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Abstract

Over the last thirty years designers have tried to cope with software complexity by orga-
nizing system entities into modules, i.e., groups of entities. However, the creation and
organization of modules is not straightforward. The criterion with which these modules
are built impacts in the maintainability and development of the system. Designers have
different interests and personal views of the same system, views that are difficult to
communicate and to extract from the code. Poor understanding of this organization in-
creases the complexity of the system e.g., by favoring the addition of duplication and of
unexpected rippling effects. This, in turn, lowers the flexibility of the system to changing
requirements and leads to a sharp increase in their maintenance cost.

To overcome these problems, we present a methodology to manage the locality in object-
oriented systems. We develop a model that exploits the contextual information, i.e.,
the way objects are used by their clients, to understand and improve the organization
of classes in the system. With our model we take full advantage of the contextual
information of modules to evaluate their cohesion, find misplaced classes, detect hot
spots and find the different views that its clients have.

In our experimental validation we apply the contextual information to understand,
maintain and describe systems. Our methodology is applied successively together with
metrics, visualization techniques, and an optimization method named simulated an-
nealing to reverse-engineer object-oriented systems. All in all, we provide a methodology
to understand and improve the modularization of object-oriented systems, in an effort
towards simplicity.
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Markus Gälli, Lukas Renggli, Marc-Philippe Horvath, Adrian Kuhn, Adrian Lienhard,
Alexandre Bergel, Frank Buchli, Roel Wuyts, Juan Carlos Cruz, Mauricio Seeberger,
Daniele Talerico, David Vogel, Niklaus Haldimann, Christoph Hofer, Philippe Marschall,
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Chapter 1

Introduction

Modularity is the single attribute of software that allows a program to be intellectually
manageable [Myers, 1978]. It leads to simple, changeable programs, which make coding
and maintenance easier, faster and less expensive [Pressman, 1994]. It limits the impact
of change and reduces complexity [Yourdon, 1979]. To take advantage of these benefits,
engineers strive for maximizing the locality of the objects in the system by dividing it
into pieces containing every and only related objects of a kind. For example, we define
in the same package all the classes related to the implementation of a feature.

However, as the system evolves, this modularity is easily broken. The old recipes for
modularizing, namely to define a clean interface, exploit the advantages of abstraction,
minimize coupling and maximize cohesion, fail to keep the system modularized through
its evolution. The interfaces of modules become polluted during maintenance tasks with
obsolete elements, or excessively loaded with responsibilities specific to unconnected
clients of the module. This breakage in the modularisation lowers the flexibility to
changing requirements of the system and increases its maintenance cost.

Despite the thirty years of research effort, the methodology to deal with locality is still
unsatisfying. We claim that one of the reasons behind this failure is the methodology for
its evaluation, which relies on the assumption that it is only influenced by interactions
between elements of the module. This assumption is completely unfounded. If we
want to understand and manage locality, we need to examine (as well as the internals)
attributes external to the module, namely the context of the module.

To exploit the way modules interact, we concentrate on packages representing mod-
ules and containing classes. Contextual information is the name we use to express the
information concerning the interaction between a package and the rest of the system.
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In the context of class-based object-oriented systems, this work exploits the context
information of packages to manage locality of classes.

1.1 The Problem of Managing Program Modularity

Legacy systems are systems that often play a key role in an organization and cannot
simply be thrown away and replaced [Demeyer et al., 2002]. They must therefore be
maintained and upgraded. We focus on object-oriented legacy systems because early
adopters of object-oriented technology need at this moment to reverse engineer legacy
object-oriented systems, and because due to the popularity of this paradigm, current
systems are being implemented in object-oriented languages, which in turn results in
future object-oriented legacy systems to maintain.

Reverse engineering is a prerequisite to system maintenance and evolution. Under-
standing the code in object-oriented systems is more difficult than in procedural ones,
as reading object-oriented code is more difficult than reading procedural code [Dekel,
2002]. Absence of reading order, incremental class definition, polymorphism and late
binding are challenges that object-oriented approach adds when analyzing software sys-
tems [Wilde and Huitt, 1992].

Moreover, software is maintained by people. It is people who create software units,
people who reuse them, and people who have to change the code preserving existing
behaviour. Preserving behaviour is a challenge [Feathers, 2005] because users depend
on it and it can involve the risk of breaking apparently unconnected areas of the system.
If developers change the system without understanding it, they may break existing be-
havior, thus introducing bugs. If they introduce bugs, change, or remove the behaviour
on which users depend, the system fails and developers lose the user’s trust [Feathers,
2005]. What, then, facilitates software maintenance for the maintainers? There are
several techniques. One approach is to construct a mental picture of the system, such
as the one obtained with an appropriate visualization technique. Another, as in other
aspects of life, is to group together in one place all the elements that are related. In
computer science, the movement claiming this wisdom started more than thirty years
ago and was called Modular Design [Yourdon, 1979].

To support software maintenance, engineers strive for maximizing system’s modular-
ization at several levels of granularity: method, class, package, and subsystem. At the
level of packages, engineers strive to define in the same package, classes that are used
together [Martin, 2000]. In other words, they try to improve the locality of the classes
defined in a package. Even though enforced at development time, system modularity
becomes obsolete at a later time, when more development and new maintenance tasks

2
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obscure the original role of the package through the introduction of new semantics. The
various agents acting on the system, e.g., developers of different teams, maintainers,
and client programs, each have its particular view of a certain package, a view that,
applied in each maintenance task, clouds and deviates from the originally intended role
of the package. Sparse related classes break the modularity of the system, complicating
the reuse of modules, and increasing the cost of further maintenance tasks.

Research effort has been applied to automatically classify similar entities such as meth-
ods in classes and classes in packages. Most of these techniques acknowledge only the
attributes internal to the entity. That approach sometimes appears to contradict the
view of the developer, who sees entities as related even when they have no specific de-
pendence between them. Furthermore, there is no such a thing as a unique view of the
system where its elements can be partitioned in such a way that every agent consider
the elements of a module as local to this module.

As locality of elements of a system depends on the guiding principle of the observer, the
system evolving according to the sometimes conflicting interest of the maintainers, and
the impossibility of a single way to partition the system making every entity local for
each of its users, we believe that it is evident the necessity of managing locality.

Research Question:
How can we understand and improve the organization of
classes into modules?

We strive to find a technique that facilitates the organisation and reorganisation of an
evolving object-oriented system. Starting from the leap of faith that by maximizing the
locality of software elements, the system becomes more manageable by developers, our
hypothesis is that through understanding context information of packages, the system
structure is revealed. We validate our hypothesis by creating and implementing such
locality-manageability techniques and by showing the characteristics of the system that
they reveal.

1.2 Our Proposal: Contextual Information

Our ultimate goal is to improve the modularity of systems. We believe that to define
classes that are used together in the same place (for instance, in the same package)
facilitates maintenance tasks. Under these circumstances, we claim that to charac-
terise packages we need not only to acknowledge the elements in the package, but also
to acknowledge the perspective of clients, in other words by including context informa-
tion.

3
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Everyday life is full of tasks that involve grouping similar items. Let us consider the ex-
ample of a library. Namely, how do readers find software engineering books. The search
can be performed using internal attributes, such as by subject matter and author, for
example. But it can also exploit information that is outside the item, such as all the
books that colleagues read. If every member of our research team reads a certain book,
chances are that this book is probably related to our research interests, and therefore
useful for us. In other words, the characterization mechanism is refined by the addition
of information regarding how a book is used.

Item’s usage is concerned with external attributes of software entities. Traditionally,
software entities are characterised by internal attributes. Considering also external at-
tributes enriches software entities’ description by describing them from the perspective
of their interactions.

Thesis:
To express system structural properties we need to recog-
nize contextual information as an explicit phenomenon.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

1. A detailed analysis of the existing different methods to compute and visualize lo-
cality of entities as the system evolves.

2. A formal model to manage locality by capturing contextual information.

3. A measurement to capture the locality of classes [Ponisio and Nierstrasz, 2006b].

4. A coarse-grained view to visualize interaction of packages [Ducasse et al., 2004].

5. A novel technique to visualize the interaction of modules [Ducasse et al., 2005b].

6. A semi automatic technique that provides hints as how to re-locate classes to im-
prove locality of every package in the system [Ponisio and Nierstrasz, 2006a].

1.4 Structure of the Dissertation

This dissertation is structured as follows:

Chapter 2 (p.7) elaborates on the problem of managing the locality in evolving systems
and previous research effort on this field.

4
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Chapter 3 (p.25) presents the model for contextual information, the basis of the further
research that infer information from the system from the way entities are used.

Chapter 4 (p.39) presents examples of the use of contextual information for describing
packages, namely the introduction and analysis of a measurement that describes
a package according to the use that their clients make of its interface classes, and
detection strategies based on Contextual Information that detect packages with
specific design issues.

Chapter 5 (p.61) presents butterfly blueprints, a visualization technique to characterize
packages based on the contextual information of packages. It elaborates on the
possible uses of butterflies to reason about the evolving system.

Chapter 6 (p.83) presents an idea that associates the contextual information and the
problem of solving combinatorial optimizations to produce a technique that auto-
matically finds new combinations of classes that increase the locality of the system.

Chapter 7 (p.95) contains the conclusion of this work. It includes a discussion on
the current applications of the contextual information, with its advantages and
drawbacks, lessons learnt during the validation of the ideas presented here, and a
view of future applications suggested by our approach.

Appendix A (p.101) The Implementation of the Model. The model proposed in this
dissertation was implemented in a tool named ALCHEMIST that served as support
for the implementation and analysis of the novel measurements, the visualization
techniques, and the optimization of locality. This chapter elaborates on the design
issues of this implementation, the architectural overview, and the integration of
ALCHEMIST in the reengineering environment.

Appendix B (p.105) We validated the ideas presented in this dissertation by applying
them to several case studies. This chapter describes the case studies.

5
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Chapter 2

Organizing Classes in
Object-Oriented Systems

In the object-oriented paradigm the unit of a class is too small to gain an understanding
of a system as a whole [Zenger, 2002]. The hope is then in forming groups of related
classes. But how can we organize classes in such a way that developers can later find
them efficiently?

Any chosen organization may prove to be neither straightforward nor obvious for a given
developer. Between two opposing forces, namely the need to increase modularization
and unavoidable interactions between groups, only the designer criteria, interests and
experience act as guidelines for the engineer when deciding where to define a class [De-
meyer et al., 2002]. As a consequence of these ad hoc criteria, classes can be misplaced.
If conceptual classes are defined in different packages, developers working in a particu-
lar package may miss class definitions and create a new class clone of the class he does
not see because it is defined in an unexpected place. This practice leads to duplicated
code and ripple effects with minor changes effecting multiple packages and aggravates
the task of maintenance.

Moreover, as the system evolves, the organisation of classes into packages degrades.
Different clients of the package need different interfaces [Fowler, 1997], which imposes
different views regarding which classes are related, and therefore, in which package a
class should be defined. In other words, the “locality” of a group of related classes is
altered or destroyed by dispersing the classes into different packages. These different
perspectives transform the original design into an unclear one, which in turn hinders
the maintenance of the system. The question now is how to understand and regain high
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locality of the classes.

2.1 Introduction

What makes some systems easier to maintain for people than others? 50% to 75% of
the overall cost of a software system is devoted to its maintenance [Lientz and Swan-
son, 1980]. During maintenance, software professionals spend at least half their time
reading and analysing software in order to understand it [Corbi, 1989] [Basili, 1997].
Classes contain abstractions of code elements that are essential for understanding and
maintaining the system. However, they are too small gain understanding of a system.
Maintenance can be facilitated by organising classes into highly modular groups, i.e.,
where the group contains only related classes and coupling between groups are min-
imised. In such groups it is easier to retrieve related items, and they facilitate under-
standing of the system. However, this organization brings out the problem of where to
define each class.

This chapter analyzes existing approaches in different fields used to manage locality. It
establishes current limits of the state of art, and a set of open problems.

2.1.1 Locality of Classes

The term locality has different meanings in different disciplines. In computer science
it is a condition in which items accessed temporally closely are also physically close.
This concept deals with the process of accessing a single resource multiple times. The
reason behind this is the manner in which computer programs access data. Thus, in
the realm of compilers, optimization techniques like caching (i.e., techniques that modify
a system to make it more efficient) exploit locality, for it dictates to put physically close
objects that are accessed temporally closely. In the realm of software reengineering, and
in the particular context of object-oriented programming of this dissertation, a temporal
access has no meaning, since object-oriented languages hide memory allocation issues.
It is superseded by a functionality access.

Locality is a property of a group of classes where the ones that provide the same func-
tionality are defined together. Previous approaches captured the degree to which classes
belong together, and named cohesion this property of a set of classes [Fenton et al.,
1994]. The difference between cohesion and locality is that cohesion traditionally refers
to internal attributes of the group of classes. Locality, on the other hand, considers
also external attributes, i.e., it considers elements outside the group of classes. Locality
takes the point of view of the user, that is, not from the point of view of entities being

8
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related, but from the point of view of the interface exposed by the group and how the
clients view and access that interface.

2.1.2 Locality and Maintenance

For developers to find classes efficiently, classes implementing functionality of related
concepts must be defined in the same group, or package. If this fails, developers looking
for a class during the maintenance of the system, spend time searching and may over-
look related classes. Failing locality diminishes developer’s understanding, increases
class-search times, menace reuse, and increases the risk of duplication. When locality
is broken, the effects of a change propagate to apparently independent pieces of soft-
ware. Developers cannot predict the impact of a change, become reluctant to refactor
the code ( i.e., to transforme the source-code of a program without changing its external
behavior [Fowler et al., 1999]) and the system loses flexibility with respect to changing
requirements. All in all, neglecting locality management leads to systems that are rigid
to change.

The management of locality is not straightforward. Here are some difficulties for in-
stance that the developer finds when he is looking where to define a class:

There is no perfect place to define a class. A reasonable location to define a class de-
pends of the point of view of the developer.

It is not easy to identify packages containing related classes. Classes are too small
modular units to understand the system as a whole. Therefore, developers need
facilities to characterize packages as means to understand the system and to know
where to add the new class.

Traditional cohesion conflicts with developer’s concept of related classes. The de-
velopers may be afraid of creating packages that will be evaluated as non-cohesive
for traditional cohesion measures.

The big picture of locality of all the packages in the system is missing. Patterns re-
vealed by visualization techniques show developers how to structure a system, but
it is difficult to foresee the best probable criterion to aggregate classes.

Classes need to be re-located as systems evolve. After changes in the system, it may
be no longer reasonable for class A to be defined in package P .

Approaches solving the problem of locality should prevail over some questions, namely:
what is the best way to describe packages to understand their interaction? Which is the
right information to visualize? How can it be achieved in an scalable way? There are
different types of dependencies that connect classes (for instance inheritance definition,

9
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method invocation, and references as in a class instantiation). Which type is relevant to
characterize packages? How can different dependency types be combined?

2.2 Existing Approaches to Manage Locality

In the last thirty years, research effort has been spent on finding methods to evaluate
and increase the locality of the elements in structured programming as well as in object
oriented systems. Already in 1974, Stevens, Constantine and Meyer [Stevens et al.,
1974] observed that “programs that were easy to implement and maintain were those
composed of simple, independent modules”, and encouraged to increase cohesion as a
way to lower coupling. Unfortunately the proposed approach for evaluating cohesion
was manual.

Later work focused on finding mechanisms to automatically measure the structure of a
program. Examples of this work are automatic measurements for cohesion and coupling
[Bieman and L.M.Ott, 1994][Fenton et al., 1994], remodularizing a system by applying
clustering techniques [Mancoridis and Mitchell, 1998][Anquetil and Lethbridge, 1999],
and producing visualization of the locality [Pintado and Tsichritzis, 1988].

In last three decades there have been a number of research efforts that help develop-
ers understand object-oriented systems. But those approaches neglect the perspective
of the client, by focusing on the internal attributes of software entities, and obviating
analysis of the package context.

Efforts made in the last three decades to help developers understand object-oriented
systems can be organized in the following groups: measurements (there is a substantial
amount of work to derive module’s coupling, cohesion and complexity), visualization
(visualization techniques reveal structure of the system, providing knowledge that guide
developers through different analysis tasks), clustering and automatic function opti-
mizations methods (semi-automatic techniques exploit both developer’s knowledge, and
automatic techniques to group entities), offering new language constructs and design
principles (both used as facilities and guidelines for development respectively).

In the following sections we give a short account of these topics.

2.2.1 Measurements

There is a substantial body of work on deriving metrics to improve the structured design
of the system, in particular to measure cohesion, coupling and complexity [Fenton et
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al., 1994] [Zuse, 1990] [Briand et al., 1996] [Henderson-Sellers, 1996], [Briand et al.,
1998a].

Cohesion

In 1974, Stevens, Myers and Constantine introduced the concept of cohesion in the con-
text of structured design [Stevens et al., 1974], together with the notion that increasing
cohesion and minimizing coupling helps developers to cope with complexity. Since then,
many metrics have been defined to compute the cohesion of a module [Allen and Khosh-
goftaar, 2001][Bieman and Kang, 1995][Bieman and Kang, 1998][Bieman and L.M.Ott,
1994][Briand et al., 1998b][Chidamber and Kemerer, 1991][Chidamber and Kemerer,
1994][Emerson, 1984][Henderson-Sellers, 1996][Lakhotia, 1993][S. Patel, 1992].

In large systems, developers need to analyze packages [Fowler, 1997]. There exist
many cohesion measures for modules in structured programming and classes in object-
oriented systems which can eventually be extended to packages. However, there are few
cohesion measures devoted to packages as sets of classes [Morris, 1989] [Fenton and
Pfleeger, 1996] [Allen and Khoshgoftaar, 2001]. Emerson presents a measure to compute
cohesion applicable to modules in the sense of Pascal procedures [Emerson, 1984]. His
measure is based on a graph theoretic property that quantifies the relationship between
control flow paths and references to variables. Bieman and Ott compute cohesion using
a slice abstraction of a program based on data slices [Bieman and L.M.Ott, 1994]. Patel
et al. [S. Patel, 1992] compute the cohesion of Ada packages based on the similarity of
its members (programs). The idea is to measure cohesion based on the similarity of the
subprograms. It uses the keywords shared between the subprograms. They consider
only the specification of the package, not the keywords present in the body, which are
invisible from outside the package.

Bunge defined the notion of similarity between two objects as the intersection of the sets
of their properties [Bunge, 1974]. This definition is the basis of the first measurement
intended to capture the cohesion of a class know as lack of cohesion.

