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Abstract

Reflective applications are able to query and manipulate the structure and behav-
ior of a running system. This is essential for highly dynamic software that needs
to interact with objects whose structure and behavior are not known when the ap-
plication is written. Software analysis tools, like debuggers, are a typical example.
Oddly, although reflection essentially concerns run-time entities, reflective appli-
cations tend to focus on static abstractions, like classes and methods, rather than
objects. This is phenomenon we call the object paradox, which makes developers less
effective by drawing their attention away from run-time objects.
To counteract this phenomenon, we propose a purely object-centric approach to re-
flection. Reflective mechanisms provide object-specific capabilities as another fea-
ture. Object-centric reflection proposes to turn this around and put object-specific
capabilities as the central reflection mechanism. This change in the reflection archi-
tecture allows a unification of various reflection mechanisms and a solution to the
object paradox.
We introduce Bifröst, an object-centric reflective system based on first-class meta-
objects. Through a series of practical examples we demonstrate how object-centric
reflection mitigates the object paradox by avoiding the need to reflect on static ab-
stractions. We survey existing approaches to reflection to establish key requirements
in the domain, and we show that an object-centric approach simplifies the meta-level
and allows a unification of the reflection field. We demonstrate how development it-
self is enhanced with this new approach: talents are dynamically composable units of
reuse, and object-centric debugging prevents the object paradox when debugging. We
also demonstrate how software analysis is benefited by object-centric reflection with
Chameleon, a framework for building object-centric analysis tools and MetaSpy, a
domain-specific profiler.
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Chapter 1

Introduction

A reflective computational system is capable of inspecting, manipulating and alter-
ing its representation of itself [Smith, 1982]. Reflection is commonly used to imple-
ment development tools such as debuggers and profilers, and to realize run-time
adaptations for highly dynamic applications that, for example, must generate user
interfaces at run-time. A reflective system can be divided into two levels: the base
level, which is concerned with the application domain, and the meta-level, which
encompasses the self-representation. These levels are causally connected, so any
modification to one level affects any further computation on the other level. There
are two types of reflection: structural reflection is concerned with the manipulation
of structural elements of a program while behavioral reflection is concerned with the
manipulation of the abstractions which govern the execution of a program. These
structural and behavioral abstractions can be queried (introspection) and changed
(intercession) from within the running system.

Reflective applications are able to query and manipulate the structure and behavior
of a running system. This is essential for highly dynamic applications that need to
interact with objects whose structure and behavior are unknown when the applica-
tion is written.

1.1 Reflection Requirements

In recent years researchers have worked on the idea of applying traditional engi-
neering techniques to the meta-level while attempting to solve various practical
problems motivated by applications [McAffer, 1996]. These approaches, however,
offer specialized solutions arising from the perspective of particular use cases. We
have analyzed these approaches and identified six distinct and key requirements
for a meta-level architecture. These requirements are supported only partially by
existing approaches:

1. Partial Reflection makes reflective facilities available only in selected places
where needed. This avoids the inherent inefficiency of a fully reflective sys-
tem [Ibrahim, 1991; Kiczales et al., 1991; Tanter et al., 2003].

1
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2. Selective Reification refers to the ability to define which reifications should be
active from a temporal and spatial point of view. Selective reification extends
partial reflection to allow reifications to be dynamically defined [Ferber, 1989;
Gowing and Cahill, 1996; Redmond and Cahill, 2002; Redmond and Cahill,
2000].

3. Unanticipated Changes enable reflection on a running system without the need
to define statically and up-front where and when reflection is needed [Red-
mond and Cahill, 2002; Redmond and Cahill, 2000; Denker, 2008; Denker et
al., 2007].

4. Runtime Integration refers to a meta-environment that runs at the same level
as the application code, i.e., not in the interpreter of the host language [Tanter
et al., 2003; Denker, 2008; Bouraqadi, 2004].

5. Meta-level Composition enables the combination of meta-level abstractions due
to multiple adaptations taking place on the same base-level abstractions [Tan-
ter, 2006; Bobrow et al., 1988; Kiczales et al., 1991; Redmond and Cahill, 2002;
Redmond and Cahill, 2000].

6. Scoped Reflection makes reflective changes only visible in specific contexts; out-
side these contexts the changes are not present [Chiba et al., 1996; Aracic et al.,
2006; Denker et al., 2008; Tanter, 2009].

No current approach supports all of these requirements. This is problematic because
certain problems can be solved by some approaches and not by others.

1.2 The Problem

Object-oriented languages and methods encourage the design of software systems
in terms of interacting and collaborating objects. Developers of object-oriented ap-
plications, however, spend most of their time interacting not with objects, but with
purely static abstractions, namely classes and methods in the form of source code.
Integrated development environments and related tools tend to focus on the static
source code rather than on the running system. We can also observe this problem in
the area of reflection. Development tools, like debuggers and profilers, are classical
tools that must use some form of reflection to interact with arbitrary applications.
Although the goal of reflection is to enable run-time adaptation, reflective mech-
anisms tend to focus on representation of static artifacts, i.e., related to the source
code, rather than on the run-time entities, i.e., the objects. When we look deeper
into how languages implement reflective applications we observe a chronic pattern
to move away from the runtime abstractions towards static ones.

This is a problem since the developer needs to express his needs in terms of the
object’s static representation instead of directly reflecting on the object. There is an
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unnecessary indirection through objects’ static representations to reflect on these
objects. Next we will analyze three examples to clarify this statment.

Debugging

Debugging is formally the process of finding and reducing the number of defects in
a computer program, thus making it behave as expected. More broadly, however,
debugging is the process of interacting with a running software system to test and
understand its current behavior. Software developers frequently turn to debuggers
to obtain insight into parts of a running system before attempting to change it, rather
than to remove defects. Similarly, in test-driven development [Beck, 2002], debug-
gers are frequently used as a development tool to identify those parts of the system
that need to be implemented next.

Traditional debuggers are focused on the execution stack. The developer identifies
parts of the source code of interest and sets breakpoints accordingly. The software
then runs until a breakpoint is reached, and the developer can then inspect and in-
teract with the code and entities in the scope of the breakpoint. Unfortunately this
process is ill-matched to typical development tasks. Breakpoints are set purely with
respect to static abstractions, rather than to specific objects of the running system.
As a consequence, identifying the right place to set breakpoints in the source code
requires a deep understanding of what happens during the execution. Second, de-
bugging operations are focused on the execution stack, rather than on the objects.
There exists therefore a considerable conceptual gap between the interface offered
by the debugger and the questions of interest by the developer. In the debugger we
deal with objects constantly, but when we need to execute a debugging action we
jump out of the runtime environment into the static abstractions.

By forcing developers to work with static abstractions, they become less effective in
debugging.

Profiling

Current application profilers are used to gather runtime data (e.g., method invo-
cations, method coverage, call trees, code coverage, memory consumption) from
the static code model offered by the programming language (e.g., packages, classes,
methods, statements). This is an effective approach when the low-level source code
has to be profiled.

However, traditional profilers are far less useful for a domain different than the
code model. In modern software there is a significant gap between the model of-
fered by the execution platform and the model of the actually running application.

3



Chapter 1 Introduction

The proliferation of meta-models and domain-specific languages brings new ab-
stractions that map to the underlying execution platform in non-trivial ways. Tra-
ditional profiling tools fail to display relevant information in the presence of such
abstractions.
Execution sampling approximates the time spent in an application’s methods by
periodically stopping a program and recording the current set of methods under
execution. Such a profiling technique is relatively accurate since it has little impact
on the overall execution. This sampling technique is used by almost all mainstream
profilers, such as JProfiler, YourKit, xprof [Gupta and Hwu, 1992], and hprof.
Traditional execution sampling profilers center their result on the frames of the exe-
cution stack and completely ignore the identity of the object that is the target of the
method call and its arguments. As a consequence, it is hard to track down which
objects cause the performance slowdown that triggered the profile. For the exam-
ple above, the traditional profiler states how much time was used by a particular
method in a class without saying which objects were actually involved.
Traditional profilers provide static-related information that is suboptimal for finding
the time consumed by each object.

Feature Analysis

A feature represents a functional requirement fulfilled by a system. Since many
maintenance tasks are expressed in terms of features, it is important to establish the
correspondence between a feature and its implementation in source code.
Many researchers have recognized the importance of centering reverse engineering
activities around a system’s behavior, in particular, around features [Eisenbarth et
al., 2003; Kothari et al., 2006; Salah and Mancoridis, 2004]. Bugs and change requests
are usually expressed in terms of a system’s features, thus knowledge of a system’s
features is particularly useful for maintenance [Mehta and Heineman, 2002].
Features are abstract notions, normally not explicitly represented in source code or
elsewhere in the system. Therefore, to leverage feature information, we need to
perform feature analysis to establish which portions of source code implements a
particular feature. Most existing feature analysis approaches [Salah and Mancoridis,
2004; Kothari et al., 2006] capture traces of method events that occur while exercising
a feature and subsequently perform post-mortem analysis on the resulting feature
traces.
A post-mortem feature analysis implies a level of indirection from a running system.
This makes it more difficult to correlate features and the relevant parts of a running
system. We lose the advantage of interactive, immediate feedback which we would
obtain by directly observing the effects of exercising a feature. Post-mortem anal-
ysis does not exploit the implicit knowledge of a user performing acceptance test-
ing. Certain subtleties are often only communicated to the system developer when
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the user experiences how the system works while exercising the features. These
approaches typically generate large amounts of data to analyze. Due to their static
nature, these approaches do not support incremental and interactive analysis of fea-
tures. Clearly, in this case, a model-at-runtime of features, with the added ability to
“grow” the feature representation as the user exercises variants of the same feature
offers advantages of context and comprehension over a one-off capture of a feature
representation and post-mortem analysis.

1.3 Problem Statement

These three examples offer a glimpse of the general sate when developing reflec-
tive applications. In the case of feature analysis the approach is defined as a purely
static problem, since we need to detect which source entities were executed. How-
ever, as we showed in live-feature analysis [Denker et al., 2010] approach, having a
purely dynamic approach to feature analysis delivers important advantages. Profil-
ing is a dynamic problem which is generally solved statically. Domain-Specific pro-
filing [Ressia et al., 2012b] showed that profiling and providing information about
dynamic abstraction is more meaningful to the developer. The debugging case is
paradigmatic in the sense that it clearly shows an unnecessary jump out of the run-
time environment. When debugging, many developer questions are targeted to the
live objects not to their static representation. These examples show different levels
of static approaches to dynamic reflection problems, however, to solve this problem
we required a brand new approach to reflection.

Researchers have detected a similar problem in the realm of IDEs. Due to the nar-
row focus of IDEs on static source perspectives, most of dynamic relationships be-
tween source artifacts remain unclear, obscure or simply invisible to the developer
while using the static perspectives of IDEs [Röthlisberger, 2010]. In short, traditional
IDEs lack dynamic information in their usually purely static source perspectives.
Object-oriented language features such as late-binding, inheritance, or polymor-
phism, usually lead to distributed and scattered code which is hard to understand by
just focusing on static source artifacts and static relationships between these artifacts
[Demeyer et al., 2003; Dunsmore et al., 2000; Wilde and Huitt, 1992; Nielson, 1989;
Hamou-Lhadj et al., 2005]. Often it is not possible to identify and locate concep-
tually related code in the static source space as many relationships are purely dy-
namic and thus only present at runtime [Nielson, 1989; Nielsen and Richards, 1989;
Dunsmore et al., 2000].

Providing dynamic information to enhance the IDEs’ purely static source perspec-
tive is important. However, for some problems like feature analysis, debugging and
profiling it is not enough with dynamic information. Why do we analyze the run-
time abstractions from a dynamically enhanced source code perspective when we
can directly deal with runtime objects? IDEs make heavy use of reflection to achieve
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their goals. Most programming languages present reflective mechanisms for in-
specting and modifying the internals of the language itself. Even though some of
these mechanisms are highly flexible and capable of changing the behavior of single
objects, reflective applications built on top of them fail to embrace the full dynam-
icity that is required in some cases. The main problem is not what extra dynamic
information the IDE provides to the user, the main problem is that if we want to an-
alyze the runtime we must do it directly looking at objects. IDEs rely on reflective
mechanisms which are targeted to the wrong abstractions.
We call this problem the object paradox: although object-oriented developers are sup-
posed to think in terms of objects, the tools and environments they use mostly pre-
vent this. As we have seen in the previous examples runtime objects are not the
first options from a tool perspective. The object paradox makes us less effective as
developers. A developer needs to understand the run-time behavior of interact-
ing objects in order to reason about the effects of changes to the system, but the IDE
presents only static abstractions, such as classes and their specialization hierarchies,
or methods and source code. This gap forces the user to adapt the system with ad
hoc methods, like conditional breakpoints in debugging, for avoiding the paradox.
Thus rendering the user less efficient than he could actually be.
We can also observe the object paradox in the area of reflection. Reflection is needed
wherever an application must deal at run time with objects that are unknown to it
at compile time. A reflective application, for example, may dynamically generate a
graphical user interface for an object whose structure and behavior is loaded at run
time. Development tools, like debuggers and profilers, are classical tools that must
use some form of reflection to interact with arbitrary applications. Although the goal
of reflection is to enable run-time adaptation, reflective mechanisms tend to focus
on representation of static artifacts, i.e., related to the source code, rather than on
the run-time entities, i.e., the objects. Reflection mechanisms are not object-centric
per se forcing the developer to move away from the runtime. Moreover reflection
mechanisms do not provide a unified approach thus forcing the user to deal with
several different techniques to introspect and intersect and application.
Reflective systems prioritizing static mechanisms over object reflection present a gap
between the user needs and what the reflective systems provides. Thus, the user is
less efficient since he has to introduce ad hoc changes to steer the reflective systems
to solve its object-specific needs.

1.4 Challenges

The challenges that we face in the reflection domain are:

Reflection Targeted Abstractions. To close the gap between the developer’s needs
and the reflection mechanism objects must be the central target of reflection
changes. Since the static representation like classes and source code are also
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objects in the system, traditional reflection on these abstractions is also achiev-
able.

Unified Reflection Approach. A fully general approach to reflection must support the
reflection requirements: partial reflection, selective reifications, unanticipated
changes, runtime integration, meta-level composition and scoped reflection.

Uniform Reflection Approach. The mechanism for adapting objects should be con-
sistent. It is extremely undesirable to have various reflection mechanisms de-
pending on the objects being reflected on.

1.5 Thesis Statement

We state our thesis as follows:

Thesis
To overcome the object paradox while providing a unified and uniform solution
to the key reflection requirements we need an object-centric reflective system
which targets specific objects as the central reflection mechanism through ex-
plicit meta-objects.

1.6 Our Solution in a Nutshell

This dissertation tackles the object paradox in the reflection domain. We present
Bifröst, an object-centric reflective system that offers fine-grained unanticipated dy-
namic structural and behavioral reflection based on explicit meta-objects. Reflec-
tive changes are object-centric, meta-objects are tailored to specific objects. Explicit
meta-objects allow us to provide a range of reflective features and thereby evolve
both application models and the host language at run-time. Furthermore, by sim-
plifying the meta-level, Bifröst offers a unified approach to reflection.

Organizing the metal-level behavior into meta-objects has been extensibly researched
and it is area known as Meta-object architecture [Maes, 1987b; Maes, 1987a]. What
this thesis proposes as new is the purely reflective object-centric Bifröst approach. We
are not claiming that by only having a mechanism for applying reflective changes on
specific objects we can solve the previously presented problems. Several reflective
techniques like MOPs CLOS, Ruby, Smalltalk anonymous classes and dynamic as-
pect are already capable of doing that (refer to Chapter 2 for further details). We
claim that reflective changes should only be targeted to objects, they should be
object-centric, then more complex meta-level abstractions like classes, prototypes,
mixins, traits, can be built upon this. Bifröst only allows the user to change single
objects’ structure and behavior by making objects the central actors. Thus, we are
capable of perceiving known problems like feature analysis, profiling, debugging
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and scoped reflection from a completely different point of view. Previous solutions
thought to be dynamic are shown to be partially static. This new meta-object adap-
tation enhances the capacity of the user on top of his objects’ domain.

The Bifröst model provides an object-centric approach while supporting the main
reflection requirements.

• Partial Reflection. Bifröst allows meta-objects to be bound to any object in the
system thus reflecting selected parts of an application.

• Selective Reification. When and where a particular reification should be reified
is managed by the various meta-objects.

• Unanticipated Changes. At any point in time a meta-object may be bound to
any object thus supporting unanticipated changes.

• Runtime Integration. Bifröst reflective model lives entirely in the language
model, so there is no VM modification or low level adaptation required.

• Meta-level Composition. Composable meta-objects provide the means to bring
together different adaptations.

• Scoped Reflection. Meta-objects reflective changes can be scoped to particular
dynamic extents and conditions.

Figure 1.1 depicts the layered architecture of the Bifröst and displays the chapters
in which the respective parts are discussed.

...

Chapter 7 and Chapter 8:
Applications

.

Chapter 9:

.

Chapter 5:
Talents

.

Chapter 6:
Chameleon

.

Chapter 3 and Chapter 4:
Object-Centric Reflection

.
Host Environment

...
Figure 1.1: The architecture of Bifröst reflective system.

Host Environment. At the lowest layer we have the host language and its tools. In
our case, this is Pharo Smalltalk [Black et al., 2009], a dynamically typed object-
oriented programming language with an integrated development environ-
ment. While Smalltalk [Goldberg and Robson, 1989] has proven to be a good
practical choice for Bifröst it is not a requirement.
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Bifröst. The layer above the host environment is the core of the Bifröst system. This
layer provides the necessary hooks into the host language compiler and the
tools supplied with the development environment. Bifröst realizes a simple
meta-object architecture where reflective changes are object-centric. Meta-
objects can be applied to single specific objects, unanticipatedly, selectively
reifying runtime abstractions and composed to form more complex meta-level
abstractions and adaptations.

Talents. Talents are object-specific units of reuse that model features that an object
can acquire at run-time. Like a trait [Schärli et al., 2003; Ducasse et al., 2006b],
a talent represents a set of methods that constitute part of the behavior of an
object. Unlike traits, talents can be acquired (or lost) dynamically. When a
talent is applied to an object, no other instance of the object’s class is affected.
Talents may be composed of other talents, and, as with traits, the composi-
tion order is irrelevant. Conflicts must be explicitly resolved. Talents are built
on top of Bifröst’s structural meta-objects. Talents address the object-centric
structural reflection domain, in particular, they address all the reflection re-
quirements but scoped reflection.

Chameleon. Chameleon provides a full operational decomposition [McAffer, 1996]
of the meta-level, separating instrumentation from analysis with the help of
explicit meta-level events. The meta-level’s behavioral model is simplified
by offering a single canonical event which models the execution of an ab-
stract syntax tree (AST) node. Any other object-related event can be expressed
in terms of this canonical event. Objects in an application are instrumented
to reify meta-level events. Analysis tools select which events to observe for
the purpose of profiling, logging, coverage, etc. Chameleon is built on top of
Bifröst’s behavioral meta-objects. Chameleon addresses object-centric behav-
ioral reflection, it supports all the reflection requirements but scoped reflec-
tion.

Prisma. Prisma, an approach to support dynamic, scoped, and live reflection on running
systems. By using and extending Bifröst meta-objects Prisma addresses the
scoped reflection requirement. The central idea of Prisma is to dynamically
install reflective meta-objects on the objects reached by a running software
system to adapt their behavior. Prisma’s meta-objects are scoped to individ-
ual objects and threads, though their scope can be enlarged to whole classes or
other threads if needed. The dynamic scope is reified thus allowing the user
to reflect upon and adapt the scope itself. Multiple adaptations can be simul-
taneously installed to enable multiple non-interfering analyses. Meta-objects
are responsible for deciding which should be the behavior and structure of an
object under a specific dynamic scope. Installation is decoupled from dein-
stallation, so adaptations can be retained to support long-lived, iterative and
incremental analyses.

Tools. On the top layer reflective applications can be defined taking advantage of
Bifröst object-centric reflection approach. For example MetaSpy [Ressia et al.,
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2012b] is a domain-specific profiler which closes the gap between the domain
and the profiler information. Object-centric debugging [Ressia et al., 2012a]
provides the developer with object-centric actions for dealing directly with
runtime objects instead of having to translate the developer needs to the static
domain with conditional breakpoint or similar constructs. We developed all
these tools on top of Bifröst’s object-centric reflection approach. Debugging
and profiling are canonical examples of applications of reflection. Debugging
is directly related to the development scope, moreover, it is an interesting
example since runtime execution, development and live interaction come to-
gether. Profiling is a typical examples of dynamic application analysis.

1.7 Contributions

The main contributions of this dissertation are:

1. We present Bifröst, an object-centric reflection approach which overcomes the
object paradox. Bifröst models meta-objects explicitly, exclusively targeting
objects as the sole reflective change unit. This model provides a unification
of different reflection approaches while solving the most important reflection
requirements: partial reflection, selective reifications, unanticipated changes,
runtime integration, meta-level composition and scoped reflection [Ressia et
al., 2010].

2. We propose Talents, a new approach that deals with reuse at the object level
and that supports behavioral and state composition. We introduce a new ab-
straction called a talent which models behavior and state that are shared be-
tween objects of different class hierarchies. Talents provide a composition
mechanism that is as flexible as that of traits but which is dynamic [Ressia et
al., 2011].

3. We demonstrate Chameleon, a tool modeling the meta-level as explicit meta-
events observable by development tools. Chameleon provides an operational
decomposition of the meta-level. Instrumentation is dedicated to generating
meta-events, and is fully separated from analysis tools which selectively sub-
scribe to these events by applying the observer pattern at the meta-level.

