
The Medium of Visualization for
Software Comprehension

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Leonel Merino
von Chile

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut für Informatik

Universität Bern

The Medium of Visualization for
Software Comprehension

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Leonel Merino
von Chile

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut für Informatik

Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 29.06.2018.
Der Dekan:
Prof. Dr. Gilberto Colangelo

This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2018 by Leonel Merino

This work is licensed under the terms of the Creative Commons Attribution
– ShareAlike 2.5 Switzerland license. The license is available at
http://creativecommons.org/licenses/by-sa/2.5/
ch/

Attribution–ShareAlike

scg.unibe.ch
http://creativecommons.org/licenses/by-sa/2.5/ch/
http://creativecommons.org/licenses/by-sa/2.5/ch/

To Cuqui, my wife.

To my children: Magdalena, Agustín, and Josefina.

Acknowledgments

I am immensely grateful to Oscar Nierstrasz who gave me the opportu-
nity to join the Software Composition Group. Thanks for giving me the
time and freedom to grow as a researcher, and pursue my interests. Thanks
Oscar!

I want to express my immense gratitude to Iris Keller who was so
friendly from the first moment, and helped me and my family with all the
administrative work. Thanks Iris!

I am grateful to Nevena, Andrea, Andrei, Boris, Claudio, Haidar, Jan,
Pascal, Manuel, and Yuriy, for being always friendly, and for their support
and advice. Thank you!

I want to thank Mircea for motivating me to do research in software
visualization, and I thank Mohammad for being critical to the value of
software visualization. Thanks Mircea and Mohammad!

I am thankful to Daniel Keim and the DBVIS group in Konstanz for
hosting me and my family during a lovely winter in 2017. We have great
memories from the Christmas party at Daniel’s home. Thank you Daniel!

I am grateful to Dominik, Silas, and Mario, who gave me the honor
to mentor their bachelor theses. I had a great time discussing with you.
Thanks!

I want to thank Alexandre Bergel for being a great host during my stay
in the Chilean summer of 2018. Your enthusiasm and positiveness have
always been encouraging. I enjoyed our discussions during the lunch in
Santiago. Thanks Alex!

I am grateful to Fabian Beck for accepting to be the external examiner
in my PhD committee. I would also like to thank Paolo Favaro for chairing
the examination.

I want to thank Bettina Choffat for helping me to organize my PhD
defense.

I am thankful to Pooja, Nitish, and Reza, for your interest in my work.
Thanks!

i

Last but not least. I want to thank my wife Cuqui, for being always
with me. I love to share my life with you, and with Magdalena, Agustín,
and Josefina, who are a permanent source of joy. I thank to God for all of
you.

ii

Abstract

Although abundant studies have shown how visualization can help software
developers to understand software systems, visualization is still not a
common practice since developers (i) have little support to find a proper
visualization for their needs, and once they find a suitable visualization
tool, they (ii) are unsure of its effectiveness. We aim to offer support
for identifying proper visualizations, and to increase the effectiveness of
visualization techniques.

In this dissertation, we characterize proposed software visualizations.
To fill the gap between proposed visualizations and their practical appli-
cation, we encapsulate such characteristics in an ontology, and propose a
meta-visualization approach to find suitable visualizations. Amongst others
characteristics of software visualizations, we identify that the medium used
to display them can be a means to increase the effectiveness of visualization
techniques for particular comprehension tasks. We implement visualization
prototypes and validate our thesis via experiments.

We found that even though developers using a physical 3D model
medium required the least time to deal with tasks that involve identifying
outliers, they perceived the least difficulty when visualizing systems based
on the standard computer screen medium. Moreover, developers using
immersive virtual reality obtained the highest recollection.

We conclude that the effectiveness of software visualizations that use
the city metaphor to support comprehension tasks can be increased when
city visualizations are rendered in an appropriate medium. Furthermore,
that visualization of software visualizations can be a suitable means for
exploring their multiple characteristics that can be properly encapsulated
in an ontology.

iii

iv

Contents

1 Introduction 1
1.1 Software Visualization 2
1.2 Problem Statement . 7
1.3 Our Approach . 8

1.3.1 Thesis statement 9
1.4 Contributions . 9

1.4.1 A taxonomy of proposed software visualization
tools, and a discussion of the need of the explicit
inclusion of the medium as a key attribute that pro-
motes the communication in software visualizations 9

1.4.2 A discussion of meta-visualization as a means for
identifying suitable visualization tools 10

1.4.3 A discussion of the software visualization evaluation 10
1.4.4 A discussion of the architectural design choices

and lessons learned from implementing the city
metaphor in virtual reality and observing its use . . 11

1.4.5 An experiment to evaluate the impact of the
medium in the effectiveness of 3D software vi-
sualizations . 11

1.4.6 The artifacts of our research are publicly available 12
1.5 Outline . 12

2 State of the Art 15
2.1 Introduction . 15
2.2 Methodology . 17

2.2.1 Data sources and search strategy 17
2.2.2 Included and excluded studies 18
2.2.3 Data Extraction 21

2.3 Results . 24

v

2.3.1 Task . 24
2.3.2 Need . 25
2.3.3 Audience . 27
2.3.4 Data source . 28
2.3.5 Representation 30
2.3.6 Tool . 32
2.3.7 Medium . 33

2.4 Discussion . 36
2.4.1 Threats to Validity 43

2.5 Conclusion . 44

3 Software Visualization Evaluation 47
3.1 Introduction . 47
3.2 Background . 52
3.3 Methodology . 54

3.3.1 Inclusion and exclusion criteria 54
3.3.2 Quality assessment 54
3.3.3 Data extraction 57
3.3.4 Selected studies 58

3.4 Results . 58
3.4.1 Data Collection Methods 62
3.4.2 Evaluation Strategies 62

3.5 Discussion . 75
3.5.1 Threats to Validity 82

3.6 Conclusion . 83

4 Actionable Software Visualization 85
4.1 Introduction . 85
4.2 MetaVis . 86

4.2.1 Developer’s Questions 87
4.2.2 Visualization Examples 90
4.2.3 TIC: Tag-Iconic Cloud-Based Visualization 90
4.2.4 Implementation 91
4.2.5 Analysis Example 92
4.2.6 Discussion . 94
4.2.7 Summary . 95

4.3 Software Visualization Tools 95
4.3.1 Summary . 103

4.4 Software Visualization Ontology 104

vi

4.4.1 Background . 104
4.4.2 Protégé . 106
4.4.3 Usage Scenarios 108
4.4.4 Summary . 109

4.5 Conclusion . 110

5 Gameful Software Visualization 111
5.1 Introduction . 111
5.2 CityVR Overview . 114

5.2.1 Design . 115
5.2.2 Workflow . 116

5.3 Formative Experiment 118
5.4 Discussion . 120
5.5 Conclusion . 121

6 The Medium 123
6.1 Introduction . 123
6.2 Related Work . 126
6.3 Controlled User Experiment 127

6.3.1 Experiment Design 128
6.3.2 Hypotheses . 131
6.3.3 Participants . 133
6.3.4 Procedure . 134
6.3.5 Data Collection 135

6.4 Results . 135
6.4.1 Performance (RQ.1) 136
6.4.2 Recollection (RQ.2) 139
6.4.3 User Experience (RQ.3) 140

6.5 Discussion . 144
6.5.1 Performance (RQ.1) 144
6.5.2 Recollection (RQ.2) 146
6.5.3 User Experience (RQ.3) 146

6.6 Threats to Validity . 147
6.7 Conclusion . 149

7 Conclusion 151
7.1 Contributions . 151
7.2 Future Work . 152

7.2.1 Software Visualization in Virtual Reality 153

vii

7.2.2 Software Visualization in Augmented Reality . . . 153
7.3 Summary . 153

viii

1
Introduction

By automating time-consuming, laborious, and repetitive tasks software
systems support humans to be more productive. However, the benefit that
a software system brings depends on its quality. While a high quality
system can boost the productivity of users, low quality systems can even
obstruct their work. There are six main characteristics of the quality of a
software system1. A high quality system not only must include the required
(i) functionality, but it also has to be (ii) reliable. That is, the system has
to be up and running under specified circumstances (e.g., failures) for a
defined period of time. The system must also be designed to (iii) ease
its use, to encourage adoption. The system must (iv) efficiently use the
available resources (e.g., disk space, memory, network). The system must
encourage (v) portability; that is, being able to adapt to changes in the
operating environment and user requirements. Once the system is being
used in a productive environment, it must facilitate (vi) maintenance tasks,
which can involve fixing an identified fault or adding new functionality.

Nonetheless, the quality of software systems varies, and some systems
that exhibit low quality are hard to maintain. One reason is that a prerequi-
site to undertake a maintenance task is that developers need to understand

1http://www.iso.org/iso/en/ISOOnline.frontpage

1

http://www.iso.org/iso/en/ISOOnline.frontpage

the software system. When understanding artifacts of a software system,
developers need to analyze various data related to the system. A promi-
nent characteristic of such data is their source, which usually restricts the
number of available tools. Usually developers start understanding aspects
of a system such as the system’s structure by analyzing the source code.
Developers also might need to analyze the log of the system’s execution
to understand the system’s behavior at run time. The version control sys-
tem contains valuable data of the evolution of a system, which can help
developers, for instance, to identify changes that need to be reverted to
remove a bug of the system. Typically, these data are structured in a format
intended to be read by machines instead of humans, which also hinders
the ability of developers to analyze the data. The complexity of the data
set, which depends on its source and format (e.g., number of lines of code
and dependencies amongst system components in the source code), makes
program understanding a complex task. All in all, analyzing software data
requires great effort from developers.

Usually, programming environments used by developers include tools
to support the common basic tasks that arise during program understanding
such as browsing, editing, and debugging. These tools are mostly based
on text, and programmers spend a lot of time reading data (e.g., reading
source code). We believe that existing text based tools limit the abilities of
developers to analyze software data. In particular, we believe that visual
representations of attributes of data can bring great support to developers
who can use them to analyze the many attributes and relationships within
a data set. Data visualization is the field that focus on proposing tools
and techniques to augment the human capabilities to analyze the many
attributes and relationships of a data set through a visual representation.
The intersection of the software engineering and the data visualization
fields gathers the research on software visualization.

1.1 Software Visualization

“Software visualization is the use of interactive computer graphics, typog-
raphy, graphic design, animation, and cinematography to enhance the
interface between the software engineer or the computer science student
and their programs” [PBS93].

Many software visualization tools have been proposed to tackle mul-
tiple specific tasks that arise during development. To name a few: Code-

2

Crawler [LD03] helps developers analyze software metrics during reverse
engineering, Jive [Rei03] supports understanding the runtime of a program,
SHriMP [LMSW03] offers views of the structure of a program, CVSs-
can [VTvW05] enables developers to get insight into the changes of a
system from the Control Version System, Softwarenaut [LLG06] supports
exploring hierarchical decompositions of a system, CodeCity [WL07a]
eases comprehension by mapping a system’s aspects using a city metaphor,
Rigi [KMM07] helps explore dependency relations at the class and pack-
age level of Java systems, Zinsight [DPH10] enables user exploration,
analysis and understanding of traces containing many events, Stench Blos-
som [MHB10] promotes smell detection by an interactive ambient visual-
izations, Code Bubbles [Rei14] supports developers in debugging tasks,
CodeSurveyor [HMA15] supports code comprehension in large codebases
by allowing developers to view large-scale software at all levels of abstrac-
tion using a map metaphor, TypeV [FSWH16] helps developers to analyze
the evolution of a software system by visualizing abstract syntax trees,
vizSlice [AJdS+16] supports understanding of large scale software slices,
and SoL Mantra [TKII17] helps to identify library update opportunities.
While some of the proposed visualization tools do not explicitly target
program comprehension tasks, we consider that all of them support in a
degree the understanding of software systems, and therefore, can be of
help during maintenance.

We list, inspired by a previous taxonomy [MMC02], the main charac-
teristics of the proposed software visualization to identify their strengths
and limitations. The requirements for a software visualization tool are
characterized by the particular needs of developers. The needs involve a
task that belongs to an audience who have particular data. Similarly, the
proposed visualization approach involves a visualization technique that is
displayed using a medium, which is packaged in a tool.

Task
There are many particular software engineering tasks in which vi-
sualization has been proposed to support developers. These tasks
can be classified using various criteria. For instance, the tasks can
be classified into one of the following three categories: structure,
behavior, and evolution [Die07]. Developers, for instance, can visu-
alize the system’s (i) structure to analyze the dependencies obtained
from the source code, (ii) behavior based on execution traces in a

3

running system, and (iii) evolution based on the meta data gathered
from a version control system.

The tasks can also be categorized into one of multiple problem
domains [LM10]: (i) changes such as debugging, refactoring, and
testing; (ii) elements such as performance, concurrency and intent
and implication; and (iii) element relationships such as dependencies,
architecture, and control flow.

Sometimes tasks are also classified by identifying the cognitive
process of moving from questions to answers [SMDV06]. This clas-
sification includes: (i) finding initial software entities that might
lead developers to formulate a concrete question, (ii) building on
those points by identifying relationships between entities, (iii) under-
standing a group of entities and relationships, and (iv) questioning
how various groups relate each other.

Also tasks can be classified by the subject [FM10] of the need:
(i) people (e.g.,, who is working on what), (ii) code (e.g.,, changes to
the code), (iii) progress (e.g.,, work item progress), (iv) build (e.g.,,
broken builds), (v) test (e.g.,, test case analysis), (vi) web (e.g.,, web
related concerns)

The analysis of the tasks using these various classifications can help
researchers in the software visualization field to identify tasks with
little visualization support. The analysis also can help developers
(who are willing to adopt visualization) to find suitable tools.

Audience
The expected user of a software visualization tool plays a specific
role in the software life-cycle. We observe that a software visual-
ization that is effective to support the concerns that arise with a
certain audience can be ineffective to the concerns of another one.
Therefore, we believe that the role of the user has to be taken into
account when looking for a suitable visualization for a particular
concern. Although most software visualization tools target the pro-
grammer’s audience, there are some tools that target other audiences.
For instance, tools in which the expected user plays a role such as
project manager or architect.

Data
A software visualization provides developers a tangible represen-
tation of software data. We call software data the various types of

4

data that relate to a software system. For instance, source code, ex-
ecution logs, and meta-data from the version control system can
be visualized to analyze the structure, behavior, and evolution re-
spectively. Although all these software data can relate to the same
system, they can greatly differ in their characteristics (e.g., format,
source). The choice of which visualization technique to use partially
depends on the characteristics of data. For instance, some visualiza-
tion techniques can represent only certain data types (e.g., qualitative,
quantitative, nominal, ordinal, discrete, continuous, hierarchical).

Technique
The technique used in a software visualization tool defines the graph-
ical attributes that are chosen to represent the properties of software
data. The many visualization techniques that have been proposed
are sometimes referenced using multiple names, which makes track-
ing their adoption difficult. Sometimes a proposed technique is the
result of combining already known techniques. Some taxonomies
have been proposed to classify visualization techniques based on
various criteria. However, due the lack of a unified catalog of visu-
alization techniques, reflecting on the relationship of visualization
techniques with other characteristics (e.g., tasks, data) is still hard.
A few taxonomies have been proposed to classify visualization tech-
niques [Kei02]. In our experience these taxonomies provide a good
abstraction that eases the analysis of such relationships.

Medium
The medium corresponds to the means used to display the visual-
ization. Commonly, software visualizations are displayed using the
standard computer display medium [MGN16a]. The popularity of
the standard computer display can be a consequence of its (i) high
availability in most computers (where most programming is done),
and (ii) high quality graphics available in the current technology.
However, various other media are available for displaying visualiza-
tions such as wall-displays, multi-touch tables, immersive virtual
reality, and physical 3D models. Only a few software visualization
approaches have included a medium different than the computer
screen. Though in the past researchers had limited access to these
rather extravagant media due their high cost, today many of them
have become accessible and are already available in the ecosystem
of developers.

5

Indeed, several studies have shown qualitative evidence of the im-
pact of the medium in the information visualization field. One
study [Dat02] found that 3D visualizations in immersive virtual
reality are “intuitive”, and “easy to use”. Another study [RBLN04]
found that they are “useful”. A study [BM07] indicates that key char-
acteristics of the success of immersive virtual reality in the gaming
industry are its ability to “engage” and “entertain”. Also, a more
recent investigation [KJ18] found that users “connect”, and obtain a
better “overview” in immersive virtual reality than using 3D visu-
alizations displayed on the standard computer screen. Some other
studies also have found statistically significant differences through
qualitative evaluations. For instance, one study [SDP+09] found that
users obtain a better experience using 3D visualizations in immersive
virtual reality, which users find “intuitive” and “natural”, compared
to 3D visualizations displayed on the standard computer screen. An-
other investigation [WFRFN] showed that users who visualize data
in immersive virtual reality required less “effort” and “navigation”
to find information, and “engage” better and perceive themselves to
be more “accurate”, than when they used 3D visualizations on the
standard computer screen. We conjecture that some of the benefits
reported of using immersive virtual reality in information visualiza-
tions can be transfered to software visualizations.

We hypothesize that the medium, defined as “a means or channel
of communication or expression”2, plays a role in the the effective-
ness of software visualizations. In consequence, we propose that
software visualizations take advantage of such media to increase
their effectiveness. In a communication the medium is the means
used to send a message from a sender to a receiver. Indeed, amongst
the main usages of visualizations are proposed: discovery and com-
munication [Mun14]. We observe that when using visualizations
for

(1) discovering, the sender is the data, the message is the data’s
insight (that developers are expected to decode), and the receiver
is the developer (who is using the visualization to retrieve the
message); and

2"medium, n. and adj." OED Online. Oxford University Press, June 2017. Web. 2 August
2017.

6

(2) communicating already discovered insights (the message), the
sender is the developer herself, and the receiver is her audience
(e.g., a development team).

We believe that the medium used in a visualization to discover and
communicate insights of a data set plays an important role in the
effectiveness of software visualization.

Tooling
Many software visualization prototypes have been proposed to al-
leviate various software development concerns [MGN16a, Die07].
These prototypes are heterogeneous by nature. They are written in
multiple languages and use various libraries. However, only some
of them are publicly available. We ask about the evidence presented
to support the claimed effectiveness of such tools. We ask how ef-
fectiveness is defined in such evaluations and whether the strategies
and methods used in them are appropriate.

1.2 Problem Statement
The main drawbacks to adopt a proposed software visualization approach
are the lack of (i) means to find a suitable one for a particular software
engineering task, and (ii) evidence of their effectiveness.

A developer who is willing to adopt a visualization approach to deal
with a particular software engineering task might struggle to find a suitable
software visualization. There are several variables that must be taken into
account to find a suitable visualization (e.g., task, data, audience, medium),
however, this is obstructed by the lack of organization amongst proposed
software visualizations. Moreover, once a suitable visualization is found,
developers are usually unsure of the effectiveness of visualizations.

Effectiveness is defined as having “the power of acting upon the thing
designated”.3 Consequently, to assess the effectiveness of software visual-
izations we must know in advance their designated requirements. However,
identifying the requirements of software visualizations is difficult due the
lack of organization amongst the proposed visualization approaches. For
those approaches in which we identify a list of requirements, we investigate
how thorough are the evaluations that bring evidence of effectiveness.

3“effective, adj. and n.” OED Online. Oxford University Press, June 2017. Web. 27
October 2017.

7

We believe that the main strength of software visualizations is that they
enable communication. However, the medium designated to transport the
message between the sender and the receiver is usually not considered
relevant and limited to a single one (i.e., the standard computer screen).
Moreover, we ask whether conducted evaluations have assessed this aspect,
which could be another reason that hinders software visualization adoption.
We believe that a sound evaluation of software visualization tools across
multiple media can help us to identify specific tasks, audiences, and data,
in which a given visualization technique is particularly effective.

1.3 Our Approach

We present a taxonomy in which we classified proposed software visu-
alizations. The taxonomy not only allows practitioners to find suitable
visualizations for particular concerns, but also allows researchers in the
software visualization field to identify problems domains that require
more attention. We observe that many software visualizations have been
proposed to deal with multiple development concerns. To ensure their
effectiveness, we expand our investigation, and analyze the software visu-
alization evaluations.

We found several visualization tools that have proven to be effective
in evaluations, however, whether these tools are available, and can be put
into action is unclear. To deal with this problem, we curated a catalog of
70 actionable software visualization tools. We report on their execution
environment, last date of maintenance, level of maturity, employed visu-
alization technique, and the medium used to display them. We observe
that most software visualizations are displayed on the standard computer
screen, and conjecture that the standard computer screen might not be an
appropriate medium to display some visualization techniques.

We argue that the effectiveness to support particular tasks of software
visualizations can be increased when displayed on a more appropriate
medium. We focus on the 3D city visualization technique (widely used),
that we display with immersive virtual reality, and with printed physical
3D models as media. We conduct a controlled experiment and report the
results. We found that physical models boost completion time of tasks
that involve identifying outliers, however, such tasks are considered the
least difficult when the visualization is displayed on the standard computer

8

screen. Moreover, we observe that immersive virtual reality excels at
promoting recollection.

1.3.1 Thesis statement
We formally state our thesis as follows:

To increase the effectiveness of software visualization tools, we need to
consider the impact of the medium in user performance and experience.

1.4 Contributions
There are several contributions from the conducted research. The techni-
cal contributions include the implementation of prototype tools used for
testing hypotheses as well as data sets extracted in literature reviews. The
conceptual contributions involve a taxonomy for characterizing software vi-
sualization approaches, and a discussion of the impact of the medium in the
effectiveness of visualization. The main contributions of this dissertation
are:

1.4.1 A taxonomy of proposed software visualization
tools, and a discussion of the need of the explicit
inclusion of the medium as a key attribute that
promotes the communication in software visualiza-
tions

We collected relevant studies in the software visualization field that we clas-
sified into dimensions of a proposed taxonomy. Amongst other attributes,
we characterized the tasks for which visualizations have been proposed,
and the media used to display such software visualizations. When group-
ing the tasks into problem domains, we found a disconnect between the
problem domains on which visualization have focused and the domains
that get the most attention from developers.

Although the medium has been considered as a main attribute since
foundational software visualization taxonomies [RC93, PBS93, MMC02],
we observe that the medium has not been a main concern among most
proposed visualizations. In consequence, we observe that most software
visualization approaches use the standard computer screen, and only a

9

few have included another medium. We believe that there are certain tasks
in which the choice of the medium used to display a software visualiza-
tion can increase the effectiveness of the tool. In consequence, we think
that researchers who propose a visualization tool to deal with software
development concerns must explicitly support the medium of choice.

The results of this investigation were published in a full peer-reviewed
paper in an international conference [MGN16a], and then extended in a
journal [MGN17].

1.4.2 A discussion of meta-visualization as a means for
identifying suitable visualization tools

We investigated means for filling the gap between proposed software visu-
alizations and their practical application. We focused on live visualization
example objects that are annotated with a set of questions that they can
help to investigate. We instrumented a prototype application to monitor
the use of the examples in an active community, and found that develop-
ers sometimes spend great effort finding suitable examples that they can
tailor for their specific needs. To deal with such problem, we proposed a
meta-visualization approach. It it, a tag-iconic cloud-based representation
connects frequent keywords (extracted from questions) to icons that repre-
sent visualization examples. Through usage scenarios we show preliminary
results of its usability.

The results of this study were published in a short peer-reviewed paper
in an international conference [MGN+16b].

1.4.3 A discussion of the software visualization evalua-
tion

We also investigated the characteristics of the evaluations used in proposed
software visualization approaches. We reviewed the literature to collect
attributes of such evaluations. Amongst others, we extracted evaluation
strategies, data collection methods, and statistical tests for analyzing results
in experiments. We found that even though a fair number of studies used
experiments to evaluate a proposed visualization tool, most of the proposed
software visualizations do not explicitly include an evaluation. We also
found that only a few studies conducted surveys to investigate the needs
of practitioners. We observe that due the nature of software visualization
tools, they are rather different than usual software engineering tools. In

10

consequence, experiments focusing mostly on completion time and correct-
ness can offer a limited assessment of a visualization tool. We argue that
an effective software visualization should not only boost time and correct-
ness but also other variables such as recollection, usability, engagement,
and other impressions that might promote the communicate ability of a
software visualization. We conclude by providing researchers in the field
with guidelines to design and conduct the evaluation of proposed software
visualization tools.

The results of this study were published in a journal [MGAN].

1.4.4 A discussion of the architectural design choices
and lessons learned from implementing the city
metaphor in virtual reality and observing its use

We hypothesized that immersive virtual reality can promote user engage-
ment, and therefore benefit the understanding of software systems by
making users willing to spend more time on it. We developed a prototype
tool to test this hypothesis that uses immersive virtual reality to display a
visualization based on the city metaphor. We conducted a formative exper-
iment with six participants to identify potential strengths of the medium.
We analyzed engagement in terms of navigation, emotions, and time per-
ception. We found that this medium boosts the concentration of developers
who are able to focus on particular tasks. We investigated whether this
medium could boost recollection, and so benefit the understanding of a
software system.

The results of this study were published in a tool demo peer-reviewed
paper in an international conference [MGAN17].

1.4.5 An experiment to evaluate the impact of the
medium in the effectiveness of 3D software visual-
izations

We conducted an experiment to evaluate the impact of the medium in the
effectiveness of a software visualization technique. In the experiment, we
compared the visualization technique displayed on three media: (i) stan-
dard computer screens (SCS), (ii) immersive virtual reality (I3D), and
(iii) physical 3D models (P3D). We defined a set of comprehension tasks,
and selected a popular software visualization technique which is based

11

in the city metaphor. We conducted the experiment with 27 participants
who were split into three groups. Each of them used the visualization in
only one medium. We found that even though developers using P3D re-
quired the least time to identify outliers, they perceived the least difficulty
when visualizing systems based on SCS. Moreover, developers using I3D
obtained the highest recollection.

The results of this study were published in the proceeding of a confer-
ence [MFB+17].

1.4.6 The artifacts of our research are publicly available
Although reproducibility is a key component of science, we observe there
are many publications in which involved artifacts are not publicly available.
Instead, we decided to ensure the reproducibility of the results of our
research by making the involved artifacts publicly available:

• CityVR source code4

• Replication package of the experiment5

1.5 Outline
This dissertation is organized as follows:

Chapter 2 presents an overview of the related work in software visual-
ization. The chapter introduces a taxonomy in which we classify
proposed software visualizations, and discusses the gaps found in
terms of the tasks on which visualizations were focused, and the
attributes (e.g., the medium), which we hypothesize might impact
the effectiveness of software visualizations.

Chapter 3 elaborates on the evidence of the effectiveness of proposed
software visualization tools via a systematic review of the literature
in which we extracted the main concepts of the evaluations used
in each case. We discuss quantitative and qualitative analyses of
the results, and propose guidelines for designing and conducting
evaluations of software visualization tools.

4http://scg.unibe.ch/research/cityvr
5http://scg.unibe.ch/research/mediavis

12

http://scg.unibe.ch/research/cityvr
http://scg.unibe.ch/research/mediavis

Chapter 4 discusses our attempts to fill the gap between proposed soft-
ware visualizations and their practical application. We elaborate on
(i) a meta-visualization approach that link live visualization exam-
ples to keywords extracted from questions that visualizations sup-
port, (ii) a curated catalog of 70 actionable software visualizations,
and (iii) an ontology approach to encapsulate the characteristics of
software visualizations.

Chapter 5 introduces a prototype: CityVR, a gameful software visualiza-
tion tool displayed with immersive virtual reality for the understand-
ing of software systems. We discuss lessons learned during its design
and implementation, and report on a formative experiment in which
we assess user engagement as a means to enhance communication.

Chapter 6 describes an experiment that evaluates the impact of the
medium in the effectiveness of 3D software visualization. We discuss
how for certain tasks there is a specific medium in which the effec-
tiveness of the visualization technique is increased. We also outline
complementary attributes that need to be included when evaluating
the effectiveness of software visualizations.

Chapter 7 concludes the dissertation and outlines future work.

13

14

2
State of the Art

2.1 Introduction
Software visualization provides enormous advantages for the development
process; to name a few, it supports project managers in communicating
insights to their teams [TGG08], it guides testers when exploring code
for anomalies [DPKM06], it helps analysts to make sense of multivariate
data [MLN15], and it aids new developers in open software communities
[PJ09]. However, visualization is not yet commonly used by developers.
More than a decade ago researchers wondered why is software visualization
not widely used? [Fal02]. They observed that one of the reasons is that
efforts in software visualization are out of touch with the needs of devel-
opers [Rei05]. Several attempts have tried to fill in the gap and encourage
developers to adopt visualization. For instance, Maletic et al. [MMC02]
proposed a taxonomy of software visualization to support various tasks dur-
ing software development; Schots et al. [SW14] extended this taxonomy
by adding the resource requirements of visualizations, and providing evi-
dence of their utility; Storey et al. [SvG05] proposed a framework to assess
visualization tools; Kienle et al. [KM07] performed a literature survey to
identify quality attributes and functional requirements for software visual-

15

ization tools; Padda et al. [PSM07] proposed some visualization patterns to
guide users in understanding the capabilities of a given visualization tech-
nique; Sensalire et al. [SOT08a] classified the features that users require in
software visualization tools; and Merino et al. [MGN+16b] proposed meta-
visualization of keywords that represent development concerns connected
to visualization examples for helping developers to find suitable visualiza-
tions. However, the lack of organization among visualization approaches
is still an important barrier to finding and using them in practice [SW14].
In fact, developers are still unaware of existing visualization techniques
to adopt for their particular needs. A few studies have tried to address
this issue by investigating to which software engineering tasks particular
visualization techniques have been applied [GHM05, PAM14, SLB14].
Nevertheless, we believe these studies are still too coarse-grained to match
a suitable visualization to their concrete needs.

When developers perform a particular programming task they ask
some questions such as “what code is related to a change?” or “where
is this method called?” Several studies have investigated such questions
and classified them into groups [SMDV06, KDV07, FM10]. Indeed, such
questions reflect developer needs, and we believe that mapping them to
existing types of visualization can help developers to adopt visualization
in their daily work. In particular, we would like to answer the following
research questions:

RQ.1) What are the characteristics of visualization techniques that support
developer needs?

RQ.2) How well are developer needs supported by visualization?

We believe answering these questions, (1) helps practitioners to find
suitable visualizations for their specific needs, and (2) assists researchers
in the field to identify needs with little visualization support.

In particular, we review 86 design studies from which we extracted task,
need, audience, data source, representation, medium and tool. We char-
acterize them according to the subject, process and problem domain that
we discuss in relation to the proposed visualization techniques. We found
that one third of the studies combined various visualization techniques, but
most of them belong to one of the following three types: (1) techniques
that use geometric transformations to explore structure and distribution e.g.,
Parallel Coordinates, (2) stacked techniques that are tailored to present data
partitioned in a hierarchical fashion e.g., Treemap, and (3) pixel-oriented

16

techniques that are suitable for displaying large amounts of data e.g., Ta-
ble lens. We found that software visualizations address problem domains
that receive diverse levels of attention from developers. That is, many
visualizations have been proposed to tackle problems in domains that are
highly important for developers such as history and debugging, but also
in domains that are reported less frequently among developers such as
dependencies and concurrency. In contrast, there is little support for needs
in contract and policy domains, which are fairly important for developers.

The remainder of the chapter is structured as follows: Section 2.2
describes the methodology that we followed to collect relevant literature
and select design studies proposed in the software visualization field;
Section 2.3 presents our results by classifying them based on their task,
need, audience, data source, representation, tool, and medium [MMC02];
Section 2.4 discusses our research questions and threats to validity of our
findings, and Section 2.5 concludes.

2.2 Methodology
We applied the Systematic Literature Review (SLR) approach, a rigorous
and auditable research methodology for Evidence-Based Software Engi-
neering (EBSE). The method offers a means for evaluating and interpreting
relevant research to a topic of interest. We followed Keele’s comprehen-
sive guidelines [Kee07], which make it less likely that the results of the
literature survey will be biased.

2.2.1 Data sources and search strategy

We sought papers that are relevant to the aim of our investigation, i.e., that
propose a visualization technique useful to solve a specific problem in
software development. Although such papers are expected to be found
across multiple software engineering venues, we decided to collect them
from the complete set of papers published by SOFTVIS [SOF16] and
VISSOFT [VIS16]. We opted for these two venues because we believe
their fifteen editions and hundreds of papers dedicated specially to soft-
ware visualization offer a sound body of literature reflected in the good
(B) classification that they obtain in the CORE ranking [COR16] (which
considers citation rates, paper submission and acceptance rates among
other indicators). Although we observe that publications in better ranked

17

venues might be of higher quality, we believe that analyzing a collection of
studies that have been accepted for publication according to fairly similar
criteria will support a more objective comparison, and will provide a suit-
able baseline for future investigations. Figure 2.1 summarizes the number
of papers collected as well as those included in this study.

Figure 2.1: The 86 included papers from the collection of 368 papers
published in SOFTVIS/VISSOFT venues.

2.2.2 Included and excluded studies

We searched for problem-driven studies in which we could identify the role
of the user, specific development needs, a proposed visualization technique,
and an evaluation demonstrating utility. We excluded short papers of one
or two pages (like posters, keynotes and challenges) which due to limited
space are unlikely to contain enough detail. We also excluded short papers
for which a longer version exists. Of the 295 remaining papers we selected
design study papers that describe how a visualization is suitable for tackling
a particular problem in software development. We included such papers
in our study and excluded papers in the other categories proposed by

18

Munzner [Mun08] (evaluation, model, system and technique) because we
considered them unlikely to provide a visualization to tackle a problem in
software development. In the proposed categories a visualization paper can
be classified into one of five categories:

a) Evaluations describe how a visualization is used to deal with tasks in
a problem domain. Evaluations are often conducted via user studies
in laboratory settings in which participants solve a set of tasks while
variables are measured.

b) Design studies show how existing visualization techniques can be use-
fully combined to deal with a particular problem domain. Typically,
design studies are evaluated through case studies and usage scenarios.

c) Systems elaborate on the architectural design choices of a proposed
visualization tool and the lessons learned from observing its use.

d) Techniques focus on novel algorithms that improve the effectiveness
of visualization. Techniques are often evaluated using benchmarks that
measure performance. For instance, edge crossing in graph layout.

e) Models include Commentary papers in which an expert in the field
advocate a position and argue to support it; Formalism papers present
new models, definitions or terminology to describe techniques; and
Taxonomy papers propose categories that help researchers to analyze
the structure of a domain.

We classified the types of papers by first reading the abstract, second
the conclusion, and finally, in the cases where we still were not sure of their
main contribution, reading the rest of the paper. Although some papers
might exhibit characteristics of more than one type, we classified them
focusing on their primary contribution. Figure 2.2 shows the outcome
of our classification. We identified 86 design study papers and included
them in the study. Although more than two thirds of the papers came from
VISSOFT, selected papers that we classify as design studies are moderately
balanced.

A frequent critique of visualization papers is their lack of evaluation.
Indeed, Figure 2.3 shows that papers that take evaluation as their main
focus are unusual. The chart also shows an important increment in the
number of design study papers in VISSOFT’16, while only a few corre-
spond to model and system papers. Traditionally, the number of papers

19

Figure 2.2: Classification of the 295 SOFTVIS/VISSOFT papers by type.

in SOFTVIS editions (2003-2010) was consistently higher than in VIS-
SOFT workshops (2002-2011). The trend of the publications once they
merged in the VISSOFT conferences (2013-2016) seems more influenced
by SOFTVIS.

Figure 2.4 shows a visualization of the universe of 368 papers pub-
lished in SOFTVIS/VISSOFT [MSGN16]. In this visualization, rectangles
represent papers, their height encodes the number of pages (a 5-page paper
is depicted by a square), and the color is used to identify its venue (VIS-
SOFT in blue, and SOFTVIS in red). We used the intensity of the color to
represent the publication year, thus the darker the color the newer the paper.
Edges connect authors (gray circles) to papers (rectangles). Paper and
author nodes are distributed using a force-directed layout. The 86 selected
design study papers are distinguished by a black border and a label on top.
In the visualization the topology of the community is exposed. A few large
groups of collaborators that agglomerate many publications (for which we
labeled a main contributor) contrast with the large number of groups that
have few of them. We identify two main groups: (1) a cohesive one where
we labeled the author “Telea, A.”, and (2) another less cohesive but larger
one, where we labeled the author “Lanza, M.”. Although the graph does

20

Figure 2.3: Evolution of SOFTVIS/VISSOFT papers by type. From the
bottom upwards: Design Study, Evaluation, Model, System, and Technique.

not show the usual topology of a community (due the lack of collaboration),
we notice that in VISSOFT’16 both main groups collaborated in a recent
publication [SBFB16]. The visualization facilitates the observation that in
small groups only one color predominates, thus their publications are not
intermingled between SOFTVIS and VISSOFT. Moreover, we observe that
the selected papers are scattered among groups of different size, venues
and years of publication.

2.2.3 Data Extraction
Table 2.1 presents the attributes that we extracted from each paper: (1) task;
(2) need; (3) audience; (4) data source; (5) representation; (6) medium; and
(7) tool.

We scanned the papers and identified recurrent sections that are likely
to contain the data we sought. In our experience, attributes such as task,
need, audience and data source are frequently described in the evaluation
section, while the representation, medium and tool are typically found
in another section dedicated to describe the architectural decisions and

21

Figure 2.4: Overview of the complete publication record of SOFTVIS/VIS-
SOFT. The 86 selected papers (out of 368) correspond to design studies.

implementation of the prototype. Consequently, we extracted the task by
identifying frequent terms used to describe development concerns such
as programming, testing, debugging, maintenance, reverse-engineering.
For the need we looked for questions that are used to specify what can be
answered with the visualization. When there were no explicit questions, we
extracted the goal that motivated the need for a proposed visualization. The
audience was detected by identifying roles that users play in development
such as programmer, engineer, tester. We extracted the data source by
identifying the origin of the software artifacts that are visualized, such as

22

Table 2.1: Data extracted from papers.

Attribute Description

Task why the visualization is needed (e.g., testing)
Need which questions motivated the visualization
Audience who will use the visualization (e.g., analyst)
Data source what source of data is visualized (e.g., source code)

Representation
what technique is used to represent the data
(e.g., pixel-oriented)

Medium where to render the visualization (e.g., wall-disp.)
Tool which tool is used for evaluation (e.g., lviz)

source code and running system. For the representation we reflected on
the description of visualization techniques, analyzed figures, and looked
for their description. We extracted the medium by recognizing in the
description the technology required to display the visualization such as
wall display, standard monitor. We also extracted attributes of tools from
the description of the artifact used in the evaluation such as tool name, and
availability. When we were not able to identify an attribute, we searched
for common terms already found in other studies. When we still did not
find a description, we reported it as not identified.

