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Foreword
From the very beginning of my studies in computer science in 1983/84, I have worked in
the software industry as a part time employee. In 1989, when I was just finishing my
masters thesis, my employer assigned me the task of consolidating and documenting all the
estimation techniques used at my employer’s site. We were a software service shop of
about a hundred software professionals. You may imagine that I encountered as many
techniques as project leaders. I finally decided to document 2 main methods, one for very
early estimates, an adaptation of the Aaron method, and one for estimates after detailed
system specification which was based on the ideas of COCOMO but counting screens and
functions instead of lines of code.

Later in 1989 I was assigned to head a consulting project entitled "software economics".
The client was a large retail company’s internal software department. The project title
suggested a wider perspective than just estimation but I did not yet know much about it. A
few weeks before the project’s kickoff meeting, I was reading DeMarco’s book
"Controlling Software Projects" and Symons’ "Function Point Analysis Mk II" to get more
up to date. In summer 1990, immediately following my masters exam, this consulting
project was successfully completed. We implemented a software measurement and
estimation programme based on the Function Point metric. In October of the same year, I
attended a seminar by Tom DeMarco - and this was enough to definitively make me
addicted to the topic.

For 3 years - from summer 1990 until summer 1993 - I was employed full-time in industry
and was responsible for metrics and estimation as well as software engineering and
modelling techniques for two employers (I switched to my current employer in 1992).
During those years I have assessed over 50 projects using the Function Point metric. I
developed guidelines for counting Function Points on domain analysis models according to
Yourdon’s "Modern Structured Analysis" and documented them in a "Metrics Manual".

In 1993, I started my Ph.D. on the topic, because I found that - besides of its great merits -
the Function Points also had some serious deficiencies. These mainly lay in its counting
ambiguity, old-fashionedness and lack of support for reuse modelling. Now, in autumn
1996, you may read the results on the following pages. The System Meter - "my" newly
proposed metric - may be viewed as evolving from of the Function Point metric even
though, to many readers, it may appear revolutionary.

During these seven years of being involved - and sometimes struggling - with this
fascinating topic, I got to know many inspiring and motivating people. My thanks go to all
of them, but especially to: Fritz Beck (thanks for the cartoons!), Stefan Brantschen, Pierre-
André Briod, Annemarie Buess, Simon Christen, Dennis DeChampeaux, Adrian Fröhlich,
Alfred Graber, Brian Henderson-Sellers, Georges Huber, Christian Hürlimann, Rolf Jufer,
Michael Körsgen, Markus Lumpe, Theo Dirk Meijler, Hansjürg Mey, Thomas Moor, Robb
Nebbe, Oscar Nierstrasz, Jürg Oehler, Bruno Russiniello, Hansjörg Scheitlin, Peter Schorn,
Robert Siegenthaler, Peter Stöckli, Hung Dinh Truong, Åke Wallin, Marius Walliser and
Gerhard Wanner. They all contributed to the presentation or contents of this work.

I am also greatly indebted to my parents Hannelore and Hans Rudolf Moser, without whom
many things would have been impossible.

And last but not least, I wish to thank my wife Daniela and my children Severin and Maria.
They saw me sitting behind books or at my computer more often than not.

This work was partially sponsored by Bedag Informatik, Berne, Switzerland
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1 Introduction

The work presented in this thesis is rooted in practical questions: "What does it cost?",
"How long does it take?" Those questions are typically raised very early in the software
process - in most cases even earlier than a precise definition of the software’s functionality.
The need for answers to these questions led to first estimation models for the prediction of
work hour effort and project duration around 1974-76. The most widely used models in
industry today are Boehm’s COCOMO (Constructive Cost Model) and Albrecht’s FPM
(Function Point Method). Both models evolved out of the 1974-76 models and became
popular in the early eighties. Their underlying perception of software and the software
process, though, is traditional. Modern concepts like object-orientation, framework or
component based development and incremental prototyping - to name a few but important
new techniques - are not covered. The starting point of our work, therefore, was the
analysis of the established techniques with respect to the new software development
strategies: What parts of COCOMO or FPM have become invalid? What ideas are still
useful? Based on this analysis we have developed new solutions for the invalidated parts
and verified them in an extensive field study. The newly developed items, namely a new
measure of software complexity called System Meter (SM), have also been used to propose
solutions to other topics than estimation, e.g. productivity analysis and software quality
assessment. Those applications, however, have only been tried out in a few sample tests.

Contents of the Introductory Sections

The following introductory sections will first present the underlying economical issues in
more detail. Then, the main ideas behind estimation and measurement are presented. The
next section is dedicated to metamodels, i.e. semi-formal models of software artefacts that
allow us to precisely define measures, followed by a section about evaluation criteria.
These evaluation criteria have also been used in the analysis of the field study results. The
second from last section contains a summary assessment of existing estimation techniques
(COCOMO and FPM) in the light of modern software development practices. The final
two sections describe the structure and contents of the rest of the document and summarise
some related topics.

Some Words about Technical Terms

The technical terms and abbreviations used in this document will - in general - be
explained when they first appear. Please refer to appendix C, the glossary of terms and
abbreviations, for an alphabetically sorted list. The ubiquitous and popular term "software
metric" refers to the idea of a rule, algorithm or function that takes some "software" as
input and delivers a numerical output. The term "software measure" is used as a synonym
here, and is generally preferred, because it does not imply the mathematical properties of a
metric (which a "software metric" generally does not possess). The plural form "software
metrics" is used for the related area of research and practice - including estimation - as a
whole.

1.1 Software Economics

Overview

This section presents some economical key concepts behind the questions "What does it
cost?" and "How long does it take?". We discuss the importance of estimation and
measurement for the software industry and for software science.
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The 3 Economical Parameters of the Software Process

From the viewpoint of a software customer, investments into software only make sense
when the purchasing cost is considerably lower than the earned value. Whereas the earned
value is often hard to quantify, the costs are easily summed up as the payments to the
software contractor, i.e. some software producing unit (SPU), be it internal or external to
the software customer’s company. We will, in order to discuss software economics for our
purposes, take on the viewpoint of the SPU. "Costs" for the customer means "earned value"
for the SPU. Its costs, on the other side, are mainly the costs for manpower effort of
software development/maintenance1. To discuss software economics, we furthermore make
the assumption that the earned value, i.e. what is paid for a piece of software, is in direct
relation to the product, i.e. its functionality and quality2. The last parameter under
consideration is time. As for every economic process, also for the software process, time to
market is a very critical factor for success or failure. To resume, we have 3 parameters in
the context of software economics: è cost/effort, � duration and � the product.

Process Parameters

Product
(Quantity and

  Quality)

Effort
(Cost)

Duration

Figure 1: The 3 Parameters of Software Economics

An observation we can immediately make is that each of the parameters is heavily
dependent on the others. We cannot, e.g., develop software in half the time with half the
effort yielding the same product. Analogous statements can be made for the two other
parameters. So we conclude that it is always important to have these 3 parameters and their
trade-off dependencies in mind when managing software projects.

Controlling Software Processes

In practice, a manager of a software project is typically assigned the non-trivial task of
controlling a software process. This controlling activity spans two basic areas (according to
[DM82]) with respect to the 3 parameters:

1. The expectations on the future outcomes.

2. The knowledge of what has already been achieved.

                                                
1 We intentionally omit considerations of investment costs for development hardware and software as well as
overhead costs like sales, general management, marketing, financial controlling, etc. in order to stay focused
on software issues.

2 One might argue that functionality and quality are to be considered as two distinct economical parameters.
For the sake of simplicity we unified (according to other authors) the two aspects in this introduction.
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The first area is the starting point for estimation techniques. It is, however, also an area of
negotiation and of compromises. All three economic parameters are usually part of those
negotiations. The art of controlling the expectations is to have the estimated values for the
three parameters in reasonable balance, in spite of all the pressure from the customers,
salespeople and corporate managers.

The second area leads to measurement. Whereas measuring effort and elapsed time are of
no theoretical difficulty, measurement of software products is still in its infancy [DU93].
However, besides delivering indispensable input to the management task of the project, it
also improves estimation quality, because we will be better estimators when we know how
we performed in the past. Only by measuring numerous past processes are we able to
conclude statistically how the 3 parameters are related, i.e. what is a reasonable balance
and what is not.

Surveys conducted in the eighties [DM83] demonstrated that estimation quality is one of
the factors that correlates most with project success. This factor outperforms others like
technology used, staff experience, etc. If we give this fact a second thought it becomes
quite evident, as shown in the following example: Let us assume that organisation A
produces 10 product units a day (PU/D) and organisation B produces 15 PU/D.
Furthermore, the customers of organisation A are more satisfied. How come? It is because
A based its schedules on its actual 10 PU/D productivity whereas B assumed 20 PU/D.
Therefore, B grossly misscheduled its projects. Quintessence: It’s better to be slow and
know you are slow than to be acceptably fast but think you’re Carl Lewis.

One might argue correctly that if the conclusion drawn above would be the truth and
nothing but the truth, there would be no motivation in becoming a more productive, faster
SPU. In fact, customers not only want high quality schedules and software, they also want
them at a competitive cost and - usually most important - they want it fast. So, it is highly
probable that B will get the contract when it competes with A, simply because B offers the
same software for half the cost. Therefore, A will be forced to rise its productivity in order
to persist in the market, while B will either somehow get out of the messy schedules or
vanish because of too many angry customers. Quintessence: It’s best to be fast and know
about that!

We may conclude that estimation and measurement are crucial success factors for the
industrial software process. Furthermore, academic computer science could also profit
immensely from quantitative methods. The area of experimentation is - in its more rigid
definition - only possible when using sound reproducible measurements. Just imagine
traditional engineering sciences without kilograms, meters, volts, etc. and you know what
is missing in software engineering.

Will Measurement and Estimation Raise Software Quality?

In this short paragraph we will discuss a topic that does not seem central to the thesis, and
therefore requires a few words of positioning. The term software quality is traditionally
viewed in a rather narrow sense. Software is viewed as an isolated thing, isolated from its
development process. Quality is therefore restricted to notions like "error freeness",
"usability", "extensibility", etc. which we would like to subsume under the term product
quality. Product quality, however, ignores the 2 parameters of cost and time. Integral
software quality, which we would like to call software process quality, on the other side,
must encompass these aspects. So, the best software (with respect to software process
quality) is often only good enough software (with respect to product quality). This thesis,
therefore, is aimed to be a contribution to the integral concept of software quality and not
directly to product quality. Indirectly though, product quality may profit from the more
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reasonable schedules gained by improved estimation and from quality measurements that
may be derived from the estimation metrics.

1.2 Estimation and Measurement: How are they Related?

Rational Estimation

Measurement of the 3 economical parameters of effort, time and product do not directly
lead to better estimates. Even when we know about our productivity, i.e. the average ratio
of product and effort, and about velocity, i.e. the ratio between product and time, we cannot
give reasonable values for the parameters before we have estimated at least one.

The first key idea towards estimation is to pre-build a model of the final product. Once we
have the model, we can measure its parameters: effort and time of modelling as well as the
model’s product metric. The second key idea is then to correlate the parameters of the pre-
modelling process to those of the full-fledged production process, in hope the former
predict the latter. These ideas are not restricted to software engineering. They are not even
originated in software engineering, but emerged from the more traditional engineering
domains of architecture, ship construction and car manufacturing.

The most prominent examples for rational estimation are the plans drawn by the architects
before a house is built. Not only do the plans serve as a specification of what is to be built,
not only may the plans be checked against "laws of consistency" (like static laws, minimum
allowed distances to neighbour buildings, etc.), but - most important to our objectives -
they serve as a predictor model for cost and time of the process of construction. This
prediction or estimation is performed by (A) measuring the building’s volume on the plan,
e.g. in m3, yielding the predictor value, by (B) multiplying this value with some "magic"
factors (usually published by architects associations that derive them statistically), and by
(C) adapting the resulting value to specific conditions of the project.

Estimation according to this ABC-scheme is also called measurement based estimation.
This is virtually the only rational approach to estimation. It is explicitly used in Albrecht’s
FPM and implicitly in Boehm’s COCOMO. We thus retained and refined this basic strategy
in this thesis.

Psychological and Organisational Barriers to Rational Estimation

One question, however, treated in this single paragraph only because it is related to a non-
technical topic, could probably fill pages in a thesis on psychology and management
sciences: "Why, in practice, is nobody interested in a rational cost estimate?"

Let us analyse the question by having a look at the persons typically involved: 1) a manager
(or sales representative) of the SPU, 2) the project customer and 3) the project manager.
The SPU’s manager is interested in selling the project to raise his bonus. Therefore, he will
sell at any price the customer is willing to pay. The customer, in turn, is willing to pay a
minimum only. The project manager, finally, when forced to accept the budgeted effort
negotiated between his and the customer’s managers, will strive to produce as much as he
can, and will not waste time with useless re-estimation. Did we exaggerate? Maybe a little,
but reality is not far from that.

As a consequence of this lack of interest, we may observe a lack of experience with
estimation techniques and even a lack of understanding what estimates are. Very often cost
and time estimates are considered to be the minimum values for which the probability is
not zero to be reached. Reasonable estimates, however, should be symmetrically biased, i.e.
there should be a 50% chance for over- and underestimation.
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Figure 2: The Day-to-day Software Estimation Process

Another psychological topic is that the knowledge of "truth" about the cost at an early stage
may substantially inhibit the further deployment of projects. We postulate that if for every
project one had known about the cost as early as rationally possible, roughly every second
project would have been stopped in its early stages. Therefore rational estimation can be
viewed as a project killer. However, we believe that it does not kill projects but only strips
off unnecessary parts, thus helping to assign limited resources to the areas where they are
most needed.

This thesis is aimed to be a contribution to one of the many remedies necessary to improve
practice. We hope that by stabilising and standardising the technical means of estimation -
which is this work’s attempt - managers and project leaders will be more routinely willing
to apply rational estimation processes due to their reduced efforts. Other non-technical
measures, however, must support this approach. DeMarco [DM82] e.g. has proposed the
establishment of a metrics team within an SPU that is assigned the single task of producing
high quality estimates. We do, however, not cover such managerial aspects in our work.

Some Consequences of the Absence of Rational Estimation

To conclude this section we would like to present the following - rather ironical - scenario
of dialogues between A) the manager of an SPU, B) the manager of its customer in project
x and C) the project manager to illustrate some of the undesired consequences of
non-measurement based estimation:

The estimation process (relaxed version): A and B are talking while playing golf:

B: When will this billing system be operational? Within 6 months?

A: Sure!

B: How much does it cost? We have $100’000 left in our budget.

A: We make it for $90’000.

Tracking the productivity (a quickie): Three months later, same place, same persons:

B: Are you on schedule?

A: Yes!
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Revising the estimate and typical means to rise the productivity: another 3 months later, manager A in his
office with project manager C:

A: Why didn’t you work harder? We missed the deadline and still don’t have that system ready. Thanks to
me (!) the customer will accept to postpone the deadline by 1 month, but not a single day more! This
means overtime for you and your team!!

C: Yes, but ...

A: You wanna risk our jobs?!

The bottom line: bad product quality, high maintenance costs, dissatisfied staff: 4 months later, same place,
same persons:

A: @!N... bugs, bugs, nothing but bugs! Can’t you build reliable systems? That customer is really angry
with us, he doesn’t even invite me golfing anymore. We’ve now spent $180’000 on this project for
which we were only paid $90’000. I’ll tell you something: Your bonus for the year is far below
freezing and if that system isn't stable within one month you're fired!

C: Uh huh. Interesting. Oh, and by the way, I forgot to tell you that me and two senior engineers will quit
our jobs by the end of next week.

A: (Shocked and surprised) How disloyal of you! You can't rely on anybody these days...!

1.3 Measurement and Metamodels: How are they Related?

Metamodels = Models of Models

The measurement of the economical parameters 1 and 2, the effort and elapsed time, are
well understood in theory (practical problems remain). On the other hand, the measurement
of the 3rd parameter, the product, i.e. the software system, is both theoretically and
practically non trivial. The very first problem is raised by the impossibility to measure a
thing whose definition is formally (or intuitively) ambiguous. The notion of a software
system, however, is such a non rigidly and non intuitively defined thing: to many people a
system is a set of functions, to some it is a set of rules, to others a database and to still
others a set of objects, etc. Furthermore, there is some confusion about the difference
between the system and the system description. For some people there is a difference; for
others there is none.

Figure 3: What is a System?
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No wonder that the state-of-the-art in measuring and consequently developing and
maintaining systems is dominated by "art and chaos" rather than by stable engineering
skills. Of course, you might say, we all like art and chaos - but is this still the case when
our standard of life or even life itself depends on it?

One of the main reasons for the relative instability inherent in software engineering (SE) is
its high degree of abstraction and therefore high need for formalisation. Not all engineering
fields are that abstract, e.g. building houses is far more intuitive to human beings and
therefore not much formalisation was needed. We observe, however, that the needed SE
formalisation is far behind SE applications. As Y. Wand and R. Weber have stated in
[WA90] "... developments in the CS and IS disciplines have been inhibited by inadequate
formalisation of basic constructs". The topic is complicated by the intriguing fact that
software is itself a formalisation, i.e. a model or description of a machine process.
Therefore, we first had to develop models of models, i.e. metamodels, to be able to tackle
the measurement problem afterwards.

Software engineering, however, may also directly profit from metamodels by enabling it to
describe methodologies in terms of the metamodel’s object types and by implementing
tools that may act upon the metamodel’s object types, amongst others CASE tools that may
graphically display and edit, for example the two object types "class" and "association".
Those applications, though, are not further discussed in our work.

Metamodels in the Context of Estimation

The ABC-strategy of estimation not only requires a metamodel of the final product, i.e.
coded software, but also a metamodel of the model of software, i.e. of analysis and design
artefacts. We therefore also had to elaborate metamodels of several layers of software
artefacts.

In the course of all this metamodelling, the term "software" appeared to be too narrow: we
therefore established the new term "system description" (SD). The term "system" was
chosen because it does not limit us - especially at the higher layers - to implemented
software, but opens the field for real world processes, e.g. business processes. The term
"description" was chosen because it should always be remembered that in software
engineering we do not deal with systems directly, but rather with man-made artefacts that
describe systems.

Furthermore, estimation’s step C, the interpretation of the initial estimate with respect to
the project structure plan (PSP), requires a model of the production process. For this reason
and in order to rigidly define the metrics of effort and duration for the software process we
also had to define a metamodel for the software process, i.e. a standard process template.
This process metamodel answers often asked questions like "Are project management tasks
(and efforts) included?", "What is an experimental or evolutionary or incremental
prototyping project?", "What if we leave testing to the customer?", "What if we have to
accept the analysis results of another contractor?", ...

Again, in practice, it is often observed that neither the products nor the process of the
project are well defined, i.e. they do not obey some metamodel. This fact makes the
application of sound metrics more difficult and thus diminishes the metrics’ profits.
Obeying to a metamodel, however, is not a hard thing to achieve. It just requires some
discipline. It does not mean that everything should be planned into the last detail but that
the substantial landmarks of the project landscape are recognised and reflected. A software
engineering project should not be considered a wasteful journey to nowhere as cartooned
below:
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Figure 4: The Day-to-day Software Process

1.4 Distinguishing Good and Bad: Evaluation Criteria for Estimation Techniques

Criteria for software estimation evaluation may easily be derived from the fact that it is an
economic process, too. The key parameters for estimation are therefore: effort, time and the
product, i.e. the number and quality of the estimates. In order to simplify the situation, we
assume that estimation is performed by a single person, so effort and elapsed time will be
unified. We furthermore assume that only one value is estimated, so the number of
estimates yielded is irrelevant. Thus two criteria remain:

1. Estimation effort

2. Estimation quality

Put simply: estimates should be produced quickly and be close to the actual outcome that is
later observed.

According to the ABC-strategy of estimation, we must take the pre-modelling effort into
account for the overall estimation effort. This pre-modelling effort is usually the dominant
component when adding up estimation efforts. We may conclude that good estimation
methods with respect to that criterion, therefore are those that require a minimum of pre-
modelling activities. Our work focuses on that requirement.

On the other hand, better values for the second criterion, estimation quality, will be
achieved when the underlying models are more detailed. This trade-off between criteria 1
and 2 is inherent to estimation and cannot be overcome by any technique. Another problem
with this second criterion is its measurability (note the recursion of problems). We
therefore had to develop, based on ideas by DeMarco [DM83] a measure of estimation
quality, the estimation quality factor (EQF), which - to our belief - should belong to every
management metric suite in the context of software processes. The EQF, however, has the
drawback of being measurable only after the completion of the process and it can only be
used to assess the estimation technique that was actually applied in the early days of the
project. If we have to assess a new estimation technique, however, - as we had to - other
paths have to be followed: whereas the EQF can be applied regardless of the rationale
behind the estimation process, we strictly relied on measurement based techniques. This
allowed to substitute the EQF with the bias of the correlation. In the case of estimation of
the effort out of some metric of software complexity, this means that both metrics are
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measurable entirely after project completion, thus allowing the assessment of a new
measurement based technique, with no need to ever actually apply it.

Besides the two economically derived criteria there also exist several subordinate criteria
for estimation techniques [KN91], e.g. 1) repeatability, 2) understandability, 3)
adaptability, 4) documentability, 5) independence of human estimator, etc. However, we do
not believe that these contribute to the ultimate clarification of the topic. They either are
trivial (e.g. repeatability which must be given for everything that calls itself a "technique")
or they are not objectively measurable themselves (e.g. understandability). We therefore
focused entirely on the two criteria previously outlined.

1.5 New Trends in Software Development: Are Existing Solutions Still Valid?

One might wonder what is wrong - in the context of modern software development
techniques like object technology (OT) - with the two most widely used methods,
COCOMO and FPM, for software sizing and estimating. In order to analyse the two
methods, we first quickly summarise, and second, comment them with respect to general
criteria. Then we recapture the dominant new trends in software engineering 1) object
orientation, 3) framework or component reuse and 3) prototyping with respect to the
methods.

COCOMO (B. Boehm 1981, [BOE81])

When using COCOMO, you have to start right away with the most unsound step of this
method, the heuristical estimation of the number of lines of code (LOC) your project will
encompass. Then you calculate an initial effort using Boehm’s statistically derived
exponential function. Finally you adjust that effort by multiplication factors that are
determined by attributes of the project (so called "cost drivers"). The multiplication factors
are again statistically taken from Boehm’s empirical database. The cost drivers mainly are:
1) product type, 2) run-time environment, 3) development team, 4) development tools.
Several refinements were made to the original method by Thebaut and Jacote that did not
change, however, the basics just outlined [DC96].

COCOMO’s pre-modelling step is reduced to a heuristic and merely mental process
wherein one imagines the future software solution. This is fast and cost efficient, but
inherently unreliable. The next two steps then are bound to Boehm’s empirical database
which may substantially differ from a database valid for a concrete situation (situative
variations range in the order of a magnitude, i.e. a factor of 10, according to [DM88]).
Besides yielding good results for some SPUs, COCOMO is - if observed without emotion -
mainly used as an alibi: without generating to much effort, it may yield virtually any
desired value and at the same time may be called a method. This critique is severe, but not
new [DC96]. The main idea we retained from COCOMO is its classification of cost drivers
that may be used to categorise empirical data.

Function Point Method (A. J. Albrecht 1979 [AL79])

The FPM assumes the existence of a domain analysis model. First (A), the function points
are counted assuming the following underlying concept (or metamodel) of systems: there
are database structures (relations, persistent classes if you like) on one side and, on the
other side, functions that access those structures with the 4 basic database operations
create, read, update and delete (CRUD). Both parts, i.e. the database and the functions, get
historically founded fixed points per data element and per access according to a complexity
rating (easy, medium, complex) associated with the element (e.g. a create access of a
complex data element yields 6 FP). In case your system does more (or less) than CRUD,
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you are offered a set of a limited number of so called influence factors. These influence
factors are also historically founded and vary the unadjusted function point count by ±30%.
Second (B), you access an empirical database from which you take approximation factors
appropriate for your situation. Then you can calculate an initial effort estimate. Finally (C),
you adapt the initial effort to project specifics. Again there were several refinements
published on top of Albrecht's original method. They range from minor revisions by
Albrecht himself, over different versions of counting guidelines from the International
Function Point User Group [IFPUG] to major changes in Symons' FPA Mk II [SY88]
[SY93], Capers Jones' Feature Points [JO85], Harry Sneed's Object Points [SN94] and the
newly developed Task Points [SBC95]. The basic assumptions of the FPM were not
touched. Besides terminological adaptations to new software engineering concepts and
refinements (and complications) of the categorisation guidelines there is only one major
enhancement in Jones' Feature Points. He allows for function specific adjustments for
complexity instead of only one system wide correction factor.

Like the COCOMO method, the FPM has several drawbacks - not as severe as COCOMO's
- that are not related to OT:

1) the unnecessary historical factors (a recent Finnish study [KI93] showed, that correlation
quality to the effort remains the same, even when they replaced all historical factors with a
constant value of 1)

2) the old-fashioned terminology, inhibiting interpretation of new concepts

3) high interrater3 and intermodel biases (cf. [KE93]) due to the "non-standardness" of the
method

4) its inherent limitation to database or IS (information system) applications [SY88].

The enhancements mentioned were not always positive, too: Symons, for example,
proposes that the historically fixed points per element be periodically re-calibrated. Besides
being a tedious and labour-intensive task which - as a side effect - prohibits or at least
complicates the comparison of old projects with new ones, it is also indifferent to
estimation quality.

Assessment with Respect to Object-Orientation

Object-orientation is a buzzword. Nevertheless, we try to define it as a 4-tuple of the
concepts of 1) information hiding, 2) data abstraction, 3) inheritance and 4)
polymorphism4. COCOMO's lines of code metric does not reflect any of these concepts,
neither do the original function points. Therefore, the complexity of systems described
using the concepts of object-orientation cannot be captured by these measures. Some of the
newer Function Point counting guidelines, however, offer means to cope with inheritance
of data attributes by including them in the complexity ratings of the inheriting classes.

                                                
3  This term is used in [KE93] and means "between different human measurers".

4  We mean by these 4 concepts:

1) Information hiding = restricting access to implementation details for "clients"

2) Data abstraction = bundling data structures and functions into classes

3) Inheritance = the relationship between two classes where one "inherits" the data structures and functions
from the other (actually we should distinguish between subtyping and inheritance, refer to 3.2.2.3 for
details)

4) Polymorphism = the fact that the same function signature may be differently implemented down the
inheritance relationship, thus leading to different behaviour patterns of objects depending on their class,
i.e. polymorphic behaviour.
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Classes, though, are viewed as data holders only. We therefore have only a minimal
support for object-orientation. This assessment, of course, is no surprise due to the age of
the methods.

Support for object-orientation as an assessment criterion for estimation methods on the
other hand, is questionable, because the impact for estimation is low. The pre-modelling
needed for estimation cannot ever yield full-fledged object-oriented system descriptions
and hence object-oriented concepts need not be fully supported by the estimation predictor
metric. A metric’s applicability, however, should not be limited to estimation, just as the
"normal" meter to measure distances not only serves to estimate the duration of journeys,
but also it should help to assess the quality of (object-oriented) system descriptions. This is
definitely never possible with the LOC or FP metrics and we therefore had to investigate
new approaches.

Assessment with Respect to Framework and Component Reuse

General purpose and application specific frameworks and component suites are becoming
more and more important these days. Software construction can profit immensely from the
reuse of well-tested components with respect to product quality and cost of production. The
question is "What is a reused component?". We distinguish between active and passive
reuse according to [KA92]: 1) active reuse will propagate changes of the reused component
to the reuser, 2) passive reuse will not. Typically, copying and modifying a template is a
form of passive reuse, whereas inheriting and method or function calling are active reuses.
For our purposes we make the following categorisation: 1) any system description created
or added to within the software process is not reused, i.e. project specific, 2) any other
system description that is part of the resulting product is a reused element. Reused system
description elements are further classified as language or library elements, according to the
somewhat fuzzy definition that all highly standardised components are language
components (e.g. all C++ language elements - which are also part of every final C++-
written product). The links of the newly developed parts to the reused parts are also system
description elements and therefore, of course, part of the newly developed ones.

This very flexible attitude to reuse, where almost 0% or almost 100% of a resulting product
may consist of reused elements, is - superficially though - supported by one of
COCOMOS’s cost drivers. The FPM, on the other hand, offers no means to model reuse
situations. Reuse interpretation is left to the heuristical step C. One notable exception are
the Feature Point enhancements of Jones [JO85]. The complexity adjustment per function
allows one to model various degrees of reuse. We tried to implement a similar approach in
our proposed new method. However, we did not merge the concepts of complexity and
reuse but introduced a distinct modelling instrument because, in reality, complexity and
reuse are distinct concepts, too.

Finally, the recently emerged concept of design patterns [GA94] is nothing but reuse of
system descriptions at a higher level of abstraction, i.e. of one of the pre-models. The key
idea behind design patterns is that repeated elements of design - and if possible even
analysis - are identified, named and described. We may then reuse patterns to model our
software system at design level. Because this idea is completely analogous - using the
notion of system descriptions - to reuse at implementation level, the same comments as
above apply.

Assessment with Respect to Prototyping

Prototyping processes may be viewed as reduced versions of the full-fledged development
process. They are often instantiated as sub-processes within a regular development process:
1) experimental prototyping in the early phases to support decision making, 2) evolutionary
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prototyping later to test the behaviour in simulated production situations and finally
3) incremental prototyping to verify small but growing versions in production. The latter
term actually is a little bit misleading because the resulting system is never a tinkered
prototype, but a fully working, high quality and documented product. The functionality
however, according to the old motto "act small - think big", is only a subset of the
ultimately planned functionality.

In COCOMO and the FPM - as well as in our newly proposed method - the support for
prototyping lies in step C. The prototyping process templates are compared to the complete
process model and the initially estimated efforts reduced accordingly. While the FPM and
COCOMO leave the underlying process metamodel open, we tried to have ours defined.
This should make our step C more reliable.

Furthermore, one aspect of the FPM is increasingly becoming a disadvantage: it requires a
domain analysis pre-model, for which typically around 15% of the overall development
effort are already spent. For the reduced cycles of prototyping this may be too late to come
up with a sound estimate. And - for some categories of prototypes - no such model is ever
established. Therefore, we tried to keep our new method, especially the required
pre-modelling step, as simple and effortless as possible.

Summary of the COCOMO and FPM Analysis

This brief review of the existing solutions to the estimation problem showed that
investigation into a new method for estimation was - and probably still is - desirable. Not
only the newly emerged development techniques of OT required this work, because both
established major estimation techniques, COCOMO and the FPM, have other inherent
flaws. COCOMO’s deficiencies - besides its merits - lie in the metric it uses, which is not
available as a measurement early enough. Its mechanics are applicable only after the main
estimation step (i.e. the derivation of the LOC value) is done. Reuse is only scarcely
supported by COCOMO and the FPM. The FPM - which is considered to be superior to
COCOMO - in turn requires a non-negligible pre-modelling effort and is inherently limited
to the database metaphor. This motivated the design of a new general purpose, historically
unbound and reuse based estimation method that requires a minimum of pre-modelling.

1.6 Our Contributions: Contents and Structure of this Document

Overview and Analysis of Existing Solutions (contents of chapter 2)

Our work started with a thorough analysis of established techniques of estimation and
measurement. In section 2.1 we start with some in-depth discussions of the measurement
based estimation strategy (as outlined in introductory section 1.2) followed by its two by-
products: � the ability to chain estimates, i.e. to use estimated values as predictors for still
other estimated values, and ô the backward application of the correlation, i.e. to answer
questions like "How much software can we produce given a certain cost budget?". We may
then leave estimation and shift our focus to measurement. All characteristics of an
estimation technique depend on the underlying metric, provided it follows the
measurement based strategy, which is assumed to be a ’conditio sine qua non’. After briefly
discussing basic concepts and terms of measurement, we will summarise the "Goal-
Question-Metric" (GQM) approach [BA88] for introducing metrics within an organisation.
This widely known approach is positioned as a superimposed framework for our more
technical work. We then briefly analyse evaluation criteria for measures of complexity. We
argue that some of the well-known criteria - Weyuker’s criteria [WEY88], to name the most
prominent suite - are inconsistent themselves (as do [ZU91] and [FE91]) and are mainly
focused on formal aspects. For our purposes the semantic quality of a metric with respect
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to product measurement estimation (besides some indispensable formal legitimity) is most
important. We therefore propose a new metric evaluation strategy that is documented
within the "New Approaches" chapter. The last topic of section 2.1 is dedicated to a
framework [HS93] that enables researchers and practitioners to get information about
usage, applicable model layer and granularity of (object-oriented) metrics. This framework
may be used to support the GQM/AMI process. In particular it enabled us to systematically
identify areas of neglect.

Section 2.2 is entirely dedicated to an analysis of the most prominent complexity metrics
currently used in industry and academia. According to our newly developed evaluation
technique of "metamodel analysis" (cf. 3.1.2), the metric evaluation is closely tied to the
analysis of the corresponding metamodels. We start with the simple and well-known lines
of code (LOC) metric, which is used in COCOMO and many other estimation schemes.
The LOC metric- even though formally sound - suffers from an overly simplistic software
metamodel. According to the historical chronology of metric invention, we then present the
cyclomatic complexity metric of McCabe [MC76]. It is mainly used as a quality threshold
metric but also as a predictor for maintenance efforts [OM92]. Its underlying metamodel is
flowchart oriented, thus lacking many modern aspects of software engineering. The next
metric suite analysed is Halstead’s so called software science metrics [HA77]. Some of
Halstead’s ideas are unsound formally and with respect to human cognition. Nevertheless,
the metamodel analysis showed the best coverage of engineering concepts among the
implementation layer metrics. The function point metric, used in the FPM and invented by
Albrecht, is the only metric widely used on a non-implementation layer. Behind mostly
sound and useful ideas, our assessment revealed a few formal and some more serious
semantical deficiencies which were already outlined in introductory section 1.5. An
assessment of the newly proposed Chidamer/Kemerer metrics suite for object-oriented
design [CHI94] is also given, even though those metrics were not originally intended - and
therefore are not used, to our knowledge - for estimation purposes. In spite of this fact, the
analysis was fruitful, because we could use the underlying metamodel, first presented by
Wand and Weber [WA90], as a starting point for refining our metamodel of object-oriented
systems. This section concludes with some remarks about other approaches.

The last section of chapter 2 focuses on the state-of-the-art in software process science. The
more or less well understood metrics like effort, duration, etc. and the corresponding
metamodels are made explicit, commented, analysed and rigorously defined. The known
concepts of process dynamics, i.e. consciously setting a tighter schedule than estimated, are
then discussed with respect to estimation. The metric impacts of the different metamodels
for development processes and subprocesses, i.e. the waterfall, spiral and fountain
approaches as well as the subprocess and span activity metaphor, are analysed in the last
three sections.

New Approaches (contents of chapter 3)

We continue our work by proposing and applying new approaches to the neglected areas
identified in chapter 2. Our main contributions are: � the adaptation of metamodelling to
metrication in order to semantically analyse and derive metrics, ô the derivation of a
completed metamodel of object-oriented system descriptions at several modelling layers on
the basis of the Wand/Weber metamodel, as well as the corresponding derivation of a new
metric, the System Meter, and í in the context of software processes, the definition of a
new metric for estimation quality and of the restrictively cyclic BIO (Bedag
Informatik/Object) process [MO96b]. This last contribution had to be made to support
sound measurement and interpretation of effort, cost and time values.
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In section 3.1 we introduce the notion of a metric’s metamodel, which can be roughly
described as a metric’s minimal domain model; minimal with respect to the formal
definition of the metric. This notion can be used for two primary purposes: 1) When a
metamodel of some domain is elaborated, we can use this metamodel to derive a metric of
complexity, i.e. quantity and quality, for the domain. A metric of complexity should
encompass all of the metamodel’s object and association types. 2) When - the other way
round - a proposed metric of complexity for a certain domain is given, we can compare the
metric’s metamodel to the independently elaborated domain metamodel which usually is a
superset of the former. The more object and association types that are covered, the more
semantically complete the metric is with respect to the "real" domain complexity. Besides
the detailed description of these two metamodel applications, metric derivation and metric
assessment, we also describe a newly elaborated short-cut to derive metrics with related
metamodels, the metamodel mapping.

Section 3.2 contains the main part of this thesis. Based on a completed metamodel of
object-oriented system descriptions a new measure of software complexity is introduced,
the System Meter (SM). The metamodel encompasses

� objects, i.e. instances, variables, constants, etc.,

ô classes, i.e. abstractions for types of objects,

í features, i.e. the attribute abstractions that make up one part of a class,

÷ methods, i.e. the functional abstractions that make up the other part of a class,

û formal parameters, that make up the formal signature of a method,

ø messages, that usually make up a method’s body by calling other methods,

ù actual parameters, that reference objects in messages.

FORMAL
PARAMETER

MESSAGE
ACTUAL

PARAMETERFEATURE

METHOD

CLASS

OBJECT
DESCRIPTION

Figure 5: Type Hierarchy of the System Metamodel

We may see from the type hierarchy above that everything ultimately is an object, i.e. a
description object. We chose this term to avoid confusion with active (or passive) objects
in a running system. Note that every description object, be it a class, a method, a "normal"
object or whatever, may be passed as an actual parameter to messages. We may therefore
describe every system "from scratch" using these metatypes. We first have to define our
(programming) language in terms of classes and methods. Next, we build up our reused
components and form the library by sending message calls to language methods and using
instances of language classes. Finally, on top of the reused parts, we describe the newly
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developed elements which, again, are built by sending messages to the already defined
methods. When starting a project, the language and library descriptions are by definition
already finished. Note that the links between newly developed and reused parts are
established through messages which themselves are description objects. Those links
therefore are also part of our metamodel. Of course, they always belong to the newly
developed elements. Also note that some of the language methods - and maybe even the
library or project methods, in case the initial language supports a metaobject protocol
(MOP) - are meta-methods. Meta-methods are those that accept abstractions, i.e. methods,
features or classes, as their parameters. Meta-methods are typically used to describe new
abstractions, e.g. "from scratch" or using some composition mechanism like inheritance.

In order to stay compatible with more conventional approaches to programming, we do not
prescribe that every meta-association5 should be actually used in a language. For example
we distinguish between a type graph and an inheritance graph between classes. For
concrete languages like Smalltalk this distinction and the possibility of a network, i.e.
multiple inheritance, is not used. In BASIC we have even more restricted class-like
concepts: there is no possibility of inheritance or subtyping at all, but still our metamodel
can be applied.

The new metric, we called it System Meter, consists of two parts: � the external size of
software objects, and ô the internal size of software objects. The external size of a
software object, for example a class, is determined by the complexity of the object name or
signature. We propose to count the tokens within the name to capture this aspect. The
internal size makes use of the dependencies that exist between software objects. It sums up
the external sizes of all the other objects an object is dependent on. In order to take into
account for reusable parts, reused objects only count for their external size when summing
up the overall size of a system. Project specific objects count for both, the external and
internal sizes. With this definition, we can capture virtually every degree of reuse at the
finest possible granularity. Other modes of reuse, for example copying and modifying
templates of classes and methods, as well as writing a modification of an existing system
are conceptually supported by the System Meter, too.

While the System Meter’s metamodel is rather complex and detailed, the metric itself is
essentially a simple token count. This has two tremendous formal advantages: � The
System Meter is a metric of absolute scale, i.e. virtually every mathematical and statistical
operation may be applied to it (cf. 3.2.1.3). ô The System Meter can be uniformly applied
to all various types of artefacts: classes, methods, single messages or - at the finest level -
actual parameters. This dimensional uniformity allows the safe definition of derived
measures, for example the ratio of the total message size per total class size, in a system
incorporating all possible combinations of description object types.

Besides a detailed description of the ideas just summarised, section 3.2 also contains the
definition of the System Meter for the various modelling layers. In order to use the new
metric as a predictor in estimation - our initial goal - we are even more interested in those
definitions than in the one for a complete, implemented object-oriented system description.
We used the metamodel mapping technique (cf. 3.1.3) to derive those higher order versions
of the System Meter. The layers correspond to the layers of the BIO process (cf. 3.3.3):

                                                
5 The meta-associations are not shown here in figure 4 for the sake of understandability of the basic ideas.
Please refer to the detailed descriptions in section 3.2.
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System Implementation

System Introduction

1
2
3

4
5

6

System Architecture

Preliminary Analysis (P)
Domain / Essential Analysis (E)
Application Analysis / Specification (S)

Construction / Design (Co)
Replication / Coding & Test (Re)

Acceptance & Delivery (D)

Figure 6: The Layers of the BIO Software Process

The strategy of measuring on different layers is similar to the following methods of
measuring the distance between, for example, Seattle and San Diego: To get a first rough
estimate, you take a very high scale map and simply measure the direct (or flight) distance.
Then you might be able to take a somewhat more detailed map and measure the sum of the
major highway sections. Then you use several even more detailed maps to measure the
road distance as drawn on the map. Finally you take your car and drive every bend and
eventual unexpected deviation resulting in an ultimately accurate measurement on your
distance meter. Note that all those distances are measurable using the same metric, the
"normal" meter (or some equivalent like the British mile). We have attempted and achieved
an analogous behaviour for the System Meter.

In the final section 3.3 of the chapter we first present the definition and some empirical
data on the EQF, the estimation quality factor. The main idea behind this metric is that the
factor takes on a maximum value of 100% that is best reached when you estimate as early
as possible the effective value. Re-estimates are honoured as soon as they officially appear
in the project plans. Then the concepts of restrictively cyclic process models are discussed.
The main idea here is to open up the current and later layers to the current process phase
but to prohibit changes to layers already released. This will lead to steadily smaller cycles,
e.g. the domain analysis results will, once released, not be permanently re-questioned
(except for defect-removal). Such a process metamodel can be instantiated as a pure
waterfall to a fully iterative model. A concrete metamodel based restrictively cyclic
process, the BIO process, is then described in order to give the reader a reference to what
activities are included in the effort values of the field study.

Results of a Field Study (contents of chapter 4)

Finally, we tested our new approaches in a field study that encompassed 36 projects. While
we could evaluate the System Meter estimation method on preliminary analysis results and
domain analysis results for all projects, this was not the case for the reuse analysis because
we only had 4 framework projects in our sample base.

In section 4.1 we first briefly characterise the sample projects with respect to cost drivers
like tools used, application domain, development and customer team, method used, etc.
Then we present the instruments we developed and used for measuring the values. One
utility - built in C++ - was used to scan system descriptions and count the System Meter
values (as well as some of the function point values). The other toolset consists in several
EXCEL spreadsheets that regress pairs of predictor and result values, e.g. the System Meter
at domain analysis and the effort of the software process. Afterwards we present the
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detailed procedure - including two formal languages, PRE and DOME, to denote
preliminary and domain analysis results - of assessing the estimation power of the new
approach. Then the procedure of measuring the effects of reuse on productivity is outlined.
The section finishes with an empirical analysis - however based on only four samples - of
the effects of project dynamics. This last analysis has nothing to do with the System Meter
method but was done to verify the "mythical man month" rule first formulated by Brooks
[BR75].

Sections 4.2 and 4.3 present the findings at the preliminary level and domain level,
respectively. At the preliminary level the new method performs excellently with respect to
low pre-modelling and estimation effort. Overall estimation quality, however, is slightly
poorer than that of the traditional FPM which - as its drawback - may only be applied after
the more costly pre-modelling level of domain analysis. With respect to non-database or
framework development projects (a subset of 7 samples), the new method performed better
with respect to estimation quality. The 7 samples, though, do not allow statistically
significant conclusions to be drawn. The System Meter after domain modelling - thus being
equally costly as the FPM - yields the most precise estimates with respect to the overall
sample base. It also yields substantially better results than the FPM for the database subset
(29 projects). All these findings are very promising. We will try to expand our sample base
in the nearer future to be able to come up with results that are more statistically significant.

Conclusions and Outlook (contents of chapter 5)

Besides summarising our findings, we propose in the outlook section the definition of a
tentative suite of System Meter derived quality measures. The most prominent and useful
will be the coupling and cohesion measures that seem to correspond well to psychological
findings about human cognition of textual information like code or any of the system
descriptions [HS96]. We will certainly try to continue research in this direction, thus
leaving the realms of estimation for which a satisfying solution seems to have been found.

1.7 Related Topics

Productivity Tracking

Productivity tracking is the task of telling about what has been achieved by some software
development process. Typically this is done by weekly or monthly progress reports wherein
cost expended, manpower consumed, time elapsed, problems encountered and measures
taken are documented. The problem usually comes when we are asked about the state of
the 3rd parameter, the developed product: "Ooh, well, ..., well,.. we’re doing fine!" or "60%
is completed because 60% of the effort is spent, isn’t that logical?". These are two of the
less satisfying possible answers we can give.

Estimates of the product size X, however, or measurements of its pre-model size Y, could
yield more sound statements of progress. Using X, we can calculate the ratio of the already
finished product part X’. Thus, percent finished equals to 100% x X’ / X and productivity
is X’ / effort spent. Using Y, we can measure the part Y’ of the pre-model for which our
product is already finished. Thus, percent finished equals to 100% x Y’ / Y and
productivity is Y’ / effort spent. All this is straightforward provided you have a sound and
easy way of measuring products and models as a whole and partly. One such way is the
newly proposed measurement rules of the System Meter.

Measurement and estimation of software and software processes might therefore enable
project managers to give statements of progress like: "Our design is 60% completed (for
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600 out of the estimated 1000 classes we have a validated design), and we’ve spent 55% of
our estimated design effort.".

A drawback of this very direct way of measuring progress and productivity is that it
neglects the actual product quality. But as long as the production process is running we
cannot empirically measure the final product quality. For final productivity measurement,
though, there are ways to include product quality aspects. One might argue that the
production process includes reviews, module tests, integration and system tests, etc. Thus
quality would already be accounted for in the effort. But all those steps may 1) inherently
not find every bug, 2) be executed poorly or 3) be omitted under time pressure.
Productivity as defined above will rise and may support bad practices when the second and
third variant apply. However, we can define another kind of productivity, usually called
productivity II. It is collectable after a certain period of product usage and maintenance and
measures the unchanged, i.e. bug free, part of the product only:

Productivity

Productivity II

final product

remaining product after using it

process effort

process effort

Figure 7: Productivity and Productivity II

Things get more complicated when requirements change, but we will not discuss that issue
here (cf. last paragraph of 2.1.1 for some generic strategy to cope with changes). We
conclude that measurement and estimation are the only sound basis to unbiased
productivity control.