In object-oriented programming, Chidamber and Kemerer propose a measure for class
cohesion named LCOM [Chidamber and Kemerer, 1991] [Chidamber and Kemerer, 1994],
criticized and improved by Henderson-Sellers’s LCOM* [Henderson-Sellers, 1996]. Hau-
tus [Hautus, 2002] proposes a tool to analyze the structure of Java programs and a
metric to determine the quality of the package architecture. Allen et al. define in-
formation theory-based (as opposed to counting) coupling and cohesion measures for
subsystems [Allen and Khoshgoftaar, 2001]. Their measures are applied to modules,
which are represented as graphs. They define module and intramodule in terms of the
subgraph’s information and cohesion in terms of intramodule coupling. However this
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approach does not take into account classes, inheritance and their relationships.

Bieman and Ott [Bieman and L.M.Ott, 1994] measure functional cohesion; whereas Bie-
man and Kang’s TCC [Bieman and Kang, 1995] measures cohesion for classes. Their
measure assesses cohesion using the number of pairs of methods in a class that ac-
cess common instance variables. They provide an intramodule cohesion measure for
cohesion based on the design level information [Bieman and Kang, 1998].

Misic adopts a different perspective and measures the cohesion of a package as an
external property of a module [Mišić, 2001]. Following an approach closer to ours, he
claims that the internal organization of a module isn’t enough to determine its cohesion.
Morris follows this line by computing module cohesion considering the fan-in of the
contained objects [Morris, 1989].

Morris defined DCO (Degree of Cohesion of Objects), a measure that considers the
context of the subject object [Morris, 1989].

Definition 1 Degree of Cohesion of Objects (DCO), according to the author is:

DCO(P ) =
total fan-in for objects
total number of objects

This definition leaves unclear what objects are. Our interpretation of the measure is
based on packages and classes, and it is the following: the total number of client pack-
ages considering dependency types inherits and references for every class in the package
divided by the total number of classes in the package. Under this setup, DCO can take
values from 0 to greater than 1. Furthermore, this definition leaves unclear what fan-in
is. We interpret fan-in as the number of packages that are clients of the subject pack-
age. This is the fan-in interpretation used by JDepend [JDepend, 2005]. We will discuss
the measure fan in in the following section.

Fenton proposed an inter-modular measure of cohesion, Cohesion Ratio (CR) [Fenton
and Pfleeger, 1996]. Taking modules to be classes,

Definition 2 CR is the ratio between functionally cohesive classes and the total number
of classes.

CR(P ) =
number of classes having functional cohesion

total number of classes

To compute Cohesion Ratio we need to know first if a class is functionally cohesive.
There are several methods to know if a class is functionally cohesive, e.g., determining
it after inspection of the code. We chose to determine it using the measure Tight Class
Cohesion (TCC), defined as the relative number of directly connected methods, where
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two methods are directly connected if they access a common instance variable of the
class. The threshold to consider a class cohesive was 0.7. The values obtained with CR
range from 0 to 1.

As CR’s definition shows, CR (like other traditional measures) disregards the context
where the subject package operates. In other words, it neglects perspective of the clients
of the package. As a result from that it misses to detect packages whose role is given by
the context rather by connections between classes defined in them.

Regarding the definition of cohesion, we take our cue from Fenton and Pfleeger’s defi-
nition of cohesion [Fenton and Pfleeger, 1996] since individual elements can also con-
tribute to the “same task” even if they are only coincidentally associated. Fenton and
Pfleeger propose a definition of cohesion of a module that captures the essence being
general enough to be applied regardless of the concrete definition of the module. He
defines cohesion as the degree to which elements in a module belong together [Fenton
et al., 1994].

The different approaches may consider a module as a set of processing elements, a
class, or a cluster, depending on programming paradigm. They focus on the explicit
dependencies and interactions between the classes within the package under study.
A package, however, may be conceptually cohesive even though its classes exhibit no
explicit dependencies.

Summary:
We need techniques to capture that classes belong together
from the developers point of view. Information based on the
content of the package is not enough to capture cohesion.

Inter-Module Measures

Inter-module measures are traditional coupling measures for modules. Coupling be-
tween packages is necessary to delegate responsibilities [Berard, 1993], but it has the
disadvantage that changes in a package P with clients may ripple to those clients. Anal-
ysis of coupling reveals change propagation. For instance, when any package in the
system depends on P , P is a central to the application.

fan in refers to a measure counting the number of packages that are clients of a package
P , i.e., those that depend upon classes within P (see Section 3.3 (p.29)) [Henderson-
Sellers, 1996]. This measure is also known as afferent couplings [JDepend, 2005].

Definition 3 Fan in (fan in) as the number of packages client of the analysed package.

13
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fan in(P)=| clients(P ) |

Where a package Q is client of P if Q depends on P , which happens when there exists
at least a dependency from Q to P .

The definition of fan in leaves unspecified dependencies of which type (see Section 3.2
(p.26)) to take into account in order to consider a package a client of another. Our
interpretation of fan in acknowledges dependency types inherits (fan in inherits), or refer-
ences (fan in references). Once again, Section 3.2 (p.26) discuss these dependency types;
whereas Section 3.3 (p.29) gives a formal definition of clients (P).

If P does not depend on any package, changes produced on other packages do not affect
it: P is independent. Conversely, when P depends on many packages, it receives the
ripple effects from those packages. The measure fan out indicates P independence [JDe-
pend, 2005]. Henderson-Sellers applies fan out to classes and associates high values of
it with bad object-oriented design [Henderson-Sellers, 1996].

Definition 4 We define Fan out as the number of provider packages.

fan out(P)=| providers(P ) |

Definition 5 Instability is an indicator of the package resilience to change [JDepend,
2005]. It refers to the ratio of efferent coupling fan out to total coupling (fan out + fan in) .

I(P ) =
fan out(P )

fan out(P ) + fan in(P )

The range for this metric is 0 to 1, with 0 indicating a completely stable package and 1
indicating a completely instable package.

Conceptual Frameworks

As the number of measures for coupling and cohesion increased, it became clear the
need for conceptual frameworks to compare and categorize metrics related to cohesion
and coupling [Hitz and Montazeri, 1995; Briand et al., 1998b; Briand et al., 1998b;
Briand et al., 1999]. We have chosen two complementary conceptual frameworks to
analyze the behavior of cohesion measures. The first one is the well-known and criticized
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set of properties proposed by Weyuker [Weyuker, 1988], which defines nine properties
that good complexity measures should have [Fenton et al., 1994].

Is cohesion a complexity measure? According to Berard, semantic cohesion is an “
externally discernible concept that assesses whether the abstraction represented by the
module (here a class) can be considered as a whole semantically” [Berard, 1993].

A complexity measure describes how complex it is to understand a program [Henderson-
Sellers, 1996]. It could be argued that packages containing classes highly interrelated
are cohesive and therefore complex. Moreover, taking into account Fenton’s definition
of cohesion (which says that cohesion of a module is the degree to which its elements
belong together), packages highly cohesive reveal to the developer the concept behind
the group of classes forming that package. There is in any case a relationship between
cohesion and complexity, and we agree with Henderson-Sellers in that class cohesion is
a module measure for procedural complexity.

Weyuker [Weyuker, 1988] defined a set of nine properties as basis for evaluation of com-
plexity measures. The proposed set of properties applies originally to programs, but it
can be easily extended classes and packages in object-oriented programming. Several
authors refer to it to explain properties of their proposed measures [Chidamber and Ke-
merer, 1991]. Weyuker’s axiomatic approach does not prove that a measure is good or
bad. Zuse, for instance, has proven that some of these properties are mutually incom-
patible. Even measures that practice has proven to be useful under certain contexts
as, for instance, Mc Cabe’s cyclomatic complexity [McCabe, 1976], do not satisfy all the
properties. It represents, however, a set of guidelines to understand the behavior of a
complexity measure. A case in point is the first property: “A measure should not rank
every program equally complex.” Naturally, it is not useful at all to have a measure so
coarse as to not to reflect a different in the attribute measured. The fifth property, for
instance, “Adding code to a program cannot decrease its complexity.” helps the reader to
analyze the measure under similar scenarios. In that regard, it agrees with Zuse, who
propose to analyze complexity measures by observing their values before and after per-
forming atomic actions on the module where the measure is applied. For instance, it the
measure is applied to a graph with nodes and edges, an atomic action is to add an edge.
Under these circumstances, we agree with Henderson-Sellers in that Weyuker’s axioms,
in spite of being severely criticized, do provide a conceptual framework which can be
adapted and refined in an object-oriented framework [Henderson-Sellers, 1996].

The second conceptual framework, is the one proposed by Briand et al. [Briand et
al., 1996]. This conceptual framework is a generic framework based on mathematical
concepts, and in particular it offers a discussion of a cohesion measure.

The may cohesion conceptual frameworks shows the degree of difficultly in finding a
good universal criteria for evaluating cohesion measures. Part of such criteria depends
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on the technique to compute the measure. For instance, Chidamber and Kemerer’s
LCOM cohesion measure for class cohesion (based on methods accessing attributes) re-
quires a different technique than Mc Cabe’s complexity (based on graphs deduced from
the code) to be evaluated. Once again, Zuse proposes to evaluate complexity measures
by applying atomic actions to the object of study and prove that the measure values
correspond to an intuitive behavior [Zuse, 1990]. This is the approach, for instance,
used by Henderson-Sellers to prove that LCOM is not a good cohesion measure. Briand
claims the importance of a clear definition free of ambiguities. In other words, a reader
must be able to recompute it. For the sake of comparison, it is a desirable property for a
cohesion measure to be within a range, so that packages with maximum and minimum
cohesion can be clearly indentified. Cohesion measures must, as any other measure,
satisfy the representational theory of measurement [Fenton et al., 1994], which asserts
that “a measurement mapping M must map entities into numbers and empirical rela-
tions into numerical relations in such a way that the empirical relations preserve and are
preserved by the numerical relations”. In other words, if the attribute to measure is how-
hot-is-it, and if today is hotter than yesterday, a measure for how-hot-is-it must assign
a higher number to the evaluation of today than to the evaluation of yesterday. Further-
more, this must be done regularly and with any degree of refinement (if today it was a
bit hotter than yesterday, the numbers must also reflect it). Finally, Fenton claims that
“A measure must be viewed in the context in which it will be used. Validation must take
into account the measurement’s purpose; a measure may be valid for some uses, but not
for others”.

In summary, a good cohesion measure must be defined without ambiguities and must
satisfy the representation condition of measurement. This means that once submitted
to atomic actions, it must behave accordingly to what is intuitively expected, (for that
Weyuker’s axioms are good guidelines, though it must be noted that, as Zuse proved,
not all of Weyuker’s properties can be satisfied by the same complexity measure).

2.2.2 Visualization

Graphical representations have been used extensively as comprehension aids [Stasko
et al., 1998]. Software visualization reveals patterns in the entities visualized. Chuah
and Eick visualise with their infobug technique files in a glyph-oriented way [Chuah
and Eick, 1998]. Infobug is a visualization layout that contain many details. It tries to
support the understanding of files in a glyph oriented way. Glyphs are graphical objects
representing data through visual parameters. The authors use glyphs for viewing project
management data (such as evolution aspects, programming languages used, and errors
found in a software component). A piece of software is visualized as if it were an insect,
conveying an incredible huge amount of details representing attributes of the piece in a

16



2.2. EXISTING APPROACHES TO MANAGE LOCALITY

small space. This technique, so rich in details, is useful for describing a limited number
of pieces of software. Unfortunately, when the size of the groups of entities to analyze is
large (such as hundreds), this visualization is less useful for the image is cluttered with
many details.

Figure 2.1: Example of graphic view using infobug. Each insect-like glyphs shows one software
release.

Polymetric Views [Lanza and Ducasse, 2003] is a technique to visualize software en-
tities such as classes, methods, attributes and packages. It presents views of those
software entities in terms of graphs formed by rectangles and links connecting them.
This approach presents a serialized way to produce views. The developer associates
programatically a software entity to a form, and a connection between entities to links.
With this approach, developers have the possibility to map attributes of the entity rep-
resented by the rectangle (or other shape) to the size of the rectangle (or shape). For
example, if we let a rectangle represent a class, the height of the rectangle represents
the amount of methods defined in the class. The more methods defined in the class, the
taller the rectangle.

Pinzger et al. use a similar technique: a graph with its nodes having the shape of
compass-type plots. RelVis, presents compass-type plots (first used by [Sharble and Co-
hen, 1993]) and draws them into bigger graphs linked by lines representing the strength
of the connection [Pinzger et al., 2005]. However, no attempt is made to represent hier-
archical structure of the packages.

Recently, Langelier et al. proposed a technique [Langelier et al., 2005] for the three-
dimensional visualization of large systems. The visualization, based on the tree-map
and sunburst representations [Stasko and Zhang, 2000], provides a graphic view of the
relevance of packages. With this technique, packages are represented in a flat surface
with its size and location organized as dictated by a tree-map view. Classes defined in
packages are presented as three-dimensional boxes. This visualization of the system
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Figure 2.2: Polymetric View showing the inheritance tree of a set of classes. Rectangles represent
classes. The height of the boxes represents the number of methods in each class, the width
represents the number of attributes, and the color represents the lines of code.

resembles the aspect of a city observed from the sky, where the space between pack-
ages represents the streets and the classes represent the buildings. This visualization
characterizes packages by the classes defined in them (for instance, the number and
height of the buildings), but it does not describe package interaction. For instance, the
user can at a first glance discover packages containing classes with a large number of
methods, but not which packages contain the classes that are more inherited.

Regarding the exploitation of contextual information, Pintado provided a visualization of
the relationships between objects in its Affinity Browser [Pintado and Tsichritzis, 1988].
Figure 2.3 (p.18) shows the Affinity Browser revealing affinity between classes [Pintado,
1995]. It does not characterise packages.

Figure 2.3: Affinity Browser display showing a set of classes.
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Bischofberger, proposes Sotograph [Sotograph, 2003], a technique to understand the
structure of large systems. Its Sotograph tool navigates software systems at the level
of packages containing classes, and subsystems containing packages. Figure 2.4 (p.19)

shows two subsystems, each containing four packages, and each package containing
four classes. The figure shows also some relationships existing between classes, pack-
ages and subsystems.

Figure 2.4: Sotograph displaying two subsystems, eight packages, sixteen classes, and some
relationships between classes.

Summary:
To manage class locality, developers need visual aids; for
example, graphic views characterizing packages and sys-
tems. Graphic views must reveal the basic organization of
the system, and describe package interaction.

2.2.3 Semi-automatic Analysis Techniques

With large-scale software systems, the complexity increases, for the classes are of large
number, i.e., thousands. As such a big amount of classes would be unmanageable
without grouping them into packages. These structures form hierarchical organizations
that convey also information about the system. Visualizations of large-scale systems
must find a way to represent this hierarchical organization.

Langelier et al. claim that regarding the understanding and evaluation of software qual-
ity, automatic analysis techniques give only limited results applied to problems that are
complex and where the factors are poorly understood as is software evolution [Langelier
et al., 2005]. They propose as an alternative to combine automatic analysis techniques
with human expertise. For that they propose a framework to visualize large-scale soft-
ware systems. In this framework they represent classes as three dimensional boxes
that are included in two dimensional boxes representing the packages containing the
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classes. The distribution of classes in packages does not have special semantics. On
the contrary, the two dimensional boxes representing packages are organized to repre-
sent the hierarchical organization of the packages. To this regard they use two layout
techniques: Treemap [Johnson and Russo, 1991] and Sunburst [Stasko and Zhang,
2000].

Tzerpos and Holt present an hybrid process for recovering the architecture of the soft-
ware [Tzerpos and Holt, 1996]. In their approach, the authors cluster files into subsys-
tems and group also these subsystems to create a diagram of the architectural struc-
ture. The grouping of files needs a property to guide the clustering algorithm. The
property in this case was that the files belonged to the same group if they had the same
covering file. A file f1 covers another f2 if they are in the same subsystem and all the
calls from files outside the subsystem are calls to f1, which can be considered the entry
point of the subsystem. This property is based on the assumption that subsystems in
the particular case study of the presented work usually have a single point of entry. The
approach had a drawback, however, namely files that could not automatically placed in
a subsystem using the covering property. To solve this problem, the authors consulted
the developers and used their knowledge of the system (they call it live information) to
manipulate the diagram representing the system visualization.

Architecture Recovery and program Comprehension Architecture Recovery is a sub-
ject that can exploit any of the techniques in the aforementioned topics to understand
the big elements of the system and their interaction. This subject usually combines
several techniques to obtain a description of the elements conforming the architecture
of the system, and improve its understanding.

In the software clustering area, Anquetil proposes Modularization Quality (MQ). To-
gether with the tool Bunch [Mancoridis et al., 1999], MQ uses the dependencies between
modules of two distinct subsystems and the ones between the modules of the same sub-
system (in that differs from ours) to determine the cohesion of clusters and to reward
the creation of highly cohesive ones.

Schwanke’s information sharing heuristic [Schwanke, 1991] “If two procedures use sev-
eral of the same unit-names, they are likely to be sharing significant design information”,
used to compute a similarity metric between two procedures, is analogous to the pack-
age use heuristic that we use to compute loc. The innovation of our approach regarding
Schwanke’s similarity metric is that loc captures the extent to which the functionality
exposed by a package is related, while Schwanke uses the interconnections where a
package is client as well as the ones where it is provider.

Finally, Mancoridis uses clustering analysis to produce high-level system organizations
of code [Mancoridis and Mitchell, 1998].
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Visualization techniques complement clustering [Jain et al., 1999] to recover the archi-
tecture of the system. A substantial amount of work has exploited this combination
to understand the system [Schwanke, 1991] [Schwanke et al., 1989; Schwanke, 1991],
[Koschke, 2000], Clustering has proven to be useful to understand the code and to orga-
nize it at high-level [Mancoridis and Mitchell, 1998], [Mancoridis et al., 1999], [Tzerpos
and Holt, 2000], [Tzerpos and Holt, 1999]. However, to our best understanding, there
is no aid to comprehend forces pulling a class towards a package and forces pulling it
towards a different package resulting of the use of the class. This is challenging prob-
lem because packages offer different perspectives, and because maximizing locality in a
package must not result in destroying locality in the whole system.

Summary:
An approach to manage locality must automatically detect
organizational units that follow design flaws. But the con-
cept of locality can be applied to entities of many levels,
classes in packages being only one level of granularity. The
approach must, therefore, apply to different levels of granu-
larity (method, class, package, subsystem, and system.