We validated the quality of the extracted data by asking the authors of
the included studies to review the data of their papers. In particular, for
each study we prepared a message that includes the extracted data and
classification. We sent the message to the main author of each study, and
when their address was not longer valid or we did not receive an answer
after some weeks, we sent the message to co-authors. In the few cases that
the same person was the main author of several studies, we only sent the
message to the co-authors to balance the workload. Unfortunately, we could
not contact the authors of 10 studies as their reported e-mail addresses
were no longer valid (dash-marked in Tables 2.2 and 2.3). Among the
76 remaining studies, 43 of them (i.e., 57%) contributed to our survey
(check-marked in Tables 2.2 and 2.3). Eight studies (S1, S3, S19, S30, S55,
S62, S67, S68) completely agreed with our classification (we appreciate
the rigorous feedback from S30, S55, S67, and S68, which effectively
improved this work); nine studies (S5, S17, S31, S37, S46, S47, S48, S57,
S81) agreed with the extracted data and also provided further information

23

e.g., specified a category for the data that we classified as not identified;
and twenty-six studies (S2, S6, S9, S10, S11, S14, S16, S20, S23, S24, S25,
S27, S33, S41, S42, S43, S44, S45, S50, S59, S61, S70, S71, S73, S75,
S77) partially agreed and reclassified some attributes. We observe that the
classification of the representation used in studies is the greatest source of
disagreement. Most authors were not aware of the proposed classification,
and preferred to specify a category such as graph, tree, glyph.

2.3 Results

In this section we describe various characteristics of the 86 papers.

2.3.1 Task

Table 2.4 shows the classification of the papers based on the type of
tasks [MMC02] they tackled. Figure 2.5 shows the distribution of the types
of tasks presented in each edition of the venues. We sorted the venues
chronologically starting by SOFTVIS editions followed by VISSOFT ones.
We think it provides a better understanding of their various contributions.
We observe that even though we selected papers from all editions of SOFT-
VIS and VISSOFT, we included only few papers from the first editions of
VISSOFT. This can be a consequence of the lower percentage of design
study papers in VISSOFT than in SOFTVIS (see Figure 2.1). We also
detected that papers tackling testing appear for the first time only in the two
last editions of SOFTVIS and then reappear in VISSOFT’14. Although
most of the reviewed studies tackled programming tasks (as shown in Ta-
ble 2.4) they concentrate on SOFTVIS’03 and VISSOFT’15-’16, showing
little presence in the rest of the editions. We reflect that the result provides
a good overview of the degree of attention that each development concern
has had, but since many different visualization techniques are proposed
within each type, it provides little help to practitioners to find a suitable
visualization for their specific needs. Only the authors of two studies con-
sidered multiple categories to classify the task ([S43], [S61]). The authors
of three other studies proposed to include software comprehension as a cat-
egory ([S67], [S27], [S68]). The authors of one study, while agreeing with
our classification (programming), proposed system design and architecture
as subcategories.

24

Table 2.2: The included papers in the study [S1-S50]. The ones reviewed
by their authors have a check mark. The ones for which we did not find a
valid e-mail address are marked with a dash.

Id Reference Year Rev.

[S1] Merge-tree: Visualizing the integration of commits into Linux, Wild, E. et al. 2016 X
[S2] Visualizing Project Evolution Through Abstract Syntax Tree Analysis, Feist, M.D. et al. 2016 X
[S3] Visually Exploring Object Mutation, Schulz, R. et al. 2016 X
[S4] Jsvee & Kelmu: Creating and Tailoring Program Animations for Computing Education, Sirkiae, T. 2016
[S5] Towards Visualization of Feature Interactions in Software Product Lines, Illescas, S. et al. 2016 X
[S6] Perquimans: A Tool for Visualizing Patterns of Spreadsheet Function Combinations, Middleton, J. et al. 2016 X
[S7] Metrics visualization technique based on the origins and function layers for OSS-based development, Ishizue, R. et al. 2016
[S8] DAHLIA 2.0: A Visual Analyzer of Database Usage in Dynamic and Heterogeneous Systems, Meurice, L. et al. 2016
[S9] A Visualization Framework for Parallelization, Wilhelm, A. et al. 2016 X
[S10] An Interactive Microarray Call-Graph Visualization, Shah, M.D. et al. 2016 X
[S11] On using Tree Visualisation Techniques to support Source Code comprehension, Bacher, I. et al. 2016 X
[S12] Visualizing Modules and Dependencies of OSGi-based Applications, Seider, D. et al. 2016
[S13] vizSlice: Visualizing Large Scale Software Slices, Alomari, H. et al. 2016
[S14] Visualization Tool for 3D Graphics Program Comprehension and Debugging, Podila, S. et al. 2016 X
[S15] CuboidMatrix: Exploring Dynamic Structural Connections in Software Components., Schneider, T. et al. 2016
[S16] Walls, Pillars and Beams: A 3D Decomposition of Quality Anomalies, Tymchuk, T. et al. 2016 X
[S17] Critical Section Investigator: Building Story Visualizations with Program Traces, Shah, M.D. et al. 2016 X
[S18] Visualizing the Evolution of Working Sets, Minelli, R. et al. 2016
[S19] MetaVis: Exploring Actionable Visualization, Merino, L. et al. 2016 X
[S20] Kayrebt: An Activity Diagram Extraction and Visualization Toolset Designed for the Linux Codebase, Georget, L. et al. 2015 X
[S21] XVIZIT: Visualizing Cognitive Units in Spreadsheets, Hodnigg, K. et al. 2015
[S22] Vestige: A Visualization Framework for Engineering Geometry-Related Software, Schneider, T. et al. 2015
[S23] Hierarchical Software Landscape Visualization for System Comprehension: A Controlled Experiment, Fittkau, F. et al. 2015 X
[S24] Interactive Tag Cloud Visualization of Software Version Control Repositories, Greene, G.J. et al. 2015 X
[S25] Blended, Not Stirred: Multi-concern Visualization of Large Software Systems, Dal Sasso, T. et al. 2015 X
[S26] Pixel-Oriented Techniques for Visualizing Next-Generation HPC Systems, Cottam, J. et al. 2015
[S27] SMNLV: A Small-Multiples Node-Link Visualization Supporting Software Comprehension, Abuthawabeh, A. et al. 2015 X
[S28] Live Visualization of GUI Application Code Coverage with GUITracer, Molnar, A.J. 2015
[S29] Advancing Data Race Investigation and Classification through Visualization, Koutsopoulos, N. et al. 2015 —
[S30] Visual Clone Analysis with SolidSDD, Voinea, L. et al. 2014 X
[S31] Polyptychon: A Hierarchically-Constrained Classified Dependencies Visualization, Daniel, D.T. et al. 2014 X
[S32] ChronoTwigger: A Visual Analytics Tool for Understanding Source and Test Co-evolution, Ens, B. et al. 2014
[S33] Visualizing the Evolution of Systems and Their Library Dependencies, Kula, R.G. et al. 2014 X
[S34] The visualizations of code bubbles, Reiss, S.P. et al. 2013 —
[S35] Visualizing software dynamicities with heat maps , Benomar, O. et al. 2013
[S36] DEVis: A tool for visualizing software document evolution, Junji Zhi et al. 2013 —
[S37] SourceVis: Collaborative software visualization for co-located environments , Anslow, C. et al. 2013 X
[S38] SYNCTRACE: Visual thread-interplay analysis, Karran, B. et al. 2013 —
[S39] Automatic categorization and visualization of lock behavior, Reiss, S.P. et al. 2013
[S40] Chronos: Visualizing slices of source-code history, Servant, F. et al. 2013
[S41] Visual support for porting large code bases, Broeksema, B. et al. 2011 X
[S42] Visualising concurrent programs with dynamic dependence graphs, Lonnberg, J. et al. 2011 X
[S43] Visual exploration of program structure, dependencies and metrics with SolidSX, Reniers, D. et al. 2011 X
[S44] MosaiCode: Visualizing large scale software: A tool demonstration , Maletic, J.I. et al. 2011 X
[S45] An interactive ambient visualization for code smells, Murphy-Hill, E. et al. 2010 X
[S46] Exploring the inventor’s paradox: applying jigsaw to software visualization, Ruan, H. et al. 2010 X
[S47] Towards anomaly comprehension: using structural compression to navigate profiling call-trees, Lin, S. et al. 2010 X
[S48] Heapviz: interactive heap visualization for program understanding and debugging, Aftandilian, E.E. et al. 2010 X
[S49] Trevis: a context tree visualization analysis framework., Adamoli, A. et al. 2010
[S50] Dependence cluster visualization, Islam, S.S. et al. 2010 X

2.3.2 Need

In Table 2.8 and 2.9 we present the developer needs that we identified
from studies. Although some studies tackle more than one need we re-
port the most representative one (the complete set of needs is available
online1). On the one hand, we found that 90% of studies (i.e., 77) describe

1http://scg.unibe.ch/research/visualisation-review

25

http://scg.unibe.ch/research/visualisation-review

Table 2.3: The included papers in the study [S51-S86]. The ones reviewed
by their authors have a check mark. The ones for which we did not find a
valid e-mail address are marked with a dash

Id Reference Year Rev.

[S51] Embedding spatial software visualization in the IDE: an exploratory study, Kuhn, A. et al. 2010
[S52] Visualizing windows system traces, Wu, Y. et al. 2010 —
[S53] Zinsight: a visual and analytic environment for exploring large event traces, de Pauw, W. et al. 2010
[S54] Representing development history in software cities, Steinbrückner, F. et al. 2010
[S55] Case study: Visual analytics in software product assessments, Telea, A. et al. 2009 X
[S56] Representing unit test data for large scale software development, Cottam, J.A. et al. 2008
[S57] A catalogue of lightweight visualizations to support code smell inspection, Parnin, C. et al. 2008 X
[S58] Streamsight: a visualization tool for large-scale streaming applications, de Pauw, W. et al. 2008
[S59] Stacked-widget visualization of scheduling-based algorithms, Bernardin, T. et al. 2008 X
[S60] “A Bug’s Life” Visualizing a Bug Database, D’Ambros, M. et al. 2007
[S61] Visualizing Dynamic Memory Allocations, Moreta, S. et al. 2007 X
[S62] A Visualization for Software Project Awareness and Evolution , Ripley, R.M. et al. 2007 X
[S63] Experimental evaluation of animated-verifying object viewers for Java, Jain, J. et al. 2006 —
[S64] Execution patterns for visualizing web services, de Pauw, W. et al. 2006
[S65] Visualizing live software systems in 3D, Greevy, O. et al. 2006
[S66] Visual exploration of function call graphs for feature location in complex software systems, Bohnet, J. et al. 2006
[S67] Multiscale and multivariate visualizations of software evolution, Voinea, L. et al. 2006 X
[S68] CVSscan: visualization of code evolution, Voinea, L. et al. 2005 X
[S69] Jove: Java as it happens, Reiss, S.P. et al. 2005
[S70] Methodology and architecture of JIVE, Gestwicki, P. et al. 2005 X
[S71] Visual Exploration of Combined Architectural and Metric Information, Termeer, M. et al. 2005 X
[S72] Visual data mining in software archives, Burch, M. et al. 2005
[S73] The war room command console: shared visualizations for inclusive team coordination, O’Reilly, C. et al. 2005 X
[S74] Visualizing structural properties of irregular parallel computations, Blochinger, W. et al. 2005
[S75] Visualization of mobile object environments, Frishman, Y. et al. 2005 X
[S76] Towards understanding programs through wear-based filtering, DeLine, R. et al. 2005
[S77] Program animation based on the roles of variables, Sajaniemi, J. et al. 2003 X
[S78] Visualizing Java in action, Reiss, S.P. 2003
[S79] EVolve: an open extensible software visualization framework, Wang, Q. et al. 2003 —
[S80] Visualization of program-execution data for deployed software, Orso, A. et al. 2003
[S81] A system for graph-based visualization of the evolution of software, Collberg, C. et al. 2003 X
[S82] Interactive locality optimization on NUMA architectures, Mu, T. et al. 2003 —
[S83] Graph visualization for the analysis of the structure and dynamics of extreme-scale supercomputers, Zhou, C. et al. 2003 —
[S84] KScope: A Modularized Tool for 3D Visualization of Object-Oriented Programs, Davis, T.A. et al. 2003
[S85] Self-Organizing Maps Applied in Visualising Large Software Collections, Brittle, J. et al. 2003 —
[S86] Revision Towers, Taylor, C.M.B. et al. 2002

envisioned user needs by explicitly posing questions that can be answered
using the proposed visualization, such as “what is the software doing when
performance issues arise?” [S69], “what does this called method do?”
[S76]. On the other hand, in 10% of studies (i.e., 9) there was no explicit
question formulation. In such cases, we identified the goals that the pro-
posed visualization achieves, examples of them being “to assist designers
of scheduling-based, multi-threaded, out-of-core algorithms” [S59], “to
get a better insight into the control or data flow inside a program” [S20].
Although questions allow users to assess whether a visualization is useful,
we observe that uncategorized questions hinder the reuse of a visualiza-
tion. We tackle this issue with a classification of needs based on problem
domains. A detailed analysis is provided in Section 2.4.

26

Table 2.4: Classification of papers based on the tasks.

Task Reference #

Debugging S14, S22, S29, S34, S42, S48, S50, S53, S59,
S66, S69-S70, S75, S78, S80

15

Maintenance S2-S3, S5, S8-S9, S13, S30, S33, S35, S37-
S38, S41, S43-S46, S57, S60-S61, S64, S67-
S68

22

Programming S4, S6-S7, S11, S17-S19, S21, S24, S26, S28,
S39, S51-S52, S61, S63, S71, S74, S76-S77,
S79, S81-S83, S86

25

Reverse Engineering S10, S12, S15, S20, S23, S25, S27, S31, S40,
S43, S47, S54, S65, S67, S72, S84-S85

17

Software Process
Management

S1, S16, S36, S55, S62, S73 6

Testing S32, S49, S56, S58 4

2.3.3 Audience

Software developers play specific roles such as interaction designer, so-
lution architect, GUI designer, requirements analyst, release coordinator.
In contrast, as shown in Table 2.5, 85% of the studies (i.e., 73) envisioned
a generic audience described as developer (42), user (19), programmer
(17), or engineer (5). In the remaining studies the role of the user was
more specific such as project manager (9), architect (7), maintainer (5),
tester (4), or designer (2). Less frequent roles were bug triager, HPX de-
veloper, operation staff, performance analyst, quality assurance engineer,
and reviewer. Some studies envisioned roles of users from other fields such
as business owner and student. One study envisioned managers as well
as developers pursuing the same questions “(1) when were the changes
made? (2) what kind of changes have been made? and (3) how does visit /
download time vary over time?” [S36]. Another study envisioned that their
tool would be suitable for “everyone involved in software development”
[S62]. We observed that a better understanding of the scope of the role that
an audience plays would (1) help researchers to propose solutions focused
on the particular problems that roles cope with, and (2) facilitate adoption
of visualization by practitioners.

27

Figure 2.5: Distribution of papers by task in each venue. Bottom-up: Debug-
ging, Programming, Reverse Engineering, Maintenance, Software Process
Management and Testing.

2.3.4 Data source

Table 2.6 presents various sources of data that are visualized in the studied
papers. The most frequent data were gathered from (1) running system.
Most studies visualized traces of execution, metrics (e.g., CPU usage) and
user interactions. Some studies visualized events among applications to
analyze operating systems and distributed architectures. A few studies
visualized memory accesses and behavior of live objects; (2) source code
that provided the input to build models of systems for the visualization of
dependencies, metrics, structure and inheritance. A few studies visualized
annotations used to define features, the scope of variables and program
slices. We found that the most frequent language supported was Java,
followed by C/C++, which was supported by half of the studies. Other
languages with little support include Smalltalk and Pascal; and (3) version
control system. Most studies visualized meta-data from the commit (e.g.,
author, date, message), and less frequently changes of code (e.g., added
and removed files). Less frequently we found non-traditional sources such

28

Table 2.5: Classification of papers based on the audience.

Audience Reference #

Developer S2, S5, S8-S9, S11-S13, S18-S19, S22-S23,
S25-S26, S30-S31, S33, S35-S37, S40-S41,
S43-S44, S46-S47, S49-S51, S54, S56-S58,
S60, S64-S68, S71, S73, S75-S76, S80

42

User S1, S5, S8, S12-S13, S15, S17-S18, S21,
S34, S38, S52, S60, S74, S78-S79, S82-S83,
S85

19

Programmer S3-S4, S7, S10, S14, S24, S39, S45, S48,
S59, S61, S64, S69-S70, S75, S81, S86

17

Project Manager S2, S12, S32, S44, S54-S55, S57, S68, S73 9
Architect S9, S30, S31, S44, S55, S68, S71 7

Manager S7, S16, S24, S36, S62, S86 6
Student S4, S14, S28, S42, S63, S77 6
Engineer S5, S50, S65, S70, S72 5
Maintainer S13, S33, S50, S68, S80 5
Analyst S13, S16, S53, S75 4
Leader S7, S41, S43, S73 4
Tester S7, SS60, S64, S68 4
Researcher S2, S6, S84 3
Designer S7, S64 2
New Team Member S20, S68 2
Practitioner S6, S28 2
Quality Assurance En-
gineer

S29, S60 2

Bug Triager [S2], Business Owner [S64], Coders [S62], End-
User [S60], Everyone involved in development [S62], HPX
Developer [S26], Linux Kernel Developer [S20], Operation
Staff [S64], Performance Analyst [S53], Reviewer [S7], Soft-
ware Manager [S36], Test Manager [S32]

1

as spreadsheets, bug tracking systems (e.g., Bugzilla), build automation
tools (e.g., Maven), databases and documentation.

We observe that visualizations have focused on sources of complex
data that are difficult to analyze by other means, but this also shows that

29

sources of complex data are not limited to the traditional ones. We also
noticed that studies focus mainly on describing how they modeled data
rather than specifying the source and type of data. We observe that detailed
descriptions of data that include not only the source but the format as well
as other characteristics can help developers to adopt visualizations. For
instance, users who are aware of a technique for visualizing a stack trace
gathered from a running system can decide whether their context is similar
enough to adopt the visualization.

2.3.5 Representation

Describing the representation used in a visualization is a complex task.
Authors proposing a visualization use various strategies to describe the
applied techniques. Some used verbose descriptions [S62, S65] by specify-
ing dimensions, metaphors, marks, and properties of them. Others [S68,
S71] opted for concise but sometimes vague descriptions. We classify the
visualization techniques used in the studies according to the popular tax-
onomy proposed by Keim [Kei02]. This taxonomy provides a concise list
of categories upon which abundant research has relied. In it, visualization
techniques can belong to one of four categories (examples are shown in
Figure 2.6): (1) Stacked techniques that are tailored to present data in a
hierarchical fashion (e.g., Treemaps and Cone Trees); (2) Iconic techniques
that map the data attributes to the features of an icon (e.g., CocoViz [S46]);
(3) Geometrically-Transformed techniques that aim at finding interesting
transformations of data attributes (e.g., Scatter-plots and Parallel Coordi-
nates); (4) Dense Pixel techniques that map each data attribute to a colored
pixel and group the pixels belonging to each attribute into adjacent areas
(e.g., Vampir [S7]) ; and (5) Standard 2D/3D techniques such as Bar Charts,
X-Y Plots;

Table 2.7 presents these categories. We note that approximately half of
the studies (i.e., 44) combine techniques from several categories. The most
frequent combination occurred between Treemaps and Node-link diagrams
(Stacked and Geometrically-Transformed). Combinations of other types of
techniques occurred with less frequency (less than four studies). Frequent
types are Geometrically-Transformed (GT), Dense Pixel (DP) and Stacked
(ST). We observe that GT is frequent since node-link techniques, that
belong to this category, are commonly used by visualizations that explore
relationships. The DP type contains techniques suitable for depicting mas-

30

Table 2.6: Classification of papers based on the data source.

Data Source Reference #

Running System
(41)

Trace
Execution S3, S9-S10, S14-S15, S17,

S20, S22, S28-S29, S38-S39,
S42, S49, S56, S59, S65, S69-
S70, S74, S78-S80

22

Metric S17, S47, S66, S71 4
Interaction S62, S76 2

Application events S23, S52, S53, S58, S64, S75,
S83

7

Memory accesses S9, S20, S48, S61, S80, S82 6
Live objects S9, S18-S19, S63 4

Source Code
(31)

Dependency S4, S8, S12-S13, S27-S28,
S31, S37, S43-S44, S46, S50,
S54-S55, S63, S65-S66, S77,
S81, S84-S85

22

Metric S3, S12, S30, S37, S41, S43-
S46, S51, S55, S71

12

Structure S8, S27, S31, S37, S43, S44,
S46, S55, S65-S66, S79

11

Inheritance S81, S84-S85 3
Annotation [S5], Scope [S11], Slice [S13] 1

Version Control
System (16)

Meta-data S1-S2, S26, S32, S34-S36,
S40, S67-S68, S72-S73, S86

13

Code Changes S2, S8, S16, S32, S34-S36,
S55, S67-S68

10

Spreadsheet (2) S6, S21 2
Others (4) Bug Tracking System [S60], Build Automatic Tool

[S33], Database [S8], Documentation [S71]
1

sive data sets such as Heatmap. ST also includes popular techniques for
hierarchical data such as Treemap.

31

Figure 2.6: Examples of visualizations for each type (1) Stacked, (2) Iconic,
(3) Geometrically-Transformed, and (4) Dense Pixel.

2.3.6 Tool
Tables 2.8 and 2.9 summarize the tools collected from the papers. Normally,
they are developed as prototypes to evaluate a proposed visualization. All
studies, among the 77 that explicitly identified a tool (i.e., 90%), introduced
a new visualization tool. Notice that the tool named Jive that was used in
two studies [S70, S78] corresponds to a different tool. A few (i.e., 26%)
made their tool and source code publicly available. As one can expect,
few prototypes were maintained and extended over time. The most notable
cases are Jive [S70], and two tools used for teaching programming: jGrasp
[S63] and PlanAni [S77]. If we consider tools for which current informa-
tion is available, their average lifespan is 3.7 years2. We acknowledge that
this value represents only a lower bound, since it does not consider possi-
ble earlier presentations of the tools. Various studies often used different
visualization frameworks. The most frequent ones are OpenGL (11) used
over multiple years, and D3.js (9) and Roassal (6) used only recently. Also,
three studies used Java3D in more than a decade ago. GraphViz was used

2We measured lifespan as the time between a tools’ first appearance in a publication and
the last update to the projects’ repository.

32

Table 2.7: Classification of papers based on the representation.

Representation Reference #Type Technique

G
eo

m
et

ri
ca

lly
-T

ra
ns

fo
rm

ed Node-link diagram
(Tree Layout)

S1, S6, S9, S11, S14, S17, S23, S27,
S31, S36-S38, S40, S42-S43, S48,
S55-S56, S64

16

Node-link diagram
(Force-directed
Layout)

S5, S10, S12, S18-S19, S31-S32,
S65, S69, S72, S74, S81

11

Hierarchical Edge
Bundle

S30, S41, S43, S55 4

Parallel Coordinate S13, S46 2
Scatterplot S32, S46 2

St
ac

ke
d Treemap S1, S5, S11, S12, S13, S35, S43, S55,

S80
9

Icicle Treemap S11, S17 2
Sunburst S49 1

D
en

se
Pi

xe
l Heatmap S22, S26, S34-S35, S39, S50, S53,

S57, S59, S60-S61, S67-S68, S73
14

Matrix S3, S15-S16, S44, S52, S72, S82 7
Table Lens S41, S43, S50, S80 4

Ic
on

ic S4, S7, S8, S15-S16, S19, S24-S25,
S35-S36, S45-S47, S51, S56, S60,
S62, S67, S69, S71, S83, S85

22

St
an

da
rd S3-S4, S9, S14, S21, S28, S33, S58,

S59, S63-S64, S66, S70, S75-S77,
S79

17

in four studies. The rest of the studies use multiple frameworks, and in
twenty-three there is no explicit information about any frameworks used.

2.3.7 Medium

In our previous work [MGN16a], we included the medium as one of the
dimensions of the proposed software visualization taxonomy. Although
the authors of a previous taxonomy [MMC02] envisioned a future where

33

Table 2.8: Visualization tools and needs extracted from papers [S1-S50].

Ref. Tool Year Framework Questions and Goals that Motivate Visualization

[S1] Linvis 2016 Python, Flask How and by whom commits arrive and merge into the Linux repository?
[S2] TypeV 2016 JavaScript, TypeScript, D3.js What is a developer’s contribution to a repository?
[S3] Object Evolu-

tion Blueprint
2016 Smalltalk, Roassal How the value of variables change during the execution of a program?

[S4] Jsvee 2016 JavaScript How program code behaves when it is executed?
[S5] ECCO 2016 JavaScript, D3.js How features are implemented and interact?
[S6] Perquimans 2016 JavaScript, D3.js How are spreadsheet users building formulae?
[S7] MAF and OC 2016 JavaScript, HTML5 To show the origins and function layers in development
[S8] DAHLIA 2016 Not identified How the database elements are mapped in the Java code?
[S9] Parceive 2016 JavaScript, D3.js To assist users in identifying scenarios that benefit from parallelization
[S10] Not identified 2016 Java, Processing How execution time is spent in the program?
[S11] Not identified 2016 JavaScript, D3.js,

ace.js, esprima.js, estra-
verse.js,escope.js

What is the static structure of a source code document?

[S12] Not identified 2016 JavaScript, D3.js To analyze software structure and dependencies
[S13] vizSlice 2016 JavaScript, D3.js What parts of the software can be affected by a change?
[S14] Not identified 2016 JavaScript, D3.js Is the data transferred correctly from CPU to GPU?
[S15] CuboidMatrix 2016 Smalltalk, Pharo, Roassal How code critiques are distributed in the software?
[S16] A Roassal 3D

visualization
2016 Smalltalk, Pharo, Roassal3D What are quality evolution anomalies and what caused them?

[S17] CSI 2016 Java, Processing How call trees behave for critical sections in a Java program?
[S18] Not identified 2016 Smalltalk, Pharo, Roassal How developers navigate and interact with code during development?
[S19] MetaVis 2016 Smalltalk, Pharo, Roassal What visualizations are suitable to answer development questions?
[S20] Kayrebt 2015 C, C++, GraphViz, Qt What is actually compiled by the compiler?
[S21] XVIZIT 2015 Java FX, Control FX, Graph-

Stream
What would be affected if I were to change a cell?

[S22] Vestige 2015 C++ OpenGL How the computation reached that result?
[S23] ExploreViz 2015 JavaScript, tree.js What are the consequences of a failure in a certain application?
[S24] ConceptCloud 2015 Play web framework How often and by whom certain files have changed together?
[S25] Blended City 2015 Smalltalk, Pharo, Roassal What happened to a software system in a given time frame?
[S26] Vampir 2015 Not identified How different are work queues on different threads?
[S27] SMNLV 2015 Java 8, Graphisto Toolkit,

abego TreeLayout, NetBeans
Visual Library

To check guidelines and re-engineering of existing software,

[S28] GUITracer 2015 Java 6 using AWT, Swing What source code runs once a GUI event is fired?
[S29] RaceView 2015 C, Eclipse Visualization Zest How a specific code location can be reached via function calls?
[S30] SolidSDD 2014 C, C++ , OpenGL How are clones distributed across system structure?
[S31] Polyptychon 2014 JavaScript, D3.js Are there any patterns in the dependency structure?
[S32] ChronoTwigger 2014 OpenGL, GLUT, VR Juggler How source and test files develop together over time?
[S33] Not identified 2014 R, GGPlot2 When should I update my library dependencies
[S34] Code Bubbles 2013 Not identified How are Java programs based on working sets developed?
[S35] VERSO 2013 Not identified How programmers behave during the evolution of a program?
[S36] DEVis 2013 Java, G4P When and what kind of changes have been made?
[S37] SourceVis 2013 Java, MT4j, OpenCloud,

JFreeChart
What is the structure and properties of software?

[S38] SYNCTRACE 2013 Not identified Where and when a thread waits or releases?
[S39] Not identified 2013 Not identified Which locks interact with one another and how complex is it?
[S40] Chronos 2013 Java When, how, by whom, and why was this code changed or inserted?
[S41] PortAssist 2011 C++, Qt, OpenGL Which rewrite activities conflict with each other?
[S42] Atropos 2011 Java, Apache Commons

BCEL, Matrix software
visualisation framework

How do operations executed in a Java program relate to each other?

[S43] SolidSX 2011 OpenGL, GLUT, FTGL,
wxWidgets

How metrics correlate with the dependencies in the system?

[S44] MosaiCode 2011 C++, Qt How metrics have changed? Where are run time bottlenecks?
[S45] Stench Blos-

som
2010 Java, Eclipse What code smells are present in the code I am working with?

[S46] Jigsaw 2010 Not identified What entities are likely to depend on this package?
[S47] ProfVis 2010 Java, HProf, Processing What parts of the program could be modified to improve performance?
[S48] Heapviz 2010 Prefuse toolkit What is the shape of the data structures, and how are they connected?
[S49] Trevis 2010 Trevis, GraphViz To study the calling contexts where the program spent most time
[S50] Decluvi 2010 Java What is the dependence structures/clusters in your program?

software visualizations would use a variety of media, we found few stud-
ies exploiting this dimension, shown in Table 2.10. Almost 56% of the
reviewed studies do not mention the expected medium on which the vi-

34

Table 2.9: Visualization tools and needs extracted from papers [S51-S86].

Ref. Tool Year Framework Questions and Goals that Motivate Visualization

[S51] CodeMap 2010 Not identified What is the purpose of the application? Who are the collaborators?
[S52] lviz 2010 OpenJDK 1.6.0 How the operating system works?
[S53] Zinsight 2010 Not identified How did we get to these events?
[S54] CrocoCosmos 2010 jMonkeyEngine How the component content changes over time?
[S55] Not identified 2009 Not identified How metrics evolve in time over the entire software system?
[S56] SeeTest 2008 Stencil visualization environ-

ment
How did the changes from yesterday affect project’s stability?

[S57] NosePrints 2008 Not identified How widespread and how difficult a problem may be to fix?
[S58] Streamsight 2008 dot How the system and applications evolve?
[S59] Lumiere 2008 OpenGL, C++ How are concurrent tasks scheduled by the algorithm?
[S60] Bug Watch 2007 Not identified How the bugs are distributed in the system over time?
[S61] MemoView 2007 C++, OpenGL, FLTK How does fragmentation depend on time and pool?
[S62] Palantír 2007 Java When was the artifact changed?
[S63] jGrasp 2006 Not identified To understand concepts of dynamic programming implementation
[S64] IBM Web Ser-

vices Naviga-
tor tool

2006 Not identified How different IT resources interact sequentially with one another?

[S65] TraceCrawler 2006 CCJun How the system behaved during the execution of a feature?
[S66] Call Graph

Analyzer
2006 GraphViz Which the important functions for feature understanding are?

[S67] CVSgrab 2006 Python, wxWidgets, OpenGL, C How metrics correlate during evolution of a given set of items?
[S68] CVSscan 2005 Python, wxWidgets, OpenGL, C What code lines were added, removed, or altered, when and by

whom?
[S69] Jove 2005 Not identified What the software is doing when performance issues arise?
[S70] Jive 2005 Not identified What is the runtime object structure of a Java program?
[S71] MetricView 2005 C++, OpenGL, FreeType,

wxWindows
Where are components having certain properties?

[S72] EPOSee 2005 Not identified What items have been changed at the same time?
[S73] War Room

Command
Console

2005 Java, C++ Who is currently working on what?

[S74] DOT 2005 Java, yFiles library What are optimal parameters to distribute the work on the processors?
[S75] Mobile Object

Visualization
2005 Java, Java3D, GraphViz How does the architecture supports object mobility behavior over

time?
[S76] FAN 2005 Not identified Which method in the source code implements certain behavior?
[S77] PlanAni 2003 Tcl/Tk How the successive values of the variable relate to each other and to

other variables?
[S78] Jive 2003 Not identified What threads are in the program?
[S79] EVolve 2003 Not identified When and for how long particular events occur?
[S80] Gamma /

Gammatella
2003 Java, Swing, TreeMap Java Li-

brary
How often the statement is executed?

[S81] GEVOL 2003 Not identified How and by whom the parts of the program were created?
[S82] Not identified 2003 Not identified How much of the data is dominantly accessed by the local nodes?
[S83] Flatland 2003 OpenGL To analyze massively parallel supercomputer architectures
[S84] Kscope 2003 Java3D To provide an analysis of Java programs
[S85] GENISOM 2003 Java3D To aid programmers in the process of reverse engineering
[S86] Revision Tow-

ers
2002 Not identified How often, and how, changes are made?

sualization should be displayed (labeled as not identified). Among the
44% that explicitly mentioned a medium the majority (i.e., 87%) specified
the standard PC display. However, there were other studies that indicated
diverse media from a small window in a standard monitor to a wall-display,
large multi-touch tables, tablets, 3D glasses and immersive virtual reality.

35

Table 2.10: Classification of papers based on the medium.

Medium Reference #

Not Identified S1-S3, S5, S7-S8, S12-S13, S15, S17-S18, S21-S22,
S25-S26, S28-S29, S31, S34-S36, S38-S40, S46, S48-
S49, S51-S56, S58, S60, S63-S64, S66, S69, S72, S74,
S76, S78-S80, S82, S85-S86

48

Standard
screen

S4, S6, S9-S11, S14, S16, S19-S20, S23-S24, S27,
S30 ,S41-S43, S45, S47, S50, S57, S59, S61-S62, S65,
S67-S68, S70-S71, S75, S77, S81, S83-S84

33

Wall-display S27, S33, S57, S62, S73 5
3D glasses [S71], Immersive Virtual Reality [S32], Tablet [S4],
Multi-Touch Table [S37], Multi-Monitor [S44]

1

2.4 Discussion

In this section we discuss our findings, and we provide recommendations
to practitioners and researchers, respectively, for adopting visualizations,
and for identifying domains that require more attention.

A majority of studies do not follow a specific structure for describing
their proposed techniques. We believe that following a specific structure
encourages researchers to reflect on important dimensions that should drive
the design of a visualization tool [MMC02, SvG05]. Moreover, we believe
that providing a clear description of a research problem, and formulating
explicit research questions ease tool adoption by practitioners. For instance,
instead of a fuzzy description like “provides an analysis of Java programs”
[84] which does not reflect an exact goal, we suggest a reformulation
to “analyze class dependency for validation of experimental software
visualization techniques.”

In section 2.3.1 we classified the papers into six high-level software de-
velopment tasks (shown in Table 2.4). We note that a different visualization
is proposed to tackle developer needs that are classified in the same task.
Hence, we argued that such a classification does not provide an appropriate
support for practitioners to find and adopt a suitable visualization for their
specific needs. We observe that practitioners require a more fine-grained
classification that links existing visualization techniques to their concrete
needs.

36

We observe that researchers who focused on the questions that develop-
ers ask during software development have classified the type of questions
using diverse criteria. We rely on that research to (1) identify the used cat-
egories to classify the design study papers, and (2) evaluate how important
are those categories based on the number of different type of questions and
their frequency.

We classify the studies into (1) subject-oriented [FM10], (2) process-
oriented [SMDV06], and (3) problem-oriented [LM10]. We believe map-
ping such classifications of developer needs to the visualization techniques
proposed by studies provides a better support for practitioners to adopt a
visualization in their daily tasks and allows us to analyze how well a pro-
posed visualization supports developers to answer questions that actually
arise during development. According to our investigation, these classi-
fications offer an appropriate granularity to accommodate the questions
from other studies too. Hence, we classified the 86 included papers by
identifying categories in each classification that contain similar types of
questions to the needs extracted from the papers (shown in Tables 2.8 and
2.9). In studies for which we extracted a goal instead of a question, we
inferred the category from other types of questions that would help users to
achieve that goal. In the following we present the classification of studies
based on the classifications: subject, process and problem-oriented.

Subject-oriented. Fritz et al. [FM10] proposed a classification in which
questions can belong to one of the following categories: people (e.g., who
is working on what), code (e.g., changes to the code), progress (e.g., work
item progress), build (e.g., broken builds), test (e.g., test case analysis), web
(e.g., web related concerns), and other questions. The result of the classifi-
cation of the studies is shown in Table 2.11. We found that visualizations
that we classified as dealing with (i) code particularly focused on subjects
such as architecture, commits, critiques, features, memory management,
threads, and working sets, (ii) other spanned subjects such as databases,
event traces, failure reports, and visualization examples, (iii) people sub-
jects addressed ownership, (iv) test subjects focused on GUI and compiler,
and (v) build subjects were related to compiler optimizations and build
configurations.

Process-oriented. Sillito et al. [SMDV06] introduced a classification
that focuses on understanding the cognitive process of moving from ques-
tions to answers. Their classification of type of questions includes the
following categories: (i) finding initial software entities that might lead
developers to formulate a concrete question, (ii) building on those points

37

Table 2.11: Subject-oriented classification of studies.

Category References #

Code S2, S5-S7, S11-S13, S21, S23-S25, S27-S37, S40-S41, S43-
S46, S50-S51, S54-S57, S60, S62, S67-S68, S71-S72, S76,
S81, S84-S86

45

Other S1, S3-S4, S8-S10, S14-S20, S22, S26, S38-S39, S42, S47-
S49, S52-S53, S58-S59, S61, S63-S66, S69-S70, S73-S75,
S77-S80, S82-S83

41

People S2, S6, S24, S34-S35, S40, S51, S54-S55, S68, S81, S86 12
Test S28, S32, S56, S57 4
Build S25 1
Progress - 0
Web - 0

by identifying relationships between entities, (iii) understanding a group
of entities and relationships, and (iv) questioning how various groups relate
each other. In Table 2.12 we present the results of the classification of
studies. We observe that as the cognitive process increments in complex-
ity (finding→ building→ understanding→ questioning) the number of
proposed visualization decreases.

Table 2.12: Process-oriented classification of studies.

Category References #

Finding S1-S86 86
Building S1-S2, S4-S18, S20-S26, S28-S61, S63-S66, S68-S71,

S74-S81, S83-S86
78

Understanding S2, S4-S9, S12-S18, S20-S23, S25-S26, S28-S33, S38-
S39, S42, S44-S47, S49-S53, S55-S57, S59, S63-S65,
S68-S71, S76-S78, S81, S85-S86

55

Questioning S2, S8, S13-S17, S20-S21, S23, S28-S29, S32-S33,
S39, S51, S53, S55-S56, S59, S65, S69, S76-S77, S86

25

Problem-oriented. LaToza et al. [LM10] proposed a classification that
comprises 21 problem domains which they used to categorize 94 types of

38

questions. Table 2.13 presents the obtained results of the classification of
the 86 studies.

In summary, we observe that in the subject-oriented classification
the majority of questions supported by visualizations relates to the code
category. There is also a moderate number of visualizations that support
questions that focus on people. Certainly, both represent the main subjects
of software visualization. Indeed, Figure 2.8 shows that both code and
people are balanced. The chart also shows that there are a few subjects
such as Builds, Progress, and Web that even though represent developer
needs have less attention from proposed visualization.

In the process-oriented classification, we notice that visualization pro-
vides a good fit to the mental process of developers (i.e., the more complex
the mental process, the more visualizations are available). Typically, vi-
sualizations provide developers with an overview that help them to find
interesting patterns. Developers can reflect on those patterns and build
hypotheses. Developers can test hypotheses by getting details-on-demand
of elements that lead in a deeper understanding of the system artifact.
Finally, developers are able to answer complex questions by combining
their understanding on multiple findings.

