit [FS07] used for graphical representations
in Pharo Smalltalk. Morphic is based on the idea that each object (a

1http://www.smalltalkhub.com/#!/~Pharo/Pharo60/packages/
Morphic-Widgets-Basic

95

http://www.smalltalkhub.com/#!/~Pharo/Pharo60/packages/Morphic-Widgets-Basic
http://www.smalltalkhub.com/#!/~Pharo/Pharo60/packages/Morphic-Widgets-Basic

graphical component) is detachable from its parent, and can be manipulated
on its own. The class PluggableThreePhaseButtonMorph allows the
construction of a button that has three different images: one image for
when the button is in the on state, another when it is in the off state and the
third for when the button is just pressed.

Let us imagine that the developer wants to understand the control flow
of the class, and how to manipulate one such morph. This class has a
field named pressedImage (line 2 in Listing 7). In order to understand
the implementation of the button, the developer wants to statically infer
types of the expressions in the class. Since she does not want an over-
approximation of the possible types, she decides to use the CPA. It closely
tracks the flow of types from one expression to another, and propagates
the types through connections between expressions. CPA needs an entry
point — a main method—and for that purpose one of the factory methods
can be used. These methods are defined on the class side of a class. Since
everything in Smalltalk is considered to be an object, classes are objects,
too. Thus the class side of a class defines methods that may be invoked on
the class object. Pharo Smalltalk does not force a developer to write and
use a main method in order to start a program execution. Any method in
the project may be used as an entry point. The usual practice in Smalltalk
includes using class side methods as main methods.

This factory method will first create an instance of the class
PluggableThreePhaseButtonMorph, thus CPA will infer the type
of this construction call to be of that class. The field pressedImage is
not defined during object creation in the constructor, thus its value will be
nil2 at the beginning of the analysis.

1 PluggableThreePhaseButtonMorph>>#updatePressedImage
2 self pressedImage:(target perform:
3 pressedImageSelector)

Listing 8: An example where static analysis cannot determine the type of a
method argument.

CPA will continue to analyse the flow of method execution, and, con-
currently, to infer the types of the expressions. During its evaluation,
CPA will encounter the method named updatePressedImage in the
class PluggableThreePhaseButtonMorph, presented in Listing 8. This

2nil is Smalltalk keyword for the undefined object, i.e., equivalent to the null value
in Java

96

method has one line of code, and it invokes the setter method for the field
pressedImage (line 8 in Listing 8). The Smalltalk idiom is to name the
setter method for an instance variable the same as the variable. The sup-
posed value of the field pressedImage is the return value of the message
send target perform: pressedImageSelector. Both target and
pressedImageSelector are also fields of the same class.

The code perform: is a reflective way to invoke a method on the
target object with the method name supplied as an argument to the method
perform:. In this case a method with the name equal to the value of
the variable pressedImageSelector is invoked on the variable target.
Let us suppose that CPA was able to determine that the type of the variable
pressedImageSelector is String. String is the expected type of the
argument of the method perform:. However, even if CPA knows the
type of pressedImageSelector, it does not know its actual value. Thus,
the analysis is not able to compute which method will be invoked on the
variable target. Recent studies revealed that invoking a method in this
manner is quite common in Smalltalk code [CRTR13], as well as in other
dynamically-typed languages [HH09, RHBV11] and for almost all of the
occurrences, it is not easy to statically determine the actual value of the
parameter.

In this case two scenarios are possible: either to assign the type
Object to the return value of the message send target perform:

pressedImageSelector, or to leave the set of inferred types for this
expression empty. A common practice in these situations is to under-
approximate the results, in the case when the concrete value cannot be
determined by the analysis [LSS+15]. Otherwise, one type inferred as
Object may heavily pollute the inference of other types in the system.
This means that the set of possible types for the return value of the mes-
sage send target perform: pressedImageSelector will be empty.
Hence, following its next step, when the setter method pressedImage:

(in the Listing 9) is entered, CPA will not know the type of its argument
named aForm. The method implementation consists of one line of code
in which the method argument is assigned to the field pressedImage.
CPA works in such a way that it propagates all the inferred types of the
right-hand side of an assignment to the variable on the left-hand side of the
assignment. Since it did not infer type for the argument named aForm, sub-
sequently, it will not be able to infer the type of the field pressedImage.
Closer investigation of the class definition by the authors reveals that the
field pressedImage is only assigned through this setter method, thus this

97

loss of information will highly impact further analysis.

4 PluggableThreePhaseButtonMorph>>#pressedImage: aForm
5 pressedImage := aForm.

Listing 9: The type hint from the argument name can help to detect
the type of the method argument and subsequently the type of the field
pressedImage.

We propose to exploit type hints in method argument names to highlight
which classes are expected to represent the argument types at run time.
We argue that these hints may improve analysis precision. In the example
in Listing 9 the name of the method argument is aForm. A Smalltalk idiom
is to embed a type hint in the method argument name, i.e., to prefix the
name of the expected class with the undefined article. For example, if the
expected type is String, the corresponding argument name should be
aString.

The analysis of method argument names embedded in Pharo from
which the example is taken, will reveal that the expected type of the
argument is represented by the class Form. It is an object used for holding
images. Thus, with this small improvement, the analysis is able to assign
the Form class to the set of possible types for the field pressedImage,
and to continue performing the analysis with this information.

As a result, the developer will be issued with the information that the
field pressedImage can have the class Form as its type. The actual type
of the variable at run time is ColorForm, which is a subclass of Form.
However, this is a common situation in object-oriented languages, due to a
heavy use of polymorphism.

We argue that it is possible to introduce accurate information about the
type of a variable with such a heuristic, and that this will provide more
insightful information to developers for program comprehension.

6.3 Algorithm

6.3.1 The Cartesian Product Algorithm

The Cartesian Product Algorithm is a type inference algorithm developed
by Agesen et al. [Age95]. It is implemented on top of the Basic Type
Inference Algorithm [PS91] which statically models the run-time type flow.

98

It has been developed and implemented for Self [US87], a prototype-based
programming language.

The program under analysis is depicted as a graph whose nodes repre-
sent program expressions, and directed edges portray run-time type flow.
Each node holds the type information, i.e., the set of classes, represent-
ing the possible types of the evaluation of the corresponding expression.
For example, the node that represents a constructor call for the class
OrderedCollection will hold as possible types the set with one ele-
ment, namely the class OrderedCollection. If there is an assignment
x:=1 of value 1 to the variable named x, the node for this variable will have
a class Integer as a possible type. This graph is depicted in Figure 6.1.

x := 1. x 1
IntegerInteger

Figure 6.1: Type-flow graph example

Furthermore, if there is an assignment y:=x, the algorithm will prop-
agate all the types from the node representing variable x to the node
representing variable y. Hence, the variable node for variable y will also
hold the class Integer as a possible type (Figure 6.2).

x := 1.
…

y := x.

x 1
IntegerInteger

y
Integer

Figure 6.2: Type-flow graph example — continuation

If later in the code analysis variable x has a String object assigned to
it, its node will contain henceforth two types: Integer and String. Since

99

there is a direct edge from the variable x to the variable y, the newly added
type, that is String, will further be propagated to the node representing
the variable y. This is depicted in Figure 6.3.

x := 1.
…

y := x.
…

x := ‘string’.

x 1
IntegerInteger,

String

y

‘string’
String

Integer,
String

Figure 6.3: Type-flow graph example — propagation

The algorithm in the original paper [Age95] is explained for the Self
language. Even though its implementation is language-independent, we
will follow Agesen’s terminology.

Let us denote by E the set of possible expressions in the project. As
defined in Equation 6.1, it consists of literals (the set of literals is denoted
by L), variables (V), blocks (B), assignments, message sends and return
statements. A block is a lexical closure [Pil04, BDN+09], present in many
programming languages.

E = L ∪ V ∪B ∪ {v := exp | v ∈ V, exp ∈ E} ∪ (6.1)
{x msg: y|x, y ∈ E} ∪ {ˆexp |exp ∈ E}

The algorithm consists of three main steps:

1. create a node in the graph for each expression in the program, e.g.,
variable named x, or an assignment x:=1

100

2. initially seed the types to the nodes for which the type can be deter-
mined before the analysis starts, e.g., if there is an assignment x:=1,
we can seed the node for variable x with the type Integer.

The nodes that represent literals are seeded with the class that rep-
resents the type of the value held by a literal, e.g., the node for the
literal 'string' is seeded with the type String.

3. propagate types along the edges between nodes, e.g., if there is an as-
signment y:=x, the algorithm propagates all the possible types from
the node representing variable x to the node representing variable y,
thus y will also hold the type Integer

The algorithm infers types for expressions based on the constraints it
creates during the analysis.

Assignment. During the analysis of an assignment expression v:=exp

the algorithm infers the type for the expression exp on the right-hand side
of the assignment, and constructs a directed edge from the node represent-
ing the expression exp to the node representing variable v, indicating that
all the types inferred for exp should also belong to the set of possible types
of variable v.

Message send. When it encounters a message send x msg: y, CPA
creates edges from the arguments of the message send, to the formal
parameters of the method that is supposed to be invoked, indicating a
possible data flow at run time. If any of the argument expressions (including
the receiver of the message send as the first argument) has more than one
possible type, CPA creates a Cartesian product of the sets of possible types
for the arguments, and analyses each of the combinations separately. Thus,
whenever the algorithm enters a new method during the analysis, its formal
parameters, and also the receiver, have uniquely identified types. After
the method has been analysed, CPA caches the information about method
argument types (including the type of the receiver of the message send)
and return types. Thus, if at any time in the future the same method needs
to be analysed with the same argument types, it can just collect the set of
the return types from the cached information, without the need to analyse
it again. That is how it preserves speed with accuracy [Age95].