4. We present Prisma, an approach to support dynamic, scoped, and live reflection on
running systems. Prisma dynamically installs reflective meta-objects on the ob-
jects reached by a running software system to adapt their behavior. Prisma’s
meta-objects are scoped to individual objects and threads, though their scope
can be enlarged to whole classes or other threads if needed. The dynamic
scope is reified thus allowing the user to reflect upon and adapt the scope
itself.
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The following list details the contributions with some extended case studies, which
serve as the validation of our approach:

Domain-specific profiling. We presented MetaSpy, a framework for defining domain-
specific profilers. We also presented three real-world case-studies showing
how MetaSpy fulfills the domain-specific profiler requirements. The use of
Bifröst makes it possible to instrument specific objects to provide runtime ab-
stractions related to profiling information [Ressia et al., 2012b].

Object-centric debugging. We close the gap between developers’ questions and the
debugging tool by shifting the focus in the debugger from the execution stack
to individual objects. The essence of object-centric debugging is to let the user
perform operations directly on the objects involved in a computation, instead
of performing operations on the execution stack. Bifröst’s meta-object were
used to apply object-specific breakpoints dynamically to drive the debugger
from within the runtime environment [Ressia et al., 2012a].

Scoped back-in-time debugger. This technique allows developers to step both for-
ward and backward through an entire execution run. We show how the object-
flow analysis approach to back-in-time debugging, previously supported by
VM modifications, is easily implemented using Prisma’s scoped meta-objects.

Scoped live-feature analysis. Software artifacts that implement a given feature are
identified by instrumenting the system and exercising those features. By us-
ing Prisma we avoid the need to statically instrument the entire system. Fur-
thermore, multiple features can be exercised at the same time, since Prisma
scopes the effect of adaptations to individual execution runs.

1.8 Outline

The dissertation is structured as follows:

Chapter 2 discusses the related work of this thesis. We present various approaches
to reflection and analyze their characteristics.

Chapter 3 presents the object-centric reflection model and explains how explicit meta-
objects can be used to provide object-centric reflection.

Chapter 4 introduces the Bifröst object-centric reflection implementation and vali-
dates this model through a series of examples.

Chapter 5 presents dynamically composable units of reuse called talents.
Chapter 6 introduces an operational decompostion of the meta-level called Chame-

leon.
Chapter 7 presents MetaSpy, a domain-specific profiler which brings profiling re-

sults closer to the domain being analyzed.
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Chapter 8 introduces a new debugging technique called object-centric debugging.
Developers do not have to leave the runtime environment when debugging
by using object specific actions.

Chapter 9 demonstrate how Bifröst meta-objects reflective changes can be scoped to
dynamic extents with Prisma.

Chapter 10 outlines our conclusions and identifies future work.
Appendix A describes how to get started with Bifröst and the related tools.

Figure 1.2 displays schematically the chapters and the problem space they cover.
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Chapter 2

Reflection State Of The Art

In this section we survey the evolution of reflective facilities in various program-
ming languages. We present the applications of reflection. We summarize the practi-
cal problems each new reflection approach has been designed to tackle. We demon-
strate that no approach solves all reflection requirements. Finally, we show that
object-specific reflection is seen as a particular case of the reflection problem instead
of being the central reflection mechanism. This is one of the main reasons why the
object paradox is present in the reflection domain.

2.1 Applications of Reflection

Nowadays object-oriented languages and environment use heavily reflection. There
are two main groups of reflective applications in these languages: program analysis
and development.

Program Analysis. These applications use reflection for querying a system either
from a static or dynamic point of view. Examples of these applications are:
code coverage, profiling, feature analysis, metrics, etc.

Development. This group of applications use reflection to enhance or modify the
way developments is being done. For example source code browsers and ed-
itors help the developer to have an enhanced view on the application. On the
other hand debugging, code generation, dynamic testing, mock generation,
parallelization, database mappings, etc., allow the user to interact with the
system from a dynamic point of view. Finally, language extensions like traits
or mixins are reflection applications that allow the language to evolve.

In this dissertation we use canonical reflection applications to demonstrate our points
of view. From program analyses we use feature analysis and profiling two tradi-
tional and highly used examples in the domain. From development we use debug-
ging, a very special reflection application since it is one of the most used develop-
ment tools and mixes the static point of view with the dynamic execution of the
application.
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2.2 Reflection Dimensions

Numerous approaches to reflection have been developed over the years, each of
which addresses a different domain of reflection. In this section we analyze the
different dimensions that can be used to categorize a reflective system.

2.2.1 Definition

A reflective system is a system which incorporates causally connected structures
representing (aspects of) itself [Maes, 1987b]. A system is said to be causally con-
nected to its domain if the internal structures and the domain they represent are
linked in such a way that if one of them changes, this leads to a corresponding effect
of the other. A reflective language thus has a representation of its own structure and
behavior available from within. The representation changes if the language changes
and vice versa. It is always in sync with the system itself. Therefore, the represen-
tation can be queried and it can even be changed.

Many programming languages provide mechanisms to query a representation of
the system, known as introspection. Intercession is the mechanisms that allows a
programming language to change the representation of itself. Only when we can
both query and change the representation, we call the system reflective.

2.2.2 Elements

The literature splits reflection into two large categories [Ferber, 1989]: structural re-
flection is concerned with the manipulation of structural elements of a program while
behavioral reflection is concerned with the manipulation of the abstractions which
govern the execution of a program. In an object-oriented language adding a method
or adding an instance variable to a class is an example of structural reflection. Be-
havioral reflection could for instance give access to base-level operations such as
method calls, instance variables accesses, as well as the state of execution.

Behavioral and structural reflection can be seen on the one hand as orthogonal con-
cepts: a language can provide functionality for behavioral or structural reflection
or both. On the other hand, they are connected: any change of structure leads to a
change of behavior and any behavioral change needs to change structure at some
level.

As a structural change can be used to change behavior, structural reflection can
serve as the basis for behavioral reflection. One example for this is MethodWrap-
pers [Brant et al., 1998], which allows methods to be wrapped to execute additional
code before or after the method. Another example is Reflex [Tanter et al., 2003] which
realizes behavioral reflection by transforming bytecode.
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2.2.3 Models

Two core models of object-oriented structural reflection have been proposed in the
past, one based on meta-classes, i.e., classes whose instances are classes, and the other
on meta-objects, i.e., objects that describe or manipulate other objects. Languages
based on these models traditionally provide support for reflecting on a fixed set of
language constructs. A third model diverges from the previous two because it reifies
the action of sending a message, thus it is closer to behavioral reflection.

Meta-class Model. In this model the class of an object is considered to be its meta-
object, since it is responsible for defining its structure and behavior. Every
class is an instance of a meta-class. Since meta-classes specify the structure
and behavior of classes, they are the meta-objects of classes. Some variants
of this model enforce all classes to be instances of a unique meta-class, as in
Smalltalk-76 [Ingalls, 1978] and Java. In other systems, like Smalltalk-80 [Gold-
berg and Robson, 1989], ObjVLisp [Cointe, 1987] and Classtalk [Briot and
Cointe, 1989], each class is a unique instance of its meta-class. The main draw-
back of the meta-class model is that per-object specialization is not possible.
Any change to a class impacts all instances of that class. It is not possible to go
to a more fine-grained level than a class, i.e., methods and operations. Com-
position is not possible since no object can have multiple classes. Each class
share the same message interpreter: there is no possibility to specialize the
interpreter for a unique object. Metaclass substitution is dangerous and can
quickly lead to inconsistencies. Finally, a class cannot keep specific character-
istics of specific objects.

Meta-object Model. In this model every object has its own unique meta-object. This
model was first proposed by Maes in 3-KRS [Maes, 1987b; Maes, 1987a]. Since
it was conceived for a prototype-based language, the notion of classes was not
supported. Ferber [Ferber, 1989] analyzed how a meta-object model would
behave with the introduction of classes. Behavioral and structural reflection
are separated, and classes handle the definition of the structure and the set of
messages that an instance is able to answer. Meta-objects handle how mes-
sages are interpreted. This model is more flexible than the meta-class model.
By modifying the meta-object we can achieve per-object specific behavior, ob-
ject monitoring, and different message interpretation techniques. However,
this approach is mainly concerned with modeling structural constructs, ne-
glecting the behavioral abstraction. For example, method calls and instance
variables accesses are not reified.

Message Reification. This model reifies the messages sent between objects. Ferber
[Ferber, 1989] introduced this model where each message is an instance of a
message class. Each message is responsible for interpreting itself. The mes-
sage class defines a message send specifying the interpretation. Through the
message class sub-classification the message send semantics can be modified.
In Ferber’s model the sender of the message was not taken into account in
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the reification. Cazzola [Cazzola, 1998] extended this model by including the
sender object in the message reification.

2.2.4 Constructs

There are two main approaches to specifying which constructs may be reflected
upon. There are interpreter-based approaches like 3-Lisp [Smith, 1982] and 3-KRS
where meta-objects match the structure of the interpreter; and language-oriented ap-
proaches like CLOS-MOP [Bobrow et al., 1988; Kiczales et al., 1991], ObjVLisp and
Classtalk, where the meta-objects match structural elements of the language. This
structural point of view contrasts with the computational or behavioral point of view.

Smith [Smith, 1982; Smith, 1984] pioneered the concept of behavioral reflection in
the context of Lisp. He proposed reifications, such as method invocations, that were
not directly reflected in the structure of the language. Of course, both interpreter-
based and language-based approaches can achieve behavioral reflection but there is
no generalized infrastructure for doing this [Ferber, 1989; McAffer, 1995a].

2.3 State of the Art in Meta-level Engineering

Table 2.1 summarizes previous meta-level engineering approaches. In this table we
show to which extent previous approaches support the four key application require-
ments of partial reflection, selective reification, support for unanticipated changes and of-
fering a runtime integration. We also identify how the various approaches fall short in
supporting the meta-level engineering requirements of offering an unbiased reflective
model, providing high-level abstractions, and offering a means for meta-level composi-
tion.

2.3.1 Reflection requirements

The reflective requirements that we have pointed out are not new. In recent years
researchers have worked on the idea of applying traditional engineering techniques
to the meta-level while attempting to solve various practical problems motivated by
applications. We will contrast object-specific reflection and object-centric reflection
to stress the reasons for the existence of the object paradox. These requirements are
supported at least partially by existing approaches:

1. Partial Reflection makes reflective facilities available only in selected places
where needed. This avoids the inherent inefficiency of a fully reflective sys-
tem [Ibrahim, 1991; Kiczales et al., 1991; Tanter et al., 2003].
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Language
Extensions

ClassTalk Smalltalk      # #
CodA Smalltalk # # #  # # #
Dynamic AOP Various    #  #  
Guarana Java   #  # # #
Iguana C++   # #  #  
Iguana/J Java    #  #  
Kawa Java   #  # # #
MetaClassTalk Smalltalk  #    # #
MetaXa Java   #  # # #
PBI Java    # #   
Reflective Java Java   #   # #
Reflex Java   #  #  #
Reflectivity Smalltalk     #  #

Language
Implementations

3-Lisp 3-Lisp # #  #  # #
3-KRS 3-KRS # #  #  # #
CLOS CLOS    #  #  
Cola Cola    #  #  
Java Java # # # #  # #
ObjVLisp ObjVLisp  # # #  # #
Ruby Ruby    #  #  
Smalltalk-80 Smalltalk # #  #  # #
Self Self    #  #  

Table 2.1: Comparison of different language and reflection extensions.

2. Selective Reification refers to the ability to define which reifications should be
active from a temporal and spatial point of view. Selective reification extends
partial reflection to allow reifications to be dynamically defined [Ferber, 1989;
Gowing and Cahill, 1996; Redmond and Cahill, 2002; Redmond and Cahill,
2000].

3. Unanticipated Changes enable reflection on a running system without the need
to define statically and up-front where and when reflection is needed [Red-
mond and Cahill, 2002; Redmond and Cahill, 2000; Denker, 2008; Denker et
al., 2007].

4. Runtime Integration refers to a meta-environment that runs at the same level
as the application code, i.e., not in the interpreter of the host language [Tanter
et al., 2003; Denker, 2008; Bouraqadi, 2004].
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5. Meta-level Composition enables the combination of meta-level abstractions due
to multiple adaptations taking place on the same base-level abstractions [Tan-
ter, 2006; Bobrow et al., 1988; Kiczales et al., 1991; Redmond and Cahill, 2002;
Redmond and Cahill, 2000].

6. Scoped Reflection makes reflective changes only visible in specific contexts, out-
side these contexts the changes are not present [Chiba et al., 1996; Aracic et al.,
2006; Denker et al., 2008; Tanter, 2009].

Partial Reflection

Full reflection, where all constructs that may be reflected upon are reified, is inher-
ently inefficient. Partial reflection was first introduced in the 1990 OOPSLA/ECOOP
workshop on Reflection and Meta-level Architectures in Object-Oriented Program-
ming [Ibrahim, 1991]. Partial reflection overcomes this inefficiency by making reflec-
tive facilities available only where they are needed. For example, we can reify the
method lookup for a single class and not for all classes in the system.

Kiczales et al. [Kiczales et al., 1991] introduced meta-object protocols (MOPs) in CLOS,
an object-oriented extension of Lisp. MOPs encode the properties and semantics of
the language. The MOP is causally connected to the language model. MOPs provide
a form of partial reflection since they offer a means to adapt the meta-level behavior
for selected parts of the system. Partial reflection can be achieved by specializing
the meta-class generic functions for a specific meta-object class [Attardi et al., 1989].
However, CLOS-MOP does not support object-specific method invocation reifica-
tion in a scalable way, as McAffer [McAffer, 1995a] pointed out.

Partial Behavioral Reflection was introduced by Tanter et al. [Tanter et al., 2003]. This
model is implemented in Reflex for the Java environment. Reflex offers an even
more flexible approach than pure Behavioral Reflection. The key advantage is that
it provides a means to selectively trigger reflection, only when specific, predefined
events of interest occur. Reflex uses meta-links to modify the behavior and hook-
sets to specify where this change should take place. A link invokes messages on
a meta-object at occurrences of marked operations. The attributes of a link enable
further control of the exact message to be sent to the meta-object. Reflex was imple-
mented using bytecode transformation in Java, and is thus portable across different
Java VMs. A typical use case for Reflex is the implementation of the Observer pat-
tern [Gamma et al., 1995] at the meta-level by reflecting only on those objects that
are to be observed, adapting their behavior to notify their observers.

Selective Reification

Ferber [Ferber, 1989] introduced a message reification model of reflection where each
message is an instance of a message class. Each message class can define its own
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interpretation of a message send. By changing the implementation of a message
class the message send semantics can be modified. In Ferber’s model the sender
of the message is not taken into account in the reification. Cazzola [Cazzola, 1998]
extended this model by including the sender object in the message reification.

Iguana [Gowing and Cahill, 1996] takes a step forward in the meta-level architecture
through dynamic reifications. Iguana offers a form of selective reification making
it possible to select program elements down to individual expressions. This tool
provides a fine-grained MOP which allows different object-models to coexist at the
same time in the same system. It also allows dynamic changes to be applied in an
object-specific manner. If an object of a given class is adapted, no other instance of
that class should be affected by this change. Iguana was developed for C++ and
works by placing annotations in the source code to define behavioral reflective ac-
tions.

Reifying a message send means to model as an object the event that a message has
been sent to another object. Smalltalk-76 [Ingalls, 1978] reified message sends on
the whole system thus impacting negatively on performance. CodA proposed a de-
composition of the message send into multiple, finer-grained events while imposing
this reification on the whole system. Iguana provided message send reifications not
affecting the whole system.

An example of selective reification in Reflex is transparent Futures. A future is an
object whose value may not yet be available as it is still being computed. Futures
implemented as generic classes rather than as a built-in language construct have the
disadvantage that a client of a future must explicitly request the value of the future
when it is needed, as is the case in Java. A transparent future, on the other hand,
could be used directly as a regular object, without the need to ask for its value. Reflex
implements transparent futures at the meta-level by reifying the message reception
and the object casting.

Tools like Dalang [Welch and Stroud, 1999], Reflective Java [Wu, 1998], Kava [Welch
and Stroud, 2001], the ProActive MOP [Caromel et al., 2001], MetaXa [Golm and
Kleinöder, 1999] and Guaranà [Oliva and Buzato, 1999] are targeted specifically at
controlling method invocation for Java. All of them work by manipulating byte-
code.

Aspect Oriented Programming (AOP) [Kiczales et al., 1997b] provides a general
model for modularizing cross cutting concerns. Join points define points in the exe-
cution of a program that trigger the execution of additional cross-cutting code called
advice. Join points can be defined on the run-time model (i.e., dependent on control
flow). Although AOP is used to introduce changes into software systems, the fo-
cus is on cross-cutting concerns, rather than on reflecting on the system. Kiczales et
al. [Kiczales et al., 1997b] claim: “AOP is a goal, for which reflection is one powerful tool.”.
Although aspects can be dynamically enabled or disabled, they are specified stati-
cally. AspectS [Hirschfeld, 2003] is a dynamic aspect system defined in the context
of Smalltalk. Aspects lack an important ingredient that we were looking for, namely
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they do not provide an extensible model for new reifications. The join points pro-
vided by aspect languages, mostly AspectJ-like pointcut-advice models which dom-
inate the landscape of AO language design, are too restrictive. Events that do not
naturally correspond to the boundaries of methods or field accesses cannot be easily
added [Gasiunas et al., 2011]. For example, if we have a temperature sensor and the
event tempChange depends on a thread that tests for temperature changes in a sen-
sor (Listing 2.1 lines 5–15). This event cannot be expressed with the pointcut-advice
model.

1 class TemperatureSensor {

2 public delegate void TempChange(int newTemp);

3 public event TempChange tempChanged;

4 ...

5 public void run() {

6 int currentTemp = measureTemp();

7 while (true) {

8 int newTemp = measureTemp();

9 if (newTemp = currentTemp) {

10 if (tempChanged = null) { tempChanged(newTemp); }

11 currentTemp = newTemp;

12 }

13 sleep(100);

14 }

15 }

16 ...

17 }

Listing 2.1: Temperature sensor

Unanticipated Changes

Iguana/J [Redmond and Cahill, 2002; Redmond and Cahill, 2000] is the implementa-
tion of Iguana for Java. This tool enables unanticipated changes to Java applications
at run-time without requiring instrumentation or restarting the application before
the first use of reflection. Since the event reifications are defined in the modified
VM, precise operation occurrences of interest cannot be discriminated nor can the
actual communication protocol between the base and meta-level be specified. For
example, a new event which reifies the execution of the garbage collector cannot be
defined without modifying the VM again.
Both Iguana and Iguana/J contributed significantly to modeling the meta-level by
proposing fine-grained MOPs. The idea of fine-grained MOPs is to allow multiple
reflective object models to coexist in a given application. Nevertheless, the modi-
fied VM implementation precludes a homogeneous environment; some reifications
work at the VM level while others work at the application level.
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Meta-level engineering in Reflex is highly flexible but it suffers from a key limita-
tion. Although the reflective behavior is available at run-time, the framework forces
the user to anticipate the reflective needs at load time. This means that Reflex does
not allow a programmer to insert new reflective behavior affecting already-loaded
classes into a running application. The application has to be stopped, the reflec-
tive needs have to be specified, and then the application has to be reloaded for the
reflective changes to take place.

Denker introduced Reflectivity [Denker, 2008], an implementation of the Reflex model
for Smalltalk. Reflectivity targets two important problems present in the previous
tools regarding behavioral reflection. These problems are anticipation and sub-
method structure. Iguana/J introduced a working implementation of unanticipated
partial behavioral reflection (UPBR) but suffered from portability issues. Reflex re-
quires the user to anticipate where reflection is going to be needed.

Reflectivity provides UPBR while maintaining portability. This was achieved by
using reflective methods that are dynamically compiled thus enabling unanticipated
change. Persephone [Denker et al., 2007] introduced a model for reflective methods
and was responsible for recompiling methods that had been reflectively modified.

Reflectivity exploits the reflective structures of Smalltalk. ASTs are used as the sole
representation of behavior. Reflex hooksets were removed and links were just real-
ized as annotations to any AST node thus simplifying the Reflex model. Using AST
nodes allowed Reflectivity to achieve sub-method reflection capabilities.

Nevertheless, when faced with a complex adaptation scenario links are too low-
level and their management has to be specified by the user explicitly. For example,
if we need to debug and halt the execution when a particular instance variable is
accessed we need to find all the AST nodes in which the variable is accessed and
attach a link to them. After that we realize that we also want to halt the execution
when a particular method is invoked in a particular object. We require a new link
that checks at runtime that the receiver of the method is the specific object, and then
we attach this link to the AST method node. We have a complex adaptation scenario
with several links to obtain a debugging behavior change. The semantic meaning of
the set of links is lost after they are installed since there is no abstraction that states
that these links belongs to the same adaptation. First, we need to find the right AST
node which, if adapted with a link, will produce the required effect. Second, to
remove the debugging adaptations we have to manually manage many links.

Moret et al. introduced Polymorphic Bytecode Instrumentation (PBI) [Moret et al.,
2011], a technique that enables run-time selection amongst several, possibly inde-
pendent instrumentations. These instrumentations are saved and indexed by a ver-
sion identifier. These versions can control the visibility of the adaptations. Code-
Merger, the PBI implementation for Java, instruments the class library at build-time
and all other classes at load-time, thus achieving full unanticipation is not possi-
ble.
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Runtime Integration

Iguana/J was implemented using the Java Just-in Time (JIT) interface by defining
a dynamic library. Instead of using annotations in the source code for specifying
reflective actions Iguana/J uses a definition file. This file is compiled by a special
Iguana compiler which generates dynamically the code to be executed. This tech-
nique is useful since the tool has access to the internal structures of the interpreter.
However, this solution is coupled to a particular VM implementation, since the VM
developers did not continue developing the JIT interface, Iguana/J does not run in
more recent VMs. Reflex provides a more portable solution by transforming Java
bytecode.