We observe that the problem-oriented classification is more fine-
grained, thus facilitating the analysis to understand the relationships be-
tween the needs of developers and the proposed visualization.

In the following section we revisit our research questions based on the
described classifications.

RQ.1) What are the characteristics of visualization techniques that support
developer needs?

While few problem domains in the classification (like debugging and
testing) seem to be a task by themselves, they also occur very often in the
context of addressing different tasks. That is, a visualization proposed to
support questions regarding performance during a reverse engineering task
(e.g., “where is most of the time being spent?” [S10]) may differ from
the one proposed for performance questions that arise during a debugging
session (e.g., “how did we get to these events?” [S53]). Figure 2.7 shows
the mapping between the problem domains and the types of visualization
techniques. In it, problem domains are labeled. The ones in the same cate-
gory are vertically aligned (left-to-right changes, element relationships, and

39

Table 2.13: Problem-oriented classification of the 86 design studies.

Problem domain Reference #

C
ha

ng
es

Building
and branching - 0

Debugging S3, S14, S22, S34, S42, S48, S51, S53, S58,
S59, S66, S69, S70, S78, S80

15

History S1, S2, S16, S24, S25, S35, S36, S40, S44,
S54, S56, S60, S62, S67, S68, S72, S86

17

Implementing S6, S7, S11, S18, S19, S22, S30, S44, S58,
S59, S63, S68

12

Implications S4, S6, S33, S41, S44, S47, S51, S71, S73,
S76, S79

11

Policies - 0
Rationale S11, S81 2
Refactoring S6, S11, S45 3
Teammates S2, S24, S35, S37 4
Testing S22, S44, S51, S57, S60, S84 6

E
le

m
en

tr
el

at
io

ns
hi

ps

Architecture S5, S8, S11, S12, S16, S23, S30, S32, S45,
S51, S55, S83, S85

13

Contracts S27 1
Control flow S10, S11, S20, S42, S59, S65 6
Data flow S8, S20, S42, S59 4
Dependencies S5, S8, S13, S15, S21, S27, S31, S42, S43,

S46, S50, S75, S76
13

Type
relationships S27 1

E
le

m
en

ts

Concurrency S9, S17, S26, S29, S38, S39, S42, S59 8
Intent
and implication S4, S51, S73, S76 4

Location S5, S28, S44, S51, S65, S77 6
Method
properties S16, S44 2

Performance S49, S52, S53, S58, S61, S64, S74, S82 8

40

elements). The colors of the tiles encode the type of visualization technique
used by studies tackling that domain. Problem domains that did not match
any studies are shown in black. The size of a tile is proportional to the
number of studies classified in that domain. Looking at the distribution of
visualization techniques across the types of problem domains (i.e., changes,
element relationships and elements) we do not perceive a preferred one.
Instead, we observe that dense pixel and geometrically-transformed are
the most frequent techniques used in the main problem domains such as
history, debugging, performance. In contrast, iconic techniques are present
in only a few domains, but when present they predominate over other tech-
niques such as history, implications and testing. Iconic techniques enforce
comparison of multivariate data by mapping their properties to the various
dimensions of a glyph (including its position). Questions regarding the
history domain frequently involve the time, which is commonly mapped
to the position. We think that this is the reason why most visualizations
proposed to tackle needs in the history domain include iconic techniques.

RQ.2) How well are developer needs supported by visualization?

Since there is a large number of questions that developers need to
answer during development, we analyze them at a higher level by using
classifications proposed by research in the field. For each classification,
we estimate the importance of categories for practitioners based on the
number of type of questions (and frequencies) that they contain. The more
questions a category contains, the more important that category is for
developers. The metric is then normalized to enabling comparison.

Figures 2.8, 2.9 and 2.10 compare the importance of developer needs
(red bar) versus the number of visualization techniques proposed to address
those needs (blue bar). They show that (1) when analyzing the subjects as-
sociated with a need [FM10] (see Figure 2.8) questions related to code and
people are of high relevance for developers. Although researchers invest an
adequate attention to the code category, many proposed visualizations are
classified in the others category. The inspection of those questions shows
that they relate to runtime analysis. That (2) the analysis of the importance
of questions by the process [SMDV06] (see Figure 2.9) in which they are
involved shows that developer needs and the proposed visualizations are
almost in sync. Most questions that developers pose, involve building on
initial findings. However, visualizations have focused slightly more on

41

Figure 2.7: Mapping type of visualization used by studies to problem
domains.

understanding than purely building. Finally, (3) we analyze the needs of
developers by grouping questions at problem domain [LM10] (see Figure
2.10). We observe that practitioners are more concerned about changes,
while existing visualizations distribute their attentions among all three
categories. Some problem domains (e.g., rationale, intent, implementation,
and refactoring) are very important for developers but have little visual-
ization support. In contrast, several less important problem domains (e.g.,
architecture, concurrency and dependencies) received a good degree of

42

attention. We wonder why some are not supported? We conjecture that less
well-supported domains tackle problems that require hidden semantics to
be inferred from software artifacts, so proposing a visualization is difficult.

Figure 2.8: Subject-oriented analysis of importance of developer needs
vs. their visualization support. The large number of visualizations in the
others category exposes limitations of this classification.

Figure 2.9: Process-oriented analysis of importance of developer needs vs.
their visualization support. The focus on each mental process seems well
balanced.

2.4.1 Threats to Validity

The main threat to the validity of our study is bias in paper selection. We did
not include papers from other venues. We mitigated this threat by selecting
peer-reviewed papers from the most cited venues dedicated to software
visualization. Moreover, we included design studies and excluded other
types of papers. However, since most of papers do not specify their types,
we may have missed some. We mitigated this threat by defining a cross-
checking procedure and criteria for paper type classification. Finally, the
data extraction process could be biased. We mitigated this by establishing

43

Figure 2.10: Problem-oriented analysis of importance of developer needs
vs. their visualization support. Ideally, both charts would be symmetrical.
However, we observe several unbalanced domains.

a protocol to extract the data of each paper equally; and by maintaining a
spreadsheet to keep records, normalize terms, and identify anomalies.

2.5 Conclusion

We studied 86 publications in academia that describe how visualization
techniques can help developers to carry out their tasks, and we investi-
gated how well practitioner needs are supported by existing visualization
techniques. On the one hand, we analyze research that describes complex
questions that practitioners often ask during software development. On the
other hand, we reviewed the literature looking for the needs that benefit
from particular visualizations. We compared the degree of importance of
needs grouped by subject, process and problem domains for practitioners to
the visualization support available for them. Although the developer needs
grouped by subject and process seem well supported by visualization, we

44

found a disconnect between the problem domains on which visualizations
have focused and the domains that get the most attention from practitioners.
The results of our literature study suggest that some problem domains
such as rationale, refactoring, contracts and policies require more attention
from the visualization community, while a considerable amount of work is
devoted to dependencies, architecture and concurrency.

Our characterization provides an overview of the state-of-the-art in
software visualization. We identified a collection of relevant proposed soft-
ware visualization approaches, and classified them into various categories
based on main characteristics. However, we did not include in the analysis
whether those proposed visualization approaches have proved effective to
support the targeted software engineering task. In the following chapter we
elaborate on such aspect.

45

46

3
Software Visualization Evaluation

3.1 Introduction
A developer can obtain the benefits of adopting a software visualization
approach only if that approach has proven to be effective to support the
target software engineering task. Therefore, we look into the evidence
presented in the evaluations of proposed software visualizations.

Indeed, researchers adopt varying strategies to evaluate software vi-
sualization approaches, and therefore the quality of the evidence of their
effectiveness varies. We believe that a characterization of the evaluation
of software visualization approaches will (i) assist researchers in the field
to improve the quality of evaluations, and (ii) increase the adoption of
visualization among developers.

We consider previous research to be an important step to characterizing
the evidence of the effectiveness of software visualization approaches.
However, we reflect that previous research has failed to define what is an
effective software visualization, and consequently comparing the effective-
ness of visualization approaches is not possible. Moreover, we believe that
some studies have used a loose definition of “case studies” and include
many usage scenarios of visualization instead that present little evidence of

47

the effectiveness of an approach. In our investigation we perform a subtler
analysis of the characteristics of evaluations to elucidate these concerns.
Consequently, we formulated the following research questions:

RQ1.) What are the characteristics of evaluations that validate the effec-
tiveness of software visualization approaches?

RQ2.) How appropriate are the evaluations that are conducted to validate
the effectiveness of software visualization?

We believe that answering these questions will assist researchers in the
software visualization field to improve the quality of evaluations by iden-
tifying evaluation strategies and methods and their common pitfalls. In
particular, we reviewed 181 full papers of the 387 papers published in
SOFTVIS/VISSOFT. We identified evaluation strategies such as surveys,
case studies, and experiments, as well as characteristics such as tasks,
participants, and systems used in evaluations. We found that 62% (i.e., 113)
of the proposed software visualization approaches either do not include
any evaluation, or include a weak evaluation (i.e., anecdotal evidence, us-
age scenarios). Almost all of them (i.e., 110) introduce a new software
visualization approach. The remaining three discuss an existing approach
but without providing a stronger evaluation. We also found that 29% of
the studies (i.e., 53) conducted experiments in which 30% (i.e., 16) corre-
sponded to visualizations that target the novice developer audience, and
included appropriate participants. The remaining 70% proposed visualiza-
tions for developers with various levels of experience. However, amongst
them only 30% included experienced developers, and the remaining 70%
(i.e., 37) included in experiments only students and academics of a con-
venience sample who are vulnerable to selection bias and hence hinder
generalization. We found that 7% (i.e., 12) of the studies conducted a
case study that involved (i) professional developers from industry, and
(ii) real-world software systems. Finally, 3% (i.e., 4) of studies conducted
a survey. Even though we are not aware of a similar quantitative report of
the state of the art in information visualization, a review of the practice of
evaluation [IIC+13] found similar issues.

We believe that for software visualization approaches to be adopted
by developers, visualizations not only must prove their effectiveness via
evaluations, but evaluations should also include participants of the target
audience, and be based on real-world software systems. Finally, we rec-
ommend researchers in the field to conduct surveys that can help them to
identify what are the frequent and complex problems that affect developers.

48

A few studies have attempted to characterize the evaluation of software
visualization approaches via a literature review. For instance, Schots and
Werner [SW14] reviewed 36 papers published between 1993 and 2012 and
proposed an extended taxonomy that includes evidence of the applicability
of a software visualization as a dimension [SVW14]. They found that
papers lacked a clear description of information related to the evidence
on the use of visualization. Seriai et al. [SBCS14] analyzed 87 papers
published between 2000 and 2012. They found that most visualizations
are evaluated via case studies (i.e., 78.16%), and only a few researchers
conducted experiments (i.e., 16.09%). They observed that even though the
proportion of publications that include an evaluation is fairly constant over
time, they lack rigor. Mattila et al. [MIK+16] included 83 papers published
between 2010 and 2015 in their analysis. They also found that only a few
researchers conducted experiments (i.e., 13.25%), some performed case
studies (i.e., 22.89%), and the rest used other evaluation methods. In our
investigation we cover a much larger body of literature (i.e., 181 full
papers) that spans up to 2017. We not only characterize the state-of-the-
art in software visualization evaluation, but we also propose guidance to
researchers in the field by detecting common pitfalls, and by elaborating
on guidelines to conduct evaluation of software visualization approaches.

Other studies have opted to evaluate software visualization tools and
have reported guidelines. For example, Storey et al. [SvG05] evaluated
12 software visualization tools, and proposed an evaluation framework
based on intent, information, presentation, interaction, and effectiveness.
Sensalire et al. [SOT08b, SOT09] evaluated 20 software visualization tools
proposed for maintenance based via experiments, and elaborated various
lessons learned. They identified a number of dimensions that are critical
for organizing an evaluation, and then analyzing the results. Müller et
al. [MKS+14] proposed a structured approach for conducting controlled
experiments in envisioned 3D software visualization tools. Instead of
concentrating on rather limited number of tools, we chose a meta analysis
by analyzing the reports of the evaluation of proposed visualization tools.
In this way we could analyze the state-of-the-art in the practice of software
visualization evaluation, and consequently elaborate guidelines for defining
what is an effective software visualization.

A few reviews of the software visualization literature that focus on
various domains have tangentially analyzed the evaluation aspect. Lopez-
Herrejon et al. [LHIE18] analyzed evaluation strategies used in visual-
izations proposed for software product line engineering, and they found

49

that most approaches used case studies. They also found that only a few
performed experiments, and a few others did not explicitly describe an
evaluation. Shahin et al. [SLB14] discussed the evaluation of visualiza-
tion approaches proposed to support software architecture, and classified
the evidence of the evaluation using a 5-step scale [ANAV10]. The anal-
ysis of the results showed that almost half of the evaluations represent
toy examples or demonstrations. The other half correspond to industrial
case studies, and a very few others described experiments and anecdo-
tal evidence of tool adoption. Novais et al. [NTM+13] investigated the
evaluations of approaches that proposed visualization to analyze software
evolution. In most of the analyzed studies evaluation consisted in usage
examples that were demonstrated by the authors of the study. In a few
of them, the demonstration was carried out by external users. Evaluation
strategies based on experiments were found to be extremely rare. In almost
20% of the studies they did not find an explicit evaluation. Since the main
focus of these mentioned studies is not on evaluation (as opposed to ours),
they only characterize the evaluation of the analyzed studies, and offer
little advice for researchers who need to perform their own evaluations of
software visualizations.

Similar efforts have been made in the information visualization field.
Amar and Stasko [AS04] proposed a task-based framework for the eval-
uation of information visualizations. Forsell [For10] proposed a guide to
scientific evaluation of information visualization that focuses on quan-
titative experimental research. The guide contains recommendations for
(a) designing, (b) conducting, (c) analyzing results, and (d) reporting on
experiments. Lam et al. [LBI+12] proposed seven scenarios for empirical
studies in information visualization. Isenberg et al. [IIC+13] reviewed
581 papers to analyze the practice of evaluating visualization. Some of
the pitfalls they found are that in some evaluations (i) participants do not
belong to the target audience, (ii) goals are not explicit, (iii) the strategy
and analysis method is not appropriate, and (iv) the level of rigor is low.
Elmqvist and Yi [EY15] proposed patterns for visualization evaluation
that present solutions to common problems encountered when evaluating
a visualization system. We observed that advice given in the context of
information visualization can also be applied to software visualization eval-
uation; however, we also observed that there are particularities in software
visualization that require a tailored analysis, which is an objective of our
investigation.

50

We consider previous research to be an important step to characterizing
the evidence of the effectiveness of software visualization approaches.
However, we reflect that previous research has failed to define what is
an effective software visualization, and consequently a given conclusion
that a particular visualization is effective cannot be compared with others.
Moreover, we believe that some studies have used a loose definition of
“case studies” and include many usage scenarios of visualization instead
that present little evidence of the effectiveness of an approach. In our inves-
tigation we perform a subtler analysis of the characteristics of evaluations
to elucidate these concerns. We think our study can help researchers in the
field to identify common pitfalls when designing and conducting evalua-
tions. Consequently, we formulated the following research questions:

RQ.1) What are the characteristics of evaluations that validate the effec-
tiveness of software visualization approaches?

RQ.2) How appropriate are evaluations used to validate the effectiveness
of software visualization?

We believe that answering these questions will assist researchers in
the software visualization field to improve the quality of evaluations by
identifying evaluation strategies and methods and their common pitfalls.
In particular, we reviewed 181 full papers of the 387 papers published
in SOFTVIS/VISSOFT. We identified evaluation strategies such as sur-
veys, case studies, and experiments, as well as characteristics such as
tasks, participants, and systems used in evaluations. We found that 62%
(i.e., 113) of the proposed software visualization approaches either do
not include any evaluation, or include a weak evaluation (i.e., anecdotal
evidence, usage scenarios). Almost all of them (i.e., 110) introduce a new
software visualization approach. The remaining three discuss an existing
approach but without providing a stronger evaluation. We also found that
29% of the studies (i.e., 53) conducted experiments in which 30% (i.e.,
16) corresponded to visualizations that target the novice developer audi-
ence, and included appropriate participants. The remaining 70% proposed
visualizations for developers with various levels of experience. However,
amongst them only 30% included experienced developers, and the remain-
ing 70% (i.e., 37) included in experiments only students and academics
of a convenience sample who are vulnerable to selection bias and hence
hinder generalization. We found that 7% (i.e., 12) of the studies conducted
a case study that involved (i) professional developers from industry, and

51

(ii) real-world software systems. Finally, 3% (i.e., 4) of studies conducted
a survey. Even though we are not aware of a similar quantitative report of
the state of affairs in information visualization, a review of the practice of
evaluation [IIC+13] found similar issues.

We believe that for software visualization approaches to be adopted
by developers, visualizations not only must prove their effectiveness via
evaluations, but evaluations should also include participants of the target
audience, and be based on real-world software systems. Finally, we rec-
ommend researchers in the field to conduct surveys that can help them to
identify what are the frequent and complex problems that affect developers.

The remainder of the chapter is structured as follows: Section 3.2
describes the main concepts that are addressed in the characterization; Sec-
tion 3.3 describes the methodology that we followed to collect and select
relevant studies proposed in the software visualization field; Section 3.4
presents our results by classifying evaluations based on adopted strate-
gies, methods and their characteristics; Section 3.5 discusses our research
questions and threats to validity of our findings, and Section 3.6 concludes.

3.2 Background
The strategies that researchers adopt to evaluate the effectiveness of a
software visualization approach can be classified into two main categories:

(i) Theoretical principles from information visualization that provide
researchers support to justify a chosen visual encoding [Mun08]. For
instance, the effectiveness of perceptual channels depends on the data
type (i.e., categorical, ordered, or quantitative) [Mac86].

(ii) Empirical evidence gathered from the evaluation of a technique,
method or tool. Amongst them we find a) exploratory evaluations
that involve high-level real-world tasks, for which identifying the
aspects of the tool that boosted the effectiveness is complex; and
b) explanatory evaluations in which high-level tasks are dissected
into low-level (but less realistic) tasks that can be measured in iso-
lation to identify the cause of an increase in the effectiveness of an
approach [WRH+00].

Amongst the strategies used in empirical evaluations we find (a) sur-
veys [WRH+12] that allow researchers to collect data from developers

52

who are the users of a system, and hence analyze the collected data to gen-
eralize conclusions; (b) experiments [SHH+05] that provide researchers
with a high level of control to manipulate some variables while control-
ling others (i.e., controlled experiments) with randomly assigned subjects
(when it is not possible to ensure randomness the strategy is called “quasi-
experiment”); and (c) case studies [RH09] that help researchers to inves-
tigate a phenomenon in its real-life context (i.e., the case), hence giving
researchers a lower level of control than an experiment but enabling a
deeper analysis.

Several methods exist for collecting data in each evaluation strategy.
The two most common methods [Fin03] are (i) questionnaires in which the
researcher provides instructions to participants to answer a set of questions
that can range from loosely structured (e.g., exploratory survey) to closed
and fully structured (e.g., to collect data of the background of participants
in an experiment), and (ii) interviews in which a researcher can ask a group
of subjects a set of closed questions in a fixed order (i.e., fully structured),
a mix of open and closed questions (i.e., semi-structured), and open-ended
questions (i.e., unstructured). Less frequent methods for collecting data
are observational ones such as (iii) think-aloud in which researchers ask
participants to verbalize their thoughts while performing the evaluation.
Besides, recent experiments have collected data using (iv) video recording
to capture the behavior of participants during the evaluation; (v) sketch
drawing to evaluate recollection; and (vi) eye tracking to measure the
browsing behavior of eye’s movement.

Finally, there are several statistical tests that are usually used to analyze
quantitative data collected from an experiment. For discrete or categorical
data, tests such as Chi-square and Cohen’s kappa are suitable. For questions
that analyze the relationships of independent variables, regression analysis
can be applied. For correlation analysis of dependent variables one has
to first analyze if the parametric assumptions holds. That is, if the data
is (i) collected from independent and unbiased samples, (ii) normally
distributed (Shapiro-Wilk test is suggested and proven more powerful
than Kolmogorov-Smirnov [RW+11]), and (iii) present equal variances
(e.g., Levene’s test, Mauchly’s test). Parametric data can be analyzed with
Pearson’s r, while non-parametric with Spearman’s Rank Correlation.
For the analysis of differences of parametric data collected from two
groups Student’s unpaired t-test, Paired t-test, and Hotelling’s T-square are
appropriate. For the non-parametric case Mann-Whitney U and Wilcoxon
Rank sum test are suitable. In the case of analysis that involves more

53

than two groups of parametric data ANOVA is a frequent choice, which
is usually followed by a post-hoc test such as Tukey HSD. When data is
non-parametric Kruskal-Wallis test and Friedman test are suitable as well.

3.3 Methodology
We build on the results presented in Chapter 2. However, we observe that
amongst the 86 papers included in such analysis there are a number of
them that do not correspond to full papers, and therefore, they are more
likely to not describe an evaluation. Moreover, previously we only included
design study papers, and excluded papers of other types, which would bias
the analysis of evaluations.

We systematically review the evaluations of proposed software visu-
alizations. We include not only design study papers, but also papers from
other categories (i.e., technique, system, evaluation). We also expand the
collection of papers to include the ones published in VISSOFT 2017.

3.3.1 Inclusion and exclusion criteria
We reviewed the proceedings and programs of the venues to include full
papers and exclude other types of papers that due to limited space are
unlikely to contain enough detail. In particular, from the 387 papers we
excluded 178 papers that corresponded to: (i) 61 poster. (ii) 52 new ideas
and emerging results (NIER), (iii) 44 tool demo (TD), (iv) 8 keynote, (v) 8
position, and (vi) 5 challenge papers,

3.3.2 Quality assessment
We then assessed the quality of the remaining 209 papers. We classified
the studies according to the categories proposed by Munzner [Mun08], in
which a visualization paper can be classified into one of five categories:

(a) Evaluations describe how a visualization is used to deal with tasks in
a problem domain. Evaluations are often conducted via user studies
in laboratory settings in which participants solve a set of tasks while
variables are measured.

(b) Design studies show how existing visualization techniques can be
usefully combined to deal with a particular problem domain. Typically,
design studies are evaluated through case studies and usage scenarios.

54

(c) Systems elaborate on the architectural design choices of a proposed
visualization tool and the lessons learned from observing its use.

(d) Techniques focus on novel algorithms that improve the effectiveness
of visualization.Techniques are often evaluated using benchmarks that
measure performance.

(e) Models include Commentary papers in which an expert in the field
advocate a position and argue to support it; Formalism papers present
new models, definitions or terminology to describe techniques; and
Taxonomy papers propose categories that help researchers to analyze
the structure of a domain.

For each paper, we first read the abstract, second the conclusion, and finally,
in the cases where we still were not sure of their main contribution, we read
the rest of the paper. Although some papers might exhibit characteristics
of more than one type, we classified them by focusing on their primary
contribution.

We observe that model papers in which the main contribution is a
commentary, a formalism or a taxonomy, usually do not describe explicit
evaluations. Consequently, we excluded twenty-eight papers that we clas-
sified in those categories: (i) six commentary, (ii) seven taxonomy, and
(iii) fifteen formalism papers.

Figure 3.1 provides an overview of the selection process. Figure 3.2
summarized the 387 collected papers and highlights the 181 included in
the study. Figure 3.3 shows the outcome of our classification.

A frequent critique of visualization papers is a lack of evaluation. In-
deed, papers in which the main contribution is an evaluation are unusual
(i.e., 10%). The chart also shows that the two main paper types in visual-
ization are design study and technique.

The collection of 181 full papers includes studies from six to eleven
pages in length. Initially, we were reluctant to include six-page papers,
but we observed that in two editions of the conferences all full papers
were of that length. Consequently, we analyzed the distribution of research
strategies used to evaluate software visualization approaches by paper
length. We did not find any particular trend, and so decided to include
them.

55

SOFTVIS [N=148]
VISSOFT [N=239]

Inclusion Criteria

N = 387

Keynote [N=8]
Challenge [N=5]

NIER [N=52]
TD [N=44]

Position [N=8]
Poster [N=61]

Exclusion Criteria

N = 209

Commentary [N=6]
Taxonomy [N=7]

Formalism [N=15]

Quality Assessment

N = 181

Figure 3.1: Stages of the search process, and the number of selected studies
in each stage.

10

19

4

12

16

12 12

16

7

18

9 9 10 11

7
9

12

20 20 20
23

41

28

33

13

34

14

32

25

31

22
19

0

5

10

15

20

25

30

35

40

45

Total Included

Figure 3.2: The 181 included papers from the collection of 387 papers
published in SOFTVIS/VISSOFT venues.

56

65

56

41

19

37

19

13

8

28

37

28

11

0

10

20

30

40

50

60

70

Design Study Technique System Evaluation

VISSOFT SOFTVIS Total

Figure 3.3: Classification of the 181 SOFTVIS/VISSOFT full papers by
type.

3.3.3 Data extraction

To accelerate the process of finding and extracting the data from the studies,
we collected keywords that authors commonly use to describe evaluations
iteratively. That is, we started the process by searching for the following
keywords in each paper: “evaluation”, “survey” “experiment”, “case study”,
and “user study”. When we did not find these keywords, we manually
inspected the paper and looked for other new representative keywords
to expand our set. During the manual inspection when we did not find
an explicit evaluation we labeled the papers accordingly. In the end, we
collected the following set of keywords:

{evaluation, survey, [case|user] stud[y|ies], [application | usage |
analysis] example[s], use case[s], application scenario[s], [controlled
| user] experiment, demonstration, user scenario[s], example of use,

usage scenario[s], example scenario[s], demonstrative result[s]}

We investigated whether evaluations that involve users are conducted
with end users from the expected target audience (i.e., representative sam-
ple) to ensure the generality of results. Therefore, in studies that used this
type of evaluation, we extracted who conducted the evaluation, and what

57

0

2

4

6

8

10

12

14

16

18

20

Design Study Technique System Evaluation

Figure 3.4: Evolution of SOFTVIS/VISSOFT papers by type (from the
bottom upwards): Design Study, Technique, System, Evaluation.

subject systems were involved. We extracted these data by scanning the
evaluation section of papers. In particular, we extracted (i) data collection
methods (e.g., think-aloud, interview, questionnaire); (ii) number of partic-
ipants and their background, (iii) tasks, (iv) subject system, (v) dependent
variables, and (vi) statistical tests.

3.3.4 Selected studies
We included in our study the 181 papers listed in Tables 3.1,3.2, and 3.3.

We present the evolution of the types of the included papers in Fig-
ure 3.4. We can observe that design study papers constitute the largest
group, and evaluation papers are comparatively rare.

3.4 Results
We report the characteristics of the extracted data and the categories used
to classify them for quantitative analysis. Figure 3.5 shows the distribution

58

Table 3.1: The papers included in the study [S1-S70].

Id and Reference Venue Evaluation

[S1] Aesthetics of class diagrams, Eichelberger, H. V’02 Theorical
[S2] Specifying algorithm visualizations in terms of dat..., Francik, J. V’02 Usage Scenario
[S3] View definitions for language-independent multipl..., Sajaniemi, J. V’02 Usage Scenario
[S4] The CONCEPT project - applying source code analysis to..., Rilling, J. et al. V’02 -
[S5] UML collaboration diagram syntax: an empir..., Purchase, H.C. et al. V’02 Experiment
[S6] Runtime visualisation of object oriented soft..., Smith, M.P. et al. V’02 Usage Scenario
[S7] Reification of program points for visual execution , Diehl, S. et al. V’02 -
[S8] Metrics-based 3D visualization of large obj..., Lewerentz, C. et al. V’02 Usage Scenario
[S9] Analogical representations of programs, Ploix, D. V’02 Usage Scenario
[S10] Revision Towers, Taylor, C.M.B. et al. V’02 Usage Scenario
[S11] Self-Organizing Maps Applied in Visualising ..., Brittle, J. et al. V’03 Experiment
[S12] KScope: A Modularized Tool for 3D Visualizati..., Davis, T.A. et al. V’03 Theorical
[S13] Visualization to Support Version Control Software..., Wu, X. et al. V’03 Experiment
[S14] Techniques for Reducing the Complexity o..., Hamou-Lhadj, A. et al. V’03 Usage Scenario
[S15] A topology-shape-metrics approach for the automa..., Eiglsperger, M. et al. S’03 -
[S16] A new approach for visualizing UML class diagrams, Gutwenger, C. et al. S’03 -
[S17] Visualizing model mappings in UML, Hausmann, J.H. et al. S’03 -
[S18] Visualizing software for telecommunication services..., Gansner, E.R. et al. S’03 -
[S19] Graph visualization for the analysis of the structure an..., Zhou, C. et al. S’03 -
[S20] Interactive locality optimization on NUMA architectures, Mu, T. et al. S’03 -
[S21] End-user software visualizations for fault ..., Ruthruff, J. et al. S’03 Experiment
[S22] Interactive visual debugging with UML, Jacobs, T. et al. S’03 Usage Scenario
[S23] Designing effective program visualization too..., Tudoreanu, M.E. S’03 Experiment
[S24] Dancing hamsters and marble statue..., Huebscher-Younger, T. et al. S’03 Experiment
[S25] Algorithm visualization in CS education: com..., Grissom, S. et al. S’03 Experiment
[S26] A system for graph-based visualization of t..., Collberg, C. et al. S’03 Usage Scenario
[S27] Visualization of program-execution data for dep..., Orso, A. et al. S’03 Usage Scenario
[S28] Visualizing Java in action, Reiss, S.P. S’03 Usage Scenario
[S29] Plugging-in visualization: experiences integrating a ..., Lintern, R. et al. S’03 -
[S30] EVolve: an open extensible software visualizatio..., Wang, Q. et al. S’03 Usage Scenario
[S31] 3D representations for software visualization..., Marcus, A. et al. S’03 Usage Scenario
[S32] Growing squares: animated visualization of ..., Elmqvist, N. et al. S’03 Experiment
[S33] Program animation based on the roles of va..., Sajaniemi, J. et al. S’03 Experiment
[S34] Visualizing Feature Interaction in 3-D, Greevy, O. et al. V’05 Usage Scenario
[S35] Identifying Structural Features of Java Prog..., Smith, M.P. et al. V’05 Usage Scenario
[S36] Support for Static Concept Location with sv3D, Xie, X. et al. V’05 Usage Scenario
[S37] Interactive Exploration of Semantic Clusters, Lungu, M. et al. V’05 Usage Scenario
[S38] Exploring Relations within Software Systems ..., Balzer, M. et al. V’05 Usage Scenario
[S39] The Dominance Tree in Visualizing Software Dep..., Falke, R. et al. V’05 Usage Scenario
[S40] User Perspectives on a Visual Aid to Program Com..., Cox, A. et al. V’05 Experiment
[S41] Interactive Visual Mechanisms for Exploring So..., Telea, A. et al. V’05 Usage Scenario
[S42] Fractal Figures: Visualizing Development Ef..., D’Ambros, M. et al. V’05 Usage Scenario
[S43] White Coats: Web-Visualization of Evolving S..., Mesnage, C. et al. V’05 Usage Scenario
[S44] Multi-level Method Understanding Using Microprints , Ducasse, S. et al. V’05 -
[S45] Visual Realism for the Visualization of Softwa..., Holten, D. et al. V’05 Usage Scenario
[S46] Visual Exploration of Combined Architectural and Met..., Termeer, M. et al. V’05 -
[S47] Evaluating UML Class Diagram Layout base..., Andriyevska, O. et al. V’05 Experiment
[S48] Interactive Exploration of UML Sequence Diagra..., Sharp, R. et al. V’05 Usage Scenario
[S49] SAB - The Software Architecture Browser, Erben, N. et al. V’05 -
[S50] Towards understanding programs through wear-b..., DeLine, R. et al. S’05 Experiment
[S51] Online-configuration of software visualizations with Vi..., Panas, T. et al. S’05 -
[S52] Visualization of mobile object environments..., Frishman, Y. et al. S’05 Case Study
[S53] Visualizing structural properties of irregular par..., Blochinger, W. et al. S’05 -
[S54] Jove: java as it happens, Reiss, S.P. et al. S’05 -
[S55] Methodology and architecture of JIVE, Gestwicki, P. et al. S’05 Anecdotal
[S56] Visual specification and analysis of use cas..., Kholkar, D. et al. S’05 Case Study
[S57] Visualizing multiple evolution metrics, Pinzger, M. et al. S’05 Usage Scenario
[S58] The war room command console: shared visual..., O’Reilly, C. et al. S’05 Case Study
[S59] CVSscan: visualization of code evolution, Voinea, L. et al. S’05 Case Study
[S60] Visual data mining in software archives, Burch, M. et al. S’05 Usage Scenario
[S61] Algorithm visualization using concept keyboa..., Baloian, N. et al. S’05 Experiment
[S62] Mondrian: an agile information visualization f..., Meyer, M. et al. S’06 Usage Scenario
[S63] Multiscale and multivariate visualizations of ..., Voinea, L. et al. S’06 Usage Scenario
[S64] Visualization of areas of interest in softwar..., Byelas, H. et al. S’06 Case Study
[S65] Visual exploration of function call graphs for feature..., Bohnet, J. et al. S’06 -
[S66] Using social agents to visualize software..., Alspaugh, T.A. et al. S’06 Experiment
[S67] Transparency, holophrasting, and automatic layout appl..., Gauvin, S. et al. S’06 -
[S68] A data-driven graphical toolkit for softwa..., Demetrescu, C. et al. S’06 Usage Scenario
[S69] Visualizing live software systems in 3D, Greevy, O. et al. S’06 Usage Scenario
[S70] Execution patterns for visualizing web servic..., de Pauw, W. et al. S’06 Anecdotal

59

Table 3.2: The papers included in the study [S71-S146].

Id and Reference Venue Evaluation

[S71] Experimental evaluation of animated-verifying o..., Jain, J. et al. S’06 Experiment
[S72] Narrative algorithm visualization, Blumenkrants, M. et al. S’06 Experiment
[S73] The Clack graphical router: visualizing net..., Wendlandt, D. et al. S’06 Anecdotal
[S74] A Visualization for Software Project Awaren..., Ripley, R.M. et al. V’07 Usage Scenario
[S75] YARN: Animating Software Evolution, Hindle, A. et al. V’07 Usage Scenario
[S76] DiffArchViz: A Tool to Visualize Correspondence ..., Sawant, A.P. V’07 Usage Scenario
[S77] A Bug’s Life" Visualizing a Bug Database""A..., D’Ambros, M. et al. V’07 Usage Scenario
[S78] Task-specific source code dependency investig..., Holmes, R. et al. V’07 Experiment
[S79] Visualizing Software Systems as Cities, Wettel, R. et al. V’07 -
[S80] Onion Graphs for Focus+Context Views of UML Cl..., Kagdi, H. et al. V’07 Usage Scenario
[S81] CocoViz: Towards Cognitive Software Visuali..., Boccuzzo, S. et al. V’07 Usage Scenario
[S82] Distributable Features View: Visualizing the..., Cosma, D.C. et al. V’07 Usage Scenario
[S83] Trace Visualization Using Hierarchical Edge B..., Holten, D. et al. V’07 Usage Scenario
[S84] Visualization of Dynamic Program Aspects, Deelen, P. et al. V’07 Usage Scenario
[S85] Visualizing Dynamic Memory Allocations, Moreta, S. et al. V’07 Usage Scenario
[S86] Applying visualisation techniques in software..., Nestor, D. et al. S’08 Usage Scenario
[S87] Stacked-widget visualization of scheduling-..., Bernardin, T. et al. S’08 Usage Scenario
[S88] Visually localizing design problems with dish..., Wettel, R. et al. S’08 Usage Scenario
[S89] Visualizing inter-dependencies between scenarios, Harel, D. et al. S’08 -
[S90] Software visualization for end-user pr..., Subrahmaniyan, N. et al. S’08 Case Study
[S91] Streamsight: a visualization tool for large-s..., de Pauw, W. et al. S’08 Anecdotal
[S92] Improving an interactive visualization of transition ..., Ploeger, B. et al. S’08 -
[S93] Automatic layout of UML use case diagrams, Eichelberger, H. S’08 -
[S94] Gef3D: a framework for two-, two-and-a-h..., von Pilgrim, J. et al. S’08 Usage Scenario
[S95] A catalogue of lightweight visualizations to ..., Parnin, C. et al. S’08 Usage Scenario
[S96] An interactive reverse engineering environment..., Telea, A. et al. S’08 Experiment
[S97] Representing unit test data for large scale ..., Cottam, J.A. et al. S’08 Anecdotal
[S98] HDPV: interactive, faithful, in-vivo run..., Sundararaman, J. et al. S’08 Usage Scenario
[S99] Analyzing the reliability of communication be..., Zeckzer, D. et al. S’08 Usage Scenario
[S100] Visualization of exception handling constructs..., Shah, H. et al. S’08 Experiment
[S101] Assessing the benefits of synchronization-adorn..., Xie, S. et al. S’08 Experiment
[S102] Extraction and visualization of call dependen..., Telea, A. et al. V’09 Usage Scenario
[S103] Visualizing the Java heap to detect memory proble..., Reiss, S.P. V’09 Anecdotal
[S104] Case study: Visual analytics in software prod..., Telea, A. et al. V’09 Usage Scenario
[S105] Visualizing massively pruned execution trace..., Bohnet, J. et al. V’09 Case Study
[S106] Evaluation of software visualization tool..., Sensalire, M. et al. V’09 Experiment
[S107] The effect of layout on the comprehension of..., Sharif, B. et al. V’09 Experiment
[S108] Beyond pretty pictures: Examining the benef..., Yunrim Park et al. V’09 Experiment
[S109] Representing development history in s..., Steinbrueckner, F. et al. S’10 Usage Scenario
[S110] Visual comparison of software architectures, Beck, F. et al. S’10 Usage Scenario
[S111] An automatic layout algorithm for BPEL processes, Albrecht, B. et al. S’10 -
[S112] Off-screen visualization techniques for clas..., Frisch, M. et al. S’10 Experiment
[S113] Jype - a program visualization and programm..., Helminen, J. et al. S’10 Survey
[S114] Zinsight: a visual and analytic environment..., de Pauw, W. et al. S’10 Case Study
[S115] Understanding complex multithreaded softwa..., Truemper, J. et al. S’10 Case Study
[S116] Visualizing windows system traces, Wu, Y. et al. S’10 Usage Scenario
[S117] Embedding spatial software visualization in th..., Kuhn, A. et al. S’10 Experiment
[S118] Towards anomaly comprehension: using structural..., Lin, S. et al. S’10 Experiment
[S119] Dependence cluster visualization, Islam, S.S. et al. S’10 Usage Scenario
[S120] Exploring the inventor’s paradox: applying jig..., Ruan, H. et al. S’10 Usage Scenario
[S121] Trevis: a context tree visualization & anal..., Adamoli, A. et al. S’10 Usage Scenario
[S122] Heapviz: interactive heap visualizati..., Aftandilian, E.E. et al. S’10 Usage Scenario
[S123] AllocRay: memory allocation visualizati..., Robertson, G.G. et al. S’10 Experiment
[S124] Software evolution storylines, Ogawa, M. et al. S’10 -
[S125] User evaluation of polymetric views using a ..., Anslow, C. et al. S’10 Experiment
[S126] An interactive ambient visualization fo..., Murphy-Hill, E. et al. S’10 Experiment
[S127] Follow that sketch: Lifecycles of diagrams an..., Walny, J. et al. V’11 Experiment
[S128] Visual support for porting large code base..., Broeksema, B. et al. V’11 Usage Scenario
[S129] A visual analysis and design tool for planning..., Beck, M. et al. V’11 Case Study
[S130] Visually exploring multi-dimensional code coup..., Beck, F. et al. V’11 Usage Scenario
[S131] Constellation visualization: Augmenting progra..., Deng, F. et al. V’11 Experiment
[S132] 3D Hierarchical Edge bundles to visualize relations ..., Caserta, P. et al. V’11 -
[S133] Abstract visualization of runtime m..., Choudhury, A.N.M.I. et al. V’11 Usage Scenario
[S134] Telling stories about GNOME with Complicity, Neu, S. et al. V’11 Usage Scenario
[S135] E-Quality: A graph based object oriented so..., Erdemir, U. et al. V’11 Experiment
[S136] Automatic categorization and visualization o..., Reiss, S.P. et al. V’13 Usage Scenario
[S137] Using HTML5 visualizations in software faul..., Gouveia, C. et al. V’13 Experiment
[S138] Visualizing jobs with shared resources in di..., de Pauw, W. et al. V’13 Usage Scenario
[S139] SYNCTRACE: Visual thread-interplay analysis, Karran, B. et al. V’13 Usage Scenario
[S140] Finding structures in multi-type code c..., Abuthawabeh, A. et al. V’13 Experiment

60

Table 3.3: The papers included in the study [S141-S181].