The set of possibly invoked methods is constructed based on the pos-
sible types of the receiver of the message send. If there is more than one

101

possibly invoked method, edges from the message arguments are con-
structed to all of the corresponding formal method parameters, to ensure
that the entire possible data flow is covered. For each method, the cor-
responding type of the message receiver is seeded as the value of self.
Correspondingly, the type of the message send is the union of the return
types of all methods that can be invoked at that message send.

Return statement. The return type of a method is the union of the types
of all return statements êxp3 within the method. The type of the return
statement êxp is equal to the type of exp, the expression that constitutes
the statement.

Block closure. A block is a lexical closure [Pil04, BDN+09], used to
postpone the execution of the enclosing expressions. A block can access all
the variables in the method in which it is defined, i.e., method temporaries
and fields of the enclosing class. It can also define its own arguments
and temporaries. As for the message send, edges are constructed from the
expressions supplied as arguments, to the corresponding block parameters.
The return value of the block object is the type of the last expression in the
block. Implementation issues concerning lexical closures are discussed in
the original paper [Age95].

Since types are only propagated in the direction indicated by an
edge, and never removed from the nodes, an inclusive relation, e.g.,
types(x) ⊆ types(y) will always hold for a node x with a direct edge
to node y. Whenever a type is propagated along an edge, the propagation
continues onward until it reaches the node that already contained that type,
so no further propagation is required. This ensures that the analysis will
eventually halt. Analysis continues until a fixed point is reached, and no
more propagation is needed.

6.3.2 Type hints from method argument names

A common practice when writing dynamically-typed code is to name
method arguments to provide a hint of the expected type. This practice
differs from one language to another: while in Smalltalk the practice is to
prefix the expected class name with an article, e.g., aString, in Python

3Self syntax for the return statement is .̂

102

the practice is to annotate a method argument in a specific manner4, e.g.,
string: String to indicate that a method argument named string

expects an object of type String. As a consequence different manners
of extracting the type hint from a variable name are needed for distinct
languages: while in Smalltalk this involves parsing the method argument
name, in Python this would require annotation analysis.

For this reason, we leave this part of the algorithm as abstract, suppos-
ing that in the specific language there is an implementation of a function
returning the inferred type based on the analysis of the appropriate annota-
tion of a method argument. We explain in detail the implementation of this
function used for evaluation in Section 6.4.

6.3.3 Upgraded CPA — CPA∗

We have implemented CPA with one additional step. Whenever CPA would
encounter a method to analyse, just before creating the Cartesian product
of the sets of possible types for the arguments, the new algorithm would
infer method argument type(s) for each of the arguments, based on the type
hints from the argument name. Then, for each argument, it would take the
union of two sets: the set of inferred types by CPA, and the set of types
inferred from the argument name. The algorithm would then continue as
usual, to create a Cartesian product of the sets of types, and to analyse each
combination separately. We call the new algorithm CPA∗ .

6.4 Implementation
In this section we explain in detail the prototype implementation in
Smalltalk.

6.4.1 CPA
In order to initially seed the types to the nodes, we have used a couple of
heuristics to guess the type of the expression result assigned to the variable,
as presented in the Table 6.1. The method for identity comparison (i.e., ==)
is implemented as a primitive method. Primitive methods are performed
directly by the interpreter rather than by evaluating expressions in the
method. Essential primitives cannot be performed in any other way. Thus,

4https://www.python.org/dev/peps/pep-0484/#acceptable-type-hints

103

https://www.python.org/dev/peps/pep-0484/#acceptable-type-hints

Expression Inferred type
x = y x == y x ∼= y x > y x >= y
x < y x <= y

{True, False}

x msg, where x is a class and msg is any of the selec-
tors from the set {new, new:, basicNew, basicNew:}

x

Table 6.1: Heuristics used to infer the type of the expression

there is no other way to handle these methods. Without the use of these
heuristics, the analysis would lose precision. For example, if the algorithm
were to analyse the method body, the inferred return type for method “==”
would be the type of the object on which the method is invoked, rather than
an instance of the Boolean class. The second row in the Table 6.1 refers
to the primitive methods used to create new instances of a class.

6.4.2 Type Hints in Smalltalk
A recent study on the quality and usage prevalence of type hints from
method argument names in Smalltalk [SLN16] revealed that type hints are
provided only in around 36% of cases. If the expected type of a Smalltalk
method argument is String, the corresponding argument should be named
aString. The authors of the study proposed a couple of heuristics in order
to improve the algorithm used for type hints. They managed to successfully
guess the type for about half of the method arguments throughout the
ecosystem. To guess the type of the argument named arg, we have used
a slightly improved version of the algorithm proposed in this study. It is
important to emphasise that the algorithm includes the following steps in
the same order, and that the algorithm would proceed to the following step
only if the previous step failed to provide a type:

1. if there is a class in the Pharo image with name matching arg (by
ignoring upper and lower case differences), that class represents the
type of the argument, e.g., argument named string would have the
type String

2. remove everything in the argument name before the first upper case
letter, and match the rest with a class name, e.g., an argument named
aString would have the type String, but also an argument named
whateverString would have the type String

104

3. if the argument name is spec, its supposed type is
MetacelloAbstractVersionConstructor. spec is com-
monly used to name specifications of Metacello versions. Metacello
is a package management system for Monticello, a version control
system used for Smalltalk

4. if the argument name matches the regex “.*(b|B)lock.*”, its type
is BlockClosure (this class represents a lexical closure object in
Smalltalk)

5. if the argument name matches the regex “.*(o|O)
rderedCollection.*”, its type is OrderedCollection

6. if the argument name matches the regex “.*(a|A)rray.*”, its type
is Array

7. if the argument name matches the regex “.*(d|D)ictionary.*”,
its type is Dictionary

8. if the argument name matches the regex “.*(s|S)et.*”, its type
is Set

9. if the argument name matches the regex “.*(b|B)ag.*”, its type
is Bag

10. if the argument name matches the regex “.*(c|C)ollection.*”,
its type is Collection

11. if the argument name matches the regex “.*(s|S)tring.*”, its
type is String

12. if the argument name matches the regex “.*(s|S)ymbol.*”, its
type is Symbol. Symbols in Smalltalk represent Strings that are
created uniquely.

The algorithm in the study performed by Spasojević et al. did not
include steps 5-9. Thus, for any method argument whose name matches
regular expression “.*(c|C)ollection.*” the inferred type would be
Collection. However, since the Collection class is an abstract su-
perclass of the classes OrderedCollection, Array, Dictionary, Set
and Bag, and, based on our analysis of the current Pharo image, these
subclasses are the most commonly used subclasses of the Collection

class, we decided to treat them separately.

105

It is important for the algorithm to follow the steps in the indicated or-
der, for the sake of the argument names like aBlockAnsweringAString,
which is clearly a BlockClosure and not a String, or the argument
named aCollectionOfString which is a Collection and not a
String [SLN16].

If a method argument can expect an object of the type
BlockClosure or Symbol, the convention is to name the argument e.g.,
aBlockOrSymbol. The usual approach is to use the conjunction Or start-
ing with a capital letter and followed by a capital letter, due to the Camel
Case notation [WHH11]. While this is a convention in Smalltalk, a differ-
ent approach might be taken in other languages [HBL+14]. In order not to
lose type hints for these arguments, we would first split the argument name
based on the appearances of the Or conjunction followed by an upper case,
and then apply steps 1-12 from the algorithm on each of the substrings.
The type(s) of the argument would be represented by the union of type(s)
of each of the substrings.

Even though the presented algorithm is Smalltalk-specific, we believe
that the same work can be performed in other dynamically-typed languages.
The convention in Python is to suffix the method argument name with the
expected type. For example, one would write name: String in a method
definition that has an argument name whose expected type is String.
In this case, the analysis of type hints would be even simpler than in
Smalltalk, since it would not require regular expression matching, but just
obtaining the string after the colon character. Recent studies revealed that
type annotations are commonly used in Python [XZC+16], Dart [FNT15]
and Groovy [SF14]. Hence, we believe that work similar to ours may be
performed at least in these three languages.

6.5 Evaluation
For the evaluation we have used three open-source Pharo projects already
presented in Section 4.4: Glamour5 [Bun09], Roassal26 [ABC+13], and
Morphic [FS07]. Each project provides a set of example methods that
reflect their real usage: Glamour has 83 of these methods, Morphic 29,
and Roassal 952. We have executed these methods, and the recorded run-
time data serves as ground truth to which results provided by statical type

5http://www.smalltalkhub.com/#!/~Moose/Glamour
6http://smalltalkhub.com/#!/~ObjectProfile/Roassal2

106

http://www.smalltalkhub.com/#!/~Moose/Glamour
http://smalltalkhub.com/#!/~ObjectProfile/Roassal2

Project name # of methods
of methods

with arguments # of arguments

Roassal 1371 483 745
Glamour 189 188 229
Morphic 677 675 935

Table 6.2: Run-time information

Table 1

of methods # of arguments # of arguments
with type hints

of covered
arguments

CPA 399 253 130 114

CPA* 522 385 212 206

Table 1-1

#of methods 399 0 0

#of methods 0 522 0

of arguments 253 0 0

of arguments 0 385 0

of arguments
with type hints

130 0 0

of arguments
with type hints

0 190 22

of covered
arguments

114 0 0

of covered
arguments

0 206 0

0

150

300

450

600

 #of methods # of arguments # of arguments  
 with type hints

 # of covered 
 arguments

22
206190

385

522

114130

253

399

CPA CPA* # of arguments with false type hints

�1

Figure 6.4: CPA and CPA∗ results

inference are compared.
As can be seen in Table 6.2, the execution of these examples covered

in total 2237 methods from all three projects, out of which 1346 methods
have at least one argument. We have recorded run-time information only
for the methods in the packages, i.e., we have excluded the library methods.
We have used the same example methods as main methods, i.e., the entry
points to start the Cartesian product analysis.