MetaclassTalk [Bouraqadi, 2004] extends the Smalltalk model of meta-classes by ac-
tually having meta-classes define the semantics of message lookup and instance
variable access. Instead of being hard-coded in the virtual machine, occurrences
of these operations are interpreted by the meta-class of the class of the currently-
executing instance. A major drawback of this model is that reflection is only con-
trolled at class boundaries, not at the level of methods or operation occurrences.
This way MetaclassTalk confines the granularity of selection of behavioral elements
towards purely structural elements.

Meta-level Composition

Tanter [Tanter, 2006] stated that composition of meta-objects is complex and not well
supported. In CodA there is no mechanism for composition. The required changes
have to be composed and placed by hand in the right meta-object. The link abstrac-
tion of Reflex and Reflectivity offers a means to compose adaptations at the bytecode
and AST level, however, these approaches do not provide a mechanism for com-
posing higher-level abstractions. CLOS-MOP provides a composition mechanism
through the method combinations meta-object. Iguana/J provides a composition
mechanism through the definition of MOPs. An Iguana MOP is composed of a set
of meta-level events to adapt an object or class. The composition is limited to the
Iguana predefined events.

Mezini [Mezini, 1997] identified that the mechanisms for incremental behavior com-
position do not support evolving objects at all or do not satisfactorily solve the en-
capsulation and name collision problems associated with them. Mezini points out
that the inability of the existing approaches to uniformly handle dynamic compo-
sition and internal encapsulation is due to the lack of sufficient abstraction levels
in their design. The author proposes a composition mechanism which deals with
these issues by reifying a combination layer between the object and the software
component that defines its behavior. A combiner-metaobject is associated with each
evolving object to control the composition. The adjustments are responsible for pro-
viding mixin-like behavioral adaptations depending on the context.
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Mirrors offer a first attempt to reify reflection. In this approach objects themselves do
not have any reflective capability, but reflection is provided by mirror objects [Bracha
and Ungar, 2004]. Mirrors offer a clear separation of the base level and the meta
layer. However, mirrors do not specify a composition mechanism for the meta-level.
This means that composing two reflective changes on an object’s mirror can only be
done by hand.

Ruby [Matsumoto, 2001] introduced a form of mixins [Bracha and Cook, 1990] as a
building block for reusability, called modules. Modules can be applied to specific
objects without modifying other instances of the class by adding or modifying state
and methods. Aliasing of methods is possible to avoid name collisions, as well as
removing method in the target object. However, instance or class methods cannot
be removed if they are not already implemented. This follows the concept of lin-
earization of mixins. Filters in Ruby provide a mechanism for composing behavior
into preexisting methods. However, they do not provide support for specifying how
method defined in modules should be composed for a single object.

PBI instrumentations are saved and indexed by a version identifier. Thus, this tech-
nique can at runtime control which adaptations are active.

Scoped Reflection

Dynamic adaptation is traditionally realized with the help of activation conditions
evaluated at runtime to decide which parts of the system should be adapted. Even
very dynamic approaches like unanticipated partial behavioral reflection [Röthlis-
berger et al., 2008] only shift the time when conditions are added from load time
to runtime. This flexibility allows the programmer to reduce the number of checks
performed or to remove unneeded ones at runtime. Yet, it does not solve the real
problem: foreseeing the parts of the system where checks are to be added. This is
not always possible, since in many cases the system is unfamiliar to the developer,
or system libraries are also under analysis. Dynamically scoped adaptations were
introduced to deal with these situations. A dynamic extent defines a dynamic scope
by providing a piece of code to be executed. As the code is executed adaptations are
installed, and propagated under certain conditions.

Tanter [Tanter, 2009] formalized dynamically scoped adaptations in terms of (i) the
dynamic extent, (ii) the propagation function, (iii) activation conditions and (iv) the
adaptations to be applied. The propagation function defines how the adaptations
should be propagated in the dynamic extent. The use of activation conditions can
further control the application of the adaptation during the dynamic scope.

However, a key problem with previous techniques is that the scope cannot be mod-
ified at runtime. The propagation function, the activation condition and the adapta-
tions, once defined, cannot change. Recently, Moret et al. introduced Polymorphic
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Bytecode Instrumentation (PBI) [Moret et al., 2011], a technique that enables run-
time selection amongst several, possibly independent instrumentations. These in-
strumentations are saved and indexed by a version identifier. These versions control
the visibility of the adaptations. For example, if we applied two different analyses,
like feature analysis and profiling, over the same system we would like both adap-
tations not to interfere with each other. This means, that feature analysis should not
take into account extra behavior introduced by the profiling adaptation and vice
versa. If a method is adapted by both analyses then there are two different versions
of the method, one adapted with feature analysis behavior and the other with pro-
filing behavior. When executed each thread of execution will have an index that
defines which version of each method should be selected, thus avoiding conflict.
A key issue in dynamic adaptation is to control the scope and visibility of the adap-
tations. Previous approaches are capable of scoping changes at the class level, for a
single object, thread-locally or globally [Tanter, 2007]. For instance, CaesarJ [Aracic
et al., 2006] supports per-thread aspect deployment, where an aspect instance can
see all join points produced in the dynamic extent of an execution of block. A
similar mechanism can be found in AspectScheme [Dutchyn et al., 2006] and As-
pectS [Hirschfeld and Costanza, 2006]. Other approaches control the scope of as-
pects to be deployed on specific objects [Aracic et al., 2006; Rajan and Sullivan,
2003], or globally [Aracic et al., 2006; Rajan and Sullivan, 2003; Hirschfeld, 2003;
Suvée et al., 2003] Deploying an aspect on a specific object means that if we have a
class with two instances we will only adapt the specific object. Global deployment
will adapt all instances of a class.

Object-Specific Reflection

Object-specific reflection offers an approximation to object-centric reflection. Pre-
vious reflective mechanisms provide reflective models where object-specific capa-
bilities are just one technique amongst many. Object-specific reflection enables re-
flection on specific objects, but may not avoid users reflecting on static abstractions.
Object-centric reflection avoids static abstractions altogether. Several tools present
various mechanisms to achieve it.
CLOS-MOP, for example, has six kinds of meta-objects: classes, slots, generic func-
tions, methods, specializers and method combinations. These concepts relate to
how objects are described by users, not how they are run by computers. Partial
reflection can be achieved by specializing the meta-class generic functions for a spe-
cific meta-object class [Attardi et al., 1989]. However, CLOS-MOP does not support
object-specific method invocation reification in a scalable way, as McAffer [McAffer,
1995a] pointed out. Meta-level changes have to be described in methods. Methods
simply do not provide the infrastructure and abstraction necessary for describing
more than very simple behaviours. They do not directly support reuse, combina-
tion or composition. They are not suitable units of encapsulation for engineering
the meta-level.
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Self [Ungar and Smith, 1987] is a prototype-based language that follows the con-
cepts introduced by Lieberman [Lieberman, 1986]. In Self there is no notion of class;
each object conceptually defines its own format, methods, and inheritance relations.
Objects are derived from other objects by cloning and modification. Object-specific
behavior comes naturally to this model of reflection. From a reflective point of view
Self concentrates on structural reflection and supports behavioral reflection to a cer-
tain extent. For example, method lookup is reified but achieving a full operational
decomposition is not straightforward. Thus, Self has a strong object-oriented reflec-
tion mechanism but the lack of an operational decomposition mechanism prevents
a fully object-centric approach.

Iguana and Iguana/J provide object-specific behavior as a core feature. Reflex and
Reflectivity adaptations can be attached only to operations in the source code rep-
resentation. There is no mechanism to attach a reflective adaptation to a class, in-
stance variable or object. Object-specific adaptations can be achieved by introduc-
ing object-related conditions in the adaptation. However, this is not an object-centric
approach since adaptations are not only targeted at objects and object-specific adap-
tations require conditions introduced by the user. For example, if we want to debug
the access to a particular instance variable of a specific object, we cannot apply a link
to the object. We need to apply a link on all AST nodes which access the variable at
the object’s class level and introduce a special condition. This condition checks at
runtime that we should only halt the execution when the this variable is equals to
the target object.

MetaclassTalk [Bouraqadi, 2004] extends the Smalltalk model of meta-classes by ac-
tually having meta-classes define the semantics of message lookup and instance
variable access. Instead of being hard-coded in the virtual machine, occurrences
of these operations are interpreted by the meta-class of the class of the currently-
executing instance. A major drawback of this model is that reflection is only con-
trolled at class boundaries, not at the level of methods or operation occurrences.
This way MetaclassTalk confines the granularity of selection of behavioral elements
towards purely structural elements. Objects are not the main target of MetaclassTalk
reflective changes thus this approach is not object-centric.

Cola [Piumarta and Warth, 2006] implements an open object model for experiment-
ing with different programming paradigms. Though this model is quite powerful,
the abstractions that it provides are based on lookup tables. The user can deal only
with these abstractions and no higher-level abstractions are provided to leverage
the level of expressiveness.

Dynamically-scoped aspects present different tools supporting object-specific adap-
tations. Following the idea of per-object meta-objects Rajan and Sullivan [Rajan and
Sullivan, 2003] propose per-object aspects. An aspect deployed on a single object
only sees the join points produced by this object. CaesarJ [Aracic et al., 2006] pro-
vides deploy blocks which restrict behavioral adaptations to take place only within
the dynamic extent of the block. PBI can scope changes to specific objects, however
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this is seen as a particular case of scoping and not as a core mechanism thus is not a
pure object-centric approach.
For example, traditional debuggers are focused on the execution stack. The devel-
oper identifies which parts of the source code are of interest and sets breakpoints
accordingly. The software then runs until a breakpoint is reached, and the devel-
oper can then inspect and interact with the code and entities in the scope of the
breakpoint. Unfortunately this process is ill-matched to typical development tasks.
Breakpoints are set purely with respect to static abstractions, rather than to specific
objects of the running system. It has been proved that when debugging the devel-
oper ask question related to the runtime abstractions, like what is the value of an
arguments at runtime [Sillito et al., 2006]. Due to this developers are less efficient
because they have to reflect on classes and methods to reach object-specific infor-
mation.
When we look deeper into how languages implement reflective applications we ob-
serve a chronic pattern to move away from the runtime abstractions towards static
ones. Even though, as we have seen, some reflection approaches are capable of pro-
viding object-specific adaptations. What is missing is to steer the user to think in
terms of object and their runtime behavior by having a reflective system centered
on object reflection.

2.3.2 Summary

There has been extensive work on partial reflection, selective reifications, unantici-
pated changes, runtime integration, meta-level composition, scoped reflection and
object-specific reflection suggesting that they are key requirements in achieving a
compelling approach to reflection.
We have presented various techniques which provide object-specific behavior: as-
pects deployed on specific objects [Aracic et al., 2006; Rajan and Sullivan, 2003], Cae-
sarJ [Aracic et al., 2006], PBI [Moret et al., 2011], etc. Each of these approaches solve
some but not all of the presented reflection requirements. Moreover, object-specific
reflection is stressed as an important feature [Rajan and Sullivan, 2003; Aracic et al.,
2006; Moret et al., 2011; Gasiunas et al., 2011] but at the same time these approaches
present heterogeneous mechanisms to achieve other adaptations. Due to this object-
specific reflection is not modeled to be the central reflection mechanism, thus, we
observe the object paradox in many of the reflection applications like debugging,
feature analysis and profiling.
Traditional reflective models are focused around static source artifacts and only pro-
vide very limited access to the dynamic parts at runtime. The research question we
pose is: What kind of reflective model do we need to avoid the object paradox while
supporting the requirements of reflection under a unified and uniform solution?
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Object-Centric Reflection

In this chapter we explain the object-centric reflective model of explicit meta-objects.
As we have seen, various approaches to reflection address different needs, but the
object-paradox is not their main concern. We seek to develop a new model of reflec-
tion that addresses the object paradox and the standard requirements identified by
past approaches while integrating and unifying the essential features of these exist-
ing approaches. The key idea behind object-centric reflection is to provide object-
specific capabilities as the central reflective mechanism.

3.1 Object-Centric Reflection in a Nutshell

The key difference with previous approaches is that instead of adding object-specific
capabilities for reflective adaptation to an existing reflective framework, we adopt
object-specific adaptations as the core of our approach. For this reason we refer to
it as object-centric reflection. With object-centric reflection we can: (i) avoid the object
paradox, (ii) provide a unified approach to meta-level engineering, and (iii) simplify
the reflection model.

Meta-objects are responsible for defining the structure and the behavior of specific
objects. Any object can be bound to one or more meta-objects, and various meta-
objects can adapt the behavior or structure of various parts of the same object. When
a meta-object is bound to an object, it forms part of the meta-level description of the
object. For example, we can define a method wrapper for a specific object. When
the meta-object is unbound from an object then this object no longer responds to the
meta-description modeled by that meta-object.

The meta-object abstraction is unique in the sense that every meta-level abstraction
is expressed in terms of a meta-object. Every meta-object instantiation is an instance
of a meta-object or a specialization. A meta-object is also an object, and thus, it is
also possible to create meta-meta objects to control the meta-objects. We can model
a class with a meta-object defining the methods of potential instances. Instance cre-
ation is performed by sending the message new to the class. Thus we can define and
bind another meta-object to our class abstraction where class-side methods such as
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new are defined. This meta-object models a meta-class, also known as meta-meta-
object (the meta-object of a meta-object).

A structural meta-object is responsible for modeling the structures of a program. An
object-oriented program’s structures are classes, traits, methods, message send AST
nodes, etc. Structural meta-objects deal with the definition of meta-level structural
reifications. For example, adding a method to a particular object. How and when
they are introduced at run time is the job of the behavioral meta-object.

A behavioral meta-object is responsible for modeling the dynamic representation of
a program. Examples of such reifications are: the message send, the method lookup,
or the object creation. We can build a profiler by applying a behavioral meta object
that increments a counter everytime a message is sent. A different counter can exist
for each adapted object and method.

The relationship between object and meta-object is controlled. Compound meta-
objects enable safe meta-level composition. They are reified to avoid potential con-
flicts between meta-objects and to manage meta-object adaptation performed on ob-
jects. These meta-objects are composed of multiple meta-objects.

Compound meta-objects encapsulate the complexity of dealing with multiple meta-
objects at the same time. When an object is bound to more than one meta-object
then there is a single compound meta-object modeling the composition between
these meta-objects. Consider two behavioral meta-objects, one modeling a profiler
with a counter of message sends, and the other a test coverage analysis adaptation
registering the executed methods. If we bind these two meta-object to the same
object the meta-objects are composed and they adapt the object. If we request the
meta-object of the bound object we receive a compound meta-object representing
the composition. This behavior is managed transparently from the user unless a
particular composition requirement needs to be fulfilled. We present examples of
various composition mechanisms in Chapter 5 and Chapter 6.

3.2 Meta-objects

Object-centric reflection supports three kinds of explicit meta-objects, which even-
tually can be extended to reify new meta-level abstractions as we show later in this
dissertation:

• StructuralMetaObject and BehavioralMetaObject reify respectively structural and
behavioral reflective capabilities.

• CompoundMetaObject reifies the composition of meta-objects.

30



3.2 Meta-objects

3.2.1 Structural Meta-object

A StructuralMetaObject acts on the basic structural units of an object-oriented lan-
guage which are messages, objects and objects’ states. The responsibilities of a
StructuralMetaObject are:

• Adding a method. A new method is added to the object.

• Removing a method. The adapted object will not understand a particular mes-
sage anymore.

• Replacing a method. The method will have another behavior. Either explicit
source code or a closure can be provided.

• Adding state. The addition of new state to an object allows the user to add
methods that use that state.

• Removing state. Specific state is removed.

Structural meta-objects deal with the definition of meta-level structural reifications.
How and when they are introduced at run-time is the job of the BehavioralMetaOb-

ject.

3.2.2 Behavioral Meta-object

A BehavioralMetaObject reifies the meta-object responsible for modeling the dynamic
representation of a program. Examples of such reifications are: the message send,
the method lookup, or the object creation. This abstraction corresponds to the work
done in Iguana and later used by McAffer in CodA. As McAffer pointed out, the
system is modeled as a set of operations whose occurrences “can be thought of as
events which are required for object execution” [McAffer, 1995b].

To dynamically adapt the behavior of an object we need to describe what we would
like to do and when. To specify what we would like to apply, we delegate the
responsibility of managing an event to a specific meta-object. We specify when it
should be adapted by using a computational event in the execution of a program,
e.g., sending a message.

A set of canonical events models the basic operations known as dynamic reification
categories. The dynamic reification categories are: message send, message receive,
state read, and state write. These are not the only reifications possible; new dynamic
reifications can be defined, the only requirement being to specify when they should
be triggered. For example, entering a synchronized block can be modeled by a meta-
object that adapts the points in an object where, depending on the implementation
of the language, a synchronized block is accessed. In Smalltalk this is done using
the method critical: aBlock.
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We selected the above categories following the Iguana approach. Iguana proposes
seven canonical reification categories, some of which can be defined in terms of the
others. For example, the object creation event can be expressed as a message send
extension, since an object is created when the creation message is sent to a class
(the same applies for object deletion). With these basic categories we can adapt an
object’s behavior from an operation decomposition point of view.

3.2.3 Compound Meta-object

A meta-object can be bound to an object, and unbound. A compound meta-object
manages the composition between meta-objects with two mechanisms:

• Order. The order in which the adaptation expressed by meta-objects is applied
might be meaningful in certain cases. By default a meta-object is appended
at the end when composed with a compound meta-object. Otherwise, its po-
sition has to be explicitly stated by using different methods. When two com-
pound meta-objects are composed then either one of them takes precedence
over the other or the user has to order them again.

• Conflicts. When a new meta-object is added to a compound meta-object, multi-
ple user-defined conflict validations are evaluated. By default the compound
meta-object checks that behavior that is expected by a meta-object is not re-
moved and modified by other meta-objects. Furthermore, conflict validation
rules can be added to the compound meta-meta object to check for potential
conflicts when new meta-objects are added. Conflict validation rules model
the evaluation of specific behavior to check for adaptation conflicts. When a
conflict is detected between a compound meta-object and a meta-object, this
meta-object throws an exception modeling the error. A meta-object can catch
this exception to either fix the conflict or ignore it. The exception handler’s
default behavior is to reject the composition. For example, two different meta-
objects try to add the same method asString to a single object. Since there is no
way of deciding which of the two definitions should be used the composition
of the two meta-objects is rejected.

3.2.4 Scoping Meta-object adaptations

Prisma is an approach to dynamically adapt running software systems to support
various forms of dynamic analysis. Prisma uses object-centric reflection to adapt
the behavior of objects at run time. Execution is modeled as a sequence of events that
trigger the reflective meta-objects. Prisma explicitly reifies execution runs to manage
the adaptation process. Dedicated propagation meta-objects assume responsibility for
propagating adaptations to objects accessed within a given run. Adaptations are
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scoped to a particular run, so multiple adaptations can be installed without risk of in-
terference. Installation and deinstallation are decoupled, so adaptations can be retained
for long-lived analyses.

Execution Reification. In many programming languages it is possible to reify ab-
stractions such as activation records, execution contexts, and even the execution
stack, but the concept of an execution run remains implicit. Prisma models execu-
tion runs explicitly to scope adaptations to a specific set of objects reachable from
a particular starting point. An execution run represents a live scope within which
adaptive reflective changes take place.

An execution is composed of a set of meta-objects, each of which adapts a number of
bound objects. Since a meta-object is an object, it can also be adapted by meta-objects.
Meta-objects can be structural or behavioral. An execution models a dynamic scope
whose starting point is an expression defining a dynamic extent.

A dedicated propagation meta-object is responsible for propagating adaptations to the
dynamic extent of an execution run. When an execution run is started the first object,
i.e., the one receiving the first message, is adapted with the meta-objects compos-
ing the execution. One of these meta-objects is the propagation meta-object, which
adapts an object so that every method call to another object causes the execution’s
meta-objects to be applied to that other object. An activation condition can be pro-
vided to restrict which objects the adaptation should be applied to.

Execution Scoping. When an object is adapted within a particular execution run
this adaptation only affects other objects in the same run. When a meta-object adapts
a method of an object under a specific execution run the method is copied and the
adaptation is applied to that copy. As a consequence, there can be multiple ver-
sions of the same method for a given object depending on the number of scoped
executions. The meta-object is responsible for managing the different method ver-
sions. When the adapted method is invoked under a particular execution run, (i)
the invoked object delegates the execution of the method to the meta-object, (ii) the
meta-object obtains the identity of the current execution, and (iii) with that identity
it selects the version of the method to be executed. If there is no enclosing adaptive
execution then the normal method lookup is used. For example, feature analysis
requires the developer to adapt beforehand all the classes that he wants to be taken
into account by the analysis. This is not always possible because sometimes the ex-
tension of the system is unknown. Execution scoping allows the developer to adapt
objects as they are reached by the execution. Moreover, traditional feature analy-
sis forces the developer to exercise a single feature at a time. For example, if we
have two users trying to exercise at the same time the printing and login features re-
spectively the adapted code when executed cannot easily discerns which feature is
being exercised. Execution scoping allows the developer to have various execution
contexts where different developers are exercising different features.
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3.3 Meta-object Definition

Meta-objects define the structure and behavior of objects. The meta-level is com-
posed of a set of meta-objects that can eventually be described by other meta-objects.
This renders a complex structure of relationships between objects and meta-objects.
Traditional reflective models tend to simplify this structure by using classes and
meta-classes or by only allowing a single meta-object per object. Removing this limi-
tations leaves us with the complexity of managing meta-objects. To control this com-
plexity we propose a very simple process for defining objects and meta-objects.
There are three cases for defining what should be done to model the meta-level.