Id and Reference Venue Evaluation

[S141] SourceVis: Collaborative software visualizat..., Anslow, C. et al. V’13 Experiment
[S142] Visualizing software dynamicities with heat..., Benomar, O. et al. V’13 Usage Scenario
[S143] Performance evolution blueprint: Underst..., Sandoval, J.P. et al. V’13 Usage Scenario
[S144] An empirical study assessing the effect of s..., Sharif, B. et al. V’13 Experiment
[S145] Visualizing Developer Interactions, Minelli, R. et al. V’14 Usage Scenario
[S146] AniMatrix: A Matrix-Based Visualization of ..., Rufiange, S. et al. V’14 Usage Scenario
[S147] Visualizing the Evolution of Systems and The..., Kula, R.G. et al. V’14 Usage Scenario
[S148] ChronoTwigger: A Visual Analytics Tool for Unde..., Ens, B. et al. V’14 Experiment
[S149] Lightweight Structured Visualization of Asse..., Toprak, S. et al. V’14 Experiment
[S150] How Developers Visualize Compiler Messages: A..., Barik, T. et al. V’14 Experiment
[S151] Feature Relations Graphs: A Visualisation ..., Martinez, J. et al. V’14 Case Study
[S152] Search Space Pruning Constraints Visualizati..., Haugen, B. et al. V’14 Usage Scenario
[S153] Integrating Anomaly Diagnosis Techniques int..., Kulesz, D. et al. V’14 Experiment
[S154] Combining Tiled and Textual Views of Code, Homer, M. et al. V’14 Experiment
[S155] Visualizing Work Processes in Software Engine..., Burch, M. et al. V’15 Usage Scenario
[S156] Blended, Not Stirred: Multi-concern Visua..., Dal Sasso, T. et al. V’15 Usage Scenario
[S157] CodeSurveyor: Mapping Large-Scale Software to..., Hawes, N. et al. V’15 Experiment
[S158] Revealing Runtime Features and Constituent..., Palepu, V.K. et al. V’15 Usage Scenario
[S159] A Visual Support for Decomposing Complex Featu..., Urli, S. et al. V’15 Usage Scenario
[S160] Visualising Software as a Particle System, Scarle, S. et al. V’15 Usage Scenario
[S161] Interactive Tag Cloud Visualization of Sof..., Greene, G.J. et al. V’15 Usage Scenario
[S162] Hierarchical Software Landscape Visualizati..., Fittkau, F. et al. V’15 Experiment
[S163] Vestige: A Visualization Framework for Eng..., Schneider, T. et al. V’15 Usage Scenario
[S164] Visual Analytics of Software Structure and Met..., Khan, T. et al. V’15 Experiment
[S165] Stable Voronoi-Based Visualizations for Sof..., Van Hees, R. et al. V’15 Usage Scenario
[S166] Visualizing the Evolution of Working Sets, Minelli, R. et al. V’16 Experiment
[S167] Walls, Pillars and Beams: A 3D Decompositio..., Tymchuk, Y. et al. V’16 Case Study
[S168] CuboidMatrix: Exploring Dynamic Structura..., Schneider, T. et al. V’16 Experiment
[S169] A Tool for Visualizing Patterns of Spread..., Middleton, J. et al. V’16 Experiment
[S170] Jsvee & Kelmu: Creating and Tailoring Program Ani..., Sirkiae, T. V’16 Usage Scenario
[S171] Visualizing Project Evolution through Abstr..., Feist, M.D. et al. V’16 Usage Scenario
[S172] Merge-Tree: Visualizing the Integration of Com..., Wilde, E. et al. V’16 Usage Scenario
[S173] A Scalable Visualization for Dynamic Data in ..., Burch, M. et al. V’17 Experiment
[S174] An Empirical Study on the Readability of R..., Hollmann, N. et al. V’17 Experiment
[S175] Concept-Driven Generation of Intuitive Explana..., Reza, M. et al. V’17 Usage Scenario
[S176] Visual Exploration of Memory Traces and Call ..., Gralka, P. et al. V’17 Usage Scenario
[S177] Code Park: A New 3D Code Visualization Tool..., Khaloo, P. et al. V’17 Experiment
[S178] Using High-Rising Cities to Visualize Perform..., Ogami, K. et al. V’17 Usage Scenario
[S179] iTraceVis: Visualizing Eye Movement Data With..., Clark, B. et al. V’17 Experiment
[S180] On the Impact of the Medium in the Effective..., Merino, L. et al. V’17 Experiment
[S181] Method Execution Reports: Generating Text and ..., Beck, F. et al. V’17 Experiment

of the studies categorized by paper type [Mun08] and research strategy
used to evaluate visualizations. Table 3.4 presents our classification of
the evaluation strategy adopted by papers into one of three main cate-
gories: (i) theoretical, (ii) no explicit evaluation, and (iii) empirical. For
evaluations that used an empirical strategy, we classified them into one of
five categories: (i) anecdotal evidence, (ii) usage scenarios, (iii) survey,
(iv) case study, and (v) experiment.

We report on characteristics of experiments such as data collection
methods, type of analysis, visual tasks, dependent variables, statistical
tests, and scope. The complete classification of the 181 included studies is
displayed in Tables 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10.

61

0

10

20

30

40

50

60

70

80

Design Study Evaluation System Technique

Theoretical No Explicit Evaluation Survey
Anecdotal Case Study Experiment
Usage Scenarios

Figure 3.5: The distribution of the 181 included papers categorized by
paper types and research strategy used to evaluate software visualization
approaches.

3.4.1 Data Collection Methods
In Table 3.5 we list the various methods that researchers used to collect
data from experiments. The most frequent were questionnaires, which
are normally used to collect data of the background of participants at the
beginning of experiments and final observations at the end. Questionnaires
are found across all types of evaluation strategies (i.e., survey, experiment,
case study). Interviews are fairly frequent and found mostly in case studies.
We also found traditional observational methods (e.g., think-aloud), but
also fairly new methods (e.g., eye tracking).

3.4.2 Evaluation Strategies
In twenty-four (i.e., 13%) studies we did not find an explicit evaluation
that presents evidence for supporting the claim of effectiveness of soft-
ware visualization approaches. These studies indicate that the evaluation
of the proposed visualization is planned as future work. In the remaining
studies, we found that several strategies were used to evaluate software
visualization approaches. We observed that only two studies (i.e., 1%) used
theoretical references to support the claim of the effectiveness of software

62

Figure 3.6: Sankey diagram showing the data collection methods (right)
employed in evaluation strategies (left) adopted in empirical evaluations.

63

Table 3.4: Research strategies used to evaluate software visualization ap-
proaches.

Category Strategy Reference #

Theoretical S1, S12 2
No Explicit
Evaluation S4, S7, S15, S16, S17, S18, S19, S20,

S29, S44, S46, S49, S51, S53, S54, S65,
S67, S79, S89, S92, S93, S111, S124,
S132

24

Empirical

Survey S13, S71, S100, S113 4
Anecdotal
Evidence S55, S70, S73, S91, S97, S103 6

Case Study S52, S56, S58, S59, S64, S90, S105,
S114, S115, S129, S151, S167

12

Experiment S5, S11, S13, S21, S23, S24, S25, S32,
S33, S40, S47, S50, S61, S66, S71,
S72, S78, S96, S100, S101, S106, S107,
S108, S112, S117, S118, S123, S125,
S126, S127, S131, S135, S137, S140,
S141, S144, S148, S149, S150, S153,
S154, S157, S162, S164, S166, S168,
S169, S173, S174, S177, S179, S180,
S181

53

Example S57, S60, S62, S63, S68, S69, S74, S75,
S76, S77, S80, S81, S82, S83, S84, S85,
S86, S87, S88, S94, S95, S98, S99,
S102, S104, S109, S110, S116, S119,
S120, S121, S122, S128, S130, S133,
S134, S136, S138, S139, S142, S143,
S145, S146, S147, S152, S155, S156,
S158, S159, S160, S161, S163, S165,
S170, S171, S172, S175, S176, S178

83

visualizations. One technique paper [S1] that proposes aesthetic criteria
for class diagrams, considered their proposed criteria effective since it was
derived from the UML specification, and one design study paper [S12]

64

Table 3.5: Data collection methods used to evaluate software visualization
approaches.

Method Reference #

Questionnaire S11, S13, S25, S32, S40, S47, S50, S61, S66, S72,
S90, S100, S106, S107, S108, S112, S125, S126,
S127, S135, S137, S140, S141, S144, S149, S150,
S153, S154, S157, S162, S164, S168, S173, S177,
S179, S180, S181

37

Think-Aloud S40, S50, S100, S112, S117, S118, S123, S125,
S126, S135, S141, S148, S150, S169, S173, S179,
S180

17

Interview S33, S71, S78, S90, S100, S106, S123, S127, S153,
S174, S177, S180

12

Video
Recording

S33, S50, S117, S125, S127, S140, S141, S144,
S180

9

Sketch Draw-
ing

S117, S127, S180 3

Others Eye Tracking (S144), Log Analysis (S166), Feelings
Cards (S180)

3

evaluated the visualization based on previously proposed criteria for visu-
alizing software in virtual reality [YM98]. Both studies planned as future
work to conduct an experimental evaluation. The remaining 155 studies
(i.e., 86%) adopted an empirical strategy to evaluate software visualiza-
tion approaches. Amongst them, we found that multiple strategies were
used. We investigated the evidence of the effectiveness of visualization
approaches provided by those strategies.

Figure 3.6 shows the relation between the data collection methods used
in evaluation strategies. We observe that most case studies do not describe
the methods used to collect data; however, we presume they are observa-
tional ones, such as one [S90] that reported to have conducted interviews.
The few surveys in the analysis collected data using interviews and ques-
tionnaires. One survey [S113] did not describe the method to collect data.
Experiments use multiple methods to collect data. They mainly use ques-
tionnaires, interviews, and the think-aloud protocol. Recent experiments

65

have used video recording, and other methods such as sketch drawing, eye
tracking, log analysis, and emotion cards.

Anecdotal Evidence

We found six studies (i.e., 3%) that support the claim of effectiveness of vi-
sualizations on anecdotal evidence of tool adoption. Two papers [S55,S73]
proposed a visualization to support the student audience and reported
that tools were successfully used in software engineering courses. The
remaining four studies [S70,S91,S97,S103] that focused on the developer
audience reported that visualizations were used intensively and obtained
positive feedback.

Usage Scenarios

Eighty-three studies (i.e., 46%) evaluated software visualizations via usage
scenarios. In this type of evaluation, authors posed envisioned scenarios and
elaborated on how the visualization was expected to be used. Usually, they
selected an open-source software system as the subject of the visualization.
The most popular systems that we found were written in (i) Java, such
as ArgoUML (4×), Ant (4×), JHotDraw (3×), Java SDK (2×), and Weka
(2×); (ii) C++, such as Mozilla (7×), VTK (2×), and GNOME (2×); and,
(iii) Smalltalk Pharo (4×). We found that several names were used among
the studies to describe this strategy. We observed that sixty-seven studies
(i.e., 37%) labeled evaluations as case studies, while twenty-six (i.e., 14%)
presented them as use cases. In the rest of the cases, authors used titles such
as: “application examples”, “usage examples”, “application scenarios”,
“analysis example”, “example of use”, “usage scenarios”, “application
scenarios”, and “usage example”.

Survey

Only four studies (i.e., 2%) performed a survey, which is consistent
with the findings of related work [MIK+16, SBCS14]. Three of them
[S13,S71,S100] surveyed developers to identify complex problems and
collect requirements to design a proposed visualization approach: one fo-
cused on supporting development teams who use version control systems
[S13], another asked former students of a course what they considered
the most difficult subject in the lecture [S71], and another was concerned
with understanding exception-handling constructs [S100]. In one study

66

[S113] students who used a visualization approach were surveyed to col-
lect anecdotal evidence of its usefulness. Two surveys [S71,S113] were
conducted for visualization approaches that target the student audience in
a software engineering course, while the remaining two [S13,S100] target
the developer audience.

We found that surveys are used to identify frequent and complex prob-
lems that affect developers; such problems are then interpreted as require-
ments for a new visualization approach. We conjecture whether the low
number of surveys has an effect on the disconnect between the proposed
software visualization approaches and the needs of developers that we
found in Chapter 2.

Case Study

We classified twelve papers (i.e., 7%) in the case study category. Usu-
ally, case studies are conducted to evaluate visualization approaches that
target professional developers working on real-world projects in an indus-
trial setting. The case of the study describes the context of the project in
which difficulties arise, and shows how a visualization approach provides
developers support for tackling them. We observed that in three studies
[S56,S90,S114] some or all authors of the study come from industry, while
in the rest there seems to be a strong relation of authors with industrial
companies. In all of them, the evaluation involved professional developers.

Experiment

Fifty-three studies (i.e., 29%) evaluated software visualization via exper-
iments. Although the level of detail varies, we identified a number of
characteristics such as (i) data collection methods; (ii) type of analysis;
(iii) participants; (iv) tasks; (v) dependent variables; and (vi) statistical
tests. In the following we describe the results of the extracted data.

(i) Participants. We observed a high variance in the participants in ex-
periments (shown in Figure 3.7). The highest number of participants
is found in a study [S25] that included 157 students. The minimum
number corresponds to a study [S100] that involved three partici-
pants (graduate students with experience in industry). The median
was 13 participants. A similar analysis of participants in the evalua-
tion of information visualization approaches [IIC+13] shows similar
results. Most evaluations of information visualization approaches

67

involve 1–5 participants (excluding evaluations that do not report on
the number of participants). The second most popular group includes
11–20 participants, and the group that includes 6–10 is the third most
popular. Overall the median is 9 participants. Although many eval-
uations in software visualization included a number of participants
in that ranges, the most popular ones are 6–10 and 11–20, followed
by 21–30. One reason that might explain the difference could be that
in our analysis we only included full papers that might present more
thorough evaluations including a higher number of participants.

8

12 12
10

5

1

4
2

0
2
4
6
8
10
12
14

1-5 6-10 11-20 21-30 31-40 41-50 51-100 >100

Figure 3.7: Histogram of the number of participants reported in evaluation.

We noticed that experiments to evaluate software visualization ap-
proaches for teaching software engineering (e.g., algorithms and data
structures) include a high number of participants since they usually
involve a whole course and sometimes several of them. This type
of experiment typically evaluates the effect of introducing visual-
ization tools as a means for helping students to learn the subject of
the course. All of them found that visualizations do help students.
However, they do not provide insights into whether the particular
visualization technique tested in the experiment is the most suitable
one. All experiments include participants selected from a convenience
sample. Normally, they are students and academics at various levels
with little experience working in industry.

(ii) Type of Analysis. Table 3.6 presents our classification of the type of
analysis adopted in experiments. We categorized the type of analysis
into one of two categories: quantitative and qualitative. We found
thirteen studies that adopted a quantitative analysis, while twenty-two
used a qualitative one. In eighteen studies there was both a quan-
titative and qualitative analysis. Common examples of quantitative

68

analyses in experiments include the measure of quantitative variables
such as time and correctness

Table 3.6: Type of analysis adopted in experiments.

Type of
Analysis

References #

Quantitative S21, S23, S24, S25, S71, S78, S101, S107, S137,
S150, S154, S164, S174

13

Qualitative S11, S13, S33, S61, S66, S96, S100, S106, S112,
S117, S123, S127, S135, S140, S141, S148,
S149, S153, S157, S166, S169, S181

22

Quantitative /
Qualitative S5, S32, S40, S47, S50, S72, S108, S118, S125,

S126, S131, S144, S162, S168, S173, S177,
S179, S180

18

(iii) Task. In table 3.10 the column Task summarizes exemplary tasks that
we extracted from the design of each experiment. In almost half of
the experiments (i.e., 26) we found explicit tasks that we identify
with a check mark X. The remaining tasks that we list correspond to
rationales that we inferred from analyzing the goals of experiments.

Typically, experiments were described as being formative or ex-
ploratory, and adopted a qualitative analysis of results (i.e., 75%). Sev-
eral experiments also used a quantitative analysis to report evidence
that supports the effectiveness of software visualization approaches.
Although reporting on early results of preliminary evaluations has
contributed important knowledge to the software visualization field,
we believe that for software visualization approaches to become an
actionable choice for developers, they have to present sound evidence
of their effectiveness via surveys, controlled experiments, and case
studies.

(iv) Dependent Variables. Table 3.8 lists the dependent variables that were
measured in experiments. We adopted the classification proposed by
Lam et al. [LBI+12] and classified the dependent variables based on
two of the proposed scenarios for evaluation of the understanding
of visualizations: user performance and user experience. We found

69

35 (i.e., 66%) studies that evaluated user performance, 8 (i.e., 15%)
evaluated user experience, and 10 (i.e., 19%) that evaluated variables
of both. To evaluate performance most experiments defined as de-
pendent variables correctness and time, some others specified that
the experiment aimed at evaluating effectiveness without presenting
details, and a few described multiple variables such as recollection,
visual effort, scalability, and efficiency. To evaluate user experience
researchers asked participants their perception of various variables
such as usability, engagement, understandability, and emotions.

(v) Statistical Tests. Table 3.9 summarizes the statistical tests used in
experiments for the quantitative analysis of data. We observed that the
choice of the test is governed primarily by the number of dependent
variables, their treatment and the type of the collected data (i.e.,
categorical, ordinal, interval). For instance, a questionnaire that uses a
5-step Likert scale to ask participants how suitable they find particular
characteristics of a software visualization approach for a certain task
would be ordinal. In that case, there would be one dependent variable,
with five levels of ordinal data, for which the Kruskal-Wallis test
would be a suitable match. Also, ANOVA is a common choice to test
hypotheses. However, we observed that in some cases researchers
found that parametric assumptions do not hold. Although there are
alternative tests for non-parametric data, we observe that for data
that do not follow a normal distribution, they can perform an Aligned
Rank Transform [WFGH11] [S177].

(vi) Task. In table 3.10 the column Task summarizes exemplary tasks that
we extracted from the design of each experiment. In almost half of
the experiments (i.e., 26) we found explicit tasks that we identify
with a check mark X. The remaining tasks that we list correspond to
rationales that we inferred from analyzing the goals of experiments.

We observed that in several studies participants were asked to use
a visualization to lookup some aspects of the system. Although in
some cases a database query might be a more effective tool than
a visualization, we observed that these tasks are often used as a
stepping stone towards complex tasks, in which developers certainly
benefit from visualizing the context. For instance, participants used a
visualization to answer questions where they had to:

70

a) count elements such as “how many packages are in the Java API?”
[S125], “what is the number of packages?” [S164], “determine
the total number of packages this system has” [S180], “how many
methods does the largest class have (in terms of LOC)?” [S144],
and

b) find outliers such as “find the process with the longest duration.”
[S32], “who are the top three most active code contributors?”
[S108], “what are the two largest classes?” [S141], “name three
applications that have a high fan-in” [S162], “find the three
classes with the highest NOA” [S180].

We also observe that most studies build on these answers and ask
participants to complete tasks that require them to explore. We believe
that visualizations inherently excel in such tasks in contrast to text-
based approaches. For instance, participants used visualizations to
answer questions that involve:

(a) Feature location such as “which method contains the logic to
increase the speed?” [S50], “locate the feature that implements
the logic: users are reminded that their accounts will be deleted
if they do not log in after a certain number of months” [S117],

(b) Change impact analysis such as “which classes of the package
dependency will be directly affected by this change?” [S108],

“analyze the impact of adding items to a playlist” [S78],

(c) Analyze the rationale of an artifact such as “find the purpose
of the given application” [S117], “what is the purpose of the
application” [S162], and

(d) Pattern detection such as “can you identify some interactions that
are identical, along time, between groups of classes?” [S168],

“find the most symmetric subtree in the tree” [S169], “locate the
best candidate for the god class smell” [S180].

Moreover, we classify these tasks according to the taxonomy pro-
posed by Munzner [Mun14]. In it, she proposed that the task that
motivates a visualization be classified using the following dimen-
sions:

(a) Analyze. The goal of a visualization can be to consume, that is, to
discover new knowledge, present already discovered knowledge,

71

and enjoy it; or it can be to create new material, which could be
to annotate elements in the visualization, record visualization
elements, and derive data elements from the existing ones.

(b) Search. All analyses require users to search. However, the type
of search can differ depending on whether the target of the search
and the location of that target are known. When both the target
and its location are known, it is called lookup. When the target is
known but not its location, it is called locate. When the target is
unknown but its location is known, it is called browse. Finally,
when both target and its location are unknown, it is called explore.

(c) Query. Once the searched targets are found, users query them. In
tasks that involve a single target, the type of query is referred to
as to identify. In tasks that involve two targets, it is referred to as
to compare. Finally, in tasks that involve more than two targets,
it is referred as to summarize.

Table 3.7: Classification of tasks used in experiments according to Mun-
zner [Mun14]

Query
Search

Identify Compare Summarize

Lookup — S5, S125 S108
Locate S123,

S131,
S137,
S153,
S177,
S180

S168 S21, S71, S100, S112,
S126, S149, S179

Explore S11,
S173

S72 S13, S23, S24, S25, S32,
S33, S40, S50, S61, S78,
S96, S106, S117, S118,
S127, S135, S140, S144,
S148, S150, S154, S157,
S162, S166, S169, S174,
S181

Browse S66,
S101

S47 S107, S141, S164

72

We classify all tasks collected from the studies into the discovery cate-
gory. The results of the classification in the remaining two dimensions
is presented in Table 3.7. We observed that most of the tasks were
designed to explore and summarize, that is, participants have to sum-
marize many targets that they neither know, nor for which they know
the location in the visualization. Almost half of the twenty-seven
tasks in this category were explicitly described in the studies, while
for the other half we only found a rationale. Tasks in this category
tackle:

(a) Comprehension [S23], [S24], [S25], [S32], [S33], [S40], [S61],
[S96], [S106], [S148], [S154], [S174];

(b) Change impact analysis [S50], [S78], [S118];
(c) Debugging [S144], [S150], [S181];
(d) Code Structure [S140], [S157];
(e) Project Management [S166], [S169];
(f) Rationale [S13], [S117], [S127], [S162]; and
(g) Refactoring [S135].

We found seven other studies with tasks in which participants were
asked to summarize targets but in which the targets were known, and
therefore we classified them in the locate category. Studies in this
category involve tasks that deal with:

(a) Comprehension [126];
(b) Debugging [S21], [S71];
(c) Dependencies [100], [149];
(d) Code structure [112]; and
(e) Project Management [S179].

Only five studies involved tasks that asked participants to compare
two targets. All of these tasks related to comprehension. Finally, the
tasks of ten studies involved identifying a single target. These tasks
deal with:

(a) Comprehension [S11], [S101], [S173], [S180];
(b) Change impact analysis [S177]; and
(c) Debugging [S66], [S123], [S131], [S137], [S153].

73

Table 3.8: A summary of the dependent variables found in experiments.

Dependent Variable References #

User
Performance

Not Explicit S96, S108 2
Time S5, S11, S32, S40, S71, S107,

S125, S137, S144, S162, S164,
S173, S174, S177, S180

15

Correctness S5, S11, S13, S21, S24, S25,
S32, S33, S40, S47, S71, S72,
S78, S101, S106, S107, S108,
S118, S123, S125, S126, S137,
S144, S150, S162, S164, S168,
S173, S179, S180

29

Effectiveness S13, S21, S50, S66, S72, S78,
S100, S101, S112, S127, S131,
S141, S148, S157, S162, S164,
S166

17

Completion S50,S164 2
Recollection S150,S180 2
Others Visual Effort (S144), Scalabil-

ity (S32), Efficiency (S32)
3

User
Experience

Not Explicit S96, S126, S49 3
Usability S11, S13, S32, S40, S61, S117,

S137, S140, S49, S153, S164,
S169, S177, S181

14

Engagement S154, S177 2
Understandability S118, S181 2
Feeling Enjoyment (S32), Intuitive

(S137), Satisfaction (S164),
Confidence (S107, S126)

5

Others Acceptability (S164), Learn-
ability (S164), Difficulty
(S180)

3

74

Table 3.9: Statistical tests used to analyze data from experiments.

Id. Test Reference #

T1 ANOVA S25, S32, S40, S107, S144, S164, S174,
S177, S180

9

T2 Pearson S25, S40, S50, S107, S108, S150 6
T3 Cohen S107, S150 2
T4 Wilcoxon S101, S107, S126, S150, S164 5
T5 Student T S5, S72, S101, S137, S162 5
T6 Shapiro-Wilk S107, S162, S177, S180 4
T7 Kruskal-Wallis S25, S108, S180 3
T8 Mann-Whitney S25, S107, S168 3
T9 Descriptive

Statistics and
Charts

S24, S78, S118, S125, S131, S141, S154,
S173, S179

9

T10 Levene S162, S180 2
T11-
T18

Tukey (S180), Mauchly (S174), Greenhouse-
Geisser (S174), Friedman (S21), Hotelling
(S71), Kolmogorov-Smirnov (S72), Spear-
man (S25), Regression Analysis (S24)

8

3.5 Discussion

We now revisit our research questions. Firstly, we discuss the main char-
acteristics that we found amongst the analyzed evaluations. Secondly, we
discuss whether the conducted evaluations are appropriate considering their
scope. Finally, we discuss the threats to the validity of our investigation.

RQ1.) What are the characteristics of evaluations that validate the
effectiveness of software visualization approaches?

Beyond traditional data collection methods. The methods used to
collect data during the evaluation have to facilitate the subsequent
analysis. Consequently, in a formative experiment researchers interview
participants to freely explore aspects of complex phenomena. In a case
study researchers can interview developers in their work environment,
which can help researchers to formulate hypotheses that can be tested

75

in experiments. Questionnaires can be used in surveys for exploration,
reaching a higher number of participants who can provide researchers
feedback of past experiences. We observed that several studies record
sessions with participants. Afterwards, these records are used to dissect
a user’s performance (e.g., correctness of answers and their completion
time) and experience (e.g., level of engagement of participants with a tool).
We observed that few non-traditional methods are used: (i) eye tracking to
capture how participants see the elements in visualizations; (ii) log analysis
to investigate how participants navigate visualizations; and (iii) emotion
cards to help participants to report their feelings in a measurable fashion.
Finally, we believe that the capabilities of recent devices used to display
visualizations (e.g., mobile phones, tablets, head-mounted displays) can
complement the standard computer screen, and provide researchers with
useful data for investigating both user performance and user experience.

Thorough reports of anecdotal evidence and usage scenarios. Tool
adoption can be considered the strongest evidence of the usability of an ap-
plication [ANAV10]. However, we observe a lack of rigor amongst studies
that reported anecdotal evidence. Normally, these studies report that tools
were used, but often they do not specify the context, for instance, whether
the tools are freely adopted or enforced as a requirement in a software
engineering teaching course. Moreover, they describe subjective feedback
from users using expressions such as “the tool was used with much suc-
cess” [S55], “feedback was positive” [S97] We propose that also reporting
objective evidence, for instance number of downloads, would help them in
making a stronger case to support the effectiveness of visualizations.

We also observed that one third of studies employed usage scenarios to
demonstrate the effectiveness of the software visualization approaches.
Typically they describe how the approach can answer questions about
a software system. Normally, usage scenarios are carried out by the
researchers themselves. Although researchers in the software visualization
field are frequently both experts in software visualization and also
experienced software developers, we believe they are affected by
construction bias to perform the evaluation. Usage scenarios can help
researchers to illustrate the applicability of a visualization approach. In
fact, use cases that drive usage scenarios can reveal insights into the
applicability of an visualization approach in an early stage [HHPS07].
Nonetheless, we believe they must involve external developers of the
target audience who can produce a less biased evaluation, though related

76

work [HRW00] found that software engineering students can be used
instead of professional software developers under certain conditions.
We found multiple subject systems in usage scenarios, of which the
most popular are open source. We reflect that open source software
systems provide researchers an important resource for evaluating their
proposed visualization approaches. They allow researchers to replicate
evaluations in systems of various characteristics (e.g., size, complexity,
architecture, language, domain). They also ease the reproducibility of
studies. However, we think that defining a set of software systems to
be used in benchmarks would facilitate comparison across software
visualization evaluation [MM03, MFB+17].

The value of visualizations beyond time and correctness. We believe
that it is necessary to identify the requirements of developers and evaluate
whether the functionality offered by a visualization tool is appropriate to the
problem. Indeed, past research has found a large gap between the desired
aspects and the features of current software visualization tools [BK01]. A
later study [SOT08b] analyzed desirable features of software visualization
tools for corrective maintenance. A subsequent study [KM10] analyzed
the requirements of visualization tools for reverse engineering. We ob-
served, however, little adoption of the proposed requirements. Usability is
amongst them the most adopted one. Scalability was adopted only in one
study [S32]. Others such as interoperability, customizability, adoptabil-
ity, integration, and query support were not found amongst the variables
measured in experiments (see Table 3.8). We observed that even though
none of the studies proposed that users of software visualizations should
find answers quickly (i.e., time) and accurately (i.e., correctness), there are
many evaluations that only considered these two variables.

We observed that evaluations in most studies aimed at proving the
effectiveness of software visualization approaches. However, some studies
do not specify how the effectiveness of the visualization is defined. Since
something effective has “the power of acting upon the thing designated”,1

we reflect that effective visualization should fulfill its designated require-
ments. Then we ask what are the requirements of software visualization?
We extract requirements from the dependent variables analyzed in exper-
iments. We observed that the two main categories are user performance
and user experience. Indeed, practitioners who adopt a visualization ap-

1“effective, adj. and n.” OED Online. Oxford University Press, June 2017. Accessed
October 27, 2017.

77

proach expect to find not only correct answers to software concerns, they
expect that the visualization approach is also efficient (i.e., uses a minimal
amount of resources), and helps them to find answers in a short amount
of time [VW06]. However, they also aim at obtaining a good experience
in terms of (i) engagement when the target audience is composed of stu-
dents of a software engineering course; (ii) recollection when the audience
involves developers understanding legacy code [B+56]; and (iii) positive
emotions in general.

We believe that effective software visualization approaches must com-
bine various complementary variables, which depend on the objective of
the visualization. That is, variables used to explicitly define effectiveness
relate to the domain problem and the tasks required by a particular target
audience. We think that a deeper understanding of the mapping between
users’ desired variables to usage scenarios of visualization can bring in-
sights for defining quality metrics [BTK11] in the software visualization
field.

The case in case studies. We classified twelve papers into the case study
category. In these papers, we identified a case that is neither hypothetical
nor a toy example, but a concrete context that involves a real world system
in which developers adopted a visualization approach to support answering
complex questions. In only one paper [S90] did we find a thorough evalua-
tion that describes the use of various research methods to collect data such
as questionnaires and interviews. In contrast, in others we found less detail
and no explicit description of the methods employed to collect data. In
particular, in three papers [S52,S114,S151] a reference was given to a paper
that contains more details. We observed that in studies in which authors
come from industry [S56,S90,S114] there are many details provided as
part of the evaluation. In all of them, (i) users who evaluated the proposed
visualization approach were senior developers from industry, and (ii) the
evaluation adopted a qualitative analysis. Case studies are often accused of
lack of rigor since biased views of participants can influence the direction
of the findings and conclusions [Yin13]. Moreover, since they focus on a
small number of subjects, they provide little basis for generalization.

In summary, we reflect on the need for conducting more case studies
that can deliver insights into the benefits of software visualization
approaches, and highlight the compulsion of identifying a concrete
real-world case.

78

The scope of experiments in software visualization. Table 3.10 summa-
rizes our extension to the framework proposed by Wohlin et al. [WRH+12]
to include key characteristics of software visualizations. We believe that
the extended framework can serve as a starting point for researchers who
are planning to evaluate a software visualization approach. Each row in the
table can be read as follows:

“Analyze [Object of study] executing in a [Environment] to support the
[Task] using a [Technique] displayed on a [Medium] for the purpose
of [Purpose] with respect to [Quality Focus] from the point of view of

[Perspective] in the context of [Context].”

We used the framework to describe the scope of a recent experiment of
3D visualization in immersive augmented reality [MBN18].

RQ2.) How appropriate are the evaluations that are conducted to validate
the effectiveness of software visualization?

Explicit goal of evaluations. We observed that studies often do not
explicitly specify the goal of the evaluation. They formulate sentences
such as “To evaluate our visualization, we conducted interviews ...” [S100].
We investigate what aspects of the visualization are evaluated. We
reflect that a clear and explicit formulation of the goal of the evaluation
would help developers to assess if the evaluation provides them enough
evidence that support the claimed benefits of a proposed visualization
approach. Although in most studies we infer that the goal is to evaluate the
effectiveness of a visualization, in only a few studies is there a definition
of effectiveness. For instance, one study [S131] defines effectiveness
of a visualization in terms of the number of statements that need to be
read before identifying the location of an error; however, we believe this
definition suits better the definition of efficiency. Indeed, practitioners will
benefit from effective and efficient software visualization. Nonetheless, we
believe the game-changing attribute of a visualization resides in the user
experience, for which multiple variables should be included in evaluations
(e.g., usability, engagement, emotions).

79

Table
3.10:T

he
evaluation

scope
ofexperim

ents
in

softw
are

visualization
(explicittasks

are
check

m
arked

X
).

R
ef.

O
bjectofStudy

Task
E

nv.
Technique

M
ed.Purpose

(To
gain

insights
on

...)
Q

uality
Foc.Pers.C

ontext
StatisticalTest

S5
U

M
L

diagram
notation

Identify
ifan

U
M

L
diagram

correspond
to

a
specification

–
U

M
L

SC
S

W
hethera

specification
m

atches
a

diagram
Perform

ance
A

ll
35

C
S

students
T

5
S11

G
enisom

Search
forinform

ation
held

w
ithin

the
self-organizing

m
ap.

–
C

ity
SC

S
H

ow
users

extractinform
ation

from
a

visual
Per./E

xp.
A

ll
114

C
S

students
–

S13
X

ia
W

hy
a

particularfile
changed

–
N

ode-link
SC

S
Initialrequirem

ents
Per./E

xp.
A

ll
5

C
S

students
–

S21
Spreadsheets

L
ocalization

offaulty
cells

–
A

ug.source
code

SC
S

Faulty
cells

in
spreadsheets

Per./E
xp.

N
ov.87

C
S

students
T

14
S23

R
educ.C

ognitive
E

ffort
Tasks

related
to

distributed
com

putations
–

N
ode-link;IconicSC

S
C

ognitive
econom

y
Perform

ance
N

ov.20
C

S
st.(5

fem
ale)

–
S24

D
ancingH

am
st.;M

arble.Tasks
related

to
algorithm

analysis
–

A
nim

.N
ode-link

SC
S

T
he

im
pactofvisualization

in
learning

Perform
ance

N
ov.12

C
S

st.;43
C

S
st.

T
18

S25
A

lgorithm
visualization

Tasks
related

to
the

sorting
algorithm

s
–

A
ug.source

code
SC

S
T

he
im

pactofvisualization
in

learning
Perform

ance
N

ov.157
C

S
students

T
1,T

7,T
8,T

17
S32

G
row

ingSquares
Is

process
x

causally
related

tim
e

to
process

y?
X

–
N

ode-link;H
asse

SC
S

T
he

im
pactofa

technique
Perform

ance
A

ll
12

part.(4
fem

ale)
T

1
S33

PlanA
ni

Tasks
related

to
sorting

algorithm
s

V
arious

A
ug.source

code
SC

S
Supporting

teaching
program

m
ing

in
C

S
Perform

ance
N

ov.91
C

S
students

–
S40

Variable
dependency

C
om

plete
an

unfinished
function

–
U

M
L

SC
S

Intra-proceduralvariable
dependencies

Per./E
xp.

A
ll

38
C

S
st.(3

fem
ale)

T
1,T

2
S47

U
M

L
class

diagram
M

atch
the

role
ofa

particularclass
–

U
M

L
SC

S
Stereotype-based

architecturalU
M

L
layout

C
orrectness

A
ll

20
C

S
students

–
S50

W
ear-based

filtering
C

hange
the

program
to

obtain
an

expected
behavior

X
–

U
M

L
SC

S
T

he
im

pactofusing
w

ear-based
filtering

Perform
ance

A
ll

7
m

ale
developers

T
2

S61
A

lgorithm
visualization

Tasks
related

to
algorithm

analysis
–

N
ode-link

SC
S

T
he

im
pactofusing

conceptkeyboards
E

xperience
N

ov.17
C

S
st.;18

C
S

st.
–

S66
Socialagents

W
hatfaults

did
you

find,and
w

hen
did

you
find

each
one?

–
Iconic

SC
S

T
he

im
pactofthe

tool
E

ffectivenessN
ov.22

C
S

students
–

S71
jG

rasp
Find

and
correctallthe

non-syntacticalerrors
V

arious
A

ug.source
code

SC
S

Supporting
teaching

program
m

ing
in

C
S

Perform
ance

N
ov.-

T
15

S72
A

lgorithm
visualization

H
ow

differentare
Prim

and
D

ijkstra
algorithm

s?
X

–
N

ode-link
SC

S
T

he
im

pactofthe
narrative

visualization
approach

Perform
ance

N
ov.34

C
S

students
T

5,T
16

S78
G

illigan
A

nalyze
the

im
pactofchanging

a
program

.X
–

A
ug.source

code
SC

S
T

he
im

pactofa
tool

Perform
ance

A
ll

6
participants

T
9

S96
SolidFX

Tasks
related

to
reverse-engineering

open-source
code

W
indow

sH
E

B
;Pixel

SC
S

A
rchitecture,m

etrics
and

dependencies
Per./E

xp.
A

ll
8

part.(ind.&
acad.)