2.2.4 Offering New Language Constructs

The problem of managing locality is dependant of characteristics of the programming
language such as the ability of the programming language to enforce private and public
types and to provide support for contracts. For example Ada allows the programmer
to define packages with interfaces where everything that is declared inside the package
and not in the interface is hidden from the outside. One way of facilitate management
of class locality is to modify the programming language by creating new constructs that
make package interfaces more flexible. Work has been done extending programming
languages by adding constructs that control the visibility of class extensions [Mezini
and Ostermann, 2002; Zenger, 2002].

Bergel introduced a simple calculus for modules and a set of operators expressing en-
capsulation policies, composition rules, and extensibility mechanisms [Bergel, 2005].
In that work, the author presents a formalism to express semantics of different module
systems which allows the author to make a taxonomy of different module systems. His
work provides the basis for expressing various packaging mechanisms using a com-
mon foundation. In the same work, the author analyses the problem of unanticipated
changes through class extensions. Class extensions are a way to incrementally modify
existing classes alternative to subclassing. As a solution to the class extensibility prob-
lem, the author provides a module system for object-oriented languages with method
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addition and replacement. He introduces “classboxes”: changes made by a classbox are
only visible inside the classbox or in classboxes that import it.

Adding constructs to the language increases complexity and make systems rigid.

2.3 Summary

Organizing classes in large object-oriented systems in such a way that developers can at
a later stage easily find classes, or class locality, is an old problem. A substantial body
of work has tried to solve it from different perspectives: measures, clustering, visual-
ization, semi-automatic architectural recovery and program comprehension techniques,
forward engineering (extending the set of constructs of the language), and design prin-
ciples. In this chapter we have established current limits of the state-of-art regarding
the problem of class locality. Our conclusion after analysis of state of art is that certain
issues are still open. We have identified a set of interesting open problems that we iden-
tify and address in this thesis. Below, we present these issues together with different
open requirements of class locality analysis:

Package characterization. A class is too small as a unit of understanding of large sys-
tems. Thus, there is a need to form groupings of classes, for example as packages,
to support understanding of a system at a coarse level, and to characterize pack-
ages and the role that they play in the system.

Recognition of package perspectives. When considering a package in isolation it may
be marked as non cohesive. However, if we consider the same package in the con-
text of how it is used by other parts of the system, it then may prove to be cohesive.
This circumstance indicates the need to observe and characterize packages from
different perspectives.

Improved detection of cohesion. When classes conceptually related are defined in the
same organizational unit, developers find them efficiently. Approaches capturing
locality must detect classes that belong together, even when there is no coupling
between them.

Combination of package properties. The approach should allow us to reason about
multiple properties of packages, and to combine them. For example, it should
support techniques to detect automatically key packages having a combination of
structural and non-structural properties. When reverse engineering large class-
based object-oriented systems, the amount of packages to analyze make it difficult
to spot packages that are key in the design of the system, or that are flawed.
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Global graphic view of the system. Before a reverse engineering effort, developers need
to know where to start. A graphic view, representing the big picture of the system,
reveals the organization of the system. Moreover, graphic views complement au-
tomatic analysis techniques to understand and evaluate software quality. In par-
ticular, where there are poorly understood factors in the system analysis, graphic
views reveal patterns in the interaction between packages, and patterns in the
organization of classes into packages.

Application to different levels of granularity. Developers need time to apply and mas-
ter a new technique before gaining understanding. Therefore, it is desirable to use
the same technique when analyzing locality at different granularity levels. An ap-
proach to manage locality should provide the basis to capture it at method level
(methods organized in classes), class level (classes organized in packages), and
package level (packages organized in subsystems).

In Chapter 3 (p.25) we present Contextual Information, our meta-model to manage local-
ity and to characterize packages. We validate out model by using it in various analysis,
which we present in Chapter 4 (p.39), Chapter 5 (p.61) and Chapter 6 (p.83).
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Chapter 3

Contextual Information:
Modeling What a Package Is

The previous chapter presented problem on managing the organization of classes into
packages. In this dissertation, we solve this problem by observing the way packages are
used. In contrast to traditional approaches based on structural properties, we observe
the interaction between packages, and use this information to manage the organization
of classes. This way of thinking will allow us to:

— Define a measure for locality.

— Implement a technique to find misplaced classes.

— Build visualizations depicting locality in every package of the system.

— Characterize package from a wider perspective.

— Characterize subsystems based on packages interactions.

This chapter presents the underlying model which is the basis for achieving the afore-
mentioned tasks.

3.1 Introduction

With existing class-based languages, the notions of class and package present some
controversy. On the one side, classes are the centre of class-based languages. They
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are descriptions of objects, for a class describes the structure of all the objects gener-
ated from it [Abadi and Cardelli, 1996]. On the other side, as the number of classes
increases, flat models present the disadvantages of non-structured systems. Packages
appear then as middle-level structures of organization [Fowler, 1997]. In the UML, a
package is “a general-purpose mechanism for organising elements into groups” [Booch et
al., 1998]. The concept of a package is useful in systems composed of many classes,
for packages group classes together for ease of use, maintenance and reusability [Qua-
trani, 1998]. By grouping classes into packages, developers can look at the higher
level of the model. Modularization at package level facilitates understanding by dividing
the application into chunks containing classes conceptually related that are easier to
manipulate. Moreover, organization into packages facilitates distributing developing to
several teams, and reuse of software pieces through imports. As a result, packages are
an important mechanism for dealing with scale.

Packages offer different perspectives to developers coming from different context. When
the system evolves, maintainers modify it according to particular perspectives (each
reflecting maintainer’s convenience from his or her perspective). As a consequence, the
organization of classes into packages degrades as the system evolves. Original packages
lose their goal of containing only conceptually related classes. The question is then how
to capture the essence and role of the package during maintenance of the system, when
additions and removals of classes deviated the package from its original design. We
manage program modularization by analyzing packages in their interaction with their
context. Our approach relies therefore on packages, classes and dependencies. In the
following sections, we define our solution based on these elements and the interpretation
of contextual information.

3.2 Grounds of the Model

Our source model consists of classes, packages, and dependencies. We characterize
packages from their structure and their interaction with the context. A package’s inter-
action is based on the dependencies between classes in the package and classes defined
in other packages, the Contextual Information of the package. Our model is simple. We
perform static analysis to reify interaction between objects to detect explicit dependen-
cies between classes. There exists a wide spectrum of dependencies between classes;
for our analysis, we focus on an essential subset:

1. Inheritance: a class is a subclass of another. A subclass inherits behaviour and
state froms its parent. (inherits dependencies).

2. State: a class may directly access state field inherited from its ancestors. (accesses
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dependencies).

3. Class Reference: a class makes an explicit (i.e., static) reference to another for
example by instantiating the class (references dependencies). We limit our scope to
consider static relationships and do not include run-time interactions.

4. Message sends: An object requests another object to carry out an operation by
sending a message to it (sends dependencies).

Dependencies are directed. Direction is crucial because it makes explicit which class is
a client and which one is a provider of services. This information constitutes the basis
to capture stability and impact of change of the connected classes.

Dependencies are non-transitive representing that one package insulates its clients
from the effect of changes performed in its providers.

Each dependency represent an interaction between two classes; whereas classes are
grouped into packages. But what is a package? D’Souza [D’Souza and Wills, 1999]
defines a package as “A named container for a unit of development work. All development
artifacts (including types, classes, compiled code, refinements, diagrams, documentation,
change requests, code patches, architectural rules and patterns, tests, and other pack-
ages) are in some package. A package is treated as a unit for versioning, configuration
management, reuse, dependency tracking, and other purposes. It also provides a scope
for unique names of its elements.”. The variety of elements included and the policies ap-
plied to them according to the programming language and environment originate many
notions of a package. The definitions vary according to characteristics given to packages
such as the mechanism of visibility that they contain, or allowance for class extensions.
We abstract from those language-specific characteristics and focus on kernel character-
istics that are relevant for the logical view of the model.

Bergel [Bergel, 2005] introduced a calculus for modules. In the formalism presented by
the author, a module is an abstraction over environments; environments being a set of
mappings. A module is represented as a function that takes an environment and returns
an environment. In that work, modules have different properties such as extensibility
and merging. Modules also contain class definitions. The author’s simple calculus
can be utilized to express semantics of different module systems. In particular it can
express semantics for module systems for class-based object-oriented programming. In
the model that we propose packages are modules as defined by Bergel. Taking therefore
packages as container of class definitions, we define a package as follows:

Definition 1 A package is a collection of class definitions.

An important characteristic of packages is that a package can import another package
and extend it. Classes defined in the importing package know, and may therefore send
messages to, or depend on classes defined in the imported package. This interaction
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between classes defined in different packages is represented in our model by dependen-
cies that go beyond package boundaries, determining dependencies between packages.
A package therefore exposes any class defined in it. In terms of Bergel’s module system,
in our model there is no package encapsulation. Figure 3.1 (p.28) depicts this situa-
tion.

P1
C1 C2

P3

C5 C7

P2
C3

C4

C8C6

ref
ref

ref
Ref

inh inh

inh

inh

inh

ref

P4
C9

inh+state
C10

inh
+state

inh

ref
C11

inh

ref

Figure 3.1: Example of 4 packages, 10 classes, and different types of dependencies.

As with classes, the dependency direction between packages determines client-provider
relationships. A class defined in package P with at least one class being client of any
class defined in package Q, makes P a client of Q. It is the same in the opposite
direction: a class defined in package P with at least one class being provider of any
class defined in package Q, makes P a provider of Q. We say that P consumes or
provides services respectively.

Packages usually contain other packages making it possible to decompose models hier-
archically. Hierarchical organisation reveals important insights about the system such
as which parts of the system impact the most if they change, or the system’s overall
structure. As a consequence, our model supports packages containing packages.

Definition 2 A subsystem is a collection of packages.

Once we have established definitions of packages and subsystems, we introduce our
discussion of package context. The term context has a wide range of tacit understand-
ing according to the field where it is applied. For instance, a well known definition of
context was proposed by Dey and Abowd [Dey and Abowd, ]. They define context as “any
information that can be used to characterise the situation of an entity”. In other words,
if something can be used to characterise a given entity, then that something is context.
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Figure 3.2: Relationship between the System, Package and Package Context.

This definition is useful in the field of context-aware applications, where it comes from,
but not for our approach. The problem is that it relies on the ability of something to
characterise an entity, but in our approach we do not know a priori if the context will
characterise them. However, Schilit et al. claim that the important aspects of context
are where you are, who you are with, and what resources are nearby [Schilit et al., 1994]
. This is closer to our definition:

Definition 3 Package context of a package P is the collection of its clients and providers,
together with the collection of dependencies between classes defined in P and clients or
providers of P .

Figure 3.2 (p.29) shows the core of our meta-model displaying entities System, Pack-
age, and Package Context. These entities represent the subject package’s Contextual
Information displayed above.

3.3 The Model

Our source model consists of classes, packages, and dependencies. To express the cohe-
sion measures unambiguously we provide the following set-theoretic formalism.

An object-oriented system consists of a set of classes, C, where A, B, C range over
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classes.
A,B,C ∈ C

Let P be some partitioning of C, where P,Q,R range over partitions, or packages.

P,Q,R ∈ P

There are dependencies between classes. Each dependency is of kind inherits, accesses,
references, or sends.

inherits, accesses, references, sends ⊆ C × C

Each dependency determines a client and provider

depends ⊆ C × C

depends = inherits ∪ accesses ∪ references ∪ sends

The clients of a class are the classes that depend on it:

clients(C) = {A ∈ C | A depends C}

The providers of a class are the classes on which it depends:

providers(C) = {A ∈ C | C depends A}

There are package dependencies. A package P may contain classes that have clients in
other packages. These classes constitute the interface of P .

interface(P ) = {C ∈ P | clients(C)− P 6= ∅}

The classes of P that do not belong to the interface of P are internals.

internals(P ) = P − interface(P )

A package P may have clients, packages whose classes depend on classes of P .

clients(P ) = {Q ∈ P | ∃B ∈ Q,∃C ∈ interface(P ), B ∈ clients(C)}
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Figure 3.3: Relationship between the System, Package and Contextual Information.

3.4 Package Context as First-Class Entity

We model Package Context as a first-class entity of our model. Package Context reveals
properties of the package and of the system that would remain obscure if only the
internal elements of the package were considered. A package P can be isolated (i.e.,
not referenced at all, P depending on no package itself) if observed in the context of
system X and be a highly referenced piece of system Y when observed under another
context. Besides exposing complexity of interaction between P and other packages,
analysing Package Context as a separated phenomenon reveals P ’s behaviour and role
in the system. In particular, it reveals views of P depending on the perspective in
which P is observed. A package considered non-cohesive in isolation may prove to be
cohesive when used by clients. A package can be observed from different perspectives.
A package together with a perspective define a role that the package play. All the roles
that a package plays together with its internal structure characterize the package. This
information reveals package’s properties, such as conceptual bounds between classes
defined in it. All in all, it characterizes part or the whole system.

Figure 3.3 (p.31) shows the relationships between Contextual Information, package and
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different views of a package P . We observe several packages interacting. Those packages
are grouped in contexts representing views. Consider three teams working in the same
big system. Context X represents the are of interest of the user-interface team, Context
Y that of the finance team, and Context Z that of the database team. Every team is
concerned with package P , but under different perspectives. P internal attributes, such
as the number of classes defined in P , are a small part of P ’s characterization. However,
the context in which P operates reveals its importance. For instance, P being heavily
accessed in context Y describes it as a critical package. However, observed in context Z

and having no clients in Z, we would be inclined to mark it as non-important. We con-
clude that P and its context have properties (namely, the interaction package-context)
and therefore can be treated as a first class entity. Enriching package characterization
with Contextual Information , allow us to determine a package’s cohesion, to find mis-
placed classes, to capture package’s characteristics such as stability, and to determine
characteristics of parts of systems such as impact of changes.

3.4.1 Determining Contextual Cohesion

Complex systems are decomposed into cohesive packages with the goal of limiting the
scope of changes: if our packages are cohesive, we hope that changes will be limited to
the packages responsible for the features we are changing, or at worst the packages that
are immediate clients of those features. But how should we measure cohesion? Tra-
ditional cohesion metrics focus on the explicit dependencies and interactions between
the classes within the package under study. A package, however, may be conceptually
cohesive even though its classes exhibit no explicit dependencies.

Figure 3.4 (p.33) shows the two packages whose classes are apparently unrelated. Ob-
servers of P1 and P2 would mark both packages as not cohesive. However, considering
Contextual Information we see that classes of P1 have different clients, whereas classes
in P2 have the same clients, which could be an indicator of some cohesion in P2. In
contrast to P1 and P2, classes in P3 are highly bound.

We propose a contextual measure that assesses the cohesion of a package based on the
degree to which its classes are used together by common clients. The measure is com-
puted considering any of the following dependency types: inherits, accesses, references,
and sends.

We apply these metrics to various case studies, and contrast the degree of cohesion
detected with that of traditional cohesion metrics. In particular, we note that object-
oriented frameworks may appear not to be cohesive with traditional metrics, whereas
our contextual metrics expose the implicit cohesion that results from the framework’s
clients.
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Figure 3.4: Computing cohesion from Contextual Information.

3.4.2 Finding Misplaced Classes

Part of the problem of organizing class definitions in packages through the system’s
evolution is to capture the degree to which a class belongs to a package. As a con-
sequence, classes can be misplaced, leading to duplicated code and ripple effects with
minor changes affecting multiple packages.

We claim that contextual information is the key to re-architecture a system. Exploiting
contextual information, we propose a technique to detect misplaced classes by analyz-
ing how client packages access the classes of a given provider package. We use the
contextual measure mentioned in the previous section to guide a simulated annealing
algorithm to obtain optimal placements of classes in packages. The criterion is that
classes reused by common clients must be defined in the same package. The result is
the identification of classes that are candidates for relocation.

Figure 3.5 (p.34) shows an example of two resulting patterns detected with this tech-
nique. Representing packages as a rectangle, Figure 3.5 (p.34) depicts two packages,
S and T with 18 and 7 classes defined in them (the smaller rectangles). Classes are
colored as the package to which they are pulled through coupling dependencies. In
other words, the small clear rectangle in S tells us that by moving a class from S to
T we improve locality in both packages. However, not every class with clients in other
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packages must be re-located, and to reflect that issue Figure 3.5 (p.34) show the degree
of happiness of each class. In the figure, rectangles representing classes have different
height. Class-representing rectangle height describes the degree of coupling between
the subject class and other classes in the subject package. In particular, the height of it
indicates the amount of clients that the class has in the package where it is defined. For
example, in Figure 3.5 (p.34) S shows a class candidate to be moved to T with no clients
in S; whereas T presents two classes candidate to be moved to S, but that have clients
in T . The larger the rectangle is, the more clients a class has in the package where it is
defined, which we refer to as the “happiness” of a class.

Misplaced, but happy to 
be defined in T 

(they have clients 
among the other classes 

in T)
Misplaced unhappy 

class (without clients in 
S, but with clients in T)

Package Context

clients in the same package
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package
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inherits and references from 
classes in package.
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*

reference packages
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1package

0..1class
Class Context

1package

0..1class
1..*1

subject 
class

# inherits and references 
dependencies from
 other classes in the 

package
color: package 

candidate 
to contain this class 

when class is re-located

Figure 3.5: Finding misplaced classes with Contextual Information.

We have mentioned the notion of moving a class from a package to another. Our meta-
model allows us to measure an application, move a class definition to a different pack-
age, and recalculate locality after the relocation without performing any modification to
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the actual code. With this technique we can analyse the modularization that the system
would have if specific class relocations were applied to it. We need an entity to represent
the system representation with its moves. We map this entity to our system entity. After
each re-location Package Context and Class Context are updated accordingly.

3.4.3 Capturing the Role of Packages in Systems

As discussed in Section 2.2.1 (p.13) inter-module measures quantify the interaction be-
tween modules. The benefit of those measures is that they give an idea of how complex
that interaction is. The shortcoming of inter-module measures is that they reveal if a
package is highly coupled, but they overlook the essence of a package. Intra-module
measures, on the other hand, may indicate a package’s complexity, but once again they
disregard the different perspectives of observing a package. It is still difficult to quickly
grasp the structure of a package, and to understand how a package interacts with the
rest of the system. In particular, we seek the answer to the following questions:

— What is the importance of a package in terms of its intrinsic properties such as the
number of classes it contains and its efferent and afferent relationships? How many
clients rely on it?

— Does the package use several other packages or is it more self-contained?

— What is the impact of changes in the relationships between packages?

— Can we identify patterns or repeating package characteristics?

— How is a package structured: does it only extend other packages via inheritance, or
does it define itself some complex hierarchies? When classes are subclassing other
classes what are exactly the relationships that link them (state, behavior)?