Quality Management Systems

Measurements are needed as feedback data for self correcting software processes as
defined by quality management standards (like ISO 9000ff) or by Humphrey’s "Software
Process Maturity Levels" 4 and 5 [HUM89].
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Figure 8: A Single Process using Feedback from Measurements

Even for a single project, i.e. without any superimposed quality management processes,
one can profit from measurable process or product goals. Thus, instead of saying "I want to
be faster than last time!" we can state: "I want to produce 2 FP/elapsed day which is 10%
better than last year’s average.". The preconditions of such feedback cycles are however: 1)
standards with respect to product and process metamodels and 2) standards with respect to
metrics and test procedures. Those standards are typically set by a superimposed quality
management process:
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objective
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process type
objectives
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adaption
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/ revision
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Figure 9: Multiple Instances of a Process Type, Controlled by a Quality Management Process

Only by permanently setting goals and measuring outcomes on enough instances of a
certain type of processes (for example prototype processes, full development processes,
maintenance processes) one may take full advantage of measurement and estimation
techniques. The potential to improve productivity and quality is still vast.
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Product Quality Assessment

The measures used for this purpose are usually called quality measures as for example the
ratio of comment lines to the total lines of code. To be precise, they are called inherent
quality measures, because they may be measured on the product isolated from the
producing process. In general, it is not easy for inherent quality measures to distinguish
between good and bad values, because there are always unproved hypotheses behind those
measures. In our example: The more comment lines in the code, the more understandable it
will be. This may, or may not be true. Another annoying property of inherent quality
metrics is their tendency to proliferate. Everybody can invent lots of metrics - and
everybody did so.

In contrast, empirical measures of quality directly measure the facts, e.g. the ratio of the
effort for a new programmer to "learn" a coded system to size for capturing the aspect of
understandability. Those measures, however, have their drawback, too: they are measurable
after the fact only.

Internal Quality Metric

Empirical Quality Metric

point of measurement

point of measurement

object measured

object measured

Figure 10: Inherent Quality Measures versus Empirical Quality Measures

Empirical quality metrics may usually be defined as some ratio of measures of size for the
product or process. A typical empirical metric is the error-freeness of a product, i.e. the
ratio of the unchanged, i.e. error-free, part after some period of use to the original size.
Typical inherent metrics of software quality are coupling and cohesion (cf. 5.2). In order to
confuse things, many inherent metrics of quality have names with the ending "-ability", e.g.
understandability, maintainability, etc. The "-ability" idea, however, is ultimately
empirical. So one should be careful unifying the empirical idea with the inherent metric
because they might correlate poorly.

The use of empirical measures allows to quantify the empirical facts ex post. The use of
inherent quality measures, on the other hand, should be limited to two areas:

1 Setting alarms with empirically derived thresholds, e.g. when the comment ratio in a
module sinks below 5%, one has to have a look at that module.

2 Estimating the empirical quality measures before they are measurable.

We conclude this introductory chapter with a citation from Brian Henderson-Sellers:
"Beware, software metrics are deep and muddy waters!" [HS96].
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2 Overview and Analysis of Existing Solutions

In this chapter we will summarise existing solutions for estimation and measurement of
software and the software processes. They are also analysed and commented with respect
to our new approaches, with respect to underlying concepts and finally with respect to our
practical experiences with them.

2.1 Generic Concepts of Estimation and Measurement

This section is about fundamental established techniques of estimation and measurement.
Absolutely central is the idea of measurement based estimation in three steps (ABC-steps).
After presenting this technique and some add-ons (calibration, estimation chaining,
backward estimation) we leave the field of estimation and focus on measurement with
presenting basic terms, usages and categories of metrics. The GQM/AMI approach,
evaluation criteria for metrics and metamodelling techniques are finally outlined and
commented with respect to our approaches.

2.1.1 The Basic Estimation Process (ABC-Steps)

The generic estimation strategy (adapted from [DM82]) is a procedure of the three steps A,
B and C:
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Figure 11: The Generic ABC Estimation Strategy

Step A: Quantification

In step A, we make a quantification of the complexity or size of the system model at hand.
We accomplish this by applying a software complexity metric, e.g. the newly proposed
System Meter, on the system model. Often the expression "metric of size" is used for those
types of software metrics. It should, however, rather be called "effort inducing property",
because the notion of size, adopted from non-software domains, is not necessarily related
to effort (e.g. it requires more effort to build a small watch than to construct a simple
wooden doghouse). However, we will also use the term size because of its popularity but
will keep the remarks above in mind.

The ABC estimation strategy - as already stated in the introduction - is not only suited to
estimate software process efforts, it is a generic procedure. Virtually any quantitative
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parameter of any domain can be estimated this way. Thus, instead of the terms ’system
model’ and ’metric of size’, we may also use the more abstract terms predictor model and
predictor metric to express what those concepts are for, namely to predict the outcome of
some future result. For the explanation of the following steps, let the measured value be
called p, measured in any predictor metric unit PMU.

Step B: Estimation

The second step is estimation in its more narrow sense. We apply an approximation
function A (usually but not necessarily a polynomial) to the predictor value p. Function A
is sometimes also called the estimation function. The estimated value e may thus be
derived as:

e = A (p)

This value is also called the result value and is measured in some result metric unit RMU.
The effective outcome - measurable later - should be as near as possible to e. However, in
general we observe an error or bias. The estimation model therefore not only consists of the
function A but also of the mean approximation bias dA, commonly expressed as a relative
percentage. For the sake of simplicity we assume6 in our work a symmetric 95%-
confidence model (which equals 3 times the standard deviation) to express biases. For
example the indication dA = 0.5 (equivalent apparently to 50%) means that the effective
outcome of the estimated parameter will lie with a probability of 95% in the interval
[e · (1-(0.5/2)), e · (1+(0.5/2))]. The mean approximation bias is one of the two crucial
empirical evaluation criteria for estimation models (cf. chapter 4, the field study).

Step C: Adaptation

When we have, after step B, a statistically derived estimation e for e.g. the effort of the
software process, we are, however, not finished. The process model, i.e. the activities we
want to undergo, is usually non-standard. The last step, thus, consists of an adaptation and
interpretation of the result value - to abstract again from the software specific terms - to the
result model. The typically raised topics are:

• the risk we can and/or want to take, that the effective outcome will be higher (or
lower) than e

• interference from other parameters of possibly higher priority (e.g. with time
constraints as dealt with in dynamic cost models, cf. 2.3.4)

• the effects of omissions or additions of the result model with respect to some
template result model, e.g. the tailoring of the software process model

The first aspect of risk may be covered by not taking e as the estimate but rather some other
value out of the range [e · (1-(dA/2)), e · (1+(dA/2))]. If we would take e, the risk of a
higher actual outcome will be 50%, if we take the maximum e · (1+(dA/2)) this risk will be
reduced to a mere 2.5%. Any value in between yields risk rates according to the
characteristics of the Gaussian distribution [RI78].

The second aspect of interference is typically solved with applying additional estimation
models (again according to the ABC-strategy) that estimate the amount of interference. A
sample of such an interference are the so called project dynamics (i.e. tight delivery

                                                
6 This assumption is supported, but not strictly proven, by visual analysis of the distribution of the samples
taken in our industrial work and field study. More rigid statements might be needed by theory, for practical
purposes, although our pragmatic approach seems sufficient. For the distribution of the estimation errors
using the new PRE System Meter method we conducted a Chi-Square-Test in chapter 4. This test supported
the hypothesis of an underlying Gaussian distribution.
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deadlines required by the customer and/or management). They are treated with so called
"dynamic cost models" (cf. 2.3.4) which are nothing but adapted instances of the ABC-
strategy to the parameters of process dynamics.

The adaptation to the tailored result model is the last mentioned here, but nevertheless the
most common one. In general, to give an example, we do not have to undergo every
activity of the template software process7. Thus, the result value e is to be distributed by
percentage onto the remaining parts of the result model. These distributions are conducted
by a chained application of the ABC-estimation strategy (cf. 2.1.3).

This last step of interpretation is not to be confused with aspects of pricing, negotiating and
selling software development projects. The estimates - even after step C - are reasonable
and rational. The conversion of those rational estimates of effort and time into deadlines
and prices is - and should be treated as - a separate process yielding results of another
quality. We do not further comment on this rather non-technical process.

Prerequisites to the ABC-steps

Several prerequisites are implicitly assumed in the descriptions of the three steps above:

� the system model (predictor model)
It is not possible to yield accurate estimates when only the project’s name is known.
Even though this is self-evident when stated as above, it is what a lot of people
expect from the estimation process. Rough requirements, though, must at least be
described or modelled, i.e. we must elaborate a system model beforehand, in analogy
to architects’ plans before building a house. Furthermore, the system model should be
described in a consistent way, i.e. conforming to a model of modelling (metamodel).
If the metamodel varies, i.e. shows a bias, the models will show a multiplied bias.
Thus, they will be less useful for the estimation process as shown in [KE93]. This is
the first reason why metamodelling (cf. 2.1.7) is an important technique in the
context of estimation. Further reasons will be given below.

The more refined and detailed the system models are, the more precise the estimates,
e.g. for effort, will be. But, the modelling is not for free, i.e. it requires some effort
itself. Therefore, when starting a project, we first elaborate a coarse model, e.g. the
preliminary system description (cf. 3.3.3), to minimise this initial effort. Later in the
software process we will stepwise elaborate more refined system models, i.e. system
descriptions, that allow refined estimates. This is one reason for the partitioning of
the software process into phases8 (cf. 3.3.2). Other equally important aspects of
modelling - even though not further elaborated in our work - are the verification and
documentation of customer requirements by means of these models.

Furthermore, the second crucial empirical evaluation criterion for estimation
techniques (cf. chapter 4, the field study) is tightly connected to this pre-modelling.

                                                
7 In our work we used the BIO [MO95c] software process as a reference to which the various concrete
processes were mapped. This template process follows a phase-like (not strictly waterfall, though) procedure
with 6 main steps (partially derived from OMT [RU91]): è preliminary analysis, � domain analysis, �
application specification, � technical design, � implementation and test, ò installation and system
introduction. The process also covers all the management (project, quality, configuration) and documentation
activities (for more details cf. 3.3.3).

8 The effort spent for the first phase, usually a preliminary system description, remains to be intuitively
estimated. It is recommended [HS94] to appoint experts from both worlds, the application domain and
software engineering areas, and from all participating organisations, the customer(s) and contractor(s), with
this preliminary modelling in a workshop like manner. The time available should be rigidly limited in so-
called time boxes. The effort is thus usually calculated as number of persons times length of the time box.
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The estimation effort, which is used as the criterion, mainly consists of the pre-
modelling efforts. The ABC steps are usually of marginal influence because they are
automatable at large. As we will see under prerequisite í below, there is also some
effort needed to elaborate a process model. This, however, is also a minor effort,
because we usually can take a complete template model and only minimally adapt it.
The efforts for maintaining prerequisite ô, the empirical database, finally does not
contribute at all to the effort directly attributable to an estimation process. Those
efforts contribute to the overhead costs of an SPU and are not considered in our
evaluation.

ô empirical databases
For the second step it is necessary to know how we have performed in the past, in
order to achieve estimates of acceptable accuracy. This knowledge is present in the
form of a regressed function A (usually a polynomial). A’s coefficients are calculated
out of so called empirical databases wherein pairs of measured parameters (e.g. 1.
the system size after preliminary study and 2. the effort of the rest of the software
process) are inserted after each software process termination. Thus, those databases
contain empirical data. The process of entering data pairs and regressing
approximation functions is called the model calibration process and is described in
the following subsection 2.1.2. Note, however, that for any SPU it is in general
unwise to blindly adopt empirical databases from other SPUs or from industry
surveys. Productivity rates (i.e. the coefficients of A) vary within an order of
magnitude, i.e. with variance factors from 1 to 10, from SPU to SPU [DM88].
Estimates gained with the wrong empirical database, thus, are most likely to be
useless and even dangerous to project success.

í the process model (result model)
In order to successfully execute step C, the adaptation of the initial estimate, at least a
rough process model - in analogy to the system model - must be defined, i.e. we must
elaborate a result model beforehand. The result model defines what we are going to
do, i.e. what exactly we are estimating. As the system model, the result model should
also be described in a consistent way, i.e. conforming to a metamodel. This is the
second reason why metamodelling (cf. 2.1.7) is an important technique in the context
of estimation.

Based on process or result modelling alone, another more heuristic approach to
estimation may be defined: the bottom-up approach. Even though we do not further
elaborate this approach, it is important to know about it. The key idea is to model the
subject of estimation in such detail that each part is tiny enough for an ad hoc
estimation. The total estimate is then a simple sum. This approach has its advantages,
i.e. it is fast and can be adapted without further refinement to virtually any domain.
However, we do not consider this a sound approach for several reasons: 1) it entirely
depends on heuristic modelling, 2) it entirely depends on heuristic estimates and 3) it
cannot be improved by systematically collecting empirical data and using statistical
means.

Estimation Models

After the discussions above we conclude that an estimation model may be viewed as a 5-
tuple:

Definition of an Estimation Model:
Estimation Model ≡ (PMM, PM, eDB, RM, RMM)
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wherein PMM denotes the predictor metamodel, PM the predictor metric, eDB the
empirical database, RM the result metric and RMM the result metamodel.

Dealing with Changing Predictor and Result Models

We all know that systems evolve. When the change substantially affects the predictor
model we should re-estimate using the following strategy:

1 Mark the outdated parts of the old predictor model as "deleted", measure them
yielding p-.

2 Make a copy of the old model and delete the obsolete parts. Add the newly wanted
system features to the model and mark them with "added". Measure them yielding p+.

3 Enter a "two predictor single result" empirical database that yields a result value.

This conceptual approach to changing systems [DM82] was, however, never tested in our
work because it would have required the construction of additional measurement and
regression tools. Instead, in practice, we either relied on p+ only and used it as a single
predictor, or - more often - we measured the new model entirely, yielded the estimate e and
then adapted it for the remaining process parts. Both of these pragmatic approaches
delivered useful results.

2.1.2 Calibration

Calibration means establishing and maintaining empirical databases. Before we go into the
details of the process of calibration, two statements about empirical databases and their
biases have to be made:

1 The empirical databases contain - made explicit in form of A’s coefficients and the
bias dA - all information that contribute to the correlation of predictor and result but
are not covered by the metrics. Therefore, the less rigid those two metrics are defined
and the less aspects of the corresponding metamodels they encompass, the bigger will
be the inherent bias of any empirical database. Knowledge about this fact
immediately led to adaptations of the metamodelling technique for metrics (details cf.
3.1), i.e.:

- the derivation of predictive metrics for any domain by first elaborating that
domain’s metamodel and then defining the metric in such a way that every
metamodel entity and association is covered.

- the assessment of a metric for its predictive power by comparing the coverage
of its metamodel with respect to the model’s metamodel.

2 Many other factors (the cost drivers from Boehm’s COCOMO [BOE81]) that may not
be covered by the predictor or result models and metrics, will also determine the
quality, i.e. biases, of the empirical databases. The main factors in the software
engineering area are, ordered by increasing influence [DM88]:

� the tools (programming language, compiler, CASE tools, etc.)

ô the methodology (SA/SD, Jackson, OMT, etc.)

í the infrastructure (rooms, technical and non-technical equipment)

÷ the people (developers and (!) customers with individual and team skills)

Those factors are virtually unique at every site and in every project, which is the
reason we cannot capture them in a sound quantitative way. The more those factors
vary in an empirical database the less probable it is that the coefficients of A reflect a
situation close to the one given in the project to estimate. Therefore each SPU should
ideally build its own empirical database. On the other hand, there are the statisticians
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who reject any statistic based on less than 30 independently measured samples. In
practice it is unlikely, though, to observe more than 30 projects with identical tools,
methodology, infrastructure, organisational conventions and people involved.
Therefore a variance in those factors will always remain, leading to the
environmental bias of the empirical database.

Establishing an Empirical Database

The first step when establishing an empirical database is to chose the two metrics to
correlate, e.g. 1) the system size at preliminary analysis level, measured using the System
Meter and 2) the effort of the rest of the software process, measured in Person Days.

Second, we determine heuristically the shape of the approximation polynomial. In our work
we restrict ourselves to two shapes:

1. The purely linear model

This model is chosen for predictor value pairs of immediate connection, e.g. to
estimate the effort of the whole development process out of the measured effort of
some already completed phase. Note that in the example just given, an effort metric
is used in both roles, predictor and result. Be aware that in general any metric may
appear in any role depending on the purpose of the estimation model. The purely
linear approximation function has the form:

e = cl · p

The linear coefficient cl entirely determines the approximation function A in this
case.

2. The quadratic (increasing) model

This model is chosen for predictor value pairs of presumably loose connection, e.g. to
estimate the effort out of the measured size of some system model. The quadratic
approximation function has the form:

e = c0 + c1 · p + c2 · p2

The approximation function A is thus determined by the constant coefficient c0, the
linear coefficient c1 and the quadratic coefficient c2.

We decided to use these two models mainly for practical reasons. From a theoretical point
of view this decision is reasonable because every other function (exponential, logarithmic,
...) is calculated using a Taylor-polynomial (or some more sophisticated but equivalent
technique) whose most dominant parts are typically the constant, linear and quadratic
summands.

In case we have to model a decreasing relationship (e.g. between effort and time), we do so
by reversely applying the quadratic shape. Backfiring (cf. 2.1.3) is then the normal way of
using the estimation model.

As the next step, we decide which of the environmental factors, i.e. cost drivers, to keep
constant. As already stated, the more factors we can keep constant, the less bias we will
observe. In an advanced SPU it is typical to maintain separate empirical databases for every
major programming environment used, for each development team and each customer
segment. It was already reported [HU89] that empirical databases per individual developer
were used. Note, however, that the more specific your database is, the less value pairs you
will be able to enter. Theoretically at least 30 independent value pairs are needed for sound
regression. In practice you may start - carefully though - with 5 to 10 measurements.

Next, we have to enter measured value pairs (cf. next paragraph on maintaining empirical
databases) of projects completed in our SPU into the database. In the case where we have
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too few values, i.e. less than 30 pairs, we may take values from surveys, partner SPUs, or
we may randomly generate pairs that fit the (A, dA) behaviour gained with the few "true"
values.

Approximation, finally, is achieved through polynomial regression techniques. Refer to any
statistics textbook (e.g. [RI78]) for the formulae. Because small projects should have small
estimation biases we used relative biases and also regression with respect to relative biases.
The constant coefficient was always set to 0, because when there is no system to be built,
there may be no effort spent. Early industrial experiences with non-0 coefficients led to
unsatisfactory results for medium to small projects. The idea of fixed costs per software
process instantiation therefore had to be abandoned. Purely financial models might yield
other results but were not the topic of this research.

Maintaining an Empirical Database

Maintaining an empirical database consists of entering and removing value pairs (and
subsequent re-regression). When measuring predictor models one should either measure
the historical one, i.e. that was used for the estimate, or the current one. The corresponding
result value is - to switch to the most important example of the effort metric: 1) either the
effort as if there were no changes to the original model, or 2) the effort as if we always
worked on the current model. One other important aspect is that when measuring result
metrics, e.g. the effort, the effects of step C have to be eliminated before the data are put
into the empirical database. This is called the normalisation step of the calibration and can
be viewed as step C-1, i.e. the inverse of step C.

Removing data pairs is another important activity. Most important is to remove old data.
Old in this context means outdated with respect to the cost drivers, i.e. tools, techniques,

A last note for the practitioner: While the predictor model is usually documented
somewhere (watch out for changing models, though) or can be re-established from the
running system, this is usually not true for the result model, i.e. project plans and measured
efforts. Be very careful when being given some value for effort and always ask questions
like "Are the project management efforts included?", "Are analysis efforts included?", "Are
quality assurance efforts included?", "Are documentation efforts included?", etc. Only after
being sure of what kind of effort you were given, can you soundly accomplish the
normalisation step C-1.

2.1.3 Chaining and Backfiring

Two add-on techniques to the basic ABC-steps of estimation are "chaining" and
"backfiring". The first technique reduces the number of estimation models and - as a
consequence -  the number of empirical databases to maintain by composing two or more
basic models to form a combined model. The second technique is useful for some special
situations where the result value is known before the predictor value, e.g. when a strict
effort budget is given but the size of the system to be built is not yet known. Backfiring
will then enable us to plan according to the "fit-to-cost" [DM82] paradigm, i.e. the
maximum size of the product is estimated out of some fixed effort budget.

Chaining

The need for chaining arises when a first estimate, e.g. the effort of the total software
process, is correlated to another estimate, e.g. the effort of the technical design phase.
Instead of correlating each predictor metric, say n metrics, to each of the phases, say m
phases, thus yielding n·m estimation models, we may reduce this number by only
correlating each predictor to the total effort and the total effort to each phase, thus, yielding
n+m models. We may estimate using two approximation functions A1 and A2 as follows:
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e = A2 (A1 (p))

The chaining, denoted as operator ⊗, of two estimation models EM1 and EM2 as 5-tuples
(PMM1, PM1, eDB1, RM1, RMM1) and (PMM2, PM2, eDB2, RM2, RMM2) may be defined,
under the condition of RM1=PM2 and RMM1=PMM2, as

Definition of Estimation Model Chaining ⊗:
EM3 ≡ EM1 ⊗ EM2

with (PMM3=PMM1, PM3=PM1, eDB3=eDB1 ⊗ eDB2, RM3=RM2, RMM3=RMM2)

The chaining is thus mainly reduced to a chaining of the empirical databases, which in turn
is a chaining (denoted �) of the approximation functions and biases according to:

A3 = A1 � A2

dA3 = dA1 + dA2

Most important is the negative fact that the biases of chained models are summed up! We
will, nevertheless, use chaining mainly for estimation of 1) elapsed time out of estimated
effort, and 2) efforts of phases out of total effort.

Backfire Method

The empirical database may also be accessed backwards by using the reverse
approximation function A-1. This is useful when the result metric is given, for example an
effort budget, but not the predictor metric, for example the system size. The reversely
estimated predictor value can then be used, for example, as an upper limit of system size
that may be built within the effort budget. This technique is simple but especially useful in
negotiation processes with the customers. If they tell us to build a stock management
system for $1’000’000 but do not specify what exactly to build, we can estimate the
maximum system size, for example 1’800 Function Points, and put this upper limit in the
contract. When system size runs above 1’800 FP, the customer either has to reduce
functionality or pay more.

Summary

By applying the backfire method together with chaining we can control the three economic
parameters of effort, time and product:

Process Parameters

Product
(Quantity and

  Quality)

Effort
(Cost)

Duration

-1

APE

APE

DEA DEA-1
APE o DEA-1

ADE o PEA-1

Figure 12: The 3 Parameters of Software Economics and their Relationships

This balance is accomplished with only two empirical databases PE (product Ø effort) and
DE (duration Ø effort) and, therefore, two regressed approximation functions APE and ADE.
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The effects of changes to any parameter can be analysed using these two, plus the
combined models in figure 12.

2.1.4 Metric Basics

As we have seen from the presentation of the generic estimation process in 2.1.1, the
notion of metric or measure in the sense of a function that yields a numeric value out of
some model is crucial. In this subsection we therefore present some of the basic principles
behind software measurement.

A first misunderstanding may mislead the reader who is familiar with metrics in a
mathematical sense. Even though such metrics exist in the software domain too (cf. 2.1.6),
we generally don’t deal with metrics in that sense, but rather with ordinary mapping
functions. The synonymous term "measure" is therefore preferred in this text even though
not strictly applied.

A software measure’s input domain is the model domain, i.e. the metamodel of what we
want to measure. The metamodel usually is a multi-dimensional structure. The measure’s
output domain is often called its scale and is always single-dimensional. Whereas much
effort has been spent on the formal analysis of the scales (cf. 2.1.6 as well as
[FE91][ZU91]), which admittedly is of importance, the equally important area of the input
domains, i.e. the metamodels, has traditionally been neglected (cf. our new approaches in
3.1). To sum up we may formally define a metric as

Definition of a Measure:
Measure: {metamodel} ⇒ {scale}

Measure Categories

The very first distinction we can make in the software area is between product metrics and
process metrics. The first category measures attributes of software, e.g. the total lines of
code, or of system descriptions at higher levels, e.g. the number of classes in a class
diagram. The latter category measures attributes of the process that led to the software or
system description, e.g. the total of elapsed days spent on the process from start to end. The
distinction therefore is made between kinds of metamodels: if the metamodel is a model of
software, we have a product metric; if it is a metamodel or template of a software process,
we have a process metric.

Because there is a one-to-one relationship between product and process, however, we can
also attribute a process metric to the product, e.g. the testing effort percentage as a measure
of product quality, and vice versa. Another special case are mixed measures like
productivity, i.e. the ratio of product size and process effort, which are in general attributed
to the process. Some synonyms like result metric or software metric (in a more narrow
sense) are used for product metric and the synonym project metric [LO94] is used for
process metric. Because this categorisation is easy to use and understand, we used it in our
work as well as in the structure of this document, i.e. chapters 2.2 and 3.2 contain
information about product metrics, whereas chapters 2.3 and 3.3 are about process metrics.

The next categorisation is derived from the layering of software artefacts into 3 main
layers, requirements, design and code, plus a fourth maintenance and modification layer.
With the process aspect in focus, one often speaks also of the phases or the life-cycle of
software, i.e. requirements analysis, design, implementation and maintenance:
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Requirements Analysis

Design

Implementation

Maintenance

Requirements

Design

Code

Modifications
of all three

Processes Products

Figure 13: Layered Software Processes and Software Products

All these terms, however, are subject to interpretation. It is not generally decided for
example whether a design is only technical design or also user-driven GUI-design, whether
implementation also contains testing and documentation, whether project management
activities are included or not, etc. As a consequence of this fuzziness we had to elaborate a
new reference model, called the BIO software process, for this layering and phasing (cf.
3.3). The distinction with respect to layers is essential for the earliness of the availability of
a metric. This earliness, in turn, is crucial for estimation. Layering of processes and
products, therefore, is important for our purposes.

The next categorisation is also related to this layering. We distinguish between
functionality metrics and implementation metrics. Functionality metrics may be understood
in two ways: 1) referring to some size metric (details see below) of a previous layer, e.g.
the size of the (functional) requirements, or 2) referring to functionality, i.e. function
signatures in contrast to function bodies, within the same layer9. Implementation metrics
may accordingly be understood in two ways. Synonyms for functionality and
implementation metrics of the same layer are external and internal metrics of size.

Next, we may distinguish between predictive metrics and descriptive metrics. The first
category of measures is used in an estimation process to predict values of metrics that are
not yet measurable. The term predictive, however, does not make assumption on the quality
of prediction. The total weight of all project team members, to give a rather weird example,
may also be considered a predictive metric, e.g. to estimate the effort to implement a
system. Metrics of the latter category, in contrast, are used for ex post analysis of results
only. Our focus is clearly on predictive metrics.

The last categorisation presented here is the one of metrics of size and metrics of quality. A
metric of size may be used to distinguish between the tiny and the big. These two real
world concepts of tiny and big must, however, be taken ’cum grano salis’, i.e. be interpreted
the right way. A big system description is often a complex one, i.e. one that takes much

                                                
9 This concept of intra-layer functionality primarily makes sense for code, because in layers above, usually all
artefacts are external, thus making the distinction of signature and body obsolete.
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effort to write and understand. This concept is therefore not only related to sheer size, i.e.
number of tokens written, but also to how the tokens are linked and dependent on each
other. Quality metrics, on the other hand, may be used to distinguish between the good and
the bad. Many metrics are attributed as quality metrics, though, for which no indication of
good and bad is given. The metric "depth within inheritance tree" for a class is for example
said to be a quality metric, but the question of what’s good and bad remains open. Our
experience told us to mistrust any quality metric that is not a ratio or some kind of average,
because otherwise the interpretation of what is good and bad is not constant but dependent
on size. Metrics of size, furthermore, may be used to assess quality: small descriptions are
usually preferred over functionally equivalent voluminous descriptions. Synonyms for
metrics of size are metrics of weight [DM82], volume [HA77] and - in some cases -
complexity [HS96]. The metrics of quality may be further subdivided into inherent and
empirical quality measures. The inherent measures may be measured on the isolated
product. In general, however, it is not easy for inherent quality measures to tell what are
good and bad values, because there are always unproved hypotheses behind those
measures: e.g. "the more comment lines in the code, the more understandable it will be".
This may - or may not - be true depending on the comments’ readability and consistency
with the code. In contrast, empirical measures of quality directly measure the facts, e.g. the
ratio of the effort of learning a coded system to the size in order to measure
"understandability". Those measures also have their drawback, however: they are
measurable after the fact only. The use of empirical measures is to quantify the empirical
facts ex post. The use of inherent quality measures, on the other hand, should be limited to
two areas: 1) setting empirically derived thresholds as alarms, e.g. when the comment ratio
in a module sinks below 5%, and 2) estimating the outcome of corresponding empirical
quality measures.

A Prototypical Multi-Dimensional Metrics Categorisation Framework

The categorisation presented above has led, in a joint research with Prof. Brian Henderson-
Sellers, to a prototype of a metrics framework that serves two main purposes: 1) to assess
the diverse existing metrics for object-oriented and conventional systems, and 2) to identify
areas of neglect, i.e. poor or missing support by existing metrics. Furthermore, this
framework can be a basis for step 3 in the analysis activity of the AMI metrication
methodology (cf. 2.1.5 and [AMI92]). The framework is restricted to product metrics only.

The key idea of the framework is to elaborate one matrix per software life-cycle phase,
wherein the columns represent the main usage aspects, i.e. quality and size, the rows
represent the various metrics and the cells contain information on 1) the presence and
direction of the metric’s assessment of an aspect, 2) the granularity (e.g. class level, method
level) on which the metric may be applied and 3) the binary information of whether the
metric predicts or describes / measures the aspect. This last information about prediction or
description is an enhancement over the original framework presented in [HS93]. Another
enhancement, however only planned, would be to include the average correlation bias from
industry surveys into the cell information.
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The following diagram is an excerpt from the currently elaborated framework matrix for
the implementation layer:

Aspect Quality Size

Metric (?=desired)

comple-
teness of
abstrac-
tion

reusabi-
lity

under-
stand-
ability

main-
tainabi-
lity

testabi-
lity

total internal external

LOC (cf. 2.2.1) -all -all -all all all
η (cf. 2.2.2) -all -all -all all all
ν (cf. 2.2.3) -M -MC -MC all
FP (cf. 2.2.4) all
WMC (cf. 2.2.5) -C -C -C CPS
DIT (cf. 2.2.5) -PS -PS -PS
NOC (cf. 2.2.5) -P P
RFC (cf. 2.2.5) -C -C -C
CBO (cf. 2.2.5) -C -C -C
LCOM (cf. 2.2.5) -C
S/C (cf. 2.2.6) -all -all -all all all
Task Pts (cf. 2.2.6) all
?write coupling -all -all -all
?read coupling all all all
?cohesion all all

Table 1: An Excerpt from the Metrics MDF for the Implementation Phase

We distinguished 5 different sub-aspects of quality: 1) the completeness of abstraction (i.e.
no more need to enhance a class), 2) reusability, 3) understandability, 4) maintainability
and 5) testability. The signatures of the cell entries are:

no entry = metric does not apply
g = metric applies for granularity g
-g = metric inversely applies (i.e. big values = low aspect)
italics = predictive metric
upright = descriptive metric (i.e. measurement of the aspect)

The granularities g are indicated as:

S = total system
P = part / subsystem
C = class
V = services / public methods
M = methods
all = all levels of granularity

An analysis of such a matrix has shown that metrics for measuring (not predicting) quality
are missing to a large extent, as well as metrics for coupling and cohesion. Our future
research interest (cf. 5.3) is therefore directed towards these kinds of metrics.

2.1.5 A Goal Driven Metrication Process (AMI/GQM)

When having to introduce software metrics into the standards and practices of an SPU, we
are faced with an enormous variety of metrics to chose from, as well as an enormous
variety of possible uses of metrics. In order to really profit from quantitative techniques for
estimating or controlling the software process, the choice of the right measures is critical.
Metrics based on counting code lines, for example, are proven to be of minor use (some
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people even claim they are of harm) in the object-oriented context. It is of great use when
firstly the aim of the metric is well elaborated. The use of so-called metrication frameworks
like the Goal Question Metric method (GQM, proposed by Basili [BA88]) or its further
evolved successor the AMI (Application of Metrics in Industry) method [AMI92] is
recommended for this. We briefly present the 4 AMI steps of metrication, 1) the
assessment, 2) the analysis, 3) the metrication and 4) the improvement step, and put them
into relation to our work. Each of the steps is divided into several substeps as follows:

Assessment:

1. ###Find answers to the following questions: Where do we stand? Are we following
standards (i.e. metamodels) so that the use of metrics makes sense? Do we first have
to establish standards? The answers may be found by applying the SEI capability
model [HUM89] or other methods of SPU-self-assessment like Bootstrap.

2. Define and validate primary goals with the SPU’s top-level managers. Samples of
primary goals may be: "improve productivity", "improve quality", "lower the error
rate after final tests", etc.

Analysis:

1. Break down the primary goals into sub-goals ("monitor productivity of development
projects", "monitor productivity of maintenance projects", etc.) together with
lower-level managers and project leaders.

2. Identify questions that support the goals ("What is of value to the customer - delivery
on schedule? What is of value to our organisation - few errors? What will reduce the
use of resources - reuse?", etc.).

3. Identify metrics, for example lines of code produced per person day, %components
reused, %rework effort, out of a list of existing metrics that seem to fit the purpose
(this step is supported by our multi-dimensional metrics framework, cf. 2.1.4, last
subsection). Sometimes the invention of new metrics is needed. This non-trivial task
is supported by our metric derivation technique based on metamodels, presented in
3.1.1. Inform all involved people about the chosen metrics and the means to measure
them.

Metrication:

1. Write a measurement plan, i.e. identify the projects you want to measure. Define the
frequency of measurement and inform the key players in the project about it.

2. Collect and verify the data.

Improvement:

1. Distribute, analyse and review the measured data. Get feedback from all involved
people on the values, measurement methods, effort consumed by the measurement
process and possible precautions.

2. Validate the metrics, i.e. remove unsound values and outliers. Totally remove metrics
that systematically did not receive positive feedback with respect to soundness.

3. ###Relate the data to the goals and implement actions after getting the management’s
support. Iterate previous steps as needed (i.e. when the metrics support the goals
iterate step 3, the metrication, when metric support is insufficient iterate step 2, the
analysis, and -finally - when new goals emerge, iterate step 1, the assessment step).

2.1.6 Soundness Criteria for Metrics of Complexity

According to [HS96] measurement should be based on sound theoretical foundations.
Formal aspects of some 100 different metrics were carefully analysed by [ZU91]. A less
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formal but also very sound approach was chosen by Fenton [FE91] and Ejiogu [EJ91]. A
more pragmatic, but - as proven by Zuse - self-contradictory set of so-called "metric
axioms" was proposed by Weyuker [WEY88]. We will not repeat all the valuable work
accomplished in this area, but rather will summarise the most important aspects for our
work. The first topic are scales, i.e. the measures’ value domains. Scales may be
categorised and restrict the kinds of arithmetic operations that may be applied. The second
topic are metrics in their mathematical sense based on comparison operators between
system descriptions. Then, we briefly discuss dimensional analysis, i.e. - put simply - the
fact that we should not sum up apples and oranges. Finally, we present our own critique of
Weyuker’s axioms. In each of the 4 topics, the requirements we retained in our analytical
(cf. section 2.2) and constructive work (cf. chapter 3) are indicated separately. Note that
these requirements are only valid for metrics of complexity, i.e. of the combination of the
aspects of size and difficulty.

Scale types

We distinguish between 5 types of scales: 1) nominal, 2) ordinal, 3) interval, 4) ratio and 5)
absolute. The types refer to algebraic properties of the scale sets with respect to atomic
operations [ZU91]. Since the types may, however, also directly be derived from the
measurement procedure, we will not discuss the mathematical apparatus here. The
measurement procedures may be described as 1) labelling, i.e. the immediate and arbitrary
assignment of values of the scale to objects of the metric’s domain, 2) ranking, i.e. the
mapping of objects into some ordered scale equivalent to 1st, 2nd, 3rd, etc., 3) interval
measurements, i.e. the measurement of distances to some arbitrary reference point, 4) ratio
measurements, i.e. the measurement of distances to a fixed reference point called 0 and 5)
counting items. The five types and corresponding measurement procedures, as well as
allowed arithmetics and examples are given in the table below:

Type Measurement Arithmetics Example

nominal labelling simple count male, female
red, blue, green, yellow

ordinal ranking simple count,
median

agree, neutral, disagree

interval distance to reference point simple count,
median, mean,
variance

temperature Celsius

ratio distance to 0-point simple count,
median, mean,
variance,
percentages

temperature Kelvin

absolute counting all of the above lines of code, number of
tokens

Table 2: Scale Types

The restriction to allowed arithmetics prohibits typical senseless statements like
"the average human gender is half male half female", but also more subtle violations like
"today it is 10°C, twice as warm as yesterday when it was 5°C". Since software
descriptions are discrete, i.e. distances (in their traditional sense) are not measurable, we
adopted the counting paradigm when designing our new metrics. When basing a metric on
counting, we assure that statistics, a must for empirically based estimation, may be applied.
We therefore retain the first criterion of soundness for software metrics:
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(requirement 1) A software metric should be entirely based on counting.

We will complete our discussion about scales with a remark that reduces the importance of
this often heavily debated topic. Consider the sides of a die. This very same object may be
interpreted as 1) nominal scale, when labelled with colours, 2) ordinal scale, when labelled
with 1st, 2nd, etc. and 3) even absolute scale, when labelled with 1, 2, 3, 4, 5, 6. Therefore,
we have to remember that the same thing may be interpreted differently. We would even
postulate that one may deliberately define the scale interpretation of any observation (even
though there are "natural" interpretations and rather "unnatural" ones) as long as it is done
in awareness. The same objection can be made to the mathematical analysis of scales. The
properties of the scale do not depend only on the scale but also on the choice of the so
called atomic operations on the domain objects. Those operations, however, immediately
lead to discussions about metamodels of software (cf. 2.1.7).

Mathematical Properties of a Mathematical Integer Metric of Size

Metrics as defined by mathematicians are real valued functions d for the Cartesian product
R x R of a set R. R is usually called a room. The function d corresponds to the real world
notion of distance. It obeys 3 laws in order to be called a metric:

1) d (x, x) = 0

2) d (x, y) = d (y, x) "symmetry"

3) d (x, y) + d (y, z) ≥ d (x, z) "triangle’s condition"

A room for which a metric exists is usually called an Euclidean room. We extend these
laws to integer metrics, because with requirement 1, i.e. software metrics should be
counted measures, we imply that the function yields integer values:

4) d (x, y) ∈ IN "positiveness"

5) if d (x, y) = D ⇒ ∃ z, d (x, z) > D "completeness"

The question remains how we extend the unary software metrics to the binary metric form
needed here. We have to introduce a difference operator "diff"10 to software. Usually this
operator is line-based, token-based or based on other easily comparable entities. It yields a
set of two kinds of items: 1) the deleted items and 2) the added items. We may then apply a
unary software metric m to yield the mathematical metric d’s value. Using the notation of
functional composition (�) we may write:

d = m � diff

Software metrics, therefore, must be measurable for "scattered", i.e. non-sequential subsets
of system descriptions as well as for integral system descriptions. This in turn implies two
additional requirements for software:

(requirement 2) a software metric must be defined for single items

(requirement 3) a software metric must be defined for sets of items

In order to allow reasonable difference operators to work, the metric should honour items
of finest granularity:

(requirement 4) a software metric should be defined for the most elemental items

A good example fulfilling these requirements is the lines of code metric. It is easily
measurable for a single item (yielding value 1) and for sets. Its granularity, however, is
only reasonably fine, because on one line of code several more elemental description items
may be placed. The set of all possible programs and the LOC metric, nevertheless, form an

                                                
10 Such as the UNIX diff utility.
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Euclidean room. From this example we would formally conclude that the LOC metric is
sufficient. But this formal validation qualifies the metric of size in the context of a
metamodel of system descriptions only. It does not say anything about the meaningfulness
of the metamodel. Thus, when viewing system descriptions as sets of LOCs that are
modified and mentally understood line by line, number of LOCs is the right metric.
However, we state that this is a very simplistic view ignoring almost all of the structural
characteristics of system descriptions. Furthermore, this is an indication that formal
software metrics requirements are not enough to assess metrics. We therefore developed
semantically founded requirements based on the metamodelling paradigm (cf. 2.1.7 and
3.1).

Dimensional analysis

Having attended many lessons of high school physics we all know a simple way,
dimensional analysis11, to validate newly derived formulae: when the result should be a
velocity and the formula yields kilograms per square meters it is definitely wrong. Similar
analysis can be made for definition formulae of software metrics [HS96]. If we encounter a
new metric that is defined like:

new_metric = #classes + #methods + #arguments passed

then it can be safely ignored because it violates dimensional analysis. We therefore state
another requirement:

(requirement 5) software metrics should be dimensionally safe

Furthermore, a software metric of complexity should also be useful for the derivation of
secondary metrics like "percent reused items". To achieve this, a metric should yield
dimensionally equal values for all kinds of software items. This is no problem for the lines
of code metric, which only knows one kind of software item. It may be a problem,
however, for more sophisticated metrics defined for single statements, variables, functional
abstractions and data abstractions (classes). An analogy to the 3-dimensional room is the
cubic meter. It is uniformly defined for all kinds of objects12.

(requirement 6) a software metric should be uniformly defined for all kinds of items

Weyuker’s 9 "axiomatic" properties

To conclude our list of formal requirements, we summarise and comment the most widely
used (but not widely accepted) criteria suite, Weyuker’s axiomatic properties of software
complexity metrics [WEY88]:

1 A metric should not rate every system description equal.

Comment: This is an absolute requirement for any good metric and we would like to
retain it as a basic requirement. The requirement, however, is implied by the
forthcoming requirement 7 so we do not mention it as an extra requirement.

2 The metric rates only a finite number of system descriptions equal.

Comment: We reject this criterion because there are good measures that violate it.
Let us assume a C++ program containing the single statement cout << 1;. There
are infinite variations of this simple (and rather useless) program, i.e. by replacing the
constant 1 with any other integral number (assuming no limits on numbers for

                                                
11 Dimensional analysis in measurement theory is analogous to type checking in software engineering.

12 In contrast to square-meters and meters for which it is not clear for all kinds of objects what exactly to
measure: 1) the length, 2) the height, 3) the depth.
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simplicity’s sake). The LOC metric, however, will yield 1 for any of the infinite
variations of the program.

3 The metric is not different for every different system description.

Comment: This criterion is valid in our eyes. It is, however, so fundamental and easy
to fulfil that we do not view it as an extra requirement.

4 If two system descriptions of the same layer (e.g. the functional specification) are
equal, the metric values for the same system in another layer need not be equal.

Comment: This is a good property, however obvious in the context of layering (cf.
2.1.4) and hence we do not retain this criterion as a separate requirement.

5 If a system description Y is concatenated to a given base system description X then
the rating for X alone must be smaller than or equal to that of X+Y.

Comment: This must not always be true for every kind of system description and
concatenation (e.g. adding the interface description of a class to a piece of code that
heavily uses this class reduces its (psychological) complexity), so it is an undesirable
property in general.

6 Concatenating the same system description to two different pieces of identical rating
need not result in the same rating in both cases.

Comment: This is surely a valid property (BTW: and contradicts property 5 as shown
by Zuse [ZU91]). It is implied, however, by requirement 7, below.

7 Changing the mere sequence within a system description may change the rating.

Comment: The sequence is an important structural characteristic of system
descriptions, so resequenced system descriptions are not to be considered equal. We
retain this property as

(requirement 7) A software metric may yield different values for differently
sequenced system descriptions.

8 Changing names must not change the rating.

Comment: Here we heavily disagree, because e.g. a string class named "Date" is
much less understandable than one named "String". Names are important parts of
system descriptions. In total contrast to Weyuker, we would like to formulate our
requirement as

(requirement 8) A software metric should yield different values for differently
named system description items.

9 Given two system descriptions X and Y, the rating of X+Y may be bigger than the
sum of the individual ratings.

Comment: I can’t think of any reason for this property and none of the knowledgeable
metrics do satisfy it. Zuse "proves" that this property is needed for a metric to be a
ratio scale, but there must be a big "misunderstanding/confusion" because e.g. LOC
is even absolute scale and does not meet this property. In accordance to Ejiogu [EI91]
and to the mathematical "triangle’s condition" for metrics, we propose, in contrast,
our last (semi-)formal requirement

(requirement 9) Given two system descriptions X and Y, the rating of X+Y
must not be bigger than the sum of the individual ratings

A summary of the retained requirements is given in the following table:

# Requirement

1 counting
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2 single items

3 sets of items

4 elemental items

5 dimensionally safe

6 dimensionally uniform

7 sequencing

8 naming

9 triangle’s condition

Table 3: Requirements for Software Metrics of Complexity

2.1.7 Metamodelling

Metamodelling is a rather modern approach to software engineering. Its roots go back to
philosophical work on ontology by Bunge [BU77] and on general systems theory by
Mesarovic and Takahara [ME75]. Metamodels formally show the structure of models, e.g.
software or other higher level system descriptions. They play the same role as entity
relationship or object models for application domains, but for the domain of software
development itself. The practical purposes of metamodels thus are analogous to those of
domain object models: they are a sound starting point for the analysis of the domain’s
processes, i.e. software processes, and for implementing automated tools that support those
processes. Metamodels were used in the following fields recently:

1 Understanding software engineering techniques (e.g. system decomposition by
Paulson and Wand [PA92], grammar evaluation by Weber and Zhang [WEB92]).

2 Building automated systems and software engineering tools (e.g. metamodels in
CASE environments by Smolander [SM91], CDIF Interim Standard EIA/IS-83, Part
1 [CDIF91], Texel-SF [TE94],  COMMA [OPEN96]).

3 Defining software measures which in turn may be a foundation for control
mechanisms and quality systems of development processes (e.g. a metrics suite for
OOD by Chidamber and Kemerer [CHI94]).

4 Evaluating and/or defining development methodologies (e.g. the frameworks by
Österle/Gutzwiller [ÖS92] and OMG [OMG92], the methods Texel [TE94], BIO (cf.
3.3.3), UML [RA96], OPEN [OPEN96]).

Existing Metamodels Overview

Takagaki and Wand [TA91] have introduced an object based metamodel for information
systems derived from an ontological point of view. To denote their metamodel they used an
axiomatic mathematical system. Their metamodel was used to analyse the semantics of
modelling concepts like the relationship (Wand, Storey, Weber [WA93]) like
decomposition (Paulson, Wand [PA92] or like grammars (Wand Weber [WA92], Weber
Zhang [WEB92]). The so called "Wand Weber Metamodel" (WWM) reflects the structure
of a system from a rather theoretical point of view. Maybe this theoretical touch is partly
caused by the notation used to describe the WWM. It is not a metamodel of a system
description but rather of a system at work. We adopted some notions of it for our
metamodel of system descriptions (cf. 3.2.1).