1. If we have the object and the meta-object then we just bind them.
2. If we do not have the meta-object then we create it and bind it to the object.
3. If we have neither the object nor the meta-object then we need to create the

object first by locating the meta-object that can create it.

As an example, let us consider a logger which logs the execution of an object’s partic-
ular method. We know the object to be adapted which is the method. Thus, we only
need to create the meta-object and to bind it to the object. This is a case 2 scenario.
Let us consider reifying message sends, which means that when an object sends a
message to another object an event modeling this situation will be explicitly created.
This is a case 3 example since we do not have the object (message send event) and we
do not have the meta-object responsible for the reification. Thus we need to create
both the object and the meta-object.

3.4 Unification of Reflection

Object-centric reflection does not only fulfill the reflection requirements, it also does
it under a unified meta-model. Next we discuss how object-specific meta-objects
simplify the implementation and unification of the reflection requirements.

Partial Reflection. Meta-objects make reflective changes available only in selected
places where needed. There is no need to modify the whole system.

Selective Reifications. Meta-objects can be used to model new reifications, for ex-
ample in the case of Prisma the execution run. Moreover, when adapting a
particular object the meta-object can selectively define which data should be
reified at runtime, for example, the sender and the receiver of a particular
message, the arguments of the message, the continuation, etc..

Unanticipated Changes. Meta-objects can be applied to any object in the system at
runtime without the need of previously stating that this adaptation will take
place.
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Runtime Integration. Low-level meta-objects are responsible for the runtime integra-
tion. This meta-object abstracts away from the lower level implementation
detail thus providing a reusable model. Thus meta-objects live at the same
level as the application.

Meta-level Composition. Compound meta-objects provide the semantics for compos-
ing meta-objects. Adaptations can be composed at runtime according with the
requirements of the user.

Scoped Reflection. Meta-objects can scope their structural and behavioral adapta-
tions. Prisma allows adaptations to be scoped to particular executions as the
system is running.

As we can see the reflective requirements a merged with the meta-object architec-
ture.

3.5 Object Paradox

Object-centric reflection avoids the object paradox by making object specific adapta-
tion the central reflection mechanism. In the remainder of this dissertation we show
how this simple change in perspective forces the developer to first think about the
objects rather than the static representation of the running system. Moreover, we
demonstrate how developers using object-centric reflection become more efficient
due to reduction in the gap between the user’s object-specific questions and the re-
flection mechanism features.
This approach does not at all prevent the user to reflect on the static representa-
tion. On the contrary it allows the user to reflect directly on the objects represent-
ing the static representations. There has been some research on the questions a de-
veloper asks when analyzing and developing a software system [Sillito et al., 2006;
Sillito et al., 2008]. The developers’ questions are mainly centered on specific objects
and particular interactions at runtime. There is a gap between the developer ques-
tions and what traditional tools provide. Traditional tools and reflection techniques
partially cover these requirements without a unified approach. Object-centric re-
flection fills this gap providing a unified approach to organize the meta-level while
fulfilling the reflection requirements.
In the next chapter we present an object-centric reflection implementation and val-
idate the claims stated in this chapter through a series of examples.
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Chapter 4

Bifröst

In this chapter we present Bifröst1, our object-centric reflection approach imple-
mented in Pharo2 Smalltalk [Black et al., 2009]. We also present several examples
of how Bifröst is used and validate how Bifröst solves the object paradox and how
the reflection requirements are fulfilled.

4.1 Meta-objects

We will introduce the various Bifröst meta-objects and how they support object
centric-reflection.

Bifröst has four kinds of explicit meta-objects, which eventually can be extended to
reify new meta-level abstractions as we will see later in this dissertation:

• StructuralMetaObject and BehavioralMetaObject reify respectively structural and
behavioral reflective capabilities (see Figure 4.1).

• CompoundMetaObject reifies the composition of meta-objects.

• LowLevelMetaObject reifies meta-objects that are responsible for adapting low
level structures like AST nodes.

4.1.1 Structural Meta-object

A StructuralMetaObject acts on the basic structural units of an object-oriented lan-
guage which are messages, objects and objects’ states. The responsibilities of a
StructuralMetaObject are:

1 In Norse mythology, Bifröst is the burning rainbow bridge between the worldly realm and the heavens.
2 http://www.pharo-project.org/
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bindTo: anObject
unbindFrom: anObject

MetaObject

addMethodNamed: aName
            performing: aString
removeMethodNamed: aName
when: aName do: aBlock
addStateNamed: aName
removeStateNamed: aName

StructuralMetaObject
when: anEvent do: aBlock
BehavioralMetaObject

add: aMetaObject
addFirst: aMetaObject
add: aMetaObject 
   before: anotherMetaObject 

CompoundMetaObject LowLevelMetaObject ...

 
Object

Figure 4.1: Meta-Objects class diagram with methods denoted in Smalltalk.

• Adding a method. A new method is added to the object. A name and the source
code is provided. When the object receives the corresponding message it ex-
ecutes the compiled source code. The source code compilation is performed
when the object is associated with a meta-object. If there is a compilation error
the meta-object association is rolled back.

• Removing a method. The adapted object will not understand a particular mes-
sage anymore.

• Replacing a method. The method will have another behavior. Either explicit
source code or a closure can be provided.

• Adding state. The addition of new state to an object allows the user to add
methods that use that state.

• Removing state. Specific state is removed.
All these adaptations are not permanent, the user can undo an adaptation at any
time. Structural meta-objects deal with the definition of meta-level structural reifi-
cations. How and when they are introduced at run-time is the job of the Behavioral-

MetaObject.

4.1.2 Behavioral Meta-object

We selected the above categories following the Iguana approach. Iguana proposes
seven canonical reification categories, some of which can be defined in terms of the
others. For example, the object creation event can be expressed as a message send
extension, since an object is created when the message basicNew is sent to a class
(the same applies for object deletion). With these basic categories we can adapt an
object’s behavior from an operation decomposition point of view.
The method when:do: specifies that when a particular meta-event happens the par-
ticular behavior in the block should be executed.
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On the other hand, the method StructuralMetaObject>>when:do: replaces the body of
a particular method by another method body. As a consequence, the behavior is
also changed but, as we have seen, changes to the structure of a system can affect
its behavior as well.

4.1.3 Compound Meta-object

Talents [Ressia et al., 2011] are dynamically composable units of reuse built on top
of Bifröst. Talents can be composed. The composition order is irrelevant so conflict-
ing talents must be explicitly disambiguated. Composition operators are used to
solve conflicting compositions i.e., aliasing the names of the adapted methods and
deleting particular methods.

For example, streams are used to iterate over sequences of elements such as se-
quenced collections, files, and network streams. Streams may be either readable,
writeable or both; they can also be binary or character-based; and we can have mem-
ory streams, socket streams, database streams, or file streams. Dynamically com-
posing the right combination of streams required is key for avoiding an explosion
of classes due to all potential combinations. WriteStreamTalent adds the methods for
writing to a stream, i.e., nextPut: and nextPutAll:. ReadStreamTalent adds the methods
to read from a stream, i.e., next and next:. Composing these two talents delivers a
readable and writable talent. But if we compose this talent with a BinaryReadStream-

Talent which defines nextPut: in a different way, then we need to decide how the
combination should be performed. We could choose to keep the implementation of
one of the talents over the other by removing a method from the composition. Or
we could keep both methods by aliasing the method nextPut: from one of the talents
to avoid a conflict when composing them.

4.1.4 Low-level Meta-object

Low-level meta-objects are responsible for providing the low-level mechanisms needed
to modify the system behavior.

The design of Bifröst can be understood as an evolution of Reflectivity, which in turn
was conceived as an extension of the Reflex model of Partial Behavioral Reflection. In
the Reflex model, and in Reflectivity, links are attached to AST nodes to modify their
associated behavior. Links are hard to manage, for example, to produce a debugging
adaptation you need to find the right AST nodes where to place the link or links.
The semantics of the adaptation are distributed across multiple links that have no
connection between each other. Meta-objects offer a solution to this problem by
providing a higher level adaptation abstraction.

The simplest building block provided by our approach is the low-level meta-object.
Bifröst provides low-level meta-objects that adapt AST nodes. The AST meta-objects
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are responsible for changing the behavior of an AST node. For example, a simple
message send adaptation can be achieved by attaching a low-level meta-object to a
message send AST node. These meta-objects are used by the compiler to adapt the
compilation process and change the normal behavior of a specific instruction.

4.2 Bifröst Exemplified

In this section we demonstrate how our approach supports the requirements of re-
flection (partial reflection, selective reifications, unanticipated changes, runtime in-
tegration, meta-level composition and scoped reflection) by means of several exam-
ples. Table 4.1 provides an overview of the examples and how they cover the reflec-
tion requirements. The numbered scenarios depicted in every example are related
to the different meta-object cases presented in Section 3.3.
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4.2.1 Profiling (Scenario 2)      #
4.2.2 Traits (Scenario 2)  #   # #
4.2.3 Delegates (Scenario 2)     # #
4.2.4 Prototypes (Scenario 3)      #
4.2.5 Live Feature Analysis (Scenario 2)      #
4.2.5 Scoped Live Feature Analysis (Scenario 2)       

Table 4.1: Bifröst coverage over reflection requirements.

Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples aloud and interpret them as normal sentences: An invocation of a method
named method:with:, using two arguments looks like: receiver method: arg1 with:

arg2. A method with no arguments looks like receiver method. Other syntactic el-
ements of Smalltalk are: the dot to separate statements: statement1. statement2;
square brackets to denote code blocks or anonymous functions: [ statements ]; and
single quotes to delimit strings: 'a string'. The caret ^ returns the result of the fol-
lowing expression. In Smalltalk objects interact by sending messages to each other.
A method invocation is therefore called a message send, and an object’s method is
called when a message is received.
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4.2.1 Profiling (Scenario 2)

Profiling is a common example of object adaptation. We demonstrate how to build
a simple profiler with Bifröst meta-objects. Listing 4.1 demonstrates how to count
instance variable read accesses on a particular object.

1 variableReadProfiler := BehavioralMetaObject new.

2 variableReadProfiler

3 whenStateIsReadDo: [ counter := counter + 1 ].

4 variableReadProfiler bindTo: anObject.

Listing 4.1: Variable read counter.

The reification is scoped to the bound objects only. Accessing state of another in-
stance of the same or a different class does not increase the counter.

When profiling application code we require that no external stimulus disturb the
measurements. When binding a profiling meta-object to an object we need to be
sure no other meta-object is already adapting the object since this would affect our
measurements. By using reflection we can detect that there is already another meta-
object present. The granularity of the validation depends on the granularity of the
meta-objects. If there is a coverage meta-object adapting a single method of an object
it might happen that the profiling meta-object has no interest in that method so the
composition can take place.

4.2.2 Traits (Scenario 2)

A trait [Ducasse et al., 2006b] is a composable unit of behavior that can be shared
among classes. If several classes share a trait then all objects that are instances of
these classes are able to understand the messages defined in the trait. In this exam-
ple, we demonstrate how we can introduce traits to objects, i.e., running instances.
For the sake of simplicity we describe only a meaningful subset of the overall traits
mechanisms, namely: definition of a trait, addition of a trait to an object, composi-
tion of traits and conflict resolution. However, we take it a step further in another
direction and show how we can build traits that are shareable between individual
objects, not just classes. This example shows a first attempt at developing talents,
Chapter 5 presents the details of the full implementation of dynamic composable
units of reuse.

Let us assume that we have a financial system and that we want all financial in-
struments to share the same behavior. For example, suppose we want to provide a
common implementation for the recalculate feature. Furthermore, we do not want
to impose a common superclass on all financial instruments to introduce this fea-
ture, but instead keep the possibility to assign the feature dynamically to a financial
instrument. We can fulfill these needs by defining the feature as a trait, however
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if the host language does not provide traits we cannot introduce this feature as we
would like. Bifröst provides a way to define dynamically the trait abstraction by
adapting the language model.

1 financialInstrumentTrait := StructuralMetaObject new.

2 financialInstrumentTrait

3 addMethodNamed: #recalculate

4 performing: 'recalculate

5 self recalculateTaxes.

6 self recalculateDates'.

7 bond := Bond new.

8 loan := Loan new.

9 financialInstrumentTrait bindTo: bond.

10 financialInstrumentTrait bindTo: loan.

Listing 4.2: Building the trait abstraction with structural meta-objects.

First, we introduce the trait abstraction itself as a structural meta-object (Line 1).
Then we define the message recalculate (Line 2–6) for this trait, its behavior be-
ing to recalculate taxes and dates. By using the existing class abstraction defined
with meta-objects we instantiate two financial instruments (Lines 7–8). Finally, we
associate the trait as the meta-object to both objects thus making them capable of
answering the message recalculate.

A trait is defined as a StructuralMetaObject. However, by definition, traits should
not have state. To achieve this we need to remove the possibility of adding state in
the trait structural meta-object.

1 traitBehavior := StructuralMetaObject new.

2 traitBehavior removedMethodNamed: #addStateNamed:.

3 traitBehavior removedMethodNamed: #removeStateNamed:.

4 traitBehavior bindTo: financialInstrumentTrait.

Listing 4.3: Making traits stateless.

We first define another structural meta-object called traitBehavior (Line 1). This
abstraction has the responsibility of defining which are the messages a trait meta-
object is capable of answering. In Lines 2–3 both state-related messages are removed
from the trait behavior definition. Finally, in Line 4 the traitBehavior is set as the
meta-object of the trait meta-object defining its responsibilities. The semantics of
bindTo: dictate that when a meta-object is bound to an object with a preexisting
meta-object then a composition is executed. Objects can only have one meta-object,
calling bindTo: does not replace the object’s meta-object.

By binding meta-objects to meta-objects Bifröst can change itself uniformly. The
system is not biased towards any particular reflection model.
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Let us now consider the definition of another financial trait which has a conflict with
the financialInstrumentTrait.

1 taxingInstrumentTrait := StructuralMetaObject new.

2 taxingInstrumentTrait

3 addMethodNamed: #recalculate

4 performing: 'recalculate

5 self recalculateTaxes'.

6 bond := Bond new.

7 financialInstrumentTrait bindTo: bond.

8 taxingInstrumentTrait bindTo: bond.

Listing 4.4: Building a conflicting trait abstraction.

In Listing 4.4 we define a trait which adds the method recalculate with a differ-
ent implementation. In lines 7 and 8 we are binding the bond object to the two
traits. The binding in line 8 will throw an exception stating that the adaptation in
taxingInstrumentTrait has a conflict with a previous meta-object adaptation.
A central mechanism of traits is conflict resolution. With Bifröst the user can also
provide a different behavior than the default conflict handler.

1 taxingInstrumentTrait := StructuralMetaObject new.

2 taxingInstrumentTrait

3 addMethodNamed: #recalculate

4 performing: 'recalculate

5 self recalculateTaxes'.

6 traitComposition := CompoundMetaObject new.

7 traitComposition

8 when: InvalidAddMethodException

9 do: [ :exception | exception

10 compoundMetaObject mergeLastConflict ].

11 bond := Bond new.

12 financialInstrumentTrait bindTo: bond.

13 taxingInstrumentTrait bindTo: bond.

Listing 4.5: Building a compound trait conflict manager.

In Listing 4.5 we are defining a trait that adds the method recalculate and a com-
pound meta-object. This meta-object defines that when there is an error when adding
a method to an object a different behavior from the default should be executed. In
this case the handler in line 9–10 commands the compound meta-object to merge
the last conflict. The compound meta-object has specific actions when dealing with
conflicts; here it will merge the methods.
This example shows how Bifröst supports addapting an object without anticipation
at run-time. We can also observe how dynamic traits are composed through the
meta-object definitions.
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4.2.3 Delegates (Scenario 2)

The method-lookup reification defines the process that specifies which method should
be executed when an object receives a message. Most languages, including Java
and Smalltalk, do not reify method lookup. Most class-based languages impose a
method lookup that follows the class hierarchy and is typically hardcoded into the
execution machinery.

We introduce delegates [Lieberman, 1986; Stein, 1987] as an example of avoiding
class-based method lookup. Objects that have a delegate will be able to forward
messages not understood by the receiver to another object, effectively changing the
traditional lookup.

1 delegateStructure := StructuralMetaObject new.

2 delegateStructure addStateNamed: #delegate.

3

4 delegateForwarder := BehavioralMetaObject new.

5 delegateForwarder

6 when: MessageNotUnderstood new

7 do: [ :receiver :selector :arguments |

8 receiver delegate

9 perform: selector

10 withArguments: arguments ].

11

12 delegateStructure bindTo: anObject.

13 delegateForwarder bindTo: anObject.

Listing 4.6: Reifying method lookup with structural and behavioral meta-objects.

First we define a structural change, adding the variable delegate to the bound meta-
objects (Lines 1–2). It will hold the object where messages are sent to if the re-
ceiver cannot handle them. Next we define the behavior with a behavioral change
(Lines 4–10). Whenever a message is not understood (not implemented) by the re-
ceiver, the code block (Lines 7–10) is executed. It first asks the receiver for its dele-
gate, by calling the accessor that was created by the structural meta-object. Then it
invokes the same method with the same arguments on the delegate object. The last
two lines (Lines 12–13) bind the two meta-objects to anObject. Infinite regression can
happen if the object’s delegate is the object itself.

This example shows how Bifröst supports partial reflection by adapting a single
object with delegates. Receiver, selector and arguments are selectively reified in
the behavioral event. The adaptation is achieved without anticipation and at run-
time.
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4.2.4 Prototypes (Scenario 3)

Lieberman [Lieberman, 1986] introduced the idea of using the prototype abstraction
to better model the evolution of concepts, and thus the evolution of abstractions.
Modeling with prototypes works by cloning objects from other prototypical objects.
The prototype behavior and state is copied to the cloned objects. The behavior and
the state of every object can be modified to model new abstractions. Any object can
be a prototype.

1 prototypeMetaObject := CompoundMetaObject new.

2

3 prototypeStructure := StructuralMetaObject new.

4 prototypeStructure

5 addMethodNamed: #clone

6 performing: 'clone ^ Object new metaObject: prototypeMetaObject; prototype:

self'.

7 prototypeStructure addStateNamed: #prototype.

8 prototypeStructure

9 replaceMethodNamed: #addMethodNamed:performing:

10 performing: 'addMethodNamed: aSelector performing: aString prototype

addMethodNamed: aSelector performing: aString'.

11

12 prototypeBehavior := BehavioralMetaObject new.

13 prototypeBehavior

14 when: MessageReceived new

15 do: [ :receiver :selector :arguments |

16 (receiver respondsTo: selector)

17 ifTrue: [ self perform: selector withArguments: arguments ].

18 ifFalse: [ receiver prototype

19 perform: selector

20 withArguments: arguments ] ].

21

22 prototypeMetaObject add: prototypeStructure.

23 prototypeMetaObject add: prototypeBehavior.

Listing 4.7: Building a prototype object model.

The prototype meta-object is composed of a structural meta-object (Lines 3–10) and
a behavioral meta-object (Lines 12–18) as shown in Listing 4.7. The structural meta-
object defines the clone message (Line 4–6). This message creates an empty ob-
ject and then sets its meta-object to the single prototype meta-object. In Line 7 the
prototype instance variable is added to keep track of the cloning chain. Prototypes
can add behavior and state to themselves. We therefore use a structural meta-object
to model prototypes. To adapt the actual prototype we also have to change the de-
fault meta-object behavior. In Lines 8–10 we can see that the behavior of the struc-
tural meta-object is modified to delegate to the default prototype meta-object the
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addition, deletion and replacement of behavior and state. For simplicity we only
show the method addition example.

Lines 12–20 define the behavioral meta-object. The message received reification is used
to adapt the behavior of the object. When this event occurs, if the receiver imple-
ments the message then it handles it, otherwise the message is delegated to the re-
ceiver prototype. Finally, a compound meta-object is created (Lines 22–23) with the
behavioral and the structural meta-objects previously defined.

1 pen := StructuralMetaObject new.

2 prototypeMetaObject bindTo: pen.

3 pen prototype: prototypeMetaObject.

4

5 pen addMethodNamed: #color performing: 'color ^ Color red'

6

7 pencil := pen clone.

8 pencil addMethodNamed: #hasRubber performing: 'hasRubber ^ true'

Listing 4.8: A prototype pen use case.

Listing 4.8 presents a user-case for the prototype model. The objective is to model a
‘pen’ and ‘pencil’ using prototypes. Lines 1–3 define the ‘pen’ prototype. In Line 5
the method color is added to the ‘pen’ prototype answering red. Then the pencil
prototype is created by cloning the pen prototype (Line 7). The pencil knows how
to answer the color message by delegation to the original prototype. Line 8 adds a
new method to the ‘pencil’ prototype which is only relevant to the pencil thus the
‘pen’ does not know it.

This example shows how to compose meta-level objects with compound meta-objects.
Dynamically defining prototypes proves that Bifröst is capable of defining new re-
flective models that can coexist with other reflective models; consequentially this
approach is not biased to a particular reflective model.