We suggest a visualization technique based on direct measures derived from Contextual
Information that help us to answer the questions above. Figure 3.6 (p.36) shows the
relationship between direct contextual measures and package characterization through
butterfly visualization. The measures example values refer to the situation depicted in
Figure 3.1 (p.28). Section 5 (p.61) explains our approach and how its application reveals
insights about packages and systems.

Butterfly blueprints take into account the context in which the package is inserted, and
characterize a package on the basis of its context’s features.

Contextual Information reveal the application’s composition by identifying packages ca-
pable of producing much impact in the system, packages that are stable and unstable,
and patterns in package interaction.

35



CHAPTER 3. CONTEXTUAL INFORMATION: MODELING WHAT A PACKAGE IS

Package Context

Dependencies from and to 
subject package

System
1..*1

subject 
package

1..*

 Classes, and dependencies 
between P's classes

Package

Context 

Butterfly of P 

*

reference packages

name

# classes

accesses

references

its state 
is accessed

inherits

is referenced
is 

inherited

classes 7.8 17

accesses 2.5 15

references 21.1 158

inherits 17.1 5

is inherited 120 484

is referenced 32 270

its state is accessed 2.9 28

max for 
any axis of 

the type

measure 
value

axis 
represents

Figure 3.6: Characterizing Packages through direct measures derived from Contextual Informa-
tion.

3.5 Summary

Observing the context in which a package P operates exposes P ’s characteristics that
remain hidden taking P ’s internal attributes into account. For instance, a package
with low cohesion considered in isolation might prove to be cohesive when used by
clients. If the context change, so does the interaction of P with the context and P ’s
characterization.

Thinking about packages together with their context puts them under a new light. An-
swers to questions such as where do I put this class? (locality) depend not only on the
internals of P , but also on the P ’s clients. In particular, thinking in terms of Contextual
Information will allow us to create measures that can be used to characterise cohesion
in packages (Section 4 (p.39)), detect package that are core to the application (Section 4
(p.39)), visualize systems by capturing package interaction (Section 5 (p.61)), and detect
misplaced classes (Section 6 (p.83)).

In this chapter we have presented the underlying model which is the basis for achieving
the aforementioned tasks. We have already presented applications of the exploitation of
Contextual Information in reverse engineering; whereas the next chapters discuss those
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applications in detail.
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Chapter 4

Understanding Packages from
the Outside

In the previous chapter, we claimed that by adding Contextual Information, cohesion
and coupling measurements reveal situations that traditional measurements cannot
detect. In this chapter we define a new measure that overcomes these shortcomings.
By acknowledging the way a package is used, the new measure detects cohesion even
when there exist few or no explicit dependencies among classes inside the package and
therefore, it reveals cohesion where traditional measurements fail to detect it. We show
a case in point where framework packages designed to be hooked by client applica-
tions are marked as not-cohesive by traditional measurements, whereas measurements
exploiting Contextual Information capture the cohesiveness of their classes.

As systems grow, maintainers need automatic identification of packages such as those
being central to the application and complex. Current approaches for automatic detec-
tion take into account either coupling or only internal attributes of the package. Based
on our approach of exploiting Contextual Information, this chapter presents novel de-
tection strategies for packages. The novel detection strategies detect packages with the
aforementioned characteristics. We apply our approach to a large case study and show
detected packages exposing design issues.

The following sections present system properties revealed through exploitation of Con-
textual Information. We show Contextual Information revealing package’s cohesion, de-
tecting automatically packages with specific design characteristics and revealing a mod-
ule’s different perspectives according to the use that different clients make of it.
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4.1 Contextual Package Cohesion (cpc)

Complex systems are decomposed into cohesive packages with the goal of limiting the
scope of changes: if our packages are cohesive, we hope that changes will be limited to
few packages, and conceptually related ones. Ideally, packages perform only one kind
of task, and all their classes are related to the accomplishment of this task.

To achieve this, developers need guidelines for evaluating the relationship among the
classes in the package. One of the most useful guidelines for evaluating this relation-
ship in development and maintenance is cohesion, described by Fenton and Pfleeger
[Fenton and Pfleeger, 1996] as “the extent to which its individual components are needed
to perform the same task.”

But how to measure cohesion? Traditional cohesion metrics focus on the interactions
between the classes within the package under study. A package, however, may be con-
ceptually cohesive even though its classes exhibit no explicit dependencies. Cohesion
does not have to be represented in explicit relations between the classes of the pack-
age, an often-used basis for cohesion measurements [Berard, 1993]. Cohesion may be
represented in the “purpose” of the package [Mišić, 2001]. Our approach represents the
way a package is used based on dependencies between classes.

Given a set D of explicit dependencies between classes defined in packages, cpc counts
how many classes in the package are used by the same client. In Figure 4.1 (p.41) (a) all
the classes are accessed by classes in the two client packages. But in Figure 4.1 (p.41)

(b) class H seems not to belong to the package P1.

We define cohesion as a property of a package measuring the degree to which its inter-
face classes are used together. Exploiting information regarding the interaction between
a package and the rest of the system, we work under the heuristic that two classes
provide related functionality if they have clients in common. If classes defined in the
same package have the same clients, then they are used together, and make the pack-
age cohesive. This is related to Bunge’s notion of similarity between two objects [Bunge,
1974]. Bunge’s made reference to real objects in the concrete world. The notion is not
circumscribed to programming languages. As we mentioned in Section 2 (p.7), this idea
formed the basis of Chidamber and Kemerer’s LCOM measure for class cohesion [Chi-
damber and Kemerer, 1991; Henderson-Sellers, 1996]. We define Contextual Package
Cohesion of a package as follows:

Definition 6 Contextual Package Cohesion (cpc) of a package is the sum of pairs of
classes from the interface of a package having a common client package (f), divided by the
number of pairs that can be formed with all classes in the interface.
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Figure 4.1: Deriving package’s cohesion from the context.

cpc =
∑

a,b∈I

f(a, b)
#Pairs

Where
I = interface(P )
#Pairs = |I|×(|I|−1)

2

C = clients(a) ∩ clients(b)

f(a, b) =
{

1, if C 6= ∅
0, otherwise

4.1.1 Discussion of cpc

To investigate cpc, we discuss its behavior regarding properties of two well know con-
ceptual frameworks, Weyuker’s and Briand’s, which were already discussed in Sec-
tion 2.2.1 (p.14). It is interesting to analyze cpc under the axioms presented by those
frameworks because that analysis explains the behavior of cpc and reflects its limita-
tions under determined conditions. In particular, we observe the lack of the expres-
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siveness of cpc when the subject package has no client, or when systems are poorly
structured.

The proposed set of Weyuker’s axioms applies originally to programs and complexity
measures. We have discussed in Section 2.2.1 (p.14) the application of Weyuker’s axioms
to object-oriented programming and concluded that analysis of a measure under those
axioms was useful also for measures designed for object-oriented programming. We also
explained that cohesion was a complexity measure. It remains to be shown that cpc
is a complexity measure. In the definition of cpc above, we observe that cpc indicates
complexity of interaction between a package P and its context. High values of cpc
reveal that classes in P have the same clients. We believe that such uniformity in the
use of classes facilitates understanding of the program. As observed in Section 2.2.1
(p.14), the property required for complexity measures was to describe how complex it is
to understand a program. cpc satisfy that property and therefore cpc is a complexity
measure, which is why it makes sense to analyze cpc using Weyuker’s axioms.

The following sections discuss cpc in terms of the aforementioned conceptual frame-
works.

Behavior of cpc under Weyuker’s Properties for Complexity Measures

As we noted in Section 2.2.1 (p.14), it is interesting to observe how a measure satisfies (or
not) Weyuker’s set of properties because it reveals the measure’s behavior. To analyze
cpc we apply Weyuker’s properties to packages and their context. Let us observe how
cpc behaves with respect to these properties.

Property 1 “A measure should not rank every program equally complex.” cpc satisfies
this property. Figure 4.1 (p.41) shows two packages with different values of cpc. In this
case cpc(P1)=0.66, and cpc(P2)=1.

Property 2 “Let c be a non-negative number, then there are only finitely many programs
of complexity c.” In the case of cpc, two packages with different load of accesses can
have the same cpc value. We learn that cpc does not does not distinguish between
very little used and heavily used packages, provided that the accesses to classes from
client packages is proportional, and therefore it does not satisfy this property.

Property 3 “There are distinct programs P and Q having the same complexity measure
value.” Figure 4.2 (p.44) shows an example of distinct packages P and Q, where cpc(P)=1
and cpc(Q)=1/3. Therefore cpc satisfies this property.
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Property 4 “Even though two programs compute the same function, it is the details of
the implementation that determine the program’s complexity.” Our approach to capture
cohesion abstracts implementation details that do not belong to a package’s interface.
From this point of view, implementation details do not determine complexity, and there-
fore cpc does not satisfy this property.

Regarded complexity as we do, determined by the classes in the interface of a package P

and P ’s context, two packages computing the same function may have different values
of cpc. And therefore cpc does not satisfy this property.

Indeed, two versions of the same library accessed by similar clients may offer opposite
extremes in complexity. Consider the case of a framework with two versions F and G.
Framework version F has a dedicated package as interface to the client. F computes
the same function as G, but exposes its responsibilities in a single package (F ). Version
G does not have such interface package. Its clients must extend and interact with many
packages of G, lacking of a single point concentrating interaction with the framework.
Packages in this client are forced to extract little pieces of functionality here and there.
How is then the complexity of F+F ’s context compared to that of G+G’s context? Maybe
F requires more coupling between its classes, but maintenance effort and understand-
ability of F+ F ’s context is likely to be lower than those of G+G’s context for developers
of the clients. Regarding developers of F , each time they perform a change they have
one point to check for no rippling effects; whereas those of G must remember several
points that could be affected (those that clients consume). All in all, when we consider
a package in its context, the way it is accessed determines its complexity.

Property 5 “Adding code to a program cannot decrease its complexity.” This property
and the next one are mutually incompatible. In object-oriented programming developers
usually complain that they do not understand the code because they see too little of it. A
complexity measure based on size would satisfy this property, but a complexity measure
based on comprehensibility would not [Fenton and Pfleeger, 1996]. The final goal of cpc
is to capture cohesion as developers see it in their programs. Comprehensibility is a
pillar of cpc, and therefore cpc (as well as Mc Cabe’s cyclomatic complexity) does not
satisfy this property. Figure 4.2 (p.44) a) depicts an example where cpc does not satisfy
this property.

Property 6 “There can be two program bodies of equal complexity which, when sep-
arately concatenated to a same third program yield (two larger) programs of different
complexity.” Figure 4.2 (p.44) b) shows by example that cpc satisfies this property. Con-
trasting with property five, which has to do with size, this property is based primarily
on comprehensibility, and therefore it is a desirable property for cpc to satisfy.
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Property 7 “There are program bodies P and Q such that Q is formed by permuting
the order of the statements of P and measured values of P and Q are different.” This
property is an example of non-applicability to measures for class-based object-oriented
programs. Property seven does not apply to the context of classes and packages in
which cpc is defined because in object-oriented programming there is no notion of
class ordering, and therefore the condition of “permuting the order of the statements”
cannot be satisfied.

Property 8 “ If P is a renaming of Q, then P and Q have the same complexity.” Clearly,
this property is desirable. cpc, being symmetric (every package has the same complexity
that itself, provided it is evaluated in the same context), satisfies this property.

Property 9 “There exists programs P and Q such that the sum of their complexities
is lower than evaluating the complexity of the result of merging P and Q.” Figure 4.2
(p.44) b) shows an example of such programs P and Q. Therefore, cpc satisfies this
property.

Behavior of cpc under Briand’s et al. framework

cpc does not satisfy some cohesion properties specified by Briand et al. [Briand et al.,
1996]. One of those properties is monotonicity, which states that adding intramodule
relationships does not decrease cohesion. The other is the cohesive modules property,
which states that cohesion of a module obtained by putting together two unrelated
modules is not greater than the maximum cohesion of the two original modules.

Therefore, according to this framework, cpc is not a cohesion measure. However, the
reason behind cpc not satisfying the properties mentioned above is that those prop-
erties are for cohesion measures based on explicit interconnections between entities in
the module. We believe that the case is the same as with Weyuker’s axioms, where co-
hesion is observed only from explicit relationships between elements of the model. The
assumption that a cohesion measure has only to do with explicit dependencies is un-
founded and, derived from traditional approaches for cohesion, it neglects the potential
connection existing between two elements observed from outside the module.

cpc takes a novel, different view, namely that of detecting reasons for two classes being
together further than the existence of explicit interaction between them. Once again,
in essence the problem of cpc not satisfying the properties of monotonicity and co-
hesive modules is analogous as that of cpc not satisfying Weyuker’s properties 4 and
5, namely, that cpc measures classes that are used together. Under this approach, a
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Figure 4.3: Example of limitation of Contextual Package Cohesion (cpc).

client using two classes establishes an implicit link between them: it makes them a pair,
regardless of explicit connections between the classes. If cpc is high, there are many
pairs of classes having the same clients in the interface of the subject package. We
conclude that the aforementioned properties are only useful for discussing cpc.

To give useful values for cohesion, cpc has the limitation of requiring a certain system
modularization. Relying on clients of a package P to compute P ’s cohesion, computing
cpc in systems lacking modularization produce useless results. Indeed, as Figure 4.3
(p.46) shows, the presence of a package Q that is client of every class in the system makes
cohesive all the packages (with the exception of the Q). One solution to this issue is to
filter out such packages as Q before computing cpc.

In Section 2.2.1 (p.14) we discussed the criteria for evaluating cohesion measures. Com-
ing back to Chapter 2 (p.7) we observe that cpc has a clear definition, and, after having
analyzed cpc under Weyuker’s and Briand’s framework, we observe that once submit-
ted to atomic actions, cpc behaves accordingly to what we would expect. We conclude
that under certain restrictions, cpc reveals cohesion where traditional measures do not.
Moreover, together with other measures, cpc exposes information that can be useful to
perform analysis tasks such as maintenance. For instance, cpc combined to traditional
coupling measures reveals packages reflecting design issues (such as packages complex
packages that are key to the system and difficult to reuse. In the next step, we will com-
pare the behavior of cpc with that of traditional cohesion measures, i.e., those centred
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on internal relationships in a module.

4.1.2 cpc Compared to Traditional Cohesion Measures

As mentioned in the previous section, one advantage of including context to measure
cohesion is that it reveals implicit dependencies, namely those derived of being used
by the same client. Traditional measures acknowledge only explicit dependencies. By
adding information about how the package is used, we make its cohesion relative to
the other packages. This reveals implicit dependencies between classes in a package
(in particular, in the package’s interface) which cannot be detected by observing only
classes inside the package and their dependencies.

Taking the point of view of how classes in a package are used, package-context interac-
tion determines the degree of difficulty in analysing, maintaining, testing, and modifying
software. With values obtained after measuring packages and their context with cpc,
we make statements like “ classes in package P are used together by clients”. The more
classes in P have clients in common, the more cohesive P is. Packages should not
have some classes accessed by some clients and a disjoint set of classes used by other
clients. When this happens, P loses part of the concept that bound its classes together
to the eyes of developers. Moreover, it results in an inadvertent coupling between client
packages.

We compare cpc with traditional cohesion measures CR and DCO (discussed in Chap-
ter 2 (p.7)) showing through examples found in actual applications where cpc improves
(or not) over traditional measures to analyze maintenance, design, extensibility, and
modifiability.

Cohesion Ratio (CR) A package marked as non-cohesive by the measure Cohesion
Ratio (CR) may prove to be cohesive when used by its clients. We have found ex-
amples showing this in real applications. In particular, we refer to CODECRAWLER, a
small application based on two frameworks. Appendix B (p.105) provides further de-
scription of CODECRAWLER. In Figure 4.4 (p.48) we see two packages of CODECRAWLER,
CCHotDraw and CCMoose, dedicated to connect CODECRAWLER with frameworks Hot-
Draw and Moose. CCHotDraw and CCMoose might have classes with few dependencies
between them. They are, however, cohesive. The binding between its classes being
their connection with the framework. As we concentrated our attention on the cohesion
of the packages, we observed that CCMoose seemed to be not cohesive when its cohe-
sion was evaluated using CR (due to the relative lack of dependencies among classes in
CCMoose). However, CCMoose revealed itself to be cohesive when evaluated using cpc.
The other package, CCHotDraw, had high values of cohesion when evaluated using all
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Figure 4.4: Example of client application with packages dedicated to interact with its frameworks.

the measures except cpc. This means that CCHotDraw is cohesive when evaluated in
isolation, but its classes are accessed by different clients and there are few classes ac-
cessed by the same client. This is because the reason behind the existence of CCHotDraw
is to “abstract the framework” to the rest of CODECRAWLER, as analysis of the code re-
vealed.

To understand CR compared to cpc, let as consider the ratio of internal dependencies
in a package. We define it as the number of dependencies between classes defined in a
package P divided by the maximum possible number of dependencies between classes
defined in P .

IDR(P ) =
| {depends | A ∈ P,B ∈ P,A depends B} |

|classes|(|classes|−1)
2

Where |classes|(|classes|−1)
2 is maximum of number of dependencies among classes defined

in P (each class depending on all the rest). The resulting values are positive and may
be greater that one if the dependency type analyzed allows more than one dependency
between classes. This is the case of references, where, for instance, methods in a client
class can reference a provider class many times. The values range from 0 to 1 if inherits
dependencies are considered, when there is a maximum of one possible dependency
between two classes.
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This set up is analogous to that of CR in the sense that it uses explicit dependencies
between classes in a package to compute its cohesion, disregarding contextual informa-
tion. We have found in CODECRAWLER three packages with low values of IDR based on
references. Two of these packages obtained high values of cohesion when we computed
it with cpc based on references dependencies.

Degree of Cohesion of Objects (DCO) Studies performed on CODECRAWLER showed
two examples where DCO gave low values and cpc based on inherits and cpc based
on references signaled cohesion (e.g., considering inheritance cpc(CCBase)=0.83, and
considering explicit referencing cpcCCBase0.66) but DCO considered them the third,
and the fourth packages less cohesive of CODECRAWLER respectively.

We conclude that under certain conditions (such as packages with clients, and absence
of packages accessing systematically most of the classes defined in the system), cpc
indicates cohesion when traditional metrics indicate lack of cohesion.

4.2 Detection Strategies Enriched with Contextual In-
formation

Measures are useful to detect design problems. Detection strategies, based on concrete
data (e.g., measures), allow us to reason at a more abstract level. A detection strategy is
defined by its author as the quantifiable expression of a rule, by which design fragments
that are conformant to that rule can be detected in the source code [Marinescu, 2002;
Marinescu, 2004].