2 Other metamodels were described by Smolander [SM91] to denote system modelling
techniques. He also presented (as a logical step) a meta-metamodel that shows the structure
of metamodels (OPRR, Object Property Relationship Role Metamodel adopted from
Welke [WEL89]). The essence behind OPRR is equivalent to Chen's modelling technique
(ER, Entity Relationship Model first presented in [CH76]) enhanced by the explicit
concept of a role (which is implicitly also present in Chen's original technique). Smolander
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then described metamodels of some SE methodologies (like DeMarco’s Structured
Analysis [DM79] or Booch’s Class Diagram Technique [BO91]) and built a prototype tool
that interprets metamodels and lets systems engineers graphically edit the objects imposed
by any methodology (as long as the metamodel is formulated in OPRR). His metamodels
were used as one basis for our metamodelling of the domain analysis layer (cf. 3.2.2).

3 Yet other metamodels are defined in a standard of the EIA called CDIF (CASE Data
Interchange Format [CDIF91]). The EIA also describes a meta-metamodel (EIA/IS-81, July
1991). Like Smolander’s OPRR, it is also very closely related to Chen’s ER modelling
approach (except for an abbreviated notation for relationships). The interim standard
EIA/IS-83, July 1991, then defines the semantic metamodels of the ERA (Entity
Relationship Attribute, cf. [CH76]) and DFD (Data Flow Diagramming cf. [DM79])
techniques. Those metamodels are used to support the data transfer between different
CASE tools without losing semantic information. CDIF is enhancable to denote system
metamodels of other techniques and lifecycles. The CDIF meta-metamodel was adopted to
denote the metamodels in our work. Furthermore, some parts of the ERA and DFD
metamodels were used as parts of the domain analysis layer metamodel (cf. 3.2.2).

4 Based on the CDIF meta-metamodel, Carmichael recently presented COOMM, a
metamodel for object oriented systems in [CA94]. It is a metamodel used to implement
software development workbenches and is mainly a formalisation of the OMG Object
Analysis and Design Reference Model.

5 Predecessors of the metamodels presented in this document were introduced by
Moser et al. as they defined the SE methodology BIO (BI-CASE/OBJECT) in [MO93]. The
metamodelling within this methodology was mainly done by the author. It was then used to
define strategies to elaborate the object types identified and to define corresponding
documentation and naming standards.

6 More recently - at the time of completing this work - OMG has made an initiative for
standardisation of metamodels for object-oriented systems. The two major competitors for
this forthcoming standard are Rational’s UML (Unified Modelling Language) [RA96] and
the metamodels under development by the OPEN team [OPEN96]. Both metamodel
proposals are still subject to discussion. Because of the relatively recent appearance of
these metamodels, we did not incorporate or adopt them for our work. A transition or
mapping from our metamodels to the forthcoming standard seems, however, possible. Our
metamodel is designed for metrics definition. It is therefore semantically non-restrictive.
For example, our metamodel allows any object to have zero, one or even multiple types
and change its types during its lifetime. This property of non-restrictiveness gives us
confidence that - after a more thorough and detailed comparison of the metamodels - a
usable match can be made, and the metrics, namely the System Meter, can be applied to
models conforming to the new metamodels as well.

Denoting Metamodels

We use metamodels primarily to define or assess measures (cf. 3.1 for details).
Metamodels of measures should reflect the minimal structure of the things being measured.
In order to explain the notation we use in our work, we give an example: the metric
"percentage of people in a given country living in big cities" presumes the following
(meta)model13 of populations:

                                                
13 This actually is not a metamodel because its modelled entites are real-world concepts. However, the
discussion of metamodel notation can well be conducted using this sample.
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I) There are people.

II) There are locations people live in (each person in exactly one location).

III) Those locations belong to exactly one country.

IV) The locations may be categorised as "is big city" and "is not big city".

Figure 14: A Sample (Meta)model Denoted in Prose

More formally denoted (similar to the notation used by [WA90]) we would state:

Population P L C bc co li≡ , , , , , , where

{ }P p p p= 1 2 3, , , ...  a set of people,

{ }L l l l= 1 2 3, , , ...  a set of locations or places,

{ }C c c c= 1 2 3, , , ...  a set of countries,

{ }bc L isBigCity IsNotBigCity: ,a  a function,

co C L: ( )a℘  a function "country" with its inverse being definite
li L P: ( )a℘  a function "lives in" with its inverse being definite.

Figure 15: A Sample (Meta)model Denoted Formally

It is not practical however (especially in situations more delicate than the one above) to
represent the metamodel as a list of natural language statements or as a list of formal
definitions. The author adopted a special form of graphical notation (ER-Model, cf.
[CH76] also used to define the CDIF-Metamodel [CDIF91]) to denote metamodels. The
small example looks like this:

Legend:

derived subtype relationship (exclusive tuples of relationships
of this kind have the same origin point)

one to many (conditional) relationship (text to be read in
growing cardinality direction)

secondary entity type

main entity type

contains

Country

Big CityLocation

People

is home of

Figure 16: A Sample (Meta)model Denoted Semi-graphically

For our purposes, these representations of metamodels are equivalent in their
expressiveness. We therefore use the most intuitive representation to us which seems to be
the graphical notation as exemplified and explained in figure 16.

Metamodels are used to derive and assess measures in our work. For details on how
metamodels serve these two purposes refer to section 3.1.
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2.2 Existing Measures and Metamodels for Software

In section 2.1.6 we elaborated 9 formal requirements for software measures of complexity
derived from measurement theory and mathematical properties. Additionally and more
importantly, we gained the insight that we cannot assess measures with such formal means
alone. We also need semantic assessments, be they formal or informal. In order to assess
measures and, as a consequence, estimation techniques based on their semantics we
developed a metamodel assessment technique which is described in more detail in 3.1.2. In
order to understand the following assessments, which make use of our new technique, we
give a brief summary here:

The first step of the metric metamodel assessment technique consists of elaborating or
obtaining a reference model of the thing to be measured. In the context of software, i.e.
models of systems, this reference model is a so called metamodel. It is derived
independently of any metric. The second step consists of elaborating the minimal
metamodel of the metric, i.e. those - and only those - constructs that are necessary for the
complete metric definition. The minimal metric metamodel is then checked for 1)
completeness with respect to the reference metamodel, 2) the time of availability within the
software process, 3) rigidness, i.e. language and modelling independence and 4) "non-
fakeability".

The reference model against which we assessed the measure’s metamodels is the System
Metamodel described in 3.2.1 and already introduced in 1.6.

Each metric is presented in the following scheme: 1) the metric’s metamodel, 2) the
metric’s definition, 3) common usages, 4) metamodel assessment, 5) formal metric
assessment, 6) practical assessment and 7) summary. Positive evaluation points in the
assessment parts are marked with white numbers (e.g. í), negative points are marked as
black numbers (e.g. ó), ambiguous assessments are marked with both (e.g. �/ô for rather
negative, and ô/� for rather positive overall assessment).

2.2.1 Lines of Code

Metamodel

Line of Code

Figure 17: The LOC Metamodel

The metamodel of the Lines of Code metric views an implemented system as a set of
isolated code lines, i.e. description elements separated with carriage returns. Usually, but
not always, blank and comment lines are not (!) considered to be code lines. However,
headers, declarations, executable and non-executable statements as well as multiple
statements and statement fragments are considered one line of code if placed on one line
(cf. [CO86]).

Definition

Because the LOC metamodel is structurally very easy (i.e. consists of a single unrelated
entity) we do not have many choices for the formal metric definition:

LOC = Line of Code

LOC is simply the cardinality of the set of lines of code.
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Usages

After coding is complete one may observe - ex post - that the resulting LOC correlate with
the effort spent. The ratio of LOC and effort measures (e.g. person days) is a common
productivity measure of software processes. Typical values from traditional COBOL MIS-
SPUs from the mid-eighties are reported as 5-10 LOC/PD [IBM84]. Before coding, LOC
may be estimated (often rather obscurely) and this estimate may then be used as a predictor
for effort [BOE81]. During maintenance, the code parts in question may be measured with
LOC and used as a predictor for maintenance effort. The LOC metric may also be used to
derive all kinds of secondary metrics like "number of comment lines"/LOC to measure the
"commentedness" of a program or "number of LOC for a class"/LOC to measure the
relative sizes of the classes in an object-oriented program. LOC is very widely used. This
use of LOC, however, typically requires an enhancement of the metamodel with a
categorisation of the Lines of Code, for example into those which contribute to a class
implementation and those which do not. One may consider our metamodels as a set of such
enhancements that led to a completely new and richer metamodel. The original LOC
metamodel assessed here is very limited.

Metamodel Assessment

è/� Metamodel completeness: The metamodel is incomplete. Only the aspect of
messages (cf. 3.2.1) is captured. The messages, however, indirectly capture many other
aspects because every other kind of description object must somewhere occur in a message
(at least in order to be created). Therefore we may observe an acceptable behaviour of LOC
with respect to effort correlation. When the metamodel is enhanced (often implicitly) with
categorisations, we may achieve more coverage of the reference metamodel. However,
aspects that can never be captured are 1) structural relationships between description
objects, 2) the distinction of the external and internal view of objects, as well as 3) the
distinction of components reused from a programming environment (language and
library/framework components). LOC does additionally not capture the functionality of a
system. This is not due to structural deficiencies of the LOC paradigm, but because only
one software layer, the implementation layer, is addressed. It prevents the LOC measure
from being a good measure of productivity, because mere code production not production
of usable functions is measured.

�/ô Time of availability: The lines of code of the final tested product are established after
the implementation and test phase only. Initial untested LOC may be obtained before the
test cycles. Most development effort, however, is spent before LOC become available as a
measurable entity. With respect to estimation of early development effort, LOC is thus too
late. Estimation of maintenance and testing efforts, however, are supported.

� Rigidness: This is one of the weaker aspects of the LOC metric. First and most
important: LOC values of one language can not directly be compared to those of another.
For heterogeneous (concerning the languages used to implement) systems it is therefore
impossible to give a single meaningful value of size when using LOC and because a single
line of code is generally not equal to exactly one lexical object of the language,
categorisations (e.g. into comment and non-comment lines) are often left to interpretation.
It is also left to interpretation whether comments, block marks, labels, declarations, etc. are
to be considered as a line of code. Furthermore, code lines with more than one lexical
statement in it, may or may not be considered as more than one line of code (thus being
another source for interpretational variance). As an annoying consequence of the
drawbacks just stated there exists an overwhelming number of LOC dialects and counting
guidelines (e.g. SLOCs and ELOCs [CO86] [JO85] [GR87] [BOE81] [PU80] [ZU91]). For
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old-fashioned languages like some Assemblers, (old-style) BASIC and FORTRAN which
were line-oriented (i.e. one statement equals one line), the LOC paradigm is well-suited.

� "Non-Fakeability": This is another weak aspect of the LOC metric. Since the LOC
metamodel is simplistic and non-rigid, clever programmers may generate extra lines of
code to score high LOC/PD productivity rates. On the other hand, when low LOC per
functionality values are aimed, programmers may produce very nasty pieces of code, where
several statements are packed onto one line.

Formal Assessment

� Counting: The LOC measure is a simple count and therefore its scale is absolute and
every arithmetic and statistical operation may be applied safely.

ô Single items: The LOC measure may be applied to a single line (however yielding a
constant value of 1 because it ignores the line’s semantical and inner complexity).

í Sets of items: LOC is easily measurable for sets of lines of code.

÷/� Elemental items: The line of code is fairly elemental. However, for most modern
programming environments (C, C++, Smalltalk, etc.) one line of code is not equal to an
elemental language construct. When measuring parts of systems or selected subsets we
therefore always face language-specific problems of interpretation.

û Dimensionally safe: The LOC metric is dimensionally safe because only one kind of
entity is counted.

ø Dimensionally uniform: LOC is uniformly defined for all kinds of lines of code.

ó Sequencing: LOC ignores the sequence within system descriptions because it views the
lines of codes in isolation.

õ Naming: LOC also ignores the naming of system description objects.

ü Triangle condition: If we use a line difference algorithm to yield the two sets of
subtracted and added lines of code for any two pieces of code x and y and sum up the LOC
values for the two sets to obtain d (x, y), then the triangle condition of d (x, z) ≤ d (x, y) + d
(y, z) is always fulfilled, because we can always - in case the direct difference operation
between x and z yields bigger sets - consecutively apply the difference sets of x to y and
then y to z and add their cardinalities to achieve equality.

Practical Assessment

We may positively mention that in practice LOC is more frequently used than any other
metric, because LOC is measurable very easily. Therefore, much experience and
knowledge with LOC measurement and usage is available in industry both among
managers and engineers. The idea of a line of code is also intuitively - not formally with
respect to modern languages - easy to understand. Furthermore, estimates for testing and
maintenance may be soundly based on LOC measurements.

Because the LOC metamodel is heavily dependent on the programming language and on
interpretation, however, one can unfortunately not adopt coefficients and statistics from
industry surveys without care. When used for early development effort estimates, it cannot
be obtained as a measured value, but rather must be (intuitively or rationally) estimated
itself. Thus, it does not substantially contribute to early estimates.

Summary

The LOC measure has its merits as an easy and intuitive metric. Its formal qualities are
good. Therefore it can be safely used as a base measure for a variety of derived measures.
The LOC has its weaknesses in the areas of 1) time of availability, 2) rigidness of
definition and 3) over-simplicity in the underlying metamodel. The first weakness is severe
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with respect to early effort estimation, the second to technical independence and
comparability of measured values.

2.2.2 McCabe’s Cyclomatic Complexity

Metamodel

The underlying metamodel of Tom McCabe’s so called cyclomatic complexity metric ν
[MC76] is based on the control flow of a program. Software is viewed as a directed graph
wherein two kinds of nodes exist: 1) normal sequential processing nodes with several input
and one output edge and 2) decision/branch nodes with several input and two alternative
output edges. A start and end node with no ingoing and no outgoing edge respectively are
also required. For structured programs - which are assumed in our further discussions - the
number of input edges per node is restricted to exactly one. A truly minimal metric
metamodel for structured programs (cf. definition below) would therefore even consist of
the decision/branch nodes only and ignore the others:

may be a

has as input

has as output

has as secondary output

has as input has as output

has as secondary output

Minimal Structured Flow Control Metamodel

Decision/Branch
Node

Structured Flow Control Metamodel

Generic Flow Control Metamodel

EdgeDecision/Branch
Node

Node

may be a

has as input

has as output

has as secondary output EdgeDecision/Branch
Node

Node

Figure 18: The Control Flow Metamodels

A variety of some 100 more control flow or program logic metrics are proposed (cf.
[ZU91]) based on the same metamodel. Their application, though, is either not widespread
or they differ only minimally from McCabe’s ν. Therefore we discuss this metric only.

Definition

The original definition of the cyclomatic complexity for a directed graph is:

ν = |Edge| - |Node| + 2

This essentially is the count of all possible static paths through the graph. For structured
programs however, where the rule "one-node-equals-one-input-edge" holds, the formula
may be reduced to:

ν = |Decision/Branch Node| + 1

Usages

The cyclomatic complexity is mainly used as a descriptive measure of quality, for which
thresholds may be set, e.g. for "maximum allowed ν per function/method". Thresholds are
set from 5 to 10 depending on the programming language used, for object-oriented
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languages thresholds even below 5 may be reasonable [LO94]. Furthermore, it is
successfully used to predict the maintenance effort for selected functions or methods
[OM92] [STA94].

Metamodel Assessment

è Metamodel completeness: The metric ν ignores virtually all entities of the reference
metamodel of software systems. Just calls to decision/branch methods are counted. Even
though the decisions and branches are necessary constructs in software, they are of
subordinate importance in modern, object-oriented systems.

�/ô Time of availability: The cyclomatic complexity is available after first
implementation only. It is therefore useful for testing and maintenance effort prediction
only which can be accomplished successfully.

í/� Rigidness: Even though variants exist, the original definition of McCabe and the
simplified version for structured programs do not leave any room for interpretation for
single methods or functions. When summing up values for sets of methods or functions,
variations of counting rules exist, though.

�/÷ "Non-Fakeability": Dummy conditional statements may easily be introduced into
code, even though not as easily and not as camouflaged as plain lines of code. The danger
of faking, however, is less prominent for ν because it is very rarely used as a basis for
productivity measures.

Formal Assessment

�/è Counting: The metric ν is essentially a simple count for structured programs. We
would prefer the elimination of the constant summand of the formula, though, because
when summing up ν for several parts of system descriptions, problems may occur [HS92]
[ZU91].

ô Single items: It is defined for method or function bodies.

�/í Sets of items: For disconnected sets of items, i.e. methods or functions, different
propositions of counting or non-counting the constant summand are proposed. When
adhering strictly to McCabe’s definition, no practical problems will occur.

� Elemental items: Because ν is defined for whole methods only, we sometimes have
problems in measuring partly rewritten or enhanced methods. It is left to interpretation
which items belong to the part under consideration and which do not. For being a generally
usable metric of complexity, McCabe’s cyclomatic number is too coarse.

û Dimensionally safe: The dimensional analysis of ν reveals no problems.

ø/ò Dimensionally uniform: Because ν is basically defined for a single kind of software
artefact only, we encounter no problems. For higher order system descriptions we must be
careful about the summation rules applied. Comparing differently summed up numbers
may yield wrong interpretations.

ó Sequencing: The metric is not sensitive to rearranging. This was already critiqued by
several authors who would like ν to yield higher values for nested branches than for
sequenced branches.

õ Naming: Naming aspects are not dealt with by ν.

ü Triangle condition: Assuming a hypothetical method-based difference operator on
software the triangle condition is fulfilled for reasons analogous to those for the LOC
metric.
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Practical Assessment

McCabe’s ν is easily measurable with simple lexical code analysers. The usability of ν in
modern, i.e. object-oriented environments is decreasing, because other structural elements
(classes, inheritance, coupling, cohesion) become more important. Logically complex
pieces of software are furthermore reused more and more as opposed to being rebuilt.

Summary

McCabe’s cyclomatic complexity number ν is a sound complexity measure for pieces of
software that obey the flow chart paradigm. Its main drawbacks however are 1) late
measurement (after implementation), 2) coarse granularity and some difficulties when
summing up unconnected pieces of software and 3) the ignoring of many important aspects
like inheritance, coupling, cohesion, etc.

2.2.3 Halstead’s Software Science Metrics

Metamodel

Software Science was "invented" at the end of the seventies by late Maurice Halstead
[HA77]. It was intended to give a sound formal basis to software engineering. Especially
the inconveniences of the LOC metric and metamodel were attacked. A token-based view
on software was adopted. Software is a set of tokens which can by categorised into
operators and operands.

Operand Operator

Token

Figure 19: The Software Science Metamodel

This metamodel achieved some language independence, even though the semantics of
operands and operators differ grossly between languages. Halstead also proposed
extensions of this metamodel to higher layers of software, especially requirements analysis
documents. Those ideas implicitly made use of the metamodel mapping technique as
described in 3.1.3. No applications of the metric to higher software layers were however
reported to our knowledge.

Definition

Halstead defined several metrics based on his metamodel. The first metric he called the
length N of a piece of software defined as

N = |operators| + |operands|  =  |tokens|

The length thus is simply the number of tokens. The second metric is the vocabulary metric 
η which is defined as

η = |unique(operators)| + |unique(operands)|

Whereas the operators and operands correspond to function calls and actual parameters, the
unique operators correspond to functions and the unique operands to variables. The metrics
of length and vocabulary are then used in a more aggregate metric of volume V as follows:

V = N · log2 (η)

The rationale behind this metric is to calculate the average binary information contents of a
token and then multiplying it with the number of tokens. V thus corresponds to the number
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of binary decisions necessary to write some piece of code. Some more metrics were defined
(including an effort metric) which are not discussed here.

Usages

The simple token count N as well as the volume V correlate best to maintainability and
maintenance effort of the most widely known metrics according to a survey conducted by
Oman [OM92]. The volume metric V is also used as a descriptive measure of size, for
which thresholds may be set, e.g. "maximum V per method".

Metamodel Assessment

è/� Metamodel completeness: Whereas Halstead’s metamodel is more refined than the
LOC metamodel and even implies notions of functional abstractions (unique operators) and
object instances, i.e. variables or constants (unique operands), it is still not suited to model
the structure of modern software concepts like data abstractions and inheritance.
Furthermore, it does not capture the dependency links between operators and operands as
well as functions and variables. Concepts of coupling and cohesion within system
descriptions may thus not be measured.

�/ô Time of availability: In practice the Software Science metrics are restricted to
implementation and maintenance phases. Halstead proposed an extension to analysis and
design descriptions but these extensions were never put into practice.

�/í Rigidness: Whereas the notions of operands and operators are rather strict in theory,
the different programming languages still leave room for interpretation. It is e.g. not clear
how to proceed with declarative statements as well as with parentheses and other
separators. The token count is very sensitive to those interpretations and therefore
measurements with different guidelines must be treated with great care.

� "Non-Fakeability": As well as the lines of code, superfluous tokens may deliberately be
introduced into code in order to pretend high productivity rates.

Formal Assessment

The formal assessment is accomplished in two parts: first for the token count N, then for
the volume V:

� Counting: N is a simple count and therefore of absolute scale.

ô Single items: N may be counted for a single item.

í Sets of items: N may also be counted for sets of items without difficulties.

÷ Elemental items: The most elemental items for the token count are lexical tokens in
code. This a very fine granularity level and therefore supports the measurement of even the
slightest differences between programs. Because however there exist groups of tokens that
make up a single operand (e.g. <function name> ( , ... ) in C-style function calls) the token
basis may be too fine and token counts may differ where no essential difference exists.

û Dimensionally safe: Since only one kind of description item, the token, is counted, N is
dimensionally safe.

ø Dimensionally uniform: Because only one kind of description item is honoured, we also
have dimensional uniformity.

ó Sequencing: Resequencing of tokens is not relevant to N.

õ Naming: Renaming of tokens is not relevant to N.

ü Triangle condition: The triangle condition is fulfilled by N when using a token based
difference operation between pieces of source code.

Now we assess V:
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è Counting: V is not a simple count and its scale is therefore subject to discussion.

ô Single items: V may be measured for a single item but always yields 0 because the
logarithm of 1 is 0.

í/� Sets of items: V may also be measured for sets of items. Because of V’s dependency
on the whole set of tokens, i.e. the unique operation yields different results for different
sets, there is no formal relation between the value of V for the total set and for subsets.
This obstructs the use of V for partial measurements and percentage comparisons.

÷ Elemental items: The same comments apply as for N.

� Dimensionally safe: The dimension of V are bits of information. However, the
vocabulary used to determine the bit-basis varies from piece to piece of code. Values of V
may therefore not be arithmetically used without the greatest care.

ø Dimensionally uniform: Since only one kind of description item is honoured, we have
dimensional uniformity. But because of the dimensional unsafety, we cannot make use of
this uniformity.

ó Sequencing: Resequencing of tokens is not relevant to V.

î Naming: Renaming of tokens is captured by V, because the unique operation behaves
differently on renamed token sets.

ö Triangle condition: The triangle condition is not fulfilled by V, because the merged
vocabulary of merged pieces of code may increase the bit-basis leading to a greater value
than the sum of the values for the single pieces.

Practical Assessment

In practice, the length N and volume V are quite successfully used for effort prediction of
testing and maintaining software [OM92] in spite of V’s formal incorrectness. The volume
V definable as the number of binary decisions necessary to write a piece of code, does not
reflect the mental processes used by human beings which is based on chunking and tracing
(cf. 5.3). It therefore shows substantial weaknesses especially when applied to parts of code
and the overall code. Writing a single token is even considered being of zero complexity.

Summary

Halstead founded (without general acceptance though) a new branch of science he called
"Software Science". His texts are full of splendid ideas. Many other researchers have
however found errors in form and contents, so it’s not wise to use his work without care.
We also found serious flaws in one of his measures, the volume measure V. But the ideas
of operators and operands as well as unique operators and operands were used as a basis
for our metamodel entities of messages (= operators), actual parameters (= operands),
description objects (= unique operands) as well as methods and formal parameters (=
unique operators extended to cope with multi-token forms).

2.2.4 Albrecht’s Function Points

Allan J. Albrecht from IBM has presented in 1979 [AL79] a first version of Function
Points, a new kind of software metric. It basically differs from all other metrics because it
does not address the implementation layer but the user requirements or analysis layer.
Albrecht revised his definition in 1984. There is also an International Function Point User
Group [IFPUG] that defined several releases of counting guidelines. More fundamental
changes were made by Symons [SY93] in his Mk II Function Point Analysis (FPA)
proposition. The most valuable extension is currently Jones’ Feature Points [JO85] who
assigns complexity ratings to each user function instead of only assessing a system wide
complexity characteristic. We will present and assess the 1984 definition of Albrecht
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because of its most widespread use. The assessment statements are annotated for
substantial improvements in derivatives of the FP.

Metamodel

The metamodel of the Function Point metric views a system’s analysis as a triplet of 1) a
data, 2) a functional and 3) an informal part:

contains

is used in

does

Informal Part

Functional Part

Data Part

Characteristic

User Function

DE-SearchDE-ReadDE-DeletionDE-UpdateDE-Creation

Data Element (DE)

File

is referenced in

Figure 20: The Function Point Metamodel

The file (one might call it "persistent data store" using modern terminology) is the essential
concept of the data part. A file consists of several data elements (one might also say
attributes) which the system recognises as input from or output to any system user. Some of
those user data elements are read only. If all the data elements of a file are read only the
whole file is classified as "read only". Files are also classified as "easy", "medium" or
"complex" according to the number of plain data elements and the number of referential
data elements (also: foreign keys) they contain. This data metamodel represents a user view
of the information a system may store and/or (re)produce.

The user function is the central concept of the functional part. Within such a functional
element - which may correspond to a screen or report in an information system - some
subset of the data part is accessed in 5 different modes (CRUD and/or as a search
criterion). The files in such local access subsets are locally classified in easy, medium and
complex according to the same rules as above, but the data element counts are (obviously)
restricted to the local access subset.

Finally we have an isolated set of so-called system characteristics which make up the
informal system part.

Definition

The "top" formulae that define the "unadjusted system size" (usize) and the "adjusted
system size" (size) in FPs are:
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Globally viewed those formulas simply sum up the three main entity types (files,
screens/reports and characteristics) we saw in the metamodel. The sum is made up using
parameterised weights (denoted Pindex1,  index2 ). The weights in turn are defined based upon
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the file classification function (denoted emc() , returning one of the values "easy",
"medium" or "complex"), upon the file type function (denoted ro() , returning one of the
values "normal" or "read only") and upon the access types (cud = create, update or delete
(or "input" as Albrecht stated), r = read (Albrecht’s "output") , s = search (Albrecht’s
"inquiry")). The following table represents the most widely used parameter set:

easy medium complex

input (create, update, delete) Peasy, cud = 3 Pmedium, cud = 5 Pcomplex, cud = 7

output (read) Peasy, r = 4 Pmedium, r = 5 Pcomplex, r = 6

internal files (normal) Peasy, normal = 5 Pmedium, normal = 10 Pcomplex, normal = 15

external files (read only) Peasy, r/o = 5 Pmedium, r/o = 7 Pcomplex, r/o = 10

inquiry (selection) Peasy, s = 3 Pmedium, s = 4 Pcomplex, s = 5

Table 4: Historical Parameters for the Function Point Metric

The characteristics’ weights are defined by two parameters: Pbase is usually set to a value
near 0.7 and the sum of the values of the (informal) influence function is usually limited to
0.6. Thus the final size function varies in the range 1±0.3 of the usize function.

Usages

FPs are measurable on (detailed) requirement analysis models that follow the database
paradigm as set out by the metamodel. The FPs quite nicely predict the effort of the rest of
the software process [MO91]. In the empirical database used there the following linear-
quadratic approximation function for the effort in person days is reported:

effort = 0.6xFP + 0.001xFP2

These coefficients were gained from several 4GL developments and shows a ±15% bias.
For more details cf. chapter 4. The Function Points are also successfully used as a
productivity goal and measure. Industry surveys accomplished by DeMarco [DM88] and
more recently by Rubin [RUB96] show productivities ranging from 0.5 to 10 FP. These
ranges are partly due to substantial personal and technical reasons but also due to the biases
occurring when measuring FPs.

Metamodel Assessment

�/è Metamodel completeness: The metamodel is a good representation of what a user
sees of a database system. This view might also be called a "black box", requirements or
domain analysis view. The algorithmic processing part however is only taken into account
by one of the system-wide characteristics. Jones' Feature Points offer a remedy for this
weakness by allowing to assess the complexity per user function. As a drawback of the
metamodel we may consider its restriction to the software requirements layer, it is not
useful for assessment and estimation of purely "technical" tasks. Furthermore, it does not
allow the modelling of different situations of reuse, i.e. the existence of frameworks or
libraries for parts of the requirements formulated in the domain model (cf. 3.2.1 for more
details on our metamodel of reuse).

ô/� Time of availability: The FPs are measurable early within a software process.
However, it requires a fairly detailed domain analysis model with a specification of the
access types from user functions to user data elements. In the context of shortened
development cycles (e.g. prototyping cycles) one needs estimates and measurements before
such a detailed model is elaborated. Our empirical research shows that typically around
15% of the software process effort is spent on the elaboration of a domain analysis.
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Estimates - also in the context of project proposals, offers and contracts - should however
be obtainable with less effort (cf. our proposal for applying the System Meter for
preliminary analysis in 3.2.2).

� Rigidness: A rather weak point of the FP metric is its absence of rigidness. It may not
really be called an objective measure that could automatically be measured unless
(semi)formal requirements statements were available. According to [KE93] this leads to
high interrater and intermodel biases. The interrater bias may be observed when different
human raters count the same system. The intermodel bias is introduced by the weak formal
definition of the metamodel’s entities like "file", "data element" and - most of all - the "user
function". Different approaches to modelling, e.g. SA/SD modelling, ESA/MSA modelling
or OMT modelling yield very different results for the same systems.

÷ "Non-Fakeability": Because the user requirements are (usually) introduced in a reviewed
and stable manner, the possibilities for cheating on Function Points are low. The rather
opaque manual rating procedure however leaves some marginal possibilities open. When
requirements are gathered in a (semi)formal way, e.g. using CASE tools and the FPs are
measured automatically, then FPs are sound with respect to this criterion.

Formal Assessment

�/è Counting: Even though the FP definition contains historical factors to be summed up,
we may consider the unadjusted FPs an essentially counted measure, thus being absolute
scale. The final adjusted FP count, however, is not a counted value and therefore its scale is
subject of discussion.

ô Single items: The FP metric can be applied to single items of its metamodel except the
system-wide characteristics.

í Sets of items: Again the metric is well defined for any set of items except the
system-wide characteristics.

÷/� Elemental items: The granularity of items is sufficient except for the system-wide
characteristics which must be assessed as "monolithic" blocks for the whole system. Jones’
Feature Points remedied this deficiency for the complexity characteristic. The rest of the
characteristics remained system wide, though.

û Dimensionally safe: The unadjusted FP metric unifies files, data elements, data accesses
and user functions in order to render them summable. While this is semantically
questionable we may not formally state any flaw.

ø/ò Dimensionally uniform: Again except for the system-wide characteristics, we may
apply the FPs uniformly to all entities of the metamodel.

ó Sequencing: The ordering of the analysis artefacts is irrelevant for the FPs.

õ Naming: The naming of the artefacts is also irrelevant.

ü/ö Triangle condition: This condition is fulfilled for the unadjusted Function Points, i.e.
the FPs without the system-wide characteristics. When taking the characteristics into
consideration we, again, face some problems: first it is difficult to define a sensible
difference operator for the characteristics, second, depending on the difference operator
chosen, the condition may be fulfilled or not. If we take the maximum characteristic for a
combined system description, the condition is violated because the high value is multiplied
with the unadjusted part of the previously lower rated value, yielding a positive residual for
the combined system description. When taking the minimum value, on the other hand, the
condition is always fulfilled. Choosing difference and combination operators between the
maximum and minimum may yield any result, i.e. either fulfilling the criterion or not.
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Practical Assessment

A very positive aspect is the good empirical correlation to overall effort for database
application developments. This allows for fairly accurate and practicable estimation in this
area. Old fashioned terminology and unnecessary historical factors [KI93], however, make
the use of this measure difficult in modern environments. There is much room left for
interpretation. Some remedial evolvments were proposed to tackle this problem: cf.
Symons [SY93], Graham [GRA95] and Sneed [SN94].

Summary

The FP measure may be gained early in the development life cycle, i.e. as soon as a
detailed modelling of the user functions is done. The values correlate quite well with the
remaining development effort (our empirical database shows a 95%-confidence bias of
approximately ±20%, cf. 4.2.2). The FP measure, furthermore, is a good measure to track
the productivity of the analysis phase in a development project. It is also of use when
tracking overall development productivity as long as the inner complexity in the compared
projects remains approximately the same as it does for database applications.

The FP measure, however, shows quite a high "interrater" and "intermodel" bias. Thus
good estimating results can only be achieved when systems are modelled with the same
method and measured by the same persons. Furthermore, the FP measure is not applicable
to purely technical tasks and is only suited for the database paradigm.

Two well-known minor drawbacks of the FPM seem to be amplified in modern
environments: 1) the relative lateness of its availability (approximately 15% of the effort is
already spent) and 2) its ignorance of reusable components.

Finally the adjusted FP measure shows some formal flaws due to the mathematically
arbitrary incorporation of the system-wide characteristics. The unadjusted Function Points,
nevertheless, are formally sound.

2.2.5 Chidamber and Kemerer’s Object Oriented Metric Suite

Based on work by Morris [MORR89], Chidamber and Kemerer [CHI94] present 6 metrics
defined especially for object-oriented systems. Even though none of those metrics are
designed as true metrics of complexity but as descriptive design quality metrics, we will
briefly assess the metrics with respect to our metamodel evaluation technique. We did not,
however, assess them with respect to our (semi)formal criteria for complexity measures,
because they do not apply for quality measures.

Metamodel

The C/K measures are explicitly based on the WW-metamodel. The C/K measures
however only make use of the following part of that model:
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Figure 21: The Subset of the Wand/Weber Metamodel as used by Chidamber and Kemerer

We point to the fact that the C/K measures only consider the newly introduced instance
variables and methods of a class, instead of considering both the implemented and
inherited features. This was done so to be able to measure more easily the values on real
systems.

Definition

All C/K measures are defined for a single class and must be aggregated to give numbers for
a total system or subsystem.

In order to save space when formally giving definitions, we use the following abbreviation
for the metamodel concepts: S(c) = direct subclasses of a class, M(c) = methods in a class,
I(c) = instance variables in a class, M(m) = methods called in a method, C(m) = classes
used in a method, I(m) = instance variables used in a method. The 6 metrics thus are:

1) The weighted methods per class:

WMC = sumM(c) [c(m)]

In this formula c(m) denotes the weight (or complexity) for a method measured by
LOC or McCabe’s ν. When c(m) is set to 1, WMC equals |M(c)|, i.e. the number of
methods in a class.

2) The depth of the inheritance tree relative to a class:

DIT = 0: if S (c) empty
max (DIT (S (c))) + 1: else

3) The number of children:

NOC = |S (c)|

4) The coupling between objects:

CBO = |∪M(c)[C(m)] ∨ ∪I(c)[C(i)]|

5) The response for a class:

RFC = |M(c) ∨ ∪M(c)[M(m)]|

6) Finally the so-called lack of cohesion in methods:

LCOM = sumM(c) [lco(m)]

In this formula, the lack of cohesion lco for a single method is defined as:

lco = sumM(M-1(m)) [dis(m,mi)]
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Therein the disjointness dis of two methods is defined as:

dis = 1: if I(m1)∧I(m2) = 0
-1:else

Usages

All measures are mainly used as descriptive quality metrics for which thresholds may be
given in certain contexts (e.g. for C++ classes a CBO threshold of 20 may be reasonable for
more details cf. [LO94] or [HS96]). A recent revision of the COCOMO estimation method
[BOE95] has made use of the WMC and RFC metrics as a substitute for LOC. It was
however formally criticised by [ZU94] and does not improve the inherent flaws of the
method as explained in section 1.5.

Metamodel Assessment

è/� Metamodel completeness:

This metamodel roughly represents what object-oriented systems are (statically). However,
many facets that determine the inherent size/quality or complexity are not covered, for
example:

1 The "normal" objects are not covered. There generally exist some global variables in
a system which are neither classes nor class features nor methods. Those globals may
help to structure a system but may also be a critical element of bad system behaviour
(via "hidden" or overwhelmingly many couplings).

2 The distinction of which system elements belong to the measured system, the library
used and the language used is not modelled. Especially in object oriented systems the
limits of "what is what" tend to vanish. To have project control, nevertheless, we
must know which system elements were "constructed" in the project and which were
obtained from a library (or from the basic programming language, e.g. the control
flow methods).

3 The notion of the "scope" of a system element X, i.e. the set of system elements ≠ X
which may use (or even alter) X is lacking in the WW-metamodel. It is generally
accepted that software elements should be "opened" for use and especially for change
only to a minimal set of other software components. This minimal set may either be
the whole system (for constants this is of no harm but for variables this is
undesirable) or only a statement block (good for block (Smalltalk) or local (C/C++)
variables).

4 Desired "side effects" (like device write/read, persistency write/read, object
construction, alteration and deletion) are not modelled. Side effects make up two
things in a system: a) they are a good deal of the system’s functionality and b) they
are a good deal of the system’s complexity (e.g. write/read to a persistency device
("database") is a very wicked form of data coupling).

5 The distinction between denotational and implementational part of a system
component is not modelled (the denotational part of a method is its name and the
types of its formal parameters (i.e. its signature (C/C++), whereas the
implementational part of a method is the set of messages which make up its
implementation). This distinction is necessary to identify the effectiveness of some
implementation (small implementations are preferred).

�/ô Time of availability: All the metamodel items are established in some first
implementation phase only. Due to the nature of the metrics we cannot obtain them from
object-oriented analysis models or design models based on patterns. This critique is true for
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all metrics except the WMC, weighted methods per class. The WMC metric however
ignores many aspects of object oriented analysis models, e.g. the relationships between
classes and the non-method class elements.

í Rigidness: Besides the "openness" of the WMC definition, i.e. it is left to the
practitioner which kind of weight to use for method complexity adjustment, the C/K
metrics suite is unambiguously defined due to the clarity of the underlying WW-
metamodel.

÷ "Non-Fakeability": Due to the rigidness and structural complexity of the metamodel, the
C/K metrics may not easily be faked. This is a strong argument in favour of using the
metrics as objective quality indicators.

Practical Assessment

Some of the metrics (NOC, DIT, WMC, CBO) have proved to be of great value in
assessing object-oriented designs (cf. [SH93], [LO94]). For all of the metrics, however, it
is not possible to give generally accepted thresholds that would define good and bad
values. None of the metrics can be used as a sound measure of complexity except WMC.
WMC however ignores many aspects that contribute to complexity and is not rigorously
defined. LCOM is a very unsound measure for its intended purpose, because even very
loosely cohesive classes (according to the Law of Demeter) can yield very low values and
vice versa [HS96]. The use of RFC is still unclear.

Summary

Since no empirical data are available to the author, an assessment of the C/K measures can
only be made based on a discussion of the underlying metamodel.

The sum of the WMC measure for all classes in a system could be a rough indicator of the
effort/cost it takes to develop a system as they reflect some of the real "flesh" of a system
(cf. metamodel remarks 1 and 4). The usefulness of the WMC measure however is highly
dependent on how the methods are weighted. Moreover, as every C/K measure, WMC
comes too late for early estimation.

The traditional system quality notion of coupling is quite nicely represented by CBO, but
LCOM is not suited to measure cohesion (or its absence). Furthermore, in order to really be
quality measures CBO and LCOM should not be counts but relative measures that are
independent of the considered object’s size. As the measures are defined now, values of
small classes may not directly be compared to those of big classes. CBO and LCOM
furthermore suffer from the fact that they are defined only for classes, although methods,
instance variables, etc. also have their coupling and cohesion with respect to other objects.
These non-class couplings and cohesions also severely influence a design’s quality.

No C/K metrics are measures of quality in the sense that everyone agrees on which values
are "good" or "bad". Local guidelines must evolve if the measures are to be used as quality
assessment measures.

2.2.6 Other Approaches

Many other metrics than the ones just presented have been proposed. Only a few of them
are truly defined for object-oriented systems though. The author is aware of several
ongoing and partly finished research which may lead to new metrics [CHE92], [LA92],
[SH93], [LI92], [RO89]. We do however not discuss these approaches here, because they
are entirely focused on descriptive quality metrics.

Three recent proposals, however, explicitly address software sizing:
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1. Harry Sneed’s Object Point (or rather Data Point) metric is a simplification of the FP
metric which drops the functional part [SN94]. This is useful for database-oriented
applications, because it simplifies the modelling and measuring task, thus supporting
the criterion of low estimation effort. It does not address other requirements such as
the incorporation of a complete object-oriented metamodel (including reuse and non-
tiedness to database applications).

2. The Task Point metric is a development of the Swiss Bank Corporation of London
(contact: Mark Lewis, Bezant Ltd., Wallingford, UK) and is supported by a Task
Point Collection Club [SBC95] initiated by I. Graham [GRA95]. It can be seen as a
variant of the FP metric that has been terminologically adapted to business process
descriptions, but still essentially is equivalent to FPs. We therefore did not consider
the Task Points, which are a sound approach of their own, for our purposes any
further.

3. Henderson-Sellers' and Pant's S/C metric (size/complexity) is an implementation tied
combination of the metric LOC and McCabe's cyclomatic complexity. Even though
this approach is reasonable and led to an intuitive and easily measurable metric, it
still ignores some essential concepts (data abstraction, inheritance, information
hiding, reuse) of modern software engineering. Recent empirical studies  [HS96b]
showed that S/C does not perform significantly better than LOC or McCabe's ν with
respect to effort correlation. Furthermore it is measurable only after implementation
which is too late for development effort estimation. We adopted the idea of
evolutionarily combining known measures into a new one but tried to include more
concepts (e.g. the Halstead concept of counting token-based and considering unique
operands (=object instances), the FP concept of persistency operations, etc.). We also
added new aspects e.g. information hiding by separating the external and internal
complexity and reuse by differentiating between reused and newly built components.

2.3 Existing Measures and Metamodels for Software Processes

In this section we will briefly explain the most fundamental measures and underlying
paradigms for software processes, i.e. the (mostly) human activities that ultimately result in
software.

2.3.1 Effort, Duration and Staffing

Effort

The most prominent measure for the software process - as well as for any other human
process - is the effort. Effort may be defined as the expenditure of resources needed to run
the process from start to completion. It requires, as its metamodel of processes, a clear
view of what activities - and as a consequence what resources - belong to the process. The
metamodel therefore is that of a so-called "defined" process (cf. [HU89]) with a crisp
border distinguishing the inside and the outside:

Figure 22: The Effort of a Process (shaded area)

Effort is usually measured in units like man-months, man-days or similar metrics. We use
the neutral term person day (pd) as our base metric of effort. The pd definition honours
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effective process-specific work time only, i.e. without holidays, leaves for sickness and
other absences. Individual differences in productivity are not captured with this measure.
Instead we will introduce a specific productivity measure in 2.3.4.

Relations to other metrics of effort are given as follows:

Measure Relation to Person Days

person-hour (ph) = 1/8 pd

person-week (pw) = 5 pd

person-month (pm) = 20 pd = 4 pw

person-year (py) = 200 pd = 10 pm

Table 5: Relations between different Metrics of Effort

Because the measurement of effort is usually biased by local i.e. corporate-specific
reporting and accounting standards as well as by managerial issues (e.g. not reporting
overtime, no longer reporting effort on accounts as soon as they have reached budget, etc.)
we never indicate values of effort with more than 2 digits of significance.

Effort expenditure may also be expressed as a dimensionless number, the ratio of effort
spent to total effort estimated or budgeted. This ratio can be compared to the degree of
completion (cf. 2.3.3) for progress tracking.

Duration

Based on the same metamodel of a defined process, which has a well defined starting point
and a termination point on the time axis, we can define the duration as the elapsed time
between start and end:

Figure 23: The Duration of a Process (start to end distance)

Duration is usually measured in units like months, days or similar metrics. We use the so
called "elapsed" day (d) as our base metric of effort. The d definition includes the standard
work times between the start and end dates of the process. It is not sensitive to holidays or
other absences of individuals (it however takes into account corporate holidays). Relations
are given as follows:

Measure Relation to elapsed days

hour (h) = 1/8 d

week (w) = 5 d

month (m) = 20 d = 4 w

year (y) = 200 d = 10 m

Table 6: Relations between different Metrics of Duration

Measurement of duration is usually - as well as the measurement of effort - dependent on
local standards and biased by similar managerial issues. We therefore never indicate values
of duration with more than 2 digits of significance. In practice we usually took the date of
the official project kickoff-meeting as the start date and the date of official user acceptance
as the end date of processes spanning the full development life-cycle. For partial software
processes we used the official start and end dates of the covered phases.
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Elapsed time may also be expressed as a dimensionless number, the ratio of time spent and
total time estimated or budgeted. This ratio can be compared to the effort expenditure ratio
or the degree of completion (cf. 2.3.3) for progress tracking.

Team size

The last fundamental process metric, average team size, is derived from the two measures
above as follows:

 /
Figure 24: Average Team Size as the Quotient between Effort and Duration

Non-averaged team size is, however, a more complex parameter which dynamically varies
during a software process. Refer to the following subsection 2.3.4 for more details on
metrics and metamodels of project dynamics.

2.3.2 Cost and Revenue

The management of a Software Producing Unit (SPU) is usually primarily interested in
monetary data (measured in "metrics" like $, £, CHF, FF, etc.). The effort as defined in the
previous chapter 2.3.1 is the major component of a software process' cost. Because this
work's topic is software engineering and not cost management, we will not elaborate the
means of cost budgeting and controlling in detail. The following cursory comments on the
links between our instruments and cost control instruments will be everything one finds in
this document on this topic.

As already stated, the cost - to be precise: the direct cost - of a software process may be
primarily derived from its effort metric by multiplying it with a mixed or resource-specific
cost factor (i.e. including the direct costs of the resource(s) per unit of effort). Some casual
fixed cost directly attributable to the software process in focus, e.g. for specific
development hardware or software, should secondarily be added to the effort cost.

Definition of the revenue of a software process is often also directly related to effort
depending on the kind of contract between the customer and the SPU. In case of "body-
shop" contracts the customer pays directly per person day, i.e. effort expended, whereas in
fixed price contracts he usually pays on result delivery or in rates. The SPU's favourite
form of contract is usually the "body-shop" mode, because it transfers the risk of bad
estimates to the customer.

We may optionally extend a software process' revenue metric to revenues that are not
immediately linked to the process but nevertheless attributable to it, e.g. by adding some of
the maintenance contract sum to the previous development process. This technique,
however, tends to make things complicated, because the metric will no longer be
measurable immediately after process completion but only one or even more years later.