The overall results may are represented in Figure 6.4. In total, CPA∗

analysed 30% more methods, which increased the number of analysed

107

Project
name

of
methods

of
methods

with
arguments

of
arguments

of
arguments

with
type hints

of
covered

arguments

Roassal 316 114 155 63 63
Glamour 62 62 75 48 41
Morphic 21 21 23 19 10
TOTAL 399 197 253 130 114

Table 6.3: CPA basic

arguments by 52%. Consequently, the number of method arguments that
contain type hints was also increased by 63%. However, 22 out of 212
method arguments contained false type information, that is the type inferred
from the argument name did not correspond to its run-time type. Yet, CPA∗

is able to correctly infer types for 81% more of the method arguments.
More detailed information regarding CPA and CPA∗ separately are

presented in Table 6.3 and Table 6.4. When we executed the CPA analysis
in its basic form, in our implementation it managed to cover 316 out of
1371 methods executed at run-time in the Roassal package, or one quarter
of the actual call graph. As for the Glamour package, analysis covered 62
methods, i.e., around 33% of the executed methods. We were surprised by
the low number of statically analysed methods in the Morphic project. CPA
managed to reach only 3% of the executed methods. A possible explanation
is that 29 methods in the Morphic package use reflection, in which case
traditional static analysis is helpless.

These 399 methods account for 253 method arguments. For 45% of
these arguments, i.e., for 114 out of 253, all types seen at run time were
also inferred by CPA (this is presented in the column named “# of covered
arguments” in Table 6.3). Hence, CPA did not underestimate types for a
bit less than half of the arguments. The proportion of arguments with type
hints in their name is quite different in all three packages: from 40% in
Roassal to 83% in Morphic.

When we inferred types with the CPA∗ algorithm, we were able to
cover 123 more methods, i.e., 31% (Table 6.4). This indicates that 130
arguments in CPA analysis with type hints in their name traversed in CPA
basic analysis managed to augment the size of the analysed call graph for
around one method per argument with type hint. We deem this important,

108

Project
name

of
methods

of
methods

with
arguments

of
arguments

of
arguments

with
type hints

of
covered

arguments

Roassal 383 146 224 95 133
Glamour 66 66 80 50 46
Morphic 73 73 81 67 27
TOTAL 522 285 385 212 206

Project name

of
arguments

with
type hints

of
arguments
with false
type hints

Roassal 95 21
Glamour 50 0
Morphic 67 1
TOTAL 212 22

Table 6.4: CPA with type hints — CPA∗

since it increases the size of the traversed call graph.
Accordingly, the number of analysed method arguments increased by

52%. The number of arguments for which all run-time types were also
inferred by static analysis increased to 53.5%. The augmented algorithm
therefore outperforms the basic algorithm, and correctly infers types for
81% more method arguments.

The column named “# of arguments with false type hints” in the table
beneath in Table 6.4 provides information about misleading type hints.
Most of them are due to the name aCollection for which only the class
Collection can be inferred as type, and since Collection is an abstract
class, it is not used as object type at run time. Also the argument name
aShape is misleading, as the Shape class will be inferred as the possible
type, although the run-time type is actually RTShape belonging to the
Roassal package, which is not related to the Shape class even though it
has a similar name.

There are a couple of situations where CPA∗ would infer both
BlockClosure and Symbol as possible types for a method argument,

109

Project
name Time - CPA

Time - CPA
and type hints

Roassal 11.5 12.1
Glamour 0.7 0.9
Morphic 1 1.6

Table 6.5: Time needed for the analysis in seconds

while at run time only one of them is recorded as the actual type. This
would happen if a method argument is named e.g., aBlockOrASymbol.
Such variables often reflect a form of duck typing [TFH09]. In this specific
case, for example, Symbol is duck-typed in Smalltalk to behave like a block
in certain idiomatic scenarios. We therefore do not consider CPA∗ to be
wrong just because only one of the two types is observed in practice. Also,
if CPA∗ would infer as possible types for a method argument more classes
than recorded at run-time, but the argument name clearly reveals that any of
the inferred classes is expected at run time, e.g., aBlockOrANumber, we
do not count it as a false type hint. We choose to believe in the developer’s
suggestions, even though not all of the hinted classes are recorded during
the execution.

This data shows that the combination of CPA with type hints from
method argument names significantly increases the size of the analysed
call graph, as well as the number of correctly inferred types for method
arguments. This indicates that type hints from method argument names
can improve CPA in dynamically-typed languages.

In order to evaluate whether or not this combination is still usable
for the purpose of program comprehension, we have measured the time
needed for both types of the analysis. On all three projects, we have
found that the introduced overhead is quite divergent: from 5% to 60%
(Table 6.5). The most overhead was introduced in the Morphic project,
which is understandable, since the number of analysed methods more than
tripled. This also indicates that Morphic contains method arguments with
the largest number of type hints among the three analysed packages.

6.5.1 Argument names without inferred type hint
In all three projects, we have investigated the set of argument names for
which the algorithm was not able to provide a hint. In this subsection, we

110

elaborate on our findings.
Roassal. The most frequently used names are, in order, elements,
objects, anElement, anObject, element. Even though the analysis
was not able to infer types from these names, a human can deduce that the
first two arguments expect some kind of Collection object. Even though
we think that this can be introduced as a rule, more research is needed
to verify our assumption. As for the third name, there is no class named
Element, but there is a class in the Roassal project named RTElement,
so a developer may guess the expected type of the argument. The same
applies for the argument named element. The name anObject is used
as a method argument name in all three projects: in Roassal it is mostly
used to indicate a member of a collection, or as an object on top of which
a graphical representation is built; while in Glamour and Morphic it is
mostly used as a name of a setter-method argument.
Glamour. Beside anObject the most common argument names for
which the algorithm was not able to provide a type hint are aPort,
aPortReference, aPane and aPresentation. These names cor-
respond to types from the Glamour project, respectively, GLMPort,
GLMPortReference, GLMPane and GLMPresentation (GLM stands
for Glamour), which indicates that this kind of heuristic would greatly
benefit from the input related to the project under analysis. Based on the
examples from the Roassal and Glamour packages, the simple heuristic
of removing the project-related prefix from class names and then infer-
ring a type from the argument name would definitely improve the results.
However, the improvement heavily depends on the practice of develop-
ers involved in the development of a certain project. In these particular
projects, we assumed that the improvement would be significant, since
about 30% of method arguments without type hints in Roassal and 50% of
those in Glamour would provide a type hint by using this heuristic. Further
investigation revealed that these classes are mostly abstract. If we have a
bounded set of possible concrete classes in this case, inferring the actual
type of such arguments would be feasible by applying an approach similar
to the one we followed to detect the type for collections, as was explained
in Subsection 6.3.2.
Morphic. An argument named anImage, which would suggest that an
object of class Image is expected, actually expects an object of class Form
which represents an array of pixels, used for holding images. No class
Image exists in the version of Pharo used for the experiment. A method
argument named aFont indicates that some kind of font is expected at

111

run time. While there is no class Font, there is an abstract class named
AbstractFont, which defines the interface for fonts.

According to the findings in the Glamour project we suppose that
giving precedence to the classes from the same package when analysing
a method would improve the results. For example, a method argument
anAnnouncer clearly indicates that it expects some kind of an announcer
at run time. While the used algorithm for inferring the type from method
argument name would conclude that its type is Announcer, in Glamour
package its expected type is actually GLMAnnouncer, a subclass of the
Announcer class.

6.6 Threats to validity

The first threat to validity comes from the run-time data we have used to
evaluate the type inference. We have chosen the Roassal2, Glamour and
Morphic projects for evaluation since we were able to run these projects in a
way that closely resembles their real usage. However, it is an open question
whether we have collected all possible run-time types for variables.

Another threat to validity comes from the quality of type hints in
method argument names. While we have evaluated our heuristic in
Smalltalk, exploring its performance in other dynamically-typed languages
remains for the future work. Moreover, we have used the results provided
by the study on a large set of Smalltalk projects, but it is an open question
whether an arbitrary project will provide the same quality of type hints.
As is presented in Section 6.5, some argument names have misleading
type hints, while others provide a type hint for an abstract class, but it is
obvious that a subclass will actually represent an argument type. Due to
this problem, we have enriched the algorithm used to obtain a type from
an argument name by the steps 5-9 (Subsection 6.3.2). The same kind of
work is possible e.g., for the argument name aFont (this name indicates
an abstract class, while the usual run-time type is one represented by one
of the subclasses), but we did not have any findings on the larger set of
projects to support this.

The final threat comes from our choice of the basic algorithm. We
chose CPA since its precision heavily depends on the correctly inferred
types for method arguments and we think that it would greatly benefit from
the proposed heuristic. However, we believe that this heuristic may be also
combined with other simple type inference algorithms, for example Roel-

112

Typer [PMW09]. The heuristic is simple and fast enough not to endanger
the speed of the underlying algorithm, yet we assume it would improve its
precision.

6.7 Conclusion
Type annotations in method argument names are commonly used when
coding in dynamically-typed languages. These annotations are intended for
program comprehension purposes, but serve also as an input for different
development tools.