Detection strategies are expressions that combine several traditional measures to detect
design problems [Raţiu et al., 2004]. The result of applying a detection strategy to a
system is a set of packages conforming to the package characteristics specified in the
detection strategy. In this way, detection strategies make possible to quantify design
imprints in the system.

Previous approaches derived detection strategies to detect, among others, god classes
[Raţiu, 2003] and classes following a particular evolution pattern such as stable god
classes [Gı̂rba, 2005]. Our contribution is to define detection strategies that include
contextual information. In the following, we show novel detection strategies detecting
packages having key design imprints such as packages that are complex, core of the
system and not cohesive.

Consider the following inter-module measures (presented in Chapter 2 (p.7)) describing
package’s coupling:
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— fan in using inherits

— fan in using references

— fan out using inherits

— fan out using references

Close observation reveals that these measures depend on the context where a pack-
age operates. More precisely, on the view that a package offers based on the context
where it operates. In the following sections we use them together with cpc to build de-
tection strategies aiming to detect complex, reused, and non-cohesive packages in the
system.

Complex Package Detection Strategy

Complex Package refers to a package whose classes are highly interrelated or complex
themselves. A Complex Package carries on a difficult-to-decompose chunk of system
intelligence. They are the packages containing classes of high complexity, and highly
related by structural or non-structural dependencies.

To detect a Complex Package we look for packages whose classes have a certain com-
plexity, or are highly coupled to other classes in the package. The Complex Package
detection strategy is a rule (see Equation 4.1 (p.50)) capturing this description and based
on the following measures:

— Internal Dependencies Ratio (IDR) using only inherits dependency type (Chapter 3
(p.25), Section 4.1.2 (p.48))

— Internal Dependencies Ratio (IDR) using only references dependency type (Chapter 3
(p.25), Section 4.1.2 (p.48))

— CR (Cohesion Ratio) (Chapter 2 (p.7), Section 2 (p.12))

ComplexPackage(S) = S′

∣∣∣∣∣∣∣∣
S′ ⊆ S,

∀P ∈ S′

(IDRinherits > value1) ∧ (IDRreferences > value2)∨
(CohesionRatio > value3))

(4.1)

Where value1, value2 and value3 depend on the measure values in each specific sys-
tem.

Independently of the number of classes defined in a package, the interrelation between
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its classes as well as their complexity compromises modularization of this specific piece
of software. For this reason a Complex Package is difficult to maintain.

Complexity and Size In the definition of the rule to detect Complex Packages of Equa-
tion 4.1 (p.50) we have decided to not include package size as an element to filter pack-
ages. Authors have already questioned the measure of size to describe complexity [Zuse,
1990; Henderson-Sellers, 1996]. The idea behind our decision is that a package contain-
ing many classes is not necessarily more difficult to maintain, nor did we find evidence
that it makes system maintenance more complex. On the contrary, we have found sys-
tems containing large packages that do not compromise the system’s maintainability.
A case in point are large libraries built by third parties: as long as they provide clear,
stable interfaces, their size does not add to the complexity of their clients. Furthermore,
including size as an element to filter complex packages has the disadvantage that pack-
ages with few, but complex classes are filtered out. We performed experiments adding
the constraint of size (i.e., number of classes) as a filter to obtain every Complex Pack-
age. As a result, packages defining classes known to be key to the system (due to the
fact that many depended on them) were filtered out. We believe that a package being
central to the application and containing a God Class (God Classes are big and complex
classes, and which are known to be a source of maintainability problems [Riel, 1996])
can be complex, even though containing a solitary class. We conclude that size is not
an indicator of the complexity of a package in the case of our analysis, and therefore we
do not include it in our detection rule, but analyze size separately.

Core Package Detection Strategy

Core Package refers to a package that has many clients. A change (e.g., modification or
removal of a class) in a Core Package may impact in many parts of the system, meaning
that it may produce ripple effects in a large amount of packages. The rule to detect
Core Packages (see Equation 4.2 (p.51)) captures this description based on the following
measures (discussed in Chapter 2 (p.7), Section 3 (p.14)):

— fan in using references

— fan in using inherits

CorePackage(S) = S′

∣∣∣∣∣∣
S′ ⊆ S,

∀P ∈ S′

(fan ininherits > value1) ∨ (fan inreferences > value2))
(4.2)
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Given a change (e.g., addition, modification or removal of a class) in a package, de-
velopers must check a large part of the system for rippling effects. We say that Core
Packages have big suspected impact. In Equation 4.2 (p.51) we observe that incoming
dependencies references and incoming dependencies inherits do not participate in the
rule. The reason behind is that a package P may have one or few clients that use it
heavily. As a consequence, if this detection strategy were included the condition (∨) of
large incoming dependencies, P would be marked as provider even with one client. This
situation goes against the intuition of this detection strategy, which is to detect pack-
ages potentially dangerous because a change in those will affect many other parts of
the system. Moreover, if this rule would require large incoming dependencies, packages
having many clients that access them poorly would be filtered out, once again against
the idea of this rule.

Client Package Detection Strategy

In the same sense that there are heavily-used packages (Core Packages), there are pack-
ages that use many packages, but that are themselves seldom used. This rule (see
Equation 4.1 (p.50)) captures this description based on the following measures:

— fan in using inherits and references

— fan out using inherits and references (Chapter 2 (p.7), Section 4 (p.14))

ClientPackage(S) = S′

∣∣∣∣∣∣
S′ ⊆ S,

∀P ∈ S′

(fan in < value1) ∧ (fan out > value2)
(4.3)

Because Client Packages do not have (or have few) clients, ripple effects of changes
produced in Client Packages do not propagate. As a consequence, it is desirable to have
this kind of package as containers of implementation details, sometimes depending on
the platform where the application operates. This is why Client Packages usually belong
to upper layers of the system’s architecture (for instance containing code covering other
packages, such as tests).

Unstable Package Detection Strategy

Some packages require services from many others; whereas others do not. A package is
instable if its number of provider packages is high. This rule is defined in analogous way
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to the previous ones capturing this description based on the following measures:

— fan out using inherits

— fan out using references

This differs from Martin’s instability [Martin, 1997], in that their instability is based
on counting the number of dependencies towards clients (e.g., Outgoing dependencies);
where this rule is based on provider packages (e.g., fan out). These packages receive
rippling effects from many others (their providers). The presence of many Unstable
Packages that are also Core Packages render the system fragile, for changes propagate
to and from them.

4.2.1 Package Characterization Applied

In order to study the need for cpc, we evaluated its usefulness to perform analysis
tasks on software systems, and we start by detecting packages key in the system. Core
Packages are, by definition, packages that have many clients. They contain important
classes, because change effects in those classes propagate to many client packages,
making Core Packages key packages in the system.

If key packages are used in a non-cohesive way, maintenance tasks performed on such
package will affect packages that are not clearly conceptually related, and developers
will therefore find it difficult to predict the extent of ripple effects (since there is no
clear concept exposed by the package). As a partial solution to this problem we propose
to detect complex, provider (heavily accessed), and contextual non-cohesive packages.
This contextual approach contrasts with previous approaches that exploited internal
attributes of packages (e.g., size).

Detecting complex, core, client and unstable packages allow developers to predict the
scope of changes during maintenance, and to avoid violating design decisions during
development (such as to avoid having dependency cycles between packages of different
architectural layers). Moreover, understanding the system in terms of provider and
client packages on one side, and contextual cohesion on the other, provides guidelines
to add classes in package containing classes conceptually related to the new one.

In the following sections, Contextual Information supports detection strategies to obtain
packages with special characteristics (as the ones mentioned above) on real applica-
tions. We use the detection strategies presented above to detect packages (and their
context) with design flaws, such as packages that are complex, reused and not contex-
tually cohesive (i.e., cpc-cohesive). Henceforth, we will use the term cohesion instead

53



CHAPTER 4. UNDERSTANDING PACKAGES FROM THE OUTSIDE

of contextual cohesion (unless explicitly indicated) to refer to cohesion of the package
derived from the way it is used, as defined by cpc.

Complex, Core, and Cohesive

Of all the packages detected as complex, after a change not every one has the same
impact on the rest of the system. A Complex Package with many client packages is
more critical than one having no client packages. Even under the same complexity,
maintaining the first requires to check its interface with many client packages, whereas
maintaining the second does not. Moreover, if a Core Package is complex (i.e., its classes
depend on one another such as in a high IDR) the question now is if the interface in-
teraction with its context is complex or not. We believe that in Complex Packages that
are highly referenced, cohesion is important, for it tells about complexity of package
interaction. Our goal is then to detect such packages.

Detection strategies detect packages that are complex and provider, whereas Contextual
Package Cohesion reveals if the package is cohesive in its context or not. In this section
we apply detection strategies to an in-house developed application (CODECRAWLER) and
a commercial tool (BASEVISUALWORKS). For details of the systems used as examples of
package characterization used in this section we refer to Section B (p.105).

BASEVISUALWORKS We start by analyzing large packages, in the case of BASEVISUAL-
WORKS those with more than 20 classes (smaller packages were analyzed separately in
an analogous way). After filtering out packages with less that twenty classes, we ob-
tained 26 large packages that were classified as complex and less complex using the
rule for complex packages defined above. Detection strategies need parameters (e.g.,
value1) to filter packages that follow the rule. These parameters depend on the applica-
tion. In the case of BASEVISUALWORKS, the application from which we selected complex
packages that appear in Figure 4.5 (p.56), these parameters for complexity rule were:
IDRinherits > 0.15, IDRreferences > 0.15, CohesionRatio > 0.5. For the reuse rule the pa-
rameters were fan ininherits > 9, fan inreferences > 15. Finally, packages where considered
cohesive regarding inheritance if cpcinherits > 0.7 and they where considered cohesive
regarding references if cpcreferences > 0.7.

We observe that the parameters to filter packages determine the result of the search.
Only by comparing the values for the rest of the packages and after trial and error could
we find these parameters.

Figure 4.5 (p.56) shows the twenty-six packages detected as large by the rule of Equa-
tion 4.1 (p.50), and categorized into complex (Equation 4.1 (p.50)), provider (Equation 4.2
(p.51)) according to detection strategies defined above, and cohesive according to cpc.
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A software product may be more or less reusable depending on the complexity of the
context that it requires to operate [Mili et al., 2002]. We believe that a Complex Package
containing every class related to a concept (intuitively clear to the developer) is harmless
if it abstracts details behind a simple i.e., cohesive interface. Figure 4.5 (p.56) shows six
such packages (those with crosses under provider and one of the cohesion rows). Their
relevance is given by their many clients and their facilities to reuse by their interface-
classes forming subsets accessed by the same client or clients.

After filtering large packages and applying detection rules we obtained nine complex
packages, seven of which are providers, two of which show neither inherits nor references
cohesion. Among the packages classified as non-complex, only four were detected to be
providers, three of which were classified as cohesive regarding inheritance. One package
was marked as provider and not cohesive.

CODECRAWLER We applied the rule to detect complex, provider, and cohesive packages
to CODECRAWLER, a smaller application. Because the size of the application was man-
ageable (only 8 packages) we avoided filtering large packages. Figure 4.6 (p.57) shows
these five complex packages of CODECRAWLER (first and second column), the result of
applying Core Package detection strategy (third column), the result of applying Client
Package detection strategy (fifth) column, and finally, if each package was found co-
hesive or not using either inherits or references with a certain threshold (fourth col-
umn).

We applied the Complex Package detection strategy with the following parameters:

— IDRinherits > 0.05,

— IDRreferences > 0.1, and

— CohesionRatio > 0.1

As a result, it detected five packages (CCCore, CCHotDraw, CCUI, CCGlyphs and Cod-
Evolver). Code examination revealed that these packages are very different. The fol-
lowing paragraphs explain in which ways the detected packages were different.

Core complex but easy to reuse Two of the five Complex Packages detected are com-
plex core (CCGlyphs and CCCore). Moreover, though complex and heavily accessed, they
are stable, i.e., depending on few packages (not seen in the figure). Only CCCore is co-
hesive, i.e., interface classes having the same clients. We believe that cohesive complex
packages have characteristics of being easy to reuse. It does not mean, however, that
used in different contexts (such as used by packages of an application client of CODE-
CRAWLER) they would reveal the same characteristics. To start with, a package-context
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Figure 4.5: Examples of detection strategies applied to the 26 largest packages of BASEVISUAL-
WORKS.
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Figure 4.6: Detection strategies applied to CODECRAWLER’s packages

change will make CCGlyphs and CCCore will no longer be core packages, provided that
in the new context they do not have enough afferent dependencies (i.e., in the case of
low fan in using inherits and low fan in using references). Moreover, a package accessed
cohesively (i.e., having high cpc) in one package context the package might be accessed
in a non-cohesive way in another package context.

Detecting Bad Smells The Dependency Inversion Principle [Martin, 1997], tells us to
structure object-oriented applications in such a way that packages implementing high-
level policies do not depend on packages implementing low level details. According to
this principle, a provider package depending on client packages is a hint of a design
flaw. Packages containing more conceptual, abstract or basic functionality should not
depend on Client Packages. Martin’s Dependency Inversion principle tells that modules
that implement high level policy should not depend upon the modules that implement
low level details. The author claims that adhering to this principle produces reusable
and maintainable modules. Detecting Client Packages and Core Packages is a first
step to detect places in the system where the Dependency Inversion principle is not
followed. Figure 4.6 (p.57) shows that there are packages that are complex and provider,
but not cohesive (CCGlyphs, CCUI and CodEvolver). Observing the code of CCGlyphs
we noticed that developers had built this package for one single purpose: to contain
glyphs. By looking at the names of the classes we can observe that every class-name has
the suffix Glyphs. CCGlyphs seemed a highly cohesive package that had been wrongly
marked as non-cohesive by our contextual approach. However, cpc being lower than the
threshold we specified, indicated the presence of at least a class accessed in a separate
way. More detailed inspection of the code revealed an implementation particularity
breaking the cohesion: a foreign reference due not to a conceptual reference, but to an
implementation detail. In particular, a method in a client package iterates through all
the subclasses of a certain class in CCGlyphs not referenced for other matters.
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Detecting Pieces of Design Figure 4.6 (p.57) shows that CodEvolver and CCUI are
complex, though not cohesive client packages. The combination not-provider-and-client
tells us that they belong to a higher architectural layer. They are places to implement low
level policies (i.e., containing user-interface implementation details) that depend on the
context where CODECRAWLER operates, or extensions to the application. In particular,
CCUI contains details regarding the implementation of CODECRAWLER’s user interface
and CodEvolver constitutes a later addition to CODECRAWLER.

4.3 Package Role Depends on the Client Usage

Packages play different roles according to the context where they are evaluated. A
package with low cohesion considered in isolation might prove to be cohesive when
used by clients. As an example, we propose in this section to observe the interaction
between packages of a framework and packages of two of the framework clients. We
believe that cohesion observed by developers in such packages depends on the client
application of reference, rather than depending only on internal connections between
classes defined in the framework’s package.

In order to verify that cohesion of a package P could be different if P were analyzed in
different contexts, we counted the interaction between framework and client packages,
and generated bar charts by stacking the total number of connections to the framework
and from the client.

Figure 4.7 (p.59) a) and b) show the same framework, MOOSE (see Appendix B (p.105))
used by two different clients. The top part of the figure, a), shows the usage of frame-
work packages by packages belonging to the client named Chronia. The framework is on
the left, and the client is on the right. Bars show, stacked, the total number of depen-
dencies of four dependency types. In the framework (left) each bar counts the number
of dependencies to each package of the framework. On the client side, each bar shows
the number of dependencies from the respective package of the client to packages of the
framework.

The dependency types are the ones defined in Chapter 3 (p.25) together with types method
overridden - overrides method and ancestor called - ancestor candidate. Method overrid-
den happens when a method from a class defined in the framework is overridden in
the client. Overrides method happens when a class in the client overrides a method
defined in the framework. In a similar way, ancestor called happens when a method in
the client invokes a method in the framework. More precisely, when it invokes a method
that has the selector of a method defined in the client. This way of counting invoca-
tions results in counting connections that do not exist. As a consequence, the number
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Framework (Moose) used by Chronia

Framework (Moose) used by VAN

Client (Chronia) using  Framework (Moose) 

Client (VAN) using  Framework (Moose) 

a)

b)

P

P

Totals from packages belonging to the client Chronia towards packages of the Moose framework 
are low. This means that the framework packages  are scarcely used by the client (on the right 

side).

Totals from packages belonging to the client VAN towards packages of the Moose framework are 
high. The framework is intensively used and with the four dependency types.

The clients use package P in 
different ways

Figure 4.7: More intensive use of the framework Moose, this time used by another client. Pack-
ages in the client (on the right side) heavily access packages in the framework.

of these dependencies is significantly higher than the number of other dependencies,
and therefore we decided to make it smaller by dividing it for a value. To sum up, the
sum of dependencies ancestors called (for framework packages) and ancestor candidate
(for client packages) are divided by a value (in this case, 100) to prevent this type of
dependency from hiding the other values in the chart.

In Figure 4.7 (p.59) the client VAN uses extensively the framework, including package P ;
whereas the client Chronia uses less the packages in the framework, and in particular,
package P . We learn from comparing a) and b) that P is used in very different ways,
and that its role depends, at least in part, o its clients.

4.4 Summary

This chapter shows that Contextual Information provides extra insights: it reveals a
different way to compute package cohesion, exposing deficiencies of cohesion as tra-
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ditionally regarded, it reveals complex difficult-to-reuse packages, and can be used to
reason about design issues.

In this chapter, we have defined a novel measure for package cohesion. We have also
presented novel detection strategies for packages, and se have shown evidence that a
module with low cohesion considered in isolation might prove to be cohesive when used
by clients.

We conclude that Contextual Information enriches traditional approaches to character-
ize packages based exclusively on internal attributes. The different dependency types
participating in package interaction add complexity to the process of characterizing
packages. To overcome this shortcoming, we will recur to visualization techniques. The
following chapters continue the exploitation of Contextual Information to reveal locality,
and package and system characteristics with the aid of visualizations.
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Chapter 5

Context Visualization:
Characterizing Package
Interaction

In the previous chapters, we defined contextual information and built measures to un-
derstand the locality of classes in packages. In this chapter we present the application
of contextual information to get a mental picture of the structure of a system in our way
towards its maintenance. We combine direct and complex measures to get a high level
image of the packages and subsystems in which systems are organised. Our views rep-
resent the system by visually characterizing packages through their interactions, and
building charts that have the shape of a compass-type plot.