A third derived monetary parameter that can be measured may be called a project or
process cash flow, i.e. the difference between revenue and (direct) cost. Sometimes it is
very important to document the planned cash flow before a process has started because it
may (also in commercial environments) purposely be negative, e.g. in the case of so-called
"door-opener" projects.

To conclude this brief subsection on financial issues we state that 1) financial aspects
should always be treated and documented separately from the model based estimates of
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effort and 2) one should always keep the link - also if there is none - transparent and
documented.

2.3.3 Degree of Completion and Process Completeness

In order to understand the following two process metrics we have to extend our process
metamodel with the notion of the process result. For the sake of simplicity we ignore the
fact that there are possibilities of 1) multiple results and 2) intermediate results. The
practitioner has to deal with those notions in a similar way to the one explained for sub-
and span-processes (2.3.7). By incorporating the result into our process metamodel we
have included all product metrics as process metrics as well - we will make use of them
immediately.

Degree of Completion

The degree of completion of a process measures the state in which a running software
process is. It is based on a percentage comparison of the result achieved so far versus the
planned result. An analogy from construction would be to state "We are 50% done with
that wall.", when the wall is planned to be e.g. 12 meters long and 6 meters are done. We
formally define:

%C = size (result at work) / size (planned result)

In general, for an unstarted process %C is 0% unless we have some parts of the result
already prebuilt. For a terminated process the value is always 100% because we assume
that the planned result is explicitly or implicitly always adapted to reflect the current
reality.

Figure 25: %C, the Ratio of Achieved versus Planned Result

%C is a typical derived metric that makes use of a metric of size (or complexity). It
requires that this metric is applicable on result plans (or models) as well as on the result.
The scale of %C is absolute and dimensionless. It presumes that the scale of the base
metric is ratio or absolute scale and dimensionally safe.

When tracking project progress, this ratio is typically compared to the percentage of
expended effort and percentage of elapsed time.

Process Completeness

Another derived ratio metric is called process completeness or %P. It is - either at the
planned or actual level - the ratio of the results developed to the results foreseen in some
process template. This implicitly extends our process metamodel towards a quality
management metamodel (as outlined in 1.7) where every process and result follows some
standard or template. In practice we cannot define a standard software process that fits
every concrete case. In a special planning step called "tailoring" [HERMES95] the often
maximal template is cut down to the actual needs. In order to keep differently tailored
processes comparable, the effects of the tailoring are quantified as

%P = size (concrete results) / size (template results)
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Figure 26: %P, the Ratio of Concrete and Template Results

To give an example: when the template process defines that an object model and a dynamic
model should be elaborated, but we only elaborate the object model (because we have a
database application only), then %P will be some value around 40%. In order to give exact
values, the different template results that are cut must hypothetically be elaborated and
assigned a size, according to the original formula. This unsound step can be avoided by
assigning empirically determined %P values for each kind of template result. This
empirical %P value is calculated as the effort ratio of the result elaboration effort to the
total process effort. %P is then approximately definable as the sum of the empirical %P for
all the kinds of results that are not tailored away (cf. 3.3.3 for a list of template results with
empirically determined %P values, cf. 4.1.3 for details of %P measurement in our surveys).
%P can take on values from 0% to over 100%. Values over 100% can occur when
repetitive tasks have to be performed which are foreseen only once in the template, e.g.
when a user interface has to be translated into several languages or software has to be
installed at several sites.

2.3.4 Derived Measures: Productivity, Velocity, Acceleration, Inflation

For software processes (as well as other human processes) many measures may be defined
derived on top of the basic measures explained in 2.3.1 and 2.3.3. We present a few here
which we found to be useful in the context of our quality management system [MO94] and
for which we have gathered some empirical data.

Productivity

The measure of productivity P is naturally defined as the ratio of result size to process
"size", i.e. effort. It measures the amount of output relative to the input into the process.

P = size (result) / effort

Figure 27: Productivity P, the Ratio of Product and Process Size

This notion of productivity, however, which is measurable immediately after process
completion, may be too short-sighted. It can be optimised without producing really usable
and useful results. We therefore also introduce the notion of quality based productivity
which in turn is based on the empirical result quality Q. Q is the ratio of the size of the
unchanged parts of a software product after some time of usage (default = a year) to the
original size.

Qx = size (unchanged result parts after time x) / size (result)

Q = Q1

Figure 28: Quality Q, the Ratio of Unchanged versus Original Result



Measurement and Estimation of Software and Software Processes Existing Solutions

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 63

The obvious drawback of Q’s definition is its late point of measurement. It also requires the
metric of size to be applicable to subsets of results as well as supporting elements of fine
granularity in order to support crisp distinctions between unchanged and changed parts of
results. These requirements are part of our (semi)formal requirements list for metrics of
complexity (cf. 2.1.4) and we honoured them in the definition of the System Meter (cf.
3.2.1). Quality based productivity PQ is then defined as

PQ = P · Q

Our observations showed that P and PQ may differ significantly, typically PQ being 20%
below P. This means that in average projects, 20% of the originally released code (and
design and requirements) change within one year of production. Our empirical sample set,
however, is too small for statistical evidence. We assume that an industry wide survey
would yield lower values for this change rate, because our observed processes were highly
customer driven.

Velocity

Similar to productivity we define a process' velocity V as the ratio of result size to process
duration.

V = size (result) / duration

Figure 29: Velocity V, the Ratio of Product Size and Process Duration

Sometimes mere velocity is more important than productivity, because a product has to be
developed for some fixed deadline (e.g. the effective date of a new taxation law). It is
therefore important to distinguish between the two ratios. Often velocity is tried to be
raised by adding manpower to a late software project. But, as Brooke has observed in his
famous book "The Mythical Man-Month" [BR75] we may eventually observe that "adding
manpower to a late software project makes it even later". This is true for large teams where
the coordination effort exceeds the contributions to the desired result. As a consequence
from this "law" we observe that software development cannot be accelerated to unlimited
speed in spite of increasing effort spent on it. The exact empirical limitations and
correlations between acceleration and effort inflation (and therefore team size inflation)
become measurable using the two following measures:

Acceleration

Acceleration A of a software process is the ratio of 1) the estimated duration and 2) the
duration imposed by some fixed deadline.

A = Destimated / Dimposed

The measure only makes sense for values between 1 and 3. Values above 3 are beyond an
empirically observed [NO70][PU80] limit. This limit may be substantiated by the
following case: a piece of software estimated to take 10 person years simply cannot be
produced by 100 developers in one month. Values below 1, i.e. when the deadline is behind
the ordinarily estimated schedule will not affect the dynamic aspect of a process14 and are
therefore not of interest.

                                                
14 It has to be noted, however, that overly delayed processes (e.g. one person working for 5 years on a 5
person years project) will also have negative effects on productivity, i.e. will inflate it, too (cf. [DM83]).
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Figure 30: Process Acceleration A, the Ratio of Estimated and Imposed Durations

Accelerated processes typically require bigger teams to be established more quickly.
Overall effort, however, does not remain constant, mainly because of the increased
coordination demands of the bigger team. In order to empirically measure these effects we
define:

Effort Inflation

The inflation I of a process is the ratio of the effort under "pressure", i.e. for the accelerated
process to the estimated effort under normal conditions.

I = Eaccelerated / Eestimated

Figure 31: Inflation I, the Ratio of Accelerated and Normal Process Efforts

Theory and empirical studies conducted in the eighties [PU80] [DM82] have shown a
correlation between A and I as follows:

I = A2

We assessed this proposed correlation in four projects (cf. 4.2.4) and observed values in
rough accordance to it. In practice, however, when assigned the task of estimation and
scheduling, we seldom make use of those so called "dynamic cost models", because the
values of A are often only slightly above 1 (typically around 1.0 and 1.2). The imposed
schedules, furthermore, are within the estimation variance of the duration and we made it a
rule not to apply dynamic modelling in these cases. For a few more severe cases we did the
modelling with the result that the customer chose project proposals with less tight
schedules at reduced cost. We conclude that dynamic cost modelling is a usable instrument
for contract negotiation and it is used in step C of the ABC estimation strategy (cf. 2.1.1).

2.3.5 Waterfall Models

The task of developing software is complex. The overall software process is therefore
traditionally - and according to established techniques of project management - partitioned
into so called phases. The most commonly used phase model distinguishes between 4
phases that correspond to major indispensable results, i.e. � requirements engineering /
analysis, ô technical design, í implementation and test and ÷ maintenance. The fourth
phase of maintenance actually is a purely managerial phase that drives small cycles of the
previous 3 phases to adapt and correct software during software operation. The result of
some previous phase is the prerequisite of the follow-up phase as shown in the following
diagram:
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Requirements Analysis

Design

Implementation

Maintenance

Requirements

Design

Code
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Figure 32: The Traditional Waterfall Process Model

We thus observe - for phases �-í - a 1:1 relationship between phase and software product
layer (as introduced in 2.1.4). Those phases can be viewed and treated as sub-processes (cf.
2.3.7).

More schematically diagrammed, i.e. with the process or dynamic dimension on the Y-axis
(from top to bottom) and with the product dimension on the X-axis (from left to right), we
observe that the waterfall paradigm proceeds through the fields of software like wearing
blinkers, especially there is no prototypical looking forward:

P D A Co Re D

P

D

A

Co

Re

D

P = preliminary analysis, D = domain anaylsis, A = application analysis
Co = construction, Re = replication, D = delivery

(Temporal
Phases)

 Product Dimension (Model Layers)

Process
Dimension

Figure 33: The Waterfall Software Process in a Process-Product Diagram

In this figure we further refined the phase model according to OMT [RU91], SSADM
[SSADM90] and others. We split the requirements analysis phase into 3 stages of �
preliminary, ô domain and í application analysis which elaborate the three analysis layers
of � rough functional goals and system scope, ô the essentials of the "real" i.e. technology
independent system to be supported and í the specification of the computerised system.
Construction corresponds to technical design whereas the implementation and test phase is
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enhanced by the additional delivery phase which comprises acceptance tests, installation,
education as well as the organisational and technical preparation of the maintenance phase.
Waterfall models typically are problematic because none of the stages can profit the
experience of looking ahead to future layers. Especially application analysis may
completely be invalidated when the specified core concepts may only poorly be supported
by technical design patterns in the chosen implementation environment.

2.3.6 Spiral, Fountain and other Non-Waterfall Models

The first basic idea to improve the process structure, whilst not actually violating the
waterfall model, is not only to partition the process but also the product, i.e. software
system to be built. This partitioning, however, cannot be made before we have at least
some coarse model of the system at hand, so we can "cut" it into suitable pieces.
Preliminary analysis, therefore, may typically not profit from this technique. For each of
the system parts (usually called subsystems, versions or realisation blocks) a waterfall
process is instantiated. The benefits are that 1) the customer gets parts of the system earlier,
2) he can give feedback before the total system is specified and 3) the developers may reuse
and improve technical patterns from earlier cycles. This approach was chosen in the SOMA
life-cycle model [GRA94]. SOMA restricts the process instantiations on subsystems in a
time-box manner, i.e. each cycle is limited to say 4 months of development duration. From
our practical experience, we may highly recommend time-box cyclic development after a
system-wide domain analysis. If we split up the system earlier, we risk that the evolving
implementations prohibit the seamless incorporation of essential concepts modelled later.

In order to plan and estimate the processes for the subsystems, a useful derived product
metric is the part fraction %F:

%F = size (part) / size (total system)

Figure 34: %F, the Fraction of a System Part

This derived product metric requires a base measure of size (or complexity) that allows a
dimensionally uniform assessment of any system part, i.e. independent of its nature. This
requirement is reflected in our (semi)formal requirements list in 2.1.5 and is fulfilled by the
newly developed System Meter (cf. 3.2.1).

Spiral, Fountain and Pinball Models

More revolutionary than the system partitioning approach are three recent propositions by
Boehm [BOE81], Henderson-Sellers and Edwards [HS94] and Ambler [AM94]. The spiral
model of Boehm proposes the 4 phases of 1) setting objectives, 2) risk analysis, 3)
prototype/product development and 4) evaluation and (re)planning to be iterated until the
product is finished. It was observed, however, [BOE86] that this model is not suited for
building software under contracts because, one never knows when to stop iterating. This
problem is also known as "the customer always wants more" syndrome.
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Figure 35: An Unrestrictedly Cyclic Software Process in a Process-Product Diagram

Henderson-Seller’s and Edward’s fountain model is more realistic in the sense that it retains
some sequence, i.e. requirements study, analysis, system design, component design,
coding, unit testing, system testing. It furthermore allows that each phase is overlapped
with one or even two of the next phases before it is completed. Feedback from the later
phases may therefore "drop down" fountain-like into the result-pools of earlier phases. We
adopted a similar process model (cf. the restrictively cyclic model described in 3.3.2)
which is more formalistic though, maybe due to our ISO 9000 certified quality
management system [MO94].

Ambler [AM94] proposed an even less restrictive so-called pinball model where the
developer can chose at any time depending on arbitrary needs, from any development
activity (e.g. find classes, find attributes, program, test, define subsystems). This model
comes close to reality, we have to admit. However, in order to produce systems with a
predictable schedule and quality some more prescriptive standards have to be followed.
During small prototyping processes we may totally adhere to Ambler’s pinball model. For
the overall software process, however, we would not recommend it.

2.3.7 Sub-Activities and Span Activities

Sub-Activities

Phases and the activities within the phases partition the total software process. In a generic
view of this partitioning, we may observe super-activities and sub-activities. Let us
consider one activity (or process) P together with its sub-processes P1, P2, ..., Pn, e.g. the
domain analysis process with its steps of object modelling, use case modelling, dynamic
modelling and object model refinement.

Figure 36: An Activity with its Sub-Activities

With respect to the effort metric E we observe that

EP = EP1
 + EP2

 + ... + EPn

The duration metric is not as easily determined because sub-activities may overlap. But
here we are not interested in the aspects of time, because in practice the schedule for sub-
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activities is never established with mathematical or statistical means but always by
planning the actual resources upon their availability (i.e. considering vacancies, other
projects etc.).

Regarding effort, one observes that values for sub-activities are proportional to values of
super-activities. Especially for the phase efforts EPi

 versus the total effort EP we have:

EP1
 = l1 · EP

We empirically regressed the linear coefficients li of this proportional correlation for our
software process template called BIO (cf. 3.3.3). This correlation is itself a small
estimation model as defined in 2.1.3, i.e. one may either estimate the total effort from the
phase effort (e.g. derive the total effort from the effort of the preliminary or domain
analysis) or vice versa (e.g. when the total effort is given one may estimate the budget for
technical design / construction). Very often these small estimation models are used as
chained models (cf. 2.1.3) after some initial estimate as part of step C of the generic
estimation procedure.

In general the complete calculation for a sub-activity also takes into account the sub-
activity's process completeness %P and degree of completion %C as well as the subsystem
fraction %F. Thus, when the known value of the calculation is some given (or estimated)
effort Eb of some activity with linear coefficient lb over a subsystem with fraction %Fb, we
have for the remaining effort of the sub-activity i:

EP1
 = (Eb / (lb · %Fb)) · %FP1

 · %PP1
 · (1-%CP1

) · lP1

This may look complicated, but it is not; everything is purely linear. This formula15 is
useful for both: 1) productivity tracking of partially completed processes (and sub-
processes) as well as 2) estimating the remaining effort of partially or wholly incomplete
processes.

Span Activities

A special kind of sub-activity exists, however, that does not exactly obey the rules just
outlined: the span activity. The span activity is typically of supportive nature. It does not
belong to the actual core production processes. Examples of span activities are project
management and quality management. Those activities do not have an existence in their
own right, they depend upon the core activities. Their start and end dates adapt to those of
the super-activity, i.e. they "span" over the entire super-activity.

When doing calculations for span activities we can therefore not apply the same formula as
for sub-activities. Although we also have an empirically regressed coefficient lspan for the
span activity and its process completeness %Pspan, we need as input the total core activity
effort Ecore (which may be summed up from multiple efforts calculated with the formula
above) as well as lcore the sum of the non-span coefficients (which can also be calculated as
1 - Σlspani

). We then may use the formula

Espan = (Ecore / lcore) · lspan · %Pspan,

to calculate the effort of the span activity to support the remaining core activities.

                                                
15 Note that we consider percentages as values between 0 and 1, e.g. 0.5 equals 50%. This simplifies many of
the equations given in this thesis.



Measurement and Estimation of Software and Software Processes Existing Solutions

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 69





Measurement and Estimation of Software and Software Processes New Approaches

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 71

3 New Approaches

After having presented an analysis of existing solutions for estimation and measurement of
software and software processes in chapter 2, we will now present in detail our constructive
contributions to the topic. Our own new propositions are evolutionary i.e. based on some of
the most useful ideas previously published. The main idea we adopted to metrication was
that of metamodelling i.e. building (semi)formal models of the domain in focus. When
deriving new metrics from the metamodels we were additionally guided by the criteria used
to analyse the existing solutions. We also used metamodelling to define the software
process, i.e. a reference model for the software process. In this area we were not overly
restrictive in order to allow practical mappings from real software processes to the theory.

The new solutions, namely the BIO software process, have been in practical use in several
companies since 1993. The new metrics were, however, only used as an "ex post" means of
analysis and validation of themselves. Since June 1996 two metrics, the System Meter for
preliminary analysis results (PRE) and for domain analysis results (DOME), have been in
practical use as predictive metrics of complexity and as a basis for productivity tracking
and analysis.

3.1 New Generic Concepts of Estimation and Measurement

In order to stay compatible with existing approaches and knowledge, we adopted many of
the generic concepts presented in section 2.1, namely the ABC estimation strategy, the
calibration techniques and the techniques of chaining and backfiring. In the field of
metrication we found the AMI/GQM approach particularly useful but it lacks guidance and
means for developing completely new metrics. AMI/GQM instead, presumes that one can
chose from a list of pre-defined metrics. This gap was filled with our metamodel-based
metric derivation strategy. After defining this strategy, we found it useful for evaluating the
non-formal part of metrics, i.e. its meaning or semantics. In order to reuse the definition of
metrics for different metamodels (comparable to the definition of the measurement of
length for different real world objects) we also introduced and used a metamodel mapping
technique.

3.1.1 Derivation of New Metrics with Metamodels

Let us assume that the AMI/GQM method led to the question "What facts of a piece of
(object-oriented) code let us predict its testing effort?" in order to fulfil the goal "Improve
test effort estimates". The answer is obvious at first sight: the code’s complexity. But what
is that? A metamodel of the object in focus, i.e. the ’piece of code’ in our example, must be
elaborated in this case (as done in sections 3.2.1 and 3.2.2). The complexity metric should
then obey the constraint that every entity type and relationship type of the metamodel
should be accounted for. Other kinds of metrics, e.g. quality metrics, can also be defined by
using metamodels but should fulfil other kinds of constraints. We did not further
investigate in this direction.

Metamodelling is not a particularly difficult thing to do. It may be conducted as a regular
domain modelling process (cf. 3.3.3), e.g. using the two steps:

� Identification of the objects (classes) in the domain

ô Identification of the associations between the objects

The only possible pitfall is the fact that modelling itself is modelled. The domain objects
thus identified typically are classes, methods, messages, instance variables, etc. and the
domain associations are e.g. "a class may contain one or more methods", "a method may
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contain one or more Messages as its implementation". Ordinary models in contrast, deal
with real-world entities like customers, accounts, invoices, etc. One should therefore never
confuse the two terminologically overlapping areas of model and metamodel. One typical
remedy for this problem is attributing a metasign (like $) to the signature of the metamodel
objects. Because, however, we exclusively deal with metamodels here, we didn’t use any
metasigns.

The last step of metamodel-based metric derivation is to define the new metric in terms of
the elements found in steps � and ô, e.g. by defining a class’ complexity as the number of
methods it contains.

Derivation of a Sample Metric

In order to exemplify the metamodel based metric derivation technique we derive a metric
from the sample (meta)model given in section 2.1.7 on metamodelling. Formally denoted
the (meta)model is:

Population P L C bc co li≡ , , , , , , where
P p p p= 1 2 3, , ,...l q a set of people
L l l l= 1 2 3, , ,...l q a set of locations or places
C c c c= 1 2 3, , ,...l q a set of countries
bc L isBigCity IsNotBigCity: ,al q a function
co C L: ( )a℘  a function "country" with its inverse being definite
li L P: ( )a℘  a function "lives in" with its inverse being definite

Figure 37: A Sample (Meta)model Denoted Formally

We would now like to define a metric named %PinBC which stands for the percentage (%)
of people living in big cities (in a certain country). This may be accomplished with a
definition formula like:
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where U denotes the union operator on sets and  the cardinality operator on sets (i.e.

returning the number of elements in a set).

The metamodel-based technique is, however, not the only one for all kinds of metrics.
Especially dimensionless metrics, i.e. percentages or ratios, are as well defined using a base
metric of size (or complexity) and the following two strategies:

Deriving New Metrics from a Metric of Size

� The first case in which we may make use of a base metric of size to derive a new
metric is when a ratio metric for a subset or part of a global set of things is needed.
The strategy is as follows:

1) Set/Subset Search:

Try to formulate the metric’s idea as a set/subset sentence, e.g. the external coupling
of a class may be formulated as the ratio of the subset of externally coupled elements
(the class itself, its methods and features (= class and instance variables)) to the total
set of class elements.

2) Abstraction Search:
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Find the nearest abstraction A that encompasses all the kinds of elements used in the
set/subset statement. E.g. a class, method and feature are different things but all may
be viewed as software components which then may serve as the abstraction A.

3) Metric of Size Search:

Finally, try to find a metric of size SA for A. The new metric NM is then definable as:

NM ≡ SA (subset) / SA (set).

ô The second case we may use a metric of size is when the anticipated derived metric
compares two different things. E.g. if one wants to define the velocity of a software
engineer, one may proceed in two steps:

1) Analogy Search:

Try to find real world analogies, e.g. in physics, and map them to the software
engineering domain: e.g. time t maps to the elapsed time tp of a software process and
distance d to the size metric ssw (having the property of a mathematical metric as
explained in 2.1.5) of the changes the software engineer has made to some software
artefact.

2) Define Metric in Real World Analogy and Map Back:

Then define the metric in the real world domain and use the mapping to derive the
analogous metric in the software realms:

velocity = d/t   Ø   velocitysoftware engineer = ssw/tp

3.1.2 Assessment of Metrics with Metamodels

In section 2.1.6 we elaborated formal requirements for metrics assessments and used them
in 2.2 as part of our analysis of existing metrics. Formal assessments were also - more
rigidly though - done by others like Zuse [ZU91] [ZU94] and Fenton [FE91] [FE92]. The
most widely used criteria set of Weyuker [WEY88] furthermore was shown to be
contradictory in itself ([ZU91]). We therefore did not focus on this formal approach which
seems to be of limited practical use. Instead we tried to assess the metrics against their
underlying semantics. A metric’s semantic or meaning, however, may be viewed as equal to
its metamodel, which is defined as follows:

metamodel of a metric ≡ minimal set of meta-classes and
meta-associations appearing in the metric’s definition

The second component of the metric metamodel assessment technique consists in
elaborating or obtaining a reference model of the thing to be measured. In the context of
software, i.e. models of systems, this reference model is a so-called metamodel. It is
derived independently from any metric. We may then assess a metric with respect to four
semantic criteria:

� The metric metamodel may be compared for completeness with the reference
metamodel. In this context completeness means that every meta-object and meta-
association should be included in the metric’s definition, i.e. should also appear in the
metric’s metamodel. The inclusion of meta-constructs in a metric metamodel needs
not be direct, i.e. there may exist rules that map associations A1 of one kind to
associations A2 of another kind. We then only have to show that the metric measures
A2. The same indirection may be applied to the meta-objects (= meta-classes).

ô The metric metamodel is also assessed as to its time of availability within the
software process. This criterion is especially important for predictive metrics which
should be available as early as possible. Because the time of availability of a metric
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entirely depends on the time it takes to elaborate its underlying objects, i.e.
metamodel, we only need to consider the latter’s behaviour with respect to this
criterion.

í The soundness of the metamodel is also assessable. We are especially concerned
about language and modelling independence. Language independence is important
for the comparability of values as well as for controlling heterogeneous projects.
Very often systems are not modelled and implemented in a single language but with
specialised languages for the database part (e.g. SQL), for the GUI part (e.g.
Smalltalk), for large server transactions (e.g. COBOL) and for system management
(e.g. some Shell-language of the operating system). Modelling independence is the
same as programming language independence but for the higher software layers of
requirements analysis and software design. Estimation biases and productivity
measures will be inherently flawed when the metric’s metamodel is not reasonably
rigid.

÷ Finally, the metric metamodel is also assessed as to the criterion of "non-fakeability".
Productivity programs are reported [DM82] to have failed for this reason. An overly
simplistic metamodel and counting procedure, like the LOC metric, may be
obstructed by "clever" software engineers. They simply write code generators to
simulate a high productivity.

We have seen that the procedure of deriving metrics based on metamodels (as outlined in
3.1.1) may also be used backwards: For a given metric the minimal domain model is
constructed and then compared to an independently developed domain model of the
metric’s intention domain. For example the simplistic LOC metamodel may be compared to
a comprehensive domain model of (object oriented) software. Refer to section 2.2 for an
application of this assessment technique to various existing metrics.

3.1.3 Metamodel Mapping

Looking at the various ways, i.e. metamodels, of programming and modelling software, the
search for a "unified" metric of size seems like an impossible task. Several parallel
attempts however can also be observed, e.g. the unification attempt of the various software
constructs as components and the modelling unification attempts by Rational [RA96] and
the OPEN team [OPEN96].

We developed and made use of a technique called "metamodel mapping" to be able to
reuse the same metric definition for several metamodels. The base component of this
mapping technique is a tolerant and complete metamodel of the domain in question, i.e. the
software artefacts in our case. The properties of tolerance and completeness are defined as
follows:

1) A metamodel is tolerant when it does not require all its meta-classes and meta-
associations to be actually used in a certain instance. The system metamodel as presented
in 3.2.2 e.g. may also be used for conventional non-object-oriented software by simply
omitting the use of class and feature concepts. Methods are interpreted as plain procedures
in this example, i.e. as purely functional abstractions not belonging to a class. Metamodel
tolerance is achieved by not enforcing 1:1 or 1:m cardinalities on the meta-associations but
instead metamodelling them as optional c:1 and c:m cardinalities.

2) The second property is the completeness of a metamodel. In the example of software
or system metamodels this means that every information of other metamodels may be
contained. The semantic completeness is typically demonstrated by constructing a complete
mapping of any source metamodel into the target metamodel. If this mapping is possible
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without losing information, i.e. if it is reversible, the target metamodel is complete with
respect to the source metamodel. For example a domain class from the domain analysis
metamodel layer which is modelled without its attributes, may be mapped into a class of
the System Metamodel SMM (cf. 3.2.2), which, of course, has attributes. We always use
the SMM as the mapping target and all the metamodels we investigated could be mapped
to it. We therefore assume - as a working hypothesis - that this metamodel is complete for
the software or system domain. Note that the mappings should not be confused with
implementations. For example a domain class may be implemented using a full-fledged
technical class. The mapping, on the other side, is done only to the role of a class. A
complete metamodel therefore has to offer a sufficiently rich set of roles in order to allow
mappings from all possible other metamodels.

We make use of the metamodel properties of tolerance and completeness for reusing
measure definitions: Every measure defined for a tolerant and complete metamodel is also
definable for metamodels that are mapped into it. In the case of system descriptions the
SMM is tolerant and complete, i.e. the metamodels of the higher level system descriptions
may be mapped to it. In order to get a measure XY for layer i we first have to apply the
metamodel mapping from layer i into the SMM and then apply the measure XY for the
latter as shown in the following diagram:

metamode l of
layer i re al numbe rs

the  syste m
me tam odel (S MM)

measure XY(layer i)

= measureXY ( map (layer i, SMM)) 

map (layer i, SMM)  measureXY (SMM) 

Figure 38: Measuring any SMM-defined Measure XY on System Description Layer i through
Combination of the Mapping and Measurement Functions

To give an example for this technique we may look at the metamodel for preliminary
system descriptions (cf. 3.2.7) and the newly defined measure System Meter (cf. 3.2.1).
First, the System Meter is defined for the full-fledged SMM. The metamodel for
preliminary system descriptions is then mapped into the SMM. The System Meters for a
preliminary system model are thus measured by first mapping the model into SMM-objects
and then applying the measurement rules. In the forthcoming section 3.2 we will first
define the System Meter for the SMM (in 3.2.1 and 3.2.2) and then define it for all the
other software engineering layers using the metamodel mapping technique (in 3.2.3-7).
Each metamodel mapping is made explicit in a separate subsection.

3.2 New Measures and Metamodels for Software

This section documents our main constructive contribution to the domain of measurement
and estimation of software and software processes. We propose a unified new measure of
complexity and size, the System Meter, for a generic metamodel of system descriptions.
Based on metamodels for other layers of software artefacts and on the metamodel mapping
technique (cf. 3.1.3), we also defined the System Meter for more specific purposes. The



Measurement and Estimation of Software and Software Processes New Approaches

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 76

two earliest versions of the System Meter (for preliminary and domain analysis) were
validated in an extensive field study (cf. chapter 4).

Layering of Software Artefacts (=Metamodel Object Types)

In order to understand the different layers of software used in our metamodelling they are
summarised in the following table. Refer to 3.2.3-7 and 3.3.3 for more detailed
information.

Layer# Name and Description Metamodel Object Types

1 Preliminary Analysis
Describe the rough scope of the future system and derive (rough)
functional goals the future system has to fulfil. The preliminary study
layer is comparable to OMG’s strategic modelling layer [OMG92].

goals, data subject areas

2 Domain Analysis
Describe the logical system’s objects as if there were no computers
around (i.e. "the system’s underlying physics") and describe its activities
in an event driven way (use cases). Define what logical objects are used
by the use cases in what way (creation, read, update, delete, and other
function types) and refine some goals from the preliminary study into
more precise requirements. This layer describes what OMG calls domain
objects within the analysis modelling layer.

domain class, domain
association, subsystem, use
case, actor, non-functional
requirement

3 Application Analysis / Specification
Define the border of the automated system within the logical system
description. Describe the automated system’s objects (= application
classes) and the user’s view of the system by specifying the models, i.e.
the usage views of the object model in certain contexts (reports,
windows). Try to identify and reuse types of specification triplets (model,
view and controller types). This layer corresponds to the design
modelling layer of OMG’s reference model. The aspect of reuse is
emphasised through the notion of reusable specification types.

models, model types,
view types, controller
types, application classes,
application class elements,
reused elements

4 Design / Construction
For each specification type define at least one design pattern (consisting
of cooperating sets of technical class, feature and method specifications)
that describes a suitable implementation strategy. Like the specification
types the design patterns are candidates to be reused from a library. For
each design pattern describe a fully functional sample implementation.
Refine the application class model into a (tuned) technical model and
eventually into a relational model for persistence. This layer corresponds
to the implementation modelling layer of OMG’s reference model.

design pattern, technical
class, feature, method,
formal parameter, table,
column, reused elements

5 Implementation / Replication
For each client specification elaborate a tested and tuned implementation.
As a basis for the implementation the design pattern corresponding to the
specification’s type is to be instantiated i.e. replicated. Tune the relational
model and eventually implement server procedures. This layer
corresponds to the construction and delivery layer of OMG’s reference
model.

object, class, feature,
method, formal parameter,
message, actual parameter,
reused elements

Table 7: The 5 Layers of Software Artefacts

As a refinement to the traditional waterfall software process model (cf. 2.3.5) and layering
of software (cf. 2.1.5) we split the requirements analysis layer into 3 distinct layers. This
allows for rapid and prototyping based developments as well as sound estimates earlier.
For each of the 3 analysis layers a separate prototyping cycle may be instantiated to support
the stabilisation of the requirements.

General remarks on metamodelling software artefacts

In order to establish metamodels that are useful for software engineers we had to analyse
what the software engineer’s job is. Obviously a software engineer builds software systems.
But what he ultimately does is writing text and/or drawing diagrams. So we would say that
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he describes a system (as a synonym: he models a system). Therefore we state that he
builds a system model rather than a system. Even when he is writing compilable code this
is just an abstraction or model of the systems that are actually taking inputs and produce
outputs, i.e. are executed on some machine. The results and items of software engineering
are therefore system descriptions and the metamodels presented here reflect those.

The structure of the following subsections

Our newly proposed software metric, the System Meter (subsection 3.2.1) is presented in a
similar manner to the presentation and analysis of the existing measures in section 2.2, i.e.
1) the metric’s metamodel, 2) the metric’s definition, 3) intended usages, 4) the formal
metric assessment and 5) a summary. The derivative System Meter definitions (subsections
3.2.2-7) for the other layers may then be presented in an abbreviated scheme, i.e. 1) the
metric’s metamodel and 2) the metamodel consistency rules. Because we reuse the metric’s
definition, we can rely on the assessments in 3.2.1 for all the other variants of the System
Meter.

3.2.1 The System Meter

Premises

As we have seen in section 2.2 the mainly used or recently proposed existing measures
suffer from several drawbacks: they either are too simplistic (LOC), historically overloaded
and database-tied (Function Points) or non-standardised and not size oriented (the C/K-
Metrics, representative for virtually all the recently proposed object-oriented measures). In
order to avoid the drawbacks observed among the discussed measures the following
premises were adopted:

� The definition should be accomplished over a sound metamodel of software systems.

ô The metamodel should be tolerant and therefore generic (cf. 3.1.3), i.e. encompassing
both object oriented and conventional systems.

í The metamodel should incorporate aspects of reuse.

÷ No historically influenced parameters should occur in the measure’s definition and it
should be language and modelling independent.

û The metamodel should be complete (cf. 3.1.3), i.e. encompass every kind of system
description entities (e.g. classes. methods, objects, parameters, messages, ...) and
their associations (e.g. class inherits from (super)classes, method belongs to class,
method is implemented by messages, ...).

Additionally all of the 9 formal requirements elaborated in 2.1.5 were reflected in the
metric’s definition.

3.2.1.1 The System Metamodel (Part I)

A system description is viewed as a set of description objects. The notion of a description
object is an abstraction for the more concrete items introduced in part II of the System
Metamodel. The kinds16 of those items (classes, methods, features, formal parameters,
messages, object instances, actual parameters, as well as several subcategories) are not
necessary to be known for understanding the System Meter definition. Refer to section
3.2.2 for a detailed description of the complete System Metamodel, i.e. the typical meta-

                                                
16 Actually those various kinds (Greek: polyios morphe) are nothing but a polymorphic structure below the
abstract concept of the description object. We therefore may claim that we applied object technology to
software engineering itself.
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types occurring in full-fledged object-oriented systems. The first, abstract part of this
metamodel, however, has less facets and may be diagrammed as follows:

project ~library ~language ~

DESCRIPTION
OBJECT

name

isWrittenBy

Figure 39: The System Metamodel (Part I)

At first sight, our metamodel may seem as simplistic as the LOC metamodel. Actually we
intentionally chose a simple metamodel to achieve similar intuitiveness and formal
behaviour as the LOC metric. In addition, however, to the LOC metamodel we introduced
three enhancements:

� The description objects are linked. For each description object the set of other
description objects that it depends on is identified. This association may also be
viewed as a "description object writes description object" association with the
"description object is written by description object" reverse association (diagrammed
as the "isWrittenBy" edge). The cardinality of this association is mc:mc (cf. [CH76]
for this notation), i.e. one description object may write several others and it may be
written by several others. The most typical example is that of a variable X which is
assigned possibly several times the values of literal constants, other variables or
expressions:

Example of a description object X  (C++):

{ int X = 0; // creation i.e. the first write access, of X

X = SOME_GLOBAL; // update i.e. a subsequent write access of X

} // deletion i.e. the last write access of X)

X viewed as a description object depends on the other description objects that appear
in the writing messages, i.e. by the literal 0 and the global variable SOME_GLOBAL.
We say X "is written by" the other objects. This notion is a generalisation of the idea
of slices developed by Weiser [WE81] and recently used to define a quality metric of
cohesion by [BI94].

ô Furthermore, every description object has an external part, its name, and an internal
part, its implementation. The name actually is optional, i.e. there also are anonymous
objects (e.g. the elements of an array) that contribute to a system’s description. The
name, if present, serves as a means to reference a description object after its creation.
A class, e.g., once created is referenced through its name when used for object
instantiation or inheritance (or whatever else one can do to or with a class). The
implementation part is equal to the isWrittenBy association described under point �
above.

í Finally, every description object is categorised into being reused either 1) from the
language system, i.e. from a predefined set of highly standardised description objects
or 2) from some library system, i.e. from a set of less standardised components. The
third category 3) are the newly established descriptions that are specific for the
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project. Refer to the following subsection 3.2.1.2 for a more detailed discussion of
our modelling of reuse.

Less formally diagrammed than in figure 39, the situation when focusing on a single
description object may be depicted as:

name

implementation

Figure 40: A Description Object together with other Description Objects

In this diagram the isWrittenBy associations of the object in focus to the subset of other
objects which determine its implementation are denoted by arrows. We immediately see
that this association is equivalent to a component’s coupling (cf. [ME88], [YO79]). This
implies that our new metric incorporates some parts of the quality aspect of coupling.
Because, however, our focus lies on estimation mere sizing, we did not further elaborate
towards assessing quality with the System Meter. Refer to section 5.2, the outlook to future
work, for a more detailed discussion of this topic.

3.2.1.2 A Metamodel for Reuse

As may be seen in figure 39 every description object is categorised into "language",
"library" and "project". This categorisation forms our metamodel of reuse. Again we
honoured the KISS17 principle in order to keep our new metric intuitively understandable
and usable. The three categories are:

� Language description objects are distinguished from the library objects by the fact
that they are highly standardised As an example we may list all the C++ language
constructs, e.g.:

1) class, which is a (non-explicit) meta-class whose instances are the "normal"
C++ classes

2) int, which is a (again non-explicit) class whose instances are objects

3) while (<expr>) do <stmt> ; , which is a decision/branch method

ô The library objects are all components which are built on top of the language objects,
but which are not (!) elaborated - in the sense of the isWrittenBy association, i.e.
neither created, updated nor deleted - in the software process, i.e. project in
consideration. Usually frameworks are considered an enhanced form of libraries that
also allow the reuse of component cooperation (e.g. classes are statically and
dynamically dependent on each other in specific ways). In practice the distinction of
what is a library and what is a framework is fuzzy. Even seemingly flat libraries
presume certain cooperation and interconnections between the data structures they

                                                
17 Keep it Simple, Stupid
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operate on, and - on the other hand - even the most complex framework encapsulates
its functionality in methods, i.e. method signatures. Because our metamodel also
includes the links and method signatures as description objects (cf. 3.2.2 for details)
the gradually varying cooperation complexity of libraries and frameworks is
captured.

í Every other description object is viewed as being of category "project". Project object
may depend in more or less complex ways on reused components as well as other
project-specific components. Because the links - in the form of messages - from the
newly built to the reused description objects are part of the isWrittenBy association
of our metamodel we also encompass this kind of complexity.

The process and strategies of reuse

Reuse is considered to be one of the most promising aspects of object technology (OT)
with respect to productivity and quality gains [SE89]. It is however not automatically
achieved when applying OT. First, it should be a managed process as defined e.g. by the
BIO software process (cf. 3.3.3). Second, it should be introduced not only on the technical
layers of design and implementation but earlier at the requirements stages [HA95]. On the
domain analysis layer we may reuse components in the form of so called Business Objects
[FI96]. The latest point when one must incorporate reuse into a system is in the application
analysis or specification layer. After a system’s behaviour to the user, for instance the GUI
behaviour, is specified against all previously defined - and therefore technically supported -
standards, we may no longer profit from reuse in the later layers.

Categories of reuse

Reuse - applied on whatever layer - may furthermore be categorised into (according to
[KA92]):

� verbatim reuse, i.e. reuse without change to the original component

ô generic reuse, i.e. reuse by parametrised instantiations of classes (e.g. C++ templates)

í leveraged reuse, i.e. reuse with modifications (e.g. through inheritance)

Orthogonal to those three categories we may further categorise reuse into

� direct, and

ô indirect, i.e. without or with intermediate "wrapper" objects.

With respect to software processes all these kinds of reuse may, however, be reduced to
being either verbatim or being no reuse at all. First, generic reuse will not change the
instantiated template, i.e. is verbatim, whereas the instantiation is not reused but must be
defined in a project-specific way. Second, reuse with modification through inheritance also
does not change the superclass. The inheritance statement as well as the new subclass, on
the other hand, are specifically described for the project, i.e. not reused. Furthermore, when
modifying the code of a framework, the modified parts shift from the library to the project
category. This shift can be accomplished with a very high-resolution granularity using the
elements of our code layer metamodel (cf. 3.2.2), e.g. on a single message or even single
actual parameter basis. The distinction of direct and indirect reuse is also only of technical
relevance but becomes transparent in our metamodel. If the intermediate objects are
developed within the software process in consideration they are not reused, i.e. of category
"project", if not, they are reused verbatim, i.e. being of category "library".

One additional mode of reuse which is observable daily in practice, however, was not
mentioned by Karunanithi and Bieman: the technique of copying and adapting code
skeletons or entire code sequences. This simple yet powerful way of reuse is notoriously
difficult to track because the source, i.e. the code parts copied from, is not identifiable ex-
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post. Due to the high granularity of our metamodel - and therefore our new metric - we
would conceptually be able to measure the modifications with respect to such templates.
Practical means are however difficult to implement and were not elaborated in our work.
They could be established on a method or class level by interpreting certain naming
conventions, e.g. all classes beginning with "controller_" would be treated as modifications
to a generic "controller" class template.

Summary of our reuse metamodelling

In summary we may claim that our at-first-view simplistic metamodel of reuse can capture
virtually all grades of (verbatim) reuse due to the high granularity of the metamodel
entities. Reuse on the requirements layers is also supported through the metamodel
mapping technique. The category of "library" components for requirements items must
however be interpreted in the more broad sense that they 1) may be actually reused on the
requirements layer or 2) are entirely supported by existing technical design and
implementation constructs. We evaluated our metamodel and metrics of reuse for a sample
set of framework and subsequent reuse software processes in our field study (cf. 4.2.2) and
observed a promising practical behaviour of our ideas.

3.2.1.3 The System Meter Definition, Intended Usages and Assessment

The definition for singular description objects

The counting of System Meters for a single object is made up of two parts: the external part
and the internal part:

The external part, i.e. the externally visible complexity of a description object is made up
of the name of the object, provided the object is not anonymous:

name

Figure 41: The External Complexity of a Description Object

The complexity of a name in turn is - intuitively speaking - correlated to the difficulty of
remembering it. This in turn has to do with the number of "new elements" within the name
compared to a set of "known elements". We may thus formally define this idea of external
size as:

externalSize (o) ≡ isNotAnonymous (o) ? numberOfTokens (name (o)) : 1

where the operator <bool-expr> ? <expr1> : <expr2> returns <expr1> if <bool-expr> is
true and <expr2> otherwise, and the function numberOfTokens returns the number of new
tokens in the name (but at least 1). This accomplished based on a lexical name analysis and
comparison to the tokens already encountered in the system description sequence as
follows:

� The "starter token set" is established as all language reserved words. As a
consequence of this rule every language object gets an externalSize of 1.

ô Before counting the tokens in a name, the "new token set" is defined as the strings in
the name that are separated by the following rules: 1) by case (e.g. theSetOfStrings is
tokenised into ’the’ ’set’ ’of’ ’strings’), 2) by separator characters (_, -, @, !, :, etc.),
those characters are eliminated but if more than one kind of separator is used within
one name, the extra separator kinds are counted as tokens, 3) by groups of n numbers
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(e.g. groups of a maximum 3 numbers are viewed as one token) and 4) by changing
from numbers to alphabetic characters (e.g. Eta01 → ’eta’ ’01’).

í Now the "new token set" is compared to the "starter token set". The number of new
tokens + 1 is returned as the functions value.

÷ Finally, after counting the tokens, the "new token set" is joined into the "starter token
set".

More straightforward counting rules - like for example counting the number of characters
in a name - were not considered because they are too easily "faked" (cf. criterion 4 in 3.1.3)
and they do not reflect the psychological complexity of names [LE94].

The internal part, on the other hand, is made up of the recursive isWrittenBy association
and may be measured using the external size:

implementation

Figure 42: The Internal Complexity of a Description Object

It is intuitively "bigger" the more objects participate in a description object’s definition. A
variable, for example, may be considered more complex the more often it is assigned a
value. This, besides, is one reason for the good engineering practice of declaring
description objects, such as variables, as constant. The formula for this second System
Meter part thus is:

internalSize (o) ≡ Σx∈o.isWrittenBy () externalSize (x)

The total size of a singular object is the sum of those two sizes:

Size (o) ≡ externalSize (o) + internalSize (o)

Informally we may state that the more complex a description object’s signature is and the
more the object depends on other description objects the "bigger" it is.

The definition for sets of description objects

When measuring sets of objects, i.e. whole systems, the aspect of reuse becomes relevant
because whole systems usually consist of reused and newly developed parts.

The categorisation into "language", "library" and "project" objects is used in the definition
of the size of a system as follows:

Size (System) ≡ Σo is library object externalSize (o) + Σo is project object Size (o)

As we can see, the language objects are not counted at all. The library objects are counted
with respect to external complexity only, and just the project specific objects are counted in
full. This corresponds to the fact that the (programming) language is a usually stable and
well understood "commodity", the library - just the interface is considered - is less stable,
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more specific and therefore more complex, and finally the newly developed objects are
least stable, their interface as well as implementation undergo all development micro-
cycles and therefore generate the most effort. The System Meter thus - also making use of
the fine granularity of the description object notion- can measure virtually every gradation
of reuse.

Intended Usages

The generic concepts underlying the System Meter allow this measure of size to capture the
idea of description complexity. Due to the metamodel mapping technique (cf. 3.1.3) it is
measurable for virtually any language and modelling technique and any layer. The main
usage which was also validated in a field study (cf. chapter 4) is development effort
estimation for software projects. In order to support this usage, which requires a very early
metric application, we had to use the System Meter for the layers of preliminary analysis
and domain analysis. Immediately tied to estimation is the second usage for productivity
tracking and analysis which was also validated. The positive results of this practical
validation and the good formal attributes (cf. the assessment below) of the new metric
encouraged us also to use it for deriving quality metrics. This usage, however, is only
theoretically done and the practical validation, which will probably have some impact on
the theoretically derived formulae, is part of our ongoing research in this area (cf. 5.2).

Formal Assessment

� Counting: The System Meter is a simple count and therefore its scale is absolute and
every arithmetic and statistical operation may be applied safely.

ô Single items: The System Meter may be measured for single description objects.

í Sets of items: The System Meter is also measurable for sets of description objects.

÷ Elemental items: The System Meter is defined for the most elemental items in software
engineering, i.e. for object instances, messages and actual parameters (cf. 3.2.2), as well as
for more high level concepts like classes, instance and class variables, methods and formal
parameters.