On the other hand, inferring a variable type in dynamically-typed
languages presents quite a challenge. In the presence of reflection and
dynamic class loading, type inference algorithms lose on their precision, if
they are data-flow insensitive.

We propose a heuristic that combines a traditional type inference al-
gorithm that analyses language constructs, with type hints obtained from
annotations of method arguments. We have performed a study to assess the
possible impact of these hints on the results of a type inference algorithm
called CPA. The obtained results are promising; the augmented algorithm
outperforms the basic one. It increases the size of explored method argu-
ments for a bit more than 50%, and subsequently correctly infers types for
81% more method arguments.

113

114

7
Conclusion

Static type information helps software maintenance, and eases program
comprehension. Dynamically-typed languages decrease development time,
but they lack static type information. Type inference algorithms may help
developers to obtain the type information, but they need to be fast in order
not to break work flow. For that matter, they need to remain simple, as
complex analyses need more time and sources. However, the precision
of the simple algorithms is hampered by polymorphism usage in object-
oriented code, i.e., they tend to produce false positives and negatives in
their results.

In this thesis we have argued that the problem of false positives and
negatives may be decreased by employing the lightweight heuristics to
improve the precision of these algorithms, while preserving reasonable
performance.

In order to assess the extent to which polymorphism is present in
object-oriented languages, we first performed a large-scale study on more
than one thousand projects, developed in both statically- and dynamically-
typed code. While subtype polymorphism hampers program analysis in
both types of languages, code analysis in dynamically-typed languages
is additionally burdened by the use of cross-hierarchy polymorphism i.e.,

115

duck typing.
To mitigate the negative influence of polymorphism on type inference,

we proposed four heuristics implemented on top of two simple type infer-
ence algorithms, fast enough to be usable during the development phase
and not to break the developer’s workflow. Each of these heuristics strives
to employ distinct aspects of the code, and to handle different programming
idioms. All of them achieved a significant improvement of precision when
compared to the underlying algorithm.

In this chapter we summarise the contributions of this thesis, and we
discuss the possible future directions of the research here presented.

7.1 Contributions

7.1.1 Large-scale polymorphism study
We presented a large-scale study of polymorphism presence both in
statically- and dynamically-typed languages. We have found that sub-
type polymorphism is more widely present in dynamically-typed than
in statically-typed languages, and that in dynamically-typed languages it
is used in combination with cross-hierarchy polymorphism. Most code
implements polymorphic selectors, and a polymorphic call site may have
tens or even hundreds of method candidates. We have also found that duck
typing is commonly used in dynamically-typed software, and that a vast
majority of duck typed selectors has up to five methods introducing them,
i.e., being implemented in unrelated classes. Polymorphism is prevalent in
object-oriented software. Along with the lack of static type information in
dynamically-typed software, it heavily burdens program comprehension,
and presents a significant challenge for type inference.

7.1.2 Lightweight heuristics
We presented four heuristics to improve the precision of simple type infer-
ence algorithms in the presence of polymorphic code.

Three of these heuristics are built on top of RoelTyper, which suffers
to a great extent in the presence of subtype and cross-hierarchy polymor-
phism. In these situations, it tends to over-approximate the results. These
heuristics showed a significant improvement over the basic algorithm, by
outperforming it by more than 100%. All of the heuristics are cheap, easy
to implement, and do not encumber the inference process in the sense of

116

introduced execution overhead. Chapter 4 presents two heuristics based
only on statically collected information regarding class usage. Chapter 5
shows that dynamically-collected information from inline caches may also
serve the same purpose. It takes precedence in the presence of reflective
features, when it is not easy to determine the employed class by only static
analysis. These heuristics touch different language idioms. All three of
these heuristics showed similar results, with the improvement of the basic
algorithm by more than 100%.

The fourth heuristic is implemented on top of CPA, which suffers
in the presence of reflective and dynamic features, i.e., it usually under-
approximates the results. The heuristic exploits type annotations in method
argument names and it significantly improves the power of the basic algo-
rithm.

All of the heuristics substantially improved the performance of the
underlying algorithm, with the introduction of acceptable overhead, which
proves that they remain fast, and usable by a developer without breaking
her workflow.

7.2 Future work and open questions
In this section we list future work directions and discuss our thoughts about
open questions.

7.2.1 Choice of the basic algorithms
We chose RoelTyper and CPA, as they represent simple, yet efficient type
inference algorithms that provide a developer with rapid information. While
we find them representative for the field, there is an open question whether
augmenting other type inference algorithms would yield different results.

Also, we have focused our attention on nominal types, as struc-
tural types burden developer reasoning [Str]. It may be that employing
lightweight heuristics on algorithms working with structural types would
yield different results.

7.2.2 Choice of the heuristics
Our idea was to start with the easiest heuristics to calculate, in order to
retain the speed of the underlying algorithms. Our choice of the heuristics

117

fell on the four heuristics we have presented in this thesis, as they are
simple enough not to complicate the type inference process. For instance,
the heuristic that we employed on top of CPA provides results with only
10% overhead, and the other three heuristic introduce an overhead of
maximum 5%. More complex heuristics, like restricting possible types
only to the set of classes reachable from the code, may improve the results.
It remains to be explored how much overhead they would introduce.

7.2.3 Combination of heuristics
Even though these heuristics are implemented and evaluated separately,
they can be combined for further improvement of the results. For example,
since statically collected class usage frequency information is lacking in
the presence of reflection, it can be combined with ICTI to obtain run-time
class usage information only for the situations when it cannot statically
determine which class is used. Type hints from method argument names
may also be employed to restrict the set of possible types for a method
argument, when there is a clear hint of the expected type, and then to sort
only the remaining classes.

7.2.4 Language idioms
Since we have implemented the four heuristics in Pharo Smalltalk, we ac-
commodated some common Smalltalk coding idioms. For example, we con-
sidered as a constructor any method defined in any of the “initialize”-
like protocols, as it is one of the Smalltalk coding styles.

We focus our attention neither on the information that may be extracted
from the usage of dynamic and reflective features, nor on information
that can be obtained from type predicates. The Smalltalk community uses
heavily the mentioned features [CRTR13, CRT+14], and for a part of them
it is statically possible to extract usable information. It may be that the
additional focus on type predicates and reflective features would yield
better results, possibly with negligible inference overhead.

7.2.5 Beyond Smalltalk
Pharo Smalltalk is a highly reflective object-oriented languages that al-
lowed us to easily implement the heuristics without any additional require-
ments, but the Smalltalk knowledge. No additional tool was needed to

118

implement the proposed heuristics except Pharo itself. It may be more
complex to deploy the analysis to other object-oriented languages, since
we would need external tools to analyse the source code, e.g., Moose.

We used a JIT compiler to obtained the information from inline caches.
We cannot claim that this analysis is portable to some other kind of vir-
tual machines, like those employing a meta-tracing runtime compile, e.g.,
virtual machines for languages like Lua and Python [Pal05, BCFR09].

7.3 Summary
In this thesis we proposed several heuristics to mitigate the precision of
simple type inference algorithms for dynamically-typed languages. Static
type information has proven itself very useful during regular coding tasks,
yet very hard to infer. While complex type inference algorithms may pro-
vide a developer with precise type information, they are time-consuming,
hence impact the development workflow. Simple type inference algorithms
provide rapid information, yet greatly suffer in the presence of polymorphic
code.

We first performed a large-scale study about the presence of polymor-
phism in OO code to assess the criticality it poses on type inference. Our
study revealed that polymorphism is omnipresent both in statically- and
dynamically-typed code, and that the difference between two corpora is
not large. Developers in dynamically-typed languages suffer significantly
more from polymorphism than developers in statically-typed languages in
regard to program comprehension. We believe that this is an indication of
the importance of static type type information.

We then employed various heuristics to improve the precision of simple
type inference algorithms, fast enough to be usable during regular coding
tasks. Three of the heuristics mitigate the problem of false positives, and
attempt to indicate the correct type of a variable among other inferred
types. The fourth heuristic mitigates the problem of false negatives, i.e.,
the problem of losing information in the presence of polymorphism and
reflective features.

All of the implemented heuristics showed a significant improvement
when compared to the underlying algorithm. We have also measured the
time needed to obtain the type information, and found an overhead varying
from 5% to 10%, which we deem acceptable.

119

120

Appendices

121

A
Implementation and Usage of the

Type Inference Tool in Pharo

In this section we provide an instruction of how to download and
use the type inference tools explained in the thesis. The correspond-
ing information can be found on http://smalltalkhub.com/
#!/~NevenaMilojkovic/type-inference-heuristics and
http://smalltalkhub.com/#!/~NevenaMilojkovic/CPA.

A.0.1 Tool for ordering classes based on the heuristics
presented in Chapter 4 and Chapter 5

The following Gofer script should be executed in Pharo (http://pharo.
org/):

123

http://smalltalkhub.com/#!/~NevenaMilojkovic/type-inference-heuristics
http://smalltalkhub.com/#!/~NevenaMilojkovic/type-inference-heuristics
http://smalltalkhub.com/#!/~NevenaMilojkovic/CPA
http://pharo.org/
http://pharo.org/
http://pharo.org/

Figure A.1: Inferring types of variables in the TIClass class

Gofer new
url: 'http://smalltalkhub.com/mc/',

'NevenaMilojkovic/',
'type-inference-heuristics/main';

package: 'ConfigurationOfTypeInferenceHeuristics';
load.

(Smalltalk at:
#ConfigurationOfTypeInferenceHeuristics)
loadDevelopment.