–
S100E

nhance
Find

dependencies
betw

een
structuralelem

ents
–

N
ode-link

SC
S

H
ow

devs.understand
exception-handling

constructs
Perform

ance
N

ov.3
C

S
students

–
S101saU

M
L

Selectthe
candidate

thatbestdescribes
the

depicted
behavior

–
U

M
L

SC
S

Synchronization-adorned
sequence

diagram
s

Perform
ance

N
ov.24

C
S

students
T

4,T
5

S106V
arious

Tasks
related

to
program

com
prehension

and
m

aintenance
–

V
arious

SC
S

T
he

im
pactofa

tool
Perform

ance
A

ll
90

part.(ind.&
acad.

–
S107U

M
L

C
lass

diagram
Identify

classes
to

be
changed

to
add

a
requirem

ent
–

U
M

L
SC

S
T

he
im

pactofthe
layout

Per./E
xp.

A
ll

45
C

S
students

T
1-T

4,T
6

S108V
ersion

Tree
vs

A
ugur

W
hich

classes
w

illbe
directly

affected
by

this
change?

X
–

N
ode-link

SC
S

B
enefits

ofvis.foropen
source

new
com

ers
Perform

ance
N

ov.27
C

S
students

(9
fem

ales)
T

2,T
7

S112U
M

L
C

lass
diagram

C
ountabstractclasses

to
see

ifproxies
are

distinguished
–

U
M

L
SC

S
Initialrequirem

ents
Perform

ance
A

ll
8

C
S

stud.&
staff(2

fem
ale)–

S117C
odeM

ap
Find

the
purpose

ofthe
given

application
X

–
Island

SC
S

V
isualizations

em
bedded

in
the

ID
E

E
xperience

A
ll

7
part.(ind.&

acad.)
–

S118ProfV
is

H
ow

the
program

can
be

m
odified

to
im

prove
perform

ance
X

Java
N

ode-link
SC

S
E

xecution
traces

ofJava
program

s
Per./E

xp.
A

ll
4

participants
T

9
S123A

llocR
ay

Find
the

location
ofa

m
em

ory
leak

–
Pixel

SC
S

A
llocation

patterns
and

m
em

ory
problem

s
Perform

ance
A

ll
4

developers
–

S125System
H

otspotsV
iew

H
ow

m
uch

biggeris
“C

om
ponent”

than
“W

indow
”

class?
X

–
Polym

etric
view

s
SC

S
V

isualization
rendered

on
a

w
alldisplay

Perform
ance

A
ll

11
part.(3

fem
.ind.&

acad.)T
9

S126StenchB
lossom

Identify
code

sm
ells

E
clipse

A
ug.source

code
SC

S
Supporting

softw
are

quality
based

on
code

sm
ells

Per./E
xp.

A
ll

12
part.(ind.&

acad.
T

4
S127Softw

are
dev.lifecycle

A
nalyze

the
context,and

roles
ofinvolved

people
in

projects
–

N
ode-link

SC
S

H
ow

devs.draw
diagram

s
ofsoft.lifecycle

Perform
ance

A
ll

8
par.(C

S
stud.&

resear.)
–

S131C
onstellation

Identify
the

location
in

the
code

ofa
fault

–
N

ode-link
SC

S
Softw

are
understanding

and
pattern

recognition
Perform

ance
A

ll
30

C
S

students
T

9
S135E

-Q
uality

Selectthe
m

ostsignificantrefactoring
candidates

ofa
program

–
N

ode-link;IconicSC
S

V
isualization

ofdesign
flaw

s
and

refact.opportunities
E

xperience
A

ll
16

developers
–

S137G
zoltar

Identify
the

location
in

the
code

ofa
fault

Java;E
cli.Icicle;Treem

ap
SC

S
Faultlocalization

fordebugging
Java

progs.
Per./E

xp.,...A
ll

40
C

S
students

T
5

S140PN
LV

;IM
M

V
W

hatinteresting
visualstructures

do
you

find
in

the
vis.?

X
–

N
ode-link

SC
S

V
isualization

forunderstanding
an

unknow
n

system
E

xperience
A

ll
8

part.(ind.&
acad.)

–
S141SourceV

is
H

ow
m

any
interfaces

does
this

class
depend

on?
X

–
Polym

etric
view

s
M

M
T

V
is.on

m
ultitouch

tab.forco-located
collab.in

unders.Perform
ance

A
ll

6
par.(C

S
stud.&

resear.)
T

9
S144SeeIT

3D
Identify

w
hy

the
program

produce
a

poorprintquality
X

E
clipse

C
ity

SC
S

V
isualization

forarchitecture
ofJava

system
s

Perform
ance

A
ll

97
C

S
students

T
1,T

18
S148C

hronoTw
igger

Investigate
the

softw
are

w
hile

thinking
outloud

–
N

ode-link
I3D

V
isualization

ofthe
developm

entprocess
and

testing
Perform

ance
A

ll
3

dev.(1
fem

ale)
–

S149regV
IS

Track
ofthe

O
verallC

ontrolFlow
X

W
indow

sV
isuallanguage

SC
S

Supporting
assem

blercontrol-flow
ofregularexpr.

E
xperience

A
ll

10
par.(C

S
stud.&

resear.)
–

S150C
om

piler
M

essages
Identify

the
cause

ofan
errorthrough

highlighted
elem

ents
X

–
A

ug.source
code

SC
S

H
elping

devs.on
com

prehending
errorm

essages
Perform

ance
N

ov.28
C

S
students

T
2-T

4
S153SIFE

I
Find

a
failure

and
specify

a
testscenario

foritX
E

xcel
V

isuallanguage
SC

S
Spreadsheets

form
ulas

Per./E
xp.

A
ll

9
part.(ind.&

acad.)
–

S154TiledG
race

D
escribe

the
behaviorofa

program
X

W
eb

V
isuallanguage

SC
S

Supporting
program

m
ing

in
the

G
race

language
E

xperience
N

ov.33
C

S
students

T
9

S157C
odeSurveyor

R
ank

the
code

m
aps

thatbestrepresentthe
codebase

X
–

Island
SC

S
C

ode
m

aps
forlearning

and
navigating

system
s

Perform
ance

A
ll

5
dev.(1

fem
ale)

–
S162E

xplorV
iz

W
hatis

the
purpose

ofthe
W

W
W

PR
IN

T
application?

X
W

eb
C

ity
I3D

A
rchitecture

based
on

m
etric

analysis
Perform

ance
A

ll
25

C
S

students
T

5,T
6,T

10
S164V

IM
E

T
R

IK
W

hatis
the

num
berofcom

pilation
units

in
“Tom

cat”?
X

–
C

ity;M
atrix

SC
S

M
etrics

and
visualization

ofa
softw

are
system

Per./E
xp.

A
ll

21
C

S
students

T
1,T

4,T
9

S166W
orking

Sets
A

nalyze
the

developeractivity
on

entities
ofthe

w
orking

sets
–

N
ode-link

SC
S

V
isualization

ofthe
evolution

ofw
orking

sets
Perform

ance
A

ll
14

developers
–

S168C
uboidM

atrix
Identify

identicalinteractions,along
tim

e,betw
een

classes?
X

–
Space-tim

e
cube

SC
S

T
he

im
pactofthe

toolin
softw

are
com

prehension
Perform

ance
A

ll
8

par.(C
S

stud.&
resear.)

T
8

S169Perquim
ans

W
hich

sheets
contained

the
m

ostdangerous
form

ula
practice

X
–

N
ode-link

SC
S

V
is.tool’s

supportofexploration,and
quantification

E
xperience

A
ll

4
C

S
students

–
S173Indented

H
ierarchy

Find
the

m
ostsym

m
etric

subtree
in

the
tree.X

–
Pixel

SC
S

A
technique

com
pared

w
ith

node-link
diagram

s
Perform

ance
A

ll
18

vis.exp.(3
fem

ale)
T

9
S174R

egex
textualvs

graph.
Is

A
B

C
in

the
language

defined
by

a
regularexpression?

X
–

A
ug.source

code
SC

S
A

graphicalnotation
on

the
readability

ofa
regex

Perform
ance

N
ov.22

par.(C
S

stud.and
staff)

T
1,T

12,T
13

S177C
ode

Park
Identify

w
here

in
the

code
add

the
logic

to
supporta

feature
X

–
C

ity
I3D

T
he

im
pactofthe

toolon
usability

and
engagem

ent
Per./E

xp.
N

ov.28
C

S
st.(6

fem
ale)

T
1,T

6
S179iTraceV

is
W

here
did

the
dev.notlook

atin
the

sam
e

m
ethod?

X
E

clipse
H

eatm
ap

SC
S

E
ye

m
ovem

entdata
ofcode

reading
Perform

ance
A

ll
10

C
S

students
T

9
S180C

ityV
R

L
ocate

the
bestcandidate

forthe
god

class
sm

ellX
Pharo;U

.C
ity

SC
S

A
rchitecture

based
on

m
etrics

in
O

O
P

Perform
ance

A
ll

21
participants

T
1,T

6,T
7,T

10,T
11

S181M
ethodE

xecutionR
ep.x

Tasks
related

to
execution

reportforprofiling
and

debugging
X

Java
C

harts
SC

S
Supporting

sum
m

arization
ofm

ethods
execution

Per./E
xp.

A
ll

11
part.(ind.&

acad.)
–

http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://www.jgrasp.org/
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
http://ftaiani.ouvaton.org/7-software/profvis.html
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
http://www.gzoltar.com
https://github.com/davidmr/seeit3d
http://www.sts.tu-harburg.de/projects/regvis/regvis.html
https://github.com/kuleszdl/SIFEI
http://homepages.ecs.vuw.ac.nz/~mwh/
https://www.explorviz.net
https://github.com/SERESLab/iTrace-Archive
http://scg.unibe.ch/research/cityvr
https://github.com/fabian-beck/Method-Execution-Reports

Experiments’ tasks must be in-line with evaluations’ goal. Software
visualizations are proposed to support developers in tasks dealing with
multiple development concerns. A problem thus arises for developers
willing to adopt a visualization but who need to match a suitable
visualization approach to their particular task at hand [MGN+16b]. We
investigate how suitable a visualization approach is for the tasks used in
evaluations. We reflect that proving a software visualization approach to
be effective for tasks for which there exist other more appropriate tools
(but not included in the evaluation) can lead to misleading conclusions.
Since many evaluations included in our analysis do not state an explicit
goal, and some of the remaining ones refer to rather generic terms (e.g.,
effectiveness, usability) without providing a definition, understanding
whether the tasks used in experiments are in-line with the goals of
evaluations is still uncertain.

Beyond usage scenarios. Related work concluded that describing a case
study is the most common strategy used to evaluate software visualization
approaches. Indeed, we found many papers that contain a section entitled
case study; however, we observe that most of them correspond to usage
scenarios used to demonstrate how the proposed visualization approach is
expected to be useful. In all of them, the authors (who usually are also
developers) select a subject system and show how visualizations support
a number of use cases. For example, one study [S158] describes the
presence of independent judges, but without providing much detail about
them. In the past, such a self-evaluation, known as an assertion [ZW98],
has been used in many studies, and is not considered an accepted research
method for evaluation [WRH+00]. Instead, we prefer to refer to them
as usage scenarios (as they are called in many studies). This name has
also been adopted in the information visualization community [IIC+13],
and therefore its adoption in software visualization will ease comparison
across the two communities. Nonetheless, usage scenarios do not represent
solid evidence of the benefits of proposed software visualization, and
should be used only as a starting point to adjust requirements, and improve
an approach.

Surveys to collect software visualization requirements. We observed
that surveys are adequate to identifying requirements for software visual-
izations. Through a survey, the problems that arise in the development
tasks carried out by a target audience that involve a particular data set can

81

be collected as assessed as potential candidates for visualization. Then,
researchers can propose an approach that defines the use of a visualization
technique displayed in a medium. We observed that a main threat in
software visualization is the disconnect between the development concerns
that are the focus of visualization, and the most complex and frequent
problems that arise during real-life development.

Report on thorough experiments. Although formative evaluations can
be useful at an early stage, evidence of the user performance and user
experience of a software visualization approach should be collected via
thorough experiments (when variables included in the evaluation can be
controlled). Experiments should include participants of a random sam-
ple of the target audience and real-world software systems. Experiments
should aim at reproducibility, for which open source software projects are
suitable. Moreover, open source projects boost replicability of evaluations
across systems of various characteristics. The tasks used in experiments
should be realistic, and as already discussed, consistent with the goal of
the evaluation, otherwise conclusions can be misleading. Finally, we ob-
served that standardizing evaluations via benchmarks would promote their
comparison.

In summary, we observed that the main obstacles that prevent re-
searchers from doing more appropriate evaluations are (i) the lack of
a ready-to-use evaluation infrastructure, e.g., visualization tools to com-
pare with; (ii) the lack of benchmarks that ease comparison across tools,
e.g., quality metrics; (iii) the tradeoff between the effort of conducting
comprehensive evaluations and little added value to paper acceptance; and
(iv) the difficulties to involve industrial partners willing to share resources,
e.g., include participants of the target audience.

3.5.1 Threats to Validity
Construct validity. Our research questions may not provide complete cov-
erage of software visualization evaluation. We mitigated this threat by
including questions that focus on the two main aspects that we found in
related work: (1) characterization of the state-of-the-art, and (2) appropri-
ateness of adopted evaluations.

Internal validity. We included papers from only two venues, and may
have missed papers published in other venues that require more thorough
evaluations. We mitigated this threat by identifying relevant software visu-

82

alization papers that ensure an unbiased paper selection process. Therefore,
we selected papers from the most frequently cited venue dedicated to soft-
ware visualization: SOFTVIS/VISSOFT. We argue that even if we would
have included papers from other venues the trend of the results would
be similar. Indeed, related work did not find important differences when
comparing software visualization evaluation in papers published in SOFT-
VIS/VISSOFT to papers published in other venues [MIK+16, SBCS14].
Moreover, our results are in line with the conclusions of related work that
have included papers from multiple venues [LHIE18, SLB14, NTM+13].
We also mitigated the paper selection bias by selecting peer-reviewed full
papers. We assessed the quality of these papers by excluding model papers
(i.e., commentary, formalism, taxonomy) that are less likely to include an
evaluation. However, since software visualization papers do not specify
their types, we may have missed some. We mitigated this threat by defining
a cross-checking procedure and criteria for paper type classification.

External validity. We selected software visualization papers published
between 2002 to 2017 in SOFTVIS/VISSOFT. The excluded papers from
other venues or published before 2002 may affect the generalizability of
our results.

Conclusion validity. Bias in the data collection procedure could obstruct
reproducibility of our study. We mitigated this threat by establishing a
protocol to extract the data of each paper equally, and by maintaining a
spreadsheet to keep records, normalize terms, and identify anomalies.

3.6 Conclusion

We reviewed 181 full papers of the 387 that were published to date in the
SOFTVIS/VISSOFT conferences. We extracted evaluation strategies, data
collection methods and other various aspects of evaluations. We found
that 62% (i.e., 113) of the proposed software visualization approaches do
not include a strong evaluation. We identified several pitfalls that must be
avoided in the future of software visualization: (i) evaluations with fuzzy
goals (or without explicit goals), for which the results are hard to interpret;
(ii) evaluations that pursue effectiveness without defining it, or that limit
the assessment to time, correctness (user performance) and usability (user
experience) while disregarding many other variables that can contribute to
effectiveness (e.g., recollection, engagement, emotions); (iii) experiment
tasks that are inconsistent with the stated goal of the evaluation; (iv) lack

83

of surveys to collect requirements that explain the disconnect between the
problem domains on which software visualization have focused and the
domains that get the most attention from practitioners; and (v) lack of rigor
when designing, conducting, and reporting on evaluation.

We call researchers in the field to collect evidence of the effectiveness
of software visualization approaches by means of (1) case studies (when
there is a case that must be studied in situ), and (2) experiments (when
variables can be controlled) including participants of a random sample
of the target audience and real-world open source software systems that
promote reproducibility and replicability.

We believe that our study will help (a) researchers to reflect on the
design of appropriate evaluations for software visualization, and (b) devel-
opers to be aware of the evidence that supports the claims of benefit of the
proposed software visualization approaches.

We have presented a characterization of the evaluations conducted in
software visualization approaches. We have identified common pitfalls,
and presented guidelines to help researchers in the field who need to
evaluate their visualization approaches. We observed that the quality of
evidence of the effectiveness of proposed software visualization approaches
varies. Amongst the many proposed visualizations there are some that have
presented strong evidence of their effectiveness, which also sometimes
have been maintained by a large community since long time, and shown
maturity; while others might be promising visualizations that support
unexplored software concerns. We ask whether a developer willing to adopt
software visualizations can identify a suitable approach. In the following
chapter we address this concern, and elaborate on our attempts to fill the
gap between proposed visualizations and their practical applications.

84

4
Actionable Software Visualization

4.1 Introduction
Little research has been carried out to fill the gap between existing software
visualization techniques and their practical applications. For example, one
study [HDSP09] proposed an approach for generating visualizations specif-
ically for maintenance tasks. Another study [SS11] proposed an approach
to derive interactive visualizations from descriptions of code analysis tasks.
That approach, however, required developers to use a domain-specific lan-
guage to describe the task. A study [GTS10] reported on how information
visualization novices construct visualizations. In it, the authors analyzed
the usage of basic visualization techniques such as charts and scatter plots.
Although these techniques provide limited support for the analysis of de-
velopment concerns, they acknowledge the need for tools that suggest a
potential visualization.

In this chapter we elaborate on our efforts to fill the gap between exist-
ing software visualization techniques and their practical applications. First,
we discuss a meta-visualization approach that relates frequent questions
that arise during developments to actionable visualization examples that
they easily be tailored and apply to their particular context. Secondly, we

85

introduce a curated catalog of available software visualization tools that
have been proposed, which we characterize by their target task, execution
environment, employed visualization techniques, and evidence of effec-
tiveness. Finally, we elaborate on early results of developing an ontology
of software visualizations that encapsulate their main characteristics.

4.2 MetaVis

Software visualization can play an effective role to answer a number of
questions that arise during software development. For instance, before

“refactoring a legacy software system”, developers should know “what
are the dependencies of this code?” Obviously, a visualization on which
developers can identify entities and trace dependencies would help them to
prioritize the tasks that might require more effort.

Though existing visualizations are often characterized by the types of
questions that they are well-suited to answer, as we show in Chapter 2, each
work introduces a new tool or technique [MGN16a]. That is, developers
may need to explore a long list of existing visualizations to adopt the one
that fits their needs. Consider the case of the Roassal visualization engine
[ABC+13] available for Smalltalk. Although it provides 363 examples that
developers can adapt, the examples belong to 36 different visualization
categories that are categorized based on the addressed technique or feature
rather than on development concerns.

We conjecture that the difficulties that developers experience in search-
ing for a suitable visualization obstruct their adoption. We believe that
providing visualization support within IDEs and categorizing existing tech-
niques in a way that maps to the certain needs for development tasks is
very helpful for developers. We have performed a small experiment that
supports our hypothesis. We instrumented the Roassal example browser
to monitor the behavior of users who have installed Roassal recently, and
thus have demonstrated their interest in adopting visualizations. Over the
period of one month we collected the usage behavior of 58 anonymous
users. They showed a trend that confirms our intuition. The top 10 users
who browsed the highest number of examples had to traverse at least 5
categories on average (with a maximum of 13 categories traversed by a
user who tried 60 examples) before they found an example of interest.

We propose MetaVis [MGN+16b], a tool for exploring visualization
examples suitable to answer frequent development questions. MetaVis

86

uses a tag-iconic cloud-based visualization to connect frequently recurring
and meaningful words, called tags, retrieved from the collected questions
to icons that represent visualization examples. The tool allows users to
discover and adapt appropriate visualization examples with the help of
tags that are relevant to their needs. We present initial results of integrating
MetaVis into the Pharo programming environment [DZHC17]. Amongst
173 questions that developers frequently ask during software development,
collected from related work, we assigned 76 of them to 49 suitable vi-
sualization examples selected from 363 examples in the Roassal engine.
To ease the reproducibility of our research MetaVis and our data sets are
publicly available1.

Figure 4.1 shows the MetaVis visualization, which is based on three
main components: (1) a set of developer’s questions, (2) a set of visual-
ization examples, and (3) the relationships between the two sets. We now
explain these components and elaborate on how the visualization supports
users for their comprehension.

4.2.1 Developer’s Questions

Developers often should answer several questions to perform a develop-
ment task. Indeed, a complex task, such as “refactoring a legacy software
system”, is broken down into some specific questions like “what are the
dependencies between these two packages?”, “who is the owner or ex-
pert for this code?”, etc. Various researchers have mined, analyzed and
thoroughly classified such questions. LaToza and Myers [LM10] surveyed
179 seasoned developers who answered “what hard-to-answer questions
about code have you recently asked?”, and identified 91 types of such
questions. Sillito et al. [SMDV06] collected 44 types of questions from two
observational studies: in one study they interviewed 9 computer science
graduate students, and in another, 16 industrial programmers. Fritz and
Murphy [FM10] also interviewed 11 developers with varying expertise in
industry, and gathered 46 types of questions.

We could identify 173 distinct questions from the aforementioned
studies. We studied these questions to identify those for which visualization
represents a suitable means to reveal an answer. Each participant studied
each question independently. In our experience, questions that aim at
analyzing relationships among entities, comparing metrics and classifying

1http://scg.unibe.ch/research/meta-vis

87

http://scg.unibe.ch/research/meta-vis

Figure 4.1: MetaVis visualization depicts tags, collected from frequent
questions that arise during development, linked to icons of suitable visual-
ization examples.

88

Figure 4.2: Classification of the 97 excluded questions.

entities using certain criteria can benefit from visualization. At the end,
we compared our results and discussed any conflict. We agreed that out
of 173 questions visualization significantly helps to answer 76 of them
(44%) like “how big is this code?”, “where is this method called or type
referenced?”, and “what classes have been changed most?” just to name
a few. We excluded the 97 remaining questions (shown in Figure 4.2) for
multiple reasons. We mainly excluded questions (1) already supported by
tools part of the standard development environment (e.g., VCS, Debugger
tool, Code browser), and (2) on which visualization is trivial and gathering
the data represents most of the answer, labeled as Trivial Visualization, or
on which the input data is not available (e.g., assumptions, intent, policies),
labeled as Lack of Data. We thus excluded (1) questions such as “what
are the arguments to this function?” for which the debugger is appropriate,

“who made a particular change?”, which can be queried in the versioning
control System, or “is this code tested?” for which a test coverage tool will
provide a more comprehensive analysis, and (2) questions such as “what
parameter values does each situation pass to this method?”, “how many
recursive calls happen during this operation?”, and “why was it done this
way?” Similar questions from other studies could be incorporated into
our approach by expanding the set of related tags that represent a given
development concern.

89

4.2.2 Visualization Examples

We take the specific case of the examples that are shipped with the Roassal
visualization engine. Roassal is a general-purpose visualization engine,
which means that it is not limited to visualization of software concerns.
It provides 363 examples that show novice users how various APIs can
be used to obtain a certain visualization. The examples are organized into
36 categories (e.g., Color Palettes, Interaction, Tree map). Users browse a
category and see small screenshots of its visualization examples. Users can
select an example, inspect its implementation and shape it to their needs.

We analyzed the 363 examples one by one. Although examples are not
designed specifically for visualization of software development concerns,
we found 49 that provide a useful starting point on which users can build
visualizations to answer some of the questions identified in 4.2.1.

Identifying which of dozens of questions relate to the actual need of a
developer is a hard task. Consequently, MetaVis automatically split ques-
tions into frequently occurring and meaningful words (e.g., verbs, nouns),
called tags, that we manually relate to suitable visualization examples. In
the following we elaborate on the visualization that we designed for their
exploration.

4.2.3 TIC: Tag-Iconic Cloud-Based Visualization

Tag	

Tag	 Tag	Tag	
Tag	

Tag	
Example	

Example	

Tag	

Example	

Figure 4.3: TIC wireframe composed
of (1) tags from questions, (2) visual-
ization examples, and (3) on-demand
edges that connect tags and examples.

The TIC visualization follows
Shneidermann’s visualization
mantra [Shn96]: first users explore
an overview of the cloud of
development concerns to identify
tags of interest, then they zoom
into details of surrounding visu-
alization examples, and finally
they obtain details-on-demand by
selecting an example that they can
modify to fit their needs. Figure
4.3 shows the basic components
of the TIC visualization: (1) tags
that encode in their size how
frequently they arise in the set of
questions, (2) icons that represent

90

visualization examples, and (3) on-demand edges that connect tags to their
suitable examples. We use a force-directed algorithm [FR91] to lay out
the bigraph of tags and icons. As a consequence, related elements are
clustered together, thus revealing types of visualization techniques that are
suitable to tackle the development concerns represented by the tags in the
neighborhood. Edges are transparent to avoid cluttering. They are revealed
on demand when users hover over a tag or an icon.

We chose the tag cloud technique to ease the comprehension of our vi-
sualization. Its popularity makes it self-explanatory. However, we reflected
that in a tag cloud typically the positions of tags do not encode data. We
decided then to group tags by development concerns. We expect that this
will encourage users to discover suitable visualizations proposed for other
needs within the concern.

The TIC visualization can also be used to tackle problems in other
domains. We consequently classify it using the five dimensions proposed
by Maletic et al. [MMC02] to ease its reuse. The task tackled by our visu-
alization is the exploration of appropriate visualization examples to answer
development questions. The audience of this visualization are software de-
velopers who want to adopt visualization techniques for software analysis.
The target data consists of a set of questions, a set of visualization exam-
ples, and a relation between questions and suitable examples for answering
them. The representation is a tag-iconic cloud-based visualization that can
be classified as iconic-based according to Keim’s taxonomy [KK96], and
the medium used to display the visualization is a high-resolution monitor
with at least 2560 x 1440 pixels.

4.2.4 Implementation

We realized a prototype tool implementation of MetaVis in Pharo. The
tool is based on the Roassal visualization engine and builds upon the
GTInspector tool [CGNS15], which provides users with navigation and
basic interactions (e.g., zoom-in/out, pop-up, view center), and GTSpot-
ter [SCG+15], which is used to search less frequent tags that can be difficult
to find visually. MetaVis supports the following workflow: (1) users explore
the cloud and select a visualization of their interest, (2) they inspect the
associated code example and adapt it for their needs, and finally (3) they
are able to put it into action and view the outcome visualization.

91

4.2.5 Analysis Example

In this section we present some sample questions from the literature, and
show how MetaVis helps us to identify suitable visualizations to answer
these questions.

A. Who is the owner or expert for this code? [LM10]

We observe that owner and expert are not frequent tags in our data
set, hence their corresponding tags are difficult to find at first sight and
require us to search for them. When we search for owner, two results owner
and ownership are returned. Once we select the first tag, the visualization
centers and highlights it. We then follow three steps shown in Figure 4.4
(top): (1) we select one of the visualization examples that is linked to the
selected tag (left pane); (2) the code example of the selected visualization
appears in the center pane. We modify the source code towards the analysis
of code authorship. In particular, we add line 4 to collect all distinct authors
of the set of classes, add lines 5-6 to create an object that returns a different
color for each author, and modify line 7 to assign those colors to methods
based on their author; (3) we obtain a visualization (right pane) that shows
classes with their methods colored according to their authors.

B. Where is this method called or type referenced? [SMDV06]

We identify two potential tags in this question: method and called.
In Figure 4.4 (bottom) we show the sequence of steps performed. The
visualization pane (left) shows the tags that we spot at first glance since
they are quite common. We select one depicting a node-base diagram of
the linked visualization examples and inspect its source code. Although
the example already includes the main elements required in the analysis
(classes, dependent classes, relationships), the number of edges depicted
obstruct the analysis of dependencies of a particular class. We add interac-
tion to the class nodes to highlight their dependencies when we hover over
one of the classes.

92

Figure 4.4: Two examples of the usage of MetaVis. On the top, we use it
to answer “who is the owner or expert of this code?” The left pane shows
the exploratory visualization that links a visualization to tags retrieved
from questions. In the example, we look for owner, select a visualization
example and start modifying its source code (center pane) to identify the
authors of the various methods of classes. The resulting visualization is
shown in the right pane. At the bottom, we aimed at answering “where is
this method called or type referenced?” For this example we just needed
to add interaction to nodes to highlight the outgoing edges representing
dependencies.

93

4.2.6 Discussion

During the analysis of questions that were good candidates for visualization,
we identified three key groups of questions:

(1) Relating. Some questions sought to analyze relationships among
software artifacts such as types, methods, objects, exceptions, and libraries.
For example “what depends on this code?”, “how are these types related?”
We found that suitable visualizations for this group are based on node-link
diagrams, parallel coordinates [ID91], and Sunburst [SCGM00].

(2) Weighting. Certain questions tried to weigh entities for comparison.
Examples are “how big is this code?”, “which part of this code takes the
most time?” The visualizations that we found suitable for them were mostly
based on simple charts, TreeMap [JS91], and Polymetric Views [LD03].

(3) Identifying. Other questions aim to identify entities such as software
artifacts, or people involved in development tasks. Examples are “who is
using that API?”, “who implements this interface?” We recognize multiple
visualization techniques suitable to tackle such questions, therefore we do
not identify a particular preferred technique.

We observe that detecting what visualization techniques are frequently
proposed to answer a particular group of questions (e.g., relate, weigh,
identify) suggests a future work direction on automating the process of
visualization.

Limitations.

A general limitation of MetaVis is bias in the choice and size of the set
of development questions, in the set of visualization examples, and in the
relationships between them. We mitigated these limitations by building the
set of questions from relevant research in the field, collecting examples
from a visualization engine developed by a highly active community,
and discussing the relationships (manually assigned). Regarding the TIC
visualization technique, the size of the tags across multiple development
concerns makes less frequent ones difficult to find visually. We observe that
this issue can be mitigated by providing users with independent clouds for
each development concern. Also the choice of words used to formulate the
selected questions can affect the discoverability of development concerns;
normalizing words and unifying synonyms could alleviate that issue.

94

4.2.7 Summary
Although large numbers of visualization techniques have been proposed,
and much research has investigated their effective use, little support is
available for developers seeking a suitable visualization for their task at
hand.

We have studied related work and have collected questions that pro-
grammers frequently ask during software development. We manually
mapped these questions to suitable visualization examples. We designed
a tag-iconic cloud-based visualization that relates frequent tags retrieved
from questions and links them to appropriate visualization examples. De-
velopers explore the cloud, identify important tags for their particular
needs, and find suitable examples that they can customize.

However, we observed that there are some more complex tasks for
which lightweight visualizations are not suitable, and that might require
dedicated software visualization tools. We argue that the lack of orga-
nization to characterize proposed software visualization tools obstructs
their adoption. In the following section we introduce a curated catalog of
proposed software visualization tools that we checked are available.

4.3 Software Visualization Tools
We built on the data sets from the proposed software visualization ap-
proaches (presented in Chapters 2 and 3). We reviewed the 387 software
visualization papers published in VISSOFT/SOFTVIS conferences. In
included in our catalog only software visualization tools that: (i) are
identified with a name, and (ii) are publicly available in the web.

We scanned each paper to identify a name of the proposed software
visualization approach. Then, we looked for an URL where the tool might
be available. In most cases (where we do not find an URL in the paper),
we searched the web using the name of the tool. When we did not find a
positive result, we added “visualization” to the search keywords. When we
found an available tool, we checked the last time when to tool was updated.
Sometimes, we had to download the tool to check that date amongst the
files. In the end, we found 70 software visualization tools that fulfill the
criteria, and therefore, that we included in our catalog.

To characterized the 70 software visualization tools, we first identified
whether the proposed tool focuses on structure, behavior, or evolution
of software systems [Die07]. Then, for the tools in each category, we

95

identified the development concern dealt by the visualization. Instead
of describing high-level tasks (e.g., reverse-engineering), we formulated
descriptions with the main keywords of the concerns (e.g., “reports that
summarize methods execution”), which we think can help developers
to relate their particular context to the one envisioned by a proposed
visualization tool. We also classified the tools based on their execution
environment (e.g., Eclipse plug-in), the employed visualization technique
(e.g., city metaphor), and the medium used to display them (e.g., standard
computer screen). Finally, we reused the data presented in Chapter 3 to
highlight the maturity of tools that have proven effective to support the
target task through evaluations.

Table 4.1 presents our curated catalog of 70 actionable software visual-
ization tools classified by the software’s date of last update, environment
required to execute, employed visualization technique, medium (e.g., stan-
dard computer screens SCS, immersive virtual reality I3D), and evidence of
visualizations effectiveness through evaluations. Each tool’s name is linked
to a URL that contains instructions for downloading and installation. We
reused Diehl’s classification [Die07] of software visualization approaches.
In it, approaches are classified into one of three aspects: behavior, evolution,
structure.

Behavior

Several visualization tools are proposed to support teaching various sub-
jects in computer science. ToonTalk proposes a visual language (similar to
Scratch [MBK+04]) to be used on the web, which targets the children’s
audience. We are not aware of evaluations. However, the tool has been
maintained over the last twelve years, which shows evidence of maturity.
Similarly, Tiled Grace offers a visual representation alternative to the tex-
tual mode when programming in the Grace language. Another mature
tool is Clack, which helps students of network courses to understand the
behavior of routers. GraphWorks focuses on supporting students of graph
theory, though it has not been maintained in the last few years.

Some other tools are available to deal with understanding the execution
of programs for testing. The Eclipse plug-in Jive (shown in Figure 4.5)
stands out since it has been maintained for the last eleven years, which
is congruent with the anecdotal adoption evidence of its effectiveness.
Even though all of these tools are available, almost none of them have
been maintained lately. Amongst them, ProfVis is the only one that has

96

Table 4.1: A curated catalog of 70 actionable software visualization tools.

Asp. Tool’s Name Date Software Concern Env. Technique Med. Evaluation

B
eh

av
io

r

Clack 2018 Concepts for teaching networks in CS Java Node-link SCS Anecdotal
ToonTalk 2018 Concepts for teaching children to program Web Visual language SCS N/A
Jive 2016 Execution traces of Java programs Eclipse Node-L; Aug.src. SCS Anecdotal
LTSView 2017 Transition systems Various 3D Node-link SCS N/A
jGrasp 2015 Concepts for teaching programming in CS Various Aug. source code SCS Exp.; Survey
PlanAni 2011 Concepts for teaching programming in CS Various Aug. source code SCS Experiment
Beat 2014 Execution traces of Java concurrent prog. Eclipse Aug. source code SCS N/A
Jive 2007 Execution traces of Java programs Java Charts SCS Usage Scen.
Gzoltar 2017 Fault localization for debugging Java progs. Java;Ecli. Icicle; Treemap SCS Experiment
SIFEI 2017 Spreadsheets formulas for testing Excel Visual language SCS Experiment
GraphWorks 2013 Concepts for teaching graph theory in CS Java Anim. Node-link SCS N/A
SwarmDebugging 2017 Reuse knowledge of debugging sessions Eclipse Node-link SCS Usage Scen.
Jove 2007 Execution traces of Java programs Java Charts SCS N/A
GEM 2011 Dynamic verification of MPI programs Eclipse Aug. source code SCS N/A
ProfVis 2011 Execution traces of Java programs Java Node-link SCS Experiment
VeldVisualizer 2007 Execution traces of Java programs Java Pixel SCS N/A
Cerebro 2016 Execution traces for feature identification Web Node-link SCS Usage Scen.
TiledGrace 2015 Programming in the Grace language Web Visual language SCS Experiment
MethodExecutionReports 2017 Summarization of methods execution Java Charts SCS Experiment
xViZiT 2015 Spreadsheets formulas for testing Java Aug. source code SCS Usage Scen.
Synchrovis 2013 Execution traces of Java concurrent prog. Java City SCS Usage Scen.
Dyvise 2009 Java heap to detect memory problems Java Icicle SCS Anecdotal
TraceVis 2007 Execution traces based on call graphs Java Node-link SCS Usage Scen.
Evolve 2003 Execution traces of Java programs Java Pixel SCS Usage Scen.
Jsvee; Kelmu 2016 Concepts for teaching programming in CS Web Aug. source code SCS Usage Scen.
regVIS 2014 Assembler control-flow of regular expr. Windows Visual language SCS Experiment
ALVIS 2006 Concepts for teaching programming in CS Windows Visual language SCS N/A

E
vo

lu
tio

n

SHriMP 2015 Hierarchical structures in OOP Eclipse Node-link SCS N/A
AGG 2013 Hierarchical structures in OOP Java Node-link SCS N/A
CVSgrab 2009 Interactions during debugging Windows Pixel SCS N/A
VisualCodeNavigator 2007 Source code changes Windows Aug. src.; Pixel SCS Usage Scen.
CVSscan 2007 Source code changes Windows Pixel SCS Case Study
MetricView 2006 Hierarchical structures and metrics in OOP Windows 3D UML SCS N/A
DEVis 2013 Technical documents Eclipse Spiral SCS Theoretical
ObjectEvolutionBlueprint 2016 Object mutations Pharo Charts SCS Experiment
SoftwareEvolutionStorylines 2010 Developers interactions in projects Processing StoryLines; Charts SCS N/A
FlaskDashboard 2017 Flask Python web services performance Python Charts; Heatmap SCS Usage Scen.
TypeV 2016 Abstract syntax trees of a system’s project Web Charts SCS Usage Scen.
ClonEvol 2013 Software quality based on code clones Windows HEB SCS Usage Scen.

St
ru

ct
ur

e

Softwarenaut 2017 Architecture and dependency analysis VisualWorks Node-L.; Treemap SCS N/A
CodeCity 2015 Software quality based on code smells Pharo City SCS Usage Scen.
SolidFX 2013 Architecture, metric and dependencies Windows HEB; Pixel SCS Experiment
StenchBlossom 2014 Software quality based on code smells Eclipse Aug. source code SCS Experiment
VisMOOS 2010 Software architecture of Java systems Eclipse Node-link SCS N/A
CodeMetropolis 2017 Software quality based on metric analysis Java City SCS N/A
Explen 2017 Slice-based techs. for large metamodels Eclipse UML SCS N/A
PhysVis 2018 Software quality based on metric analysis VisualStudio 3D Node-link I3D Usage Scen.
Rigi 2009 Architecture and dependency analysis Various Node-link SCS N/A
SpartanRefactoring 2018 Automatic code refactoring for readability Eclipse Aug. source code SCS N/A
Barrio 2009 Architecture and dependency analysis Eclipse Node-link SCS Usage Scen.
Visuocode 2014 Navigation and composition of systems Mac Aug. source code SCS N/A
ExplorViz 2016 Architecture based on metric analysis Web City S/I Experiment
iTraceVis 2017 Eye movement data of code reading Eclipse Heatmap SCS Experiment
SeeIT3D 2013 Software architecture of Java systems Eclipse City SCS Experiment
Kayrebt 2015 Control and data flow of the Linux kernel Linux Node-link SCS Usage Scen.
MetaVis 2016 Annotated visualization example objects Pharo Node-L.; Tag cloud SCS Usage Scen.
Explora 2015 Software quality based on metric analysis Pharo Polymetric views SCS Usage Scen.
OrionPlanning 2015 Arch. modularization and consistency Pharo Node-link SCS Usage Scen.
VariabilityBlueprint 2015 Decomposition of models in FOP Pharo Polymetric views SCS Usage Scen.
AspectMaps 2013 Architecture of aspect-oriented programs Pharo Iconic; Pixel SCS Experiment
CityVR 2017 Architecture based on metrics in OOP Pharo; U. City I3D Experiment
SolidSDD 2014 Software quality based on code clones Windows HEB SCS Usage Scen.