4.2.5 Live Feature Analysis (Scenario 2)

Feature Analysis determines which software entities in a complex software system
support which end-user features. Traditional approaches to feature analysis es-
tablish this correspondence by exercising features to generate a trace of run-time
events. These traces are then processed in a post-mortem analysis. As such, these
approaches are neither dynamic nor adaptable to changes in the analyzed applica-
tions.

Live Feature Analysis is an approach that overcomes these drawbacks by adapting
the application at run-time. Instead of generating traces, feature information is di-
rectly added to the structural representation of the source code while the features
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are exercised. Live Feature Analysis has been originally implemented with Reflec-
tivity [Denker et al., 2010]. Two drawbacks of the previous approach are that it is
difficult to specify an object-specific adaptation and that the management of links
in Reflectivity is by hand and error-prone since there is no reification that models
and adaptation composed of multiple links. Using the meta-object abstraction of
Bifröst, the meta-level management can be handled by the meta-object itself on a
per-object basis.

The following listing shows the next scenario: we instrument a given object before
the execution of a feature with the goal of annotating the AST nodes of the code
fragments that are executed by that feature:

1 aMetaObject := BehavioralMetaObject new.

2 aMetaObject

3 when: ASTNodeExecutionEvent new

4 do: [ :node | node addFeatureAnnotation: #printing ].

5 aMetaObject bindTo: anObject.

Listing 4.9: Live Feature Analysis

To implement live feature analysis we define a new behavioral object (Line 1) which
is triggered every time an AST node is executed (Lines 2–4). The meta-level behavior
is specified using a block closure (anonymous function). In this example, the feature
‘printing’ is added to the execute node (Line 4). Finally, the meta-object is bound to
a particular object, anObject, to be analyzed (Line 5).

The ASTNodeExecutionEvent is an event triggered for every execution of an AST node,
and it contains the knowledge of which are the AST nodes that reify this particular
event. The behavioral meta-object then binds these nodes to an AST meta-object that
will perform the meta-action described in the block. The block uses a helper method
addFeatureAnnotation:which simply adds a symbol in the properties of the node. The
code is automatically installed by Bifröst using an AST transformation. The block
node parameter is a dynamic reification of the executed AST node created at run-
time. Other reifications like the dynamic execution context are available too.

This example shows how Bifröst supports partial reflection by adapting a single
object. The AST node is reified for each occurrence of the newly defined event thus
we selectively reify. The adaptation is achieved without anticipation and at run-
time.

4.2.6 Scoped Live Feature Analysis (Scenario 2)

A key drawback of live feature analysis is that the user still needs to specify where
this adaptation should take place before exercising the features.
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Prisma aids the user when the target of the feature analysis is unknown. We need
to define the same meta-object used by live feature analysis inside a Prisma execu-
tion. However, the portions of the system that should be adapted are not selected
by the user but instead by the execution itself. We use the term “AST execution”
figuratively, since AST nodes are not literally executed, but rather their lower level
bytecode representation is. However, when we adapt an application we specify that
we would like something to happen when the bytecode, i.e., the result of compiling
a particular AST node, is executed.

loginExecution := Execution new.

loginExecution when: ASTNodeExecutionEvent

do: [ :node | node addFeatureAnnotation: #login ]

The Execution>>when: anEvent do: aBlock method is responsible for adding a meta-
object to the execution which should evaluate the provided block when a particular
meta-event is produced. Whenever an AST node is executed for an adapted object
the meta-level behavior is executed.

loginExecution

executeOn: [ WebServer new loginAs: 'admin' password: 'pass' ]

Listing 4.10: Exercising the login feature on a web server.

Prisma applies this meta-object only to the specific method invoked during the exe-
cution. The meta-objects associated to the execution are never applied to a complete
object unless the meta-object specifies so. In Listing 4.10 we are exercising the login
feature on a web server. We are dynamically scoping the adaptation in the execution
to the behavior in the block.

We present a more in-depth explanation of Prisma in Chapter 9.

4.3 Implementation

Bifröst offers a form of partial behavioral reflection that supports a highly selective
means to specify where and when to reify system constructs. Bifröst generalizes and
simplifies Reflectivity by using meta-objects (rather than links) as the sole abstrac-
tion with the responsibility of specifying the structure and behavior of any other
object. Bifröst builds on an earlier prototype, called Albedo [Ressia et al., 2010]. The
main differences between these two prototypes are that Bifröst provides (i) a meta-
object composition mechanism, (ii) a unification of the various meta-objects in the
system, and (iii) a purely object-centric approach for applying meta-objects to ob-
jects.
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4.3.1 Adapting the Lower-level

Bifröst’s adaptation mechanism is built on top of lower-level meta-objects. In the
Smalltalk implementation of Bifröst we bind meta-objects to objects representing
AST nodes. AST nodes are static representations of the running behavior of a method
in a class. Bifröst achieves object-centric reflection by duplicating the AST behavior
representation in the meta-object and modifying it. Objects thereby become owners
of their behavior instead of depending on a meta-class model.
A meta-object can be associated to a single AST node or multiple ones (see Fig-
ure 4.2). The next time the method is compiled the system automatically generates
new bytecodes that take the meta-object into consideration. This behavior allows
Bifröst to adapt the predefined behavior of objects. AST meta-objects can reify AST
related information depending on the AST node. For example, a message send node
can reify the sender, the receiver and the arguments at runtime. The meta-level be-
havior specified in the meta-object can be executed before, after or instead of the
AST node the meta-object is adapting.

Source code
(AST)

AST Meta-objects

Figure 4.2: Bifröst AST adaptation through meta-objects.

The following section explains how this dynamic recompilation works in the context
of Smalltalk.

4.3.2 Reflective methods

Bifröst exploits the reflective method abstraction [Marschall, 2006]. A reflective method
knows the AST of the method it represents (see Figure 4.3). In Pharo classes are first
class objects that are accessible and changeable at run-time. Classes hold a reference
to a MethodDictionary, a special subclass of Dictionary. All methods of a class are
stored in its method dictionary. The VM directly accesses class objects and method
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Class

ReflectiveMethod

CompiledMethodMethodDictionary
methodDict

1 *

MetaObjectReflectiveMethod

Figure 4.3: Reflective Methods in Method Dictionaries.

dictionaries when evaluating message sends. Normally, only instances of Compiled-
Method are stored in the method dictionary of a class but Pharo allows us to replace
it with any other object that obeys the right protocol. When such an object is used
in place of a regular compiled method, the VM sends it the message run:with:in:,
encoding the message, its arguments and the recipient. When a reflective method
receives this message it processes the adaptations specified by the meta-object on
the AST and generates a new compiled method that is eventually executed. If no
adaptation is present the reflective method caches the compiled method to improve
performance.

4.3.3 Structural and Behavioral Reflection

Behavioral reflective changes are achieved by attaching meta-objects to AST nodes,
thus modifying or adding behavior to the target object’s method.

On the other hand, structural reflection is handled differently. For example, when a
method is added to a particular object then the meta-object is responsible for man-
aging this method. The class is modified to understand the method and a reflective
method is installed in the method dictionary. This reflective method delegates to
the meta-object of the receiver object the responsibility of finding the method to be
executed. If the meta-object has a method with the correct selector then the associ-
ated compiled method is executed. Otherwise a does not understand error is triggered,
which is the original behavior. All instances of the class that were not adapted return
does not understand when the added method is invoked.

In the case of adding an instance variable to a particular object, once again the meta-
object is responsible for holding this variable. Behavioral adaptations are introduced
in the methods that access this instance variable to delegate the access to the instance
variable in the object’s meta-object.
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4.3.4 Object-specific Behavior

A meta-object defines how an object is interpreted. The meta-object abstraction
has a method dictionary in which the corresponding reflective method for that spe-
cific object is stored. In Figure 4.3 we can see a reflective method abstraction called
MetaObjectReflectiveMethod. When an object method is adapted the reflective method
in the method dictionary is replaced by a MetaObjectReflectiveMethod. A copy of the
reflective method is installed in the method dictionary of the object’s meta-object.
Finally the adaptation is performed over the copied AST method node. The key re-
sponsibility of a MetaObjectReflectiveMethod is to delegate the method execution to
the object’s meta-object.

aPoint isPoint

Key
instance-of
message send
lookup

Object

isPoint
Point

aPoint

1

2 4

aMetaObject

isZero : aCompiledMethod
isPoint : aMetaObjectReflectiveMethod

aMethodDictionary

isPoint : aReflectiveMethod
aScopedMethodDictionary

3

run: #isPoint with: #() in: aPoint

run: #isPoint with: #() in: aPoint

5
run: #isPoint with: #() in: aPoint

Figure 4.4: Modified method lookup for a point with an adapted isPoint method.

In Figure 4.4 we can see an example of the modified method lookup for aPoint>>isPoint
in Bifröst. First the method lookup finds the method isPoint defined in the Point

class. This method is not a compiled method but a reflective method. The VM does
not know how to execute this abstraction thus it delegates the execution to the reflec-
tive method itself with run:with:in:. We can observe that the MetaObjectReflective-

Method instance delegates to a meta-object through the message run:with:in:. In step
4 the reflective method delegates the execution of the method isPoint to the re-
ceiver’s meta-object. To find the corresponding method to be executed the meta-
object indexes by method name. The meta-object finds the corresponding method
which is a reflective method containing the a copy of the original AST plus adapta-
tions. The message run:with:in: is sent to the reflective method which first triggers
the compilation of the method, second replaces the reflective method in the method
dictionary with the resulting compiled method, and finally executes the compiled
method.

If the message is sent to another object of the same class, for which no adaptation
has been performed, the MetaObjectReflectiveMethod placed in the class method dic-
tionary sends the message run:with:in: to the original reflective method cached in
the reflective method.
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There are other implementation mechanisms that we could have used to obtain the
same behavior. Next we introduce these options and we explain why we did not
use them:

• Anonymous Classes are a Smalltalk mechanism for changing the class of an ob-
ject at runtime. When changing the class of an object the original class shape
and the new class shape should be the same. This implies that the number of
instance variables defined in the class cannot change. Also managing anony-
mous classes is not trivial, the IDE does not take into account these classes.
Moreover, changing an object’s class has important consequences over a class-
based language, for example the inheritance chain is severed disrupting the
normal behavior of the object when delegating to inherited behavior.

• Lookup Method modification is another option for achieving dynamic meta-objects.
Instead of using reflective methods we can redirect the method lookup to an
object’s meta-object before reaching the object’s class. However, this implies
changing the VM since the method lookup in Smalltalk is not reified. We
wanted to have a system that can be loaded and used in any Smalltalk envi-
ronment regardless of the VM they are using.

• Proxies are objects that are placed before other objects. For example, if we want
to count the number of times a specific object is invoked we create a proxy and
change all references to the specific object to point to the proxy. This means
that to invoke a method on the specific object we always have to go through
the proxy which counts the invocations. In Smalltalk, there is a mechanism
known as become which transforms all references to an object to another object,
which in this case is a proxy. The problem with become is that it is slow and
there is no way of doing it lazily. Due to this, we decided to use the reflective
method mechanism which has no performance impact if the method is not
used and when used the performance impact is smaller than changing all the
references to an object.

4.3.5 Micro-Benchmark

We have performed a micro-benchmark to assess the maximal performance impact
of Bifröst. We follow the test setup of Tanter [Tanter et al., 2003] and base our bench-
marks on the message send reification only, the other reifications having similar per-
formance characteristics. All benchmarks were performed on an Apple MacBook
Pro, 2.16 GHz Intel Core Duo in Pharo 1.1.1 with the jitted Cog VM. To avoid pos-
sible execution artifacts disturbing the benchmark we ensure that the involved re-
flective and jitted methods are created in advance and that method lookup caches
are filled.
In our benchmark we measure the execution time of a test method being invoked one
million times from within a loop. This test method is performing a simple constant
time arithmetic operation to avoid the VM optimizing the method call. In Table 4.2
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we report the average µ and standard deviation τ of running this benchmark one
hundred times with three different setups:

µ τ

1. No reification 21.54 1.05
2. Disabled reification 21.53 1.07
3. Message send reification 729.60 16.52

Table 4.2: µ is the average time in milliseconds and τ is the standard deviation for
106 activations of the test method over 100 runs.

1. In the first test case (no reification) we measure the execution time of the appli-
cation without Bifröst.

2. In the second test case (disabled reification) we measure the execution time of the
application with Bifröst, but without reification on our benchmarked method.
We see that there is no performance impact on parts of the system that do not
use reflection.

3. In the third test case (message send reification) we measure the execution time
of the application with Bifröst reifying the 106 method activations of the test
method. This shows that in the reflective case the code runs about 35 times
slower than in the reified one.

This micro-benchmark shows that reflection on a runtime system can have a signif-
icant performance impact. However, as we have demonstrated in the past and we
will exemplify in the next section, the performance impact for real-world applica-
tion with fewer reifications is lower and in some cases imperceptible for the user.
Bifröst’s meta-objects provide a way of adapting selected objects thus allowing re-
flection to be applied within a fine-grained scope only. This provides a natural way
of controlling the performance impact of reflective changes.

4.3.6 Bifröst for other languages

In this section we discuss the feasibility of implementing Bifröst in other languages
and environments.
There has been extensive work in AOP to support adaptation mechanisms. As
Tanter [Tanter, 2008] has pointed out, there are several techniques to support dy-
namic deployment of aspects: residues [Masuhara et al., 2003], meta-level wrap-
pers [Hirschfeld, 2003], optimized compilers with static analysis [Avgustinov et al.,
2005; Bodden et al., 2007], and VM support [Bockisch et al., 2004]. Moreover, there
has been promising work on aspect-aware VMs [Bockisch et al., 2006b; Bockisch et
al., 2006a] and dynamic layer (de)activation [Costanza et al., 2006], suggesting that
such advanced scoping mechanisms can be efficiently supported.
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Object-centric reflection is not hard to achieve in other languages. The key problem
of this approach for other languages is its requirement for unanticipated changes.
A more static mainstream language (e.g., Java) solution would likely be more static
in nature. There are numerous instrumentation libraries for Java bytecode, such as
BCEL, ASM, or Javassist [Chiba, 2000]. The key problem in this approaches is that
adaptations can be only introduced at either build-time or at load-time. Achieving
the same dynamic behavior and unanticipation as in Bifröst’s Smalltalk implemen-
tation is not possible.

4.4 Conclusion

In this chapter we have presented Bifröst the Smalltalk implementation of object-
centric debugging. We explained the particularities of the Smalltalk implementa-
tion. We validated the object-centric approach through a set of examples that show
that: (i) different reflection models are achievable, (ii) all the reflection requirements
are covered by Bifröst, (iii) object-centric reflection allows developer to reflect on
objects and their static representation (also objects) with a unified model, and (iv)
the absence of the object paradox in the presented examples (the validation and
demonstration of how the object paradox is avoided is presented in Chapter 8 and
Chapter 7).
In the next chapters we discuss structural adaptations (Chapter 5) and behavioral
adaptations (Chapter 6). In these chapters we concentrate on how the object paradox
is implicitly present in the language abstractions and how object-centric reflection
can avoid the paradox while providing an improved development approach.
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Dynamically Composable Units of Reuse

In this chapter we demonstrate how the object paradox is present in the reuse of
behavior and state. Generally class-based solutions are used as the main target of
reuse techniques, like traits. We demonstrate how object-centric reflection improves
the reuse mechanism by providing a dynamic approach which avoids the object
paradox.

Classes in object-oriented languages define the behavior of their instances. Inher-
itance is the principle mechanism for sharing common features between classes.
Single inheritance is not expressive enough to model common features shared by
classes in a complex hierarchy. Several forms of multiple inheritance have conse-
quently been proposed [Borning and Ingalls, 1982; Keene, 1989; Meyer, 1997; Schaf-
fert et al., 1986; Stroustrup, 1986]. However, multiple inheritance introduces prob-
lems that are difficult to resolve [Dixon et al., 1989; Sweeney and Gil, 1999]. One can
argue that these problems arise due to the conflict between the two separate roles
of a class, namely that of serving as a factory for instances, as well as serving as a
repository for shared behavior for all instances and the instances of its subclasses. As
a consequence, finer-grained reuse mechanisms, such as flavors [Moon, 1986] and
mixins [Bracha and Cook, 1990], were introduced to compose classes from various
features.

Although mixins succeed in offering a separate mechanism for reuse they must be
composed linearly, thus introducing new difficulties in resolving conflicts at compo-
sition time. Traits [Schärli et al., 2003; Ducasse et al., 2006b] overcome some of these
limitations by eliminating the need for linear ordering. Instead dedicated operators
are used to resolve conflicts. Nevertheless, both mixins and traits are inherently
static, since they can only be used to define new classes and not to adapt existing
objects.

Ruby [Matsumoto, 2001] relaxes this limitation by allowing mixins to be applied to
individual objects. Object-specific mixins however still suffer from the same com-
positional limitations of class-based mixins, since they must still be applied linearly
to resolve conflicts.
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We introduce talents, object-specific units of reuse that model features an object can
acquire at run-time. Similar to traits, a talent represents a set of methods that consti-
tute part of the behavior of an object. Unlike traits, talents can be acquired (or lost)
dynamically. When a talent is applied to an object, no other instance of the object’s
class are affected. Talents may be composed of other talents, however, as with traits,
the composition order is irrelevant. Conflicts must be explicitly resolved.

Like traits, talents can be flattened, either by incorporating the talent into an existing
class, or by introducing a new class with the new methods. However, flattening is
purely static and results in the loss of the dynamic description of the talent on the
object. Flattening is not mandatory, on the contrary, it is just a convenience feature
which shows how traits are a subset of talents.

The remainder of this chapter is structured as follows: In Section 5.1 we motivate
the problem. Section 5.2 explains the talent approach, its composition operations
and a solution to the motivating problem. In Section 5.3 we present the internal
implementation of our solution in the context of Smalltalk. In Section 5.4 we discuss
related work. Section 5.5 discusses about features of talents such as scoping and
flattening. In Section 5.6 we present examples to illustrate the various uses of talents.
Section 5.7 presents a dedicated user interface for managing and defining talents.
Section 5.8 summarizes the chapter and discusses future work.

5.1 Motivating Examples

In this section we analyze two examples that demonstrate the need for a dynamic
reuse mechanism.

Moose is a platform for software and data analysis that provides facilities to model,
query, visualize and interact with data [Nierstrasz et al., 2005; Gîrba, 2010]. Moose
represents source code in a model described by FAMIX, a language-independent
meta-model [Tichelaar et al., 2000]. The model of a given software system consists of
entities representing various software artifacts such as methods (through instances
of FAMIXMethod) or classes (through instances of FAMIXClass). Each type of entity offers
a set of dedicated analysis actions. For example, a FAMIXClass offers the possibility
of visualizing its internal structure, and a FAMIXMethod offers the ability to browse
its source code. Selecting the needed features for an entity is awkward within the
constraints of a fixed class hierarchy.

In a second example, we consider various kinds of streams, whose features can be
combined at run time, rather than requiring that a class be created for every con-
ceivable combination of features.
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5.1.1 Moose Meta-model

Moose can model applications written in different programming languages, includ-
ing Smalltalk, Java, and C++. These models are built with the language independent
FAMIX meta-model. However, each language has its own particularities which are
introduced as methods in the different entities of the meta-model. There are dif-
ferent extensions which model these particularities for each language. For exam-
ple, the Java extension adds the method isSessionBean to the FAMIXClass, while the
Smalltalk extension adds the method isExtended. Smalltalk however does not sup-
port namespaces, and Java does not support class extensions. Additionally, to iden-
tify test classes Java and Smalltalk require different implementations of the method
isTestClass in FAMIXClass.

Another problem with the extensions for particular languages is that the user has
to deal with classes that have far more methods than the model instances actually
support. Dealing with unused code reduces developer productivity and it is error
prone.

A possible solution is to create subclasses for each supported language. However,
there are some situations in which the model requires a combination of extensions:
Moose JEE [Perin, 2010; Perin et al., 2010] — a Moose extension to analyze Java En-
terprise Applications (JEAs) — requires a combination of Java and Enterprise Ap-
plication specific extensions. This leads to an impractical explosion of the number
of subclasses. Moreover, possible combinations are hard to predict in advance.

Multiple inheritance can be used to compose the different behaviors a particular
Moose entity requires. However, this approach has been demonstrated to suffer
from the “diamond problem” [Snyder, 1986; Bracha and Cook, 1990] (also known
as “fork-join inheritance” [Sakkinen, 1989]), which occurs when a class inherits from
the same base class via multiple paths. When common features are defined in differ-
ent paths then conflicts arise. This problem makes it difficult to handle the situation
where two languages to be analyzed require the addition of a method of the same
name.

Mixins address the composition problem by applying a composition order, this
however might lead to fragile code and subtle bugs. Traits offer a solution that is
neutral to composition order, but traits neither solve the problem of the explosion in
the number of classes to be defined, nor do they address the problem of dynamically
selecting the behavior. Traits are composed statically into classes before instances
can benefit from them.

We need a mechanism capable of dynamically composing various behaviors for dif-
ferent Moose entities. We should be able to add, remove, and change methods. This
new Moose entity definition should not interfere with the behavior of other entities
in other models used concurrently. We would like to be able to have coexisting mod-
els of different languages, formed by Moose entities with specialized behavior.
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5.1.2 Streams

Streams are used to iterate over sequences of elements such as sequenced collections,
files, and network streams. Streams offer a better way than collections to incremen-
tally read and write a sequence of elements.

Streams may be either readable, writeable or both readable and writeable. They can
also be binary or character-based. Furthermore, streams can have different back-
ends, such as memory streams, socket streams, database streams, or file streams.

The potential combination of all these various types of streams leads to an explosion
in the number of classes.