û Dimensionally safe: The System Meter is dimensionally safe because in its definition
only one kind of items, i.e. name tokens, are counted and summed up.

ø Dimensionally uniform: The System Meter is dimensionally uniform because all the
various kinds of software engineering items are mapped to or subtypes of the notion of
description object for which the metric is defined.

ù Sequencing: The System Meter is sensitive to the sequence within system descriptions
because the token counts are based on the set of already known tokens. This set may be
different if an item is introduced at another place within a system description thus yielding
a different rating.

î Naming: The System Meter also takes into account for the naming of system description
objects by yielding the number of (new) tokens as the external size part.

ü Triangle’s condition: If we use a token based difference algorithm to yield the two sets
of subtracted and added tokens for any two pieces of code x and y and sum up the System
Meter values for the two sets to obtain d (x, y), then the triangle’s condition of d (x, z) ≤ d
(x, y) + d (y, z) is always fulfilled. In case the direct difference operation between x and z
should yield bigger sets, we can consecutively apply the difference sets of x to y and then y
to z and add their sizes to achieve equality. It is however important to note that the System
Meter values for the singular values should be determined on the whole descriptions, i.e.
before the difference operator is applied. If we do not proceed like that, the omission of a
single token X could enhance the rating of the token count of the following tokens. Thus,
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the overall count for the set without X could be bigger than the value of the same
description including X. While this metric behaviour makes sense for semantic omissions
(it is, e.g., more complex to understand a C++ class implementation file without the
header) this is not true in the context of token based difference operators.

3.2.1.4 Summary of the Concepts of the new System Meter metric

The newly proposed System Meter is based on the notion of a so called description object,
which forms the abstract base class for richer part II of the System Metamodel (cf.
3.2.2.10). It captures the idea of coupling in the internal size and the idea of signature
complexity in the external size. It furthermore differentiates between reused and newly
developed system elements. The System Meter, formally assessed, has - among other
formal attributes - an absolute scale measure and is dimensionally sound and uniform. Due
to the genericity of the metamodel virtually every possible language may be mapped onto
this notion. Even natural language constructs follow a similar pattern: words have a certain
signature in order to be recognisable and - once introduced - are defined using other words.
The natural language definition process, however, is in practice informal and subjective,
i.e. the same words do not have the same meaning to everybody and definitions may
change over time. This behaviour of natural language elements, which basically is
analogous to our metamodel of system descriptions, gives us some additional confidence in
the soundness and applicability of our approach.

3.2.2 The System Meter for Object-Oriented Implemented Systems (Code)

3.2.2.1 Overview of the Metamodel for Object-Oriented Code

We introduce this metamodel in seven informal steps, each corresponding to one
metamodel entity. The comments furthermore try to give reason for those meta entities by
pointing to some of the historical metrics and ideas of software:

� A system description at code level is, at first glance, a set of messages (= sentences or
statements). This view of programs immediately led to the first known metric of size
used in software: the lines of code (= number of sentences). Actually this metric
made quite a bit of sense when one line of code equalled one "sentence" (as in
languages like Assembler, early BASIC/FORTRAN/COBOL, etc.). In virtually any
"modern" context though it is inadequate.

ô Diving deeper into the structure of system descriptions, we find that every message
consists of an explicit or implicit sender, an explicit or implicit receiver, a
selector/signature, maybe some parameters and maybe a return value. We therefore
not only have messages, but also actual parameters referenced through their name,
i.e. a token, in different roles. With this extension of our metamodel, we also reach a
new metric of size, Halstead’s number of tokens [HA77].

í The message's method selector or signature, then, references a polymorphic (generic)
or fixed method of the receiver. Because a method has to be ready to accept actual
parameters, formal parameters are also introduced. This enhancement of the
metamodel was reflected in another Halstead metric, the number of unique operands,
i.e. method signatures. The following special situation has to be mentioned here: as
formal parameters may also be of type "message", because our metamodel treats
messages like objects. This is typically the case in calls to flow control methods like
"if <expr> then <statement1> else <statement2> endif" or the infamous
"GOTO <statement-reference>" statement, where the <statement>-placeholders stand
for such message parameters. Because calls to this kind of methods are of enhanced
expressive power (and also of enhanced complexity), there was an extra metric
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invented for them: the cyclomatic complexity [MC76]. This metric, though, ignored
the metamodel parts described in steps 1 and 2 (as well as all the subsequent ones),
which all contribute to a system description’s complexity or size.

÷ If we look into C++ code e.g., we encounter "sentences" like int i;. This is a
typical message (which is itself a special form of description object (cf. part �
above)) that creates a new instance or object, in our example named i. Each
instantiated object which is created once and from then on has its identity, is
therefore also a description object, actually its most basic form. This fact was
reflected in still another Halstead metric, the unique operator metric. Halstead also
defined derived metrics out of the token count and unique count metrics, the
(in)famous volume and effort metrics (infamous because they violate some formal
metrics criteria). Halstead’s so called "Software Science Metrics" have however
shown to be best in predicting maintainability (cf. [OM92]), maybe because - among
the well known metrics - they cover the most of the system metamodel thus described
(i.e. the parts described in �, ô, í and ÷).

û We also observe the formal parameters in 4 variants: they either create, read, update
or delete the actual parameters. These ideas - but coming from the area of database
applications - were the backbone of Albrecht’s [AL79] Function Point metric.
However, the metamodel parts described in 4 and 7 were ignored, part 3 limited to a
fixed predefined set of methods (create, read, update, delete) and part 6 (classes)
restricted to flat "attribute containers" (file types).

ø Every description object is of a certain class, that defines both: 1) the set of publicly
understandable selectors (= the object’s type) and/or locally available selectors and 2)
the selector’s implementation as features (direct attributes) or methods. Moreover,
classes are structured into two hierarchies: 1) the type hierarchy, where subtypes
publicly understand at least all the selectors of their supertypes, and 2) the inheritance
hierarchy, where subclasses inherit all the implementations from their superclasses.
The most evolved of the new metrics dealing with those object oriented concepts
were proposed by Chidamber/Kemerer [CHI94]. They are, though, not designed to
serve as metrics of size but as metrics of quality. Therefore they ignore many of the
metamodel concepts described in the other steps.

ù In the seventh and last step we introduce the fact that the metamodel may also be
considered recursively. The metamodel entities just introduced are themselves
nothing but objects, that may appear in messages as actual parameters, that are
created, read/used, modified, etc. Thus description objects may also be metaclasses,
metaclass-methods and meta-metaclasses, etc.; the field is open. This is a situation of
freedom we almost uniquely observe in natural languages. Most conventional and
modern programming languages only allow very restricted access to meta-objects
(for example C++’s recent real-time type information (RTTI) extension and C++-
templates which are parametrisable with classes).

As a summary, the set of the metamodel entities may be shown in the following type
hierarchy diagram:
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Figure 43: The SMM Type Hierarchy

Detailed Presentation of the Metamodel for Object-Oriented Code

We will subsequently present in detail several metamodels of object oriented systems that
are rooted on three known metamodels for object oriented systems: 1) The OPRR-Model
[WEL89] [SM91], 2) the WW-Metamodel [WA90] and the CDIF Standard [CDIF91]. The
most generic and detailed metamodel thus proposed is the one that represents the structure
of an implemented object oriented system presented in this subsection. This metamodel is
called the System Metamodel (SMM). Even though it is based on the three metamodels
just cited, it is quite extensively enhanced. The summarised enhancements in the SMM are:

• tracking of the usage and scope of description objects, i.e. their coupling

• instances, parameters and nested messages, i.e. enhanced granularity

• the distinction of project, reused library and reused language components

• modularity aspects (the ability to package system components into meaningful
configurations/subsystems)

• template relationships to cope with a "copy and modify" development style

The entities of the SMM are presented in the following subsections one by one in partial
metamodels. Beyond the diagrammed models, we also comment the meta-classes and
associations and formulate consistency rules that are sequentially numbered and especially
marked with the superscript text "consistency rule <number>". Those rules appear in the order of
the explanation flow.

The complete graphically diagrammed SMM, which is the union of all the partial
metamodels, is given in the last subsection 3.2.2.10 together with a list of all the
consistency rules. There are, however, no further comments there.

3.2.2.2 Instantiated Objects / Description Objects

The system metamodel with the description object in focus and the surrounding meta
entities diagrammed in dotted boxes looks like this (cf. 2.1.7 for the notational details):
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Figure 44: Partial SMM - Description Object

First of all, the class "description object" is the base class of the SMM type hierarchy. It is,
however, not an abstract base class, but represent the concept of an object instance.
Description objects, instantiations of "description object", thus may take on the following
subforms:

� classes (or meta-classes, etc.)

ô features (i.e. instance and class variables) and - as we will see later - an important
subtype of features: methods

í formal parameters

÷ messages

û actual parameters

We will encounter each of these subtypes in the following subsections, but will now first
discuss the properties and peculiarities of the description object.

Instantiated objects consist of a name part, i.e. some identifying expression by which the
object can be referenced, and an implementation part, i.e. an associated set of other
description objects through which the object is defined.

Note that not every object needs a name part, i.e. there exist anonymous objects. Also the
implementation part needs only - for language and library objects - to be optionally known.
One of the two parts however must obviously be known for each object, or else it would
not exist. The name part is also called the external part of an object, whereas the
implementation part is referred to as the internal part.

A system description as a whole is nothing else than a sequence of usages of objects within
messages. We might also say that a system description - at first sight - is a sequence of
messages. As a side effect of those messages (which themselves are description objects)
new other description objects (e.g. a class or a method) are created, read, modified and
deleted.

Object Scope

The metamodel presented here encompasses the concept of scope in the following way:
Basically all objects are considered to be globally accessible (i.e. their names may be
referenced in all messages following the creation message). In cases where this is not true,
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i.e. some objects are in a local name space, a special relationship is assumed that is called
the "Object covers local Objects" relationship. A method for example is considered to
cover 1) all messages that implement it and 2) all its local variables. To give other
examples: a C++ block statement (which is considered to be a message) covers all its sub-
statements (i.e. also messages), a class covers all its non-public features, etc. This
hierarchical covering relationship allows us to define a partial order among objects, i.e. for
two objects appearing in the same name space it is clear which is more local than the other
(if they do not have the same covering object). We will make use of this partial order
below.

Writing and using description objects

The previously introduced association isWrittenBy between description objects, which is
central to the System Meter definition, may now be more closely explained:  This recursive
relationship is constructed as follows: The immediate implementation of an object X is
defined as the set of messages wherein X appears as an actual parameter and is written in
some form i.e. created, modified or deleted. Now, two other kinds of sets may be defined:  
� In the messages of the immediate object description of X other objects may also be used
(usually but not necessarily in the read form). Those objects are added to the immediate
implementation to form the direct object implementation. ô The union of the direct object
implementation sets of all the objects of equal or more localised scope in the direct
implementation set of X then finally yields the complete direct object implementation set,
which is the association we are interested in. It is also called the description of description
objects. This set is related to the notion of program slice introduced by Weiser [WE81] and
data slice introduced recently by Bieman and Ott [BI94]. However it is the sum of both
kinds of slice i.e. statements (= messages) and data (= all other description objects) are
incorporated. Furthermore it differs from the slice notion in that it is truncated by the rule
that only the equally or more localised objects are recursively considered whereas the slices
contain all the direct and indirect dependencies.

We may make further comments on the 4 major forms of object usage:

� Creation Usage

Creation or create usage is the very first usage of any object in a system. At the
object’s creation point the name - if it has one - of the object and optionally some first
implementation of the object is defined.

This usage form is also referred to as "initialisation" or "definition" of an object.
Usually some object’s creation takes place with a single message18 to some "language
class", e.g. to create a C++ int named i with the initial value of 1 you write: int
i = 1;. For more complex objects like classes, methods or functions the object
creation may span several messages and submessages. An exemplary function with
the name func that prints an integer value passed as a parameter on some standard
output device and if it’s bigger than 0 and also prints the square before would be
defined in C++ with the sequence void func (const int i) { if (i >
0) {int j = i*i; cout << j << "\n";} cout << i; }.

Sometimes the creation of the name part (referred to as the "first declaration" or
"introduction" of an object within the system description) and the creation of the

                                                
18 We use the term "message" for things that others might actually name "message" but still others also name
"function call", "procedure call", "statement", etc.. The aspect of messages that they need not be
understandable by the receiver and that they must be dynamically bound to the receiver is not considered to
be definitional. Thus the term message is to be understood in a more generic form in this text.
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implementation part (referred to as the object’s "initialisation") are split into two
description parts that need not be in immediate sequence.

To give an example: the function func may be introduced in a separate file called a
"header file" with the sequence void func (const int); and may be
initialised in another file called an "implementation file" with the same description
text as in a full creation (cf. end of last paragraph). In some special cases even the
initialisation may be split into different parts19 (but this does not affect the concept).
This splitting has to be allowed, because system objects sometimes must be used
before they can be implemented ("forward references"). It is also useful for
disallowing access to the implementation of certain objects (for management
purposes, copyright reasons or whatever).

ô Read Usage

Read usage is the most common form of object usage and defined as any occurrence
of some object’s name in place of an actual parameter. Read usages (i.e. references to
some previously created objects) may be observed throughout any system
description. To give some examples: our C++ int i may be read in the message j
= i + 1; and the C++ function void func (const int) may be read by
calling it as done in the message func (i);.

Objects (in addition to their introduction declaration) may also be "redeclared"
several times, i.e. their name part is just stated again. This is - for some object types -
a legal but effectless form of a read usage that sometimes makes sense for code
management purposes.

í Update Usage

Update usage is the most dangerous but also the most powerful form of usage.
Update uses are descriptions that change (or describe a change of) the
implementation part of an object. The most common example is the assignment to a
variable like our C++ int i, e.g. in i = 2;. In Smalltalk (not in C++) it also possible to
change the implementation of a method by simply rewriting it (or by changing it in
more subtle ways by calling text interpretation methods of some kernel classes).

÷ Deletion Usage

Deletion usage is the very last usage in the life of objects. The deletion usage
terminates the existence of an object. For many objects the deletion usage is an
implicit usage, i.e. the corresponding message has not to be described. This is true for
example for all C++ local automatic objects. Deletion that is actually described is
only common for so called "controlled" objects, i.e. objects that may be created and
deleted on request. Again Smalltalkers might be slightly confused because all
Smalltalk objects are "controlled" in the sense that you can at any time choose to
delete anything (also classes). However the deletion of description objects is not
necessary for all objects to occur. For example some global objects, like most of the
classes, are never deleted.

These 4 forms of description object usage may be further typed into 1) write usages
(creation, update and deletion) and 2) read usages (read). In analogy to the isWrittenBy

                                                
19 To give an example: The default values for formal parameters in C++-functions need not all be initialised
(i.e. defined) in one statement. Their definition may be done one by one in separate messages (however the
sequence of definitions must be "from the last parameter to first" and no defined default value can be changed
in some message later in the system description, thus C++-functions are all constant objects (cf. the
"comments on constant objects" paragraph below).
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association which is defined through the write usages, we may thus also define the
isReadBy association. Also note that the form of usage is recognised by the category of the
formal parameter (cf. the subsection on formal parameters below) to which the actual
parameter corresponds.

In summary we may state that a system description e.g. code is nothing else than a
sequence of usages of description objects. Thus an object’s description is primarily the set
of its write usages.

Aliased description objects

Every description object may have several aliases (i.e. other names for the same
implementation). The aliases "inherit" everything from the object they stand for. Their
isWrittenBy associations are therefore almost the same as the ones of the object they stand
forconsistency rule 1. The only isWrittenBy associations exclusively held by the alias are derived
through its creation messagesconsistency rule 2.

Aliases may stand for the object they alias but not vice versa. The classical examples for
aliases are the C/C++ typedefs. A typedef X, though, not only is an alias for the described
type T but T also is an alias for X. So X can stand everywhere T stands and T can stand
where X stands. This mutuality does not hold for other alias types like C++’s "enums"
(special forms of ints) which are aliases for ints but ints are not aliases for enumerator
types. To summarise: "normal" aliases (in the sense of C++-typedefs) are in our metamodel
reflected by an object (of course) and two aliasing associations; one for each direction in
which the aliasing works.

Container objects

Objects are - as we already know - composed of two parts: their name and their
implementation set i.e. the isWrittenBy association. Whereas the name (if there is one) is
always a string, the implementation set for container objects may be viewed as being
composed of two subsets: 1) the contained objectsconsistency rule 3 and 2) the other objects. We
briefly discuss the subobjects contained within an object:

If the container is elementary (e.g. a pointer or array) and no device object (e.g. an input or
output stream) is in its implementation or read set, then its contained objects are considered
to be anonymous objectsconsistency rule 4. If however a plain description object has a device
object in its implementation or read set then it is first made a container objectconsistency rule 5

and each byte needed to store the object’s value (determined by its class) is considered an
anonymous contained objectconsistency rule 6. This increases an object’s size significantly. This
intended increase is rooted in viewing device reads to be equivalent to coding at random,
i.e. each character (or byte) being a variable entity of its own.

Furthermore the following object types always contain the following other description
objects: a method contains its list of implementing messages plus the objects it’s the scope
object ofconsistency rule 7, any message contains its submessages (= messages occurring as
actual parameters) plus the objects of which it is the scope objectconsistency rule 8, a class
contains its set of featuresconsistency rule 9, and any object X contains locally named instances
of all the non method and non class feature classes of the class of Xconsistency rule 10. E.g. a
Date object contains 3 anonymous Number objects if the Date class has 3 Number features.

The description object’s type association:

Every object has a class as its type. Our metamodel even supports the notion that an object
may have more than one class as its types. Conflicting multiple types are treated
optimistically i.e. conflicts either are assumed not to occur or being prohibited by some
checking mechanism before a system is ultimately described. We treat multiple classes as
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the union of all their features. For simplicity we will still speak of an object’s class in the
following text. Depending on an object’s type, i.e. its associated class, the following
restriction may be stated: The messages in which some object X may immediately occur as
an actual parameter is restricted by the corresponding formal parameter’s type, i.e. X’s type
must be equal to or be a subtype of that formal typeconsistency rule 11. As a consequence the
occurrence of an object in the role of a receiver is restricted to messages to the object’s
type’s methods.

Objects as default values

As we have already seen, an object is primarily used as an actual parameter in certain
messages. Another and slightly exotic usage form of an object is its use as a default value
for a formal parameter of a method. For default value usage, only constant objects - usually
literals - are allowed. Because the assignment of an object o to a formal parameter fparm in
the role of a default value can only be accomplished in a message that changes fparm, it is
assured that fparm’s isWrittenBy association contains o. Conversely, o’s isReadBy
association contains fparm.

Controlled and automatic objects

The life of a description object is usually automatic in the sense that at some point it is
created then it is maybe updated several times until it reaches its deletion point, usually
when it gets out of syntactic scope. Some objects never get out of syntactic scope (the
global objects) but may also considered as being under automatic life control. However,
there are still other description objects that are under so called "controlled extent". The life
or extent of an object is the set of messages between (inclusively) the creation and deletion
messages, be they implicit (as for automatic objects) or explicit. Whereas an object’s scope
usually is equal to its life, the scope of a controlled object X starts immediately after the
creation message of the topmost supertype of X’s class and has no end pointconsistency rule 12.
This rule has its reasons in the fact that a controlled object may be transferred (through
pointers) up to this point in a system description. Automatic objects may be "converted"
into controlled objects by applying an address or referencing method to them (cf.
subsection on methods).

Furthermore, the controlled objects are always anonymous and need a special kind of
associated container object that references them. That special kind of object is called a
pointer, a container or a reference. The pointer itself is usually an automatic object, but in
some occasions it may also be controlled which means that the corresponding reference
object will be a pointer to a pointer - a construct which may even be recursed thus yielding
pointers to pointers to pointers, etc. One aspect of any controlled object X is, that as soon
as X’s pointer object is passed as an actual parameter the corresponding formal parameter
also becomes a pointer object to Xconsistency rule 13. We may even state that any pointer object
X written by some other pointer object Y automatically also becomes the pointer object to
all the objects Y points toconsistency rule 14. Thus a single controlled object is generally
referenced by numerous pointers. The good news is that these mechanisms are very
efficient in handling objects without having to deal with their complexity. The bad news is
that the read and write scopes of the controlled objects are the unions of the scopes of all
their corresponding pointer objectsconsistency rule 15. Moreover, when dereferencing (cf.
subsection on methods for dereferencing methods) a pointer, this is modelled as a
simultaneous usage of all the controlled objects that the pointer object points toconsistency rule

16.

Thus almost everywhere within a system description (also in system parts logically
described before the creation point of some controlled object) from the creation point of the



Measurement and Estimation of Software and Software Processes New Approaches

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 92

controlled object’s highest supertype class any object may use and modify controlled
objects which is not true for automatic objects. The category of persistent objects, finally,
is nothing but an abbreviation for controlled and global objects, i.e. even if an object
should be local or automatic, as soon as it is categorised as persistent this implies it is
global and controlled (with all further implications).

Constant and variable objects

Any description object may either be constant or variable. The "normal" classification of an
object is being variable, i.e. the read scope equals the write scope. An example for a
variable in C++ is:

char c = ’0’; c = ’1’; c++;

There are, however, situations where the system description is more stable when an object
is asserted not to change, i.e. to be constant. In terms of scope this simply means for a
constant object C that the update scope of C (i.e. the set of other objects that might change
C) is emptyconsistency rule 17. An example in C++ is

const char cc = ’0’; cc = ’1’; // this is not permitted

but also:

class C {...};20.

This second example demonstrates the genericity of the SMM. Not only "normal" instances
are treated as description objects but also classes. It is therefore a natural idea that classes
can be treated as variables (as Smalltalk does). The implicit C++ convention of constant
classes is just viewed as special case, which is admittedly reasonable in many situations but
not in all.

Note that a constant’s create and delete scope are in general not empty, which means that
also the write scope is not empty. It is however heavily reduced. For constant non
composite library and language description objects only the name part is of interest.

Named and anonymous objects

As already stated objects consist of two parts, 1) the name part and 2) the implementation
part. By denoting the name part somewhere in the system description after the object’s
creation point that object is referenced as an actual parameter. This is also the most
common form of usage of some object after its point of creation within the system
description. In general we may state that an (automatic) object must have a name to have a
life beyond its creation point at all.

In a system description there exists a mass of objects that do not have names, e.g. literal
values never have a name or the messages in general have no names, unless they are
labelled to support direct jumps, the infamous GOTOs. Thus, anonymous automatic objects
are created and deleted at one single point of system descriptionconsistency rule 18. The remarks
just made on anonymous objects are not true for controlled anonymous objects. Those
objects have one or more special other objects that point to them and those pointers may be
used as a name for the anonymous controlled objects. For controlled objects to be used
immediately, the pointer object must be passed to a so-called dereferencing methodconsistency

                                                
20 For C++-ers it is so clear that classes are constant it is not even denoted. Smalltalkers however know that
classes are not a priori constant i.e. method features may be added or removed throughout the whole system
description; even the whole class may be destroyed on request. The difference is that Smalltalk classes are
"normal" Smalltalk objects, i.e. they are variable and controlled, whereas C++ classes are "special" C++
objects (implicitly automatic, constant and de-facto only existent at run-time). They may not be treated like
normal C++ objects.
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rule 19. In some cases the dereferencing message (i.e. the mechanism to access the controlled
object instead of the pointer object) is implicit in some others it is not. To give an example:
In Smalltalk the assignment message to some variable (Smalltalk variables are always
pointers) does no implicit dereferencing, i.e. the assignment changes the value of the
pointer (variable), not of the object the variable points to. For example the sequence

i := View new:. i := 1.

does the following: the (local) variable i first points to a new View object, then the View
object is not assigned the value of 1, but instead the variable i points to a constant integer
object of 1. The View object still exists unchanged. However, the sequence

i := View new:. i destroy:.

will also first attach i to a new View object but then not i is destroyed but the View
object. The variable i still exists with a value of Nil. Thus in the non-assignment message
i destroy:. i was implicitly dereferenced.

Local and global objects

The difference between local and global objects may be described in terms of what is
called the description life or syntactical scope which was introduced above. The syntactical
scope of the global objects are all the messages following the object’s creation, if the global
object is automaticconsistency rule 20. For the controlled objects, which are always global, rule
12 applies to find their scope. The life of some local object X, on the other hand, is
restricted to the messages that are directly or indirectly contained in the enclosing scope
object of Xconsistency rule 21, which usually is a method or a class. Finally there is a highly
populated set of local objects of a special kind: the literal values. The enclosing scope
object of literal objects is the message they are defined inconsistency rule 22, which means that
the life of a literal object is reduced to a single object, its enclosing message. Literal objects
can therefore always be treated as constantsconsistency rule 23. The latter rule is derived from the
fact that any literal’s creation and deletion point is equal, i.e. that it does not have an update
scope.

Language, library and project objects and file containment

As already introduced in the System Meter’s metamodel (cf. 3.2.1) every description object
can be categorised as belonging to the language, the library or project. Usually this
categorisation is taken over from a file based categorisation, i.e. there are library files,
language files and project specific files. The description objects contained in some file will
adopt the file’s category. In more delicate situations - usually during maintenance - where
only parts of files are modified, we need however the categorisation at object granularity.

3.2.2.3 Classes
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Figure 45: Partial SMM - Class
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The class is a very central concept in object oriented system descriptions. A class object,
e.g. a class Stack, describes a set of objects, e.g. the Stacks S1, S2, ... that are said to have
the class object as their type. The implementation of a class is accomplished via the
description of a set of so called features. Features are described in the next section below.
The objects for which the class object is the type are called instances of that class. The
class itself is also an instance of some class of some higher level of abstraction. Such a
class’s class is called a meta-class. If no explicit meta-class is given for a concrete class, at
least the SMM-entity "class" is the meta-class. However, this meta-class, and also all the
other SMM-entities, belong to the description objects of language category and are
therefore never counted.

Every single object in a system description is created by sending a construction message to
its class’ constructor method. This implies that an object’s class is always in its isWrittenBy
setconsistency rule 24.

There is a sub-/supertype relationship that relates classes with common features; one might
also say common behaviour interface. A class is considered a direct subtype of some other
class when it offers at least the same features to its (possible) clients. We then may
introduce the term direct supertype in the following way: a class Base is a direct supertype
of another class Derived when Derived is a direct subtype of Base. When subtyping is
defined like that, a single class may have many subtypes and (nota bene) may also have
many supertypes21. Also note that the sub-/supertyping relationship is not necessarily an
inheritance relationship and vice versa - in practice however subtyping usually goes hand in
hand with inheritance22. Non private, i.e. "normal", inheritance is such an elegant way to
ensure the subtype condition that many people have serious doubts that it makes sense to
separate the two concepts of subtyping and inheritance at all. However there is a nice
example where subtyping is desirable but not inheritance: The real numbers are subtypes of
rational numbers and these of integers, but the implementations may only awkwardly be
accomplished through inheritance. So we may conclude, that it is poorly chosen language
design when C++ offers inheritance without subtyping but not subtyping without
inheritance, and also when Smalltalk offers no separation at all.

A class A together with all its (not necessarily direct) subtype classes S1, S2, ... is called a
polymorphic structure. Whereas in C++ all polymorphic features of such a structure have to
be explicitly present, i.e. at least declared and marked as pure virtual in the base class A,
this is not true23 for Smalltalk. Therefore sometimes the C++-polymorphism is called
"narrow" or "controlled" whereas the Smalltalk way of polymorphism is called "wild" or
"real" (depending on who is giving the adjectives). The author thinks it is good style to
explicitly introduce polymorphic features at some top level class, but he also thinks that in
order to oblige programmers to introduce those features (as C++ does) multiple subtyping
is required (as C++ offers). So Smalltalk with single inheritance is right not to oblige its

                                                
21 This many to many relationship is known as "multiple inheritance" to some people (even though the author
would prefer the term "multiple subtyping"). In general it is unlikely for a class of things to be the subtype of
only one supertype (i.e. more abstract concept). To give an example: The set (or class) of BMW 850ci cars is
a subtype of BMW cars but also of sports cars and also of expensive cars and 12cyl. cars and ...

22In Smalltalk this is even syntactically a must whereas in C++ you can choose to "inherit privately" which
inherits but does not subtype.

23In Smalltalk there exists kind of an "attractor" method for every possible message sent to an object (this
method typically rises some debug window with a message that reads like "object of class XY doesn’t
understand message "sonofabitch"). So every interface feature may also be considered to be "introduced" in
Smalltalk.
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programmers to introduce all features at the "correct" level. If it would, the top classes (like
Object) would be even more crowded with features. C++ offers the possibility of creating
more than one (partially) disjoint polymorphic structure whereas Smalltalk essentially
consists of exactly one huge polymorphic structure under the class Object. This philosophy
allows polymorphism everywhere.

We have separated the two concepts of inheritance and subtypes in our system metamodel
to be able to model a generic system view. Thus the following rules apply: If a class Sup is
a supertype of class Sub, Sub has at least the same global features as Supconsistency rule 25. If a
class Derived inherits from another class Base then all inheritable (cf. next section) features
of Base become inherited features of Derivedconsistency rule 26. Besides those two direct
associations between classes there are also various indirectly associated classes:

1) those associated via the feature’s association and then - because features are also objects
- the object’s type association,

2) those associated via the feature’s association, the feature to method subtype association,
the method to formal parameter association and then - again - the object’s type association

and

3) those associated, first again via methods, to messages and actual parameters to objects
and then to types.

Meta-classes, finally, are classes like any other except that their instances reflect classes (or
metaclasses) themselves. Special forms of meta-classes are also "templates", i.e. types of
classes like const or * in C++ (constant classes and pointer classes). The instances of
those "templates" are created "on the fly" i.e. when an instance of that template instance is
needed. In some cases the instantiation of the "templates" is done through special
statements (C++: typedefs of complicated derived types especially for function
prototypes). In that case the typedef is not considered a mere aliasing mechanism (as
explained in 3.2.2.2) but also an instantiation message to one or many template meta-
classes.

3.2.2.4 Features
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Features are the components of classes regardless of their dynamic or static nature, i.e.
regardless of being methods or variables, i.e. just data holders. The methods however
(described in the following sections) form one main subtype of features. Methods are
considered like calculated data values. From a class client’s point of view it is not relevant
if a feature of a class is stored (i.e. implemented through a real data feature) or calculated
(i.e. implemented through a method feature). The methods though give a new dimension to
features as they may take parameters thus behaving differently in different contexts and
may produce side effects by sending messages to other objects.

In addition to that subtyping of features there are the following four non-exclusive
categories:

� the class features (in contrast to the instance features)

ô the inherited features (in contrast to newly implemented features)

í the implemented features (in contrast to those without implementing message body)

÷ the inheritable features (in contrast to the non inheritable ones)

The class features are those features the class as a whole owns. There is one kind of feature
(methods to be precise) that is always a class feature: constructor methods. Those are
methods that create a new object of their class. This may be compared to a factory
producing a product, where the factory corresponds to the class, the assembly line to the
constructor method and the product to the instantiated object. To hold on to that analogy:
the class features correspond to the things a factory can do whereas the instance features
correspond to the product’s features. For the process of instantiation the following rule
applies: only plain normal data features become contained sub-objects of the object newly
instantiated. This rule was already stated before (consistency rule 10).

An inherited feature is a feature any, i.e. direct or indirect, superclass of the considered
class has introduced and is "allowed" to be inherited i.e. inheritable, e.g. in C++ an
inheritable feature must be non private, a distinction irrelevant to Smalltalk programming).
An inherited feature basically has the same signature, i.e. name and formal parameters, and
attributes as the feature it inherits from and - most important - defers its implementation to
the base class’ feature implementation (which in turn may also be deferred). There are,
however, exceptions to that rule: 1) a local feature can be made global and vice versa, 2) an
implemented method can stay unimplemented (thus inheriting becomes effective) and vice
versa, and 3) an inheritable feature can be made non inheritable. Maybe there is some
confusion about inherited features in the sense that one might believe inherited features are
the same objects as their base features. This is not true in our metamodel. An inherited
feature even if it stays unimplemented and inherits all from "above" is another feature than
its base feature.

An implemented feature is a feature that has a genuine implementation in the feature’s
class, i.e. not only in super- and/or subclasses. Every non-inherited data feature must have
an implementation and cannot be re-implemented in subclasses. So for data features the
"implemented" category directly depends on the "inherited" category24 The "implemented"
category therefore is only of interest for method features. Every combination together with
the "inherited" category may occur when considering methods: 1) there are inherited and
implemented methods, these are called the reimplemented or redefined methods, 2) there

                                                
24 The dependency for data features may be formulated as two implications:

if inherited then not implemented

if not inherited then implemented
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are inherited but non implemented methods, these are the plainly inherited methods, 3)
there are non inherited and implemented methods, these are newly introduced methods
with an implementation and finally 4) there are the non inherited and non implemented
methods, these are methods just introduced to define abstract polymorphic structures25.

Finally we have the category of inheritable features. To define this category negatively: the
non inheritable features are restricted in their scope exactly to the class they belong to
instead of being accessible also by the subclasses, i.e. subclass features. In C++ therefore
the category of non inheritable features is indicated by a restriction of scope, i.e. with the
private keyword. In Smalltalk it is not possible to have non inheritables.

3.2.2.5 Methods
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Figure 47: Partial SMM - Method

Every method has its corresponding ordered set of formal parameters. In particular two
formal parameters are always implicitly or explicitly present: the formal receiver and the
formal return value. A method, if implemented at all, is implemented by a sequence of
messages. On the other hand a method may be called several times in implementations of
some other or the same method. If a method is used in its own implementation we call that
a recursion. Methods are one very important subtype of features. A method’s name not only
consists of its name as it appears when calling the method but also of the class names of the
corresponding formal parametersconsistency rule 27. Finally there are two subforms of methods
that require special treatment:

� The dereferencing methods operate on container or pointer objects. These methods,
when called in a message, return the contents of a container (or pointer)
objectconsistency rule 28. Thus, they are important to track the scopes and usages of
controlled objects.

ô The decision/branch methods are methods that take messages as arguments and
perform some conditional execution on those messages. These methods imply the
addition of every actual parameter received together with a message block to the
immediate read set of the message block’s direct and indirect submessagesconsistency rule

29. Branch messages with backward branches (goto <label before goto-message>,
<end of loop blocks>), i.e. loops, increase the isWrittenBy associations even more in
order to minimise loops in practice. In addition to rule 28 the following rule also
applies: Each direct and indirect submessage of the skipped message block is added
to the backward branch’s message isWrittenBy associationconsistency rule 30. This yields

                                                
25In C++ these methods are called pure virtual. In Smalltalk it is not possible to have such methods, but it is
common to have "dummy" methods in any class X representing abstract concepts. Usually these methods call
some dialogue that pops up and says something like "This feature has to be defined in subclasses of X" thus
enforcing the redefinition of the method.
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an explosion in size, depending exponentially on the number of messages skipped,
because as its net consequence each message skipped backwards is added to the
parameter list of each message skipped. With the same intention in mind as is behind
McCabe’s cyclomatic complexity [MC76], we therefore also especially account for
branches in our metamodel and - as a consequence - metric.

3.2.2.6 Formal parameters
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Figure 48: Partial SMM - Formal Parameter

Formal parameters are parts of a method’s external part, i.e. the methods "name" (C++-ers
call this the method’s signature). To be precise, it is the formal parameter classes, i.e. the
classes linked through the type association, that make up a methods external part, i.e. the
name or interface. The formal parameters themselves are of minor interest. They may be
named in order to be accessed within a method’s implementation. In a message, i.e. a call to
a certain method X, there are actual parameters supplied which must correspond to the
formal parameters defined for X. These parameters can be stated explicitly or implicitly.
The implicit way of providing actual parameters in a message only works for formal
parameters with so called default values. If a default value for a formal parameter is present
and no actual parameter is given then the default value is used insteadconsistency rule 31. Default
arguments are (of course) objects (usually literals or constant globals). There are special
parameters that stand for a list of parameters that are not limited in their number. Those
parameters are of a container class of some type. Usually the last of the parameters is of
such a kind. The most general form is a container of objects parameter, which allows actual
parameters of any type to occur. In C++ this most general form is supported with the
"ellipsis" construct (i.e. the three dots … that may appear at the end of a formal parameter
list). This special form had to be chosen in C++ because there is no general type like
Smalltalk's Object26. In Smalltalk it is no problem to give a method a dynamic array of

                                                
26 An alternative to the ellipsis in C++ would be to pass an array of void* (i.e. a void**). This however
enforces that the actual parameters must be put into an array before being passed to a method instead of being
directly passed in the calling message. This void** alternative is a analogy to Smalltalk’s way of dealing with
varying numbers of parameters. Our metamodel covers both possibilities.
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objects as a parameter. A syntactical form to provide a varying number of parameters is
however not provided (because it is not needed). In Smalltalk - as a minor drawback - an
object array must be built up before calling the method.

Formal parameters appear in four subforms: 1) they may create an object, 2) read an object,
3) update an object or 4) delete an object passed to them. Update parameters may change
only the non constant objects and the delete parameters may destroy only the controlled or
local objects (note that also constant objects may be deleted!). The effects of those
parameter categories are directly modelled in the isWrittenBy association and indirectly in
many of the consistency rules. The idea to make use of these 4 basic operations was
adopted from Albrecht’s Function Point metric and metamodel [AL79].

3.2.2.7 Messages
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Figure 49: Partial SMM - Message

Messages are the second to last object subtype we consider in our metamodel of object
oriented system descriptions at implementation level. As already stated the primary reason
for messages is to provide an implementation for methods. Those messages are said to be
"compiled" into the method’s or function’s or procedure’s body. There are, however, a lot of
other messages that are directly executed to build up the system objects, e.g. the C++-
statement class C { ... }; is not a message compiled into a method’s body but a
message to the implicit and compiler-built-in constructor of the C++-language element
class (a language meta-class to speak in our metamodel’s terms). This message is said to
be compile-time executed or, simply, executed in contrast to the normal, i.e. compiled
messages. Besides the already stated rule 7 which enforces all compiled messages to be
contained in their method, we do treat the two kinds of messages differently. The
distinction may however be reflected in some future metrics of quality. The view of a
system description as a set of executed and compiled messages is very similar to one that
FORTH-programmers know very well [FORTH78]. A FORTH machine - when reading
FORTH source, which is analogous to "normal" compilation - is either in interpreting or
compiling mode. The compiling mode is active only within word definitions, i.e. function
or method definitions. Our metamodel sees systems described in any language like that.
Also the view of a system as a growing set of objects - starting from language objects over
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library objects to project specific objects - is adopted from FORTH’s philosophy of
growing vocabularies, i.e. sets of words, to form systems.

It is obvious that messages, i.e. statements of a system description appear in a certain order.
The external part of the System Meter is sensitive to that fact. The order of compiled
messages is very relevant to system correctness, quality and robustness as well as system
description stableness and quality with respect to the executed messages. The basic
ordering is given by the object or file dependencies, e.g. all the messages in
<iostream.hxx> are stated before those in "main.cxx" to give a C++ example. Within each
file the messages are already ordered because it is simply not possible to write more than
one character at a file’s elementary position. The metamodel’s relationship that models this
ordering is a many to many relationship thus allowing parallel system descriptions, an
aspect maybe of interest for future research.

3.2.2.8 Actual Parameters
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Figure 50: Partial SMM - Actual Parameter

The actual parameter is the last metamodel entity we comment. It is also the least important
entity. Its main purpose is to serve as a reference holder to the calling message, the formal
parameter and the referenced object. Actual parameters are always anonymous, automatic
and localconsistency rule 32. Their life is therefore restricted to a single message. Due to the
incorporation of the actual parameter we can model even the slightest differences in system
descriptions, thus assuring the usefulness of our newly proposed metric for maintenance
and modification purposes.

3.2.2.9 Systems and Configuration Containers
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Figure 51: Partial SMM - System and Subsystems
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A system or configuration is essentially a set of objects. If we were interested in a
metamodel of systems we could leave that as it is. But, we are metamodelling system
descriptions where it matters in which sequence and in what packages or modules the
system objects are described. In our metamodel we therefore do not directly "link" the
system to its objects but state that a system is described by a set of so called "configuration
containers" (= packages). Actually one configuration container might describe objects of
more than one system, but for simplification we will consider situations when only one
system is in focus. This is of no harm because if two or more systems have to be
considered simultaneously they can easily be joined into one logical system by joining their
configuration containers into one "super" configuration container.

A configuration container (CC) is a notion for a thing real world people might call a
"makefile", "file", "application definition file", "configuration", "module", "version",
"subsystem" or whatever. However, it is a logical abstraction of those sorts of things. A CC
may contain several other CCs, and in turn a CC may be contained in more than one "top"
CC. For example, a network of configuration containers is possible to model several
decompositions of systems. To give some examples for different decompositions: you can
have one for modelling the layering in "model", "view", "control", one for application
subsystems like "customer information", "order entry", "billing system", still another for
language subsystems "C++", "SQL", "csh-Scripts" and still another in processor
subsystems like "Client-System" and "Server-System". As already stated a system
description depends on the sequence of the description elements. Between CCs one of
those dependencies is modelled: the fact that the contents of one CC in order to be
understandable must be preceded by several other CCs. To give an example: In order to be
able to understand the C++ description

main ()

{ cout << "Hello world"; }

contained in a CC called "main.cxx" the descriptions in CC "iostream.hxx" are needed.
This is something Smalltalkers might not understand, because they always have the
complete system at hand. But even in a Smalltalker’s system a subclass can’t be created
before the superclass exists - and that’s what dependencies are all about. The importance of
prerequisites seems not to be as big for Smalltalkers as for compiler-dependent developers
but the fact of prerequisites per se exists anyway, so they are included in our metamodel.

Another association between configuration containers is also reflected here, it is the
template association, which might also be defined on single objects, especially the more
complex types of methods and classes. This association identifies for configuration
containers the base CC from which it was originally copied from. The identification of this
association is not trivial, because copying is normally not protocolled or notified on CCs. A
normal systems developer would simply copy a CC which appears to be near the
anticipated solution and modify what needs to be modified. The developer is not forced to
indicate from where the code template was copied from. The system description, however,
is essentially only the difference between the template source and the modified version.
Due to the fine granularity of the object metatypes our metamodel and metric is sensitive to
even the slightest modifications provided the template relationship may be reconstructed.
We would count the modifications to the project objects, and the template to the library or -
in rare cases - the language objects. A template identification based on naming schemes
may be most practical even though we did not further investigate in this direction. The
topic will become more important when we focus on empirical validation at the
implementation layer.
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CCs are further typed into logical ones, the base meta-class CC, and physical files, a
derived meta-class. This typing reflects the fact that certain CCs do not directly contain
object descriptions while others, the files, do. All comments on CCs are valid for files, too.
Additionally the following comments apply: Files may be parts of CCs but may themselves
never contain other CCs. This is the definitional difference between CCs and files.
Furthermore files have exactly one language attached to them in which the objects they
contain are written in. CCs may thus define heterogenously described system parts (i.e.
system parts described in more than one language) whereas files are homogenous. Files are
also - like the description objects - categorised into the three kinds of origin: language,
library and project. Finally there is the most important aspect of files: the fact that they
contain descriptions of several objects. A single object may be described in several files
which must then be of the same language. The object descriptions must be identical in
signature, i.e. name, or else we would consider the two descriptions or description parts as
belonging to two different objects. Even though there may be many objects in language and
library files only the objects actually used by project objects are consideredconsistency rule 33.
The file categorisation is furthermore used as a default for the object categorisation of the
contained objects.

3.2.2.10 The complete System Metamodel (SMM) - Part II

We may now merge all the diagram parts into one complete diagram which reflects the
essentials of the System Metamodel (SMM):
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Figure 52: The Complete System Metamodel (SMM) - Part II

This diagram seems rather complex but we used it as a handy reference when discussing
the metamodel. We also used it frequently when working on our measurement
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instrumentation. The metamodel entities found more or less direct representations in our
C++ implementation of the system description analyser (cf. the detailed comments in 4.2
and appendix D).

The consistency rules are listed as follows:

# SMM Consistency Rule

1. The isWrittenBy association of aliases is directly forwarded to the object they stand for.

2. The only isWrittenBy associations of an alias are derived through its creation message.

3. The implementation set of container objects is composed of at least the contained objects.

4. If no device object is in the implementation or read set of a container, then its contained objects are
anonymous objects.

5. If a description object has a device object in its implementation or read set then it is assured to be a
container object.

6. Within a container having a device object in its implementation or read set, each byte needed to
store a contained object’s value is itself considered an anonymous contained object.

7. A method contains its list of implementing messages plus the objects of which it is the scope
object.

8. A message contains its submessages (= messages occurring as actual parameters) plus the objects
of which it is the scope object.

9. A class contains its set of features.

10. An object X contains locally named instances of all the non method and non class feature classes of
the class of X.

11. The messages in which some object X may immediately occur as an actual parameter is restricted
by the corresponding formal parameter’s type, i.e. X’s type must be equal to or be a subtype of that
formal type.

12. The scope of a controlled object X starts immediately after the creation message of the topmost
supertype of X’s class and has no end point.

13. One aspect of any controlled object X is, that as soon as X’s pointer object is passed as an actual
parameter the corresponding formal parameter also becomes a pointer object to Xconsistency rule
13

14. A pointer object X written by some other pointer object Y automatically also becomes the pointer
object to all the objects Y points to.

15. The read and write scopes of the controlled objects are the unions of the scopes of all their
corresponding pointer objects.

16. When dereferencing a pointer, this is modelled as a simultaneous usage of all the controlled objects
that the pointer object points to.

17. For a constant object the update scope of is empty.

18. Anonymous automatic objects are created and deleted at one single point of system description.

19. Controlled objects may only be used immediately by passing their pointer objects to a
dereferencing method.

20. The syntactic scope of global automatic objects are all the messages following the object’s creation.

21. The life of a local object X is restricted to the messages that are directly or indirectly contained in
the enclosing scope object of X.

22. The enclosing scope object of a literal object is the message it is defined in.

23. Literal objects are always constants.

24. An object’s class is always in its isWrittenBy set.

25. If a class Super is a supertype of class Sub, Sub has at least the same global features as Super.

26. If a class Derived inherits from another class Base then all inheritable features of Base become
inherited features of Derived.

27. A method’s name not only consists of its name as it appears when calling the method but also of the
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ordered sequence of the class names of the corresponding formal parameters.

28. Dereferencing methods, when called, return the contents of a container object.

29. Branch/decision methods add any actual parameter received together with a message block to the
immediate read set of the message block’s direct and indirect submessages.

30. Each direct and indirect submessage of the skipped message block of a backward branch (GOTO)
is added to the backward branch’s isWrittenBy association.

31. If a default value for a formal parameter is defined and no actual parameter is given then the
default value is used instead.

32. Actual parameters are always anonymous, automatic and local.

33. Only the language and library objects actually used by project objects are considered to belong to
the system description.