The execution of the script will take up to a couple of minutes, in order
to initialise the information necessary for the tool.

In order to infer types of variables defined within a class one can
write the following code in the Playground (TIClass fromClass:

class− object) inferTypes and do-it. The argument of the method
TIClass class>>#fromClass: should be a class object.

Another way to infer types of variables defined within a class is to
open the class menu (by right-clicking on the class name in Nautilus) and
choose the option Infer types of variables (Figure A.1).

The execution of this message will result in a browser with the list

124

Figure A.2: Inferred types of variables in the TIClass class

Figure A.3: Types of the selected variable approaches

125

of all the variables contained within the class, ordered alphabetically by
their names (Figure A.2). Instance variables are presented solely by their
name, while method arguments and temporaries are presented in the form
method_name>>arg>>var_name for an argument or method_name>>
temp>>var_name for a temporary variable. Block arguments and vari-
ables are presented in a similar form, with the method name being followed
by the ordinal number of that block within the method body. For example,
the name of the variable classBasedApproach>>1>>arg>>approach
within the class TIClass indicates that the variable approach is an

argument of the first block to be opened in the method TIClass>>#

classBasedApproach. There is an emphasise of the word opened since
the tool is assigning the ordinal numbers to the blocks inside the method
body. The numbers are assigned based on the order of blocks being opened
within the method body.

The bottom part of the browser contains four parts: Assignments,
Selectors, Hierarchies and Classes. When a variable is being se-
lected from the upper rectangle (Figure A.3), these fours parts will contain
the following information, respectively:

• list of all the classes assigned to the variable

• list of all the messages being sent to the variable

• list of all the hierarchy roots to which the variable’s type may belong
to

• list of all the classes which may represent the variable’s type

Three of these lists, i.e., Assignments, Heirarchies and Classes

lists, contain type information that is ordered based on the likelihood of
the class being correct.

An object of type RBVariableNode may also be asked for its types by
sending it a message inferTypes. The result is a collection of the inferred
types ordered based on the likelihood of being correct. Alternatively, within
the source code, one can select a variable of interest, and choose the option
Infer types from the menu obtained by right click (Figure A.4). The
result is also a collection of the ordered inferred types.

126

Figure A.4: How to infer types of the selected variable visitor

A.1 Assessment of the heuristics presented in
Chapter 4 and Chapter 5

In order to assess the presented heuristics, the following Gofer script should
be executed in Pharo:

Gofer new
url: 'http://smalltalkhub.com/mc/',

'NevenaMilojkovic/',
'type-inference-heuristics/main';

package: 'ConfigurationOf',
'TypeInferenceHeuristicsAssessment';

load.
(Smalltalk at:

#ConfigurationOfTypeInferenceHeuristicsAssessment)
loadDevelopment.

This will load all the classes needed for the assessment, and analyse the

127

Figure A.5: Collecting run-time types

image in order to collect the necessary information about class frequency
usage within the current Pharo image. This may take up a couple of minutes.
The corresponding progress is presented in the left upper corner of the
image.

After the setup, the analysis should be run by executing the fol-
lowing code TIAssessment assessAllHeuristics. The user will
first be asked whether the system should run the example meth-
ods from the packages used for the evaluation (Roassal2, Glamour,
Morphic and Moose) or if the run-time types can be read from
the corresponding csv files (files used for the evaluation can be
downloaded from https://github.com/NevenaMilojkovic/
type-inf-heuristics/tree/master/csv-files), as pre-
sented in Figure A.5. The user should put these files in the repository
FileSystem workingDirectory/'runTimeTypes'. After collecting
the necessary information to infer types for the variables in the correspond-
ing packages (which may take several minutes), the system will ask the
user to select the heuristics based on which she would like to order possible
types (Figure A.6).

After this step, the system will continue its analysis. The re-
sults of the analysis will be stored in the repository FileSystem

workingDirectory/results in the csv format. Each csv file corre-
sponds to one analysed project.

A.2 Assessment of CPA∗

In order to assess CPA∗ , the following Gofer script should be executed in
Pharo:

128

https://github.com/NevenaMilojkovic/type-inf-heuristics/tree/master/csv-files
https://github.com/NevenaMilojkovic/type-inf-heuristics/tree/master/csv-files

Figure A.6: Selecting the preferred heuristics

Gofer new
url: 'http://smalltalkhub.com/mc/',

'NevenaMilojkovic/CPA/main';
package: 'ConfigurationOfCPA';
load.

(Smalltalk at: #ConfigurationOfCPA) loadDevelopment.

In order to analyse the projects Roasssa2, Glamour and Morphic, one
should execute the code CPAEvaluation analyse.

In order to assess these results, files from the link https://
github.com/NevenaMilojkovic/type-inf-heuristics/
tree/master/CPARunTime should be stored inside the reposi-
tory FileSystem workingDirectory/'CPARunTime'. These files
contain recorded run-time information for the variables defined in
the mentioned projects. They are imported into image by executing
CPAEvaluation importRunTimeTypes.

In order to evaluate CPA∗ , one should execute the code
CPAEvaluation assess. This execution will create a file named
CPAResults.txt inside the repository FileSystem workingDirectory

/'CPAResults'. This text file contains the information about the anal-
ysed methods and their arguments.

129

https://github.com/NevenaMilojkovic/type-inf-heuristics/tree/master/CPARunTime
https://github.com/NevenaMilojkovic/type-inf-heuristics/tree/master/CPARunTime
https://github.com/NevenaMilojkovic/type-inf-heuristics/tree/master/CPARunTime

130

Bibliography

[ABBS14] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles
Sutton. Learning natural coding conventions. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 281–
293, New York, NY, USA, 2014. ACM.

[ABBS15] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles
Sutton. Suggesting accurate method and class names. In
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 38–49,
New York, NY, USA, 2015. ACM.

[ABC+13] Vanessa Peña Araya, Alexandre Bergel, Damien Cassou,
Stéphane Ducasse, and Jannik Laval. Agile visualization
with Roassal. In Deep Into Pharo, pages 209–239. Square
Bracket Associates, September 2013.

[ACF+13] Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and
Marcus Denker. Gradual typing for Smalltalk. Science of
Computer Programming, August 2013.

[ACFH11] David An, Avik Chaudhuri, Jeffrey Foster, and Michael
Hicks. Dynamic inference of static types for Ruby. In
Proceedings of the 38th ACM Symposium on Principles of
Programming Languages (POPL’11), pages 459–472. ACM,
2011.

[AGD05] Christopher Anderson, Paola Giannini, and Sophia
Drossopoulou. Towards type inference for JavaScript. In
Proceedings of the 19th European Conference on Object-
Oriented Programming, ECOOP’05, pages 428–452, Berlin,
Heidelberg, 2005. Springer-Verlag.

131

[Age95] Ole Agesen. The Cartesian product algorithm. In W. Olthoff,
editor, Proceedings ECOOP ’95, volume 952 of LNCS, pages
2–26, Aarhus, Denmark, August 1995. Springer-Verlag.

[AH95] Ole Agesen and Urs Hölzle. Type feedback vs. concrete
type inference: A comparison of optimization techniques for
object-oriented languages. In Proceedings of the Tenth An-
nual Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’95, pages 91–107,
New York, NY, USA, 1995. ACM.

[AH96] Gerald Aigner and Urs Hölzle. Eliminating virtual function
calls in C++ programs. In P. Cointe, editor, Proceedings
ECOOP ’96, volume 1098 of LNCS, pages 142–166, Linz,
Austria, July 1996. Springer-Verlag.

[AM91] Alex Aiken and Brian Murphy. Static type inference in a
dynamically typed language. In Proceedings of the 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’91, pages 279–290, New York,
NY, USA, 1991. ACM.

[ANMM06] Chris Andreae, James Noble, Shane Markstrum, and Todd
Millstein. A framework for implementing pluggable type
systems. In OOPSLA ’06: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 57–74,
New York, NY, USA, 2006. ACM Press.

[APS93] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach.
Type inference of SELF: Analysis of objects with dynamic
and multiple inheritance. In Oscar Nierstrasz, editor, Pro-
ceedings ECOOP ’93, volume 707 of LNCS, pages 247–267,
Kaiserslautern, Germany, July 1993. Springer-Verlag.

[ÅW15] Beatrice Åkerblom and Tobias Wrigstad. Measuring poly-
morphism in Python programs. In Proceedings of the 11th
Symposium on Dynamic Languages, DLS 2015, pages 114–
128, New York, NY, USA, 2015. ACM.

[BAT14] Gavin Bierman, Martìn Abadi, and Mads Torgersen. Under-
standing TypeScript. In ECOOP 2014 – Object-Oriented

132

Programming: 28th European Conference, Uppsala, Swe-
den, July 28 – August 1, 2014. Proceedings, pages 257–281,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[BCFR09] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and
Armin Rigo. Tracing the meta-level: PyPy’s tracing JIT com-
piler. In ICOOOLPS ’09: Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pages 18–
25, New York, NY, USA, 2009. ACM.

[BDB+13] Clément Bera, Stéphane Ducasse, Alexandre Bergel, Damien
Cassou, and Jannik Laval. Handling exceptions. In Deep
Into Pharo, page 38. Square Bracket Associates, September
2013.

[BDN+09] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien
Pollet, Damien Cassou, and Marcus Denker. Pharo by Ex-
ample. Square Bracket Associates, 2009.

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall,
1997.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typecheck-
ing Smalltalk in a production environment. In Proceedings
OOPSLA ’93, ACM SIGPLAN Notices, volume 28, pages
215–230, October 1993.