Similar solutions to the Moose meta-model problem can be provided, however they
present the same shortcomings. Multiple inheritance can be used to compose the
different behaviors of a particular stream. However, the diamond problem again
makes it difficult to handle the situation where two streams want to add a method
of the same name. Mixins address the composition problem by applying a com-
position order, this however might lead to fragile code and subtle bugs. Although
inheritance works well for extending a class with a single orthogonal mixin, it does
not work so well for composing a class from many mixins. The problem is that usu-
ally mixins do not quite fit together, i.e.,, their features may conflict, and inheritance
is not expressive enough to resolve such conflicts.

Traits offer a solution that is neutral to composition order, but traits neither solve
the problem of the explosion in the number of classes to be defined, nor do they
address the problem of dynamically selecting the behavior. Traits are composed
statically into classes before instances can benefit from them.

We need a mechanism capable of dynamically composing the right combination
of streams required for each particular occasion. The key objective is to avoid an
exponential increase in the number of classes needed to provide all the different
combinations.

5.2 Talents in a Nutshell

In this section we present a new approach of composable units of behavior for ob-
jects, called talents. These abstractions solve the issues present in other approaches.

5.2.1 Defining Talents

A talent specifies a set of methods which may be added to, or removed from, the
behavior of an object. We will illustrate the use of talents with the Moose extension
example introduced in the previous section.
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A talent is an object that specifies methods that can be added to an existing object.
A talent can be assigned to any object in the system to add or remove behavior.

1 aTalent := Talent new.

2 aTalent

3 defineMethod: #isTestClass

4 do: '^ self inheritsFromClassNamed: #TestCase'.

5 aClass := FAMIXClass new.

6 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated and then a method is defined.
The method isTestClass is used to test if a class inherits from TestCase. In lines 5–6
we can see that a FAMIX class is instantiated acquiring the previous talent. When
the method acquire: is called, the object — in this case the FAMIX class — is adapted.
Only this FAMIXClass instance is affected, no other instance is modified by the talent.
No adaptation will be triggered if an object tries to acquire the same talent several
times.
Talents can also remove methods from the object that acquires them.

1 aTalent := Talent new.

2 aTalent excludeMethod: #duplicatingClasses.

3 aClass := FAMIXClass new.

4 aClass acquire: aTalent.

In this case the existing method duplicatingClasses is removed from this particu-
lar class instance. Sending this message will now trigger the standard doesNot-

Understand: error of Smalltalk.

5.2.2 Composing Objects from Talents

Talent composition order is irrelevant, so conflicting talent methods must be explic-
itly disambiguated. Contrary to traits, the talent definition of a method takes prece-
dence if the object acquiring the talent already has the same method. This is because
we want behavior that is specific to objects, and as such the object-specific behavior
should take precedence over the statically defined one. Once an object is bound to a
talent then it is clear that this object needs to specialize its behavior. This precedence
can be overridden if it is explicitly stated during the composition by removing the
definition of the methods from the talent.
In the next example we compose a group with two talents. One expresses the fact
that a Java class is in a namespace, the other that a JEE class is a test class.

1 javaClassTalent := Talent new.

2 javaClassTalent

3 defineMethod: #namespace
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4 do: '^ self container'.

5 jeeClassTalent := Talent new.

6 jeeClassTalent

7 defineMethod: #isTestClass

8 do: '^ self methods anySatisfy: [ :each | each isTestMethod ]'.

9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

In line 10 we can observe that the composition of talents is achieved by sending the
comma message (,). The composed talents will allow the FAMIX class instance to
dynamically reuse the behavior expressed in both talents.

5.2.3 Conflict Resolution

A conflict arises if and only if two talents being composed provide different imple-
mentations for the same method. Conflicting talents cannot be composed, so the
conflict has to be resolved to enable the composition.

To gain access to the different implementations of conflicting methods, talents sup-
port an alias operation. An alias makes a conflicting talent method available by
using another name.

Talent composition also supports exclusion, which allows the user to avoid a con-
flict before it occurs. The composition clause allows the user to exclude methods
from a talent when it is composed. This suppresses these methods and allows the
composite entity to acquire the otherwise conflicting implementation provided by
another talent.

Our goal is to define models originating from JEE applications to support both Java
and JEE extensions. Composing these two talents however generates a conflict for
the methods isTestClass for a FAMIX class entity. The next example produces a con-
flict on line 10 since both talents define a different implementation of the isTestClass

method.

1 javaClassTalent := Talent new.

2 javaClassTalent

3 defineMethod: #isTestClass

4 do: '^ self methods anySatisfy: [ :m | m isAnnotatedWith: #Test ]'.

5 jeeClassTalent := Talent new.

6 jeeClassTalent

7 defineMethod: #isTestClass

8 do: '^ self inheritsFromClassNamed: #TestCase'.

9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.
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If an unresolved composition conflict arises an exception is thrown when the com-
position is attempted.
There are different ways to resolve this situation. The first is to define aliases, like in
traits, to avoid the name collision. Aliases are used to avoid collisions, rather than
to resolve collisions by, say, using a priority mechanism:

10 aClass acquire: javaClassTalent , (jeeClassTalent @ {#isTestClass ->

#isJeeTestClass}).

When the talent is acquired the method isJeeTestClass is installed instead of isTest-
Class, thus avoiding the conflict. Any other method or another talent can then make
use of this aliasing.
Another option is to remove those methods that do not make sense for the specific
object being adapted. Using the following syntax the method is subtracted from the
talent.

10 aClass acquire: javaClassTalent , (jeeClassTalent - #isTestClass).

By removing the definition of isTestClass from the JEE class talent the Java class
talent method is correctly composed.
Each FAMIX extension can be defined as a set of talents, each for a single entity,
e.g., class, method, annotation, etc. For example, we have the Java class talent which
models the methods required by the Java extension to FAMIX class entity. We also
have a Smalltalk class talent as well as a JEE talent that model further extensions.

5.2.4 Stateful Talents

In the original traits model, state can only be accessed within stateless traits by ac-
cessors, which become required methods of the trait. As demonstrated by Bergel
et al. [Bergel et al., 2007], traits are artificially incomplete since classes that use such
traits may contain significant amounts of boilerplate glue code. Talents also provide
a mechanism for dynamically defining state which is similar to its static counterpart,
stateful traits.

1 aTalent := Talent new.

2 aTalent defineState: #testClass.

3 aClass := FAMIXClass new.

4 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated and then a state called
testClass is defined. This instance variable is a boolean attribute/field used to test
if a class is a test case. In lines 4–5 we can see that a FAMIX class is instantiated ac-
quiring the previous talent. As with behavioral talents when the method acquire: is
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called, the object — in this case the FAMIX class — is adapted. Only this FAMIXClass

instance is affected, no other instance is modified by the talent. No adaptation will
be triggered if an object tries to acquire the same talent several times.
Since this state is introduced on a live object, we also provide a mechanism for man-
aging the initialization. When no default value is provided then the new talent-
defined state is set to nil, the usual default value for uninitialized attributes in regu-
lar Smalltalk code. The developer can use the state definition with default behavior
to control state initialization values.

1 aTalent := Talent new.

2 aTalent

3 defineState: #testClass

4 default: true.

5 aClass := FAMIXClass new.

6 aClass acquire: aTalent.

The method defineState:default: adds a state definition to a talent which when ac-
quired by an object will have a default value. In the example the state testClass has
the value true by default. To avoid sharing the default values between objects the
message defineState: aSymbol subjectTo: aBlock allows the user to provide a block
which will dynamically define the value of the state.
Methods defined afterwards for the talent can refer to the newly created state with-
out the need for accessors.

1 aTalent := Talent new.

2 aTalent defineState: #testClass.

3 aTalent

4 defineMethod: #isTestClass

5 do: '^ testClass'.

6 aClass := FAMIXClass new.

7 aClass acquire: aTalent.

In lines 3–5 we can see the definition of the method isTestClass which returns the
boolean value testClass state. No definition of accessors is required and talents can
define methods directly accessing the state.
The user can define state accessors by various state helper methods:

1 aTalent := Talent new.

2 aTalent defineStateWithAccessors: #testClass.

3 aClass := FAMIXClass new.

4 aClass acquire: aTalent.

By using defineStateWithAccessors: the talent definition also adds the two accessors
for reading and writing on the testClass state. The user can also use defineState-

WithReadAccessor: and defineStateWithWriteAccessor: which are self-explanatory.
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5.3 Implementation

Talents are built on top of the Bifröst reflection framework [Ressia et al., 2010]. Each
talent is modeled with a structural meta-object. In Talents, we particularly use par-
tially reflection on specific objects, talents are applied without anticipation, and they
are composed dynamically.

aFAMIXClass
    isTestClass 

Key
instance-of
message send
lookup

FAMIXEntity

FAMIXType

isTestClass
FAMIXClass

aFAMIXClass

1

2

3

self inheritsFrom: 'TestCase' 

MooseEntity

...

Figure 5.1: Default message send and method look up resolution.

Figure 5.1 shows the normal message send of isTestClass to an instance of FAMIX-

Class. The method lookup starts on the class defining the method and then execut-
ing it for the message receiver.
However, if we would like to factor the FAMIXClass JEE behavior out we can define
a talent that models this. Each talent is modeled with a structural meta-object. A
structural meta-object abstraction provides the means to define meta-objects like
classes and prototypes. New structural abstractions can be defined to fulfill some
specific requirement. These meta-object responsibilities are: adding and removing
methods, and adding and removing state to an object. A composed meta-object is
used to model composed talents. The specific behavior for defining and removing
methods is delegated to the addition and removal of behavior in the structural meta-
object.
In Figure 5.2 we can observe the object diagram for a FAMIX class that has acquired
a talent that models JEE behavior. The method lookup starts in the class of the re-
ceiver. Originally, the FAMIXClass object did not define a method isTestClass, how-
ever, the application of the talent defined this method. This method is responsible
for delegating the execution of the message to the receiver’s talent. If the object
does not have a talent, the normal method lookup is executed, thus talents do not
affect other instances’ behavior of the class. In this case, aFAMIXClass has a talent that
defines the method isTestClass, which is executed for the message receiver.
Bifröst’s structural meta-objects provide features for adding state to a single object
and removing it. Talents can provide something that traits cannot, namely state.
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Figure 5.2: Talent  modeling  the  Moose  FAMIX class  behavior  for  the  method
isTestClass.

Moreover, talents can provide operators for composing state adaptations. This com-
position is not present in object-specific techniques like mixins and Newspeak [Bracha
et al., 2010] modules.

5.4 Related Work

In this section we compare our approach using talents to other approaches for shar-
ing behavior.

Mixins

Flavors [Moon, 1986] was the first attempt to address the problem of reuse across a
class hierarchy. Flavors are small, incomplete implementations of classes, that can
be “mixed in” at arbitrary places in the class hierarchy. More sophisticated notions
of mixins were subsequently developed by Bracha and Cook [Bracha and Cook,
1990], Mens and van Limberghen [Mens and van Limberghen, 1996], Flatt, Krishna-
murthi and Felleisen [Flatt et al., 1998], and Ancona, Lagorio and Zucca [Ancona et
al., 2000].
Mixins present drawbacks when dealing with composition. Mixins use single in-
heritance for composing features and extending classes. Inheritance requires that
mixins be composed linearly; this severely restricts one’s ability to specify the glue
code that is necessary to adapt the mixins so that they fit together [Schärli et al., 2003].
However, although this inheritance operator is well-suited for deriving new classes
from existing ones, it is not appropriate for composing reusable building blocks.
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Bracha developed Jigsaw [Bracha, 1992], a modularity framework which defines
module composition operators merge, override, copy as and restrict. These oper-
ators inspired the sum, override, alias and exclusion operators on traits. Jigsaw
models a complete framework for module manipulation providing namespaces, de-
clared types and requirements, full renaming, and semantically meaningful nest-
ing.

Ruby [Matsumoto, 2001] introduced mixins as a building block of reusability, called
modules. Moreover, modules can be applied to specific objects without modify-
ing other instances of the class. However, object-specific modules suffer from the
same composition limitation as modules applied to classes: they have to be applied
linearly. Aliasing of methods is possible for avoiding name collisions, as well as
removing methods in the target object. However, object or class methods cannot
be removed if they are not already implemented. This follows the concept of lin-
earization of mixins. Talents can be applied without an order. Moreover, a talent
composition delivers a new talent that can be reused and applied to other objects.
Filters in Ruby provide a mechanism for composing behavior into preexisting meth-
ods. However, they do not provide support for defining how methods defined in
modules should be composed for a single object.

CLOS

CLOS [DeMichiel and Gabriel, 1987] is an object-oriented extension of Lisp. Multi-
ple inheritance in CLOS [Lawless and Milner, 1989; Paepcke, 1993] imposes a linear
order on the superclasses. This linearization often leads to unexpected behavior be-
cause it is not always clear how a complex multiple inheritance hierarchy should
be linearized [Ducournau et al., 1992]. CLOS also provides a mechanism for mod-
ifying the behavior of specific instances by changing the class of an instance using
the generic function change-class. However, these modifications do not provide any
composition mechanisms, rendering this technique dependent on custom code pro-
vided by the user.

Traits

Traits [Schärli et al., 2003; Ducasse et al., 2006b] overcome the limitations of previ-
ous approaches. A trait is a set of methods that can be reused by different classes.
The main advantage of traits is that their composition does not depend on a linear
ordering. Traits are composed using a set of operators — symmetric combination,
exclusion, and aliasing — allowing a fair amount of composition flexibility. Traits
are purely static since their semantics specify that traits can always be “flattened”
to an equivalent class hierarchy without traits, but possibly with duplicated code.
As a consequence traits can neither be added nor removed at run-time. Moreover,
traits were not conceived to model object-specific behavior reuse.

65



Chapter 5 Dynamically Composable Units of Reuse

Smith and Drossopoulou [Smith and Drossopoulou, 2005] proposed a mechanism
for applying traits at runtime in the context of Java. However, only pre-defined
behavior defined in a trait can be added at runtime. It is not possible to define and
add new behavior at runtime.
Bettini et al. [Bettini et al., 2009] proposed a mechanism for flexible dynamic trait
replacement where traits can be applied at runtime. However, this technique can
only change existing behavior, not add new behavior.

Object Extensions

Self [Ungar and Smith, 1987] is a prototype-based language which follows the con-
cepts introduced by Lieberman [Lieberman, 1986]. In Self there is no notion of class;
each object conceptually defines its own format, methods, and inheritance relations.
Objects are derived from other objects by cloning and modification. Objects can
have one or more prototypes, and any object can be the prototype of any other ob-
ject. If the method for a message send is not found in the receiving object then it is
delegated to the parent of that object. In addition, Self also has the notion of trait
objects that serve as repositories for sharing behavior and state among multiple ob-
jects. One or more trait objects can be dynamically selected as the parent(s) of any
object. Selector lookups unresolved in the child are passed to the parents; it is an
error for a selector to be found in more than one parent. Self traits do not provide a
mechanism to fine tune the method composition. Let us assume that two objects are
dynamically defined as parents of an object. If both parent object define the same
method there is not a simple way of managing the conflict.
Object extension [Ghelli, 2002; Di Gianantonio et al., 1998] provides a mechanism for
self-inflicted object changes. Since there is no template serving as the object’s class,
only the object’s methods can access the newly introduced method or data members.
Ghelli et al. [Ghelli, 2002] suggested a calculus in which conflicting changes cannot
occur, by letting the same object assume different roles in different contexts.
Drossopoulou proposed Fickle [Drossopoulou et al., 2001], a language for dynamic
object re-classification. Re-classification changes at run-time the class membership
of an object while retaining its identity. This approach proposes language features
for object re-classification to extend an imperative, typed, class-based, object-oriented
language. Even though objects may be re-classified across classes with different
members, they will never attempt to access non-existing members.
Cohen and Gil introduced the concept of object evolution [Cohen and Gil, 2009].
This approach proposes three variants of evolution, relying on inheritance, mix-
ins and shakeins [Rashid and Aksit, 2006]. The authors introduce the notion of
evolvers, a mechanism for maintaining class invariants in the course of reclassifica-
tion [Drossopoulou et al., 2001]. This approach is oriented towards dynamic reuse in
languages with types. Shakeins provide a type-free abstraction, however, there are
no composition operators to aid the developer in solving more complex scenarios.
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Bracha et al. [Bracha et al., 2010] proposed a new implementation of nested classes
for managing modularity in Newspeak. Newspeak is class-based language with vir-
tual classes. Class references are dynamically determined at runtime; all names in
Newspeak are method invocations thus all classes are virtual. Nested classes were
first introduced in Beta [Madsen et al., 1993]. In Newspeak Class declarations can
be nested to an arbitrary depth. Since all references to names are treated as method
invocations any object member declaration can be overridden. The references in an
object to nested classes are going to be solved when these classes are late bound to
the class definition in the active module the object is in. Talents model a similar ab-
straction to modules, for dynamically composing the behavior of objects. However,
Newspeak modules do not provide composition operators similar to talents. Com-
posed talents can remove, alias, or override method definitions. Removing method
definitions is not a feature provided by Newspeak modules. In Newspeak compo-
sition would be done in the module or in the nested classes explicitly.

Context-oriented Programming

Context-oriented programming (COP) was introduced by Costanza et al. [Costanza and
Hirschfeld, 2005]. The behavior of an object is split into layers that define the object’s
subjective behavior. Layers can be activated and deactivated to represent the actual
contextual state. When a message is sent, the active context determines the behavior
of the object receiving the message.

Subjective Programming

Subjective behavior is essential for applications that must adapt their behavior to
changing circumstances. Many different solutions have been proposed in the past,
based, for example, on perspectives [Smith and Ungar, 1996], roles [Kristensen,
1995], contextual layers [Costanza and Hirschfeld, 2005], and force trees [Dard-
eres and Prieto, 2004]. Depending on the active context, an object might answer
a message differently or provide a modified interface to its users. These approaches
mainly concentrate on dynamically modifying an object’s behavior, however, there
is no support for behavior reuse between object as it exists in traits or mixins.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [Kiczales et al., 1997b] modularizes cross cut-
ting concerns. Join points define all locations in a program that can possibly trigger
the execution of additional cross-cutting code (advice). Pointcuts define at run-time
if an advice is executed. Both aspects and talents can add new methods to exist-
ing classes. Most implementations of AOP such as AspectJ [Kiczales et al., 2001]
support weaving code at more fine-grained join points such as field accesses, which
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is not supported by talents. Although AOP is used to introduce changes into soft-
ware systems, the focus is on cross-cutting concerns, rather than on reflecting on the
system.

Aspects are concerns that cannot be cleanly encapsulated in a generalized abstrac-
tion (i.e., object, method, mixin). This means that in contrast to talents, aspects
are neither designed nor used to build dynamic abstraction and components from
scratch, but rather to alter the performance or semantics of the components in sys-
tematic ways.

5.5 Discussion

In this section we discuss other benefits that talents bring to a programming lan-
guage.

5.5.1 Scoping Talents

Scoping talents dynamically is of key importance because it allows us to reflect on
which context the added features should be active in and also to control the extent
of the system that is modified. An object might need to have certain features in one
context while having other features in a different context. Let us analyze an example
to understand the motivation for scoping talents.

A bank financial system is divided into two main layers: the domain and the per-
sistency layer. The domain layer models the financial system requirements and fea-
tures. The persistency layer deals with the requirements of persisting the domain
abstraction in a relational database. When testing the domain behavior of this appli-
cation we do not want to trigger database-related behavior. Normally, this is solved
through mocking or dependency injection [Fowler, 2005]. However, these solutions
are not simple to implement in large and legacy systems which are not fully under-
stood, and where any change can bring undesired side effects. Scoped talents can
solve this situation by defining a scope around the test cases. When the tests are
executed the database access objects are modified by a talent which mocks the ex-
ecution of database related actions. In a highly-available system which cannot be
stopped, like a financial trading operation, scoped talents can help in actions like:
auditing for the central financial authority, introducing lazy persistency for updat-
ing the database, logging. This is similar to the idea of modules in Newspeak.

COP solutions can provide an implementation solution to bringing talents to other
languages. Lincke et al. [Lincke et al., 2011] presented a mechanism for composing
layers in ContextJS, a JavaScript COP implementation. Talents offer a form of COP
based on object-specific meta-objects rather than layers.
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5.5.2 Flattening

Flattening is the technique that folds into a class all the behavior that has been added
to an object. There are two types of flattening in talents:
Flattening on the original class. Once an object has been composed with multiple tal-
ents it has a particular behavior. The developer can analyze this added behavior and
from a modeling point of view realize that all instances of the object’s class should
have these changes. This kind of flattening applies the talent composition to the
object’s class.
Flattening on a new class. On the other hand the developer might realize that the
new responsibilities of the object are relevant enough to be modeled with a separate
abstraction. Thus a new class has to be created by cloning the composed object be-
havior. This new class will inherit from the previous object class. Deleted methods
will be added with a shouldNotCallMethod exception to avoid inheriting the imple-
mentation.

5.5.3 Talents in a statically typed language

A highly dynamic construct such as talents is possible in a statically typed language,
even if the language implementation ensures that the type interface remains consis-
tent. This can only be achieved by disallowing changes to the signatures of existing
methods. Talents can safely replace existing methods as long as they do not alter
their signatures.
In a statically typed language like Java we could declare talents with the help of a
marker interface Talent<T> [Bracha, 2004], where T is generic type variable specify-
ing the interface of the talent. These interfaces can then be modeled with talents.
Particular combinations of talents can deliver different combinations of an object’s
interfaces.
interface Talent<T> implements T {

// marker interface for a talent with the interface T

}

Classes that want to support a specific talent need to implement the marker interface
Talent that they parametrize with the interface of the talent T. This forces the class
to provide a default implementation of all the methods in the interface of the talent.
The example with FAMIXClass in Section 5.1.1 would look in Java as follows:
interface TestTalent {

boolean isTestClass();

}

class FAMIXClass implements Talent<TestTalent> {
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boolean isTestTalent() {

return false;

}

...