B
.-E

.-S
.

Mondrian 2018 Execution traces of feature dependencies Pharo Polymetric views SCS N/A
CHIVE 2015 Feature location (reconnaissance) Eclipse 3D Node-link SCS N/A
Vizz3D 2013 Software architecture and quality Java 3D Node-link SCS N/A
CodeBubbles 2018 Debugging within CodeBubbles Ecli.; VS Visual language SCS N/A
GEF3D 2010 Execution traces of Java programs Eclipse 3D UML SCS Usage Scen.
Graph 2015 Code dependencies Pharo Node-link SCS Usage Scen.
Getaviz 2018 Developing and evaluating software vis. Web City+ S/I N/A
SpiderSense 2015 Execution traces of Java programs Web Pixel; Treemap SCS Usage Scen.

97

https://github.com/danwent/clack-graphical-router
https://github.com/ToonTalk
http://www.cse.buffalo.edu/jive
http://www.mcrl2.org/web/user_manual/tools/release/ltsview.html
http://www.jgrasp.org/
http://www.cs.uef.fi/~saja/var_roles/planani/index.html
https://github.com/pj/beat
http://cs.brown.edu/~spr/research/vizjive.html
http://www.gzoltar.com
https://github.com/kuleszdl/SIFEI
https://github.com/danmedani/GraphWorks
https://github.com/SwarmDebugging
http://cs.brown.edu/~spr/
http://formalverification.cs.utah.edu/ISP-Eclipse/
http://ftaiani.ouvaton.org/7-software/profvis.html
http://cs.brown.edu/~spr/
http://spideruci.github.io/cerebro/
http://homepages.ecs.vuw.ac.nz/~mwh/
https://github.com/fabian-beck/Method-Execution-Reports
https://xvizit.wordpress.com/portfolio/metrics-based-spreadsheet-visualization/
http://kieker-monitoring.net/download/synchrovis/
ftp://ftp.cs.brown.edu/u/spr/dyvise.tar.gz
http://www.win.tue.nl/~wstahw/projects/finished/PieterDeelen/index.html
http://www.sable.mcgill.ca/evolve/
https://github.com/Aalto-LeTech/jsvee
http://www.sts.tu-harburg.de/projects/regvis/regvis.html
http://eecs.wsu.edu/~veupl/soft/index.htm
https://sourceforge.net/projects/chiselgroup/
http://www.user.tu-berlin.de/o.runge/AGG/WWW/down_V205/index.html
http://www.cs.rug.nl/svcg/SoftVis/VCN
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://www.win.tue.nl/vis1/home/lvoinea/VCN.html
http://www.win.tue.nl/san/projects/empanada/metricview/
https://sites.google.com/site/junjizhi/devis_tool
http://smalltalkhub.com/#!/~abergel/ObjectEvolutionBlueprint
https://code.google.com/archive/p/evolines/downloads
https://pypi.org/project/flask-monitoring-dashboard/1.8/
https://github.com/mdfeist/TypeV
http://www.cs.rug.nl/svcg/SoftVis/ClonEvol
https://github.com/mircealungu/Softwarenaut
http://smalltalkhub.com/#!/~RichardWettel/CodeCity
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
http://ftparmy.com/123154-vismoos.html
https://github.com/geryxyz/CodeMetropolis
https://github.com/arnobl/kompren
https://bitbucket.org/physviz/physviz
http://www.rigi.cs.uvic.ca/Pages/download.html
https://marketplace.eclipse.org/content/spartan-refactoring-0
https://code.google.com/archive/p/barrio/
https://www.visuocode.com
https://www.explorviz.net
https://github.com/SERESLab/iTrace-Archive
https://github.com/davidmr/seeit3d
https://github.com/lgeorget/Kayrebt-Dumper
http://smalltalkhub.com/#!/~merino/MetaVisualization
http://scg.unibe.ch/research/explora
http://smalltalkhub.com/#!/~GustavoSantos/OrionChangesBrowser
http://smalltalkhub.com/#!/~abergel/Familiar
https://pleiad.cl/research/software/aspectmaps
http://scg.unibe.ch/research/cityvr
http://www.solidsourceit.com/index.html
http://agilevisualization.com/AgileVisualization/Mondrian/0202-Mondrian.html
http://sourceforge.net/projects/chive/
http://vizz3d.sourceforge.net
http://cs.brown.edu/~spr/codebubbles/
https://www.eclipse.org/gef3d/
http://smalltalkhub.com/#!/~abergel/GraphViewer
https://github.com/getaviz/Getaviz
https://github.com/spideruci/sense-vis

Figure 4.5: The Jive visualization tool to support the analysis of behavior
of concurrent Java applications.

Figure 4.6: The GEM graphical explorer of MPI programs.

98

proven effective in an experiment. A few others, Jove, and Veld Visualizer
have been presented only through usage scenarios. Other tools that, to our
knowledge, have not been evaluated are Jive, TraceVis, and Evolve. Two
tools, Beat and Synchrovis, target the analysis of the behavior of concurrent
Java programs, while the tool Cerebro can be used to identify software
features from the runtime data.

Three visualization tools support debugging tasks based on the visu-
alization of program behavior. Introduced a few years ago, Gzoltar has
shown evidence of effectiveness through an experiment. SwarmDebugging
is an Eclipse plug-in that aims to reuse the knowledge of previous debug-
ging sessions to recommend locations in the code to define breakpoints.
Similarly, Dyvise supports the detection of memory problems through the
visualization of the Java heap. GEM (shown in Figure 4.6) is a graphical
explorer of MPI programs.

Other visualization tools deal with various particular concerns.
LTSView is the oldest one, which is still being maintained. It supports
the visualization of transition systems that model the behavior of a soft-
ware system. SIFEI and xViZiT focus on the visualization of spreadsheets,
while regVis deals with the visualization of assembler control-flow based on
regular expressions. Method Execution Reports embeds word-size graphics
in reports of method executions.

All the twenty-seven listed tools that focus on the behavior of software
systems are displayed on the standard computer screen.

Evolution

A few tools support the visualization of the evolution of hierarchical struc-
tures in object-oriented programs such as AGG. SHriMP is the oldest one,
and has been maintained for twelve years. MetricView presents an UML
class diagram in 3D that is augmented with software metrics. Others deal
with various concerns. CVSgrab supports the visualization of the evolution
of interactions of developers during debugging, while Visual Code Navi-
gator and CVSscan (shown in Figure 4.7) focus on source code changes.
DEVis is used to visualize the evolution of technical documents. The Object
Evolution Blueprint deals with the evolution of object mutations. Flask
dashboard supports the visualization of the performance of web services
implemented using the Flask framework for Python. TypeV allows to ana-
lyze the evolution of a system through the visualization of abstract syntax

99

Figure 4.7: The CVSscan visualization tool to support the analysis of
evolution for software maintenance.

trees. ClonEvol (shown in Figure 4.8) visualizes the evolution of code
clones to improve the quality of systems.

All the twelve listed tools that focus on the evolution of software
systems are displayed on the standard computer screen.

Structure

Various other visualization tools focus on particular concerns. MetaVis
can be used to visualize annotated software visualization example objects.
OrionPlanning includes visualization for modularization and consistency
of software projects. Explen supports the visualization of large metamod-
els. iTraceVis have shown evidence of been effective to investigate how
developers read code through the visualization of their eye gazes. Spartan
Refactoring allows automatic code refactoring in the editor. Visuocode
supports the navigation and composition of software systems.

Some visualization tools are available for supporting architecture tasks
such as SeeIT3D and VisMOOS. SolidFX, Softwarenaut (shown in Fig-
ure 4.9), Rigi, and Barrio are suitable for the analysis of structures and

100

Figure 4.8: The ClonEvol visualization tool that help developers to analyze
the evolution of code clones.

dependencies in object-oriented software systems, AspectMaps supports
aspect-oriented programs, and Variability blueprint does so for feature-
oriented programs.

Two tools support the visualization of the structure of software systems
for the analysis of code smells. CodeCity (shown in Figure 4.10) visualizes
software metrics based on the city metaphor, and StenchBlossom that
augments the Eclipse source code editor with ambient visualizations.

Twenty of the listed tools that focus on the structure of software sys-
tems are displayed using the standard computer screen. Only three used
immersive virtual reality: PhysVis in which users visualize software metrics
visualized as a physical particle system, ExplorViz in which developers
obtain an overview of the architecture of a system represented as a city,
and CityVR which adds interactions and visualization of software metrics
and smells.

Behavior/Evolution/Structure

Eight software visualization approaches correspond to frameworks that can
be used to visualize multiple aspects of software systems. Four of them
correspond to active projects introduced several years ago. Mondrian is an
engine for rapid lightweight visualization, which is currently supported in
the Roassal engine [ABC+13]. CodeBubbles is an environment that encap-
sulates code snippets into bubbles that can be reused through composition.
Originally available only for Eclipse, now it is also available for Visual
Studio. Vizz3D is a framework for online configuration of 3D information

101

Figure 4.9: The Softwarenaut tool for visualization of hierarchical struc-
tures to support architecture tasks.

Figure 4.10: The CodeCity tool that visualizes the structure of software
systems to support the analysis of code smells.

102

Figure 4.11: The Graph domain-specific language for agile prototyping of
visualization of graph structures.

visualizations, while CHIVE is a framework for developing, in particular,
3D software visualizations.

GEF3D is a framework for developing 2D/2.5D/3D graphical editors.
Graph is a domain-specific language for visualizing software dependencies
as a graph (shown in Figure 4.11). Getaviz and SpiderSense enable the
design, implementation, and evaluation of software visualizations.

One framework (Getaviz) is supports visualizations displayed on im-
mersive virtual reality, while the seven other frameworks are limited to the
standard computer screen.

4.3.1 Summary
In this section we have described a curated catalog of 70 actionable soft-
ware visualization tools and frameworks. We have characterized the ap-
proaches, and linked the tools in a way that they can be downloaded and
used.

The characterization presented in Table 4.1 contains only part of the
content of our data set. We already described various other characteristics of
software visualizations (Chapters 2 and 3) that can help developers willing
to adopt visualization to find a suitable approach. Certainly, our data set

103

does not fit in a table. We observe that a much richer model is needed to
make sense of the multiple characteristics of software visualizations. We
believe that an ontology corresponds to such model.

4.4 Software Visualization Ontology
Ontologies are formal and explicit descriptions of concepts in a do-
main [Gru93]. Ontologies can help to (i) share common understanding of
the structure of information among people or software agents, (ii) reuse do-
main knowledge, enforce domain assumptions, (iii) separate domain knowl-
edge from the operational knowledge, and (iv) analyze domain knowledge.
Through a software visualization ontology we aim to encapsulate the main
characteristics of proposed software visualizations such as tasks, tech-
niques, and media to enable both textual and visual search methods that
support developers. We believe that an ontology can help developers to
find suitable visualizations for their particular problems, and also it can
support researchers to reflect on the software visualization domain. In this
section, we elaborate on early results of designing and implementing an
ontology.

4.4.1 Background
An ontology is a formalization of a model to describe what is essential in a
domain. That is, the ontology describes the concepts in the domain, which
can define various properties and restrictions. Hence, an ontology that
is populated with a set of individual instances of the concepts is usually
referred as a knowledge base. However, defining what in the domain is
modeled as a concept or an instance is subjective. We opted to follow the
widely used guide proposed by Noy and McGuiness [NM+01]. We now
elaborate on how we addressed their suggested steps to create our software
visualization ontology.

Step 1. Determine the domain and scope of the ontology.

• What is the domain that the ontology will cover? Software visualiza-
tions

• For what we are going to use the ontology? To allow 1) develop-
ers find suitable visualizations for their particular concerns, and 2)
researchers reflect on the software visualization domain.

104

• For what types of questions the information in the ontology should
provide answers? Questions that identify particular software visu-
alizations that fulfill the restrictions imposed by the context of the
developers needs.

• Who will use and maintain the ontology? Software developers will-
ing to adopt visualizations, and who have used a visualization from
the ontology and want to add new supported questions to it. Also,
researchers who want to add new data to the ontology for a new or
an existing indexed visualization approach.

Step 2. Consider reusing existing ontologies. To the best of our knowledge
this is the first ontology of software visualizations.

Step 3. Enumerate important terms in the ontology. We include the char-
acteristics of software visualization and their evaluations, as well as the
classifications presented in Chapters 2 and 3.

Step 4. Define the concepts and the concept hierarchy. We opt for a bottom-
up development process in which we start from instances of proposed
software visualizations. For each, we identify the various concepts in-
volved its context (e.g., tasks, media, environments, frameworks, questions,
evaluation strategies). We define a hierarchy of concepts following an
“is-a” relation. When defining the concepts we avoid to create cycles, and
validate that siblings concepts (that are at the same level in the hierarchy)
correspond to the same level of generality.

Step 5. Define the properties of concepts. We characterize the concepts
based on their properties. For instance, for the concept medium we define
the dimensionality (e.g., 2D/3D) property. Then, when we define particular
software visualizations as instances in the ontology, we can specify a
medium and its dimensionality. Thus, researchers can use the ontology to
investigate, for instance, the correlation between evaluation strategies and
visualizations that use visualization techniques of a higher dimensionality
displayed on a medium of a lower dimensionality.

Step 6. Define the restrictions of the properties. We only use restrictions to
define disjoint concepts.

Step 7. Create instances. We create instances in the ontology for each
proposed software visualization in our data set. Thus, visualization tools
are the materialization of a combination of property values of concepts.

105

Figure 4.12: The classes view in Protégé showing the hierarchy of concepts.
We selected the name of the tools, which are listed in the right pane.

4.4.2 Protégé

We implement our ontology using Protégé [Mus15], a popular, free, and
open-source framework for the design and use of ontologies. In it, we
define the concepts (in the tool called classes), properties, restrictions, and
instances. Figure 4.12 shows the classes view in Protégé with a detail of the
hierarchy of concepts. We selected the name of the tools’ concept, which
are listed in the right pane.

Figure 4.13 shows an overview of our implementation of the concepts
hierarchy using the OntoGraf visualization plug-in included in Protégé.

We have developed an initial ontology, which we made publicly avail-
able2. We present some metrics of the ontology in Table 4.2. Although we
consider that many more individuals and relationships must be added to the
ontology to increase its usability, we observe that our current implemen-
tation is not small. A survey of ontology metrics [SRGBSA12] reported

2http://scg.unibe.ch/research/vison

106

http://scg.unibe.ch/research/vison

Figure 4.13: An overview of the concepts hierarchy of the software visual-
ization ontology using the OntoGraf visualization plug-in.

Table 4.2: Metrics of the Software Visualization Ontology

Metrics

Axiom 3290
Logical axiom count 2428
Declaration axiom count 862
Class count 150
Individual property count 20

Class axioms SubClassOf 143
DisjointClasses 32

Object property axioms
SubObjectPropertyOf 1
ObjectPropertyDomain 2
ObjectPropertyRange 3

Individual axioms
ClassAssertion 696
ObjectPropertyAssertion 1547
NegativeObjectPropertyAssertion 4

107

Figure 4.14: Scenario 1. Finding suitable visualization tools that support
the analysis of performance issues at runtime.

that ontologies in average contain: (i) 36.11 classes (standard deviation of
78.53), and (ii) 28.13 instances (standard deviation of 97.59).

4.4.3 Usage Scenarios

We now demonstrate the ontology trough two usage scenarios.

Scenario 1. Find suitable visualization tools that support the analysis of
performance issues at runtime.

To two concepts are defined in the specification of this need: (1) the
source of the data is the runtime, and (2) the problem dealt is the perfor-
mance of the software system. We translate this specification to the syntax
specified by the ontology web language (OWL). Figure 4.14 shows the
resulting query, and the suitable tools returned.

Scenario 2. Find visualization tools under a free license that support the
analysis of source code.

Similarly, the specification of this need defines two concepts: (1) the
license of the tool has to be free, and (2) the source of the data must be the
data source of the software system. We translate this specification to the
syntax specified by the ontology web language (OWL). Figure 4.15 shows

108

Figure 4.15: Scenario 2. Finding suitable free visualization tools that
support the visualization of source code.

the translated specification of the need in the OWL syntax, and the suitable
tools returned.

4.4.4 Summary

We motivated the need of a richer model to encapsulate the various char-
acteristics of software visualizations. We argued that ontologies represent
a suitable means for modeling for software visualizations. We elaborated
on our experience when designing an ontology for software visualizations.
We discussed our implementation of the ontology in the Protégé tool. Then,
we demonstrated how the ontology can be used through usage scenarios.
We made the ontology publicly available2. We expect the ontology will
help developers to find suitable software visualizations, and researchers
to reflect on the field. Users of the ontology will be able to contribute, for
instance, by adding new proposed visualizations, or adding the results of
evaluations of existing visualizations. In the future we plan to combine the
previously described meta-visualization approach to our software visual-
ization ontology, which we discuss further, amongst other future work, in
the following chapter.

109

4.5 Conclusion
Although many software visualization approaches have been proposed to
deal with various software concerns, usually developers are not aware of
tools that they can put into action. In this chapter, we have presented our
attempts to fill the gap between existing software visualizations and their
practical applications: (1) we introduced a meta-visualization approach
of live visualization example objects that are annotated with the type of
development questions that they can help to investigate. In the visualization,
developers can identify suitable visualization examples by detecting the
surrounding keywords in the tag-iconic cloud-based visualization; (2) we
presented a curated catalog of 70 actionable software visualization tools
that we linked to their repositories. We classified the tools into various
categories (e.g., task, data, environment) to help developers who look for
suitable visualizations; (3) we summarized early results in developing a
software visualization ontology.

The analysis of our software visualization catalog shows that the city
metaphor is a common visualization technique. Although some studies
have shown that software cities are effective to support comprehension
tasks, we observe that their evaluations have focused on traditional aspects
of user performance (i.e., completion time, correctness). We ask how the
effectiveness of city visualizations can be increased. Moreover, we argue
that to assess the power of such visualizations to support communication
and discovery, the evaluations should not only include other variables
of user performance, but also they should cover the assessment of user
experience. In the following chapter, we introduce a prototype visualization
tool, and explore such aspects via a formative experiment.

110

5
Gameful Software Visualization

5.1 Introduction

We have observed that a medium such as immersive virtual reality has
almost never been used to display software visualizations. We have argued
that some visualization techniques when displayed in a different medium
might increase their effectiveness. We have also discussed the need of
expanding the traditional time and correctness variables (profusely used
in software engineering tools) to others such as recollection, and engage-
ment to have an appropriate evaluation of software visualization tools. We
believe such variables might shed light on the value of visualization for
communication. To decode the message within a visualization (to collect
insights of the system) developers need to be willing to spend time on it.
We observe that gamification have been used to study such concerns.

Indeed, the gamification of software engineering tasks (i.e., applying
computer game elements and design techniques) improves developer en-
gagement [DT13]. Most approaches in software engineering, however,
have struggled when putting the concept into action and applied only
simple gamification mechanisms such as points and badges [PGBP15].

111

The three main concepts that promote engagement in computer games
are curiosity, challenge and fantasy [Mal80]. We observe that develop-
ers commonly associate the first two concepts with software visualiza-
tions [MFB+17]. The third concept, defined as “an illusory appearance”1,
is also inherent to visualizations. Therefore, we believe software visualiza-
tions can be more effective than previous approaches to gamify software
engineering tasks. However, we observe that not all software visualization
tools promote developer engagement equally.

The medium, technique and interaction are architectural choices in
developing software visualizations that can play a role in enhancing user
engagement. Consequently, we formulated the following research question:

RQ) How can architectural design choices in developing software visual-
ization tools enhance developer engagement?

We argue, to maximize engagement we need gameful software vi-
sualization (i.e., visualization that provides developers with an interface
analogous to computer games). We examine our research question by focus-
ing on software comprehension tasks. We designed CityVR —an interactive
visualization tool that implements the city metaphor technique displayed in
immersive virtual reality (I3D) to boost developer engagement in software
comprehension tasks (shown in Figure 5.1). We investigated the effective-
ness of CityVR via a formative experiment in which developers visualized
ArgoUML, a UML diagramming framework. We measured engagement in
terms of experienced feelings, interaction, and time perception. We report
how our design choices relate to developer engagement. We found that
developers (i) felt curious, immersed, in control, excited, and challenged,
(ii) spent considerable interaction time navigating and selecting elements,
and (iii) perceived that time passed faster than in reality, and therefore were
willing to spend more time using the tool to solve software engineering
tasks.

Only a few software visualization tools have used virtual reality for
software comprehension tasks. FileVis [YM98] implements a glyph-based
visualization, and Software World [KM99] uses the city metaphor tech-
nique. As opposed to CityVR, both tools use a standard computer screen as
the medium to display the visualization (probably due to the limited tech-

1"fantasy | phantasy, n." OED Online. Oxford University Press, March 2017. Web. 6 April
2017.

112

Figure 5.1: CityVR gameful software visualization for comprehension. 1©
the city metaphor technique; 2© a developer in immersive virtual reality
(I3D) medium; 3© developers interact with elements using a controller and
a bubble.

113

nology available at the time). Two other studies have proposed software
visualization using other media. Imsovision [MLMD01] allows develop-
ers to visualize software using the CAVE medium. Recently, Fittkau et
al. [FKH15b] evaluated the visualization of software cities using the Ocu-
lus Rift device. We observe that neither do existing studies elaborate on the
methodological principles that support architectural choices in developing
visualizations, nor do they discuss the impact of the design decisions in
developer engagement, but they limit their analysis to performance.

Little research has proposed gamification of software related tasks
based on visualization tools. Two software visualization tools have
been proposed for teaching software engineering: (1) CodeSmellEx-
plorer [Raa12] helps students to recognize code smells by interacting
with a 2D graph network visualization displayed on a tabletop. In the tool
students are challenged to connect physical cards (each listing a given code
smell) to refactorings; (2) Sort Attack [YP15] implements a 2D visual-
ization based on a standard computer screen, in which a number of game
techniques such as lives, levels and time help students to learn algorithms.
CodeMetropolis [BGBG16] supports developers in comprehension of test
suites through an enriched software city visualization, implemented using
the Minecraft game engine, displayed on a standard computer screen.

Instead, CityVR is designed to boost developer engagement during
visualization for software comprehension by considering the impact of
architectural design choices such as the selected technique, interaction
and medium. As opposed to CodeCity [WLR11], which offers interactions
based on a computer screen setup, in CityVR developers interact with
visualizations by (i) moving across the available physical space, and
(ii) selecting classes using controllers with in their hands.

5.2 CityVR Overview

CityVR is an interactive software visualization tool that is displayed in an
I3D medium. We selected I3D as the medium for our visualization since
it promotes engagement [BC04]. CityVR allows developers to obtain an
overview of the software system while they are immersed in it. We use our
taxonomy introduced in Chapter 2 to characterize our visualization tool.
We first introduce the three dimensions that relate to the problem domain
(i.e., audience, task and data) and then the two that relate to our solution:

114

representation and medium. We split the representation dimension into
technique and interaction.

CityVR targets the software maintainer audience who has to perform
software comprehension tasks in order to correct and evolve software
systems. The data available are the source code of software systems. We
discuss the architectural design choices that we made to boost developer
engagement in comprehension tasks.

5.2.1 Design
Medium. In Chapter 2 we characterized software visualizations and found
that most visualizations are designed to be displayed on the standard com-
puter screen. We observe that the complexity of software comprehension
tasks requires developers concentration, which developers usually pursue
by using large screens. Developers also typically boost their concentration
by isolating themselves from ambient noise with headphones. We observe
that I3D offers developers a more complete immersion, which could help
to increase the effectiveness of visualizations. In consequence, we selected
I3D as the medium to display our visualization.

Technique. We selected the city metaphor technique as it has not only
proven to be effective to support developers in software comprehension
tasks [WLR11], but is also present in popular games such as SimCity, and
Grand Theft Auto. Figure 5.1 1© shows a software city. Each building in
the city represents a class in the system, and the districts represent software
packages. The technique can encode three metrics: one in the square base
of buildings (i.e., width and depth), one in the height, and one in the color
of buildings.

A software city has the advantage that it provides orientation to de-
velopers. Developers can quickly understand the metaphor, and refer to
the classes in the software system by their location in the city (e.g., in
the north). Also, once defined a configuration to map the set of metrics
to the visual properties of buildings, a particular topology in the city is
unveiled. Some classes are going to be represented by skyscrapers, while
others will be represented by flat buildings. The density of the buildings
eases comparison, and promotes the identification of patterns. In that way,
developers identify visual patterns that they relate to metric values, and
obtain insight of the quality of the software (i.e., alert on well used design
patterns, and bad code smells). For instance, a god class that contains
many lines of code and many methods can stand out when represented as a

115

massive colored building. Also, a long facade class that contains only a few
lines of code but it contains many methods can be easily identified when
represented as thin and tall building. Certainly, the choice of how mapping
the metrics to the properties of buildings has an effect in the usability of
the visualization, that we address through pilot experiments.

Interaction. We observe that developers spend long hours sitting in a
chair or standing in front of a computer screen. The lack of movement
during programming sessions has a negative impact on their daily expe-
rience. We conjecture that an environment that encourage developers to
freely navigate the system (e.g., walk, crouch, jump) without having to stop
software comprehension tasks can improve their engagement [AMN+10].
In CityVR developers interact with the visualization through navigation
and selection. We scaled the visualization of the software system to fit the
physical space available in the room where the tool is used. In CityVR
developers can select classes using two controllers with their hands. Fig-
ure 5.1 3© shows a developer who finds a class of interest, and uses one
of the controllers to create a bubble (pointed by the yellow beam). Then,
he drags the bubble with the other controller and drop it in a building to
inspect the source code of the represented class. In that way, developers can
analyze metric values and inspect source code to get a better understanding
of a particular artifact. The source code and metric values are displayed in
a panel attached to one of the controllers, so developers can move it with
their hand. Developers can also scroll through the code using the buttons
on one of the controllers (+ and - buttons).

5.2.2 Workflow

To obtain in a short time a working application that we could use to test our
hypotheses, we opted for exporting the models of the city visualizations
from an existing implementation for the Moose platform [NDG05]. Moose
is a data analysis platform, based on the Pharo [DZHC17] programming
environment. Moose offers multiple features the analysis of a model of
a software system. The model of a system contains essential information
of it such as classes, and dependencies. Thus, the model can be used to
build interactive visualizations. We opted for using system’s models in the
Moose default format: MSE. MSE is similar to other data formats such
as XML, JSON. The main difference to other formats is that MSE use
parentheses to define elements, which makes it suitable for manipulating

116

large data sets. There are several exporters for creating MSE models from
system’s source code.

Pharo/Smalltalk

Unity3D

Source Code

(.java)

System Model

(.mse)

Visualization

Model (.csv)

Immersive 3D

Software City

(.exe)

1 2

4

3

Figure 5.2: The four step workflow implemented in CityVR. From system’s
source code to an immersive 3D city visualization.

Figure 5.2 shows the four step workflow that developers have to follow
when using CityVR: (1) Source code: a developer creates a model of
the system by passing source code files (i.e., Java and C/C++) as input
to an MSE exporter (e.g., VerveinJ, inFAMIX, jdt2famix). The output
model (.mse file) contains the main characteristics of the system such
as inheritance, dependency, and metrics that can be used for analysis.
(2) System model: using CodeCity2 for the Moose 53 platform, developers
configure a city visualization by defining the mapping between a set of
system properties to the dimensions available in the visualization technique.
Once developers are happy with the visualization displayed on-screen, they
can export the model of the visualization (.csv file). (3) Visualization model:
the model contains the selected properties of the system to be visualized
and the layout of the buildings of the city. Developers use the visualization
model (i.e., .csv file) as input to CityVR in Unity3D 5.54. They can adjust
parameters such as the size of the room and compile the application (.exe
file). Finally, (4) Immersive 3D Software City: developers can use the
visualized system to solve their tasks. We used an HTC Vive VR headset
with a 2160 x 1200 combined resolution, 90 Hz refresh rate and 110° field
of view. We selected the HTC Vive since it includes the highest number

2http://smalltalkhub.com/#!/~RichardWettel/CodeCity
3http://www.moosetechnology.org/
4https://unity3d.com/

117

http://smalltalkhub.com/#!/~RichardWettel/CodeCity
http://www.moosetechnology.org/
https://unity3d.com/

of sensors (among similar devices). Since our interest is to analyze user
engagement, we consider these sensors to be useful.

More implementation details are available on the CityVR web site5.

5.3 Formative Experiment
We investigated the effectiveness of CityVR based on a formative experi-
ment. We configured CityVR to visualize the ArgoUML v.0.346 system (as
shown in Figure 5.1). In the software city three metrics are encoded in the
properties of buildings, namely the number of lines of code (NLOC), the
number of methods (NOM), and the number of attributes (NOA), which
are mapped to their color (using a linear transformation), height, and
width/depth, respectively. We invited six participants to explore CityVR,
and we subsequently conducted semi-structured interviews. They were
not paid and freely opted to participate in the study. All of them were
experienced developers (i.e., 6.5 ± 1.5 years), and all have an academic
background in computer science (i.e., one bachelor, four PhD, and one
post-doc). We selected participants with some experience using software
visualizations (their self-reported experience ranged between 2 and 5 in a
5-step Likert scale). Participants neither had prior experience using I3D,
nor did they have knowledge of the implementation details of ArgoUML.
After explaining the encoding used in the visualization and the interactions
available, we asked participants to complete two comprehension tasks. The
tasks are as follows:

(T.1) How well is ArgoUML designed (e.g., patterns/smells)?

(T.2) What is the semantics of each package?

Participants found several code smells such as a bright and massive
god class, several thin and long facade classes, and a few large and flat
data classes. The code inspection also revealed some of the semantics of
packages hidden in the source code. For example, a configuration package
that contains three data classes with parameters required by various com-
ponents of the system. Participants also identified a package that contains
the implementation of the graphical interface of the system.

5http://scg.unibe.ch/research/cityvr
6https://sourceforge.net/projects/argouml/

118

http://scg.unibe.ch/research/cityvr
https://sourceforge.net/projects/argouml/

These rather difficult tasks were not designed to evaluate the effective-
ness of the software city technique but to stress navigation and interaction,
thus allowing an evaluation of the engagement of participants. We mea-
sured engagement in terms of (i) interaction (i.e., movement), (ii) feelings,
and (iii) time perception.

Interaction We observed that the more participants engaged, the more
they interacted. We analyze participants’ engagement by measuring their
movement across the physical space. We instrumented our tool to record
the position of participants during the visualization of the system. The
results of each participant are shown in a separate chart in Figure 5.3.
The marks in the chart represent the position of participants. We observe
that participants feel oriented using the visualization and adopt various
strategies to navigate the city (i) Center view. Some participants [P2] and
[P6] opted to explore the city starting from its center. (ii) Diagonal view.
One participant [P1] preferred to stand in the empty corners of the city to
obtain an overview. (iii) Omnidirectional view. Most participants (i.e., [P3],
[P4], and [P5]) felt free to explore the particularities of the city by using
most of the space available in the physical room. Certainly, navigation
alone is not a measure of engagement by itself. Users could move for
other reasons without engaging in the activity. However, we believe the
combination of objective measures such as navigation with subjective ones
such as feelings and time perception do expose their engagement.

Feelings When participants were using the visualized system, we asked
them to share the feelings. Participant found it “nice to walk” across the
system, and felt that it was fun to interact with the system using the
arms and the whole body. We also asked participants to identify their
feelings when they finished the tasks. We asked them to select the top five
strongest feelings from a list of twenty words (proposed to describe gaming
experiences [GCC+10]). Frequent feelings were curious, immersed, in
control, excited, and challenged.

Time perception The subjective perception of the passage of time
changes according to the engagement of users [BBW09]. When users en-
gage with a task, they tend to lose track of time [JCC+08]. Therefore, at
various moments of the interview, we asked participants to report how
much time they perceived had passed. We asked the first two participants
to estimate the time when 10 minutes had passed, and both were correct.
We noticed that the time was too little and that participants tend to answer
rounded numbers. Therefore, we decided to ask the next four participants
to estimate the time when 42 minutes had passed. Three of them perceived

119

Figure 5.3: Scatterplots that map the location of participants as they move
across the physical room during the visualization of ArgoUML.

that 30 minutes had passed, while one participant was much closer and
estimated that 40 minutes had passed. We observe that even though partici-
pants moderately underestimated the passage of time, they felt that time
passed fast. One participant said that “time had flown very fast”

5.4 Discussion

We revisit our research question to discuss the effectiveness of decisions
made during the design of CityVR. Some decisions such as the selected
technique, medium and navigation seem very effective. However, others
such as selection and inspection produced mixed results. It seems that inter-
action is the architectural choice that offers the most room for improving
engagement.

Effective choices: medium, technique, and navigation. We observe that
the city metaphor technique fits well to I3D. By scaling the software city
visualization to the physically available space, developers can navigate the

120

system by walking, which eases navigation (compared to the traditional
navigation in computer screens that uses mouse and keyboard). Partici-
pants required little training before they felt comfortable with the type of
navigation and medium, and were excited to use I3D.

Limited effect choices: code inspection. The panel attached to the right
controller served to inspect the source code of a selected class. Developers
were able to scroll through the file by waving their arm and by pushing two
buttons placed in the controller. Although most participants described this
interaction using terms such as “appealing”, “futuristic”, and “novel”,
one participant felt that the code was hard to read because it depended
on his ability to maintain his arm steady. That participant suggested that
having a large fixed panel would ease code reading. Other participant who
felt fatigued, noticed high latency of the view when inspecting large source
code. Participants seemed happy to interact with source code freely in the
3D space. A participant said “this is the first time that I actually see the
whole code of a class that large” That participant also observed that seeing
the whole code of classes made it easier to understand when a class has
too many lines of code and needs refactoring.

Ineffective choices. In CityVR developers select classes for inspection
using a bubble, which they create and drag to buildings to obtain details-
on-demand of represented classes. However, we observed that developers
found it difficult to use. Sometimes developers forgot the mechanism to
create and drag the bubble. Other times they lost the bubble inside buildings
and had to create a new one.

We observe that extending CityVR to other tasks (e.g., testing, debug-
ging) would require to mitigate the cost of forcing developers to leave their
IDE. One solution to that problem would be to transfer the whole IDE to
the I3D medium. We also observe that even though the isolating effect of
I3D can help developers to concentrate, it could also introduce a social
debt. We think that collaborative visualization could mitigate that effect.
We envision developers in remote locations using virtual reality as well
as co-located developers using augmented reality for visualizing systems
collaboratively.

5.5 Conclusion

We introduced CityVR —a tool that implements the software city tech-
nique using immersive virtual reality. Through a formative experiment

121

we analyzed how developers engage with the tool. We found that de-
velopers (i) felt curious, immersed, in control, excited, and challenged,
(ii) spent considerable interaction time navigating and selecting elements,
and (iii) perceived that time passed faster than in reality, and therefore were
willing to spend more time using the tool to solve software comprehension
tasks.

Although the results of the experiment are promising, we cannot claim
that the city visualization displayed in immersive virtual reality is more
effective than when displayed in other media, neither we can identify
particular tasks that are boosted by the medium. We investigate such aspects
via a controlled experiment that we present in the following chapter.

122

6
The Medium

6.1 Introduction
The results of the formative experiment have shown that immersive virtual
reality promotes engagement amongst developers when visualizing soft-
ware systems. In the experiment, participants were able to obtain relevant
insights from the system. They felt curious and challenged, and interacted
with the visualization to obtain details of the components of the system,
while they were willing to spend a long time using the visualization. How-
ever, to ascertain the impact of such a medium on the effectiveness of
the visualization, a thorough evaluation is required. In the following, we
expand on the motivation and describe such evaluation.

When designing visualizations, multiple attributes must be taken into
account such as the supported task (e.g., software comprehension) and
the visualization technique (e.g., 3D software cities). Amongst these at-
tributes there is also the display medium (e.g., computer screen) on which
visualizations are designed to be rendered. The medium has been con-
sidered as an attribute in foundational software visualization taxonomies.
Roman and Cox [RC93] identified new capabilities offered by emerging
computer-based visualizations as opposed to traditional visualizations in

123

Figure 6.1: Participants visualize software cities for software comprehen-
sion tasks using various media. We evaluated how the effectiveness is
affected by the medium: 1© immersive virtual reality, 2© a physical 3D
printed model, and 3© a standard computer screen.

paper. Price et al. [PBS93] observed that while computer-based visual-

124

izations can be designed for one medium, they can often be transfered to
another. A decade later, Maletic et al. [MMC02] envisioned a future in
which software visualizations would take advantage of multiple media.

In Chapter 2 we characterized software visualizations using the medium
amongst other attributes. Amongst other insights we found that the stan-
dard computer screen (SCS) remains the most frequently used medium
to render software visualizations. Other media used in a few software
visualizations were immersive virtual reality (I3D) [ERS+14], physical
3D printed models (P3D) [FKH15a], large multi-touch tables [AMNB13],
and wall-displays [AMN+10]. Nevertheless, the impact of the medium
amongst these visualizations is not clear.

We investigate to what degree the choice of a medium affects the
effectiveness of visualizations. We consider effective visualizations to be
those that excel at: (1) performance (i.e., completion time and correctness),
(2) recollection (i.e., recollection of recent events), and (3) user experience
(i.e., feelings and difficulties). Consequently, we formulated the following
research questions:

RQ.1) How does using different media for a software visualization tech-
nique affect completion time and correctness?

RQ.2) How does using different media for a software visualization tech-
nique affect recollection of recent events?

RQ.3) How does using different media for a software visualization tech-
nique affect user experience?

We investigated these questions via a controlled user experiment. In the
experiment we focused on software comprehension. That is, the cognitive
process in which developers learn about a software artifact to accomplish
a task [CDPC11], and the 3D city visualization technique, which (i) has
proven to be effective to support software comprehension tasks [WLR11],
(ii) is available for various media [FKH15b, FKH15a], and (iii) is easily
transferable from one medium to another.

We selected media used in software visualizations that take different
approaches to interaction (i.e., SCS, I3D, P3D) (shown in Figure 6.1). We
formulated a set of nine software comprehension tasks inspired by those
used in previous studies [WLR11, FKH15c, AMN+10], and we selected
a set of open-source software subject systems of various sizes. For each
medium we conducted interviews with between-subject groups of nine

125

developers (i.e., twenty-seven participants in total) to collect data that
helped us to answer our research questions.

We found that even though developers using P3D required the least time
to identify outliers, they experienced the least difficulty when visualizing
systems based on SCS. Moreover, developers using I3D obtained the
highest recollection.