[Bol10] M. Bolin. Closure: The Definitive Guide: Google Tools to
Add Power to Your JavaScript. O’Reilly Media, 2010.

[Bra04] Gilad Bracha. Pluggable type systems. In In OOPSLA’04
Workshop on Revival of Dynamic Languages, October 2004.

[Bra15] Gilad Bracha. The Dart Programming Language. Addison-
Wesley Professional, 1st edition, 2015.

[BS96] David F. Bacon and Peter F. Sweeney. Fast static analysis of
C++ virtual function calls. SIGPLAN Not., 31(10):324–341,
October 1996.

133

[BSS+11] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini.
Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders. In 2011 33rd Interna-
tional Conference on Software Engineering (ICSE), pages
241–250, 2011.

[Bun09] Philipp Bunge. Scripting browsers with Glamour. Master’s
thesis, University of Bern, April 2009.

[BWDP00] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor
Porter. Exploring the relationships between design measures
and software quality in object-oriented systems. Journal of
Systems and Software, 51(3):245–273, 2000.

[Car98] Michelle Cartwright. An empirical view of inheritance. In-
formation and Software Technology, 1998.

[CCSL14] Andrea Caracciolo, Andrei Chiş, Boris Spasojević, and
Mircea Lungu. Pangea: A workbench for statically ana-
lyzing multi-language software corpora. In Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th In-
ternational Working Conference on, pages 71–76. IEEE,
September 2014.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In PLDI
’91: Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation, pages
278–292, New York, NY, USA, 1991. ACM.

[CGN14] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. The Mold-
able Debugger: A framework for developing domain-specific
debuggers. In Benoît Combemale, David J. Pearce, Olivier
Barais, and Jurgen J. Vinju, editors, Software Language Engi-
neering, volume 8706 of Lecture Notes in Computer Science,
pages 102–121. Springer International Publishing, 2014.

[CRT+14] Oscar Callaú, Romain Robbes, Éric Tanter, David Röthlis-
berger, and Alexandre Bergel. On the use of type predicates
in object-oriented software: The case of Smalltalk. In Pro-
ceedings of the 10th ACM Dynamic Languages Symposium
(DLS 2014), pages 135–146, Portland, OR, USA, 2014. ACM
Press.

134

[CRTR11] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röth-
lisberger. How developers use the dynamic features of pro-
gramming languages: The case of Smalltalk. In Proceedings
of the 8th Working Conference on Mining Software Reposito-
ries (MSR 2011), pages 23–32, New York, NY, USA, 2011.
IEEE Computer Society.

[CRTR13] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röth-
lisberger. How (and why) developers use the dynamic fea-
tures of programming languages: the case of Smalltalk. Em-
pirical Software Engineering, 2013.

[DBM+96] John Daly, Andrew Brooks, James Miller, Marc Roper, and
Murray Wood. Evaluating inheritance depth on the main-
tainability of object-oriented software. Empirical Software
Engineering, 1(2):109–132, 1996.

[DDM+03] Serge Demeyer, Stéphane Ducasse, Kim Mens, Adrian Trifu,
and Rajesh Vasa. Report of the ECOOP’03 workshop on
object-oriented reengineering. In Object-Oriented Technol-
ogy (ECOOP’03 Workshop Reader), LNCS, pages 72–85.
Springer-Verlag, 2003.

[Den08] Marcus Denker. Sub-method Structural and Behavioral Re-
flection. PhD thesis, University of Bern, May 2008.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimiza-
tion of object-oriented programs using static class hierarchy
analysis. In W. Olthoff, editor, Proceedings ECOOP ’95, vol-
ume 952 of LNCS, pages 77–101, Aarhus, Denmark, August
1995. Springer-Verlag.

[DGLD05] Stéphane Ducasse, Tudor Gîrba, Michele Lanza, and Serge
Demeyer. Moose: a collaborative and extensible reengineer-
ing environment. In Tools for Software Maintenance and
Reengineering, RCOST / Software Technology Series, pages
55–71. Franco Angeli, Milano, 2005.

[DGN05] Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz.
Moose: an agile reengineering environment. In Proceed-
ings of ESEC/FSE 2005, pages 99–102, September 2005.
Tool demo.

135

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar.
Moose: an extensible language-independent environment for
reengineering object-oriented systems. In Proceedings of
CoSET ’00 (2nd International Symposium on Constructing
Software Engineering Tools), June 2000.

[Dmi04] Mikhail Dmitriev. Profiling Java applications using code
hotswapping and dynamic call graph revelation. In WOSP

’04: Proceedings of the Fourth International Workshop on
Software and Performance, pages 139–150. ACM Press,
2004.

[DRW00] Alastair Dunsmore, Marc Roper, and Murray Wood. Object-
oriented inspection in the face of delocalisation. In Proceed-
ings of ICSE ’00 (22nd International Conference on Software
Engineering), pages 467–476. ACM Press, 2000.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient imple-
mentation of the Smalltalk-80 system. In Proceedings POPL

’84, Salt Lake City, Utah, January 1984.

[FAFH09] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and
Michael Hicks. Static type inference for Ruby. In Proceed-
ings of the 2009 ACM Symposium on Applied Computing,
SAC ’09, pages 1859–1866, New York, NY, USA, 2009.
ACM.

[Fer95] Mary F. Fernández. Simple and effective link-time optimiza-
tion of Modula-3 programs. SIGPLAN Not., 30(6):103–115,
June 1995.

[FJ89] Brian Foote and Ralph E. Johnson. Reflective facilities in
Smalltalk-80. In Proceedings OOPSLA ’89, ACM SIGPLAN
Notices, volume 24, pages 327–336, October 1989.

[Fla06] Cormac Flanagan. Hybrid type checking. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
245–256, New York, NY, USA, 2006. ACM.

[FNT15] Mark Faldborg, Troels Lisberg Nielsen, and Bent Thomsen.
Type systems and programmers: A look at optional typing in
Dart. Master’s thesis, Aalborg University, 2015.

136

[FS07] Hilaire Fernandes and Serge Stinckwich. Morphic, les inter-
faces utilisateurs selon Squeak, January 2007.

[Fur09] Michael Furr. Combining Static and Dynamic Typing in
Ruby. PhD thesis, University of Maryland, 2009.

[G1̂0] Tudor Gîrba. The Moose book, 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Professional, Reading,
Mass., 1995.

[GJ90] Justin O. Graver and Ralph E. Johnson. A type system
for Smalltalk. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’90, pages 136–150, New York, NY, USA,
1990. ACM.

[GMD+10] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco
Comi, Stefano Crespi, Denys Poshyvanyk, Chen Fu, Qing
Xie, and Carlo Ghezzi. An empirical investigation into a
large-scale Java open source code repository. In Proceed-
ings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM
’10, pages 11:1–11:10, New York, NY, USA, 2010. ACM.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Lan-
guage and its Implementation. Addison Wesley, Reading,
Mass., May 1983.

[HBL+14] Emily Hill, David Binkley, Dawn Lawrie, Lori Pollock, and
K. Vijay-Shanker. An empirical study of identifier splitting
techniques. Empirical Software Engineering, 19(6):1754–
1780, 2014.

[HCN00] R. Harrison, S. Counsell, and R. Nithi. Experimental assess-
ment of the effect of inheritance on the maintainability of
object-oriented systems. J. Syst. Softw., 52(2-3):173–179,
June 2000.

137

[HCU91a] Urs Hölzle, Craig Chambers, and David Ungar. Ecoop’91 eu-
ropean conference on object-oriented programming: Geneva,
switzerland, july 15–19, 1991 proceedings. In Proceedings
of the European Conference on Object-Oriented Program-
ming, pages 21–38, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg.

[HCU91b] Urs Hölzle, Craig Chambers, and David Ungar. Optimiz-
ing dynamically-typed object-oriented languages with poly-
morphic inline caches. In P. America, editor, Proceedings
ECOOP ’91, volume 512 of LNCS, pages 21–38, Geneva,
Switzerland, July 1991. Springer-Verlag.

[HDN07] Niklaus Haldimann, Marcus Denker, and Oscar Nierstrasz.
Practical, pluggable types. In Proceedings of the 2007 Inter-
national Conference on Dynamic Languages (ICDL 2007),
pages 183–204. ACM Digital Library, 2007.

[HG12] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type
inference for JavaScript. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 239–250, New York,
NY, USA, 2012. ACM.

[HH09] Alex Holkner and James Harland. Evaluating the dy-
namic behaviour of Python applications. In Proceedings
of the Thirty-Second Australasian Conference on Computer
Science-Volume 91, pages 19–28. Australian Computer Soci-
ety, Inc., 2009.

[HKR+14] Stefan Hanenberg, Sebastian Kleinschmager, Romain
Robbes, Éric Tanter, and Andreas Stefik. An empirical study
on the impact of static typing on software maintainability.
Empirical Software Engineering, 19(5):1335–1382, 2014.

[HLBAL05] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In Proceedings IEEE European Conference on Software
Maintenance and Reengineering (CSMR 2005), pages 112–
121, Los Alamitos CA, 2005. IEEE Computer Society Press.

138

[HU94] Urs Hölzle and David Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In Proceedings
of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, PLDI ’94, pages 326–
336, New York, NY, USA, 1994. ACM.

[KBR14] Juraj Kubelka, Alexandre Bergel, and Romain Robbes. Ask-
ing and answering questions during a programming change
task in the Pharo language. In Proceedings of the 5th Work-
shop on Evaluation and Usability of Programming Lan-
guages and Tools, PLATEAU ’14, pages 1–11, New York,
NY, USA, 2014. ACM.