5.1 Introduction

Understanding packages as grouping of classes, is a crucial step to manage the over-
all structure of large object-oriented systems. Packages convey semantics and design
intentions of programmers. They are artefacts to deploy and structure applications.
Package interaction reveals the stability of the system by exposing areas whose changes
ripple through the system. Unfortunately, package interaction is difficult to grasp due
to the different nature of the involved elements such as inheritance-based and non-
inheritance based coupling, different kinds of connections between packages, and locus
of impact, i.e., import and export connections.
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In this chapter we tackle this problem by defining a novel visualization named butter-
fly blueprints. Based on direct measures, each butterfly blueprint is a diagram that
characterises one package by its interaction with the context. This visualization tech-
nique condenses the interaction information enough to fit the characterization of all the
application packages in one screen.

Our goal in this chapter is to provide appropriate visualizations to analyse the contex-
tual information of packages in order to help experienced and novice programmers to
understand and manipulate systems. The following sections present views that reveal
essential properties of large object-oriented systems.

5.2 Butterfly Views

Butterfly views are dedicated radar charts built from simple package metrics based on
a language-independent meta-model. They help us to find the answers to the following
questions:

— What is the importance of a package in terms of its intrinsic properties such as the
number of classes it contains and its efferent and afferent relationships? How many
clients rely on it?

— Does the package use several other packages or is it more self-contained?

— What is the impact of changes in the relationships between packages?

— Can we identify patterns or repeating package characteristics?

— How is a package structured: does it only extend other packages via inheritance, or
does it define itself some complex hierarchies? When classes are subclassing other
classes what are exactly the relationships that link them (state, behavior)?

5.2.1 Package Polymetric Views

Package polymetric views [Ducasse et al., 2004] are polymetric views [Lanza and Ducasse,
2003] designed to provide a coarse-grained visualization of packages. Figure 5.1 (p.63)

describes the meaning of the elements present in a package polymetric view; whereas
Figure 5.2 (p.64) shows, as an example, a polymetric view of ALCHEMIST (Section B (p.106)).
In this figure, we observe that packages A (in the bottom of the figure) and C are heavily
accessed, apparently being the core of the application; whereas package F is a client
package, having dependencies to many providers. The figure also reveals a dependency
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P3

P2

# of client accesses

# of providers

P4

A

B

C

A depends on B
A is a client of B
B is a provider of A

B depends on C
B is a client of C
C is a provider of B

P1

color = # of providers #Classes

# of client accesses

Boxes with connections from the 
top represent provider packages

Boxes with connections on the  
bottom represent client 
packages 

Figure 5.1: Description of package polymetric view. Rectangles represent packages, and edges
represent dependencies between classes defined in different packages. Packages that contain
classes heavily accessed appear on the bottom of the view; whereas the amount of providers that
a package has is represented by placing the package on the right.

cycle involving packages A, C, and D. Cycles between packages are source of problems,
for instance, concerning the order of loading.

Figure 5.1 (p.63) reveals that package polymetric views are coarse. We observe that they
do not express the different dependency types connecting packages, being, for instance,
difficult to spot cycles even in a small system as the one in example.

Figure ?? (p.??) shows an example of this polymetric view applied to a large system. Once
again, this approach provides a coarse view of the system, but it does not scale.

We conclude that this approach is useful only as a first approach to understand the
system. Developers could gain some limited understanding of the system by observing
it first with a package polymetric view, use this view to select packages for further
analysis, and obtaining more information with other visualization techniques applied to
the selected package. All in all this polymetric view reveals the need for a more refined
approach able to show, for instance, package connections in the different dependency
types.

5.2.2 Principles of Butterfly Visualization

Butterfly visualization are based dividing a circle area with a number of axes, each one
representing the value of a measure. Butterfly views represent a package’s interaction
with its context. To represent this complex interaction is not straightforward, since the
order of axes determines the shape of butterfly views. To keep the shapes expressive and
simple to read is important to compare packages through their butterfly views. To that
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B

C

F

A

D

Figure 5.2: Example of polymetric view showing all the packages of CODECRAWLER.

Kernel-Objects

OS-Unix

UIBasics-Components

Magnitudes
-General

Tools-Changes

UIBasics-Controllers

UIBasics-Support

Collections-Arrayed

Interface-Support

Figure 5.3: Package Polymetric view showing the system BASEVISUALWORKS.
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NCP (# Client Packages)
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as Client)
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EIC (# Inheritance as Client)EIP (# Inheritance as Provider)

ASC (#Ancestor State 
as Provider)

Inheritance connection

RFP (# References
From

Other Packages)

Figure 5.4: Principles of the butterfly view based on direct measurements.

regard we exploit the characteristic of symmetry: butterfly views are symmetric regard-
ing their vertical axis, keeping inheritance connection description in the bottom.

Butterfly views are based on minimal information revealing the essence of a package.
Table 5.1 (p.81) lists the measures we actually compute. In this table the term exter-
nal dependencies denotes dependencies that originate from other packages and target
classes of the analyzed package or vice versa. The metric example values refer to the sit-
uation depicted in Figure 3.1 (p.28). Figure 5.4 (p.65) explains the semantics of butterfly
views based on direct measurements.

We propose absolute and relative measures for a package. Absolute measures are direct
measures obtained from counting dependencies. However, the use of facade classes
could obscure the visualization of the structure of the package. Butterflies based on
relative measures capture the effect of increased internal dependencies.

— Absolute measures count the dependencies of a given kind and direction. An example
of an absolute metric of a package is references (Number of Class References To
Other Packages) which is the number of class references to classes belonging to other
packages (providers) from classes belonging to the analyzed package (a client). This
metric is useful to assess whether a package (and its classes) is heavily using other
packages.

— Relative measure show the relationship between the amount of internal and external
dependencies of a given type and direction in the package. They follow the pattern:

property/(property + internalproperty)

65



CHAPTER 5. CONTEXT VISUALIZATION: CHARACTERIZING PACKAGE INTERACTION

For instance, the relative measure RRTP (RelativeNumber of Class References To Other
Packages) divides references by the total number of class references in a package,
thus creating a normalized measure (i.e., between 0 and 1) that denotes to what
extent a package is self-contained (low RRTP) or not (high RRTP).

5.2.3 Global Butterfly Views

Absolute measures originate butterfly views named global views. Figure 5.5 (p.67) dis-
plays the GLOBAL BUTTERFLY of the packages CCCore, CCBase and CCUI, which belong
to the CODECRAWLER case study (see Section B (p.105) for a description of CODECRAW-
LER).

CCBase. Its shape leaning towards the left shows that this package is essentially a
provider package. In addition it shows that the state of the classes in the package
is directly accessed by clients subclasses (for example CCCore) and that the package
also accesses state of other packages. A close inspection of the code reveals that the
references to other packages are the ones to default types such as String and Collec-
tion.

CCCore. It is a central package of CODECRAWLER. This is reflected by the fact that
the butterfly has two even, long and horizontally symmetric wings. It uses the package
CCBase. The view indicates that this package uses 86 external classes while it defines
22 classes. The classes it defines are referenced from other packages too (is referenced
(Number of Class References From Other Packages) = 58). inherits (Number of Exter-
nal Inheritance as Client) shows that this package inherits from 10 classes in the other
packages, but this package is also extended (is inherited (Number of External Inheritance
as Provider) = 3). This package does not directly use state from the superclasses which
is an indication of good design. We also learn that its state is directly accessed by sub-
classes defined in other packages (is accessed (Number of Ancestor State as Provider) =
2).

As the package contains 22 classes and inherits (Number of External Inheritance as
Client) is 10, we learn that the package inherits solely from a couple of root classes but
that it is composed of inheritance hierarchies.

CCUI. The GLOBAL BUTTERFLY of CCUI shows that it is mainly a client: its classes
directly access attributes of provider superclasses (accesses (Number of Ancestor State
as Client) = 152). This package will be impacted if the superclasses located in other
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CCBase

CCCore

CCUI

ASP: 40

ASP: 0

ASP: 2

ASC: 4

ASC: 0

ASC: 152
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EIC: 2EIP: 26

EIP: 1

EIP: 3

RTP: 35

RTP: 480

RTP: 86

RFP: 6

RFP: 58

RFP: 107

Client Packages x 10: 60

Client Packages x 10: 30

Client Packages x 10: 40
9 classes

22 classes

14 classes

Figure 5.5: Butterfly Direct view on three packages.
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From
Other Packages)

Inheritance connection

Figure 5.6: Principles of the Butterfly Relative view.

packages change. The high-value (480) of references (Number of Class References To
Other Packages) is due to the manual building of menus e.g., direct instantiations of
MenuItem. This shape was expected, because CCUI contains all the CODECRAWLER UI
elements.

5.2.4 Relative Butterfly Views

Relative measures originate relative views. They complement globalviews. While the
GLOBAL BUTTERFLY provides information about a package, it does it by measuring the
package in the context of the complete system. However, it is difficult to assess how a
property exists in the context of the package itself. For example, the information that a
package defines a lot of classes is refined when we know that most of the classes are
inheriting from a class defined inside the package itself or when most of the classes are
subclasses of an external class. Figure 5.6 (p.68) describes the principles of relative but-
terfly views. To minimize context-switching a RELATIVE BUTTERFLY has the same axes
as the GLOBAL BUTTERFLY, but uses relative metrics described in Table 5.1 (p.81).

As the following example illustrates, there is an interplay between the two views. In
particular the information displayed by the GLOBAL BUTTERFLY allows one to qualify the
finer level of description given by the RELATIVE BUTTERFLY. Figure 5.7 (p.70) shows an
example of butterfly relative views applied to the same three packages as before.
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Example. Figure 5.7 (p.70) shows the RELATIVE BUTTERFLY views of three packages of
CODECRAWLER: CCBase, CCCore and CCUI.

CCBase. We see that its classes do not directly access state, since RASP (Relative Num-
ber of Ancestor State as Provider) and RASC (Relative Number of Ancestor State as
Provider) are 1. This happens even when such classes are accessing the state of exter-
nal superclasses (accesses (Number of Ancestor State as Client)= 4) and their state is
accessed by clients classes (is accessed (Number of Ancestor State as Provider)= 40. As
the value of REIC (Relative Number of External Inheritance as Client)is 0.25, we learn
that this package has 3 times more internal inheritance than it is inheriting from oth-
ers. REIP (Relative Number of External Inheritance as Provider) = 0.81 indicates that it
subclassed more from the outside than from the inside. In fact it indicates that it is
subclassed 26 times from other packages whereas there are only 6 inheritance depen-
dencies in the package. However, it could still be the case that its classes are much
more subclassed: A class can be subclassed by a class in another package that then
acts as another hierarchy root to numerous classes.

CCCore. Considering CCCore, we see that it does not access the state of other packages
(RASC (Relative Number of Ancestor State as Client) = 0). It has more references to the
outside than references between the classes inside the package (RRTP (RelativeNumber
of Class References To Other Packages) = 0.8) and it has a bit more references from other
packages (RRFP (Relative Number of Class References From Other Packages) = 0.73) than
internal class references. REIP has a value of 0.2 which means that the package has a
lot more internal inheritance relationships than it has direct subclasses.

CCUI. Regarding CCUI we see that the REIC (Relative Number of External Inheritance
as Client) value of CCUI(REIC = EIC/(EIC + PII)) is 1. This confirms that it does not
define an inheritance hierarchy. Interpreting RRTP (RelativeNumber of Class References
To Other Packages) whose value is 97%, we learn that the package classes have few class
references among them, because there are 480 references to external classes and only
3% of internal references (i.e., 14 internal references). RRFP (Relative Number of Class
References From Other Packages) is 32%, since there are 6 external and 14 internal
references (is referenced (Number of Class References From Other Packages)).

Example. Figure 5.8 (p.71) shows the RELATIVE BUTTERFLY views of three packages of
CODECRAWLER: CCBase, CCCore and CCUI.
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Figure 5.7: Examples of relative butterfly views of three packages of CODECRAWLER.
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Kernel-Support

Magnitude-General

Kernel-Objects

Tools-Changes

OS-Unix

UIBuilder-Specifications

Figure 5.8: Example of butterfly direct view and relative view of six packages from BASEVISUAL-
WORKS.

Figure 5.8 (p.71) shows an example of butterfly direct view and butterfly relative view
applied to six packages of BASEVISUALWORKS (see Appendix B (p.105)).

5.3 Butterfly System Blueprint

Based on butterfly views, butterfly blueprints condense package-context interaction
visualization enough to fit the characterization of many application packages in one
screen. This picture of the system as a whole conveys information about package orga-
nization in subsystems, and facilitates detection of visual patterns.

Figure 5.9 (p.72) depicts the process of mapping measures to the icon simplifying a but-
terfly GLOBAL BUTTERFLY.

To compare butterfly blueprints, metrics values are normalised. Two butterfly blueprints
can only be compared if their corresponding axes can be compared. We normalise there-
fore each of the seven axes to the maximal drawing length of that axis, as opposed to the
maximal drawing length of any axis, being this a difference with butterfly views (GLOBAL

BUTTERFLY and RELATIVE BUTTERFLY).
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Figure 5.9: Mapping from measurement values to butterfly blueprint icons
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Figure 5.10: Principles of the butterfly view based on direct measurements.

Figure 5.10 (p.72) shows principles of butterfly blueprints.

5.3.1 Understanding Systems with Butterfly Blueprints

Understanding packages and their context is key to develop systems that are able to
respond to change.We seek answers to the following questions:

Which are the packages containing classes used throughout the system? The main-
tenance of these packages might produce a cascade of changes in dependent pack-
ages. When the extent of the ripple effects originated by a change cannot be pre-
dicted, the impact of making that change cannot be estimated. As a consequence,
neither can the cost of the change be estimated, nor can the affected areas be
predicted.

Can we detect violation of design principles? For instance, is a package implement-
ing common functionality depending on another implementing details? When a
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package with classes containing implementation details defines heavily inherited
classes, the package becomes difficult to reuse.

Can we package interaction in blueprints? Packages may represent code ownership,
or the deployment process. Consequently, package interaction describes the com-
plexity of the application design and deployment. This interaction is usually too
complex to be depicted in one screen with a useful level of detail using nodes and
edges. We propose a visualization of large systems that on the one side shows
detailed context-information for all the packages, and on the other fits the charac-
terization of the packages within the eye span. By having the characterizations in
one screen, developers can compare them and get insights about the system such
as the distribution of complexity.

What kind of patterns can we find? Packages devoted to singular tasks have special
shapes. By comparing the shapes of diagrams, we can derive knowledge about
role and function of the packages such as packages concentrating most of the
implementation, or the ones with poor interaction with the context.

We chose to visualize direct connections that reveal the essence of the package in-
teraction with the context. The information that we use is based on three types of
connections: inherits (inheritance-based coupling), class references (non-inheritance-
based coupling) and access to inherited attributes (inheritance-based). P being a pack-
age, our approach builds a butterfly blueprint of P on the dependencies described in
table 5.2.

Figure 5.11 (p.74) shows part of the butterfly blueprints obtained on BASEVISUALWORKS,
a large application (see Appendix B (p.105)). Groupings of blueprints represent subsys-
tems forming part of the organization of packages in BASEVISUALWORKS.

The following sections explain the patterns that we can identify in this view.

Big Independent Provider

Big Independent Provider denotes packages containing major inheritance hierarchy root
classes, or that are exceptionally referenced, being relatively independent (a sign of light
stability).

In the butterfly views, this phenomenon is represented by a butterfly with a larger left
wing than the others and a yellow-needle like shape on one or more of the left axis.

Figure 5.11 (p.74) shows package Kernel-Objects, with its inheritance definition axis
(down, left) significantly bigger than its additional axes and the other packages. This
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Figure 5.11: Butterfly blueprint of BASEVISUALWORKS
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indicates that this package contains classes root of the hierarchy. Indeed, Kernel--
Objects contains some important classes such as Boolean, True, and False. Many of
its classes are heavily subclassed and considerably referenced.

In the same line of examples, subsystem Collections shows 3 packages Collections--
Text, CollectionsSequenceable, and Collections-Unordered having a yellow-needle
like shape and a very small right wing. The indicates that these packages are consider-
ably referenced,. These packages contain the implementation of the programming struc-
tures related to the class Collection. Collections is highly referenced, which shows
it as a subsystem capable of producing a high impact in the case of a change.

Delegator

A Delegatoris a package that delegates the details. The corresponding butterfly shape
has wide right wings and small or no left wing. It characterises packages that consume
more services than what they provide.

In Figure 5.11 (p.74) we can detect packages of the subsystem UILooks implementing the
user interface. The butterflies of the packages have only right (i.e., provider representa-
tive axis) wings and a big head. This tells that these packages subclass and reference
classes from other packages, and have some classes defined in them, but they have no
clients.

Close examination of the code showed that these packages depend on the platform
where BASEVISUALWORKS is running. They contain therefore implementation details
such as preferred bounds of views and icons to be displayed. Because they contain
platform-depending details, and very few clients, we deduce that packages implement-
ing high level policy do not depend upon the modules that implement low level details
(Martin’s Dependency Inversion Principle [Martin, 1997]), which is a good practice of
designing for reuse.

Pillar

Pillar is a package containing classes that are extremely used. As an example, let us ob-
serve the package that contains the longest axis in the system, Collections-Arrayed.
Figure 5.12 (p.76) shows a comparison of the packages of the subsystem Collections
and the package Collections-Arrayed, one of the five exceptionally coupled pack-
ages.

The packages depicted in Figure 5.12 (p.76) in the subsystem Collections are the same
packages of the system Collections depicted in Figure 5.11 (p.74) plus the package
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Collections-Arrayed

Collections-Sequenceable

Collections-Unordered

Figure 5.12: This example illustrates the of the difference between Collections-Arrayed, con-
taining the classes most referenced, and the rest of the packages in Collections. Butterfly
blueprints of other packages in Collections are minimised and changed due to the inclusion of
an exceptionally referenced package.

Collections-Arrayed. However, their shapes seem to be different. Collections-Ar-
rayed is an exceptional package containing the classes most referenced in BASEVISUAL-
WORKS. There are five packages as exceptional as Collections-Arrayed, depended
on or depending on the six different dependency types depicted in the butterfly. All
the axis sizes are normalized. And there are only five exceptionally coupled packages.
Therefore, including those exceptions in the design, obscures the information presented
from the other packages, by diminishing the size of the 87 remaining packages. Those
five packages were therefore excluded from the representation of the system offered in
Figure 5.11 (p.74).

5.3.2 Application-Specific Patterns

Similar shapes are clear signs of similarity between the packages. In some cases all the
packages in the same subsystem have the same butterfly shape. The subsystem UI-
Looks in Figure 5.11 (p.74) shows an example of that. Butterfly blueprints of its packages
make evident that those packages share the same shape. Figure 5.13 (p.77) zooms in the
UILooks subsystem. All the packages take a heavy consumer role (big right wing), being
insignificantly inherited or referenced from other packages (small left wings).