}

Finally, a generic static helper method must be provided to let objects acquire tal-
ents:

<O extends Talent<T>, T> void acquire(O object, T talent)

The above signature ensures statically that object O can only acquire the talent T, it
was marked with talent T (implements T) already at compile time.

The outlined approach would enable talents in Java without weakening the existing
type system. We imagine that the talents themselves could be implemented using
bytecode rewriting of the methods in classes that implement the marker interface
and the state pattern outlined in Section 5.6.3.

As we demonstrated in this section, talents are possible even in the context of a
statically typed language. The implementation however will be limited to the pre-
declared talent interfaces only.

5.5.4 Traits on Talents

Conceptually, talents are a generalization of traits. Traits can only be applied to a
specific set of objects, classes. Talents can be applied to any object in the system,
including classes.

Traits can be implemented on top of the talent infrastructure by having a talent
TraitTalent with a modified method basicNew. This talent is applied to the class
in which we would like to have traits. The modified basicNew method has the ex-
tra behavior of applying the set of composed traits for the given class. This set of
composed traits can be contained in an added state to the class defined by the Trait-

Talent. Each trait is defined as a talent and added to the modified class. A trait can
also be defined as a wrapper on a talent which adds traits related method.

5.6 Examples

In this section we present a number of example applications of talents. These ex-
amples are selected to exercise the various facets of the talents mechanism, and as
such, act as validation of the expressiveness of our approach.
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5.6.1 Mocking

Let us assume that we need to test a class that models a solvency analysis of the
assets of a financial institution customer. The method we need to test is Solvency-

Analysis>>isSolvent: aCustomer. This method delegates to SolvencyAnalysis>>assetsOf:

aCustomer which executes a complex calculation of the various assets and portfolios
of the customer. We are only interested in isolating the behavior of isSolvent:, not
in the complexities of assetsOf:

When testing such a use case we need to modify the assets of a particular customer
by increasing or decreasing the financial instruments deposits. This implies that we
need to interact and create objects that are unessential in relation to the objective of
the test case. Introducing more objects in a test case increases the chances of making
the test fail for other reasons than the test objective. Talents provide a mechanism
to modify the behavior of particular objects to modify this interaction, providing an
object-specific mocking mechanism.

Let us analyze a talent solution to this use case:
1 SolvencyAnalysisTest>>testIsSolvent

2 | aCustomer anAnalysis |

3 aCustomer := Customer named: 'test'.

4 anAnalysis := SolvencyAnalysis new.

5 anAnalysis method: #assetsOf: shouldReturn: 1.

6 self assert: (anAnalysis isSolvent: aCustomer).

7 anAnalysis method: #assetsOf: shouldReturn: -1.

8 self deny: (anAnalysis isSolvent: aCustomer).

We added the method method:shouldReturn: to the class Object which creates a talent
with a method named as the first argument and with the body provided by the
second argument. In lines 5 and 7 you can see the use of this behavior. If the method
assetsOf: return a positive amount then the customer is solvent otherwise not.

Talents can ease the testing of monolithic legacy applications built in a manner that
does not easily support mocking.

5.6.2 Compiler Internal Abstractions

In traditional compiler design, the compilation of source code is a multi-step pro-
cess: lexical analysis (scanning) is followed by syntactic analysis (parsing), which
is followed by semantic analysis. This is followed by code generation, which itself
may be split into multiple optimization and generation steps. Traditionally each of
these steps has its own representation to work on the code, i.e., the lexical analysis
uses tokens, the syntactic analysis uses an abstract syntax tree, the semantic analysis
uses an intermediate representation, and so on.
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The problem with this approach is that it brings a significant overhead of perfor-
mance and memory. At each step a plethora of new nodes need to be instantiated,
as each step accumulates new state and requires different behavior. However, old
state of previous steps cannot be thrown away. At any time in the compilation chain
the compiler needs to be able to navigate back to the state of the previous steps, for
example to pinpoint errors in the source file or to query the lexical structure. Com-
piler designers can address this requirement in two possible ways, but neither of
them is very attractive: Either they copy and accumulate state along the compila-
tion chain, which is error prone and slow; or they keep references to the nodes of
the previous step, which can be expensive if the paths have to be navigated often.
With talents we have an elegant solution to this problem. Imagine the scanner reads
a variable assignment such as a := 12. This results in 3 tokens to be created: a, :=,
and 12. These tokens not only contain the value they represent, but also know the
source file and location in that file. In the syntactic analysis a parser detects that
these 3 tokens form an assignment, built from the variable a, the assignment op-
erator :=, and the value 12. With talents we let the assignment token acquire an
AssignmentNodeTalent that has — besides the node specific behaivor — also addi-
tional state: an assignment always consists of a variable node and an expression
node. In this particular case the token a acquires the VariableNodeTalent and the
value 12 acquires the ValueNodeTalent. In the next step, the semantic analysis, the a

is further refined with the type of variable it represents. In this particular example
the compiler could for example let it acquire the InstanceVariableTalent.
With each step in the compilation chain new talents are attached. The talents not
only introduce new node specific behavior, but also add new state. The added state
allows the objects to reorganize themselves in new ways. While the tokens are or-
ganized in a sequence of tokens, the syntactic nodes form an abstract syntax tree,
and the semantic analysis forms a graph of references.
The approach with talents avoids the drawbacks of existing solutions. The same
objects are passed through the complete compilation chain. Each step augments the
objects with new state and behavior relevant for this step. Unnecessary copying of
state and navigation between long object chains is avoided.

5.6.3 State Pattern

The state pattern [Gamma et al., 1995] models the different states a domain object
might have. When this object needs to do something then it delegates the decision of
what to do to its state. A class per object state is created with the required behavior.
Sometimes, multiple instances of each state are created and sometimes a singleton
pattern is used.
Instead of having a state abstract class and then concrete subclasses for each of the
more specific states we could use talents. We will have a single state class and then
create as many instances as we have states. We can model each specific state with a
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different talent that is applied to the state’s instances, thus avoiding the creation of
multiple state specific classes.
The talents based solution is simpler than a traditional state pattern, since it avoids
the additional redirection from the object to its state. The developer simply has
an object whose behavior changes, still having the state specific behavior but one
indirection is eliminated.

5.6.4 Streams

Streams can be writable, readable, or both; depending on what talents are added.
WriteStreamTalent adds the methods for writing to a stream, i.e., nextPut: and nextPut-

All:. ReadStreamTalent adds the methods to read from a stream, i.e., next and next:.
Streams can be binary or textual. Talents add the necessary supported methods,
i.e., BinaryReadStreamTalent adds nextInt32; and TextualWriteStreamTalent adds the
methods cr and space. Furthermore streams are typically implemented on top of
different backends, i.e., collections, sockets, or files. Again we use talents that pro-
vide the necessary primitives for the read and write talents to actually perform the
desired tasks.
All possible combinations of read, write, or read-write; binary or textual; memory,
sockets, or files are possible. No unnecessary methods outside the requested capa-
bilities are present. Furthermore, the talent composition avoids additional dispatch-
ing cost. The resulting streams are as efficient as if all 18 combinations would have
implemented manually.
Traditional stream implementations check in every method if the underlying stream
is still opened. With talents we can avoid such cumbersome checks and dynamically
acquire a ClosedStreamTalent when a stream is closed. This talent either removes all
modifying stream methods, or alternatively replaces them with one that throws an
exception. This approach not only simplifies the implementation, but it is also more
efficient as unnecessary tests are avoided altogether.

5.6.5 Class Extensions

Class extensions are a means to add required behavior to classes that belong to other
packages outside our control. For example, when we load Moose there are several
methods that are added or modified, in core classes like Collection hierarchy, Object
, etc. This mechanism allows Moose developers to extend the system with Moose
specific additions, e.g., utility methods like asMooseGroup have been added to the
core class Collection so to transform any collection in a MooseGroup. The imple-
mentation of the extended method asMooseGorup is shown in the snippet below:

1 Collection>>asMooseGroup

2 ^ MooseGroup withAll: self
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Class extensions are also largely used within Moose to add functionalities from
newly added packages to core packages. For example, when the Moose extension
to analyze relational databases [Aryani et al., 2011] is loaded, new methods like maps

are added to the element FAMIXNamedEntity in the Moose core to keep track of the re-
lations between relational elements and source code entities. The implementation
of the extended method maps is shown in the snippet below:

1 FAMIXNamedEntity>>maps

2 <MSEProperty: #maps type: #FAMIXMapping opposite: #mapSource> <multivalued> <

derived>

3 <MSEComment: 'Map relationship.'>

4

5 ^self privateState attributeAt: #maps ifAbsentPut: [FMMultivalueLink on: self

opposite: #mapSource:].

A key drawback of this approach is that extensions do not support the definition
of state, but only behavior. Moose developers need to implement more complex
models since they cannot add state to classes outside Moose packages. Talents can
be used to address this issue. The extension mechanism can be improved to provide
state facilities by applying talents to all live instances of a particular class when an
extension is loaded. When a state extension is defined for a particular class a talent
with state definition is used. When the packages with extensions are loaded all
instances of the extended classes are gathered and the predefined stateful talents
are applied to them. Moreover, some class instances can be left out of the talent
adaptation by providing conditions on various criteria. For example, only instances
not reachable from core classes should be adapted.

5.7 User Interface

The talents browser is responsible for organizing, managing and defining talents.
This browser is built using Glamour [Gîrba, 2010; Bunge, 2009], an engine for script-
ing browsers.

In Figure 5.1 we can observe an instance of the talents browser for the FAMIX class
case study. The browser is vertically divided into two panes, the upper navigation
section and the lower source code section.

The navigation section is divided into three panes following traditional Smalltalk
browsers. The first pane shows a list of talents packages. Packages group related
talents together. In this example we can see two talents packages: BouncingAtoms

and Moose. Once a package is selected the talents pane is populated with the talents
belonging to that package. In this example the Moose package is composed of two
talents: JavaClassTalent and J2EEClassTalent. When a talent is selected the Methods
pane is populated with the talent’s method definitions. The icons before the name

74



5.7 User Interface

Figure 5.3: Talents Browser overview.

of the method represent the definition behavior. The — icon is used to signal that
this method should be excluded when the talent is applied to an object. The � icon
indicates that a method should be replaced with the defined behavior. The + icon
represents that the method should be added to the adapted object.

These panes provide contextual menus for removing, renaming and adding pack-
ages, talents and methods. The methods panel only provides a remove menu item.
The talents panel provides a remove and a rename menu items.

The source code pane displays the source code defined for the selected method in
the Methods pane. The three icons in the upper right corner represent the actions
possible when saving a method definition. The + icon accepts the source code and
adds a method definition to the selected talent. The — icon prompts the user to pro-
vide the name of the method which should be excluded by the selected talent. The
� icon accepts the source code and a method replacement definition to the selected
talent.

Talents defined in the browser are registered to TalentsRegistry. When a developer
needs to use a particular talent he can access the registry by name.

aTalent := TalentsRegistry registry talentNamed: 'J2EEClassTalent'.

The talents browser is useful for managing the creation and structure of talents but
it does not provide a way to manage the association of talents to objects. To ful-
fill this we modified the default object inspector, one of the main instruments used
during development, to open the talent browser directly on the inspected object.
Figure 5.4 shows the work flow to attach a talent to an object. Once we have opened
the system inspector on the object we want to enrich with a talent, we can open the
talent browser directly from the contextual menu of the object. As a result the object
we were inspecting is passed along to the browser. The talents browser allows the
developer to find the right talents and if need be to modify it for fulfilling new re-
quirements. The developer can then select a talent and associate it to the inspected
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object using the option Apply Talent on the contextual menu that open on the talent
classes.

Figure 5.4: Modified inspector and Talents Browser Insteraction.

5.8 Conclusion

This chapter presented talents, a dynamic compositional model for reusing behav-
ior. Talents avoid the object paradox since they exclusively target specific objects.
Talents are composed using a set of operations: composition, exclusion and alias-
ing. These operations provide a flexible composition mechanism while avoiding the
problems found in mixins and traits.
Talents are most useful in composing behavior for different extensions that have to
be applied to the same base classes, thus dynamically adapting the behavior of the
instances of these classes seems natural to obtaining a different protocol.
Managing talents can currently be complicated since the classic development tools
are unaware of them. Our talents user interface solves the problem of managing
and defining talents. However, it does not provide features for composing talents
nor does it help in visualizing these compositions. We plan on extending the talents
user interface to deal with composition requirements.
We plan on providing a more mature implementation of the talents scoping facilities.
This technique shows great potential for the requirements of modern applications,
such as dynamic adaptation and dependency injection for testing, database accesses,
profiling, and so on.
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Decoupling Instrumentation from
Software Analysis Tools

In this chapter demonstrate how object-centric reflection can be used to build a
framework for addressing one of the applications of reflection: software analysis
tools. When instrumenting a system the developer is limited in which events he can
hook into by the abstractions provided by the reflective system. Generally these ab-
stractions are related to events on classes, source code and particular instructions,
even though the developer is interested in particular objects. The object-paradox is
present in the instrumentation domain. Object-centric reflection provides the means
for building a framework which decouples the instrumentation from the analysis
tool itself with explicit object-specific meta-events.

Instrumentation is the process of adapting a software system to measure run-time
attributes of interest. Development tools like profilers, loggers and code coverage
analysis tools are traditional applications of instrumentation. Existing approaches
to instrumentation are perfectly capable of implementing any of these use cases.
Combining analyses, however, poses a number of difficulties.

Domain-Polluted Instrumentation. Existing event-based instrumentation approaches
tend to couple the instrumentation behavior with the domain behavior. For
example, a message counter profiler needs to instrument an application to
reify message sends. If we would like to apply a message send logger to the
same application we cannot reuse the already instrumented message send
reification since it is coupled to the profiling domain. Due to this, a new in-
strumentation for the same reification is needed. Existing approaches pollute
the instrumentation with domain behavior thus rendering this instrumenta-
tion only usable for a particular consumer, domain or context. Instrumenta-
tion behavior and its consumers are tightly coupled.

Language-biased Events. Event-based reflective approaches are coupled with spe-
cific characteristics of the host language. The language’s internals define the
number of canonical events and which abstractions they should represent.
For example, some aspect-oriented programming (AOP) [Kiczales, 1996; Kicza-
les et al., 1997b; Kiczales et al., 1997a] languages depend on the structure and
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organization of the code. The programmer must express concerns in terms
of code-related events, usually method calls, rather than in terms of domain
concepts. This problem is known as the fragile pointcut problem [Störzer and
Koppen, 2004].

Static Instrumentation Scoping. Most instrumentation approaches use statically de-
fined conditions to control the runtime impact of the instrumentation. Which
portions of the system should trigger an event is defined through conditions
which have to be manually maintained. There is no dynamic mechanism for
plugging and unplugging instrumentations on specific objects.

We propose to resolve these problems by fully separating instrumentation from
analysis with the help of explicit meta-level events. We simplify the meta-level’s be-
havioral model by offering a single canonical event which models the execution of
an abstract syntax tree (AST) node. Any other object-related event can be expressed
in terms of this canonical event. Objects in an application are instrumented to reify
meta-level events. Analysis tools select which events to observe for the purpose of
profiling, logging, coverage, etc.
Our approach provides enhanced separation of concern capabilities by using run-
time objects as the modularity unit. Instrumentation requirements are applied to
specific objects thus allowing to reflect on any portion of the runtime system mod-
eled with objects.

Outline. The remainder of this chapter is structured as follows: in Section 6.1 we
discuss the related work with more details about their different implementations
and problems. Section 6.2 shows the Chameleon approach in a nutshell. In Sec-
tion 6.3 we show how Chameleon overcomes the drawback of other approaches.
Section 6.4 presents how Chameleon is implemented. In Section 6.5 we summarize
the chapter.

6.1 Related Work

In this section we review the state of the art in instrumentation techniques, while
highlighting problems and open issues. In particular we shall see that existing ap-
proaches offer limited expressiveness in terms of the way that run-time events are
made available for instrumentation purposes.

6.1.1 Applications of Instrumentation

Instrumentation has been extensibly researched in the past. One of the main con-
cerns that researchers have focused on is the performance impact that instrumented
code might have on program execution.
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Removing instrumentation once it has fulfilled its purpose is key to reducing the
performance impact. Dynamic instrumentation [Hollingsworth et al., 1997; Stu-
art et al., 2000] can be used to reduce the performance impact. Arnold and Ryder
[Arnold and Ryder, 2001] have shown that combining instrumentation with sam-
pling leads to accurate profiles (93–98% overlap with a perfect profile) with low
overhead (3–6%).
DTrace [Cantrill et al., 2004] is a tool capable of dynamically instrumenting base-
level and kernel-level software. Tracing programs are defined in the D language, a
subset of C with added functions and variables specific to tracing. DTrace users de-
fine probes which are instrumentation points. A probe is composed of a condition
and an action. Probes are comparable to pointcuts in aspect-oriented programming.
The DTrace framework itself performs no instrumentation of the system; that task
is delegated to instrumentation providers. Providers are loadable kernel modules
that communicate with the DTrace kernel module. Probes are advertised to con-
sumers, who can enable them by specifying any element of a 4-tuple to scope the
instrumentation: provider, module, function, name. The provider dynamically in-
struments the system and the probe’s action is executed.
ATOM [Srivastava and Eustace, 2004] and Purify [Hastings and Joyce, 1992] instru-
ments systems to collect data about them. Both these tools use static techniques,
instrumentation happening when the analyzed system is not running.

6.1.2 Behavioral Reflection

Let us analyze a simple Iguana/J example proposed by Redmond and Cahill [Red-
mond and Cahill, 2002]. In this example a message execution event is reified. Every
time that this event reification is triggered at runtime special verbose output after
and before the method execution is shown.

1 class VerboseExecution extends MExecute {

2 Object execute(Object o, Object[] args, Method m)

3 throws InvocationTargetException,

4 IllegalAccessException {

5 System.out.println("Before method " + m.getName());

6 result = m.invoke(o, args);

7 System.out.println("After method " + m.getName());

8 }

9 }

Listing 6.1: Reification of method execution with Iguana/J

We can observe in this example that the problem domain solution is coupled with
the event reification. Thus other potential consumers of this reification cannot reuse
it. Moreover, they have to duplicate the same reification with their domain specific
needs.
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When scoping the event reifications, Iguana/J models Meta-object protocols (MOPs)
that are associated to language constructs. We can see an example in Listing 6.2
where a VerboseProtocol is defined. It is composed of two event reifications: method
execution and state write.
protocol VerboseProtocol {

reify Execution: VerboseExecution;

reify StateWrite: VerboseStateWrite;

}

Listing 6.2: Iguana/J MOPs definition.

In Listing 6.3 we observe how a protocol is associated with a single object. The
Meta abstraction models the object responsible to managing the association between
protocols and objects. Protocols can also be associated to classes, in which case they
are applied to all instances of the class.
MyClass obj = new MyClass();

Meta.associate(obj, "VerboseProtocol");

Listing 6.3: Iguana/J Scoping.

A drawback of this approach is that the event consumer cannot scope dynamically
which reifications he wants to listen to. This can be seen in Listing 6.2 of the Igua-
na/J example. The logger—actually not implemented but represented by the print
function of the system—is bound to the Verbose Execution. There is no possibil-
ity provided to change the focus of the logger from the VerboseExecution to another
event.

6.1.3 Aspect-oriented Programming

Aspect languages like AspectJ [Kiczales et al., 2001], Composition Filters [Bergmans
and Aksit, 2004] and CaesarJ [Aracic et al., 2006] depend on the structure and organi-
zation of the code. The programmer must express concerns in terms of code-related
events, usually method calls, that most of the times are too far away from their nat-
ural description. This problem is known as the fragile pointcut problem [Störzer and
Koppen, 2004]. Let us use an example from Lieberherr et al. [Lieberherr et al., 1999]
for tracing particular method invocations on the class Point. The names of classes
and operations that are affected are mentioned in the definition of the aspect.

1 aspect ShowAccess {

2 static before Point.get,

3 Point.getX,

4 Point.getY {

5 System.out.println("R");

6 }
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7 }

Listing 6.4: Aspect logging the accesses to instance variables in the class Point

The aspect is only applicable to a single context, thus impairing the modularity of
the aspect definition.

The JAsCo language [Suvée et al., 2003] follows the work of Lieberherr et al. on
the component view for separation of concerns. This language provides a way of
separating when an aspect should be applied and what should be done. Hooks are
defined with abstract pointcuts. Traps are introduced in the potential places where
an event should be triggered. Connectors link these events to the hooks that dictate
what should be done. Connectors can be loaded dynamically making this approach
highly dynamic. It is not possible to define connectors at multiple abstraction lay-
ers.

Douence, Motelet and Südholt [Douence et al., 2001] introduced a general opera-
tional model for crosscutting based on execution monitors called Event-based Aspect-
Oriented Programming (EAOP). They proposed a formal model for the definition
and detection of event patterns. They describe an event as the representation of a
point in the program execution. In their prototype they implemented the explicit
events method call and method return.

Douence and Südholt [Douence and Südholt, 2002] later introduced constructor
calls and constructor returns as events. The Execution Monitor in their implementa-
tion observes events emitted during execution. The execution of the base program
is suspended when an event is emitted. The monitor matches this event against
different event patterns. When a pattern is satisfied the associated actions are exe-
cuted.