[KF10] Kenneth Knowles and Cormac Flanagan. Hybrid type check-
ing. ACM Trans. Program. Lang. Syst., 32(2):6:1–6:34,
February 2010.

[KHR+12] S. Kleinschmager, S. Hanenberg, R. Robbes, E. Tanter, and
A. Stefik. Do static type systems improve the maintainability
of software systems? An empirical study. In 2012 IEEE
20th International Conference on Program Comprehension
(ICPC), pages 153 –162, June 2012.

[Lan92] William Landi. Undecidability of static analysis. ACM Lett.
Program. Lang. Syst., 1(4):323–337, December 1992.

[LB94] James R. Larus and Thomas Ball. Rewriting executable
files to measure program behavior. Software Practice &
Experience, 24:197–218, 1994.

[LLS+16] Hui Liu, Qiurong Liu, Cristian-Alexandru Staicu, Michael
Pradel, and Yue Luo. Nomen est omen: Exploring and ex-
ploiting similarities between argument and parameter names.
In International Conference on Software Engineering (ICSE),
2016.

[LR91] William Landi and Barbara G. Ryder. Pointer-induced alias-
ing: A problem classification. In Proceedings of the 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’91, pages 93–103, New York,
NY, USA, 1991. ACM.

139

[LSS+15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,
Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dim-
itrios Vardoulakis. In defense of soundiness: A manifesto.
Commun. ACM, 58(2):44–46, January 2015.

[MBGN16] Nevena Milojković, Clément Béra, Mohammad Ghafari, and
Oscar Nierstrasz. Inferring types by mining class usage fre-
quency from inline caches. In Proceedings of International
Workshop on Smalltalk Technologies (IWST 2016), pages
6:1–6:11, 2016.

[MCL+15] Nevena Milojković, Andrea Caracciolo, Mircea Lungu, Os-
car Nierstrasz, David Röthlisberger, and Romain Robbes.
Polymorphism in the spotlight: Studying its prevalence in
Java and Smalltalk. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, pages
186–195. IEEE Press, 2015. Published.

[MGN17a] Nevena Milojković, Mohammad Ghafari, and Oscar Nier-
strasz. Exploiting type hints in method argument names to
improve lightweight type inference. In 25th IEEE Interna-
tional Conference on Program Comprehension, 2017.

[MGN17b] Nevena Milojković, Mohammad Ghafari, and Oscar Nier-
strasz. It’s duck (typing) season! In 25th IEEE International
Conference on Program Comprehension (ERA Track), 2017.

[MH90] D. Mancl and W. Havanas. A study of the impact of C++
on software maintenance. In Proceedings. Conference on
Software Maintenance 1990, pages 63–69, 1990.

[Mil78] Robin Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17:348–
375, 1978.

[MMI14] André Murbach Maidl, Fabio Mascarenhas, and Roberto
Ierusalimschy. Typed Lua: An optional type system for Lua.
In Proceedings of the Workshop on Dynamic Languages and
Applications, Dyla’14, pages 3:1–3:10, New York, NY, USA,
2014. ACM.

140

[MN16] Nevena Milojković and Oscar Nierstrasz. Exploring cheap
type inference heuristics in dynamically typed languages. In
Proceedings of the 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2016, pages 43–56, New York, NY,
USA, 2016. ACM.

[Moo07] Colin Moock. Essential Actionscript 3.0. O’Reilly, first
edition, 2007.

[MSK07] Martin Madsen, Peter Sørensen, and Kristian Kristensen.
Ecstatic–type inference for Ruby using the Cartesian product
algorithm. Master’s thesis, Aalborg University, 2007.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The
story of Moose: an agile reengineering environment. In Pro-
ceedings of the European Software Engineering Conference
(ESEC/FSE’05), pages 1–10, New York, NY, USA, Septem-
ber 2005. ACM Press. Invited paper.

[Nys03] Sven-Olof Nyström. A soft-typing system for Erlang. In Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Erlang,
ERLANG ’03, pages 56–71, New York, NY, USA, 2003.
ACM.

[Odg14] Morten Passow Odgaard. JavaScript type inference using
dynamic analysis. Master’s thesis, Aarhus University, 2014.

[Ous98] John K. Ousterhout. Scripting: Higher level programming
for the 21st century. IEEE Computer, 31(3):23–30, March
1998.

[Pal05] Mike Pall. The LuaJIT Project, 2005. http://luajit.org/.

[PBMH11] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Java
generics adoption: How new features are introduced, cham-
pioned, or ignored. In Proceedings of the 8th Working Con-
ference on Mining Software Repositories, MSR ’11, pages
3–12, New York, NY, USA, 2011. ACM.

[PFD11] Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu.
Ecological inference in empirical software engineering. In

141

Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’11, pages
362–371, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

[Pil04] Mark Pilgrim. Dive Into Python. APress, 2004.

[PMW09] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast
type reconstruction for dynamically typed programming lan-
guages. In DLS ’09: Proceedings of the 5th Symposium
on Dynamic languages, pages 69–78, New York, NY, USA,
2009. ACM.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-oriented
type inference. In Proceedings OOPSLA ’91, ACM SIGPLAN
Notices, volume 26, pages 146–161, November 1991.

[PSS15] M. Pradel, P. Schuh, and K. Sen. TypeDevil: Dynamic type
inconsistency analysis for JavaScript. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineer-
ing, volume 1, pages 314–324, 2015.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable
omniscient debugging. Proceedings of the 22nd Annual
SCM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’07),
42(10):535–552, 2007.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The
Java hotspotTM server compiler. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and Tech-
nology Symposium - Volume 1, JVM’01, pages 1–1, Berkeley,
CA, USA, 2001. USENIX Association.

[PW88] Lewis J. Pinson and Richard S. Wiener. Objective-C. Addi-
son Wesley, 1988.

[Ram94] G. Ramalingam. The undecidability of aliasing. ACM Trans.
Program. Lang. Syst., 16(5):1467–1471, September 1994.

[RBFDD98] Pascal Rapicault, Mireille Blay-Fornarino, Stéphane
Ducasse, and Anne-Marie Dery. Dynamic type inference

142

to support object-oriented reengineering in Smalltalk. In
Proceedings of the ECOOP ’98 International Workshop
Experiences in Object-Oriented Reengineering, abstract in
Object-Oriented Technology (ECOOP ’98 Workshop Reader
forthcoming LNCS), pages 76–77, 1998.

[RCH12] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The
ins and outs of gradual type inference. SIGPLAN Not.,
47(1):481–494, January 2012.

[RHBV11] Gregor Richards, Christian Hammer, Brian Burg, and Jan
Vitek. The eval that men do: A large-scale study of the
use of eval in JavaScript applications. In Proceedings of
the 25th European Conference on Object-oriented Program-
ming, ECOOP’11, pages 52–78, Berlin, Heidelberg, 2011.
Springer-Verlag.

[RHV+09] David Röthlisberger, Marcel Härry, Alex Villazón, Danilo
Ansaloni, Walter Binder, Oscar Nierstrasz, and Philippe
Moret. Augmenting static source views in IDEs with dy-
namic metrics. In Proceedings of the 25th International
Conference on Software Maintenance (ICSM 2009), pages
253–262, Los Alamitos, CA, USA, 2009. IEEE Computer
Society.

[RHV+11] David Röthlisberger, Marcel Härry, Alex Villazón, Danilo
Ansaloni, Walter Binder, Oscar Nierstrasz, and Philippe
Moret. Exploiting dynamic information in IDEs improves
speed and correctness of software maintenance tasks. Trans-
actions on Software Engineering, 2011.

[RKG04] Atanas Rountev, Scott Kagan, and Michael Gibas. Evaluating
the imprecision of static analysis. In PASTE ’04: Proceedings
of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 14–16,
New York, NY, USA, 2004. ACM.

[RL08] R. Robbes and M. Lanza. How program history can im-
prove code completion. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’08, pages 317–326, Washington,
DC, USA, 2008. IEEE Computer Society.

143

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan
Vitek. An analysis of the dynamic behavior of JavaScript
programs. SIGPLAN Not., 45(6):1–12, June 2010.

[RLR12] Romain Robbes, Mircea Lungu, and David Roethlisberger.
How do developers react to API deprecation? The case of
a Smalltalk ecosystem. In Proceedings of the 20th Interna-
tional Symposium on the Foundations of Software Engineer-
ing (FSE’12), pages 56:1 – 56:11, 2012.

[RMR03] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Frag-
ment class analysis for testing of polymorphism in Java soft-
ware. In ICSE ’03: Proceedings of the 25th IEEE Interna-
tional Conference on Software Engineering, pages 210–220,
Los Alamitos, CA, USA, 2003. IEEE Computer Society
Press.

[RND09] David Röthlisberger, Oscar Nierstrasz, and Stéphane
Ducasse. Autumn leaves: Curing the window plague in IDEs.
In Proceedings of the 16th Working Conference on Reverse
Engineering (WCRE 2009), pages 237–246, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[RNDB09] David Röthlisberger, Oscar Nierstrasz, Stéphane Ducasse,
and Alexandre Bergel. Tackling software navigation issues of
the Smalltalk IDE. In Proceedings of International Workshop
on Smalltalk Technologies (IWST 2009), pages 58–67, New
York, NY, USA, 2009. ACM.

[Sal04] Michael Salib. Faster than C: Static type inference with
Starkiller. In in PyCon Proceedings, Washington DC, pages
2–26. SpringerVerlag, 2004.

[SES05] Janice Singer, Robert Elves, and Margaret-Anne Storey.
NavTracks: Supporting navigation in software maintenance.
In International Conference on Software Maintenance
(ICSM’05), pages 325–335, Washington, DC, USA, sep 2005.
IEEE Computer Society.