In this example, the reason why all the packages in the subsystem UILooks have the
same shape is that each package concentrates a similar set of responsibilities. More
concretely, each implements the instantiation of a set of widgets required to build a
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Figure 5.13: This view illustrates the similarities in shapes between the packages of subsystem
UILooks

window, depending on the selected look and feel (Windows, OS/2, Macintosch, etc). A
known use of the abstract factory pattern, UIBuilder (defined in another subsystem)
has the responsibility of constructing a window from a set of widget specifications, but
without any knowledge as to what type of look-policy object it is dealing with [Alpert et
al., 1998].

The shape of these packages is what one would expect from a subsystem devoted to the
user interface. The reason behind big right wings is that their classes heavily request
the services of classes in UIBasics, responsible for the implementation details. The
reason behind the yellow left wings being small is that UIBuilder (the window builder)
is unaware of the type of what type of look policy object it is dealing with. Finally, the
reason why there is a left wing at all is that the policies inherit UILookPolicy, defined
together with UIBuilder in the package UIBuilder.

From a more general perspective, with butterfly views we learn that many of the sub-
systems of BASEVISUALWORKS show this style of organization, with most of the pack-
ages in the same subsystem having similar butterfly blueprints. A few examples are
System-Name Spaces, Interface, Collections, UIBasics, External, UIBuilder, Graph-
ics, UILooks, Tools and Kernel.

If the visualization of a group of packages in a subsystem follows a pattern, then we can
expect to detect a package that breaks the pattern of the group, or a subsystem devoted
to a particular task. Comparing diagrams is a way to detect a package that violates
design architectural decisions. From a more general perspective, we have observed that
a case in point is packages implementing graphical user interface functionality. These
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packages usually depend for implementation details on other packages specific for the
platform and look-and-feel. This dependency translates into classes heavily referencing
and inheriting from the context, which in turn imposes a particular shape in the diagram
resulting from the application of the visualization technique.

5.3.3 ArgoUML

Figure 5.14 (p.79) shows the butterfly blueprint overview of argoUML. Java namespaces
(named also packages in the context of this work) are distributed into higer-level names-
paces (subsystems).

A first approach reveals that the most heavily used package is uml. In fact, most of the
the packages are just clients, some are mainly provider, and only one package, uml is
client and provider. The butterfly blueprint of uml compared with the rest of the butterfly
blueprints, reveals a significant amount of inheritance and references to and from uml,
signalling it as a key package in the system. It shows that most of the functionality is
defined subsystems uml.

kernel package, which is heavily referenced, but also inherited, is free from the im-
pact of change in other packages. Having 0 access to attributes and few inheritance
dependencies and references to other packages.

We detect that 9 of 13 subsystems are devoted to only one package, meaning that most
of the subsystems are one-purpose. A few examples of those are ocl, persistence,
moduleloader and notation.

5.4 Summary

This chapter presented a novel approach to obtain graphical views of an object-oriented
system, understanding its packages and coping with its complexity. We seek to capture
the organization of packages in an object-oriented system and to characterize packages
and their interaction.

Out contribution is two radar visualizations named butterfly views that help to under-
stand and categorize packages. The butterfly views not only show how a package relates
to the rest of the system, but also how it is internally structured.

Our contribution includes also a novel visualization technique named butterfly blueprints,
which produces graphical views showing the system in one screen.
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Figure 5.14: Butterfly view applied to argo UML
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Butterfly blueprints answer the aforementioned requirements by revealing patterns in
the package interaction in the system. We applied our approach to three different ap-
plications to find interaction patterns, namely Big Independent Provider, Delegator and
Pillar. The patterns allowed us to detect core packages, and revealed design issues such
as co-locating in the same subsystem classes with related knowledge.
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Name Description
PP (Number of Provider Packages). Number of package providers of a package. PP(P1)=1, PP(P2)=2, PP(P4)=1.
fan in (Fan in). Number of packages that depend on a package. fan in(P1)=3, fan in(P3)=2, fan in(P4)=0.

refer-
ences

(Number of Class References To Other Packages). Number of class references from classes in the measured
package to classes in other packages. RTP(P1)=2, RTP(P2)=1 ,RTP(P3)=1, RTP(P4)=0.

RRTP (RelativeNumber of Class References To Other Packages). references divided by the sum of references and the
number of internal class references.

is ref-
er-
enced

(Number of Class References From Other Packages). Number of class references from classes belonging to other
packages to classes belonging to the analyzed package. RFP(P1)=0, RFP(P2)=1, RFP(P3)=3, RFP(P4)=0

RRFP (Relative Number of Class References From Other Packages). is referenced divided by the sum of is referenced
and the number of internal class references.

PIIR (Number of Internal Inheritance Relationships). Number of inheritance relationships existing between classes
in the same package. PIIR(P1)=0, PIIR(P2)=0, PIIR(P3)=3, PIIR(P4)=2

RPII (Relative Number of Internal Inheritance Relationships). PIIR divided by the sum of PIIR and is inherited.
RPII(P1)=0, RPII(P2)=0, RPII(P3)=1, RPII(P4)=1.

inher-
its

(Number of External Inheritance as Client). Number of inheritance relationships in which superclasses are in
external packages. EIC(P1)=0, EIC(P2)=2, EIC(P3)=1, EIC(P4)=1

is inh-
erited

(Number of External Inheritance as Provider). Number of inheritance relationships where the superclass is in
the package being analyzed and the subclass is in another package. EIP(P1)=4, EIP(P2)=0, EIP(P3)=0, EIP(P4)=0

REIP (Relative Number of External Inheritance as Provider). is inherited divided by the sum of PIIR and is inherited.
REIP(P1)=1, REIP(P2)=0, REIP(P3)=0, REIP(P4)=0.

ac-
cesses

(Number of Ancestor State as Client). Number of accesses to instance variables defined in a superclass that
belongs to another package. ASC(P3)=0, ASC(P4)=1

RASC (Relative Number of Ancestor State as Client). accesses divided by the sum of accesses and ASCI. Where ASCI,
Number of Ancestor State Client Internal to the Package is the ancestor state class dependencies internal to
the package. We consider only dependencies from a class that is inside the package to other classes of the
same package.

is ac-
cess-
ed

(Number of Ancestor State as Provider). Number of times that instance variables of classes belonging to the
analyzed package are accessed by classes belonging to other packages. ASP(P1)=1, ASC(P4)=0

RASP (Relative Number of Ancestor State as Provider). is accessed divided by the sum of is accessed and the number
of gives ancestor state dependencies between classes when both classes belong to the package.

CC (Number of Class Clients). Number of external class dependencies that are clients of a package. Sum over the
number of the class dependencies (ancestor state, class reference and inheritance) that refer to a package.
CC(P1)=4, CC(P2)=1, CC(P3)=3, CC(P4)=0.

NCP (Number of Classes in a Package). Number of classes in the package. NCP(P1)=2.

Table 5.1: Package Measures used in the Global and Relative butterfly views.
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Type of
Connec-
tion

Description Measure
Name

Name in global view How to count the connec-
tions

Client-
Provider
Role

Inheritance A class is
subclass of
another.

inherits Number of External In-
heritance as Client (inher-
its)

Add up the number of
classes defined in P having
superclasses defined in the
rest of the packages.

Client

is inher-
ited

Number of External In-
heritance as Provider
(is inherited)

The total number of in-
heritance relationships in
which the superclass is de-
fined in P, and the sub-
classes are defined in pack-
ages other than P.

Provider

Class Ref-
erence

Statement
that explicitly
reference a
class, e.g.,
during class
instantiation

references Number of Class Refer-
ences To Other Packages
(references)

The total number of class
references from classes in P
to classes defined in other
packages.

Client

is refer-
enced

Number of Class Refer-
ences From Other Pack-
ages (is referenced)

The total number of explicit
references to classes in P
made by methods of classes
not defined in P.

Provider

Inherited
Attribute
Access

Method
references
attribute
defined in
superclass.

accesses
inher-
ited at-
tribute

Number of Ancestor State
as Client (accesses)

The total number of at-
tribute references by meth-
ods belonging classes not
defined P.

Client

attribute
refer-
enced in
subclass

Number of Ancestor State
as Provider (is accessed)

The total number of refer-
ences (from packages other
than P) to the attributes of
the classes defined in P.

Provider

- - NOC - Number of classes defined
in the package.

-

Table 5.2: Measures used in butterfly blueprints.
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Chapter 6

Optimized Re-architecturing:
Understanding the Future

In the previous chapters we developed techniques to facilitate maintenance of big legacy
systems by describing how they organize its classes into packages. However, a particular
organization may be neither straightforward nor obvious for a given developer. As a
consequence, classes can be misplaced, leading to duplicated code and ripple effects
with minor changes effecting multiple packages. Exploiting contextual information,
we propose a technique to detect misplaced classes by analysing how client packages
access the classes of a given provider package. We define locality as a measure of the
degree to which classes reused by common clients appear in the same package. We then
use locality to guide a simulated annealing algorithm to obtain optimal placements of
classes in packages. The result is the identification of classes that are candidates for
relocation.

6.1 Improving Locality

Where was that class that I always forget to update each time I make a change on this
one? Where was the class that was doing something similar to what this one does?
Our ultimate goal is to improve the system in the sense that classes that are used
together are in the same package. As a result, we propose an operational technique (a
procedure) to represent and manage the location of classes in packages in large object-
oriented systems. But first we have to understand and represent how classes in a
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Misplaced book

Figure 6.1: In this library, among the white books there is one read by the people that read only
blue books.

package belong together. We exploit the information present in the context, i.e., how the
classes are used. In particular, we define Locality (loc) as Contextual Package Cohesion
(cpc) evaluated using references dependencies. Consequently, its computation is that
of cpc as defined in 4.1. Let us present a metaphor from everyday life that describes
the idea behind our approach to capture the locality of the classes.

Motivating Example

Books related to the subject white may belong to different editorial offices, have different
authors and have, in short, no explicit attribute that connects them, but they also
belong to a group: the group of books consulted by readers of subject white. If we were
organizing a library, it would make sense to put on the same shelf the books that belong
to the same field of study. That is straightforward if we know the field of each book,
but not if we are unaware of it. However, even without knowledge about the contents
of the books, we could observe that every group of readers is interested mainly in one
field. If that is the case, a book read only by people interested in subject blue that is
on the same shelf as books read by students interested in subject white would call our
attention and most people would agree that it is out of place. Figure 6.1 (p.84) depicts
this situation.

We expand this idea to understand locality in large object oriented systems. More con-
cretely, to describe the locality of the classes of a package. Now Figure 6.1 (p.84) does
not represent books anymore, but code. It depicts four packages of a system containing
classes. We believe that most of the developers would agree that the locality of these
packages would increase if the blue class where defined in the blue package, instead of
being defined in the white package.
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#services that each 
class 

provides to its 
neighbor classesP Q

isolated 
misplaced 

class

contextual 
information

 visualization

Figure 6.2: Two packages and their representation in contextual information visualization.

6.1.1 Visualization of Locality

This example presented the idea behind our technique to find classes that are mis-
placed: two classes are related if they are used by the same package. Software doesnt
have any form. Opposed to mechanical simulation, where real objects are represented
in two or three dimensions, software is intangible. We choose a rectangle as the shape to
represent packages and classes. The goal is to capture characteristics of the packages
or classes that we consider relevant for understanding the code, and to associate them
through metrics with the rectangle size and color. Figure 6.2 (p.85) shows the mapping
from code to our visualization.

The big rectangle represents a package, and the small ones inside represent the classes
defined in the package. The color shows the locality of the classes. If the class is
misplaced, it is drawn as a rectangle inside the package where it is defined and painted
with the color of another package (a potential destination).

Understanding the distribution of classes into packages is one way of analyzing the pros
and cons of restructuring a large-scale software system. With visualization described
in the previous section, the developer receives hints about which classes to move and
where, but nothing about what he should tackle first. Contextual information provides
a solution to this problem. It captures reasons why the class should not be re-located,
which are the clients a class has in the subject package. In other words, it describes
the “happiness” of a class.

6.1.2 The Happiness of a Class

Classes interact to perform tasks. They are naturally sociable. Therefore they are happy
when they have clients in package where they are defined. The more services a class
provides to its neighbors, the happier it is. With the locality, we detect classes whose
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misplaced, but happy to 
be in T 

(they have clients in T)

misplaced unhappy class 
(without clients in S, 

with clients in T)

Figure 6.3: Two packages and their representation in contextual information visualization.

clients belong to foreign packages. When a class is used by some foreign clients and the
neighbors are used by a complete different group, this circumstance pulls the class out.
But this information omits the reasons why the class is in the package. For instance,
there can be structural reasons supporting the placement of a class in a determined
package.

By adding size to the rectangles representing classes, the proposed visualization shows
misplaced classes and provides hints to the developer about which class re-locations
are more important than others. Figure 6.3 (p.86) depicts this situation.

6.1.3 Average Locality

We define the average locality (avloc) of a system (S) as the average locality in its pack-
ages.

Definition 7 Being S a system and P a package in S,

avloc(S) =
∑

loc(P )
| numberofpackages |

6.2 A Combinatorial Optimization Algorithm at the Ser-
vice of Software Maintenance

In 1983 Kirkpatrick et al. [S. et al., 1987] proved that the search of an optimal solution in
combinatorial optimization algorithms is analogous to a method that models the search
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of a state of balance of a solid. In the field of thermodynamics, that method is well
known as simulated annealing (SA). When using simulated annealing to make glass,
for example, the system starts at a high temperature with molecules moving randomly.
The higher the temperature, the more the molecules move. After some time the system
cools down. Eventually, it cools down enough for the molecules to form a glass, which
is the resulting solid. If the glass contains defects, the system is heated again followed
by the cooling time. This process is repeated until finding a satisfactory result, in our
example, a glass with none or with acceptable defects, or having reached a condition
to stop. Because of the analogy existing between the method that models the search of
a state of balance in a solid, and the combinatorial optimization method, the later was
named simulated annealing as well. SA is an efficient technique to find the maximum
value of a function of many independent variables. This function is usually called an
objective function. It represents a quantitative measure of the goodness of a complex
system [13], being dependent on the detailed constitution of the system. The travelling
salesman problem is a classical example of a combinatorial optimization problem. Given
a graph representing N cities and the cost of travelling between two cities, the problem
is to plan the route of the salesman visiting each city once, and minimizing the total
cost. This problem is similar to our problem of re-architecturing a system by optimizing
its design. Therefore, we apply SA to optimize the average locality of packages. However,
our interest is not in finding the optimal solution. Even if this solution could be found,
nothing guarantees that all the developers will agree that this is the ideal partitioning
of the system. Our interest is in obtaining the movement of classes around packages
that led the optimization function to be closer to the optimal value. It is a subset of
those movements that we visualize. The optimization function is then (1 - avloc), which
is based on avloc as it was defined in the previous section, and ranges between 0 and
1. In the context of thermodynamics, molecules move randomly. In the context of using
context information to re-architecture a system in software engineering, the movement
of molecules represents the movement of classes from one package to another. This
suggests the presence of constraints specific to the software system that determine
which classes can moved. Due to these constraints and for reasons of performance,
the movements in our approach are guided rather than random. Experiments giving
total freedom in choosing randomly the next package to be acted upon were inefficient.
We therefore optimized the algorithm. The modification consisted in (a) ordering the
packages according to a criterion, for instance the cohesion of the package, and (b)
restricting the permitted movements. The random movements where applied first on
those packages with lower cohesion. And a class would move to a different package only
if this package is client of the package where the class is defined.
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6.3 Validation

In order to study the effectiveness of our approach, we apply it to three real systems and
show its potential to perform common analysis tasks. Our goal is to understand the
organization of classes into packages, in an effort to detect violation of the architecture
of the system. For instance, a generally accepted principle states that code should
always exhibit low coupling and high cohesion. We aim to find visual patterns revealing
conformance or breakage of this principle. Moreover, the architecture of the system
(e.g., layered, blackboard, etc.) should be respected. In a similar way, we aim to find
visual patterns indicating a design flaw in this regard. All in all, we use our contextual
information approach, in particular, client usage, to grasp the class organization, and
to analyze package coupling and cohesion.

6.3.1 Applications

We apply the proposed contextual information approach to the following systems:

ALCHEMIST is package analysis and measurement too. It consists of 138 classes dis-
tributed into six packages.

CODECRAWLER is a small software visualization tool. It contains 244 classes dis-
tributed in eight packages and uses three more packages. CODECRAWLER was
built under the same design principles as ALCHEMIST. But while ALCHEMIST is still
heavily evolving, CODECRAWLER is already a mature tool. Figure 6.4 (p.89) shows a
locality visualization of CODECRAWLER. The uniformity of color shows a high mod-
ularization of the packages. Only three out of the eleven packages show classes of
a second color besides their own. None of the classes hinted to be relocated has
a particularly strong coupling with its neighbours (i.e. the others in the package),
indicative of good design.

BASEVISUALWORKS is an industrial system. Including library classes, it contains 2022
classes distributed into fourteen subsystems. Of those subsystems, we chose to
analyze in this example the subsystem Collections, which contains 228 classes
distributed among eight packages. Collections is strategic because it contains
the classes related to or supporting the “collection” programming structure.

See Appendix B (p.105) for more information about the case studies mentioned above.
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P Q R S T U V W X Y Z

Figure 6.4: CODECRAWLER example. Uniformity of one color in most of the packages indicates
high modularization. Only in three specific places there are potentially misplaced classes.

6.3.2 Library

Figure 6.5 (p.90) shows the locality of ALCHEMIST obtained using the contextual informa-
tion. We observe a package bigger than the rest. Q contains 86 classes, which is more
than half of the classes of the system. Most of the classes in this package are almost flat
squares, indicating low coupling among classes in this package. As an exception, there
is a tall red rectangle indicating a class with high coupling with its neighbours. The
connections are either subclassing (this class being the root), or referencing (this class
being referenced statically e.g., instantiated by the other classes in the package). The
visualization shows that there is no evidence that moving its classes to another package
it would increase the average locality of the system: all the classes painted in red are in
Q. It could be, for instance, a big library.