Table 8: The SMM Consistency Rules

3.2.3 The System Meter for Technical Design / Construction Results (CON-SM)

Metamodel of technical design artefacts

A constructional description of a system in general consists of the same object types as the
final implementation (e.g. classes, methods, ...). It is the level of detail, completeness and
perfection that is reduced within construction to "implementation patterns" for each
specification type (cf. 3.2.5). An implementation pattern may be viewed as a prototypical
but well-documented and well-tested implementation for a kind of specified problem.
Implementation patterns are candidates to be reused. They usually encompass small subsets
of classes or methods, sometimes even only sequences of variable instantiations, usages
and certain message sequences. The problem they solve may vary from generic problems
(for example, how to implement rational numbers in general or in a specific environment
like Smalltalk) to very system specific ones (for example, how to generate the registration
code for registered documents). Some very generic implementation patterns which are
successfully reused several times may evolve into design patterns (as described by
[GA94]). The technical design activity may profit from this pattern based strategy in
several ways:

� effort is focused on a few kinds of problems rather than on many problems that differ
only slightly, thus, the design is reduced,

ô eventually patterns from earlier projects may be reused,

and

í the newly developed patterns are more likely to be reused within the same or subsequent
projects.
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Figure 53: Metamodel of Technical Design Artefacts

The technical design thus is mainly a set of implementation patterns, each of them either
reused or newly developed. The implementation patterns serve as templates in the
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implementation. An implementation pattern itself is a set of cooperating description
objects. An implementation pattern thus can be a small setting of two or three classes that
communicate through the protocols of a couple of methods or it can be a complete or
partial framework consisting of dozens and maybe hundreds of classes and methods.
Implementation patterns furthermore are not restricted to abstractions like classes or
methods but may also encompass certain object instances, messages and even specifically
placed actual parameters.

Metamodel mapping into the SMM

The notion of an implementation pattern is mapped into the notion of a configuration
container (CC) in the SMM. The other meta entities are entities of the SMM itself and
therefore need not be mapped.

3.2.4 The System Meter for Relational Database Schemes (RDB-SM)

Metamodel of a relational database scheme

For modelling persistent classes, i.e. classes that may store and retrieve permanent
instances in some way, very often relational descriptions (cf. [CH76], [DA83]) are used.
This metamodel is viewed as a submodel of the technical design metamodel. It is not
necessary when object oriented databases are involved. Then the simple categorisation of
objects into persistent and non-persistent, i.e. transient objects, suffices.

Furthermore, very often relational schemes are the only stable and documented artefacts for
existing systems. They therefore have a special importance in assessing existing systems
towards re-engineering or porting them to new platforms. The ultimately sound basis for
quantitative measurements will always be 1) the code and 2) the relational scheme,
provided it exists, i.e. for database applications using relational databases. Because the
relational scheme is usually smaller, less scattered and its description language - usually
SQL - syntactically easy, it is more convenient for measurements than code. In order to
support measurements on this non-object-oriented artefact, we additionally included this
metamodel here.

The metamodel diagram is as follows:
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This metamodel represents the structure of a relational model. We comment it with respect
to the application analysis model, i.e. from the view of a forward development process.
Application classes are primarily transformed into relations, i.e. tables, or views.
Application methods, e.g. create in the class customer may however also be
transformed into stored procedures, e.g. customer_create. This metamodel though
does not explicitly support procedures or triggers, which may be viewed as automatically
called procedures. These procedural constructs must be modelled as a normal
implementation language using the metamodel entities given in 3.2.2. Data class elements
from the application analysis layer may be transformed into relation columns, i.e. persistent
data elements, or into view columns. The two application class element categories of
identifying and referential elements are matched into the relational constructs of primary
and foreign keys. The information of sorting and searching of class elements is taken into
the relational metamodel, too, as well as the identification upon which table columns
indexes are laid. Finally, predefined or user definable database data types are identified and
the columns are typed accordingly.

Metamodel mapping into the SMM

This mapping is not as trivial as the technical design mapping in the previous subsection.
We explain it in several steps:

1. A database class, i.e. a relation or a view, is mapped into a class. The relation classes
get the four methods "create", "read", "update" and "delete" whereas the view classes
only get "read". Hence, we assume that each view is a read only view.

2. Database datatypes are also mapped into classes. They, however, do not get any
features or methods.

3. Columns are features of the class mapped from the corresponding relation. The types
of the features are either the datatype classes or, if the column represents a foreign
key, the associated relation class.

4. View columns are mapped into methods that are implemented using the recursive
database column association "is defined using" as follows: 1) the database columns
that are view columns, i.e. mapped into methods, are called in implementing
messages, and 2) the database columns that are plain columns are put into a local
container object that is passed as a parameter in a message to a predefined language
method "is defined with".

5. Columns marked as primary keys are asserted to be categorised as 1) sorted and 2)
searched.

6. Each searched for database column is mapped as a formal parameter of the
corresponding "read" method. The formal parameter gets the appropriate type
association.

7. For each sorted database column an implementing message for the "read" method is
created that calls a language predefined method "sort" with the mapped feature as its
actual parameter.

8. Finally, the indices are mapped into methods that are called in the "create", "update"
and "delete" methods of the corresponding relation class. The index methods in turn
are implemented by messages - one per involved column - to the predefined "sort"
method using the column feature as the actual parameter.

The entities mappable into library objects usually are relations and views together with
their columns and indices and - most commonly - DB data types.
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3.2.5 The System Meter for Application Analysis / Specification Results (SPEC-SM)

Similarly to the essential system description also the system specification is split (for
reasons of comprehensibility) into two subject areas. The first metamodel covers the
system’s interface specification, the second the application domain class specifications.

The interfaces specification metamodel is based on the two ideas of

1) specifying types (instead of repeatedly specifying almost similar functions) and of

2) specifying an interface in three parts: 1. specifying what is to be done (model), 2.
specifying how it is presented to the system environment (view) and specifying in what
order it is done and how it is steered (control).

These two ideas are nothing but applying object oriented concepts (as elaborated e.g. by
Dahl (SIMULA) [DAH66], Goldberg (Smalltalk) [GO81] and Meyer [ME88]) and ideas
about separating contents, presentation and control (e.g. Goldberg [GO85]) to the
specification phase.

The graphical notation of the specification results metamodel is the following:
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Figure 55: Application Analysis -Interface Specification

In the specification of interfaces we already adopt the paradigm of MVC, model-view-
controller, that is widely used in object oriented implementations of graphical user
interfaces, e.g. in Smalltalk-80, C++/Views and Enfin. It is, however, a new specification
technique not to flatly specify views, entities of the user interface, but to already try at
specification level to identify types of views. View types usually are based on model types
i.e. repeating structures of objects to be presented in a view. Those model types are
typically: 1) to show a top entity and its linked descendants, 2) to show one entity in detail,
3) to show many entities in a row, 4) to show a network of linked entities, etc. Finally we
have the controller types and controllers that link user events on the views to model
components or other controller actions and define which view components are affected in
which way.

This typing of specifications not only allows the consistent and uniform specification of
one system but also delivers candidate elements, the types, of reuse for follow-up projects.
It is recommended [WALL96] to build up a library of specification (and corresponding
implementation) types that may be reused. This approach is implicitly chosen by project
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teams adopting GUI-standards like CUA or OpenView. These standards though leave lots
of things, e.g. how to support standard operations like "create new objects",
unstandardised. The typed specification approach tries to fill out that gap. A specification
type thus may be the standard look and behaviour of a function to create a new object, or
the standard look and behaviour to enter search arguments and get a list of the entities
found, or the standard look and behaviour of the help system, etc.

A system may also get into some special system states globally or locally in only one view.
Those states may either be defined as some model state or some executed controller
actions. The effect of a system being in a certain state is usually that some subset of the
controller actions may no longer be executed by the user. This is usually shown to the user
by dimming the view elements which could trigger the inhibited controller actions. Some
state may also inhibit models or model types to be accessed thus inhibiting all controller
actions leading to those model components and indirectly also dimming the corresponding
view elements.

The models may be aggregated into what is called a subsystem in this context. A subsystem
may be formed either by organisational by functional or by technical aspects. Functional
subsystems at specification level, e.g. an address administration subsystem with all layers
(model, view and controller) and the corresponding class model elements, are of invaluable
use as they can be reused together with their eventual implementation when the
specification fits a requirement formulated in the earlier models, i.e. the domain and
preliminary analysis models.

Finally, the concept of the model, here, is a grouping of elements - whole classes or just
class elements - of the class model that are used in a situation together, e.g. the customer’s
number, name and city is used to identify the customer in a layout that otherwise displays
accounting information. The model is a refinement and adaptation of what has been known
as local data models in conventional structured software engineering.

The definition of the models leads us to the second part of the application analysis
metamodel, the application class model. Every model must make use of a certain
vocabulary, i.e. only well defined terms must be used. All those terms, i.e. names for
classes, properties, methods, etc., are introduced and defined in the application class model.
Such class or object models are parts of every modern design method ([RU91], [BO91],
[RA96]). The metamodel diagram is as follows:
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Figure 56: Application Analysis - Class Model
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The notions of domain class, data and function types from the domain analysis are all
subsumed in the concept of the application domain class. Also, new classes may be
introduced at this level in order to represent data interface formats (to exchange date with
other systems), concepts that may be useful for specifying the user interface, technology
specifics or concretisations of non-essential requirements, e.g. help text classes, language
classes to support multi-language applications, etc.

The attributes of a class are called class elements, because we did not want to imply the
idea of data elements but rather subsume both data and functional elements under that
meta-entity. The class elements are categorised into � identifying elements, i.e. primary
keys, and non identifying elements, ô data and method elements, of which the latter have
an associated class for each parameter, í single and multiple value elements, of which the
latter subsume lists, when some order is specified, or unordered sets of values, ÷ into
searched and unsearched elements and finally û into ordered and unordered elements
(ordered here means that sets of instances may appear ordered by the values of the class
element). Note that those 5 categories are not exclusive, i.e. one categorisation does not
influence an other.

Whereas in the domain class model we do not yet model data elements or functionality, in
this model we allow more detailed information by defining the class elements and even
identifying the number and types, i.e. classes, of the method parameters. The domain
analysis associations, which were modelled as a meta entity of its own there, is now
transformed into the element to class association "is type of".

A final, rather marginal, association is also identified between class and view type. The
association defines the typical layout representation for the class which may be especially
useful for the data type classes. This supports the consistency of the specified interface by
guaranteeing that identical objects are represented with identical graphical elements, e.g.
the social security number always appears in the same format, address information always
appears uniformly, etc.

Metamodel mapping to the SMM

This mapping is again not trivial. The class model part’s mapping is only a slight variation
of the one for the relational model (cf. 3.2.4). We will first explain the class model
mapping and then the interface specification mapping:

1. An application class is mapped to a class. The persistent classes get the four methods
"create", "read", "update" and "delete", the datatype classes do not get any method
whereas the output interface format classes only get "create" and the input interface
format classes get a "read" method only. The subtype association is directly mapped
to the subtype association of the SMM.

2. Class elements are mapped to features of their class. The types of the features are
their associated type classes.

3. Methods are mapped to methods that are implemented using the association "is used
in" as follows: 1) if the used element is a method it is called in an implementing
message providing local objects of the correct types as actual parameters, and 2) if
the class element is not a method, it is put into a local container object that is passed
as a parameter in a message to a predefined language method "is defined with". The
method finally is added formal parameters with the associated classes as their types.
The type class of a method element is mapped to the method’s return value parameter
class.

4. Columns marked as identifying are asserted to be categorised as 1) ordered and 2)
searched.
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5. Each searched for element is mapped as a formal parameter of the corresponding
"read" method. The formal parameter gets the appropriate type association.

6. For each sorted database column an implementing message for the "read" method is
created that calls a language predefined method "sort" with the mapped feature as its
actual parameter.

7. Multiple valued class elements get an additional type in the SMM, which is allowed
in this most generic metamodel. The associated type is the predefined language class
"container object". In case an ordering sequence is specified, the element feature
together with the referenced other elements are put into a local container object
which is passed as an actual parameter in a message to the predefined method "sort in
every method of the element’s class.

The interface specification is mapped by the following sequence of rules:

1. Each specification type is mapped to a class. The subtype association is directly
mapped to the SMM subtype association. The "uses" association is mapped by
creating features for each of the used classes in the using class. Those features will
get the types of the used classes. They are all global and inheritable.

2. The top view type inherits from a language predefined class "view type" with a
global inheritable method "initialise". The top screen view types additionally inherits
from a predefined class "screen view type" with the global inheritable methods
"refresh" and "destroy".

3. The top model type inherits from a language predefined class "model type" with
global inheritable methods "execute" and "flush" as well as a global inheritable
feature "elements" of the predefined type "container object".

4. Each controller type gets a method "execute" which is implemented by messages to
all methods of the features, i.e. used other specification types, it contains.

5. Each system state is mapped to a class with the methods "set" and "test". The
defining controller type or model type add a message to "set" in their "execute"
method’s implementation. The inhibited types add a message to "test" in their
"execute" method’s implementation.

6. Each model is mapped as an instance of its type. The class model elements linked to
the model are put into the appropriate "elements" container objects that are also
instantiated according to the SMM consistency rule 10.

The entities mappable to library objects usually are the three kinds of specification types.
Whole subsystems together with their models, used specification types and classes may
also be mapped to library objects. Seldom, singular classes are also subject to reuse.

3.2.6 The System Meter for Domain Analysis Results (DOM-SM)

Many modern development strategies have adopted an analysis phase that focuses on the
system’s essentials, i.e. the concepts and mechanisms underlying a system that are "simply
a fact" and independent of whether a computer based software system is built or not (cf.
McMenamin/Palmer’s Essential Systems Analysis [MP84], Yourdon’s Modern Structured
Analysis [YO89] or OMT Domain Analysis of Rumbaugh et al. [RU91]). Hence, a well
elaborated essential system model is a sound foundation for building a good software
system. The metamodel of an essentially described system consists of two main subject
areas: 1) the class model and 2) the dynamic model consisting of use cases. Both models
are linked via class views that are used by the elements, i.e. signals, of the dynamic model.
Another - even though optionally elaborated - domain analysis result are state transition
models. We start with the class model’s metamodel:
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Figure 57: Domain Analysis - Class Model

Because the reader is assumed to be familiar with the basic entities occurring in the
diagram above, we do not comment them in detail here; however, there are some remarks
about some special semantics to be made:

First, domain associations are categorised into 1) subtype associations, i.e. class links that
indicate a specialisation/generalisation or ’is kind of’ relationships, 2) aggregation
associations and 3) all the other associations.

Second, instead of modelling attribute types at this level of system description we directly
assign one or more data types to the classes. For each of those assignments we also give a
rough indication of how many attributes of that type are contained in the class. The detailed
class model including all attributes, i.e. class elements, is deferred to the layer of
application analysis (presented in 3.2.5).

Third, instead of modelling detailed methods at this level of system description we assign
one or more function types to the classes. Each of those assignments implies that exactly
one method of the function type’s kind is contained in the class. Again, the detailed class
model, including all method class elements, is deferred to the next level of modelling.

Fourth, the class model, i.e. the information entities that are supposed to be consistent
within the system, is further described by a set of consistency rules that should cover
aspects not possible to model in terms of class, association and data/function types. A
common example for such a rule is the fact that a person’s civil state cannot switch back
from married to unmarried but can only change from married to divorced or widowed. The
entities of the class model component and class view are included for the simplification of
the metamodel.

The class model may also be interpreted as an extended ER model [CH76] because the
focus does not lie - at this layer - on the object oriented association of subtyping and the
incorporation of methods into entity types by attaching function types to classes.

In the domain use case model, the next model we present, all is centered around the
concept of the use case [JA92] which is triggered by some event in the systems
environment. The use case has its roots in the concepts of essential activity first presented
by McMenamin/Palmer [MP84]:
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Figure 58: Domain Analysis - Use Case Model

The use case model consists mainly of the 1:1 linked pair of event, i.e. something that
happened in the system’s environment, and use case, i.e. the system’s reaction scheme to an
event. The system communicates with its environment, which is modelled by a set of
actors, through signals. Signals may also be used for mere system internal communication,
i.e. the send and receive associations to actors are optional.. Signals use certain subsets of
the domain class model via class views, i.e. subsets of classes, associations, function and
data types.

We finally have some refinements: events may be categorised into 1) temporal events, i.e.
when some time has elapsed or a system state is reached that forces a system action, and 2)
triggered events, i.e. events that are actually triggered via a signal from the environment.
Use cases usually assume some conditions in order to be executed correctly. These
presumed facts are stated in preconditions that are - as the signals - linked to a class view.

The state transition model, finally, enhances the domain class model by introducing
additional subtypes to some domain classes. Those subtypes are the states. The point is that
a certain object may change its state dynamically but in a controlled manner, i.e. only an
identified set of functional components, signals or function types, may push that object into
some new state.

The graphical notation of the domain state transition metamodel is the following:
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Figure 59: Domain Analysis - State Transition Model

A state is some specialisation of a domain class, e.g. an account in overdrawn state. States
may also be specialisation’s of some other states, e.g. an account may be slightly or
severely overdrawn; two substates of the overdrawn state. The latter enhancement of the
traditional state transition paradigm (cf. Hopcroft/Ullman [HO79]) was first introduced by
David Harel [HAR87]. A state is defined by a set of some related values, e.g. "overdrawn"
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is defined by the condition that the account’s balance < 0, "severely overdrawn" when the
account’s balance < -$10’000. Any state may be left through one or several transitions and
entered through one or several transitions which are triggered by signals and may - as a side
effect - trigger some other signals. Transitions may furthermore be bound to some
condition. We speak of conditional transitions then. To give an example: the state "normal"
of an account may be left by a transition "drawback" under the condition that the amount >
the account’s balance. We would model the signal "draw back amount" sent by an actor
"bank customer" to trigger that transition. As the transition’s reaction the state "account
overdrawn" is entered and maybe the signal "mail overdrawn state" received by the
"customer" is additionally triggered.

As the careful reader may have noticed this modelling interferes to some degree with the
use case modelling: e.g. there are temporal events based on system internal states that may
also trigger essential activities. The author suggests state-transition-modelling for truly
state based behaviour and temporal event modelling for actually timed events, e.g. "1 ms
later", "two days after", "each week", etc.

Metamodel mapping to the SMM

The class model part’s mapping is only a slight variation of the one for the relational model
(cf. 3.2.4). We will first explain the class model mapping and then the interface
specification mapping:

1. Domain classes and data types are mapped to classes.

2. The subtype associations are mapped to subtype associations.

3. Aggregate associations are mapped to features of the first involved class. The feature
types are the second classes. The features are named as the second class.

4. The other associations are mapped to features of each class returning a formal
parameter typed with the other class. The feature of class1 is named as the
association and the one in class 2 is prefixed the keyword "back". In case the partner
side of the association is of m or mc cardinality, the feature is a method with a formal
parameter of the appropriate type. This formal parameter is furthermore a container
object and of category update, i.e. objects passed to it are modelled as being updated.

5. Data type contained in a class are treated like aggregates.

6. Function Types are mapped to classes named like the function type with the postfix
"-able", e.g. "create-able" for a "create" function type. This class is added an
inheritable method named exactly like the function type. Each domain class that
contains a function type is a subtype of the function type class. The method is added
formal parameters per kind of basic function encompassed in the function type.

7. Consistency rules are mapped to methods of a predefined language class "Domain
Class Model".

8. Each use case is mapped to a method.

9. Each actor is mapped to a class with the two methods "send" and "receive".

10. Each event is mapped to a method of the language class "Events". This method is
implemented with a message to the linked use case method.

11. Each domain subsystem is mapped to an object containing the use case methods.

12. Each state is mapped to a class which is a subtype of the domain class or the super
state class, depending on what applies.

13. Each transition is mapped to a method of its start state returning a formal create
parameter typed with the end state. This method is called in the implementation of
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each use case that is linked via the "is triggered by" association with the end state
class as actual parameter.

14. Each class view, finally, is mapped to message calls as follows:
- If a domain class and an appropriate function type are in the view, then the

inherited function type method of the domain class is called with all the class
features as actual parameters.

- If a domain class, an appropriate function type and an appropriate data type are
in the view, then the inherited function type method of the domain class is
called with just the data type class features as actual parameters.

- If an association (no aggregate and subtype associations are usable in views
because they are anonymous) is in the view, the corresponding method or the
language method "uses" is called with the second class as actual parameter.

The method implemented with those message calls depends on the view links:
- If tied to a precondition it implements the use case method.
- If tied to a signal it implements the use case method. If the signal is linked to an

actor via the send association it implements the actor’s send method and if via
the receive association the receive method. If the signal is linked to a transition
via the "triggers" association it also implements the transition method.

- If the view is linked to a conditional transition it implements the transition
method.

- If the view is linked to a state it implements the "isDefinedBy" method of
language class "States".

Signals and preconditions, thus, are only used as a linking means. They are not
mapped directly into SMM entities.

3.2.7 The System Meter for Preliminary Analysis Results (PRE-SM)

The software process we defined (cf. 3.3.3 and [MO95b] [MO96b]) starts with a very
coarse model that consists of a set of functional system goals, a set of subject areas, i.e.
anticipated groupings of domain classes and links between those two sets. The links are
defining the goals for each subject area. Typical functional goals27 in information systems
are the ubiquitous "creation", "read", "update" and "deletion" functionalities. In device
control systems these might be "monitoring", "steering" and "protocolling". The subject
areas - on the other hand - might be "stock information", "customer information" and
"order information" for IS and "heating device" or "cooling device" for control systems, i.e.
rough indications of what the system is about. In order to distinguish those very coarse
concepts with respect to their complexity, every subject area is given an approximate
number of contained classes and every goal is given an estimated complexity number28.
Additionally, the goals may be hierarchically ordered.

We thus have the following diagrammed preliminary analysis metamodel:

                                                
27 In more recent works - as well as in the industry application of the System Meter method - we are using the
term „functionality“ instead of „functional system goal“. We do so because the notion of a goal may lead to
some confusion with project and quality objectives.

28 The complexity number is an integer. The values are pseudo-defined by the rule that each basic database
functionality (CRUD) has complexity 1.
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Figure 60: A Metamodel of Preliminary Analysis Results

A preliminary description of a system is more a case of limiting the set of possible
implemented systems than actually describing a system in its traditional sense29. The
description gives an idea about the systems functionality and of its scope.

Metamodel mapping to the SMM

1. Any subject area of complexity c is mapped to a description object that contains c
classes. The classes are just "dummies" and each contains a single method called
"fulfilGoals".

2. Any elementary goal (with complexity 1) is mapped to a method.

3. Any higher order or non elementary goal is mapped to a description object containing
the subordinate goal objects (either description objects or methods).

4. If a subject area is linked to a goal, this is mapped to an isImplementedBy association
between the "fulfilGoals" method and a message calling the goal method.

A sample application of the mapped System Meter just introduced is given here using the
rules given in 4.2.1 to denote goals and subject areas. Let us look at a sample preliminary
system description (of a truly tiny system):

Goal create.

Goal delete.

Goal administrate = create, delete.

Goal "save historical states" 2 .

Subject Area orders 2 .

Subject Area orders isRuledBy create.

Subject Area customers 2.

Subject Area customers isRuledBy administrate.

Subject Area stock 3.

Subject Area stock isRuledBy administrate,

"save historical states".

Figure 61: A Sample Preliminary System Description

The first message

                                                
29 A system is traditionally viewed as an entity which accepts some kinds of inputs and produces some
outputs.
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Goal create.

is a message to the language method ’Goal <name> [ = <complexity> ] .’ with the following
actual parameters: it creates a method named ’create’ out of a literal object passed as the
input/read parameter. For the parameter <complexity> a language provided literal value of
1 is used. So in summary we have the following list of description objects:

Meta-Class Name Meta Associations and Categories isWrittenBy Association

Message 01 calls ’Goal <name> [ = <complexity> ] .’,

has actual parameters 02, 04, 05

anonymous

’Goal <name> [ =
<complexity> ] .’

Actual
Parameter

02 equals 03

correspondsTo <name>

isUsedIn 01

anonymous

Object 03 value is ‘create’

isReferredIn 02

constant literal anonymous

Actual
Parameter

04 equals language literal 1

correspondsTo <complexity>

isUsedIn 01

anonymous

Actual
Parameter

05 equals create

correspondsTo <new goal method>

isUsedIn 01

anonymous

Method create isReferredIn 05 01, 03, language literal 1

Table 9: The Description Objects Implied by the 1st Message

In the next message we create the goal method "delete" in a similar manner. Next we
encounter is a call to ’Goal <name> = <subgoals> ... .’. This now introduces an object
’administrate’ and adds the two previously created methods into its list of contained sub-
objects. The object list is enhanced as follows:

Meta-Class Name Meta Associations and Categories isWrittenBy Association

Message 15 calls 'Goal <name> = <subgoals> ... .',

has actual parameters 16, 18, 19

anonymous

calls 'Goal <name> =
<subgoals> ... .'

Actual
Parameter

16 equals 17

correspondsTo <name>

isUsedIn 15

anonymous

Object 17 value is ‘administrate’

isReferredIn 16

constant literal anonymous
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Actual
Parameter

18 equals create, delete

correspondsTo <subgoals>

isUsedIn 15

anonymous

Actual
Parameter

19 equals administrate

correspondsTo <new goal object>

isUsedIn 15

anonymous

Object administrate isReferredIn 19

contains create, delete

15, 17, create, delete,
create, delete

(create and delete are
contained twice because
they are contained and they
occur in administrate’s
creating message)

Table 10: Additional Description Objects Implied by the 3rd Message

In this manner all the describing messages are analysed. Then the external sizes (cf. 3.2.1)
are assigned to the objects. For the objects we have listed above this means:

Meta-Class Name External Size Internal Size Size

Message 01 1 1 2

Actual
Parameter

02 1 0 1

Object 03 1 0 1

Actual
Parameter

04 1 0 1

Actual
Parameter

05 1 0 1

Method create 1 3 4

Message 06 1 1 2

Actual
Parameter

07 1 0 1

Object 08 1 0 1

Actual
Parameter

09 1 0 1

Actual
Parameter

10 1 0 1

Method create 1 3 4

Message 11 1 1 2

Actual
Parameter

12 1 0 1

Object 13 1 0 1

Actual
Parameter

14 1 0 1

Actual
Parameter

15 1 0 1

Object administrate 1 6 7

Table 11: The System Meter Values for the Sample Description Objects
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In order to get the system’s total size we finally sum up the sizes of all the objects. This
procedure results in a size of 33 for the objects in the list above. For the total system
described here a size of 186 was measured.

3.3 New Measures and Metamodels for Software Processes

3.3.1 The Estimation Quality Factor

In section 1.5 we introduced two most important criteria to assess estimation methods: 1)
the effort of estimation and 2) the estimation quality. In section 2.2 we concluded that
estimation quality may be measured using the approximation bias dA, if - and this is the
point here - the estimation methods are both metrics based, i.e. follow the strategy given in
2.1. In practice, however, one should also have an instrument to measure estimation quality
of arbitrary methods. We may then use this instrument, which itself has to be a process
metric, to assess the benefits of rational estimation methods and growing empirical
databases over "chaotical" estimates (as done in 4.3.4). As shown in a survey (cf. [DM83])
the estimation quality correlates best with project success. It outperforms factors such as
technology used, staff experience and others.

A Metamodel of the Estimation Process

According to DeMarco [DM83] estimation is assumed to take place at certain points of
time within project duration. Project start is denoted as T0. At least at the end of the project
Tend - which by definition of a project must exist - the estimate will converge to the actually
measured value M. A non existing estimate is modelled as a value of 0. The estimation
process or history of a project may therefore be viewed as a set of pairs of time and
estimated values {(T0, E0), (T1, E1), (T2, E2), ..., (Tend, M)}.

T

Estimate of P

0
T1

T2 T3 Tend

E0

E1

E2
E3 M

Time

Figure 62: The Estimation History of a Parameter P

The Estimation Quality Factor (EQF)

DeMarco defined an EQF metric based on the metamodel above that yields values from 0
to infinity. This scale is however difficult to interpret, e.g. it is not easy to answer whether
10 is a good or bad value. We therefore propose and use a new metric that measures the
quality in a dimensionless scale from 0% to 100%. It follows the viewpoints that

� if no estimate existed for the whole project duration EQF yields 0%

ô when from project start on the right value was estimated throughout the project EQF
is 100%

í Under- and overestimates are treated equally.

Any values in-between 0% and 100% can be interpreted as having estimates of an average
bias of 100%-EQF throughout the project. We furthermore extended DeMarco’s EQF
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definition, which was restricted to effort estimates, to any quantitative parameter P of
software or software processes. We therefore denote the EQF for a parameter P as EQFP
and define it using the formula:

EQFP ≡ 
0

1end−

∑ [min (Ei, M) x (Ti+1 - Ti)] / 0

1end−

∑ [max (Ei, M) x (Ti+1 - Ti)]

More intuitively we can also define the EQF metric using the differently textured areas
from figure 62 above:

EQF )
+

= ( 100%  - 
P

Figure 63: The Intuitive Definition of the EQF

For the software process as a whole, which is - according to section 1.1 - mainly described
with the three parameters of 1) effort, 2) time and 3) the product, we introduce the
aggregate EQF defined as

EQF ≡ (EQFeffort + EQFduration + EQFproduct size) / 3

This measure was evaluated in a subset of some 10 projects in our field study (cf. 4.3.4).
Within a quality management system it can also successfully be used as a goal measure.
One has to be careful however to assign the goals of a high EQF and a high productivity to
the same person. If one produces above the standard productivity rate, estimates will be
bad, and if the estimates are optimised, productivity will never rise (cf. DM82]).

3.3.2 The Restrictively Cyclic Model

As we saw in 2.3.4 and 2.3.5 there exist various models for the software process, e.g. the
waterfall model, spiral, fountain and pinball models. We found that the waterfall model is
too restrictive and the non-waterfall models are too open to be of practical use. We
therefore introduce our own process metamodel that combines the waterfall idea with the
pinball model.

The Key Ideas

The first basic idea is to define the process steps or phases through the results. For
example, we define the preliminary analysis phase as all activities leading to a first released
version of the preliminary analysis results, i.e. goals and subject areas. The structure of the
activities within the phase is left open, only a few recommendations are made. During a
phase you can therefore - adhering to the pinball model - 1) work directly on the phase’s
results in several iterations, 2) work on experimental or 3) evolutionary prototypes of
results from coming phases.

The second idea is that after the first release of a system description layer it is no longer
allowed to change anything on that layer unless it is 1) an error correction or 2) a formally
tracked and approved change that has its effects on cost, time and the product delivered.
This requires that each result layer, i.e. a phase, describes the system as a whole and
without incorporating redundant parts of the other layers. The total system description, i.e.
the dynamic system documentation, consists of the currently valid descriptions on each of
the layers. System documentation thus starts already after the completion of the first phase
and is controlled - already during development time - by a formal problem, change and
configuration management process. We may also view this as pushing the released system
descriptions into their usage and maintenance phase before this phase actually begins for
the coded system.
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P = preliminary analysis, D = domain anaylsis, A = application analysis
Co = construction, Re = replication, D = delivery

Figure 64: The Restrictively Cyclic "Funnel" Software Process Model

In summary we may describe the restrictively cyclic software process as being based on the
results, allowing the prototypical elaboration of any result at any time but restricting the
change of results that are once released. This strategy yields a "funnel" shaped macro
process that guarantees that the development cycles will become smaller and smaller with
the completion of phases, i.e. release of result layers. This is a substantial difference to the
traditional waterfall (cf. 2.3.5) or cyclic software process models (cf. 2.3.6).

Prototyping Modes

According to modern practices we can distinguish three types of prototypical system
descriptions that essentially differ only with respect to their method of verification, i.e.
amount of quality assurance:

� Experimental prototypes

These prototypes are unproved or proofs are left to the authors.

ô Evolutionary prototypes

Evolutionary prototypes are proven in a single formal verification step, i.e. a review
or a test.

í RAD (Rapid Application Development) prototypes

These prototypes actually have a misleading name because they are fully verified30

system descriptions. Nevertheless they are considered to be prototypes because they
encompass only a reduced subset of the total system.

The points of usage of those three modes of prototypes - together with the maintenance, i.e.
problem and change management process - may be positioned in the diagram of model
layers and temporal phases as follows:

A prototyping process may - according to the loose pinball process metamodel -
instantiated at any time it is needed. However, it always includes:

è The definition of the prototype’s intent and feedback mechanism into the main
software process. Typical intents are a) feasibility study, b) user interface
verification, c) specification/functional verification, d) performance analysis and e)
(pilot) usage.

                                                
30 The expression "fully verified" is theoretically and practically unsound because it is impossible to verify a
system by testing or reviewing it. Fully verified here means that all suitable quality assurance techniques are
applied in full to the result.
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� The definition of the prototype scope, i.e. a subset31 of the current system description.
For example, if we detach a prototyping process at the preliminary analysis level, we
define the prototype scope as a subset of subject areas and functional goals (unless
we have prototypical results of other phases already at hand).

� The definition of the result layers, i.e. phases, that should prototypically be
elaborated. For example, if we want to verify that some functional goal is technically
achievable we would undergo the technical design and implementation phases.

� The definition of the prototype mode, i.e. experimental, evolutionary or RAD, i.e.
fully verified. The mode is usually dependent on the intent and the phase we are
already in. If the prototype phases skip some phases with respect to the current phase
we usually chose experimental mode. Prototypes of phase results just following the
current phase will usually be evolutionary because we want to reuse the results
immediately afterwards. If the prototype is going to be installed and used
productively we will choose the fully verified mode.

The points of usage of those three modes of prototypes - together with the maintenance, i.e.
problem and change management process - may be positioned in the diagram of model
layers and temporal phases as follows:

P E S Co Re D
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D

model layers

temporal
phases

1 Experimental Prototyping

2 Evolutionary Prototyping

4 Maintenance, System Descriptions under Change Management

3 Normal Development

1

2
3

4

Areas of:

Figure 65: Software Process Modes

A prototyping process is planned, estimated and managed as an individual detached
software process, although it may also be viewed as a sub-process of the top-process. It is
even possible within a prototyping process, to start yet another prototyping subprocess. The
efforts of prototyping processes that do not lead to fully verified results are added to the
current phase, whereas the efforts of fully verified prototypes - which then are not really
prototypes anymore - are added to the respective phases.

For any software process - be it a prototyping or primary process - the definitional element
is the system scope over which the process runs. As soon as the scope is changed - usually

                                                
31 For RAD prototypes this corresponds to a versioning of the system into pieces of delivery. Those pieces
are typically defined using the "fit to schedule" planning technique, i.e. each version is of such complexity
that it can be developed and set to production within a given time. This development strategy is also known as
"Time-Box" development. Typically each time-box spans over 3 to 6 months.
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it is partitioned, i.e. only some subset is further developed - either a subprocess is
instantiated or the primary process is stopped while only partially complete. Eventually a
new follow-up process, which may reuse the already developed descriptions, is then started
on the changed scope.

3.3.3 The BIO Software Process

The BIO32 software process is an instantiation of the "funnel" software process model
explained in the previous subsection. It was developed in several released versions
([MO93] [MO95b] and currently [MO96b]) and was used as a template model for all the
processes investigated in the field study (cf. chapter 4). Even though not all of the process
used BIO it was possible to map the artefacts to the BIO template artefacts. The template
consists of 6 model layers and temporal phases and the two accompanying span activities
(cf. 2.3.6) of project and quality management:

System Implementation

System Introduction

1
2
3

4
5

6

System Architecture

Preliminary Analysis (P)
Domain / Essential Analysis (E)
Application Analysis / Specification (S)

Construction / Design (Co)
Replication / Coding & Test (Re)

Acceptance & Delivery (D)

Project and Configuration Management (PM)

Quality Management and Measurements (QM)

Figure 66: The BIO Software Process

Besides the fact that BIO follows the restrictively cyclic process model the following main
new idea was introduced:

Requirements which traditionally are considered to form one layer are split into three
distinct layers. Each of the layers describes the complete system or subsystem although the
description granularity or scale is different. This idea may be compared to drawing maps of
decreasing scale of some country. The benefits of this splitting are twofold: First, during
development we deliver stable results earlier which may then be used to estimate and plan
the future development process. Second, during maintenance changes of requirements may
be classified using the layers: minuscule changes of layouts and attributes that should
appear on reports may be assigned to the specification layer, more severe changes of the
systems real world base, i.e. entire new classes or use cases to be supported, may be
assigned to the domain analysis layer and entire new subject areas or functional goals are
assignable to the preliminary analysis layer. Hence, we may keep entire requirement layers
unchanged when only details change. Also the rates of change or change velocities are
different for the different layers:

                                                
32 This acronym is derived from Bedag Informatik Object Oriented Process. It is a publicly available
document at reproduction cost. The copyright is however corporate owned.
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Figure 67: Change Velocities of the Analysis/Requirements Layers

By adhering to a separation of the requirements layer we therefore achieve a minimum of
changes, thus introducing the desired stability into the development and maintenance
processes.

The Detailed BIO Results

Instead of focusing on activities, steps and procedures BIO focuses on the results, the
deliverables of the software process. BIO almost entirely relies on the different metamodels
presented in section 3.2. There are several additional results included in the list below.
Those results however need no further explanation in the context of our work. More
information is included in the current BIO documents [MO96b] as well as
recommendations for strategies, tools and techniques to produce the results.

The following list of deliverables covers all the layers and span activity results. For the
three modes of the process, i.e. experimental, evolutionary and fully verified different
columns are given. The columns contain empirically derived percentages. Those
percentages are nothing but the correlation coefficients of a mass of purely linear
estimation models. They correlate the effort of producing the result in the given mode to
the effort of producing all the standard results in fully verified mode. The latter effort is
called the standard effort. E.g. it requires 30% of the overall development effort to produce
the fully verified code, i.e. tested by independent personnel for functionality and
robustness, 25% to produce code that is tested for functionality (as required for
evolutionary code) and 10% to produce self-tested code (as required for experimental
code).

BIO Layer Result Exp. % Evol. % Full %
Preliminary Analysis 5% Subject Areas 1/2 % 1 % 2 %

Goals 1/2 % 1 % 3 %

Domain Analysis 14% Use Case Model 1 % 3 % 5 %

Domain Class Model 1 % 3 % 5 %

State-Transition Models 1 % 2 % 4 %

Non-essential Requirements 1 % 2 % 4 %

Application Analysis 18% Specification Types * 1 % 3 % 5 %

Models 2 % 3 % 5 %

System States 2 % 3 % 4 %

Application Class Model 2 % 4 % 6 %

Non-functional Requirements 1/2 % 1 % 2 %
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Construction 19% Implementation Patterns * 2 % 4 % 5 %

Relational Model 1 % 3 % 4 %

Technical Class Model 1 % 2 % 2 %

Test Data 1 % 3 % 4 %

Test Cases 2 % 3 % 4 %

Replication 38% Tuned Pattern / Rel. / Class Model * 2 % 4 % 5 %

Code 10 % 25 % 30 %

Administrative & Installation Code 1 % 4 % 5 %

Platform Port * 2 % 8 % 10%

Layout Translation (Multilanguage) * 4 % 5 % 5 %

System Administrator Manual * 1 % 2 % 3 %

User Manual / Online Help * 1 % 3 % 4 %

Forms (for manual processing) 1/2 % 1/2 % 1 %

Delivery 6% Acceptance 1/2 % 2 % 3 %

Installations * 1/4 % 1 % 1 %

User Instruction * 1% 1 1/2% 2 %

Organisational Changes 1/2 % 1 1/2 % 2 %

Data Migration 2 % 3 % 4 %

Project Management 10% Plans 1 % 1 1/2 % 2 %

Estimates 1/2 % 1 % 1 %

Configuration Mgmt / Infrastructure 2 % 2 % 3 %

Problem and Change Mgmt 1 % 2 % 3 %

Controlling and Reporting 1 % 1 % 1 %

Evaluations * 1/2 % 2 % 3 %

Preparation of Organisational Changes 1/2 % 2 % 3 %

Preparation of User Instructions 1 % 2 % 3 %

Preparation of Data Migration 2 % 2 % 3 %

Quality Management 8% Risk Analysis / Quality Plans 1 % 1 1/2 % 2 %

Measurements 1 % 2 % 3 %

Defining Development Standards 1/2 % 1 1/2 % 3 %

Developer Instruction 1/4 % 1/2 % 1/2 %

Project Reviews 1/4 % 1/2 % 1/2 %

Table 12: The BIO Results and their Process Completeness Percentages

In the table above the underlined items make up the standard results, i.e. the standard
effort. Note that the sum of the main layers equals 100%. The percentages of the span
activities are to be considered as fractions within the main effort. The items marked with a
* may be repeatedly instantiated. Their percentages are given for one instance.

The purely linear estimation models, i.e. their percentages, are used for two purposes:

� In step C of the generic estimation procedure (cf. 2.1.1) we may tailor the initial
standard effort estimate, which equals 100%, to the deliverables actually needed in
the planned process (e.g. we may only want to produce some experimental design
and code). We sum up the percentages of the needed results (e.g. 2% for
experimental solution patterns, 1% for an experimental technical class model and
10% for experimental code = 13%) and reduce the initial estimate proportionally.
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ô When calibrating estimation models (cf. 2.1.2), which was extensively done in our
field study (cf. appendix F, the detailed measurement forms), we use the percentages
to assess the process completeness as defined in 2.3.4. We sum up the percentages of
the actually developed results according to their observed verification state. Step C-1

of the calibration then consists in expanding (or reducing) the observed effort
proportionally to get the standard effort.
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4 Results of a Field Study

4.1 Goals and Settings of the Field Study

4.1.1 Goals and Evaluation Strategies

4.1.1.1 Assessing the Estimation Power of the System Meter for Preliminary Analysis (PRE-SM)

The System Meter was primarily designed to support the task of estimation. Because
reasonable estimates should be obtainable as early as possible, we defined the System
Meter for preliminary analysis results (cf. 3.2.7) and evaluated its behaviour with respect to
the process metric of effort (cf. 2.3.3).

The estimation model thus evaluated was, according to the formal notation introduced in
2.1.1, a 5-tuple of:

� Predictor Metamodel = Preliminary Analysis Metamodel

ô Predictor Metric = System Meter (PRE-Variant)

í Empirical Database = 36 surveyed projects (cf. 4.1.2 for details)

÷ Result Metric = Person Days

û Result Metamodel = BIO Processes of Preliminary Analysis through Installation
(including Project Management, Configuration Management, Estimation and
Measurement and Quality Management)

Before one may understand the evaluation details (cf. 4.3.1), the evaluation criteria,
introduced in section 1.4, are briefly resumed and commented. The two criteria are:

1 yield estimates as precisely as possible

2 yield estimates as cheaply and quickly as possible.

In order to assess with respect to the first criterion, one is obliged to estimate some
parameter X with the method in question and, at the end of the process, measure the
effective outcome of X. The relative bias, defined as:

estimation bias = [Xestim - Xeff]2 / Xeff

should then be minimal compared to estimates gained with other methods. This, however,
is a time consuming evaluation strategy because one must have the estimation method
ready at the point of estimation and then wait until completion of the process.

On the other hand, when the method works according to the metric based strategy
explained in section 2.1.1 one can also calculate the approximation bias dA of the predictor
metric P with respect to the result metric R. Actually the formula for the relative
correlation bias of one pair of data is very similar to the one for the simple estimation bias,
namely:

dA = [A (P) - R]2 / R

where A is the approximation or estimation function.

The assessment technique using dA rather than the estimation bias has the advantage that it
can be applied entirely after the completion of the evaluated projects, i.e. the estimation
method can be defined after a project’s completion. We used this technique in our survey.

To understand the second criterion, the estimation cost and speed, one must be aware that
estimation incorporates both 1) the efforts to establish a reviewed and stable version of the
predictor model and 2) the efforts of the estimation procedure. Whereas part two of the
effort, the estimation procedure effort, usually is minor - especially when automated tools
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are used - part one, the model building effort, is considerable and usually also involves
interactions with customers. We evaluated the estimation models with respect to effort
spent (= cost) only, assuming a strong and constant correlation with duration.

4.1.1.2 Assessing the Estimation Power of the System Meter for Domain Analysis (DOME-SM)

The System Meter defined for domain analysis results (cf. 3.2.6), which is obtainable
considerably later than the PRE-SM but promises better estimates, was also evaluated with
respect to the process metric of effort. Additionally, the conventional technique of Function
Point counting (cf. 2.2.4), which is also measurable on domain analysis results, was
evaluated in the same empirical database.

The estimation models evaluated were:

A � Predictor Metamodel = Domain Analysis Metamodel

ô Predictor Metric = System Meter (DOME-Variant)

í Empirical Database = 36 surveyed projects (cf. 4.1.2 for details)

÷ Result Metric = Person Days

û Result Metamodel = BIO Processes of Preliminary Analysis through
Installation (including Project Management, Configuration Management,
Estimation and Measurement and Quality Management)

and

B �, í, ÷ and û identical to A, except

ô Predictor Metric = Function Points

The pairs of relative biases from the SM and FP approximation function to the observed
effort values were furthermore assessed against the zero-hypothesis H0 that the average
biases do not differ and the one-sided hypothesis H1 that the SM average bias is lower than
the FP average bias. The hypothesis analysis was conducted using the Wilcoxon signed
rank sum test (cf. 4.2.4). This test was chosen because the samples 1) were paired, 2) are
continuous data and 3) the sample set was not large enough for the z-test (cf. [RI78]).

4.1.1.3 Measuring the Effects of Reuse on Productivity

The survey of over thirty projects also included four independent sets (A1, A2), (B1, B2),
(C1, C2, C3, C4, C5, C6, C7, C8) and (D) of projects that explicitly had to develop (first
project) and then apply frameworks. Although this is too small a number of projects to
allow any statistically sound conclusions to be drawn, we were interested in seeing whether
quantitative metrics could tell us anything about the impact of reusable components on the
productivity of projects that both develop and reuse such components. Productivity is to be
understood as defined in 2.3.3, i.e. as the ratio of result size and effort, e.g. SM/PD. We
used the System Meter at the preliminary analysis level and - for comparison purposes - the
Function Point metric at the domain analysis level.