The remainder of the chapter is structured as follows: Section 6.2
outlines related work and discusses the need for extended benchmark
properties that explicitly include the medium to produce comparable eval-
uations of software visualizations. Section 6.3 describes the controlled
user experiment conducted to evaluate the impact of the medium in the
effectiveness of visualizations. Section 6.4 elaborates on the quantitative
analysis of the results of the evaluation. Section 6.5 presents a qualitative
discussion of the results and describe the threats to validity of our findings.
Section 6.7 concludes the chapter.

6.2 Related Work

The medium has been identified as an important characteristic in the soft-
ware visualization community. Price et al. [PBS93] proposed a software
visualization taxonomy that includes the medium as a dimension. They
observed that a primary target medium must be identified for visualiza-
tions that eventually could be transfered across multiple media. Maletic
et al. [MMC02] proposed a complementary taxonomy that also includes
the medium as one of the five dimensions that characterize software visu-
alizations. Although these foundational taxonomies have been present in
the software visualization community, the medium has not been a main
concern among most proposed visualizations.

We now elaborate on related work of the 3D software visualization
technique that we use in our experiment.

A review of 3D software visualization was presented by Teyseyre and
Campo [TC09]. They classified twenty-two visualization tools based on
their expected audience, data source, presentation, interaction, evaluation,
and framework used. They observed that the medium plays a key role in
the effectiveness of software visualizations. However, all tools included in
the overview were designed for one medium (i.e., SCS), and consequently
they did not include it as a classification criterion.

126

3D city visualizations have been proposed extensively to support soft-
ware comprehension. Knight and Munro [KM00], proposed a visualization
that implements the city metaphor to support program comprehension.
They observed that virtual reality provides developers orientation when
exploring code artifacts. Wettel and Lanza [WL07b] stated that software
cities provide developers a physical space with strong orientation points.
Panas et al. [PEQ+07] proposed visualization to support multiple com-
prehension tasks using the city metaphor since it helps users to better
understand complex situations. However, none of them elaborated on why
they decided to use the SCS medium.

Software visualization based on I3D is not new. Maletic et
al. [MLMD01] proposed an immersive object-oriented software visualiza-
tion system for comprehension using a CAVE setup. Recently, Fittkau et
al. [FKH15b, FKH17] evaluated the visualization of software cities using
the Oculus Rift for software comprehension tasks. However, none of them
elaborate on the grounds that supported their selected medium.

A few visualizations have proposed P3D as their medium. Huron et
al. [HCT+14] proposed constructive visualization as a paradigm for simple
creation of flexible and dynamic visualizations (e.g., using Lego bricks).
Fittkau et al. [FKH15a] used a physical 3D printed model of a software
city that they compared to visualization in a computer screen. Their evalu-
ation showed little differences between the performance of visualizations
displayed on SCS versus P3D. In this work, we study two systems of
different size. We not only compare P3D versus SCS, but include I3D.
Finally, besides evaluating performance, we also evaluate recollection and
user experience, since we believe that software comprehension can benefit
from both.

In summary, we observe that even though research in software vi-
sualization has spanned various media, little has been done to support
developers who are willing to use visualization, to choose the most effec-
tive medium for their particular task. Therefore, our interest is to study the
impact of the medium in the effectiveness of 3D software visualizations.

6.3 Controlled User Experiment

We performed a controlled user experiment that evaluates the impact of the
medium in the effectiveness of 3D software cities for comprehension tasks.
Now we elaborate on the design of our experiment.

127

6.3.1 Experiment Design

The purpose of our experiment is to evaluate the impact of the medium
(independent variable) in the effectiveness of software visualizations by
comparing performance, recollection and experience (dependent variables).
The performance of participants was measured in terms of completion time
and accuracy. To measure recollection, we asked participants in the last
part of the session to draw what they remembered of the visualization of the
second system (approximately twenty minutes after). Finally, to measure
user experience (i) during the visualization of each system, participants
were asked to score the difficulty of the tasks, and (ii) at the end of the
visualization of each system participants were asked to identify their top
ten experienced feelings (sorted by intensity).

We decided to use between-groups of nine participants. That is, the
participants of each group visualize the three systems (listed in Table 6.2)
one-by-one solving the nine tasks (listed in Table 6.1) in one medium.
We ran four pilot studies and analyzed their outcome. We tried various
configurations of the parameters of the visualization technique and selected
the one that performed better for navigation and comparison. We fine-tuned
the tasks, so the experiment would last around one hour (to avoid fatigue).

When designing our experiment, we noticed that there is a need for a
standard protocol to compare evaluations of software visualizations. We
observed that Maletic and Marcus [MM03] issued a call-for-benchmarks
towards standardizing the evaluation of software visualizations. They pro-
posed four properties that characterize visualizations for benchmarks: task,
data set, evaluation and interaction. We observe that a developer willing
to adopt a visualization technique that is available in various media cannot
compare the results of isolated evaluations of visualizations that not only
differ in the technique but also in the display medium, thus possibly leading
to misleading results. Thus, the need of a standard protocol to compare
evaluations of software visualizations that includes the medium explic-
itly. Consequently, we propose to add explicitly two properties to these
benchmarks: medium and visualization technique. In this way, benchmarks
support not only researchers who compare new visualization techniques,
but also those who evaluate visualizations across multiple media (as is our
goal).

Extended Benchmark Properties: We first describe our proposal for
the two new added properties (i.e., medium and technique) and then for

128

each of the three original properties (i.e., interaction, task, and data set) of
benchmarks.

Medium. Amongst the media used in software visualizations we find
immersive virtual reality, physical 3D models, wall displays, multi-touch
tables, and standard computer screens [MGN16a]. Since the last three use
the screen to display visualizations, we propose the media used in the
following setups to conduct the experiment:

(i) Standard Computer Screen (SCS). We used an Apple MacBook Pro
with a resolution of 1440 x 900 pixels. The visualizations were pro-
vided by the CodeCity1 implementation for Moose 5 on OSX.2

(ii) Immersive Virtual Reality (I3D). We used an HTC Vive VR Headset
with a 2160 x 1200 combined resolution, 90 Hz refresh rate and
110° field of view. We implemented a custom visualization using
Unity 5.5 based on models of the cities exported from CodeCity.

(iii) Physical 3D model (P3D). We used a Form 2 3D printer by formlabs3

based on stereolithography (SLA) technology. To implement the
visualizations, we exported them from their implementation in Unity
(used for I3D) to the Stereo Lithography (STL) format required by
the printer using the pb_Stl4 library.

Technique. In Chapter 2 we identified sixty-four visualization tools
that implement various visualization techniques. We selected from them
a visualization technique based on the following criteria: (C1) proven
effective for software comprehension tasks, (C2) suitable for the capa-
bilities of the selected media, and (C3) implementations or source code
are available. We focused on the most restrictive criterion, namely C2.
In the process of selecting a suitable technique we rejected visualiza-
tions that: (i) support tasks that do not focus on software comprehen-
sion, such as Vizz3D [PLL05], or (ii) neither provide implementations
for all media, such as TraceCrawler [GDG06], nor make their source
code publicly available, such as MetricView [TLTC05]. Instead, we ob-
served that 3D city visualizations fulfill all these criteria. Firstly, soft-
ware cities have proven effective to solve software comprehension tasks

1http://smalltalkhub.com/#!/~RichardWettel/CodeCity
2http://www.moosetechnology.org/
3https://formlabs.com/3d-printers/form-2/
4https://github.com/karl-/pb_Stl

129

http://smalltalkhub.com/#!/~RichardWettel/CodeCity
http://www.moosetechnology.org/
https://formlabs.com/3d-printers/form-2/
https://github.com/karl-/pb_Stl

in terms of performance [WLR11], recollection [ITW01], and user ex-
perience [FKH15c] (C1). Secondly, they have proven to be suitable for
SCS [Wet10], I3D [FKH15b], and P3D [FKH15a] (C2). Finally, even
though we did not find implementations available for all media, the simple
design of software cities based on colored cubes and the availability of
source code enables their implementation to be easily transferred from one
medium to another (C3).

Figure 6.2 shows CodeCity [WLR11], a well-known implementation
of 3D software cities for SCS. In this visualization metaphor, buildings
in the city represent classes in the software. Contiguous buildings in a
district represent the classes that belong to a package. The visualization
allows developers to analyze software metrics and identify potential design
problems such as god classes. We configure the visualization in such a way
that the height of a building encodes the number of methods (NOM) of
the represented class, the size of the square base of a building represents
the number of attributes (NOA), and the color encodes the number of lines
of code (NLOC). We use a linear scale of five different tones of green as
proposed by the ColorCAT [MJSK15] tool for visualizations that support
comparison tasks on continuous data. The brighter the color, the higher the
value of the metric.

Interaction. We confined the interaction to those that are common
to all media. Consequently, since P3D does not support selection, the
interaction provided to participants in all media was limited to navigation
(e.g., rotate, pan, zoom).

Tasks. We assume developers who want to contribute to an open-
source object-oriented software system need to collect class candidates
for potential refactoring. To accomplish this high-level task, they usually
define nine specific sub-tasks (listed in Table 6.1) that they have to solve.
The visualization helps developers to obtain an overview of the whole
software system and spot refactoring candidates.

When developers obtain an overview of a software system, they
are able to (1) spot outliers, (2) detect patterns, and (3) quantify ele-
ments [ANMT09]. Although some of these tasks can be addressed faster
and eventually with more accuracy by other approaches, visualizations
enable developers to combine all of them at once. We were inspired by a
previous evaluation of CodeCity [WLR11] to design our tasks. We focused
on two criteria to select the tasks: (i) they can be solved in a reasonable
amount of time (e.g., < 5 minutes), and (ii) the only interaction needed to
solve them is navigation. For each medium (i.e., SCS, I3D, P3D) a different

130

Figure 6.2: Freemind 2.0.9 is the medium size system used in the experi-
ment. The system is visualized as a software city where buildings represent
the classes of the system, and districts represent packages. Three software
metrics are mapped to attributes of buildings: number of lines of code to
the color, number of methods to the height, and number of attributes to the
width/depth.

group of participants visualize one at a time the systems (shown in Ta-
ble 6.2) and solve the tasks (shown in Table 6.1). The tasks are grouped by
themes. Tasks T1-T3 require metric analysis to find outliers. Tasks T4-T6
concern the detection of potential design problems by identifying visual
patterns. Finally, Tasks T7-T9 concern location and quantification.

Data set. We looked for a collection of real-world open source software
systems of diverse size. We observed that the Qualitas Corpus [TAD+10]
fulfills these criteria. We selected three systems (from the Qualitas Corpus)
of various sizes that have been used extensively in other studies (shown in
Table 6.2).

6.3.2 Hypotheses
We hypothesized that the most common medium used in software visu-
alizations, the standard computer screen, is an effective medium. Since
the computer display is the main medium used during development, we
envisage that interacting with visualizations displayed on the computer
screen with a mouse and keyboard will not pose difficulties. We therefore

131

Table
6.1:Softw

are
com

prehension
tasks

thatparticipants
have

to
solve.

Them
e

R
ationale

Id
Task

Find
Outliers

C
lasses

thatexhibitextrem
e

values
of

softw
are

m
etrics

m
ight

indicate
prob-

lem
s

and
m

ight
represent

good
candi-

dates
forrefactoring

T
1

Find
the

three
classes

w
ith

the
highestN

O
M

T
2

Find
the

three
classes

w
ith

the
highestN

O
A

T
3

Find
the

three
classes

w
ith

the
highestN

L
O

C
.Iftw

o
are

in
the

sam
e

range
selectthe

one
w

ith
the

low
estN

L
O

C

Identify
Patterns

The
relationship

betw
een

values
ofsoft-

w
are

m
etrics

help
developers

to
identify

design
problem

s.The
ratiosbetw

een
the

m
etric

values
produce

patterns
am

ong
the

visualrepresentation
ofentities

T
4

Locate
the

bestcandidate
forthe

god
classsm

ell(hint:god
classes

contain
m

any
m

ethods
w

ith
m

any
lines

ofcode)
T

5
L

ocate
the

bestcandidate
forthe

data
class

pattern
(hint:

a
data

class
has

high
N

O
A

,and
low

N
O

M
and

N
L

O
C

)
T

6
L

ocate
the

longestfacade
class

(hint:facade
classes

have
high

N
O

M
,and

low
N

O
A

and
N

L
O

C
)

Locate and
Quantify

H
elp

developers
to

prioritize
w

hat
is

m
ostcritical,e.g.,a

package
thatcon-

tains
m

any
god

classes
m

ightbe
a

good
candidate

forrefactoring

T
7

L
ocate

the
package

w
ith

the
highest

num
ber

of
classes

such
thatN

L
O

C
in

the
classes

are
the

least
T

8
D

eterm
ine

the
totalnum

berofpackages
this

system
has

T
9

E
stim

ate
the

totalnum
berofclasses

this
system

has

132

Table 6.2: Systems used in the experiment. Participants visualized Axion
for the training session. Freemind and Azureus were used for evaluation.

System Version # KLOC # Classes # Pkgs. Size

Axion 1.0-M2 23 223 27 Small
Freemind 2.0.9 56 881 108 Medium
Azureus 4.8.1.2 646 6619 560 Large

conjecture that visualizations using this medium will excel in performance
(RQ.1) and user experience (RQ.3), but it is not clear to us how this medium
encourages user recollection (RQ.2). We want to know whether media may
hinder the performance of visualizations, and if so, to what degree. We ask
whether participants who use I3D or P3D might remember more details
of the visualized software than participants who use a more conventional
medium such as the computer display. We observe that P3D as opposed
to I3D and SCS involves two senses: sight and touch. We conjecture that
this characteristic promotes recollection. We also hypothesize that non-
traditional media such as I3D and P3D might boost user experience. We
consequently define the following null hypotheses:

[H1] When visualizing software as cities for comprehension, the time
to complete tasks and the accuracy of developers is equal across
various media (RQ.1).

[H2] When visualizing software as cities for a software comprehension
task, the recollection of developers is equal across various media
(RQ.2).

[H3] When visualizing software as cities for a software comprehension
task, the user experience of developers is equal across various media
(RQ.3).

6.3.3 Participants
One important goal for using between-groups design in our experiment
(i.e., each participant visualizes all systems using a single medium) is that
groups have to be as similar as possible [Nie93]. We selected participants
of the groups to have a similar distribution of gender and education level.
Each group was formed of one post-doc researcher, five PhD students

133

and three bachelor/master students in computer science. The average age
was 28.72 ± 1.43 years, and the average experience as a developer was
8.08 ± 0.77 years. Although participants of SCS reported to be used to the
medium, participants of the other two media (i.e., I3D and P3D) reported to
be unfamiliar with the medium (we discuss this threat to the validity of our
experiment in Section 6.6). Participants were not paid. They were invited
and freely opted to participate in the study. Thirteen out of the twenty-seven
participants were recruited from the University of Konstanz in Germany.
The rest were recruited from the University of Bern in Switzerland. The
interviews were conducted from February 2017 to March 2017.

6.3.4 Procedure

The experiment was conducted in two locations: one at the University
of Konstanz and the other at the University of Bern. The rooms at both
locations were of similar size (i.e., 5 m x 5 m approximately) and lighting.
During the study only the participant and the experimenter were in the
room. The same experimenter conducted the experiment at both locations.
A different setup was defined for each medium: for I3D, participants wore
a headset and held a controller. Participants interacted with the visual-
ization by walking and crouching. The tasks were displayed within the
visualization. A legend with the encoding of the visualization was visible
at all times. Participants used the controller to specify their answers to the
tasks; SCS participants sat in a chair in front of the computer screen. They
interacted with the visualization through the mouse and keyboard. The
tasks were handed to them printed on paper. A legend with the encoding
of the visualization was visible on a separate screen at all times. Finally,
P3D participants sat in front of a desk on which the model was placed.
They interacted with the model by holding, rotating and moving it with
their hands. The tasks were also handed to them printed on paper. A legend
with the encoding of the visualization was visible on a computer screen
at all times. Participants had a wooden stick to point in the model to their
answers.

We started the experiment by reading an introduction to explain par-
ticipants the problem domain, the encoding of the visualization, and what
they were expected to perform during the experiment. Firstly, participants
had a training session where they viewed a visualization of the Axion
system. They were asked to read one-by-one the tasks aloud, then they had
to describe the visual pattern to solve the task, and finally they pointed

134

to the element that corresponded to their answer. Secondly, participants
visualized Freemind and solved the tasks one at a time as they did during
the training. This time, when they gave their answer to each of the tasks, we
asked them how difficult they found the task. We asked them to score their
answer on a 5-step Likert scale [Lik32]. When they finished all the tasks
we asked them to approach a table where we previously placed 270 labels.
Each label contained a word that represents a feeling. We placed positive
feelings on the left side of the table and negative ones on the right. Labels
were organized into eight groups of positive feelings and also eight of
negative ones. Participants were asked to collect ten feelings, experienced
during the previous visualization, from the table (without any restriction)
and to sort them according to their intensity. Thirdly, participants visu-
alized Azureus and repeated the same steps: solve the tasks, score their
difficulty and identify the feelings experienced during the visualization.
Lastly, to evaluate the recollection of near-time memories, participants
were asked to approach a whiteboard and to draw what they remembered
from the visualization of Freemind (approximately twenty minutes after
they finished with the visualization).

6.3.5 Data Collection

We collected several data points during the experiment. We (i) video
recorded participants as they navigated visualizations (e.g., moving across
the room in I3D) as well as the view they obtained of the visualization itself
(e.g., screen record in SCS), (ii) video recorded participants drawing the
recollected memories of Freemind, and (iii) took pictures of the selected
labels that described their experienced feelings during visualizations. We
edited the videos to produce single records that contain the whole interview
of each participant. We watched each of these records to measure and
double-check completion time and accuracy, as well to identify recurrent
concepts for qualitative analysis (observed emergent codes).

6.4 Results
We performed a statistical analysis of the collected data. To analyze perfor-
mance, we observed that the results of accuracy did not follow a normal
distribution. We then analyzed accuracy using Kruskal-Wallis’ test [KW52].
We also observed that the rest of the dependent variables (i.e., completion

135

time, recollection and experience) satisfy (i) independent observations of
between-groups design, (ii) homogeneous variances of dependent variables
(validated using Lavene’s test [L+60]), and (iii) normal distribution of
dependent variables (validated using Shapiro-Wilk’s test [SW65]). Ac-
cordingly, we used the one-way Analysis Of Variance (ANOVA) to test
these hypotheses, followed by Tukey’s HSD for comparing differences
between groups using a different medium. In either case, we chose a 95%
confidence interval (α = .05) to evaluate whether there are statistically sig-
nificant differences in H1 performance (shown in Figures 6.3a and 6.3b),
H2 recollection (shown in Figure 6.4), and H3 experience (shown in Fig-
ures 6.5a and 6.5b) between visualizations used to solve comprehension
tasks among different media.

6.4.1 Performance (RQ.1)

Table 6.3 shows the results of the statistical tests that we carried out to
analyze performance. We study performance by analyzing: completion
time and accuracy.

Completion Time

Firstly, independent of the size of the system, there is a statistically
significant variation of the time to identify outliers (T1-T3) among media,
which was significantly greater than the variation of the time within
each medium (Freemind: f =8.01, p=.00069 <0.05; Azureus: f =4.69,
p=.012 <0.05). Thus, we reject H1 for tasks T1-T3. Specifically, we found
significant differences between P3D and I3D, and also between SCS and
I3D but not between SCS and P3D. Secondly, in both software systems the
variation of the time to detect patterns (T4-T6) among media was less than
the variation of the time within each medium. Thus, we cannot reject H1
for tasks T4-T6. Finally, in Freemind, there is a statistically significant
variation of the time to locate and quantify classes (T7-T9) among media,
which was significantly greater than the variation of the time within each
medium (f =6.19, p=.0032 <0.05). Thus, we reject H1 for tasks T7-T9.
Specifically, we also found significant differences between SCS and I3D,
and also between SCS and P3D but not between P3D and I3D. However,
in Azureus, the variation of the time among media was less than the
variation of the time within each medium. Thus, we cannot reject H1 for
tasks T7-T9. Figure 6.3a shows a box plots chart with the results of the

136

Ta
bl

e
6.

3:
Su

m
m

ar
y

of
th

e
re

su
lts

of
pe

rf
or

m
an

ce
in

te
rm

s
of

co
m

pl
et

io
n

tim
e

an
d

ac
cu

ra
cy

.T
he

ca
se

s
in

w
hi

ch
w

e
fo

un
d

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
am

on
g

th
e

m
ed

ia
ar

e
hi

gh
lig

ht
ed

w
ith

a
gr

ay
ba

ck
gr

ou
nd

.

Pe
rf

or
m

an
ce

C
om

pl
et

io
n

Ti
m

e
A

cc
ur

ac
y

A
N

O
VA

Tu
ke

y’
sH

SD
K

ru
sk

al
-W

al
lis

Ta
sk

Sy
st

em

p
F
2
,7
8

m
ea

n
P3

D
-I

3D
SC

S-
I3

D
SC

S-
P3

D
p

χ
2

m
ed

ia
n

Fr
ee

m
in

d
.0
00
69

8.
01

28
.2
3

.0
00
89

.0
09
2

.7
4

.6
9

.7
3

1.
0

T
1-

T
3

A
zu

re
us

.0
12

4.
69

37
.2
7

.0
00
69

.0
96

.6
5

.0
5
5

5
.8

1.
0

Fr
ee

m
in

d
.3
0

1.
23

27
.1
7
−

−
−

.6
2

.9
5

1.
0

T
4-

T
6

A
zu

re
us

.1
1

2.
27

29
.1
1
−

−
−

.4
1

1
.8

1.
0

Fr
ee

m
in

d
.0
03
2

6.
19

35
.0
5

.9
2

.0
05
3

.0
1
9

.0
1

9
.2

.8
6

T
7-

T
9

A
zu

re
us

.2
0

1.
65

50
.5
4
−

−
−

.0
2

7
.8

.5
3

137

time that participants required to complete the tasks during the experiment.

Developers who visualize software cities for comprehension require
the least time using P3D and SCS to identify outliers.

Accuracy

The variation of the accuracy to find outliers (T1-T3), and find patterns
(T4-T6), amongst media was less than the variation of the accuracy within
each medium. Thus, we cannot reject H1 for tasks T1-T6. Independent of
the size of the system, there is a statistically significant variation of the
accuracy to locate and quantify classes (T7-T9) among media, which was
significantly greater than the variation of the accuracy within each medium
(Freemind: χ2=9.2, p=.01 <.05; Azureus: χ2=7.8, p=.02 <.05). Thus, we
reject H1 for tasks T1-T3. Specifically, we found significant differences
between SCS-P3D, and P3D-I3D, but not between SCS-I3D. Figure 6.3b
shows a box plots chart with the results of the accuracy of participants
during the experiment.

(a) Completion time of the participants
in the experiment. Box plots are grouped
by the theme of tasks (vertically). Rows
contain the results that correspond to a
different system.

(b) Accuracy of the participants in the
experiment. Box plots are grouped by the
theme of tasks (vertically). The results of
each system are split into rows.

Figure 6.3: Performance

138

6.4.2 Recollection (RQ.2)

During software comprehension developers do not know what information
might become relevant to remember. We therefore did not ask participants
to remember details of the visualization. Instead, at the end of the interview
we asked them to draw on a whiteboard what they remembered from
the Freemind system (approximately twenty minutes after they finished
with the visualization). Most participants said that they did not remember
anything. However, after a few seconds they started to remember some
details and drew some aspects of the visualizations on the board. We
quantitatively analyzed the drawings by measuring two aspects of them
(i) amount of used ink, and (ii) number of identified design problems.

Figure 6.4: The mean recollection of the five most frequent candidates of
design problems found in Freemind (skewers show the standard deviation).
One means the five candidates recollected, while zero means none.

We were inspired by the data-ink ratio [Tuf01], which is a metric
that measures the ratio between the amount of ink (number of non-white
pixels) used to create a visualization and the amount of white space
(number of white pixels) in the canvas. We argue that a high data-ink
ratio of the drawings can be an indication of a good recollection.

139

Therefore, we analyzed the color statistics of pictures of the drawings
using an online color summarizer5. We observed that the variation of the
recollection among media was significantly greater than the variation
of recollection within each medium (F2,24 = 4.82, p = .017). Thus, we
reject H2. We found significant differences between P3D-I3D (p =
.014) but not between SCS-P3D (p = .47) and SCS-I3D (p = .16). We
also noticed that most drawings depicted the classes that are candidates
of design problems (e.g., god class, data class, longest facade) that
participants had to find to solve the tasks. We measured their frequency
and report the results in Figure 6.4. We observed that I3D has the
highest recollection, followed by SCS and P3D, and that recollection
decreases when visualizing larger systems (i.e., Azureus). We did not
find significant variances in the recollection of design problems (p = .25).

Developers who visualize software cities for comprehension obtain a
significantly higher recollection when using I3D than when using P3D.

6.4.3 User Experience (RQ.3)
We measured two attributes that contribute to user experience: difficulty and
experienced feelings. During the experiment (i) after each task we asked
participants to rank the experienced difficulty using a 5-step Likert scale,
and (ii) when participants finished all the tasks of one of the systems we
asked them to identify their top ten strongest feelings experienced during
the visualization.

Difficulty

Firstly, independent of the size of the system, the variation of the experi-
enced difficulty in finding outliers (T1-T3) among media was significantly
greater than the variation of the difficulty within each medium. Thus, we
reject H3 for tasks T1-T3. Specifically, in Freemind we found significant
differences between SCS and I3D, and also between P3D and I3D but not
between SCS and P3D; in Azureus we found significant differences only
between SCS and I3D, but not between others. Secondly, in Freemind the
variation of the experienced difficulty in finding patterns (T4-T6) among
media was less than the variation of the difficulty within each medium.

5http://mkweb.bcgsc.ca/color-summarizer/

140

http://mkweb.bcgsc.ca/color-summarizer/

Ta
bl

e
6.

4:
Su

m
m

ar
y

of
th

e
re

su
lts

of
us

er
ex

pe
ri

en
ce

in
te

rm
s

of
di

ffi
cu

lty
an

d
fe

el
in

gs
.T

he
ca

se
s

in
w

hi
ch

w
e

fo
un

d
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

am
on

g
th

e
m

ed
ia

ar
e

hi
gh

lig
ht

ed
w

ith
a

gr
ay

ba
ck

gr
ou

nd
.

U
se

r
E

xp
er

ie
nc

e
D

iffi
cu

lty
Fe

el
in

gs
A

N
O

VA
Tu

ke
y’

sH
SD

A
N

O
VA

Sy
st

em
Ta

sk
s

p
F
2
,7
8

m
ea

n
P3

D
-I

3D
SC

S-
I3

D
SC

S-
P3

D
p

F
2
,7
8

m
ea

n
T

1-
T

3
9.
69

e-
05

10
.4
3

2.
04

.0
01

1
.0

00
23

.8
9

T
4-

T
6

.2
0

1.
6

2.
0

-
-

-
Fr

ee
m

in
d

T
7-

T
9

.2
1

1.
61

2.
21

-
-

-
.4

9
.7

5
.7

7

T
1-

T
3

.0
22

3.
99

2.
38

.4
2

.0
18

.2
9

T
4-

T
6

.0
2

.3
9

4.
2

.0
51

.9
9

.0
37

A
zu

re
us

T
7-

T
9

.1
4

2.
00

3.
77

-
-

-
.5

7
.5

8
.5

9

141

Thus, we cannot reject H3 for tasks T4-T6; in Azureus the variation of the
experienced difficulty in finding patterns (T4-T6) among media was signifi-
cantly greater than the variation of the difficulty within each medium. Thus,
we reject H3 for tasks T4-T6. Specifically, we found significant differences
only between SCS and P3D, but not between others. Finally, independent
of the size of the system, the variation of the experienced difficulty to locate
and quantify classes (T7-T9) among media was less than the variation of the
difficulty within each medium. Thus, we cannot reject H3 for tasks T7-T9.

Developers who visualize software cities for comprehension tasks
perceive the least difficulty to identify outliers using SCS.

(a) Difficulty experienced by partici-
pants. Box plots are vertically grouped
by the theme of tasks. The overall dif-
ficulty is higher in Azureus than in
Freemind.

(b) Feelings’ score experienced by par-
ticipants. Bars show the mean results,
and skewers show the standard devia-
tion.

Figure 6.5: User Experience

Feelings

Figure 6.6 shows a bar chart with the feelings experienced by the partici-
pants of the experiment. We included in the chart 74 frequent feelings that
arise in various media, and excluded 40 feelings that were experienced
only in a single medium.

We defined the score metric shown in Equation 6.1 to rank the experi-
ence of participants. The score is a weighted sum of the top ten strongest
feelings that participants experienced during the visualization of the sys-

142

0 5 10 15 20 25 30 35

amazed
bored

comforted
dissatisfied

eager
fatigued

good
hopeful

inquisitive
joyous

paralyzed
powerless

quiet
reassured
reserved
sensitive

sure
tense

touched
annoyed
cheerful

concerned
dull

nervous
pleased

re-enforced
understanding

accepting
animated

clever
content
curious

delighted
relaxed
reliable

skeptical
surprised

suspicious
unhappy
anxious

comfortable
ease
keen

attracted
inspired
neutral

absorbed
confused

determined
easy

enthusiastic
impulsive
indecisive

calm
certain

encouraged
intrigued

playful
excited

lost
fascinated

satisfied
frustrated

overwhelm
free

confident
doubtful

optimistic
unsure

uncertain
hesitant

interested
challenged

curious

I3D (F) I3D (A) P3D (F) P3D (A) SCS (F) SCS (A)

Figure 6.6: The frequent feelings experienced by participants who visual-
ized Freemind (F), and Azureus (A) using various media.

tems. The score takes into account the intensity of the feeling: position
one (i.e., weakest feeling) to ten (i.e., strongest feeling), and the type of
feeling: positive (i.e., 1) and negative (i.e.,-1). Independent of the size

143

of the system, the variation of the score of the experienced feelings of
participants among media was less than the variation of the score within
each medium (Freemind: F2,78 = .75, p = .49; Azureus: F2,78 = .58, p =
.57). Thus, we cannot reject H3.

score =

10∑
i=1

i× type(feeling i)

type(feeling) =

{
1 if feeling is positive
−1 if feeling is negative

(6.1)

We observed that the highest frequency of positive feelings is offered
by SCS, in which users feel confident, certain and satisfied and a few times
frustrated, unsure, and overwhelmed. Participants of I3D experienced bal-
anced feelings. Sometimes they felt interested, fascinated and optimistic,
and in some others cases they felt doubtful, hesitant, and uncertain. Partic-
ipants of P3D reported the largest number of negative feelings of which
the most frequent words were hesitant, frustrated and impulsive.

Curious and challenge are the two most frequent feelings identified
among all media. After visualizing Freemind (i.e., the medium size system)
67% of participants selected curious and 48% challenge (41% selected
both simultaneously). Then, after participants visualized Azureus (i.e.,
the largest system in the study) 41% of them selected curious and 37%
challenge (19% selected both simultaneously).

6.5 Discussion
We now present a qualitative analysis of the results. We split the analysis
by the concerns that we investigated through our research questions.

6.5.1 Performance (RQ.1)
We discuss the completion time and accuracy of participants based on the
theme of tasks, the size of systems and the medium used. We also elaborate
on the strategies and reflections made by participants.

Completion Time

We found that tasks that require little navigation (i.e., finding outliers T1-
T3) can be completed in the least time when visualizing systems using P3D

144

or SCS. However, we did not find significant differences of the variance
of the time between them. For tasks that required more navigation (i.e.,
to find design problems T4-T6) the results were mixed. The least time to
solve the tasks in the medium sized system is obtained when visualizing
on SCS. In contrast, SCS performed badly for the large system, for which
the least time to solve the tasks is provided by P3D. One participant who
was locating a package (task T7) observed that navigation in SCS makes it

“difficult to get to that part of the city” On the contrary, a participant who
used P3D to find the longest facade class (tasks T6) reflected that “it is very
easy to find these [types] of classes” We observe that not all participants
using SCS, who spent a longer time navigating a system, achieved a higher
accuracy than participants using other media. A good balance is offered by
I3D, for which one participant observes that “depth helps a lot to identify
packages”.

Accuracy

We did not find significant differences in the variance of the accuracy
among tasks that involve finding outliers and patterns (T1-T6). Answers
across all the media used in the experiment were highly accurate. Instead,
the results of the tasks related to location and quantification (T7-T9) show
that participants are more accurate when quantifying elements in medium
sized systems than in larger ones. Curiously, while in the medium sized
system participants obtained the highest accuracy using SCS, they obtained
the lowest one using SCS to visualized the large system. The opposite
occurred with P3D. A more balanced result is obtained with I3D. We
observed that the highest accuracy to assess the size of systems (location
and quantification tasks T7-T9) was obtained by participants who compared
a current visualized system to the one visualized during the training session
(i.e., Axion). Besides, participants who spent a longer time analyzing a
system provided highly accurate estimations. One of them developed an
algorithm that consisted of mentally dividing the city visualization into
a number of sections with an approximately similar number of buildings
and then multiplying the number of sections by the number of buildings.
Interestingly, the result was the most accurate among participants using
SCS and the top three across all media.

145

6.5.2 Recollection (RQ.2)

Participants were asked to draw on the whiteboard only what they freely
remember from the second visualized system. We did not force them to
guess an answer. In fact, a few of them did not draw anything. Among the
majority that remembered some aspects of the visualized systems, their
strongest memories were about the classes spotted when solving design
problems tasks (i.e., T4-T6). Most participants were unable to build an
overview of the whole system, but had scattered memories of parts of it.
Sometimes recollected memories were placed in a wrong location. Sur-
prisingly, some of them remembered unexpected aspects of visualizations
such as a thin line crossing the top of a building in P3D, a tiny crowded
package in I3D. It suggests that recollection of memories might be boosted
by encouraging users to identify particularities of the visualized systems.
A few participants mentioned that they would “expect a better recollection
of memories if the tasks would encourage them to reason about the system
as a whole” Although the number of details and accuracy of the memories
of participants varied, we can observe a trend. Visualization using I3D
produced more detailed and significantly more accurate memories than
visualization using P3D. Only three participants were unable to draw their
recollection of the system who all used P3D.

6.5.3 User Experience (RQ.3)

Although we did not measure the interest of participants objectively, we as-
sessed their interest by analyzing their questions and behavior. We noticed
that even before the experiment participants who visualized systems using
I3D were very interested. Participants who used P3D were less interested.
Participants who visualized using SCS showed the least interest. A partici-
pant who ran the experiment using SCS asked to try the visualization in
I3D just for fun. Participants perceived that the difficulty of tasks increased
when they moved from the visualization of Freemind (medium size system)
to Azureus (large system). Similarly, the same occurred with the number of
negative feelings that also increased. We also analyzed distinct feelings that
emerged in only one medium but not in the others. We think those feelings
represent advantages and disadvantages that a medium impose. Feeling
quiet is the most distinctive advantage of the I3D medium, and feeling
sure (i.e., certain) is so for SCS. The former might relate to the unique
characteristics of being immersive in the visualization, while the latter

146

might reveal the certainty felt by users of traditional computer interfaces.
Several distinctive feelings arise when using P3D that also might relate
to the nature of the medium. Participants who used P3D positively felt
sensitive and touched, and negatively felt dissatisfied and powerless. We
noticed differences in the reported difficulty of tasks in terms of (i) Size
of systems. Tasks were perceived to be less difficult in the medium size
system (i.e., Freemind) than in the large system (i.e., Azureus); (ii) Theme
of tasks. Tasks sorted by themes were perceived as increasing in difficulty.
That is, tasks that concern (a) to identify outliers (T1-T3) were the least
difficult, (b) to detect patterns (T4-T6) were of moderate difficulty, and
(c) to locate and quantify (T7-T9) classes were the most difficult; and,
(iii) Medium. Participants who used I3D consistently perceived tasks more
difficult than participants who used other media. Between SCS and P3D
participants had mixed perceptions depending on the type of task. Tasks
concerned with identifying outliers (T1-T3) were perceived to be more
difficult when using P3D, while tasks to detect patterns (T4-T6) were
considered more difficult when using SCS.

We observed that even though participants who used I3D found most
tasks consistently more difficult than participants using other media, they
reported the most positive feelings, and their expression seemed happier
during the visualization than participants who used other media. In sum-
mary, we consider that I3D provided the best overall experience to partici-
pants, closely followed by SCS and P3D.

Surprisingly, two of the three main concepts that influence engagement
in computer games are the two most frequently selected by participants:
curious and challenge [Mal80]. The third concept, which is fantasy, defined
as “an illusory appearance”,6 is also inherent to visualizations. We observe
that software visualizations could benefit from computer game techniques
to increase the effectiveness of visualizations.

6.6 Threats to Validity
There are five main threats to the validity of our experiment. The first
is (i) bias in the selection of groups. To mitigate this we formed similar
groups in terms of education level, gender, age and experience in software
development. The second threat is (ii) tasks might not be realistic. We

6"fantasy | phantasy, n." OED Online. Oxford University Press, March 2017. Web. 6 April
2017.

147

reduced this threat by defining types of tasks that have been previously
used in other experiments and studies [AMN+10, WLR11, FKH15a]. The
third threat is (iii) construct validity. The similarity and the quality of the
implemented visualizations across the various media may have effected
the performance of participants. To mitigate this, we ensured a high qual-
ity by testing the implemented visualizations with pilot users. We also
transfered the visualizations to all media by automatic procedures. Conse-
quently, the position, size of buildings was the same. Although color was
automatically transfered to visualizations in I3D and SCS, we manually
colored (i.e., painted) visualizations in P3D. The fourth threat concerns
to the (iv) method for measure recollection. We used the data-ink ratio
from pictures taken to the drawings made by participants. These results
might be affected by the size of the drawing, the use of the canvas to lay
out recollected elements and the willingness of participants to spend time
depicting a detailed drawing (the more time they spent, the more use of
ink). The fifth thread is composed by (v) environmental aspects such as the
room, light and experiment length might be different. Although we inter-
viewed participants in two different locations, we chose rooms with similar
characteristics (i.e., size, light, level of noise), conducted the experiment
following the same checklist, read the same introduction during the tutorial,
displayed the same legend of the encoding used in the visualization in a
second screen during the whole experiment, and offered to have a break,
drinks and snacks to avoid fatigue to all participants. The same experi-
menter also conducted a pilot experiment with four participants to identify
a suitable length for the experiment (approximately one hour), and fine-
tune the tasks. Another thread that we observe is the that (vi) the novelty of
the medium might have affected the perception of participants. Although
we noticed the excitement of participants who were using a medium for
the first time (e.g., P3D), we observed that same excitement in participants
who did the experiment using a medium familiar to them (e.g., SCS). The
final thread is (vii) any given participant did not have the opportunity to
compare two or more media. We considered that the learning effect would
hinder the quality of the results. Instead we opted for a between-groups
design. That is, each participant visualized systems using a single medium.

148

6.7 Conclusion
Many visualizations have proven to be effective in supporting various
software related tasks. Although multiple media can be used to display
visualizations, most of software visualizations use a standard computer
screen. We hypothesize that the medium used to present visualizations has
a role in their effectiveness.