6.3.3 Newcomer

The visualization of ALCHEMIST shows a close relation between packages UI, Base, and
ClientFrmrkInt. In Figure 6.5 (p.90) the packages are highlighted in the bubble. AL-
CHEMIST has a layered architecture. Packages P and Base belong to the lowest layer,
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Moose
Ext Q ClientFrm

rkIntBaseUI Core

highly 
coupled 

class 
incrementing 
cohesion in Q

misplaced classes 
highly coupled in 
ClientFrmkInt

classes pulled 
towards ClientFrmkInt

Library

Newcomer
Remainer

Detail of the visualization 
of a Design Flaw

Figure 6.5: ALCHEMIST example. More than one color in a package indicates potential lack of
locality. Size of smaller rectangles represent forces pulling the class towards the package.
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and packages ClientFrmrkInt and UI in the layer immediately above. It is important
to enforce the design decision of having Base in the lowest layer because Base contains
classes used by most of the packages.

Close inspection to Base and ClientFrmrkInt in the visualization reveals a cyclic de-
pendency: ClientFrmrkInt depends on Base, and Base depends on ClientFrmrkInt.
Moreover, the small cyan (clear) rectangle in Base, indicate that ClientFrmrkInt con-
sumes services from Base; whereas the large blue (dark) rectangles in ClientFrmrkInt
are used by Base. Because we know that Base belongs to a lower layer than ClientFrmrkInt,
observing Figure 6.5 (p.90) we learn that there is a cyclic dependency between two pack-
ages belonging to different layers.

It is true that this situation could be noticed also with simpler layouts, for example
by marking explicitly the connections between packages with lines. But what our vi-
sualization shows that others do not show, is that there are forces pulling those cyan
(clear) classes towards ClientFrmrkInt and pulling two classes in ClientFrmrkInt
towards Base. Moreover, these classes in ClientFrmrkInt that are pulled away have
higher coupling with the other classes defined in ClientFrmrkInt than the average of
classes in ClientFrmrkInt (they are taller). Meaning that they are, therefore, happy
to be defined in ClientFrmrkInt. We believe that the combination of these two factors
indicates a design flaw.

Closer inspection of the code confirmed the violation of the layered architecture. As a
consequence of the later addition ClientFrmrkInt, classes in Base became clients of
those on ClientFrmrkInt, adding dependencies from a package in a lower layer (Base)
towards a package in a higher layer (ClientFrmrkInt). This situation was a conse-
quence of ClientFrmrkInt being a later add-on, and those foreign cyan (clear) classes
in UI and Base being added only to satisfy needs of the new client, ClientFrmrkInt.

6.3.4 Remainer

Continuing with Figure 6.5 (p.90), we observe that in package Core, most of the classes
have square shapes rather than rectangles, an indication of classes weakly coupled,
revealing a potentially low-cohesive package from a traditional point of view. Besides,
two of the lowest-coupled classes are pulled towards two different packages.

Inspection of the code indicated that they were obsolete classes, one implementing facil-
ities to debug the code of a class defined in MooseExtensions (therefore its blue color),
and the other an obsolete class statically referenced by the user interface defined in UI.
Once the code was analyzed, it became clear that these classes were misplaced.
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P WVUTSRQ

Friendly 
Package

Figure 6.6: Collections Example. Package U shows extremely low locality. The distribution of its
classes indicates it is completely anomalous, or a package with a special purpose.

6.3.5 Friendly

Figure 6.6 (p.92) shows the contextual information visualization of the Collections
subsystem from BASEVISUALWORKS. We observe that in packages P, R and S all the
classes have the same color, an indication of high locality in those packages. However,
in packages Q, T, U, and W the rectangles representing classes have different colors,
an indication of low locality. In summary, half of the packages in Collections have high
locality and the other have poor locality.

The structure of package U is particular: the many colors of the rectangles in of U
indicate that there are strong forces pulling its classes apart. This means that its classes
are separately accessed by a number of packages of the subsystem, concretely by four
out of the eight packages.

Packages T and W define three classes that seem to be pulled towards U (the little black
rectangles). However, two of those classes are happy to be in T. Their size, being larger
than the rest of the classes in T, indicates that they provide services to classes defined
in T.

Observed with traditional approaches based only on internal attributes, the classes in
U would expose low coupling among them, and U would indicate common low cohesion.
Context information shows how exceptional U is. Its classes are so much distributed,
that the visualization indicates an anomalous package or a package having a special
purpose. It could indicate the existence of a design decision supporting the presence
of U . With contextual information visualization showing this pattern, the developer
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is encouraged to do more investigation before doing a possible dangerous refactoring.
Analysis of code confirmed the uniqueness of U: it contains abstract classes which are
root of inheritance hierarchies contained in the neighbor packages, and must therefore
be loaded first.

6.4 Summary

The contribution of this chapter is a novel technique to analyze the locality of classes
defined in packages in large object-oriented systems. To support the analysis of locality
of classes into packages, we define a process and a visualization layout.

Traditional approaches ignore Contextual Information to convey insights about the or-
ganization of the classes into packages. This chapter shows examples where our tech-
nique detects misplaced classes from the way the classes are used. We have applied our
technique to three real systems and showed how it facilitates their understanding.

We have found four visual patterns of locality, namely Library, Newcomer, Remainer and
Friendly.
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Chapter 7

Conclusions

Managing the organization of classes into packages is crucial, as the criterion by which
these packages are built impacts in the maintainability and evolution of the system. In
particular, developers cope with system complexity by defining related classes in the
same package, since organizing classes into packages with high locality helps them to
manage the propagation of changes.

We have reviewed various approaches used to manage the organization of classes into
packages. Our research reveals that previous approaches typically focus on analysis of
the content of the package, thus missing vital information about the context that sur-
rounds the package. However, individual developers have different views of packages,
depending on the developer’s particular interest or perspective of the system to perform
his specific task. These different perspectives of packages aggravate the process of orga-
nizing classes into packages. Based on our research in related fields, we have identified
and specified several requirements to manage system modularization into packages: (a)
characterization of the interactions between packages, (b) recognition of package per-
spectives, (c) combination of package properties, (d) different levels of abstraction and
granularity.

Our solution is to manage the organization of packages by exploiting the way in which
clients use packages. We model package-context as a first class entity and argue for
the need to include contextual information in the analysis of classes, packages and
systems. By this we do not mean to neglect the value of characterizing packages by
their content, rather we complement such approaches. We enrich the perspective of a
package by considering its contextual information. We found contextual information, in
particular, client usage, to be useful because it provides us alternative views of classes
and packages.
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As a validation of our approach we have presented several analyses built on contextual
information and client usage of packages:

Package Cohesion enriched with information of client usage. It shows cohesion in
packages whose classes are used together, even when the classes contained in a
package present few relationships binding them.

Detection strategies obtained from the combination of package contextual properties.
They are rules to detect packages conforming to this rule. We have defined rules
to detect complex, core and client packages, and together with our contextual co-
hesion, we identify flawed packages, and packages conforming to design issues.

Relativity of cohesion as a package may be marked as non cohesive in isolation, but
in fact is cohesive when used by clients. A case in point are framework packages
designed to be containers of hooks for clients.

We built coarse and fine grained visualizations for package characterization to pro-
vide both first-contact insight and detailed understanding of package interaction.
Examples of these are our package polymetric views and butterfly blueprints re-
spectively. Polymetric views show amount of coupling between packages, whereas
butterfly blueprints show in detail, separated by type, the interaction between a
package and its context. The visual patterns reveal the roles played by the pack-
ages for example whether it plays the role of a client, a provider or a combination
of both.

Our Visualization of system and subsystems show butterfly blueprints grouped by the
subsystem where they belong. We detect subsystems where its packages follow
the same pattern. We observe the complete system in the same graphical view to
facilitate comparisons.

Visualization of class locality. This novel visualization exploits the magnet metaphor,
depicting forces attracting and repelling a class to its package. In the same graph-
ical view, we observe the degree of services that a class provides to other classes
defined in its package, what we refer to as the happiness of each class. This vi-
sualization reveals patterns indicating the distribution of locality, i.e., classes to
re-locate and their dependencies that are reasons for the class remain in the pack-
age where it is defined.

Semi-automatic management of class locality. We combine locality visualization and
contextual cohesion to derive class re-locations. The recommended re-locations
are obtained from the application of an optimization algorithm that is guided by a
function based on contextual cohesion.
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7.1 Discussion

Our approach supports management of the organization of classes into packages. The
analysis tasks listed in the previous section show how our model satisfies the properties
required to manage the organization of classes:

Characterization of package interaction. The entity package context holds dependencies
that form the interaction between classes in a package and classes in the rest of
the system. The techniques used in the analysis above use Contextual Information
to provide detailed information that characterizes the package.

Recognition of package perspectives Every analysis is based on the assumption of a
package being contained in a context, and described from a fixed perspective. Be-
yond the one to one relationship between a package and a package context explored
in this dissertation, Contextual Information has the potential to identify different
perspectives by allowing a package to have several package contexts (Chapter 3
(p.25)).

Combination of package properties Detailed characterization of package interaction
need to combine properties of the packages. For example, butterfly views (Chap-
ter 5 (p.61)) reveal the package role based on a combination of several dependency
types.

Different levels of abstraction and granularity The idea of characterizing a software en-
tity by how it is used by its clients should be applicable at different granularity
levels. In particular, it should be applicable both at a class and at a package level.
In the case of classes, we could consider the class as a container of attributes and
methods. In the case of systems, we could consider the system as a container of
packages. In this dissertation we have exploited Contextual Information to charac-
terize entities of different levels of granularity, namely packages and classes. For
example, butterfly blueprints (Chapter 5 (p.61)) describe subsystems by the pack-
ages that they contain, and the visualization of class happiness (Chapter 6 (p.83))
describes the client usage of a class by other classes in the package. The ap-
plication of all the techniques presented in this dissertation to different levels of
granularity is, however, an open issue.

7.2 Open Issues

Most of the novel techniques presented in this dissertation exploit dependencies be-
tween classes, which can be of type inherits, accesses, references, and sends. However,
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beyond the types of dependencies explored in our research, there are further types of
dependencies that connect packages, for example class extensions (a way to incremen-
tally modify existing classes alternative to subclassing, mentioned in Chapter 2 (p.7)).
We believe that by extending and refining the techniques presented in this work with
new dependency types, there is potential to achieve a even more expressive means to
characterize a system.

Furthermore, we have observed that computing cohesion derived from client usage
requires a certain degree of modularity in the system. We would like to derive im-
proved measures for contextual cohesion that overcome, at least in part, this shortcom-
ing.

We have shown that packages offer different views according to the perspective under
which they are observed, and we have mentioned the need to understand packages in
their context, rather than characterizing it in an absolute way. However, our analysis
does not exhaustively analyze the effect of every possible perspective in the package
characterization. We believe that the introduction of package-context opens a new per-
spective on how to obtain realistic results characterizing systems. Old cohesion mea-
sures are too limited to detect cohesion in packages when classes belong together, but
have few connections among them. We have observed that properties derived from the
package together with the package’s context are equally important to internal attributes
of the package. As example, we put analysis of package cohesion, where a package con-
sidered non cohesive when observed in isolation proves to be cohesive when analyzed in
its context, for instance used by its clients.

We have exploited client usage for packages and classes. However, we believe that our fo-
cus on client usage of packages and our explicit representation of this as an attribute to
describe the package is applicable to different levels of granularity of a software system.
At a coarse level of granularity, the system could be considered as the encompassing
entity. A more fine-grained perspective could be obtained by applying our approach at
the class level. As a result, there is potential to apply cohesion obtained from usage
exploitation, detection strategies combining usage properties, and the visualizations ex-
plored in this research in different levels of granularity.

7.3 Lessons Learned

Our approach appears to violate the generally accepted image that cohesion has to be
computed considering exclusively the contents of the package. We have learned that to
capture the degree to which classes belong to a package, sometimes we need to step back
and look at the package from the outside, rather than focusing on its contents.
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During this work we have observed how relative it is to catalogue packages as cohesive
or not cohesive, and that to attempt to classify software entities as “good” or “bad”
is useless and naive. We acknowledge the different views of packages. Our approach
helps a developer to understand object-oriented systems by allowing him to interactively
investigate locality from his own perspective.

We have learned the importance of adopting a flexible approach to package analysis. Our
complementary techniques help developers to get an overview of the system initially, and
then to focus on crucial areas.

Searching to understand the complex net of interaction between software entities is a
characterization in itself. Graphics views of those interactions reveal the role of entities.
In fact, searching to understand those interactions revealed the model basis of our
analysis, and solutions to the problem of managing program modularity.

We recognized the value of making the context of a package explicit. By having a
package-context entity we were able to remove an excessive load of responsibilities on
the entity representing a package, and to explicitly characterize a package by its inter-
action with its context. From an implementation point of view, we obtained a clearer
distribution of responsibilities and simpler algorithms to answer our research questions
about coupling.
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Appendix A

Alchemist: Organizing Classes
into Packages

We implemented our model to support analysis of contextual information in our tool
called ALCHEMIST. Based on our meta model, ALCHEMIST is a package analysis and
metrics tool that bridges the gap between the specification of our model, and the analy-
ses presented in this dissertation. It offers a space to recognize packages perspectives,
and to represent in a uniform way the structural and context-based properties of a
package.

ALCHEMIST is based on the MOOSE reengineering environment. In this appendix, we
show the position of ALCHEMIST in the reengineering environment.

A.1 Architectural Overview

ALCHEMIST is a package analysis tool built on a dynamic reengineering environment
named MOOSE [Ducasse et al., 2005a; Nierstrasz et al., 2005]. MOOSE can store multiple
models, providing the underlying foundation to hold multiple package contexts.

A meta-model describes the way the system can be represented. MOOSE is implements
the FAMIX language independent meta-model [Demeyer et al., 2001]. At the core of
ALCHEMIST is the implementation of Contextual Information, which is an extension of
FAMIX. In particular, this foundation of our model gave us the possibility, to re-locate
classes without actually effecting the code. We can, therefore, analyze the locality of
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Polymetric
Views

Alchemist

Model 
Inspector

Moose

Mondrian

Butterfly 
Blueprints

Smalltalk / Base Visual Works
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Figure A.1: Position of ALCHEMIST in the overall architecture of MOOSE. Different tools have
been developed on top of MOOSE. ALCHEMIST, our analysis tool, uses some of those tools. It
also accesses the model repository of MOOSE that stores multiple models of the analyzed systems.
MOOSE imports source code written in different languages. ALCHEMIST extends the FAMIX meta-
model with Contextual Information.

packages as if classes were re-located without the need to move a class from one pack-
age to another.

Figure A.1 (p.102) shows the position of ALCHEMIST in the overall architecture of the
MOOSE reengineering environment. The systems to be analyzed can be implemented in
different languages, for example Java, Smalltalk, and C++. An import/export interface
imports the source code of the analyzed systems into the model repository of MOOSE.
ALCHEMIST exploits basic analysis tools available in MOOSE and manipulates FAMIX
objects representing objects of the real source code.

MOOSE and most of the tools built on top of it have been developed using the BASE-
VISUALWORKS (Appendix B (p.105)), an environment to program in the Smalltalk pro-
gramming language. In Smalltalk all objects are always available. Often during analysis
we need to query specific objects. Smalltalk contributes to the success of the analyses
by giving us the possibility to query objects in a flexible way.
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A.2 Integrating ALCHEMIST

MOOSE makes the meta-model explicit, which facilitates the development of tools that
cooperate. In particular, the meta-modeling framework offered by MOOSE gives us the
possibility to combine software measures and visualizations offered by different tools.
As mentioned before, ALCHEMIST is built on MOOSE. It is also integrated with other tools
named CODECRAWLER and MONDRIAN.

ALCHEMIST uses CODECRAWLER to generate the Polymetric View (Chapter 5 (p.61)). Typ-
ically, CODECRAWLER maps entities to nodes and relationships to edges. In the case of
ALCHEMIST, packages map to nodes and dependencies between packages map to edges.
The nodes have different sizes, representing the values of different measures applied to
packages.

We also use a tool named MONDRIAN [Meyer et al., 2006] to build butterfly blueprints
(see Chapter 5 (p.61)). In this case, the butterfly views are built as objects in ALCHEMIST,
and handled to MONDRIAN together with the desired layout.

A.3 Summary

ALCHEMIST is a package analysis and metrics tool built on MOOSE, a reengineering
environment. MOOSE facilitates the integration of tools by making the meta-model ex-
plicit. By default, MOOSE implements the FAMIX meta-model. ALCHEMIST extends the
FAMIX meta-model with contextual information. Besides, several tools are built on top
of MOOSE. ALCHEMIST integrates with two of those tools to achieve the analysis tech-
niques explained in this dissertation.
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Applications used in Case
Studies

CODECRAWLER

description CODECRAWLER is a small software visualization tool [Lanza and Ducasse,
2003]1 CODECRAWLER relies on a graph model.

why is it interesting: It serves to illustrate examples in detail.

number of packages: 8

number of classes: 1402

number of LOC: 9088

BASEVISUALWORKS

description BASEVISUALWORKS [VisualWorks, 2003] is a large portion of the Cincom
VisualWorks Smalltalk environment2. It is an industrial system, developed over the
last 15 years. It defines all the runtime entities of a smalltalk environment (classes,
methods, strings, characters, collections, graphical display, memory objects) but also
the compiler framework, the coding tools (debugger, code browsers), the OS support
and all the widgets offered by the graphical framework.

why is it interesting: It is a large industrial system

1See http://www.iam.unibe.ch/ scg/Research/CodeCrawler/ for more information.
2See http://www.cincomsmalltalk.com for more information.
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number of packages: 91

number of classes: 9088

number of LOC: 262660

ALCHEMIST

why is it interesting: It’s design decisions and implementation is well know to the author
of this work.

number of packages: 8

number of classes:

number of LOC:

MOOSE

why is it interesting:

number of packages: 8

number of classes:

number of LOC:

ARGOUML

why is it interesting: ARGOUML is a UML design tool written in Java.

number of packages: 29

number of classes: 1095

number of LOC:
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lightweight visual approach to reverse engineering. IEEE Transactions on Software
Engineering, 29(9):782–795, September 2003.

[Lientz and Swanson, 1980] Bennett Lientz and Burton Swanson. Software Mainte-
nance Management. Addison Wesley, Boston, MA, 1980.

[Mancoridis and Mitchell, 1998] Spiros Mancoridis and Brian S. Mitchell. Using Au-
tomatic Clustering to produce High-Level System Organizations of Source Code. In
Proceedings of IWPC ’98 (International Workshop on Program Comprehension). IEEE
Computer Society Press, 1998.

[Mancoridis et al., 1999] Spiros Mancoridis, Brian S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: A Clustering Tool for the Recovery and Maintenance of Software
System Structures. In Proceedings of ICSM ’99 (International Conference on Software
Maintenance), Oxford, England, 1999. IEEE Computer Society Press.

[Marinescu, 2002] Radu Marinescu. Measurement and Quality in Object-Oriented De-
sign. PhD thesis, Department of Computer Science, Politehnica University of
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