From the estimation point of view, we are interested in observing productivity that is as
uniform as possible. From a managerial point of view, we want to observe increases of
productivity. Both goals obviously cannot be achieved by the same metric. While the SM
allows the measurement of reusable components it does not enforce it. The SM-variant
without consideration of reuse is called the flat SM or - shortly - SM’. We used SM’ in only
one project A2. We expected it to report a productivity increase whereas SM should level
out the reuse based productivity variances. For the FP metric, which does not take reuse
into account, no variant can be defined and we therefore expected it to be sensitive to
reuse. We analysed the productivity bias between the framework construction projects and
each of the follow-up projects, i.e. on 9 project pairs.
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4.1.1.4 Measuring the Effects of Team Size and Acceleration on Productivity

Since the famous book "The mythical man-month" written by Brooks [BR75] appeared in
1975 we all know that adding manpower to a late software project makes it even later. This
law - if one may call that a law - was formalised in our field study. Large teams are
typically built when the planned and imposed duration is smaller than the duration one
would rationally estimate. The acceleration (cf. 2.3.5) measure captures the amount of such
enhanced project dynamics. The law may now be formulated in the hypothesis that the
team size does not grow linearly with acceleration. Instead we assume, that the team size -
and with it the effort inflation (also cf. 2.3.5) - increases according to the square of the
acceleration. This hypothesis was tested in a few samples. The number of samples was only
4. Due to this low number no statistical evidence is presented here. The samples however
showed - as singular examples - that the hypothesis is a good model for reality, i.e. none of
the samples showed a completely contradictory behaviour.

4.1.1.5 Measuring Estimation Quality for Unstructured and Metric Based Estimation Techniques

Since 1993 we collected estimates and effective outcomes of some 8 projects we were
especially closely involved with, i.e. we had access to the history of estimates. The
estimation techniques used in these samples were unstructured for the first 2, the Function
Point Method (cf. 2.2.4) for the next 6 projects. The Function Point Method was using an
increasingly better empirical database. In order to compare the estimation quality of those
different projects we used the EQF as explained in 3.3.1. We were interested in observing
the behaviour of the EQF over time: does it increase? And if yes: at what rate and does it
do so continuously? The sample base was again too low to do a statistical analysis. We
simply discuss a bar chart of the EQF values on a time axis.

4.1.2 Characteristics of the Projects

The set of investigated projects (all measurements were either accomplished or supervised
by the author) varied in many aspects:

The variation of the organisational and personal aspect may probably be best captured by
analysing the contractor companies involved. The set mainly consists of projects
undertaken at 3 medium sized information services companies (17, 9 and 4 projects).
Additionally, there are 3 university projects and 3 projects from a large chemical industry
site.

The total project efforts observed ranged from 1.5 person-months to more than 100 person-
months. Whereas the average team sizes ranged from as few as 0.8 persons to slightly over
5 persons and maximum team sizes from 1.2 to 10.5. The month of project completion
ranges from December 1987 until November 1995.

From the technological point of view the projects may be categorised into 25 projects using
Smalltalk, 7 using 4GLs and 4 using C++.

From the methodological point of view there were 19 projects using the BIO method, a
synthesis of Essential Systems Analysis (ESA) [MP84] [YO89] with Rumbaugh’s Object
Modelling Technique (OMT) [RU91] as described in section 3.3.3, 4 projects using
"classical" ESA and the rest of the projects didn’t really follow a method but were
heuristically casted into the BIO reference process.

The application domains varied from work flow administration, land registry, statistics,
taxation, registration of chemical formulae to decision support and management
information systems. Virtually every application (30 of 36) was built using a client/server
architecture with a GUI-client and a database server. A typical GUI-window from Adesso
one of the larger systems in the survey is given below:
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Figure 68: A Sample GUI-Window from One of the Surveyed Projects (Adesso)

4 projects explicitly had to deliver reusable frameworks. They are described in more detail
below in order to make the analysis of productivity rates (cf. 4.3.3) more transparent.

The first project A1 had as its primary goal the development of a first usable version of a
system for document registration and management of standard administrative procedures
(such as legal initiatives, trials, applications, elections, etc.). Since this project was the first
of a new generation of client/server applications, it also had a secondary goal to develop a
framework dealing mainly with (1) the access of data stored in relational databases from an
object-oriented client system, (2) the handling of complex interaction sequences involving
several windows and (3) the construction of a programmable model for administrative
procedures. Project A1 was immediately followed by a successor project A2 that produced
a second release of the system using the framework and including some major
enhancements, like incremental and keyword-based searches in the registry and ongoing
procedures.

The second project B1 had the primary objective to produce a management information
system (read only data access) for presenting information from several existing production
systems (financial accounting, organisations and addresses, task management,
documentation registry, etc.). At the same time it also developed a framework dealing with
data access (but using stored procedures), data imports and exports, and presentation of
data in flat and hierarchical browsers. It was followed by a project B2, using the
framework, that dealt with acquiring and aggregating data for statistics of scholars
(150’000 records).

Project C1 — in contrast — was explicitly and uniquely defined to produce a framework.
This framework, too, had to accomplish (1) the task of accessing stored relational data
from an object-oriented client, (2) an extensive tailoring of the MVC-framework for the
search, display and modification of persistent data, and (3) the implementation of a state-
transition interpreter that supports the state-based specification of the context-sensitive
behaviour (dimming of impossible options and buttons) of a GUI application. It was both
paralleled and followed by several projects C2, C3, C4, C5, C6, C7 and C8 using this
framework to develop a taxation system.



Measurement and Estimation of Software and Software Processes Field Study

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 131

Finally, project D — which at the time of writing is still ongoing — has the task of
producing a framework for the administration of personal and organisational information
together with its addresses (postal, electronic, etc.). This is a kind of system component
that is commonly required in administrative systems, and it is intended that this component
can be easily "plugged" into existing and future systems. Project data from the "plug in”
processes, however, are not yet available.

4.2 Measurement Instrumentation

4.2.1 Instruments for Measuring the System Meter

We developed a scanning tool in C++ to measure the new SM metric. This tool operates
with a simple command line interface. A tool was needed because the SM is very fine
grained and thus hard - if not impossible - to measure manually. The tool was called ma,
standing for measure anything. At the time being it is clearly a misleading - if not
ridiculous - name. We, however, designed the tool to be very flexible. This flexibility is
achieved by two means: 1) an extensive run-time parametrisation and 2) an easily
extensible code architecture for incorporating new measures and other languages.

The ma utility scans electronically available so called system descriptions (sd), maps the
description objects to the SMM and then computes any the desired metric(s) that are
defined in the terms of the SMM. This is achieved in the following steps:

The first thing ma does, is reading in a so called system description file (sdf), whose name
defines the name of the system. This file contains the names of all the other files (e.g.
source code files) where the actual system descriptions may be found. Besides the file
references, an sdf also may include statements to group the files into subsystems, versions,
etc. as well as to categorise the files into language, library and project files.

Second, ma scans the given files. The first scanned files must be language definition files
(ldf). Ldfs contain descriptions of languages in a ma-specific language called language
definition language (ldl). An ldf also defines the mapping between a concrete language and
the metamodel. After the ldf of some language is scanned, some optional library files may
be scanned before finally the actual project-specific description files are scanned. In each of
the files, except the ldfs which are always of category language, more refined groupings
and categorisations may be contained.

Third, ma calculates the desired measures and prints them on standard output. The kinds of
measures as well as groupings and some basic statistics (sum, average, median, etc.) are
defined by passing command line parameters to the utility.

Among the various metrics currently measurable with ma the most popular are: LOC, η, V, 
ν, FP, NOC, DIT, WMC, RFC, CBO, LCOM, SM, COUP, COH. As its currently most
severe limitation - due to our primal interest in early estimation - the currently supported
languages are only 1) PRE, a language to denote preliminary analysis results, and 2)
DOME, a language to denote domain analysis results. These two languages are
immediately derived from the corresponding metamodels of subsections 3.2.6 and 3.2.7.
Their syntax is given below. The restriction to these two languages allowed us to defer the
implementation of name scopes to a next extension. We plan, however, (cf. chapter 5,
outlook) to attack this next implementation phase soon in order to support quality
assessment measurements in C++ and maybe other languages like C, Smalltalk or COBOL.

The syntaxes of the two languages PRE and DOME supported by ma are modelled as
language method names, i.e. those languages are made up of description objects
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themselves. In measurement practice this "finesse" is not noticed. PRE and DOME are
used as any other (semi)formal language. Their syntaxes are given in the two tables below:

# PRE-Syntax Explanation

1 ; ’text’ Single line comment

2 Goal ’name’ [ ’complexity’ ] . Introduction of an elemental goal.
Complexity is 1 unless specified
otherwise.

3 Goal ’name’ = ’subgoal’ ,... . Introduction of a higher level goal
with the specified subgoals.

4 Subject Area ’name’ ’number of entity types’ . Introduction of a subject area with
an anticipated number of entity
types in it.

5 Subject Area ’name’ isRuledBy ’goal’ ,... . This statement defines the goals to
be valid for the subject area.

Table 13: PRE - A Language to Denote Preliminary Analysis Results

# DOME-Syntax Explanation

1 ; ’text’ Single line comment

2 Domain Subsystem ’name’ = ’use-case’ , ... . This statement introduces a
grouping of use cases.

3 Use Case ’name’ isTriggeredBy ’event’
[= ’obj’ , ... ] .

This statement introduces a use
case together with its triggering
event and an optional precondition..
The precondition  must reference
the classes, associations, data and
function types involved.

3 Signal [ ’name’ ] of ‘use-case’ | ‘function-type’
[ (( from to )) 'actor' ] = 'obj' , ... ) ... .

This statement introduces a signal
of a use case or function type that
optionally interacts with an external
actor. It must reference the classes,
associations, data and function
types involved.

4 ((Domain Class Data Type)) 'name'
[ isSubTypeOf 'et' ,... ]
( contains  [ ‘n’ attr ] 'dt' | 'ft' ) ,... .

Introduces a domain class which
may be a subtype, i.e. having all the
behaviour of zero one or more other
classes. The attributes are only
given as a summary: as repeatedly
occurring data and function types.
The number of occurrences is
optionally given in n.

5 Domain Association
(( one many )) 'et1' 'assoc-name'
(( one many )) 'et2' .

Introduces a binary directed
association between two classes
with cardinalities indicated through
the used keywords.

6 Function Type 'name'
 [ofKind ‘kind’ , ... ] .

Introduces a function type which
may be viewed as a repeated signal
sequence occurring in several use
cases. Use cases - instead of
repeating the sequence - may then
reference the function type in a
single step. The basic function
kinds may optionally be indicated,
e.g. create, read, update, delete for a
function type administrate.

7 Consistency Rule 'name' = 'obj' ,... . Introduces a consistency rule
involving classes or other objects.

8 State 'name' isSubstateOf  'name'
[ = 'obj' ,... ] .

Introduces a state which is either a
subtype of a domain class or
another state. It may be defined
using other objects (e.g. its
associations).
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9 Transition ’name’ startsAt ’state1’ endsAt ’state2’
[= ’obj’ ,... ]
[ triggers ’signal’ ,... ]
[ isTriggeredBy ’signal’ ,... ] .

Introduces a transition which links
one state to another. It may be
conditional using other objects
which are involved in the condition.
Also, it may trigger or be triggered
by signals from the dynamic model.

Table 14: DOME - A Language to Denote Domain Analysis Results

In order to achieve more refined categorisations within system descriptions, the ’text’
variable of comments is interpreted like an sdf categorisation entry when it starts with the
keyword "ma_entry:". This allows the individual setting of the appropriate category, i.e.
language, library and project, on a message to message basis. Conceptually an even more
refined categorisation on the basis of single tokens may be achieved using an automated
diff operation. We did not however, implement this advanced feature in ma yet.

The currently available version of ma is prototypical regarding several aspects: 1) it is
reduced in functionality, 2) it was tested only by applying it on the sample base, and 3) it is
implemented in a rather brute force and non optimised way. It may, however, be obtained
by interested people (please, send email to the author).

4.2.2 Instruments for Measuring Function Points

As an integral part of the BIO software process (cf. 3.3.3) measurement tools for Function
Point Analysis are provided. An EXCEL-spreadsheet - using the German language - is used
for this task. It is made up of three tables according to the 3 FP-metamodel parts (cf. 2.2.4):

� the data part (German: "Datenteil"), measuring data elements and read-only data
elements

ô the process part (German: "Prozessteil"), measuring inputs, outputs and inquiries

í the influence factor part (German: "Einflussfaktoren"), measuring the system-wide
influence factor and the total system size in Function Points.

The data and process part tables furthermore allow to calculate system part percentages
based on ratios of unadjusted Function Points. For some of the projects which were parts of
bigger or more long-term development processes, the system size was calculated as the
overall size multiplied with the corresponding percentage. The detailed calculations can be
obtained from the author on request.

4.2.3 Instruments for Measuring the Effort and other Process Metrics

The effort numbers - a measure as critical as the system size measure for our purposes of
effort estimation - were gathered out of company-internal reporting systems. As explained
in 2.3.3, this effort only incidentally corresponded to the same development process
instances from project to project. Using the process completeness measure, which is
objectively measurable on the project’s deliverables (cf. table 12 in 3.3.3), we therefore had
to normalise the measured effort to a standard effort for a hypothetical project producing all
the mandatory results of the BIO template process.

Effort, duration, the dynamic measures (cf. 2.3.4) as well as the EQF measure (cf. 3.3.1)
were all documented on a project measurement form (German: "Projektmessblatt"). All
these forms are included in appendix F of this thesis. The actual project names and
companies, however, are not included. Measurement details can be obtained from the
author less those not under corporate disclosure (usually the reporting details).
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4.3 Results

4.3.1 The System Meter for Estimates after Preliminary Analysis

The survey’s results are shown as a scatter chart:

Empirical Database: PRE System Meter vs. Person Days
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Figure 69: PRE-SM Survey Results: A = 0.404 · s + 0.0000753 · s2 , dA = ±33%

As explained in 4.1.1.1, the quality of estimation methods should primarily be assessed by
comparing their approximation biases. For the new System Meter method at preliminary
analysis level dA is 33%. It cannot be directly compared to any other method’s bias because
we do not know of a metrics based estimation techniques for this early phase33. We may,
however, compare the PRE-SM estimation model to the conventional Function Point
method applicable at domain analysis (for details confer to 4.3.2). The bias for the
conventional Function Point method is 20%. Thus, the new method delivers estimates of a
lesser quality. But considering the second criterion, cost and time of estimation, there is a
major difference: The effort spent until the end of a preliminary analysis typically is 5% of
the total software process effort (cf. 3.3.3). In contrast, the Function Point method is
applicable when typically 18% of the total effort is already spent. In summary, the new
SMM estimation method can be characterised as yielding estimates of lesser quality by a
factor of 1.65 with a cost reduction by a factor of 3 compared to the FPM.

One might be tempted to call for statistical analyses on subsets of interest, e.g. on all
projects of company A versus those of company B, on all Smalltalk projects versus the
C++ projects, etc. It would then be nice to say: "Aha, C++ projects are 2 times more
productive than Smalltalk projects" or the reverse. But unfortunately, all the subsets that
would make sense to analyse are too small with respect to the laws of statistics. As already
stated, any set of samples should at least contain 30 independent data points.

                                                
33 We do know of heuristical methods like the Aron method [IBM76], IBM’s Phase-0-1 Guide [IBM75] and
the author’s KSM [MO91] which he developed in 1990, i.e. at an earlier stage of his estimation related
developments.



Measurement and Estimation of Software and Software Processes Field Study

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 135

We, however, could not resist to analyse the following question with respect to the System
Meter method:

"How does the new method perform in non-database applications and/or special reuse
situations (e.g. building a framework)?"

We separated the 7 projects being either a framework construction task and/or a non-
database application to form an empirical database of its own. Complementarily, the rest of
the projects (29) were also separately analysed. The approximation biases showed the
following promising results:

The FPM correlates with a ±14% bias to the 29 database applications. This is substantially
better than the correlation bias of ±20% for the total setting and is no surprise because the
FPM was designed for this application type. The SMM still correlates with a ±33% bias to
the 29 database applications. This may be viewed as a confirmation of the genericity of the
new metric.

When looking at the other side, the 7 non-database projects, the FPM correlates with a
larger bias of ±26%. This outcome is another hint for the fact that the FPM was designed
and performs well for database applications and that for other application types FPM's
performance sinks. The SMM, in contrast, correlates with a reduced ±22% bias. This
actually means that the three times more cost efficient SMM outperformed the FPM in
these 7 projects. This is, as already stated, too few to be statistically sound. However, the
author considers this, together with other properties of the new method, as a promise for
the future of the SMM.

Detailed Values

The detailed values of the 36 projects are given in the following list. The 7 non-database
projects are marked with an *.

# Project-Id, Date (yy.mm) PRE-SM Person Days
1. *X1, 87.12 506 256

2. X2, 90.07 816 528

3. X3, 90.11 2120 1084

4. X4, 92.04 425 274

5. X5, 92.07 762 371

6. Y1, 93.04 1098 716

7. Y2, 93.06 720 491

8. Y3, 93.08 1095 579

9. B2, 93.11 746 318

10. A1, 93.12 2172 1009

11. Y4, 93.12 2616 1600

12. Y5, 94.02 92 28

13. Y6, 94.04 2582 1389

14. A2, 94.06 421 176

15. *B1, 94.07 521 239

16. Y7, 94.10 1986 1126

17. *C1, 91.11 1143 487

18. *Z1, 94.12 584 327

19. Y8, 95.01 2109 1326

20. Y9, 95.02 859 605

21. T1, 95.02 919 347
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22. Y10, 95.04 1346 867

23. C2, 95.05 290 133

24. C3, 95.05 857 426

25. C4, 95.05 943 377

26. T2, 95.05 1820 1095

27. C5, 95.07 739 339

28. T3, 95.08 1769 942

29. C6, 95.09 1703 842

30. *Y11, 95.10 178 65

31. *Y12, 95.10 373 187

32. *Z2, 95.11 468 229

33. C7, 95.11 415 180

34. C8, 95.11 506 200

35. T4, 95.11 3621 2647

36. D, 95.11 540 232

Table 15: PRE-SM and PD Values

Chi-Square-Test for Normal Distribution

We tested the distribution against the hypothesis that it is normally or Gaussian distributed.
The deviations of the projects are classified into 6 ranges. The number of deviations falling
into each range is summed up and compared - using the Chi-Square test measure - to a
model distribution. For 6 ranges the sum of the test measures must not exceed the value of
7.6 in order to validate the hypothesis:

Standard Deviation   s = 9.9% Ranges

# Project, Date (yy.mm) deviation -s -s/2 0 s/2 s ∞
1. *X1, 87.12 0.99% 0 0 0 1 0 0

2. X2, 90.07 5.86% 0 0 0 0 1 0

3. X3, 90.11 -5.90% 0 1 0 0 0 0

4. X4, 92.04 12.59% 0 0 0 0 0 1

5. X5, 92.07 -18.48% 1 0 0 0 0 0

6. Y1, 93.04 7.60% 0 0 0 0 1 0

7. Y2, 93.06 4.41% 0 0 0 1 0 0

8. Y3, 93.08 2.66% 0 0 0 1 0 0

9. B2, 93.11 -2.19% 0 0 1 0 0 0

10. A1, 93.12 4.68% 0 0 0 1 0 0

11. Y4, 93.12 -6.13% 0 1 0 0 0 0

12. Y5, 94.02 -6.03% 0 1 0 0 0 0

13. Y6, 94.04 -2.37% 0 0 1 0 0 0

14. A2, 94.06 1.06% 0 0 0 1 0 0

15. *B1, 94.07 0.70% 0 0 0 1 0 0

16. Y7, 94.10 0.94% 0 0 0 1 0 0

17. *C1, 91.11 23.71% 0 0 0 0 0 1

18. *Z1, 94.12 29.49% 0 0 0 0 0 1

19. Y8, 95.01 9.11% 0 0 0 0 1 0

20. Y9, 95.02 -0.57% 0 0 1 0 0 0

21. T1, 95.02 -9.73% 0 1 0 0 0 0

22. Y10, 95.04 -1.08% 0 0 1 0 0 0

23. C2, 95.05 -2.00% 0 0 1 0 0 0



Measurement and Estimation of Software and Software Processes Field Study

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 137

24. C3, 95.05 -10.50% 1 0 0 0 0 0

25. C4, 95.05 14.16% 0 0 0 0 0 1

26. T2, 95.05 -10.87% 1 0 0 0 0 0

27. C5, 95.07 -10.34% 1 0 0 0 0 0

28. T3, 95.08 0.27% 0 0 0 1 0 0

29. C6, 95.09 0.06% 0 0 0 1 0 0

30. *Y11, 95.10 -12.27% 1 0 0 0 0 0

31. *Y12, 95.10 16.79% 0 0 0 0 0 1

32. *Z2, 95.11 6.40% 0 0 0 0 1 0

33. C7, 95.11 -5.81% 0 1 0 0 0 0

34. C8, 95.11 -5.65% 0 1 0 0 0 0

35. T4, 95.11 7.21% 0 0 0 0 1 0

36. D, 95.11 -3.61% 0 0 1 0 0 0

Total 5 6 6 10 5 5

Model Distribution 6 6 7 7 6 6

Chi-Square Values .17 0 .14 1.3 .17 .17

Table 16: Chi-Square-Test of Effort Distribution

The sum of the values is 1.94 which is below 7.6. We may therefore soundly assume a
normal distribution for the efforts. This test was only conducted at the preliminary analysis
level assuming that the hypothesis is also valid for the other levels, that do not differ with
respect to efforts.

4.2.2 The System Meter for Estimates after Domain Analysis

The survey’s results are shown as a scatter chart:

Empirical Database: DOME System Meter vs. Person Days
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Figure 70: DOME-SM Survey Results: A = 0.1675 · s + 0.0000158 · s2 , dA = ±9%

The approximation bias here is considerably lower than the one for the System Meter after
preliminary analysis. It is also lower than the bias of the Function Point metric which can
be applied at the same level of modelling. Refer to the end of this subsection for a
statistical comparison - using the Wilcoxon-signed-ranksum-test - of the two methods.
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Detailed Values

The detailed values of the 36 projects are given in the following list.

# Project-Id, Date (yy.mm) DOME-SM Person Days
1. *X1, 87.12 1323 256

2. X2, 90.07 2493 528

3. X3, 90.11 4507 1084

4. X4, 92.04 1398 274

5. X5, 92.07 1866 371

6. Y1, 93.04 3214 716

7. Y2, 93.06 2331 491

8. Y3, 93.08 2750 579

9. B2, 93.11 1753 318

10. A1, 93.12 4507 1009

11. Y4, 93.12 5998 1600

12. Y5, 94.02 163 28

13. Y6, 94.04 5374 1389

14. A2, 94.06 948 176

15. *B1, 94.07 1286 239

16. Y7, 94.10 4539 1126

17. *C1, 91.11 2693 487

18. *Z1, 94.12 1656 327

19. Y8, 95.01 5189 1326

20. Y9, 95.02 2810 605

21. T1, 95.02 1835 347

22. Y10, 95.04 3714 867

23. C2, 95.05 731 133

24. C3, 95.05 2112 426

25. C4, 95.05 1947 377

26. T2, 95.05 4523 1095

27. C5, 95.07 1685 339

28. T3, 95.08 4063 942

29. C6, 95.09 3742 842

30. *Y11, 95.10 352 65

31. *Y12, 95.10 1109 187

32. *Z2, 95.11 1198 229

33. C7, 95.11 958 180

34. C8, 95.11 1102 200

35. T4, 95.11 8591 2647

36. D, 95.11 1186 232

Table 17: DOME System Meter Measurements
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Function Point Method Results

Again the results are shown in form of a scatter chart first:

Empirical Database: ESA Function Points vs. Person Days
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Figure 71: FPM survey results: A = 0.656 · s + 0.000235 · s2 , dA = ±20%

The detailed values are:

# Project-Id, Date (yy.mm) FP Person Days

1. *X1, 87.12 370 256

2. X2, 90.07 800 528

3. X3, 90.11 1556 1084

4. X4, 92.04 420 274

5. X5, 92.07 579 371

6. Y1, 93.04 1050 716

7. Y2, 93.06 753 491

8. Y3, 93.08 946 579

9. B2, 93.11 610 318

10. A1, 93.12 1173 1009

11. Y4, 93.12 2300 1600

12. Y5, 94.02 45 28

13. Y6, 94.04 2000 1389

14. A2, 94.06 251 176

15. *B1, 94.07 341 239

16. Y7, 94.10 1640 1126

17. *C1, 91.11 505 487

18. *Z1, 94.12 440 327

19. Y8, 95.01 1897 1326

20. Y9, 95.02 900 605

21. T1, 95.02 550 347

22. Y10, 95.04 1269 867
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23. C2, 95.05 205 133

24. C3, 95.05 651 426

25. C4, 95.05 537 377

26. T2, 95.05 1630 1095

27. C5, 95.07 540 339

28. T3, 95.08 1290 942

29. C6, 95.09 1215 842

30. *Y11, 95.10 109 65

31. *Y12, 95.10 230 187

32. *Z2, 95.11 315 229

33. C7, 95.11 280 180

34. C8, 95.11 308 200

35. T4, 95.11 3462 2647

36. D, 95.11 295 232

Table 18: FP and PD Values

Testing the Correlation Differences

According to the lower mean bias of the DOME-SM for effort prediction we want to test
the hypothesis that the deviation is significantly lower than that of the FP metric. The
hypothesis is that the mean percentage deviation is lower. We validate this hypothesis
using the Wilcoxon-signed-ranksum test at a 95%-confidence level. The pairwise
deviations, sign of the difference and signed ranks are:

Project # FP deviation DOME-SM
deviation

absolute bias
difference

sign signed rank

1 2.69% 2.59% 0.09% + 2

2 1.51% 2.27% 0.77% - -12

3 0.39% 0.69% 0.31% - -7

4 1.38% 3.23% 1.85% - -19

5 2.91% 0.89% 2.03% + 21

6 0.10% 1.97% 1.87% - -20

7 2.19% 2.96% 0.76% - -11

8 6.64% 0.24% 6.41% + 32

9 14.93% 7.65% 7.28% + 33

10 17.64% 6.69% 10.95% + 35

11 1.46% 1.61% 0.15% - -5

12 3.59% 0.71% 2.88% + 27

13 0.87% 2.28% 1.41% - -18

14 3.89% 1.66% 2.23% + 23

15 3.65% 1.10% 2.55% + 24

16 0.82% 3.51% 2.70% - -25

17 29.62% 16.20% 13.42% + 36

18 7.65% 1.89% 5.77% + 31

19 0.18% 2.31% 2.13% - -22

20 0.52% 1.54% 1.02% - -14

21 3.83% 3.95% 0.12% - -4

22 0.28% 3.06% 2.78% - -26
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23 1.25% 1.53% 0.28% - -6

24 1.72% 0.37% 1.35% + 17

25 3.31% 2.43% 0.88% + 13

26 2.27% 1.24% 1.04% + 15

27 4.12% 3.47% 0.65% + 9

28 4.37% 0.01% 4.36% + 29

29 0.82% 0.77% 0.05% + 1

30 6.28% 6.16% 0.12% + 3

31 15.13% 9.78% 5.35% + 30

32 6.32% 2.43% 3.89% + 28

33 2.01% 2.75% 0.74% - -10

34 1.42% 1.93% 0.51% - -8

35 2.71% 1.50% 1.21% + 16

36 12.32% 4.75% 7.56% + 34

TOTAL 252

Table 19: Percentage Biases, Bias Differences, Signs and Signed Ranks of FP and DOME-SM

The 95%-quantile for of the ranksum of 36 samples is 209. Our observed ranksum is 252
which is above this quantile. We may therefore conclude that the average bias of FP based
estimates is significantly higher than the average bias of DOME-SM based estimates.

4.2.3 The System Meter for Productivity Assessments in Reuse Situations

For project A1 we determined a productivity of 1.2 FP/Person Day (PD). In the follow-up
project A2 the productivity rose to 1.5 FP/PD mainly due to the framework reuse, because
all other influencing factors (project team, tools, methodology, domain area, infrastructure)
remained constant. Expressed in percentages, this is an increase of 25%. When looking at
the System Meter numbers we observe a productivity of 2.26 SM/PD for A1 and 2.52
SM/PD for A2. This means only a 12% rise. As the System Meter values decrease (cf.
3.2.1.2) when reusable parts are incorporated into a system also the productivity of a
project that reuses components will decrease.

This effect of the System Meter method may seem undesirable, because we want to
encourage reuse. On the other hand this effect can also be viewed at as a positive
stabilising property of the new method which improves the quality of the estimates. When
productivity rates are more constant, derived estimates will be more accurate (as argued for
in [DM82]). In fact, this is a more consistent and reproducible way of understanding the
effects of frameworks on productivity: project teams do not magically become more
productive through the use of frameworks (as the FP method might have us conclude), but
rather the size of the system to be designed and implemented is dramatically reduced. If we
can accurately measure the size of the reduced system, then we can rely on our previous
productivity rates to help us better estimate the actual cost of the project.

In case an organisation would like to encourage reuse by setting productivity goals, the
System Meter could alternatively be applied without its reuse modelling component, thus
rating all system description parts as "project” parts. Values obtained with this System
Meter variant are denoted as "flat” System Meters. Those flat SMs were prototypically
measured in project A2. (In project A1 the flat SMs equalled the SMs because there were
no reusable framework components available at the start of the project). A2’s flat
productivity rate was calculated as 3.12 SM/PD which means a 38% increase. These
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"magical” improvements in productivity, however, can only be observed after a project has
been completed, and so are uninteresting from the perspective of predictive estimation.

Another independent case of framework construction and reuse was observed in the project
pair B1 and B2. Function Point analysis yielded productivities of 1.5 and 2.0 respectively
(a 33% increase) whereas the System Meter method yielded 2.30 and 2.48 rates (an 8%
increase). Actually, more components could be reused without modification in project B2,
which explains both the higher FP increase and the more constant behaviour of the SM
values. Another difference between B2 and A2 was the tighter schedule of A2. This
required the formation of a bigger team, which undoubtedly contributed to the lower
increase in productivity of A2 with respect to B2 (in accordance with observations
described by Putnam [PU76]). This "team size” effect, also known as the "Mythical Man
Month” syndrome, of course, has nothing to do with frameworks or reuse, but is a general
rule of management of complex development processes.

In the setting of projects C1 — C8, we observed the following series of productivity rates:

Project FP productivity increase vs.
C1

SM productivity increase vs.
C1

C1 1.1 n.a. 2.47 n.a.

C2 1.6 45% 2.30 -7%

C3 1.6 45% 2.12 -14%

C4 1.5 36% 2.64 7%

C5 1.7 55% 2.30 -7%

C6 1.5 36% 2.13 -14%

C7 1.6 45% 2.42 -2%

C8 1.6 45% 2.69 9%

Table 20: Productivity Rates and Percentage Deltas for Projects C1-C
(C1 = Framework Project)

The observations we made concerning the A and B projects are even more pronounced
here. When measured using the System Meter method, the projects that reused the
framework (C2-C8) exhibited even lower productivity than the framework construction
project C1.

In contrast to projects A1 and B1, where the framework construction was only a secondary
goal after the development of a first version of an application software system, project C1
was entirely dedicated to establishing a framework. This explains why C1 rated notably
low in the FP analysis, and consequently, why the follow-up projects C2-C8 exhibited
unusually high percentage FP productivity increases. The System Meter method, on the
contrary, yielded rather uniformly distributed productivity rates. Due to the heavy
framework reuse, C2-C8 rated rather low. Notable exceptions are projects C4 and C8
which developed substantial non framework supported subsystems (C4 dealt with the
development of a spreadsheet-like taxation calculation model; C8 encompassed a few non
standard reports).

The quantitative analysis of Project D, finally, could not cover productivity increase rates,
because no follow-up project exists yet for D’s framework. We therefore concentrated our
analysis on the estimating power of the two methods: D yielded 295 FPs and 540 SMs.
When applying the currently regressed coefficients out of the 36 project empirical database,
we would have estimated 186 PDs (bias: ±20%) using the Function Points and we actually
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did estimate 229 PDs (bias: ±33%) using the System Meters. The effective effort spent is
220 PDs, which is substantially closer to the SM estimate than to the FP estimate. This, of
course, may not be interpreted as empirical evidence of the superiority of the new method
over the established FP method. On the other hand, the new method is not rejected by the
empirical results, but rather, we are encouraged to continue our investigations.

4.2.4 Measuring the Effects of Team Size and Acceleration on Productivity

In 4 projects we observed considerably higher efforts than expected from system size - be it
Function Points or System Meters - alone. Productivity rates were accordingly below
average. We suspected this was due to the tight schedules and therefore larger team sizes
observable for those projects. Thus, we applied the dynamic cost modelling techniques
[DM82] [PU80] (cf. 2.3.4) in our analysis.

First we calculated the acceleration factor A as defined in 2.3.4. For the estimated duration
we used the estimate minus half the 95%-confidence-level bias in order to cope with the
considerable uncertainty. For example in project Y3, we calculated the estimated duration
as (220 - 220 * 25%/2) = 192.5 elapsed work days. Then we calculated the effort inflation
factor and put the resulting 4 value pairs into one of our regression spreadsheets. Theory
and literature suggests 0 for the constant and linear regressed coefficients and 1 for the
quadratic, thus the dependency would be purely quadratic. In our very small sample set we
observed the following correlation:

Empirical Database: Dynamic Cost Model
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Figure 72: Correlation of Acceleration Factor and Effort Inflation

The first observation we made was that there actually seems to be a reasonable correlation.
The correlation bias dA was ±21%. The regressed coefficients, however, did not exactly
show the suggested behaviour. We observed a correlation of:

I = 0.202 · A + 0.792 · A2

This may seem totally different from the purely quadratic formula. On the other hand,
when considering the very small sample size and the relatively high correlation bias, the
observations do not severely contradict the suggested behaviour. With respect to the small



Measurement and Estimation of Software and Software Processes Field Study

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 144

number of samples we did not even try to statistically prove the significance of the
differences.

4.3.5 Measuring Estimation Quality for Different Estimation Techniques

The analysis accomplished in sections 4.3.1-4 makes use of the fact that the estimation
techniques are metrics based. The statistical calculations may therefore be done entirely
after project completion, even if the measurement technique did not exist when the project
was executed. We, however, also wanted to compare non-metric based estimation
techniques. For this we calculated the EQF measure (cf. 3.3.1) for the ten projects Y1, B2,
Y4, Y5, Y6, B1, Z1, Y8, Y11 and Z2. In all projects we were closely involved and thus
were able to obtain the estimation history. Y1 and B2, whose values are diagrammed as
white squares in Figure 73, did not use an explicit or documented estimation technique,
their EQF values were - even though not disastrous - considerably lower than those using
metrics based techniques. Typical disaster project values are reported by DeMarco [DM83]
as being below 50%. Projects Y4, Y5, Y6, B1, Z1, Y8 and Y11, diagrammed as grey
squares, used the Function Point method. They achieved very good to excellent results.
One may also observe an improvement over time (even though not monotonic). This effect
is most probably due to the growing and more specific empirical database that was used for
obtaining the estimates. Finally, in project Z2, diagrammed black, we can report the EQF
from the first application of the new System Meter method (PRE SM) to a real project.
Even though not quite reaching the quality of FP estimates, its performance was very good.
Be aware that the PRE SM can be applied with considerably rougher input (cf. 3.2.8 and
3.2.9) than the FP method.
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Figure 73: EQF Values versus Time

Regarding the small number of samples for the EQF measure, we do not attempt to
perform any statistical analysis. Metrics based estimation and - to a lesser degree - the
System Meter method are, however, intuitively validated by our observations.

At the time of writing, the PRE and DOME System Meter methods are steadily replacing
the FP method for estimation at one major industrial site. More EQF values are thus
expected to be measurable soon.
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5 Conclusions, Outlook

5.1 The System Meter as a Basis for Estimation and Productivity Analysis

The new System Meter estimation method proposed in our work proved to be useful for
estimates after preliminary system modelling and also after domain analysis. The results it
yielded at the preliminary analysis stage were not quite as good as those of the traditional
Function Point method (FPM), which - as its drawback - may only be applied after the
more costly modelling phase of domain analysis. Thus, when comparing both the quality
and cost of estimation, the new method delivers very useful results. At the domain analysis
stage, the System Meter correlates significantly better to overall development effort than
Function Points. These conclusions were drawn from comparing the two methods in a
sample set of 36 industrial and university projects. The technology used was mainly
client/server based object-oriented development using Smalltalk or C++, but also 4th-
generation-language projects were included. System Meters can be applied for measuring
conventional and object-oriented systems, as can Function Points.

Observations were made allowing the presumption that the System Meter method (SMM)
is less bound to the area of database applications than the FPM. Also, special reuse aspects
(e.g. the task of constructing a framework) seem to be better supported by the SMM. Those
assumptions are supported by analysing, a set of 7 projects, either accomplishing a
framework construction task and/or being a non-database application, where the SMM
performed better than the FPM. The 7 samples, though, are not enough for statistical
evidence.

The SMM is not a revolutionary estimating method, only the underlying metric, the System
Meter, is new. It is therefore compatible to proven techniques of estimation (cf. [BOE81]
or [TDM82]). Because the underlying metric captures the ideas of software size and
complexity, it can not only be used for estimation activities but also for productivity
analysis and control. It may for example appear as the numerator in a productivity measure
like System Meter / Person Day. The application of the SMM is, furthermore, not restricted
to object technology. Since the underlying metric is generic, it can be applied in virtually
any context.

The System Meter is a new approach to quantitative software metrics based on a rich
metamodel for system description objects rather than on the better-known, but more
simplistic Function Point approach. The System Meter has been developed to address the
effects of Object Technology on the way that software projects are structured and
composed. The principal idea behind the System Meter is to distinguish between the
"internal” and "external” sizes of objects, and thus to only measure complexity that has a
real impact on the size of the system to be implemented. The System Meter essentially is a
token count of the names used for modelling or describing a system. This straightforward
definition yields sound mathematical properties such as the allowance of any statistical
operation and of calculating ratios. Furthermore, the System Meter can homogeneously be
applied to the various artefacts of software engineering such as classes, methods, variables,
etc.

At the time of writing, the new method is beginning to be used in industrial development
projects. Previously, the practicability of the method was tested in a research project, the
development of the measurement tools used in our work. The quality of the estimates thus
delivered was above the average of those of the FPM. We expect our empirical databases
to grow from the 36 samples taken during the last 3 years. Estimation quality will most
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probably be raised as soon as large enough databases, specific to distinct development
environments (technology, application domain, infrastructure, involved people) will be
available.

5.2 Outlook: The System Meter as a Basis for Quality Metrics

In our future research we intend to use the System Meter as a base measure for more
refined purposes, comparable to the use of the "normal" meter for measuring distances. The
System Meter has the required formal properties and has proved to be of use for the
purpose of estimation. Just like construction engineers use the "normal" meter for
estimation (using the m3) and also for quality metrics like the solidity of ceilings (using
Newton / m2), we intend to use the System Meter for metrics of software quality (cf. 1.7).

The quality of software can be assessed with a static analysis of system descriptions alone
or with a compilation of empirical outcomes, e.g. measuring error rates. The first category
of quality metrics are called inherent quality metrics. Inherent quality is mainly determined
by the two aspects of coupling and cohesion [YO79]. As shown in theoretical and
empirical studies by Brian Henderson-Sellers (cf. chapter 7 "Cognitive Complexity Model"
in [HS96]), two mental processes, tracing and chunking, determine the psychological (or
cognitive) complexity of descriptions for the reader and writer. Chunking encompasses the
formation of mental maps of the description entities (classes, methods, statement blocks,
statements, etc.) and tracing is the activity of searching for dependencies among the
chunks. Those two processes of understanding a certain piece of software may be
diagrammed in an XY-chart as follows:

tracing

chunking

Figure 74: The Comprehension Landscape of a Piece of Code (adapted from [HS96])

Our idea is it to correlate chunking to the internal quality aspect of cohesion and tracing to
coupling. To accomplish this, we need to measure those two internal quality aspects. For
this we may exploit the System Meter as follows:

Coupling/Isolation

The degree of coupling for an object X is directly dependent on the number of other objects
its implementation depends (or may depend) on. For low coupling this means: A) the
implementation set should be small, B) the objects that could influence the implementation
(write scope) should be few, C) the objects that read X should be few, because they might
want to change X, and D) the read scope should be as small as possible. The coupling
measure could then be defined as the average of the ratios of the sizes of the four sets just
described and the total system size. This idea is shown in the following figure:
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write scope

read scope

total system

object X

write usage

read usage

Figure 75: Coupling of an Object X with Other Objects in the System

Cohesion

The cohesion, in turn, may be expressed by two concepts:

A) The external coherence: definable as the number of different classes you have to know
in order to be able to apply some object X relative to the maximum number of such classes.
The "classes you have to know" are also called neighbour classes of an object X. They are
e.g. the type of X, the types of the formal parameters if X is a method, the supertype if X is
an inherited class, etc.

B) The internal coherence: definable by the degree to which "the law of Demeter" is
obeyed that may be summed up as "define some object with its own components" [LIE96].
This law is planned to be extended by the author to "define some object with its own or its
neighbour components" because the original law seems to be too rigid for generic software
components such as "methods" that do not belong to a class.

The concepts of external and internal cohesion are visualised in the following figure:

neighbour types

immediate neighbours

write usage

neighbour components

object X

Figure 76: Internal and External Cohesion of an Object

Formal definitions for these measurement ideas will have to be elaborated.

Empirical measures might profit from the System Meter, too. For example the empirical
quality (as defined in 1.7) may soundly be measured using the System Meter, because it is
defined for whole systems as well as for system fractions (cf. 3.2.1.3).



Measurement and Estimation of Software and Software Processes Conclusions and Outlook

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 148



Measurement and Estimation of Software and Software Processes Conclusions and Outlook

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 149





Measurement and Estimation of Software and Software Processes

Ph. D. thesis, S. Moser, University of Berne, Switzerland page 151

Summary

The starting point of the present Ph.D. thesis was our interest in the non-trivial but
important task of effort estimation for software development projects. Before starting the
Ph.D., we had had several years of industrial practice with various estimation methods.

The research started in 1993 and began with a survey and analysis of existing solutions. We
concluded that the most effective and sound technique available was the Function Point
Method (A. J. Albrecht). Its key strategy is to measure system size on a system model - just
as architects measure building cubes on their plans - and then derive the effort from that
size by exploiting empirical correlations between the two measures. Using the Function
Point measure in the context of modern object-oriented development environments,
however, has several disadvantages: � it does not take reusable components into account
and ô it is measurable only relatively late in the software development process, because it
requires a detailed model of user requirements. Other disadvantages are that Function
Points are not well-defined for non-database applications, that they make use of historical
parameters which do not contribute to estimation quality, and that the use of system-wide
influence factors makes the measure formally unsound to use for certain statistical
operations.

Based on an analysis of what the items of object-oriented software development exactly
are, the metamodels of object-oriented systems, we tried to formulate an improved
measure. The basic estimation strategy of measuring and exploiting empirical correlations
was retained. The new measure, called System Meter, consists of two parts: � the external
size of software objects and ô the internal size of software objects. The external size of a
software object, for example a class, is determined by the complexity of the object name or
signature. We proposed counting the tokens within the name to capture this aspect. The
internal size makes use of the dependencies that exist between software objects. It sums up
the external sizes of all the other objects an object is dependent on. In order to take into
account the reusable parts, reused objects are only counted for the external size when
summing up the overall size of a system, i.e. a set of objects. Project specific objects are
counted for both the external and internal sizes.

In a field study of over 30 projects in industry and academia, we compared the new metric
to Function Points with respect to effort correlation. The System Meter is applicable on
two levels of system model granularity, the more coarse preliminary analysis model and the
finer domain analysis model. Function Points, in contrast, are only measurable at the level
of domain analysis. We found that the first variant of the System Meter, the PRE System
Meter, yields estimates of lesser quality than Function Points, but is applicable with far less
effort and therefore supports faster development cycles. The second System Meter variant,
the DOME System Meter, was directly compared to the Function Point measure. A
statistical test on our sample base supported the hypothesis that effort estimates using the
DOME System Meter show significantly less bias than using Function Points. The sample
base included projects using various object-oriented and 4th-generation-language (4GL)
environments (Smalltalk, C++ and others).

While the new estimation methods are beginning to be used in industrial practice at the
time of writing, we look forward to investigating our proposed measure, the System Meter,
in more applications. Just as the "normal" meter cannot only be used for measuring
geographical distances but also to define quality measures, like the density of a material in
kg/m3, we intend to define and empirically validate quality metrics for software using the
System Meter.
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C Glossary of Terms and Abbreviations

Term / Abbreviation Explanation
%C Degree of completion of a result under construction

%F Fraction of a result part

%P Process completeness

4GL = 4th Generation Language

4th Generation Language Programming language with powerful commands supporting certain types
of applications and certain kinds of user interfaces

A In context of empirical databases: approximation function

In context of dynamic cost models: process acceleration factor

ABC-Scheme The structuring of the estimation process into 3 steps: A) measuring the
subject’s complexity on a model, B) using empirical correlations of the
complexity with the desired estimate, C) adapting the estimate to specific
circumstances, e.g. process completeness or process dynamics

ABC-Steps = ABC-Scheme

ABC-Strategy = ABC-Scheme

AMI Application of metrics in industry [AMI92]

Application Analysis The software process phase and corresponding artefacts which specify in
detail what the software system is required to do

Backfiring Applying the ABC-Scheme backwards

BIO Bedag Informatik Object, an adaptable template software process
incorporating modern object-oriented methods [MO96b]

C/K measures A suite of object-oriented design measures proposed by Chidamber and
Kemerer [CHI94]

CASE Computer Aided Software Engineering

CBO Coupling Between Objects, one of the C/K measures

CC Configuration Container, an abstraction for containers of system
descriptions; at implementation layer CCs usually are called „source files“

CDIF CASE Data Interchange Format [CDIF91]

Chaining The sequential application of two (or more) estimates according to the
ABC-scheme, thus using the estimate coming from the first model as the
predictor for the second

Co = Construction

COCOMO Constructive Cost Model [BOE81] [BOE95]

COH A planned measure for capturing the idea of software cohesion

Component A reusable piece of software with well-defined behaviour

Construction The software process phase and corresponding artefacts of technical design,
thus defining in detail how the specified system behaviour can be provided
given a certain implementation environment

COOMM Common Object Oriented Meta-Model [CA94]

COUP A planned measure for capturing the idea of software coupling

CRUD The 4 basic operations of information or database systems, i.e. creation,
read, update and deletion of objects (corresponding to rows in a table in the
relational model)

CS Computer Science

csh C-shell, a UNIX command line and scripting language
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CUA Common User Access, an IBM-standard for the design of graphical user
interfaces

D Duration

D Day = elapsed work day, unit for measuring duration

dA The relative bias of an approximation function in an empirical database, we
use a 95%-confidence level, which means that the effective outcomes lie in
the range of the estimate +/- dA/2 with a probability of 95%.