We investigated our hypotheses by conducting a controlled user experi-
ment. In the experiment we focused on the 3D city visualization technique
that has proven effective for software comprehension tasks. We deployed
3D city visualizations across a standard computer screen (SCS), immersive
virtual reality (I3D), and a physical 3D printed model (P3D). For each
medium we asked a different group of nine participants to perform a set of
nine comprehension tasks and complete a questionnaire. We measured the
effectiveness of visualizations in terms of performance (i.e., completion
time and correctness), recollection (i.e., recollection of recent events), and
user experience (i.e., feelings and difficulties). We found that (i) even
though developers using P3D required the least time to identify outliers,
(ii) they perceived the least difficulty when visualizing systems based on
SCS. Moreover, (iii) developers using I3D obtained the highest recollec-
tion.

149

150

7
Conclusion

When understanding large and complex software systems developers can
benefit from software visualization tools. A visualization gives developers
a tangible representation that they can analyze and use to discuss aspects
of a software system. A software visualization can be used both (1) to
discover unknown aspects of a system, and (2) to communicate the dis-
covered insights to others. Yet, most software developers are not aware
of visualization tools, and therefore software visualization is not within
their toolbox. We observe two main issues: (1) due the lack of organi-
zation amongst proposed software visualizations developers struggle to
find a suitable visualization tool that supports their particular problem, and
(2) there is limited evidence of the effectiveness of a proposed software
visualization.

In the following we elaborate on the contributions that resulted from
our research, and describe future directions.

7.1 Contributions

Our contributions are the following:

151

(1) We studied the characteristics of the proposed software visualization.
We identified opportunities for researchers in the field by exposing
software engineering concerns with little attention by proposed visual-
ization. Moreover, we found that few software visualizations have used
a medium different than the standard computer screen (Chapter 2).

(2) We systematically reviewed the proposed software visualizations to
analyze the evidence presented to validate the effectiveness of visual-
ization approaches. We proposed guidelines for future evaluation of
software visualization tools (Chapter 3).

(3) We elaborated on our efforts to fill the gap between proposed soft-
ware visualizations and their practical application. We discussed a
meta-visualization approach that connects live visualization exam-
ples to keywords collected from their supported questions. Also, we
presented a curated catalog of 70 software visualization tools ready-to-
use. Moreover, we showed preliminary results when encapsulating the
characteristics of visualizations in an ontology (Chapter 4).

(4) We introduced CityVR, a prototype that implements a well-known
software visualization technique (i.e., the city metaphor) in immersive
virtual reality. We conducted a formative experiment to identify the
strengths of the medium (Chapter 5).

(5) We evaluated, in a controlled experiment, the effectiveness of our pro-
totype compared to similar visualizations displayed on the standard
computer screen, and a physical 3D model. We proposed extended
benchmarks for future evaluation of software visualization tools (Chap-
ter 6).

7.2 Future Work
We reflect that software visualization is a green field, in which there are
several avenues to further investigate that split into three main categories:

(i) understanding and modeling software visualizations. In this avenue,
we plan to promote the adoption of our software visualization on-
tology that encapsulates the characteristics of proposed tools, by
developing a meta-visualization tool for supporting developers who
seek visualizations that support particular development concerns.

152

(ii) facilitating the evaluation of software visualizations to increment
the evidence of their effectiveness. We plan to create a software
visualization corpus of annotated actionable software visualization
tools ready for use in evaluations.

(iii) prototyping visualizations that stress various: tasks, media, and tech-
niques. We believe that the effectiveness of some of the proposed
software visualization tools can be increased by identifying more
appropriate tasks, media, and techniques. In this avenue, we plan to
start with the evaluation of a prototype that uses the city metaphor in
immersive augmented reality to explore suitable tasks.

7.2.1 Software Visualization in Virtual Reality
Frameworks used to build visualizations in immersive virtual reality lack
support for collaborative visualization. That is, to allow users to interact
with each other in real time while visualizing a software system. We plan
to develop such support. The prototype will allow remote users of the same
application to see and interact with each other in the virtual world.1

7.2.2 Software Visualization in Augmented Reality
Most 3D software visualization is displayed using the computer screen
medium. However, when displayed on the screen, 3D visualizations are
constrained to a few screen inches and interaction limited to the capabil-
ities of a mouse and a keyboard. Augmented reality technology allows
a visualization to use the 3D physical space available, and allows users
to interact using body motion such as hand gestures, gaze, and walking.
We believe these characteristics promote the usability of visualization for
software comprehension tasks. We plan to develop a prototype tool that
implements the city metaphor to support comprehension of static aspects
of software.

7.3 Summary
In this dissertation we analyze the state-of-the-art in software visualization.
We introduce a taxonomy to classify software visualization approaches. We

1http://scg.unibe.ch/wiki/projects/mastersbachelorsprojects/
immersive-3D-collaborative-software-visualization

153

http://scg.unibe.ch/wiki/projects/mastersbachelorsprojects/immersive-3D-collaborative-software-visualization
http://scg.unibe.ch/wiki/projects/mastersbachelorsprojects/immersive-3D-collaborative-software-visualization

discuss software engineering domains on which visualization approaches
have focused, and compare them to the domains that get the most atten-
tion from practitioners. We expand our investigation by analyzing the
evaluations used to obtain evidence of the effectiveness of proposed soft-
ware visualizations. We discuss common pitfalls that we find amongst
evaluations, and outline guidelines for researchers in the field who need
to evaluate their software visualization approaches. We elaborate on our
attempts to fill the gap between proposed software visualizations and their
practical application. We think that the adoption of software visualization
tools can be increased by (1) providing means to identify suitable visual-
izations for particular software engineering tasks, and (2) increasing the
evidence of the effectiveness of proposed visualizations. For the latter we
argue that the medium used to display software visualizations plays a role
in their effectiveness to support software engineering tasks.

We explore our hypothesis via a formative experiment in which we
implement the city metaphor visualization displayed with immersive virtual
reality to support on software comprehension tasks. In the experiment, we
observe that the selected medium excels at user experience, and we ask
whether various media can increase the effectiveness of visualizations for
particular tasks. To evaluate the impact of the medium in the effectiveness
of visualizations for software comprehension, we conduct a controlled
experiment in which developers visualize software cities displayed on
three media (i.e., standard computer screens, immersive virtual reality,
physical 3D models). We observe that physical models boost completion
time of tasks that involve identifying outliers, however, such tasks are
considered the least difficult when the visualization is displayed on the
standard computer screen. Moreover, we observe that immersive virtual
reality excels at promoting recollection.

154

Bibliography

[ABC+13] Vanessa Peña Araya, Alexandre Bergel, Damien Cassou,
Stéphane Ducasse, and Jannik Laval. Agile visualization
with Roassal. In Deep Into Pharo, pages 209–239. Square
Bracket Associates, September 2013.

[AJdS+16] Hakam W Alomari, Rachel A Jennings, Paulo Virote
de Souza, Matthew Stephan, and Gerald C Gannod. vizS-
lice: Visualizing large scale software slices. In Proc. of
VISSOFT, pages 101–105. IEEE, 2016.

[AMN+10] Craig Anslow, Stuart Marshall, James Noble, Ewan Tem-
pero, and Robert Biddle. User evaluation of polymetric
views using a large visualization wall. In Proc. of SOFT-
VIS, pages 25–34, New York, NY, USA, 2010. ACM.

[AMNB13] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis:
Collaborative software visualization for co-located environ-
ments. In Proc. of VISSOFT, pages 1–10, September 2013.

[ANAV10] Vander Alves, Nan Niu, Carina Alves, and George Valença.
Requirements engineering for software product lines: A
systematic literature review. Information and Software
Technology, 52(8):806–820, 2010.

[ANMT09] Craig Anslow, James Noble, Stuart Marshall, and Ewan
Tempero. Towards visual software analytics. 2009.

[AS04] Robert Amar and John Stasko. A knowledge task-based
framework for design and evaluation of information visu-
alizations. In Proc. of INFOVIS, pages 143–150. IEEE,
2004.

155

[B+56] Benjamin S Bloom et al. Taxonomy of educational objec-
tives. vol. 1: Cognitive domain. New York: McKay, pages
20–24, 1956.

[BBW09] Daniel Baldauf, Esther Burgard, and Marc Wittmann. Time
perception as a workload measure in simulated car driving.
Journal of Applied Ergonomics, 40(5):929–935, 2009.

[BC04] Emily Brown and Paul Cairns. A grounded investigation of
game immersion. In Proc. of CHI, pages 1297–1300. ACM,
2004.

[BGBG16] Gergo Balogh, Tamás Gergely, Arpád Beszédes, and Tibor
Gyimóthy. Using the city metaphor for visualizing test-
related metrics. In Proc. of SANER, volume 2, pages 17–20.
IEEE, 2016.

[BK01] S. Bassil and R.K. Keller. Software visualization tools:
survey and analysis. In Proc. of IWPC, pages 7 –17, 2001.

[BM07] Doug A Bowman and Ryan P McMahan. Virtual reality:
how much immersion is enough? Computer, 40(7), 2007.

[BTK11] Enrico Bertini, Andrada Tatu, and Daniel Keim. Qual-
ity metrics in high-dimensional data visualization: An
overview and systematization. Transactions on Visualiza-
tion and Computer Graphics, 17(12):2203–2212, 2011.

[CDPC11] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo.
Achievements and challenges in software reverse engineer-
ing. Commun. ACM, 54(4):142–151, April 2011.

[CGNS15] Andrei Chiş, Tudor Gîrba, Oscar Nierstrasz, and Aliaksei
Syrel. GTInspector: A moldable domain-aware object in-
spector. In Proc. of SPLASH, pages 15–16, New York, NY,
USA, 2015. ACM.

[COR16] CORE, 2016.

[Dat02] Ameya Vivek Datey. Experiments in the use of immersion
for information visualization, 2002.

156

[Die07] Stephan Diehl. Software Visualization. Springer-Verlag,
Berlin Heidelberg, 2007.

[DPH10] Wim De Pauw and Steve Heisig. Zinsight: a visual and
analytic environment for exploring large event traces. In
Proc. of SOFTVIS, pages 143–152, New York, NY, USA,
2010. ACM.

[DPKM06] Wim De Pauw, Sophia Krasikov, and John Morar. Exe-
cution patterns for visualizing web services. In Proc. of
SOFTVIS, New York NY, September 2006. ACM Press.

[DT13] Daniel J Dubois and Giordano Tamburrelli. Understanding
gamification mechanisms for software development. In
Proc. of FSE, pages 659–662. ACM, 2013.

[DZHC17] Stéphane Ducasse, Dmitri Zagidulin, Nicolai Hess, and
Dimitris Chloupis. Pharo by Example 5.0. Square Bracket
Associates, 2017.

[ERS+14] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young,
and P. Irani. ChronoTwigger: A visual analytics tool for
understanding source and test co-evolution. In Proc. of
VISSOFT, pages 117–126, September 2014.

[EY15] Niklas Elmqvist and Ji Soo Yi. Patterns for visualization
evaluation. Proc. of INFOVIS, 14(3):250–269, 2015.

[Fal02] Nils Faltin. Structure and constraints in interactive ex-
ploratory algorithm learning. In Software Visualization,
pages 213–226. Springer, 2002.

[Fin03] Arlene Fink. The survey handbook, volume 1. Sage, 2003.

[FKH15a] Florian Fittkau, Erik Koppenhagen, and Wilhelm Hassel-
bring. Research perspective on supporting software en-
gineering via physical 3D models. In Proc. of VISSOFT,
pages 125–129. IEEE, 2015.

[FKH15b] Florian Fittkau, Alexander Krause, and Wilhelm Hassel-
bring. Exploring software cities in virtual reality. In Proc.
of VISSOFT, pages 130–134. IEEE, 2015.

157

[FKH15c] Florian Fittkau, Alexander Krause, and Wilhelm Hassel-
bring. Hierarchical software landscape visualization for
system comprehension: a controlled experiment. In Proc.
of VISSOFT, pages 36–45. IEEE, 2015.

[FKH17] Florian Fittkau, Alexander Krause, and Wilhelm Hassel-
bring. Software landscape and application visualization for
system comprehension with ExplorViz. Information and
Software Technology, 87:259–277, 2017.

[FM10] Thomas Fritz and Gail C. Murphy. Using information
fragments to answer the questions developers ask. In Proc.
of ICSE, pages 175–184, New York, NY, USA, 2010. ACM.

[For10] Camilla Forsell. A guide to scientific evaluation in infor-
mation visualization. In Proc. of IV, pages 162–169. IEEE,
2010.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold.
Graph drawing by force-directed placement. Softw. Pract.
Exper., 21(11):1129–1164, November 1991.

[FSWH16] Michael D Feist, Eddie Antonio Santos, Ian Watts, and
Abram Hindle. Visualizing project evolution through ab-
stract syntax tree analysis. In Proc. of VISSOFT, pages
11–20. IEEE, 2016.

[GCC+10] Jeremy Gow, Paul Cairns, Simon Colton, Paul Miller, and
Robin Baumgarten. Capturing player experience with post-
game commentaries. In Proc. of CGAT, 2010.

[GDG06] Orla Greevy, Stéphane Ducasse, and Tudor Gîrba. Analyz-
ing software evolution through feature views. Journal of
Software Maintenance and Evolution: Research and Prac-
tice, 18(6):425–456, 2006.

[GHM05] Keith Gallagher, Andrew Hatch, and Malcolm Munro. A
framework for software architecture visualization assess-
ment. In Proc. of VISSOFT, pages 76–81. IEEE CS, Septem-
ber 2005.

158

[Gru93] Tom Gruber. What is an ontology. WWW Site http://www-
ksl.stanford.edu/kst/whatis-an-ontology.html (accessed on
07-09-2004), 1993.

[GTS10] Lars Grammel, Melanie Tory, and Margaret-Anne Storey.
How information visualization novices construct visualiza-
tions. Transactions on Visualization and Computer Graph-
ics, 16(6):943–952, 2010.

[HCT+14] Samuel Huron, Sheelagh Carpendale, Alice Thudt, Anthony
Tang, and Michael Mauerer. Constructive visualization. In
Proc. of DIS, pages 433–442. ACM, 2014.

[HDSP09] Salima Hassaine, Karim Dhambri, Houari Sahraoui, and
Pierre Poulin. Generating visualization-based analysis sce-
narios from maintenance task descriptions. In Proc. of
VISSOFT 2009, pages 41–44. IEEE, 2009.

[HHPS07] Kasper Hornbæk, Rune Thaarup Høegh, Michael Bach Ped-
ersen, and Jan Stage. Use case evaluation (UCE): A method
for early usability evaluation in software development. In
Proc. of IFIP, pages 578–591. Springer, 2007.

[HMA15] Nathan Hawes, Stuart Marshall, and Craig Anslow.
CodeSurveyor: Mapping large-scale software to aid in code
comprehension. In Proc. of VISSOFT, pages 96–105. IEEE,
2015.

[HRW00] Martin Höst, Björn Regnell, and Claes Wohlin. Using
students as subjects — a comparative study of students and
professionals in lead-time impact assessment. Empirical
Software Engineering, 5:201–214, 2000.

[ID91] Alfred Inselberg and Bernard Dimsdale. Parallel coor-
dinates. In Human-Machine Interactive Systems, pages
199–233. Springer, 1991.

[IIC+13] Tobias Isenberg, Petra Isenberg, Jian Chen, Michael Sedl-
mair, and Torsten Möller. A systematic review on the prac-
tice of evaluating visualization. Transactions on Visualiza-
tion and Computer Graphics, 19(12):2818–2827, 2013.

159

[ITW01] Pourang Irani, Maureen Tingley, and Colin Ware. Using
perceptual syntax to enhance semantic content in diagrams.
Computer Graphics and Applications, 21(5):76–84, 2001.

[JCC+08] Charlene Jennett, Anna L Cox, Paul Cairns, Samira Dhopa-
ree, Andrew Epps, Tim Tijs, and Alison Walton. Measuring
and defining the experience of immersion in games. Interna-
tional Journal of Human-Computer Studies, 66(9):641–661,
2008.

[JS91] Brian Johnson and Ben Shneiderman. Tree-maps: a space-
filling approach to the visualization of hierarchical infor-
mation structures. In Proc. of VIS, pages 284–291, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[KDV07] Andrew J. Ko, Robert DeLine, and Gina Venolia. Infor-
mation needs in collocated software development teams.
In Proc. of ICSE, pages 344–353, Washington, DC, USA,
2007. IEEE Computer Society.

[Kee07] Staffs Keele. Guidelines for performing systematic liter-
ature reviews in software engineering. Technical report,
Technical report, EBSE Technical Report EBSE-2007-01,
2007.

[Kei02] Daniel A Keim. Information visualization and visual
data mining. Transactions on Visualization and Computer
Graphics, 8(1):1–8, 2002.

[KJ18] Justin Kelly and Christian Jacob. evoExplore: Multiscale
visualization of evolutionary histories in virtual reality. In
Proc. of EvoMUSART, pages 112–127. Springer, 2018.

[KK96] Daniel A Keim and H-P Kriegel. Visualization techniques
for mining large databases: A comparison. Transactions on
Knowledge and Data Engineering, 8(6):923–938, 1996.

[KM99] Claire Knight and Malcolm Munro. Comprehension with
[in] virtual environment visualisations. In Proc. of ICPC,
pages 4–11. IEEE, 1999.

[KM00] Claire Knight and Malcolm Munro. Virtual but visible
software. In Proc. of IV, pages 198–205. IEEE, 2000.

160

[KM07] Holger M. Kienle and Hausi A. Muller. Requirements of
software visualization tools: A literature survey. Proc. of
VISSOFT, pages 2–9, 2007.

[KM10] Holger M Kienle and Hausi A Müller. The tools perspective
on software reverse engineering: requirements, construc-
tion, and evaluation. In Advances in Computers, volume 79,
pages 189–290. Elsevier, 2010.

[KMM07] Holger M Kienle, Hausi A Muller, and Johannes Martin.
Dependencies analysis of azureus with rigi: Tool demo
challenge. In Proc. of VISSOFT, pages 159–160. IEEE,
2007.

[KW52] William H Kruskal and W Allen Wallis. Use of ranks in
one-criterion variance analysis. Journal of the American
Statistical Association, 47(260):583–621, 1952.

[L+60] Howard Levene et al. Robust tests for equality of vari-
ances. Contributions to Probability and Statistics, 1:278–
292, 1960.

[LBI+12] Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine
Plaisant, and Sheelagh Carpendale. Empirical studies in in-
formation visualization: Seven scenarios. Transactions on
Visualization and Computer Graphics, 18(9):1520–1536,
2012.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—
a lightweight visual approach to reverse engineering. Trans-
actions on Software Engineering, 29(9):782–795, Septem-
ber 2003.

[LHIE18] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexan-
der Egyed. A systematic mapping study of information
visualization for software product line engineering. Journal
of Software: Evolution and Process, 30(2), 2018.

[Lik32] Rensis Likert. A technique for the measurement of attitudes.
Archives of Psychology, 22(140):1–55, 1932.

161

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gîrba. Package
patterns for visual architecture recovery. In Proc. of CSMR,
pages 185–196, Los Alamitos CA, 2006. IEEE Computer
Society Press.

[LM10] Thomas D. LaToza and Brad A. Myers. Hard-to-answer
questions about code. In Proc of. PLATEAU, pages 8:1–8:6,
New York, NY, USA, 2010. ACM.

[LMSW03] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xi-
aomin Wu. Plugging-in visualization: experiences integrat-
ing a visualization tool with eclipse. In Proc. of SOFTVIS,
pages 47–ff. ACM, 2003.

[Mac86] Jock Mackinlay. Automating the design of graphical presen-
tations of relational information. Transactions On Graphics,
5(2):110–141, 1986.

[Mal80] Thomas W Malone. What makes things fun to learn? heuris-
tics for designing instructional computer games. In Proc.
of SIGSMALL, pages 162–169. ACM, 1980.

[MBK+04] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk,
Brian Silverman, and Mitchel Resnick. Scratch: A sneak
preview. In Proc. of International Conference on Creating,
Connecting and Collaborating through Computing, pages
104–109. IEEE Computer Society, 2004.

[MBN18] Leonel Merino, Alexandre Bergel, and Oscar Nierstrasz.
Overcoming issues of 3D software visualization through
immersive augmented reality. In Proc. of VISSOFT, page
in review. IEEE, 2018.

[MFB+17] Leonel Merino, Johannes Fuchs, Michael Blumenschein,
Craig Anslow, Mohammad Ghafari, Oscar Nierstrasz,
Michael Behrisch, and Daniel Keim. On the impact of
the medium in the effectiveness of 3D software visualiza-
tion. In Proc. of VISSOFT, pages 11–21. IEEE, 2017.

[MGAN] Leonel Merino, Mohammad Ghafari, Craig Anslow, and
Oscar Nierstrasz. A systematic literature review of soft-
ware visualization evaluation. The Journal of Systems and
Software, page in review.

162

[MGAN17] Leonel Merino, Mohammad Ghafari, Craig Anslow, and
Oscar Nierstrasz. CityVR: Gameful software visualization.
In Proc. of ICSME, pages 633–637. IEEE, 2017.

[MGN16a] Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz.
Towards actionable visualisation in software development.
In Proc. of VISSOFT. IEEE, 2016.

[MGN+16b] Leonel Merino, Mohammad Ghafari, Oscar Nierstrasz,
Alexandre Bergel, and Juraj Kubelka. MetaVis: Explor-
ing actionable visualization. In Proc. of VISSOFT. IEEE,
2016.

[MGN17] Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz.
Towards actionable visualization for software developers.
Journal of Software: Evolution and Process, 30(2):e1923–
n/a, 2017.

[MHB10] Emerson Murphy-Hill and Andrew P Black. An interactive
ambient visualization for code smells. In Proc. of SOFTVIS,
pages 5–14. ACM, 2010.

[MIK+16] Anna-Liisa Mattila, Petri Ihantola, Terhi Kilamo, Antti
Luoto, Mikko Nurminen, and Heli Väätäjä. Software vi-
sualization today: systematic literature review. In Proc. of
International Academic Mindtrek Conference, pages 262–
271. ACM, 2016.

[MJSK15] Sebastian Mittelstädt, Dominik Jäckle, Florian Stoffel, and
Daniel A Keim. ColorCAT: Guided design of colormaps
for combined analysis tasks. In Proc. of Eurographics,
volume 2, 2015.

[MKS+14] Richard Müller, Pascal Kovacs, Jan Schilbach, Ulrich W
Eisenecker, Dirk Zeckzer, and Gerik Scheuermann. A struc-
tured approach for conducting a series of controlled experi-
ments in software visualization. In Proc. of IVAPP, pages
204–209. IEEE, 2014.

[MLMD01] Jonathan I Maletic, Jason Leigh, Andrian Marcus, and Greg
Dunlap. Visualizing object-oriented software in virtual
reality. In Proc. of IWPC, pages 26–35. IEEE, 2001.

163

[MLN15] Leonel Merino, Mircea Lungu, and Oscar Nierstrasz. Ex-
plora: A visualisation tool for metric analysis of software
corpora. In Proc. of VISSOFT, pages 195–199. IEEE, 2015.

[MM03] Jonathan I Maletic and Andrian Marcus. CFB: A call
for benchmarks-for software visualization. In Proc. of
VISSOFT, pages 113–116. Citeseer, 2003.

[MMC02] Jonathan I. Maletic, Andrian Marcus, and Michael Collard.
A task oriented view of software visualization. In Proc. of
VISSOFT, pages 32–40. IEEE, June 2002.

[MSGN16] Leonel Merino, Dominik Seliner, Mohammad Ghafari, and
Oscar Nierstrasz. CommunityExplorer: A framework for
visualizing collaboration networks. In Proc. of IWST, pages
2:1–2:9, 2016.

[Mun08] Tamara Munzner. Process and pitfalls in writing informa-
tion visualization research papers. In Information visual-
ization, pages 134–153. Springer, 2008.

[Mun14] Tamara Munzner. Visualization analysis and design. CRC
press, 2014.

[Mus15] Mark A Musen. The Protégé project: a look back and a
look forward. AI matters, 1(4):4–12, 2015.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The
story of Moose: an agile reengineering environment. In
Proc. of ESEC/FSE, pages 1–10, New York, NY, USA,
September 2005. ACM Press. Invited paper.

[Nie93] Jakob Nielsen. Usability Engineering. Morgan Kaufmann,
1st edition, September 1993.

[NM+01] Natalya F Noy, Deborah L McGuinness, et al. Ontology
development 101: A guide to creating your first ontology,
2001.

[NTM+13] Renato Lima Novais, André Torres, Thiago Souto Mendes,
Manoel Mendonça, and Nico Zazworka. Software evolution
visualization: A systematic mapping study. Information
and Software Technology, 55(11):1860–1883, 2013.

164

[PAM14] Julia Paredes, Craig Anslow, and Frank Maurer. Informa-
tion visualization for agile software development. In Proc.
of VISSOFT, pages 157–166. IEEE, 2014.

[PBS93] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A
principled taxonomy of software visualization. Journal of
Visual Languages and Computing, 4(3):211–266, 1993.

[PEQ+07] Thomas Panas, Thomas Epperly, Daniel Quinlan, Andreas
Saebjornsen, and Richard Vuduc. Communicating software
architecture using a unified single-view visualization. In
Proc. of ICECCS, pages 217–228. IEEE, 2007.

[PGBP15] Oscar Pedreira, Félix García, Nieves Brisaboa, and Mario
Piattini. Gamification in software engineering–a systematic
mapping. Journal of the American Society for Information
Science and Technology, 57:157–168, 2015.

[PJ09] Yunrim Park and Carlos Jensen. Beyond pretty pictures: Ex-
amining the benefits of code visualization for open source
newcomers. In Proc. of VISSOFT, pages 3–10. IEEE, 2009.

[PLL05] Thomas Panas, Rüdiger Lincke, and Welf Löwe. Online-
configuration of software visualization with Vizz3D. In
Proc. of SOFTVIS, pages 173–182, 2005.

[PSM07] Harkirat Padda, Ahmed Seffah, and Sudhir Mudur. Vi-
sualization patterns: A context-sensitive tool to evaluate
visualization techniques. In Proc. of VISSOFT, pages 88–
91. IEEE, 2007.

[Raa12] Felix Raab. CodeSmellExplorer: Tangible exploration of
code smells and refactorings. In Proc. of VL/HCC, pages
261–262. IEEE, 2012.

[RBLN04] Dheva Raja, Doug Bowman, John Lucas, and Chris North.
Exploring the benefits of immersion in abstract information
visualization. In Proc. Immersive Projection Technology
Workshop, pages 61–69, 2004.

[RC93] G-C Roman and Kenneth C Cox. A taxonomy of program
visualization systems. Computer, 26(12):11–24, 1993.

165

[Rei03] Steven P. Reiss. Visualizing Java in action. In Proc. of
SOFTVIS, pages 57–66, 2003.

[Rei05] Steven P. Reiss. JOVE: Java as it happens. In Proc. of
SOFTVIS, pages 115–124, 2005.

[Rei14] Steven P Reiss. The challenge of helping the programmer
during debugging. In Proc. of VISSOFT, pages 112–116.
IEEE, 2014.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting
and reporting case study research in software engineering.
Empirical Software Engineering, 14(2):131, 2009.

[RW+11] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power com-
parisons of shapiro-wilk, kolmogorov-smirnov, lilliefors
and anderson-darling tests. Journal of Statistical Modeling
and Analytics, 2(1):21–33, 2011.

[SBCS14] A. Seriai, O. Benomar, B. Cerat, and H. Sahraoui. Valida-
tion of software visualization tools: A systematic mapping
study. In Proc. of VISSOFT, pages 60–69, September 2014.

[SBFB16] Rodrigo Schulz, Fabian Beck, Jhonny Wilder Cerezo Fe-
lipez, and Alexandre Bergel. Visually exploring object
mutation. 2016.

[SCG+15] Aliaksei Syrel, Andrei Chiş, Tudor Gîrba, Juraj Kubelka,
Oscar Nierstrasz, and Stefan Reichhart. Spotter: towards
a unified search interface in IDEs. In Proc. of SPLASH,
pages 54–55, New York, NY, USA, 2015. ACM.

[SCGM00] John T. Stasko, Richard Catrambone, Mark Guzdial, and
Kevin Mcdonald. An evaluation of space-filling informa-
tion visualizations for depicting hierarchical structures. In-
ternational Journal Humain-Computer Studies, 53(5):663–
694, 2000.

[SDP+09] Beatriz Sousa Santos, Paulo Dias, Angela Pimentel, Jan-
Willem Baggerman, Carlos Ferreira, Samuel Silva, and
Joaquim Madeira. Head-mounted display versus desktop
for 3D navigation in virtual reality: a user study. Multimedia
Tools and Applications, 41(1):161, 2009.

166

[SHH+05] Dag IK Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By
Kampenes, Amela Karahasanovic, N-K Liborg, and
Anette C Rekdal. A survey of controlled experiments in
software engineering. Transactions on Software Engineer-
ing, 31(9):733–753, 2005.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In IEEE Visual
Languages, pages 336–343, College Park, Maryland 20742,
U.S.A., 1996.

[SLB14] Mojtaba Shahin, Peng Liang, and Muhammad Ali Babar.
A systematic review of software architecture visualization
techniques. Journal of Systems and Software, 94:161–185,
2014.

[SMDV06] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Ques-
tions programmers ask during software evolution tasks. In
Proc. of FSE, pages 23–34, New York, NY, USA, 2006.
ACM.

[SOF16] SoftVis, 2016.

[SOT08a] Mariam Sensalire, Patrick Ogao, and Alexandru Telea. Clas-
sifying desirable features of software visualization tools for
corrective maintenance. In Proc. of SOFTVIS, pages 87–90.
ACM, 2008.

[SOT08b] Mariam Sensalire, Patrick Ogao, and Alexandru Telea. Clas-
sifying desirable features of software visualization tools for
corrective maintenance. In Proc. of SOFTVIS, pages 87–90.
ACM, 2008.

[SOT09] Mariam Sensalire, Patrick Ogao, and Alexandru Telea.
Evaluation of software visualization tools: Lessons learned.
In Proc. of VISSOFT, pages 19–26. IEEE, 2009.

[SRGBSA12] M.A. Sicilia, D. Rodríguez, E. García-Barriocanal, and
S. Sánchez-Alonso. Empirical findings on ontology metrics.
Expert Systems with Applications, 39(8):6706 – 6711, 2012.

167

[SS11] Ahmed Sfayhi and Houari Sahraoui. What you see is what
you asked for: An effort-based transformation of code anal-
ysis tasks into interactive visualization scenarios. In Proc.
of SCAM, pages 195–203. IEEE, 2011.

[SvG05] Margaret-Anne D. Storey, Davor Čubranić, and Daniel M.
German. On the use of visualization to support awareness
of human activities in software development: a survey and
a framework. In Proc. of SOFTVIS, pages 193–202. ACM
Press, 2005.

[SVW14] Marcelo Schots, Renan Vasconcelos, and Cláudia Werner.
A quasi-systematic review on software visualization ap-
proaches for software reuse. Technical report, 2014.

[SW65] S. S. Shapiro and M. B. Wilk. An analysis of variance test
for normality (complete samples). Biometrika, 52(3-4):591,
1965.

[SW14] Marcelo Schots and Claudia Werner. Using a task-oriented
framework to characterize visualization approaches. In
Proc. of VISSOFT, pages 70–74. IEEE, 2014.

[TAD+10] E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li,
M. Lumpe, H. Melton, and J. Noble. The Qualitas Cor-
pus: A curated collection of Java code for empirical studies.
In Proc. of APSEC, pages 336 –345, December 2010.

[TC09] Alfredo R Teyseyre and Marcelo R Campo. An overview
of 3D software visualization. Transactions on Visualization
and Computer Graphics, 15(1):87–105, 2009.

[TGG08] Roberto Theron, Antonio Gonzalez, and Francisco J Garcia.
Supporting the understanding of the evolution of software
items. In Proc. of SOFTVIS, pages 189–192. ACM, 2008.

[TKII17] Boris Todorov, Raula Gaikovina Kula, Takashi Ishio, and
Katsuro Inoue. SoL Mantra: Visualizing update opportu-
nities based on library coexistence. In Proc. of VISSOFT,
pages 129–133. IEEE, 2017.

168

[TLTC05] Maurice Termeer, Christian F.J. Lange, Alexandru Telea,
and Michel R.V. Chaudron. Visual exploration of combined
architectural and metric information. 0:11, 2005.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, 2nd edition, 2001.

[VIS16] VISSOFT, 2016.

[VTvW05] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan:
visualization of code evolution. In Proc. of SOFTVIS, pages
47–56, St. Louis, Missouri, USA, May 2005.

[VW06] Jarke J Van Wijk. Views on visualization. Transactions
on Visualization and Computer Graphics, 12(4):421–432,
2006.

[Wet10] Richard Wettel. Software Systems as Cities. PhD thesis,
University of Lugano, Switzerland, September 2010.

[WFGH11] Jacob O Wobbrock, Leah Findlater, Darren Gergle, and
James J Higgins. The aligned rank transform for nonpara-
metric factorial analyses using only anova procedures. In
Proc. of SIGCHI, pages 143–146. ACM, 2011.

[WFRFN] Jorge A Wagner Filho, Marina F Rey, Carla MDS Freitas,
and Luciana Nedel. Immersive visualization of abstract
information: An evaluation on dimensionally-reduced data
scatterplots.

[WL07a] Richard Wettel and Michele Lanza. Program comprehen-
sion through software habitability. In Proc. of ICPC, pages
231–240. IEEE CS Press, 2007.

[WL07b] Richard Wettel and Michele Lanza. Visualizing software
systems as cities. In Proc. of VISSOFT, pages 92–99, 2007.

[WLR11] Richard Wettel, Michele Lanza, and Romain Robbes. Soft-
ware systems as cities: a controlled experiment. In Proc. of
ICSE, pages 551–560, New York, NY, USA, 2011. ACM.

169

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohls-
son, Björn Regnell, and Anders Wesslén. Experimentation
in Software Engineering. Kluwer Academic Publishers,
2000.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohls-
son, Björn Regnell, and Anders Wesslén. Experimentation
in software engineering. Springer Science & Business Me-
dia, 2012.

[Yin13] Robert K Yin. Case study research: Design and methods.
Sage publications, 2013.

[YM98] Peter Young and Malcolm Munro. Visualising software in
virtual reality. In Proc. of IWPC, pages 19–26. IEEE, 1998.

[YP15] Alfa Yohannis and Yulius Prabowo. Sort attack: Visualiza-
tion and gamification of sorting algorithm learning. In Proc.
of VS-Games, pages 1–8. IEEE, 2015.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental
models for validating technology. Computer, 31(5):23–31,
1998.

170

E r k l ä r u n g

gemäss Art. 28 Abs. 2 RSL 05

Name/Vorname:

Matrikelnummer:

Studiengang:

Bachelor  Master  Dissertation 

Titel der Arbeit:

LeiterIn der Arbeit:

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen

entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls

der Senat gemäss Artikel 36 Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996

über die Universität zum Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

Ich gewähre hiermit Einsicht in diese Arbeit.

Unterschrift

2Ut�'DtXP

Merino Leonel

11-117-041

Informatik

✔

The Medium of Visualization for Software Comprehension

Prof. Dr. Oscar Nierstrasz

Bern, 05.06.2018

172

Curriculum Vitae

Personal Information

Name: Leonel Alejandro Merino del Campo
Date of Birth: 12.06.1979.
Place of Birth: San Bernardo, Chile
Nationality: Chilean

Education

2014–2018 PhD in Computer Science
University of Bern
Switzerland

2007–2008 MSc in Computer Science
École des mines de Nantes
France

2007–2008 MSc in Computer Science
Vrije Universiteit Brussel
Belgium

1999–2006 BSc in Computer Science
University of Chile
Chile

173

	1 Introduction
	1.1 Software Visualization
	1.2 Problem Statement
	1.3 Our Approach
	1.3.1 Thesis statement

	1.4 Contributions
	1.4.1 A taxonomy of proposed software visualization tools, and a discussion of the need of the explicit inclusion of the medium as a key attribute that promotes the communication in software visualizations
	1.4.2 A discussion of meta-visualization as a means for identifying suitable visualization tools
	1.4.3 A discussion of the software visualization evaluation
	1.4.4 A discussion of the architectural design choices and lessons learned from implementing the city metaphor in virtual reality and observing its use
	1.4.5 An experiment to evaluate the impact of the medium in the effectiveness of 3D software visualizations
	1.4.6 The artifacts of our research are publicly available

	1.5 Outline

	2 State of the Art
	2.1 Introduction
	2.2 Methodology
	2.2.1 Data sources and search strategy
	2.2.2 Included and excluded studies
	2.2.3 Data Extraction

	2.3 Results
	2.3.1 Task
	2.3.2 Need
	2.3.3 Audience
	2.3.4 Data source
	2.3.5 Representation
	2.3.6 Tool
	2.3.7 Medium

	2.4 Discussion
	2.4.1 Threats to Validity

	2.5 Conclusion

	3 Software Visualization Evaluation
	3.1 Introduction
	3.2 Background
	3.3 Methodology
	3.3.1 Inclusion and exclusion criteria
	3.3.2 Quality assessment
	3.3.3 Data extraction
	3.3.4 Selected studies

	3.4 Results
	3.4.1 Data Collection Methods
	3.4.2 Evaluation Strategies

	3.5 Discussion
	3.5.1 Threats to Validity

	3.6 Conclusion

	4 Actionable Software Visualization
	4.1 Introduction
	4.2 MetaVis
	4.2.1 Developer's Questions
	4.2.2 Visualization Examples
	4.2.3 TIC: Tag-Iconic Cloud-Based Visualization
	4.2.4 Implementation
	4.2.5 Analysis Example
	4.2.6 Discussion
	4.2.7 Summary

	4.3 Software Visualization Tools
	4.3.1 Summary

	4.4 Software Visualization Ontology
	4.4.1 Background
	4.4.2 Protégé
	4.4.3 Usage Scenarios
	4.4.4 Summary

	4.5 Conclusion

	5 Gameful Software Visualization
	5.1 Introduction
	5.2 CityVR Overview
	5.2.1 Design
	5.2.2 Workflow

	5.3 Formative Experiment
	5.4 Discussion
	5.5 Conclusion

	6 The Medium
	6.1 Introduction
	6.2 Related Work
	6.3 Controlled User Experiment
	6.3.1 Experiment Design
	6.3.2 Hypotheses
	6.3.3 Participants
	6.3.4 Procedure
	6.3.5 Data Collection

	6.4 Results
	6.4.1 Performance (RQ.1)
	6.4.2 Recollection (RQ.2)
	6.4.3 User Experience (RQ.3)

	6.5 Discussion
	6.5.1 Performance (RQ.1)
	6.5.2 Recollection (RQ.2)
	6.5.3 User Experience (RQ.3)

	6.6 Threats to Validity
	6.7 Conclusion

	7 Conclusion
	7.1 Contributions
	7.2 Future Work
	7.2.1 Software Visualization in Virtual Reality
	7.2.2 Software Visualization in Augmented Reality

	7.3 Summary