[SF14] Carlos Souza and Eduardo Figueiredo. How do programmers
use optional typing? An empirical study. In Proceedings of

144

the 13th International Conference on Modularity, MODU-
LARITY ’14, pages 109–120, New York, NY, USA, 2014.
ACM.

[SH14] Samuel Spiza and Stefan Hanenberg. Type names without
static type checking already improve the usability of APIs
(as long as the type names are correct): An empirical study.
In Proceedings of the 13th International Conference on Mod-
ularity, MODULARITY ’14, pages 99–108, New York, NY,
USA, 2014. ACM.

[SLN14] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. Min-
ing the ecosystem to improve type inference for dynamically
typed languages. In Proceedings of the 2014 ACM Inter-
national Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! ’14,
pages 133–142, New York, NY, USA, 2014. ACM.

[SLN16] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. A
case study on type hints in method argument names in Pharo
Smalltalk projects. In Proceedings of the 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 283–292, March
2016.

[SMDV08] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking
and answering questions during a programming change task.
IEEE Trans. Softw. Eng., 34:434–451, July 2008.

[Smi] Rob Smit. Pegon. https://sourceforge.net/projects/pegon/.

[SS04] S. Alexander Spoon and Olin Shivers. Demand-driven type
inference with subgoal pruning: Trading precision for scala-
bility. In Proceedings of ECOOP’04, pages 51–74, 2004.

[SS05] S. Alexander Spoon and Olin Shivers. Dynamic data poly-
variance using source-tagged classes. In Roel Wuyts, edi-
tor, Proceedings of the Dynamic Languages Symposium’05,
pages 35–48. ACM Digital Library, 2005.

[ST06] Jeremy G. Siek and Walid Taha. Gradual typing for func-
tional languages. In Proceedings, Scheme and Functional

145

Programming Workshop 2006, pages 81–92. University of
Chicago TR-2006-06, 2006.

[ST07] Jeremy Siek and Walid Taha. Gradual typing for objects.
In Proceedings of European Conference on Object-Oriented
Programming (ECOOP’07), volume 4609 of LNCS, pages
151–175. Springer Verlag, 2007.

[Str] The Strongtalk type system for Smalltalk.
http://bracha.org/nwst.html.

[Sub13] V. Subramaniam. Programming Groovy 2: Dynamic Pro-
ductivity for the Java Developer. Number v. 2 in Pragmatic
Bookshelf. Pragmatic Bookshelf, 2013.

[Sus97] Horwitz Susan. Precise flow-insensitive may-alias analysis
is NP-hard. ACM Trans. Program. Lang. Syst., 19(1):1–6,
January 1997.

[TAD+10] E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li,
M. Lumpe, H. Melton, and J. Noble. The Qualitas Cor-
pus: A curated collection of Java code for empirical studies.
In Software Engineering Conference (APSEC), 2010 17th
Asia Pacific, pages 336 –345, December 2010.

[TF11] Sam Tobin-Hochstadt and Matthias Felleisen. The design and
implementation of Typed Scheme: From scripts to programs.
CoRR, abs/1106.2575, 2011.

[TFH09] Dave Thomas, Chad Fowler, and Andy Hunt. Programming
Ruby 1.9: The Pragmatic Programmers’ Guide. Pragmatic
Bookshelf, 3rd edition, 2009.

[THSA] S. Tobin-Hochstadt and V. St-Amour. The typed Racket
guide. http://docs.racket-lang.org/ts-guide/.

[TNM08] Ewan Tempero, James Noble, and Hayden Melton. How do
Java programs use inheritance? An empirical study of inheri-
tance in Java software. In Proceedings of the 22Nd European
Conference on Object-Oriented Programming, ECOOP ’08,
pages 667–691, Berlin, Heidelberg, 2008. Springer-Verlag.

146

[TP00] Frank Tip and Jens Palsberg. Scalable propagation-based
call graph construction algorithms. In Proceedings of the
15th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
’00, pages 281–293, New York, NY, USA, 2000. ACM.

[US87] David Ungar and Randall B. Smith. Self: The power of
simplicity. In Proceedings OOPSLA ’87, ACM SIGPLAN
Notices, volume 22, pages 227–242, December 1987.

[VKSB14] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek,
and Jim Baker. Design and evaluation of gradual typing for
Python. SIGPLAN Not., 50(2):45–56, October 2014.

[VS16] Michael M Vitousek and Jeremy G Siek. From optional to
gradual typing via transient checks. In 5th Script To Program
Evolution Workshop, 2016.

[WF07] Philip Wadler and Robert Bruce Findler. Well-typed pro-
grams can’t be blamed. In Proceedings of the Workshop on
Scheme and Functional Programming, pages 15–26, 2007.

[WH92] Norman Wilde and Ross Huitt. Maintenance support for
object-oriented programs. IEEE Transactions on Software
Engineering, SE-18(12):1038–1044, December 1992.

[WHH11] A. Wiese, V. Ho, and E. Hill. A comparison of stemmers
on source code identifiers for software search. In 2011 27th
IEEE International Conference on Software Maintenance
(ICSM), pages 496–499, September 2011.

[WS01] Tiejun Wang and Scott F. Smith. Precise constraint-based
type inference for Java. In G. Goos, J. Hartmanis, and J. van
Leeuwen, editors, Proceedings ECOOP ’01, volume 2072
of LNCS, pages 99–118, Budapest, Hungary, June 2001.
Springer-Verlag.

[XZC+16] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and
Baowen Xu. Python probabilistic type inference with natural
language support. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, pages 607–618, New York,
NY, USA, 2016. ACM.

147

[Zan13] Matt Zandstra. PHP Objects, Patterns, and Practice. Apress,
Berkely, CA, USA, 4th edition, 2013.

148

Curriculum Vitae

Personal Information

Name: Nevena Lazarević (née Milojković)
Date of Birth: 26.08.1987.
Place of Birth: Čačak, Serbia
Nationality: Serbian

Education

2013–2017 PhD in Computer Science
University of Bern
Switzerland

2010–2011 MSc in Informatics
University of Paris-Est Marne-la-Vallée
France

2006–2010 BSc in Mathematics
University of Belgrade
Serbia

149

	1 Introduction
	1.1 Thesis statement
	1.2 Contributions
	1.2.1 A large-scale software study on the prevalence of polymorphism in statically and dynamically-typed languages
	1.2.2 Lightweight heuristics for improving simple type inference algorithms

	1.3 Outline

	2 State of the art
	2.1 Gradual typing
	2.2 Optional typing
	2.3 Static type inference
	2.4 Dynamic type inference
	2.4.1 Code instrumentation
	2.4.2 Inline caches

	2.5 Other techniques

	3 Study of polymorphism prevalence
	3.1 Introduction
	3.2 Related Work
	3.3 Terminology
	3.4 Experimental Setup
	3.4.1 Data processing
	3.4.2 Data analysis

	3.5 Experimental Results
	3.5.1 Implementing polymorphism
	3.5.2 Using polymorphism
	3.5.3 Cardinality of polymorphic message sends
	3.5.4 Implementing duck typing
	3.5.5 Using duck typing

	3.6 Threats to Validity
	3.7 Discussion
	3.8 Conclusion

	4 Static class usage frequency heuristics
	4.1 Introduction
	4.2 Overview
	4.3 Heuristics and Approaches
	4.3.1 Terminology
	4.3.2 Heuristics
	4.3.3 Assigned types vs. selector types
	4.3.4 Approaches

	4.4 Evaluation
	4.4.1 Class instantiation heuristic
	4.4.2 Name occurrence heuristic
	4.4.3 Comparison with EATI

	4.5 Discussion and threats to validity
	4.6 Conclusion and future work

	5 Mining inline caches for class usage
	5.1 Introduction
	5.2 Gathering of dynamic type information
	5.2.1 Execution of message sends
	5.2.2 Run-time type information gatherer built

	5.3 Type inference algorithm
	5.3.1 Dynamic information

	5.4 Evaluation
	5.4.1 Inline caching type gathering
	5.4.2 Projects used for evaluation
	5.4.3 Overall results — Hierarchy-Based approach
	5.4.4 Difference between the basic algorithm and ICTI
	5.4.5 Not guessed variables
	5.4.6 Position of the correct type
	5.4.7 Overall results — Class-Based approach

	5.5 Threats to validity
	5.6 Conclusion

	6 Exploiting Type Hints in Method Argument Names
	6.1 Introduction
	6.2 Motivation
	6.3 Algorithm
	6.3.1 The Cartesian Product Algorithm
	6.3.2 Type hints from method argument names
	6.3.3 Upgraded CPA — CPA*

	6.4 Implementation
	6.4.1 CPA
	6.4.2 Type Hints in Smalltalk

	6.5 Evaluation
	6.5.1 Argument names without inferred type hint

	6.6 Threats to validity
	6.7 Conclusion

	7 Conclusion
	7.1 Contributions
	7.1.1 Large-scale polymorphism study
	7.1.2 Lightweight heuristics

	7.2 Future work and open questions
	7.2.1 Choice of the basic algorithms
	7.2.2 Choice of the heuristics
	7.2.3 Combination of heuristics
	7.2.4 Language idioms
	7.2.5 Beyond Smalltalk

	7.3 Summary

	Appendices
	A Implementation and Usage of the Type Inference Tool in Pharo
	A.0.1 Tool for ordering classes based on the heuristics presented in Chapter 4 and Chapter 5
	A.1 Assessment of the heuristics presented in Chapter 4 and Chapter 5
	A.2 Assessment of CPA*