Data Abstraction One of the key concepts of object-orientation, the bundling of data
structures and corresponding functions into classes

DB Database

Design = Construction

DFD Data Flow Diagrams [DM79]

diff A UNIX utility to analyse the difference, added and deleted lines, between
two streams of characters

DIT Depth of Inheritance Tree, one of the C/K measures

Domain Analysis The software process phase and corresponding artefacts of modelling the
system’s underlying real world or business reality as if no - or absolutely
perfect, thus ignorable - technology were present, thus roughly defining
how the system is required to behave

DOME A formal language to denote the domain analysis artefacts

DOME-SM The variant of the System Meter measure measured on system descriptions
written in the DOME language

E in the context of process parameters: manpower effort

in the context of software metrics: one of the Software Science metrics
[HA77]

EIA Electronic Industries Association, a standards association [CDIF91]

ELOC Effective lines of code, i.e. all lines in source files but without comments,
declarations and blank lines, a LOC variant

Empirical Database A set of data pairs, predictor and result values, that were empirically
measured; the set of data pairs is used to derive regressed approximation
functions for use in the ABC-scheme of estimation

EQF Estimation Quality Factor

ER Entity Relationship [CH76]

ERA Entity Relationship Attributes [CH76]

ESA Essential Systems Analysis [MP84]

Estimation Model A 5-tuple of predictor metamodel, predictor metric, empirical database,
result metric, result metamodel, that forms an instrument for estimation of
values of the result metric

η The number of unique tokens found in a system description, a Software
Science measure [HA77]

FP Function Point [AL79] [IFPUG]

FPA Function Point Analysis, the human process of measuring FPs

FPA Mk II Function Point Analysis Mark two [SYM93]

FPM Function Point Method = FPA

Framework A reusable set of software components that provide specific behaviour to
the end-user based on certain internal collaboration; a framework can be
extended and - at certain points - specific new behaviour can be introduced

GQM Goal Question Metric, an approach for a stepwise introduction of metrics
into a SPU
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GUI Graphical User Interface

I Effort inflation factor, the ratio of effort under time pressure and normally
estimated effort

IFPUG International Function Point User Group [IFPUG]

Implementation The software process phase and corresponding artefacts (code) of
implementing and testing the system’s behaviour as specified in application
analysis and according to the technical patterns identified in construction

Information Hiding One of the key concepts of object-orientation, the concept of separating
implementation from externally visible behaviour of an element of system
description

Inheritance One of the key concepts of object-orientation, the fact that a class
automatically contains all data and function elements of another class if it
inherits from it; a distinction between inheritance of all the elements or just
the externally visible ones (= subtyping) may be made

Intermodel Bias The bias introduced into measurements of system models by the fact that
the same „real“ model may be modelled differently due to different human
beings and different modelling techniques (= metamodels)

Interrater Bias The bias introduced into measurements by ambiguous measurement rules
which are differently interpreted by different human raters (= measurers)

IS Information Systems

ISO 9000ff International standard for quality management systems in manufacturing
and service

KSM from German „Konzeptions- Spezifikations-Modell“, an estimation model
[MO91]

Language A category of system description elements; language elements are
characterised by their highly standardisation and stability

Layering The grouping of software artefacts into layers of abstraction, e.g. into
preliminary, domain and application analysis, design and implementation;
the corresponding partitioning of the software process is called phasing

LCOM Lack of cohesion in methods, one of the C/K measures

ldf language definition file, a required element of the ma utility

ldl language definition language, used in ldf’s

Library A category of system description elements; library elements are
characterised by not being newly developed within a software process, but -
in contrast to the language objects - not being highly standardised and
stabile

Life-Cycle Phases The life cycle of a software product typically is partitioned into the phases
of analysis, design, implementation and test, acceptance and delivery,
maintenance

LOC Lines of code

ma A DOS-hosted utility for measuring system descriptions; this utility was
developed for the field study we conducted in industry and was used to
measure the System Meter (PRE and DOME variants)

Metamodel A metamodel is a model of a model; in the context of software engineering
metamodels are used to discuss elements used to build software, e.g.
classes, methods, etc.; metamodels are also needed to support the process of
software construction with tools and other aids

Metamodel Mapping A function that defines for each element of one metamodel how it is
represented in another. The representation may be direct, a „one-to-one“
map, or indirect

Metamodel of a Metric The smallest set of entities and associations needed to define the metric
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Metric in the context of software engineering: = measure

in mathematical context: a function yielding the distance between two
elements of a vector room

Metrication The process of introducing metrics in an SPU or the process of deriving
some new metric

MIS Management information systems

MOP Meta-object protocol, a programming language feature allowing to program
the software construction elements themselves

MSA Modern structured analysis [YO89]

N Number of tokens, one of the Software Science measures [HA77]

NOC Number of child classes, one of the C/K measures

υ Cyclomatic complexity [MC76]

Object Technology The ensemble of object oriented analysis, design and programming
techniques as well as modern software processes like RAD, prototyping,
etc.

OMG Object Management Group

OMT Object Modelling Technique [RU91]

OPRR Object-Property-Role-Relationship metamodel [WEL89] [SM91]

OT = Object Technology

P in the context of process measures: = Productivity

in the context of estimation models: = Predictor

PD Person day, a unit to measure manpower effort

Polymorphism One of the key concepts of object-orientation, the fact that an inheriting
class may redefine methods of its superclass, thus - at run-time - behave
differently, even though the static function call may look identical

PQ Quality based productivity

PRE A language to formally denote preliminary analysis results

PRE-SM The variant of the System Meter measurable on systems described in the
PRE language

Predictor The value used to predict (= estimate) some other value

Predictor Metric The metric used as predictor values in some estimation model

Predictor Model The set of software or process artefacts measured to get a predictor; the
predictor model must obey a metamodel, the predictor metamodel

Preliminary Analysis The software process phase and corresponding artefacts of modelling a
system as set of subject areas, functional goals (= basic functionalities) and
specifications of which subject area should encompass which functionality

Process Parameters The three main software process parameters are 1) cost/effort, 2) elapsed
time, 3) product/quality

Product Quality The internally measurable or empirical quality of a software product;
empirical quality = Q

Productivity The ratio of product size and process effort

Project in the context of software artefacts: the category of newly developed
software artefacts

in the context of software management: a contract encompassing one, many
or a part of software processes

Prototype Prototype

Prototyping The (software) process of developing a prototype

PSP Project structure plan
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PU Product unit, e.g. the System Meter, Function Point, LOC or some other
software metric

Q Quality, the ratio of software artefacts not thrown away after some time and
the original set of software artefacts

RAD Rapid Application Development

Re = Replication

Replication = Implementation

Result Metric The metric used as result values in some estimation model

Result Model The set of software or process artefacts for which a; the predictor model
must obey a metamodel, the predictor metamodel

RFC Response set for a class, one of the C/K measures

S/C Size/Complexity, a newly proposed software measure [HS96]

SA/SD Structured Analysis, Structured Design

Scale A set of values used as the target domain of a measure; scales can be
nominal, ordinal, ratio, interval and absolute

SD = System Description

sd = SD

sdf system definition file, a required element of the ma measurement utility

SE Software engineering, the ensemble of techniques used in the software
process

SEI Software Engineering Institute, affiliated at the Carnegie Mellon University
(CMU), Pittsburgh, PA

SLOC Source lines of code, = ELOC

SM = System Meter

SM’ = „flat“ SM, i.e. SM without the categorisations of language, library and
project elements (all elements are of category project)

SMM in the context of metamodelling: = System Metamodel

in the context of estimation: System Meter Method

Software All software artefacts that belong to the implementation layer

Software Artefact All products developed by the software process

Software Life-Cycle = Life-Cycle

Software Measure A measure or rule that allows to compute or assign a value of some scale to
one or a set of software artefacts

Software Metric = Software Measure

Software Metrics Research and practice of software measurement and estimation

Software Process The human - and partly machine-supported - process of developing
software; produces software artefacts

Software Product = Software Artefact

Software Quality Can be interpreted as product quality or software process quality

Software Process Quality The quality with respect to all process parameters, i.e. product, cost and
time

SOMA Semantic object modelling approach [GRA95]

Specification = Application Analysis

SPU Software producing unit

SQL Structured query language

SSADM Structured Systems Analysis and Design Method [SSADM90]
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System An entity distinguished from its environment which can be characterised by
the interactions going from the environment to the system and back; this
definition is very generic and encompasses real world systems as well as
software systems; in the realms of software this term may be used for the
static, coded, system as well as for the dynamic, executed, computer process

System Description The notion for all artefacts in the domain of software engineering;
alternatively system descriptions may also be called system models or -
simply - software

System Metamodel A metamodel of system descriptions; the System Metamodel is the most
detailed metamodel observable on models of the layer of implemented
systems, i.e. on code; the System Metamodel encompasses artefacts like
classes, methods, etc. and serves as the basis for the definition of the
System Meter

System Meter A newly proposed software measure

Technical Design = Construction

UML Unified Modelling Language [RA96]

V in the context of software process measures: velocity, the ratio of achieved
result size versus elapsed days

in the context of complexity metrics: volume, one of the Software Science
metrics [HA77]

WMC Weighted Methods per Class, one of the C/K measures

WWM Wand-Weber-Metamodel [WA90]
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D A C++ Framework for Measuring System Descriptions

D.1 Framework Introduction and Class Diagram
The framework presented on the following few pages was used to build the measurement tool ma. This ma (measure
anything) utility may be used to measure software metrics out of source code. Refer to the manual pages in MA.DOC
(Version: 13. January 1996, obtainable on email request from the author) to get aquainted with the complete functionality
of this UNIX-style command line utility running under the DOS operating system.

The utility makes use of a framework that reflects the metamodel entities of the System Metamodel thus allowing the easy
programming of measurements based on such a metamodel in C++. This framework is briefly presented here. The reader
is supposed to be familiar with basic and more advanced concepts of software metrication and metamodelling

The class hierarchy is similar to that of the System Metamodel except for two additional base classes: 1) Named which
deals with registering and finding named items and 2) Sizeable which is an abstract base class for all measurable
items. It is diagrammed as follows:

Method
(M)

Class (C)
Actual

Parameter
(AP)

Message
(MSG)

Sizeable

Formal
Parameter

(FP)
Feature (F)

System (S)Object (O)

Named

Figure D.1: Metrics Framework Class Hierarchy
The exact specific purpose of each of these classes may best be understood by browsing through the C++ header file
listings as given in subsection D.2 of this appendix.

This object oriented framework is accompanied by a set of utility functions that support tokenising and file scanning. The
most important are:

co Str& ma_tokenize         (co Str& source_string,

                             co Str& ws = white_spaces,

                             co Str& sl_comment = empty_str,

                             co Str& mt_comment=empty_str, co Str&=empty_str, Boo=FALSE,

                             co UList& tok_seps = empty_ul,

                             co UList& lits=empty_ul,co UList&=empty_ul,co UList&=empty_ul,

                             co Str& multi_tokens = s_sq, co Str& = s_bs, co Str& = s_sq

                             );

        // returns a tokenized version of the first string arg, tokens are separated by

        // \n’s. 2nd arg: white space characters as a string
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        // 3rd string arg: single line comment token (Nil if none)

        // 4rd-6th arg: multi line comment start and end token + nested flag

        // 7th arg: list of tokens that are recognised as separate even if

        //          not separated by white spaces (list order: len desc).

        // 8th-10th arg: triplet of lists of lit start/escape/end enclosers

        // 11th-13th arg: triplet of multi token start/escape/end enclosers

Boo     ma_scanfile (CStr& file, CStr* lan, co UList& sets, CStr* ver, CStr* cat,

  co UList& tags, CStr* delta, CStr* sub, System* system);

        // builds up the meta-object-structure found in a file. The language,

        // settings, category and system must be set, the rest may be empty/NULL.

        // While scanning, any setting may be altered, but the scan restores

        // the settings on exit. The returned value is False on failure.

UList*  ma_scanldfile (CStr& file);

        // return Nil or a caller owned UList of 1) the main language name, 2) the

        // language’s settings (in a UList) and 3) several language aliases

        // in another UList.

Listing D.1: Supporting Functions for the ma Utility
Note that several important abbreviations (#defines) are used throughout the code: co = const, Str =
String, CStr = CollectableString, UList = UnsortedList (an implementation of a linked list
which may contain collectables). Also note that each of the framework classes are collectables.

This framework is primarily designed to be easily extensible with respect to two requirements:

� Defining new metrics

ô Supporting new metamodel mapping rules

This appendix will provide the solution pattern, i.e. the necessary construction and programming steps, for fulfilling
requirement � which is described in subsection D.3. Getting acquainted with the class headers in D.2 before will support
the reading of this subsection.

Requirement ô is supported by the implementation of all meta-model entities as classes. It is therefore possible to create
at any desired time new system description objects such as classes, methods, features, etc. and provide them with a name
and associations as prescribed by the mapping rule. Note that the mapping method - together with its formal parameters -
has to be introduced in the language definition file of every language that makes use of that method. The mapping
method itself is then implemented as a new branch within the execute method of class Method.

Change strings

Any changes to the meta-entities are performed through the change method. This method takes a string as its main
argument. This string contains the change information as a sequence of tokens separated by newlines, e.g. the string
„has\nZIP-Code“ sent to a class object sets a „has“ association between that class object and a feature object named
„ZIP-Code“ (which is assumed to be created before). All meta-associations, attributes and categories may be changed -
also deleted - at run-time in this manner. Change strings may contain more than one change information, e.g. „has\nZIP-
Code\nhas\nCity“ is also valid. A change string may also be passed to the constructor. Note that language definition files
are nothing but untokenised sequences of change strings with the additional possibilities of comments, setting of
language-specific parameters (such as the comment syntax) and creation of language description objects by stating their
meta-name (e.g. Method „my new method“  to create a new method named ‘my new method’).

D.2 Framework Class Details (Header Files)
The following excerpts from the actual C++ header files show the essentials of the classes purposes. Implementation
issues (some inheritance links, #includes, protected and private members) are omitted. Also note that often the
abbreviations for the metamodel classes are used, e.g. instead of Method* you’ll see M*. For return values that are
created on the heap (free store) and whose deletion is up to the method caller, the term "cowned" is often used, which is
short for "caller owned". The class headers appear as the classes are diagrammed in the hierarchy diagram in subsection
D.1 (left to right, top to bottom).

Note that the read access methods to the meta-associations and attributes are grouped in a correspondingly commented
section of the header. They are followed by the list of settable categories. Change strings should be built using exactly the
spelling of these methods and categories. To support the correct construction of change strings, for each meta-
association, attribute and category a string named s_<meta- name> is defined. Also the string s_cr is defined which can
be inserted as the token separator (instead of many literal „\n“s).
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D.2.1 Class Named
Purpose Defines a C++ representation of a named object that may additionally take on

        a set of string values to model tags/categories. Searching methods are defined

        for name patterns and tag patterns.

        Names are sequences of tokens denoted as follows:

        token separator                     = blank

        literal token                       = sequence of chars (with \ escapes)

        paired literals                     = pairedToken1. token .pairedToken2

        named single token variable         = ’name’

        named multiple token variable       = ’name...’

        anonymous variable                  = *

        optional token                      = [ token ]

        repeated token                      = token ...

        repeated token with separator token = token separatorToken...

        ("inclusive") token group           = ( token1 token2 ... )

        one out of ("exclusive") group      = (( token1 token2 ... ))

class   Named

    {   public:

        Named   (co Str& n = empty_str, co Str& v = empty_str, co Str& t = empty_str);

            //  If n == "" then the named is assumed to be anonymous.

       ~Named   ();

    sta Named*  findName    (co Str& name = empty_str);

            //  Returns the named with the name or NULL if no match

    sta UList&  find        (co UList&=empty_ul, co UList&=empty_ul, co char* n_pat=NULL);

            //  Returns a ulist of nameds that

            //  1) are tagged with the tags in the first UList (may be empty),

            //  2) are not (!) tagged with the tags in the 2nd UList (may be empty),

            //  3) match the name pattern (regexp) or id (if pat like <#>).

        UList*  match       (co char* text);

            //  Returns (caller owned)

            //  1) the "remaining" portion of (tokenized) text,

            //  2) the matching portion (if a match occurred),

            //  3)... the variables (index i) and settings (index i+1).

            //  The variable names contain ... if repeated.

            //  The settings are either a string or a ulist. A string is used

            //  for vars with a single actual setting. The string is ended

            //  with a \n. Multitoken vars are set with tokenized strings

            //  separated with \n’s. A ulist is used for repetitions. The

            //  values in the ulist are strings (formed as described above).

    sta UList*  findMatch   (co char* text,UList&=empty_ul,UList&=empty_ul,co char*=NULL);

            //  Returns a caller owned list with the following contents

            //  (see ’find’ for parms 2-4):

            //  1) the portion of the text that did not match

            //  2) the portion that matched (optional)

            //  3) the named that matched (optional, non cowned)

            //  4) the rest of the text (optional)

            //  5)... the variables and settings (optional)

            //  The text must be tokenized (<cr> separated).

        int     name        (co Str&, ATy = repl); // change name (retval == 0: failure)

        co Str& name        () const;              // retrieve name

        int     value       (co Str&, ATy = repl); // changing the value (anons only)

        co Str& value       () const;              // retrieving the value (anons only)

        int     category    (co Str&, ATy = add);  // changing tags/categories

        UList&  category    () const;              // retrieving tags/categories

     vi Boo     is          (co Str& t) const;     // TRUE if this is tagged with t

        UList*  variables   () const;              // returns the variables (cowned)

        UList*  literals    () const;              // returns the literals (cowned)

        };
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D.2.2 Class Sizeable
class   Sizeable

    {   public:

        Sizeable    ();

/*      abstract measures (absolute scale) */

    vi  float       externalSize ();             // es

    vi  float       internalSize ();             // is

    vi  float       size ();                     // s

/*      abstract measures (scale from 0%-100%) */

    vi  float       quality ();                  // q

/*      real measures (System Meter Suite) */

    vi  float       systemMeters ();             // sm

    vi  float       internalSystemMeters ();     // ism

    vi  float       externalSystemMeters ();     // esm

/*      real measures (Function Point Suite) */

    vi  float       preFunctionPoints ();        // prefp

    vi  float       domeFunctionPoints ();       // domefp

/*      real measures (Lines Of Code Suite) */

    vi  float       linesOfCode ();              // loc

    vi  float       weightedLinesOfCode ();      // wloc

/*      real measures (McCabe Suite) */

    vi  float       cyclomaticComplexity ();     // cc

/*      real measures (Halstead Suite) */

    vi  float       volume ();                   // vol

    vi  float       effort ();                   // eff

    vi  float       difficultyHalstead ();       // dif

    vi  float       vocabularyHalstead ();       // voc

    vi  float       lengthHalstead ();           // len

/*      real measures (Chidamber-Kemerer Suite) */

    vi  float       numberOfChildren ();         // noc

    vi  float       depthOfInheritanceTree ();   // dit

    vi  float       couplingBetweenObjects ();   // cbo

    vi  float       weightedMethodsPerClass ();  // wmc

    vi  float       responseForClass ();         // rfc

    vi  float       lackOfCohesionInMethods ();  // lcom

        };
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D.2.3 Class Object
class   Object

    :   public

        Sizeable, public Named

    {   public:

        Object  (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates an object out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~Object ();

    sta O*      findObject (co Str& str_1);

    sta O*      replaceObject (O* old_1, O* new_2);

            //  replaces the old object with the new one, i.e. every

            //  occurrence of old (= pointer to old) in the associated objects

            //  is replaced by an occurrence of new (= pointer to new).

            //  Old is deleted and new is assigned old’s name.

     vi int     change(Str& str,co UList& tags=empty_ul,ATy=repl,Boo=TRUE);

            //  Changes the object’s state according to ldl-text in str.

            //  The eventually newly created subobjects are tagged with tags.

            //  As in the constructor, str is changed. Also the object’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  If assoc is given, no object names are assumed to be

            //  in str. Instead the change always references the object

            //  pointed to by assoc. Retval == 0: failure.

     vi void    remove (co Str& str, co O* op);

            //  Removes the object pointed to by op from the relationship list

            //  named str (e.g. ’remove ("isAliasFor", <obj>);’).

  vi co Str&    metaType ();

        // metamodel association and attribute access members

     co Str&    hasName () co { return name (); }

     co Str&    hasValue () co { return value (); }

     vi O*      isAliasFor ();

     vi UList&  hasAsAlias ();

     vi UList&  contains ();

     vi UList&  isContainedIn ();

     vi UList&  scopes ();

     vi UList&  isInScopeOf ();

     vi UList&  isOfType ();

     vi UList&  isDefaultValueFor ();

     vi UList&  isReferredIn ();

     vi UList&  isUsedBy (co Str& = empty_str);

     vi UList&  mayBeUsedBy (co Str& = empty_str);

     vi UList&  uses (co Str& = empty_str);

     vi UList&  mayUse (co Str& = empty_str);

//   meta-categories settable as tags/categories and in the change method

//   pers = persistent object

//   dev = device object

//   ctrld = controlled object

//   cont = container object

//   const = constant object

//   anon = anonymous object

//   loc = local object

//   lit = literal object
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        // measures

        float   systemMeters ();

        float   structuredDesignQuality ();

        float   internalSystemMeters ();

        float   externalSystemMeters ();

        };
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D.2.4 Class System
enum    sdfEntryType // used while scanning an sdf

    {   undefined_set, lan_set, ver_set, tag_set, sub_set

        };

typedef sdfEntryType sdfET;

class   System : public Sizeable

    {   public:

        System  (co char* sdf); // creates a system out of an SDF-File

       ~System  ();

        int     name    (co char*, ATy = replacing_aty);

     co char*   name    () co;

        int     alias   (co char*, ATy = additive_aty);

        int     isNamed (co char* pattern) co;

        // settings of the current language

    sta UList*  ulp_currentLanguageSettings;

        // inherited and redefined from sizeable

        float   externalSize ();

        float   internalSize ();

        float   size ();

        float   qualityBasedExternalSize ();

        float   qualityBasedInternalSize ();

        float   qualityBasedSize ();

        float   quality ();

        float   systemMeters ();

        float   structuredDesignQuality ();

        float   internalSystemMeters ();

        float   externalSystemMeters ();

        float   coupling ();

        float   cohesion ();

        float   preFunctionPoints ();

        float   essoaFunctionPoints ();

        float   functionPoints ();

        float   linesOfCode ();

        float   weightedLinesOfCode ();

        float   cyclomaticComplexity ();

        float   volume ();

        float   effort ();

        float   difficultyHalstead ();

        float   vocabularyHalstead ();

        float   lengthHalstead ();

        float   numberOfChildren ();

        float   depthOfInheritanceTree ();

        float   couplingBetweenObjects ();

        float   weightedMethodsPerClass ();

        float   responseForClass ();

        float   lackOfCohesionInMethods ();

        };
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D.2.5 Class Class
class   Class : public Object

    {   public:

//      administrative public methods

        Class   (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates a class out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~Class   ();

            //  Deletes a class.

    sta C*      findClass (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the class’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the class’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O* op);

            //  Removes the object op from the relationships in str.

     vi void    infect (co Str& str);

            //  Marks the object elements listed in str as outdated.

  vi co Str&    asString ();

  vi co Str&    metaType ();

        // metamodel association and attribute access members

        UList&  isSubTypeOf ();

        UList&  isSuperTypeOf ();

        UList&  inheritsFrom ();

        UList&  inheritsTo ();

     co Str&    creates ();

        C*      hasClassTemplate ();

        UList&  isClassTemplateFor ();

        UList&  has ();

        UList&  isTypeOf ();

//      special members

        O*      createInstance (co Str& name = empty_str, UList& tags = empty_ul);

//      sizeable methods

/*      real measures (Function Point Suite) */

    vi  float   preFunctionPoints ();        // prefp

    vi  float   essoaFunctionPoints ();      // essoafp

    vi  float   functionPoints ();           // fp

/*      real measures (Chidamber-Kemerer Suite) */

    vi  float   numberOfChildren ();         // noc

    vi  float   depthOfInheritanceTree ();   // dit

    vi  float   couplingBetweenObjects ();   // cbo

    vi  float   weightedMethodsPerClass ();  // wmc

    vi  float   responseForClass ();         // rfc

    vi  float   lackOfCohesionInMethods ();  // lcom

        };
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D.2.6 Class Feature
class   Feature : public Object

    {   public:

//      administrative public methods

        Feature (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates a feature out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~Feature   ();

            //  Deletes a feature.

    sta F*      findFeature (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the feature’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the feature’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O* op);

            //  Removes the object op from the relationships listed in str.

     vi void    infect (co Str& str);

            //  Marks the calculated object elements listed in str as outdated.

  vi co Str&    asString ();

  vi co Str&    metaType ();

        // metamodel association and attribute access members

        C*      isPartOf ();

//   meta-categories settable as tags/categories and in the change method

//   cla = class-wide feature

//   inhable = inheritable feature

//   inhted = inherited feature

  };
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D.2.7 Class Formal Parameter
class   FP : public Object

    {   public:

//      administrative public methods

        FP      (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates a FP out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~FP      ();

            //  Deletes an fp.

    sta FP*     findFP (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the FP’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the class’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O*);

            //  removes O* from the list stated in str.

     vi void    infect (co Str& str);

            //  Marks the object elements listed in str as outdated.

  vi co Str&    asString ();

  vi co Str&    metaType ();

        // metamodel association and attribute access members

        O*      hasDefaultValue ();

        M*      belongsTo ();

        UList&  isFilledBy ();

//   meta-categories settable as tags/categories and in the change method

//   crea = formal parameter whose actual parameters are newly created objects

//   read = formal parameter whose actual parameters are read

//   upd = formal parameter whose actual parameters are changed

//   del = formal parameter whose actual parameters are deleted

        };
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D.2.8 Class Message
class   Message : public Object

    {   public:

//      administrative public methods

        Message (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates a message out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~Message ();

            //  Deletes a message.

    sta MSG*    findMSG (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the message’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the msg’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O*);

            //  removes O* from the list stated in str.

     vi void    infect (co Str& str);

            //  Marks the object elements listed in str as outdated.

  vi co Str&    asString ();

     co Str&    metaType ();

        // metamodel association and attribute access members

        UList&  isDirectlyUsedBy (co Str&); // redefinition from Object

        M*      calls ();

        M*      implements ();

        UList&  with ();

//   meta-categories settable as tags/categories and in the change method

//   exec = executed message

//      special functions

        void    execute (UList& tags = empty_ul, UList& parms = empty_ul);

            //  executes the message (by calling the called method and

            //  passing the actual parameters). The parameters in the list are

            //  formal parameters each followed by the object passed as the

            //  actual parameter. Whenever a formal parameter in this list

            //  is passed as an actual parameter to the called method, it is

            //  substituted with the object immediately following in the

            //  list.

  };
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D.2.9 Class Actual Parameter
class   AP : public Object

    {   public:

//      administrative public methods

        AP      (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates an AP out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~AP      ();

            //  Deletes an ap.

    sta AP*     findAP (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the ap’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the ap’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O*);

            //  removes O* from the list stated in str.

     vi void    infect (co Str& str);

            //  Marks the object elements listed in str as outdated.

  vi co Str&    asString ();

  vi co Str&    metaType ();

        // metamodel association and attribute access members

        UList&  eq (); // more than one actual value (i.e. a list of values)

        FP*     correspondsTo ();

        MSG*    isUsedIn ();

  };
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D.2.10 Class Method
class   Method : public Feature

    { public:

//      administrative public methods

        Method  (Str& str = empty_str, co UList& tags = empty_ul);

            //  Creates a method out of ldl-text in str.

            //  The unscannable rest of str is left in str.

            //  Scanning stops when encountering a non conforming token.

            //  Sets the given tags in addition to the std tags.

       ~Method  ();

            //  Deletes a method.

    sta M*      findMethod (co Str& str_1);

     vi int     change (Str& str, co UList& tags=empty_ul, ATy=repl, Boo=TRUE, O*=NULL);

            //  Changes the method’s state according to ldl-text in str.

            //  As in the constructor, str is changed. Also the method’s

            //  name may be changed. The Boolean controls whether changes

            //  are propagated (=default) or the change is just flat.

            //  Retval == 0: failure.

     vi void    remove (co Str& str, co O* op);

            //  Removes the object op from the relationships listed in str.

     vi void    infect (co Str& str);

            //  Marks the object elements listed in str as outdated.

  vi co Str&    asString ();

  vi co Str&    metaType ();

//      access members for the meta-associations

        UList&  parameter ();

        UList&  isImplementedBy ();

        UList&  isCalledBy ();

        M*      hasMethodTemplate ();

        UList&  isMethodTemplateFor ();

//   meta-categories settable as tags/categories and in the change method

//   deref = dereferencing method

//   debra = decision/branch method

//      impl = implemented method

//      cmt = comment method

//      sizeable methods

/*      real measures (Function Point Suite) */

    vi  float   preFunctionPoints ();        // prefp

    vi  float   essoaFunctionPoints ();      // essoafp

    vi  float   functionPoints ();           // fp

//      special functions

        void    execute (UList& tags, UList& parms);

// executes the method (i.e. establishes the meta-associations

// defined for the method). The parameters in the list are

// formal parameters each followed by the object passed as the

//  actual parameter. Newly created objects are tagged with tags.

        };
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D.3 Using the Framework: Defining New Metrics
As an example, we may want to define some of the object-oriented metrics of Chidamber and Kemerer [CK94]: NOC,
DIT and WMC. We do this in the following steps:

� We introduce the method signatures - together with some dummy implementation - in the Sizeable base class:

Note that every metric is of type float even if the anticipated values are integers. This convention is chosen
because in calculations (especially multiplications) values exceeding integer (or long) maximums may occur.

ô We chose the framework class for which the metrics may be (re)defined. Because all Chidamber/Kemerer metrics
are defined at class-level we take class Class. Other metrics might be defined in other classes, e.g. McCabe’s
Cyclomatic Complexity in class Method - or even in several classes, e.g. McCabe’s Cyclomatic Complexity may
also be defined in Class, there being the sum of the complexities of the class’s methods.

í We implement the metrics using the metamodel associations and classes:

float   Class::numberOfChildren ()

    {   return (float)inheritsTo ().entries ();

        }

Listing D.2: Implementation of NOC
For NOC we may simply count the entries of the list returned by the inheritsTo association method. A little bit
more tricky is the definition of DIT:

float   Class::depthOfInheritanceTree ()

    {   ULister next (inheritsFrom ()); // iterator for assoc.

        Class* cp = NULL; // pointer to class inherited from

        float depth = -1.0f; // current maximum depth

  float newDepth = 0.0f; // depth of investigated class

        while (cp = (Class*)next ()) // loop through assoc.

if ((newDepth=cp->depthOfInheritanceTree ()) > depth)

   depth = newDepth ; // set new maximum

        return depth + 1.0f; // this depth = maximum + 1

        }

Listing D.3: Implementation of DIT
Note that this implementation of DIT uses a recursive call to depthOfInheritanceTree of all classes
inheriting from in order to determine the maximum depth of inheritance of any of those classes. It then simply
adds 1 to that depth to count for the inheritance link of the class in focus (C++: this). The maximum depth is
initially set to -1 because when not inheriting a class’s DIT value should be 0, i.e. -1 + 1.

float   Class::weightedMethodsPerClass ()

    {   ULister next (has ()); // iterator for "has" association

        Feature* fp = NULL; // current feature of class

        float methods = 0.0f; // initial weighted methods value

        while (fp = (Feature*)next ()) // loop through assoc.

            if (fp->is (s_M) && fp->is (s_impl))

    methods += ((Method*)fp)->weight ();

        return methods;

        }

Listing D.4: Implementation of WMC

In the implementation of WMC we switch - via the "has" meta-association - from the class in focus to its features. The features than
may be tested with the "is" method against their meta-properties. Especially the property "s_M" tests whether a description object is
of meta-class Method, in contrast to plain features which are of meta-class Feature. The property "s_impl" tests whether a method is
implemented or just inherited. As soon as we know the feature is a method we may convert it into one and call its weight method.
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E A Practical Cookbook for Software Project Estimation

This appendix is for the practitioner. The new estimation method is described step by step. Explanatory comments are
reduced to a minimum. First the method for estimation after preliminary analysis PRE-SM and then the one after domain
analysis DOME-SM is explained. Estimates for the preliminary analysis process must be derived heuristically. We
recommend a bottom-up approach of 1) setting up a project structure plan by eventually copying from a template like
BIO, 2) assigning personnel to the tasks identified, and, 3) summing up the resulting manpower. We further recommend
to engage only visionaries, stakeholders and executive decision-makers in preliminary analysis. The process should be
completed within at most 3 to 4 months, or else the underlying assumptions about technology and „reality“ will be
outdated, due to the rapid change rates in our times.

E.1 Estimation after Preliminary Analysis
1. Describe the system you are about to build in terms of subject areas and goals.

The subject areas - on one side - are to be viewed as anticipated groups of classes (or entity types). A project management
system, e.g., could be split into the subject areas of "planning and control", "resource management" and "reporting and
documentation". For each subject area the number of classes or "complexity" (with the definition that a subject area with
one class has complexity 1) should also be given (approximately of course, and as positive integers, no fractions
allowed). Document the subject areas in an unformatted text file using the syntax:

Subject Area <name> <number-of-classes> .

The goals - on the other side - are to be viewed as rough functional requirements, describable independently from any
specific class or subject area. The typical goals for any database application, e.g., are "object creation", "object retrieval",
"object update" and "object deletion". Each of these goals just cited equals a complexity of 1 per definition. The goals are
to be interpreted as sets of more detailed functional requirements, e.g. the goal "object creation" may - later in the
software process - be supported by a standard window layout and user interaction sequence, then by consistency checks
before and after the bare object creation task, etc. Also, be sure not to mix those goals for the software system with goals
for the software process (e.g. "programs should be written in C++" is not considered a goal in our context). Document the
goals either with the syntax:

Goal <name> [ <complexity> ] . (default <complexity> is 1)

or
Goal <name> = <subgoal> { , <subgoal> } .

The latter form introduces a (potentially unlimited) hierarchy of goals. Yet, such a hierarchy is not required. Unless
specified otherwise (i.e. a <subgoal> may appear in the <name> role in another statement before or after its
subordination), the subgoals are considered to be of complexity 1.

Finally the subject areas and goals must be linked, i.e. it must be stated for each subject area by which goal(s) it is ruled.
This linkage can be one reason for building a goal hierarchy, because, maybe, typical groups of goals are attached to
more than one subject area. This can elegantly be modelled by attaching the higher level goal, which represents the
typical group, to the subject area, instead of attaching each lower level goal to it. The subject area versus goal linkage
should be denoted with the syntax:

Subject Area <name> isRuledBy <goal> { , <goal> } .

The system description thus elaborated is assumed to reside in a file named SD.PRE for the subsequent steps. Any other
name can however be chosen. The language used to denote such high level system descriptions is called PRE and was
first described in [MOS95]. PRE also honours the single line comment syntax:

;<comment>

Tokens in PRE should be separated by arbitrary groups of whitespaces (blanks, newlines, tabs, etc.). If names should
consist of more than one token use ' as the enclosing character (with '' standing for ' within such names) and separate the
token with arbitrary groups of whitespaces. If names should contain an exact whitespace pattern (e.g. two blanks) use " as
the enclosing character (with \" or "" standing for " within such names)

2. Model the existence of frameworks, libraries, design pattern or previous implementations

For each part of the system description which is (almost) 100% supported either with a framework, "traditional libraries",
design pattern or a previous reusable implementation of the system part, enclose the description part in SD.PRE with the
statements:

;ma-entry: category library

[... the supported system part ...]

;ma-entry: category project

Because for each PRE statement the framework support should be clear (either nearly 100% or non existing) this has an
influence on the modelling in step 1. On the other hand, the granularity of the PRE language is so low, that there are
situations where a partly support of a system model element cannot be avoided (e.g. for the goal "object creation" there
may be a DBMS at hand, but a DBMS typically supports the mere persistence operation. There's no integrated and
seamless support for the user interface and/or the consistency checks that are also subsumed in this goal). It is
recommended not to mark such partially supported elements as "library" elements.
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3. Measure the System Meter metric.

Actually this may be the most tedious and boring step or the easiest. In case you try to measure the metric manually,
expect hard times. On the other hand it is relatively straightforward to build a small tool to accomplish that laborious
task. The author implemented such a program, which he used to accomplish the field study. The measurement step thus
may reduced to entering, e.g.:

ma

or something similar on the command line and waiting for the resulting number to plop out. The following steps assume
this number to be called s (for size).

The ma utility can be obtained on request from the author (moser@acm.org).

4. Estimate the effort and duration for the complete software process (preliminary analysis to delivery).

The effort estimation procedure consists in applying the approximation function of the current corresponding empirical
database (see the introduction for comments about empirical databases). If you wish to rely on the empirical database the
author has established in his field study, use the following formula to estimate the effort e of the complete software
process:

e = 0.404 · s + 0.0000753 · s2

Be aware that this number is an estimate, i.e. it is equally possible that the effective effort will be below or above e. The
bias is also taken from the same empirical database. The author's samples showed a relative standard deviation of 16.5%
(or a ±33% bias at a 95%-confidence level).

5. Check and accommodate for the tailored project model.

The full details of a software process template (= methodology, phase model) would be a prerequisite to discuss this
accommodation in depth. For our purposes let us only consider the accommodation on the level of the phases and let us
assume that the BIO [MO95b] phasing 1) preliminary analysis, 2) domain analysis, 3) detailed requirements
specification, 4) construction, 5) implementation and test, 6) delivery/installation is used. BIO includes all project
management, quality management and configuration management activities, therefore the estimates also cover those
parts.

Empirical studies (following the ABC estimation strategy outlined in the introduction) have shown linear correlations
between the efforts of the different phases. Those correlations can be expressed by the percentage ratios p1, p2, p3, p4,
p5, p6 of phase efforts versus total effort. Thus, if the tailored project plan omits a whole phase (e.g. customer
installation), the solution is straightforward (i.e. apply percentage calculations). If it omits parts of phases we are into the
details mentioned above. The author's survey showed the following phase percentages:

5%, 14%, 18%, 19%, 35%, 9%

The following recommendations (also based on empirical results and standard tailorings for prototyping processes, i.e.
special instances of the BIO template process) may also be useful:

• An experimental prototyping process (or subprocess within phases 1 or 2) should be calculated as a third of phase 5
for the system to be prototyped, which is usually a part of the full system. This system part may also be modelled as
described in steps 1 and 2 in this chapter.

• An evolutionary prototyping process (or subprocess within phases 2 or 3) should be calculated as a third of phase 3
plus a full phase 4 for the system (usually a part of the full system) to be prototyped. Estimates for the rest of the
enclosing software process should then be revised to take the frameworks, design pattern and/or implementations
already at hand into account.

• The construction phase (phase 4) should always be reduced by the ratio between the system size s (cf. steps 1 and 2 in
this chapter) and a hypothetical size s' (= flat System Meters), which is measured on a version of the system
description where no elements are categorised as "library" (actually the system description before entering step 2 in
this chapter). This should be done because the construction phase assumes that for all components a design (i.e. a
solution pattern) must be "invented" instead of just identified and reused.

6. Check and accommodate for the process dynamics.

The estimation of the „normal“ duration (and the „normal“ average project team size, the ratio of ) is then accomplished
by consulting an empirical database that correlates the accommodated effort e’ with the duration. The authors coefficients
for the duration d are:

d = √### [426'000 + 879 · e] - 653

This estimate again has a bias, dA-duration, of its own which was ±37% at a 95%-confidence level in the authors survey.
Note that the total dA-duration equals 74%, i.e. spans the positive and negative bias.

Because, usually the customers want a system to be built in no time at all, it is an art of its own to convince customers of
a duration d which is substantially above 0. Eventually the duration negotiation process will end up with some
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compromise, say d’ = d/2. That’s what’s called "process dynamics". The dynamics can be quantified in form of the
acceleration coefficient a:

a = (###d - d · dA-duration/4) / d'

Investigations conducted by DeMarco, Putnam showed that this acceleration of the process not only means an affection
of the duration parameter but also of the effort parameter. Thus corresponding to a d' there's also a e'. Literature proposes:

e' = e · a2

We observed in a very small sample set of accelerated projects a correlation of:

e' = e · (0.20 · a + 0.792 · a2)

This confirms the behaviour proposed in literature, although in a slightly „softened“ quadratic correlation. Both formula
for e’, however, have an explosive effect to the team size (t = e’ / d’). Because we all know that teams are not built in a
day, accelerations above 2 (i.e. scheduling half the "normal" time to delivery) are typically impossible.

E.2 Estimation after Domain Analysis
Estimation after Domain Analysis is completely analogous to the steps explained in E.1. The only changes are found in
step 1, the modelling, which is more refined, and - of course - in the correlation and precision of the estimated values.

1. Describe the system you are about to build as a class model, use case model and state-event model.

The class model consists of five elements: domain classes, domain associations between classes, data types, function
types and consistency rules. Actually data types are a synonym for domain classes although the perception and role for
the end-user is different: domain classes are entities of primary interest and life whereas data types are simple (or not so
simple) value ranges. Domain analysis is intentionally reduced to the non-technical aspects of the „real world“
underlying the system in focus. It is also intentionally reduced in the level of modelling detail. Especially, the detailed
attributes and methods of the classes are not modelled in order to avoid ripple effects with the subsequent modelling layer
of application analysis. For domain classes simply the approximate number of attributes per data type (or aggregate class)
is required. Method modelling is reduced to so called function types which represent basic essential functionalities.
Function types may be composed of more basic functionalities, the so-called kinds. If a domain class is modelled as
containing an attribute of a function type, this may be viewed as this class having such a generic functionality, i.e.
method. Finally, consistency rules are modelled with the involved classes, associations and/or function types.

The formal language to denote the class model is:

Data Type <name>

[ isSubTypeOf <superclass-name> , ... ]

{ contains [ <n> attr ] <data/function type> } .

Function Type <name>

{ ofKind <function-part> , ... } .

Domain Class <name>

[ isSubTypeOf <superclass-name> , ... ]

{ contains [ <n> attr ] <data/function type> } .

Domain Association one|many <class1> <assoc-name> one|many <class2> .

Consistency Rule <name> = <class/assoc/function-type> , ... .

The use case model consists of three elements: use cases, their signals and domain subsystems which are groupings of use
cases. The use cases are defined through a unique name and a triggering event (also a unique name). Optionally
preconditions for the use case may be modelled by indicating the involved classes, associations and/or function types.
The signals are optionally named (for reference in the state-event model) optionally linked to an actor and - most
important - tied to the classes, associations and function types involved.

The formal language to denote the use case model is:

Use Case <name> isTriggeredBy <event-name>

[ = <class/assoc/function-type> , ... ] .

Signal [ <name> ] of <use case/function type>

[ from|to <actor> ] = <class/assoc/function-type> , ... .

Domain Subsystem <name> = <use case> , ... .
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The state-event model, finally, consists of the two elements of states and transitions. States are defined as uniquely named
sub-concepts of classes or superstates. Optionally the other classes, associations or function types involved in the
definition of the state may be modelled. Transitions link two states together. Optionally the can be conditional with
classes, associations or function types involved in the condition. Also optionally they can trigger or be triggered by
signals of the use case model.

The formal language to denote the state-event model is:

State <name> isSubStateOf <class/state>

[ = <class/assoc/function-type> , ... ] .

Transition <name> startsAt <state1> endsAt <state2>

[ = <class/assoc/function-type> , ... ]

[ triggers <signal> , ... ]

[ isTriggeredBy <signal> , ... ] .

The system description elaborated is assumed to reside in a file named SD.DOM for the subsequent steps. Any other
name can however be chosen. The language used to denote such high level system descriptions is called DOME. DOME
also honours the single line comment syntax:

;<comment>

Tokens in DOME should be separated by arbitrary groups of whitespaces (blanks, newlines, tabs, etc.). If names should
consist of more than one token use ’ as the enclosing character (with ’’ standing for ’ within such names) and separate the
token with arbitrary groups of whitespaces. If names should contain an exact whitespace pattern (e.g. two blanks) use " as
the enclosing character (with \" or "" standing for " within such names)

2. Model the existence of frameworks, libraries, design pattern or previous implementations

[same as for PRE-SM]

3. Measure the System Meter metric.

[same as for PRE-SM]

4. Estimate the effort and duration for the complete software process (preliminary analysis to delivery).

The effort estimation procedure consists in applying the approximation function of the current corresponding empirical
database (see the introduction for comments about empirical databases). If you wish to rely on the empirical database the
author has established in his field study, use the following formula to estimate the effort e of the complete software
process:

e = 0.168 · s + 0.0000158 · s2

Be aware that this number is an estimate, i.e. it is equally possible that the effective effort will be below or above e. The
bias is also taken from the same empirical database. The author's samples showed a relative standard deviation of 4.5%
(or a ±9% bias at a 95%-confidence level).

5. Check and accommodate for the tailored project model.

[same as for PRE-SM]

6. Check and accommodate for the process dynamics.

[same as for PRE-SM]
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F Details from the Field Study

The following 36 sheets summarise the measurements obtained from the surveyed projects in Swiss industry. The sheets
are laid out in German. We therefore translate the important terms (in the order they appear on the sheet):

German English [continued]

Projekt project Installationsverfahren installation procedure

Projektleiter project manager Installationsanleitung installation
documentation

Firma company Portierung technical platform port

Entwicklungsumgebung development environment Übersetzung translation

Ertrag gross income Betriebshandbuch system administrator
manual

Messung measurement Benutzerhandbuch user manual

Aufwand effort Evaluationen product evaluations

Voranalyse preliminary analysis Organisationsvorbereitung preparation of
organisational changes

Konzept domain analysis Schulungsvorbereitung preparation of training

Spezifikation application analysis Migrationsvorbereitung preparation of
application migration

Konstruktion construction / technical
design

Formulare (paper) forms

Fertigung implementation & test Abnahme acceptance

Rahmenorganisation organisational activities Schulung application training of
users

Einführung delivery / installation Organisationsanpassungen organisational changes

Hauptprozess software process without
management activities

Planungen plans

Bandaktivitäten supporting management
activities

Schätzungen estimates

Dauer duration Risikoanalysen risk analysis

Systemgrösse system size Ausbildung
Projektmitarbeiter

training of developers

Prozessabdeckungsgrad process completeness normierter Aufwand normalised effort

ohne Prüfung without validation dynamische
Kostenmodellierung

dynamic cost modeling

einfache Prüfung simple validation nur falls only if

vollständige Prüfung complete validation aus from

Datenbereiche subject areas geschätzter Aufwand estimated effort

Funktionalitäten functional goals Aufwandmultiplikator effort inflation factor

essentielles Klassenmodell domain class model /
essential class model

entzerrt normalised with respect
to process dynamics

nicht-essentielle
Anforderungen

non-essential requirements Kennzahlen key figure

Spezifikationstypen user requirement types finanzielle Produktivität financial productivity

Datengehalte models fachliche Produktivität technical productivity

Systemzustände system states Teamgrösse team size

betriebliches Klassenmodell application class model Schätzqualitätsfaktor SQF estimation quality factor
EQF

nicht-funktionale
Anforderungen

non-functional requirements Termintreue deadline hit factor

Lösungsmuster solution patterns geschätzt estimated

technisches Klassenmodell technical class model

Testdaten test (input) data

Testfälle test cases

Testverfahren test procedures
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getunt tuned
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