The event is then propagated to all aspects. After each aspect in turn has reacted to
the event the control is given back to the base program.

A key drawback of EAOP is that the event/pointcut definition is coupled to the
consumer behavior thus the event abstraction is not reusable. This drawback is also
present in some AOP approaches.

Another important drawback is that this approach provides only four events: con-
structor call and return, and method call and return. Although the authors claim
that is possible to extend this set of events with state read and write they do not
describe a solution to this. Neither do they provide a mechanism for developers
to generate custom events. Moreover the reifications that are introduced in each of
these events are fixed.

Bockisch et al. [Bockisch et al., 2011] explicitly model events with information ac-
cumulation features and compose events and aspects into hierarchies to loosen the
connection to code-level methods and field names. This approach proposes an ex-
plicit language construct for event declarations instead of just defining events using
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declarative predicates, as pointcuts in AspectJ. Explicit events and aspects composi-
tion mechanism are provided to define more complex entities from simple ones.
Join point interfaces (JPI) [Inostroza et al., 2011] address the strong contract between
the pointcut definition and the base code. JPI provides an additional layer of ab-
straction between base code and aspects. A class can exhibit a particular join point
interface. Any aspect can be defined referencing this interface thus the definition of
the pointcut is moved to the base code class. The base code programmer can main-
tain pointcut definitions in sync with the base code that these pointcut definition
refer to. The programmer is also aware of the pointcuts exposed to aspects. One
shortcoming of this approach is that the developer has to predefine statically which
is the possible interface of pointcuts that a class or object might have.
Gasiunas et al. [Gasiunas et al., 2011] proposed EScala, a modular declarative model
of implicit and imperative events. EScala extends the idea of events as object mem-
bers, as realized by C# events, with the possibility to define events declaratively
by expressions over other events. EScala presents the concept of declarative object-
oriented events that complement imperative events with AO implicit events. EScala
takes the AO way of defining implicit events but it does not solve the fragile pointcut
problem.
We can summarize the key issues with existing approaches in three main points:
domain-polluted instrumentation, language-biased events and static instrumenta-
tion scoping.

6.2 Chameleon in a Nutshell

Our goal is to provide an approach to instrumentation that addresses the three draw-
backs of existing approaches. We propose to resolve these shortcomings by means
of explicit meta-events. In this section we introduce Chameleon1, a Smalltalk pro-
totype of our approach.
Chameleon models meta-events explicitly and separates the specific behavior of a
development tool from the instrumentation by applying the observer pattern. Cha-
meleon provides a simplified event architecture with a single canonical event on top
of which any other meta-level event can be defined. This is achieved by integrat-
ing two key approaches to reflection: CodA/Iguana’s event-oriented approach and
Reflex/Reflectivity’s partial behavioral reflection approach.
Events are the building blocks of both CodA and Iguana, however, in neither frame-
work are they modeled explicitly. By explicitly modeling events and applying the
observer pattern, a better separation of concerns can be achieved.
Figure 6.1 shows a class diagram of Chameleon’s key abstractions which we will
discuss next.

1 http://scg.unibe.ch/research/chameleon/
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1 *
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Figure 6.1: Chameleon’s core abstractions.

6.2.1 Events

Chameleon offers a single canonical event which models the execution the code rep-
resented by single AST node. On top of the AST node execution event every other
object-related event can be built. Also, by having explicit events, we can build de-
veloper tools to use the observer pattern to listen to these meta-events. Thus, a
better separation of concerns between events generation and domain requirements
is achieved.

The class of an event models the conceptual abstraction of that event. Each occur-
rence of an event is modeled with a new instance created from the event class. The
responsibilities of an event class are:

• Determine where the event should be reified and signaled. The event class
knows which AST nodes, when executed, should reify the event.

• Describe which dynamic data is required to reify the event. For example, a
message send event contains and reifies the sender object, the receiver object
and arguments of the message.

• Knowing what adaptation has to take place on an object so the event can be
reified. For example, when reifying an object creation event it might happen
that the message new is not overridden in the instrumented object. Because of
this, the instrumentation tool should add the new method so the event can be
reified.
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Every time an event is triggered a new instance of this event is created. An event
instance is responsible for knowing how to signal itself. Every event instance holds
extra reifications which depend on the event, for example, sender of a method, vari-
able written.
We have implemented the Iguana/J canonical events to show the capacities of Cha-
meleon approach. These events are: object creation, object deletion, method exe-
cution, message send, message dispatch, state write and state read. For a detailed
explanation of these events look at Section 6.4.3.

6.2.2 Instrumentation for Signaling Events

The EventInstrumentor is responsible for instrumenting an application to reify spe-
cific events under specific circumstances.
Instrumentation is performed at the AST level. The EventInstrumentor has the fol-
lowing responsibilities:

• Instrument AST nodes to reify an event. The instrumentation has two respon-
sibilities: create the event and signal it through the announcer.

• Provide different scopes for instrumentation. For example, an event can be
reified for several classes or a single class, or for a single method or for a single
node.

• Adapt the application to allow an event to be reified. In the case of the Ob-

jectCreationEvent the new method has to be added before the reification in-
strumentation could take place.

Chameleon provides different scopes when instrumenting an event. Each event can
be reified either on a class, method or a single node. As an example we reify method
execution on a bank account class.
(EventInstrumentor new) reify: MethodExecutionEvent onClass: BankAccount

Listing 6.5: Reification of method execution inside a class

The method EventInstrumentor>>reify:onClass: handles the instrumentation. An-
other possible scope is the method:
(EventInstrumentor new) reify: MessageSendEvent onClass: BankAccount

selector:#statement

Listing 6.6: Reification of message send inside a method

In this example we reify the message send event on the statement method of the
bank-account class.
The third scope can be defined for a single node:
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(EventInstrumentor new) reify: ASTNodeExecutionEvent on: aNode

Listing 6.7: Reification of node execution on a single node

Here we reify the node execution on a node.

6.2.3 Announcer

The responsibility of the Announcer is to provide the observers with the possibility
to subscribe and unsubscribe to events. The Announcer provides different scopes for
the subscription. An observer can subscribe to all events or all occurrences of a par-
ticular event. In the listing below we can see a profiler subscribing to all events:

aChameleonAnnouncer

subscribe: aProfiler

Listing 6.8: Profiler subscribing to all events.

For simplicity reasons a global instrumentor which uses a global announcer is de-
fined. However, the design does not force the users to only use these global objects.
Developers are free to instantiate new instrumentors and announcers creating con-
textual event refication environments.
Next, we can see a profiler subscribing to a method execution event.

aChameleonAnnouncer

subscribe: aProfiler

to: MethodExecutionEvent

Listing 6.9: Profiler subscribing from the method execution event.

To inform the announcer about an event execution, the initialization of an event has
to call the Announcer>>announce: anEvent method.
An observing customer is able to unsubscribe from either all events or an event type
as seen in the following listings:

aChameleonAnnouncer

unsubscribe: aProfiler

Listing 6.10: Profiler unsubscribing to all events.

aChameleonAnnouncer

unsubscribe: aProfiler

to: MethodExecutionEvent

Listing 6.11: Profiler unsubscribing to the method execution event.
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6.2.4 Observers

An observer models different development tools like profilers, code coverage anal-
ysis and loggers. Observers subscribe through the Announcer to listen to specific
events. The particularities of the domain are kept in the observer thus providing
good separation of concern between the instrumentation and the problem domain.
The observers do not have to follow any particular pattern but the observer pattern
to listen to events and act accordingly.
Observers are notified by the announcer when an event has been signaled and rei-
fied with the message updateOn: anEvents.

6.3 Chameleon in Action

In this section we will demonstrate how Chameleon resolves the three drawbacks
of existing instrumentation approaches.

6.3.1 Domain-Polluted Instrumentation

MetaSpy [Bergel et al., 2011] is a framework to build domain specific profilers. MetaSpy
offers abstractions to model profilers and instrumentors. A profiler uses various in-
strumentors to reify domain specific events.
In a first case study of MetaSpy, the authors built a domain specific profiler for Mon-
drian [Meyer et al., 2006], a software visualization tool. The default visualization
displays a software system as nodes and edges representing classes and inheritance.
Mondrian can be customized to change what the nodes and edges represent.
The authors of MetaSpy built a domain-specific profiler for Mondrian to detect the
source of a certain performance issue. Each time Mondrian detects a change in a
node it refreshes the whole visualization. This profiler’s goal was to measure the
number of times the displayOn: method was called for each of the nodes in a Mon-
drian visualization.
The MetaSpy domain-specific profiler was defined as follows:

1 MondrianProfiler>>setUp

2 self model root allNodes do: [ :node |

3 self

4 observeObject: node

5 selector: #displayOn:

6 do: [ :receiver :selector :arguments |

7 actualCounter

8 at: receiver

9 put: ((actualCounter
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10 at: receiver

11 ifAbsent: [ 0 ]) + 1) ] ]

Listing 6.12: Attaching the profiler to the Mondrian-nodes

This profiler defines that every node in the model will be observed for invocations
of the displayOn: method. The block from lines 6–11 defines the action that should
be executed when the message displayOn: is received by any node. The block counts
for each node how many times the method was executed.
The message MetaSpy>>observeObject:selector:do:delegated to an instrumentor which
is responsible for instrumenting the nodes.
This process of instrumentation is described by the MetaSpy authors as follows:

An instrumentation strategy is responsible for adapting a domain-specific
model and triggering specific actions in the profiler when certain events
occur.

This statement indicates coupling between the profiler and the instrumentation. The
MetaSpy instrumentor introduces the profiler extra behavior in the nodes where the
reification of interesting events should happen. This reification cannot be reused
since it is coupled to this particular domain. We call this domain-polluted instru-
mentation, because the instrumentation is coupled with the profiler.
If we would add a second MetaSpy profiler the same event has to be reified again.
This is due to the fact that each instrumentation hooks the functionality directly into
the code. So every newly added profiler adds a new instrumentation and therefore
additional code (besides the profiler) to the system. Therefore the coupling of in-
strumentation and the profiler has not only the drawback of not being able to reuse
the instrumentation event reifications but it also has performance impact. Adding
multiple profilers that use the same instrumentation adds the same reification for
each profiler to the source code thus slowing the system unnecessarily. This perfor-
mance impact is only noticeable when multiple adaptation are consuming the same
events.
Chameleon on the other hand separates the instrumentation reification from the de-
velopment tools. In the case-study of Mondrian we would need a method execution
event to have the correct representation of the displayOn: method execution.

(Instrumentor new)

reify: MethodExecutionEvent

onClass: Node

selector: #displayOn:

Listing 6.13: Reifying method execution for the method displayOn: in the class node
of Mondrian

The Profiler only has to register for this event:
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aChameleonAnnouncer

subscribe: mondrianProfiler

to: MethodExecutionEvent

Listing 6.14: Profiler registers for the method execution event.

If another development tool wants to observe this method execution, since we just
have to register it, the instrumentation is already there. This is shown in the code
below:

aChameleonAnnouncer

subscribe: logger

to: MethodExecutionEvent

Listing 6.15: Logger registers for the method execution event

The event does not need to be reified again. Therefore we avoid domain-polluted
instrumentation.
The use of explicit events makes the reuse of instrumentation possible and provides
the capability to always know what is already instrumented. It also reduces the per-
formance impact whenever multiple development tools use the same instrumenta-
tion.

6.3.2 Language-biased Events

Lienhard et al. [Lienhard et al., 2008] proposed an object-oriented back-in-time de-
bugger. This kind of debugger is extremely useful for identifying the causes of bugs
that corrupt execution state without immediately raising an error, as they allow us
to inspect the past states of objects no longer present in the current execution stack.
To remember the flow of objects this debugger has to answer a key question: How
was this object passed here? This means that for any object accessible in the debug-
ger, the tool has to be able to inspect all origins up until the allocation of the object.
This also allows us to find out where a particular value of a variable comes from.
The approach of Lienhard et al. was to modify the Smalltalk virtual machine at key
points to gather the state of variables and instance variable written and read. This
also required to take into account the values of the arguments of method invoca-
tions.
Let us analyze the possibility of implementing a similar solution using Iguana/J.
Message invocations as well as state read and write are provided as canonical events.
State read and write events only model the accesses to instance variables but not reg-
ular variables. Specific behavior for gathering the required data can be introduced
for these events. However, there is a key event that we cannot model with Iguana/J,
when a value is assigned to a simple variable. It is not possible to reify this event
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with the provided canonical events. Iguana/J canonical events are implemented by
modifying the Java VM using the JIT interface. Thus, a variable assignment event
would require one to modify the Java VM to introduce the new assignment event.
In Iguana/J each of the seven canonical events matches a particular virtual machine
adaptation. Moreover, some events like object creation are required since in Java an
object is created through constructors instead of normal messages to the class.
Our approach proposes an unbiased event implementation by building on top of the
AST abstractions. This means that events match AST nodes with particular charac-
teristics. We can find AST abstractions in many different languages, therefore our
framework can be ported to other languages.
To build the variable assignment event we need to extend ASTNodeExecutionEvent and
override the method shouldBeReifiedOn:.
VariableAssignmentEvent>>shouldBeReifiedOn: aNode

^ aNode isAssignment

and: [ aNode variable isVariable ]

Listing 6.16: Selection of assignment nodes for reifying the event that a variable was
assigned.

Only the nodes that are assignments and whose variable side is a variable and not
a field will be selected.

6.3.3 Static Instrumentation Scoping

Bockisch et al. proposed a new way to define events that can be composed and con-
catenated. The next snippet of code describes their motivating example of a shop-
ping cart discount. Every time a product in low demand is purchased a discount is
applied to the purchase value.
A LowActivity event is triggered when the product is in low demand. LowActivityPurchase
is triggered after an LowActivity event. When a purchase is made and the product

involved is in low demand then a LowActivityPurchase event is triggered. If these
two events are sequentially triggered the LowActivityDiscount aspect is executed ap-
plying a discount.

1 event LowActivity(P product){

2 int LOWER_BOUND = 100;

3 Info purchaseInfo = new Info();

4 after(Purchase purchase): RelevantPurchase(purchase) {

5 purchaseInfo.increase(purchase.product());

6 }

7 when(P product): call(P.timeDone()) && target(product) {

8 if (purchaseInfo.count(product) < LOWER_BOUND) {

9 trigger(product);
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10 }

11 purchaseInfo.reset(product);

12 }

13 }

14

15 event LowActivityPurchase(C cart) {

16 Set<P>lowActivityProducts = new SetyP>();

17 after(P product): LowActivity(product) {

18 lowActivityProducts.add(product);

19 }

20 when(Purchase purchase): RelevantPurchase(purchase) {

21 if (lowActivityProducts.contains(purchase.product())) {

22 trigger(purchase.cart());

23 }

24 }

25

26 aspect LowActivtyDiscount {

27 before(C cart): LowActivityPurchase(cart) {

28 cart.applydiscount(10);

29 }

30 }

Listing 6.17: Bockisch et al. event declaration for a low activity discount aspect.

To produce the same results in Chameleon we need to trigger an event when a pur-
chase is made. We assume that there is a purchase method defined for class Cart.
The goal is to produce an event each time the purchase method is executed. The
event PurchaseEvent inherits from MethodExecutionEvent. So far, no additional condi-
tion is defined. The next snippet of code shows the instrumentation of the method
Cart>>purchase:
(EventInstrumentor new) reify: PurchaseEvent

onClass: Cart selector #purchase

Listing 6.18: Reification of a purchase event.

Afterwards, a DiscountChecker subscribes to the newly installed event.
1 aChameleonAnnouncer

2 subscribe: aDiscountChecker

3 to: PurchaseEvent

Listing 6.19: Subscription to purchase event.

A discount is applied when the event is triggered and the DiscountChecker evaluates
that the product involved is eligible for discounts.
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So both approaches can deal with this general situation, in which the system is in-
strumented to check if a discount should be applied to a purchase.
Let us assume that we would like to add a customer benefit system based on pur-
chase points. For every purchase that a customer makes he gets a certain number
of points which can be used for future purchases. This benefits point program is
optional. Bockisch et al. approach would solve this new requirement by adding a
new event and aspect. In lines 1–6 the event models when a customer with a points
program makes a purchase. In lines 8–12 the aspect keeps the accounting of the
customer points depending on the purchase.

1 event PointsPurchase(C cart) {

2 when(Purchase purchase): RelevantPurchase(purchase) {

3 if (purchase.customer().hasPointSystem) {

4 trigger(purchase.cart());

5 }

6 }

7

8 aspect CalculatePoints {

9 before(C cart): PointsPurchase(cart) {

10 cart.applypoints();

11 }

12 }

Listing 6.20: Aspect solution for a customer points system.

Let us assume that the whole system is now running. There is one customer who
did not pay his bills on time. To prevent him from getting more customer points
the system should temporarily exclude him from gaining more points. This minor
change would force the Bockisch et al. approach to change the event’s conditions
to check for unpaid bills. Every time that there is a constraint change we need to
modify by hand the conditions in the events.
Our approach avoids this situation by allowing the user to cherry-pick which objects
should produce the events. In this case, we only need to detect when a customer
does not pay a bill on time and then remove the instrumentation from his cart. Next
time, this particular customer makes a purchase the points system is not triggered.
Chameleon also needs to define a new event modeling when a customer with a
points program makes a purchase:

1 (EventInstrumentor new) reify: PointsPurchaseEvent

2 onObject: aCart selector: purchase

Listing 6.21: Chameleon purchase of a customer with a points program.

With this dynamic instrumentation scoping technique we can dynamically control
the scoping of which object should trigger which events, thus preventing the need
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to build complicated conditions on the events.

Another issue the Bockisch et al. approach solves is controlling whether aspects
should be applied to other aspects too. When two or more aspects are woven into
a system, and both aspects profile the system, it is not clear if they have to profile
each other too. Every AOP approach has to confront this problem. In the Bockisch
et al. approach the so-called development practices are used to define those entan-
glements correctly.

1 aspect DevelopmentPractices composes Logger, Proactive, Prevention {

2 local declare precedence Logger, Proactive;

3 local declare precedence Logger, Prevention;

4 local declare overriding Proactive, Prevention;

5 local declare ignoring Logger, Proactive;

6 }

Listing 6.22: Development Practice for Logger, Proactive and Prevention

In Chameleon this precedence definition is not required. Which portions of the run-
ning system are instrumented to produce events is controlled by applying these
instrumentations on top of specific object. Since the instrumentation, observers and
events are objects too, in the presence of a new event we can choose which objects
should be instrumented. We think in terms of a running system composed of ob-
jects.

6.4 Implementation

Chameleon is built on top of the Bifröst reflection framework [Ressia et al., 2010].
Bifröst offers fine-grained unanticipated dynamic structural and behavioral reflec-
tion through meta-objects.

6.4.1 Managing AST Meta-Objects

The EventInstrumentor is responsible in Chameleon for managing the Bifröst AST
meta-objects. An AST meta-object is responsible for adapting the compilation pro-
cess. These meta-objects are bound to AST nodes which when compiled introduce
some extra behavior in the method. When this method is executed the adapted ver-
sion is run. These meta-objects are transparently managed. The EventInstrumentor

attaches AST meta-objects to AST nodes to reify different events.
When a node with a meta-object is executed, the meta-object will generate a new
event. In our example it is a MethodExecutionEvent. The corresponding meta-object
creation is seen below:
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1 ASTMetaObject new

2 delegatingTo: anEvent reificationBlock;

3 arguments: anEvent arguments.

Listing 6.23: Bifröst AST meta-object for event reification.

We can see in Listing 6.23 the definition of an AST meta-object. When an AST node
is executed and this meta-object is attached to it then the block in line 2 is evalu-
ated with the events arguments in line 3. The event is responsible for providing
a reification block which defines how the event is reified and the arguments this
block should reify too. Then the event reification method for a single node in the
EventInstrumentor is defined as follows:

1 EventInstrumentor>>reify: anEventClass on: aNode

2 | metaObject |

3 metaObject := ASTMetaObject new

4 delegatingTo: anEventClass reificationBlock;

5 arguments: anEventClass arguments

6 aNode metaObject: metaObject.

Listing 6.24: Event reification method for a single node.

In line 6 we associate the AST node to the meta-object.

As an example, let us consider the MethodExecutionEvent.

1 MethodExecutionEvent class>>reificationBlock

2 ^ [ :selector :class :arguments |

3 MethodExecutionEvent

4 signalMethod: selector

5 class: class

6 arguments: arguments]

Listing 6.25: Reification block for reifying the execution of an event.

MethodExecutionEvent class>>arguments

^ #(selector class arguments)

Listing 6.26: Arguments for the reification block for reifying the execution of an
event.

We can observe in Listing 6.25 that the reification block only signals the event with
parameters defined by arguments. The name of the executed method, the class and
the arguments are reified together with the event. Every event defines different
reification blocks and arguments.
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6.4.2 Instrumentation Details

The instrumentation of an event requires several steps. Chameleon provides the
behavior to reify an event on all methods of a class.

1 EventInstrumentor>>reify: anEventClass onClass: aClass

2 | allNodes reificationNodes |

3 self targetClass: aClass.

4 self event: anEvent.

5 self event adapt: self.

6 allNodes := Set new.

7 (aClass methodDict keys

8 do: [ :key | (aClass>>key) parseTree allChildren

9 do: [ :node | allNodes add: node ] ] ).

10 reificationNodes := anEventClass

11 reificationNodesIn: allNodes.

12 reificationNodes do: [ :node |

13 self reify: anEventClass on: node ].

Listing 6.27: Reifying an event for all the methods of a class.

First, the instrumentor needs to find all nodes for all methods of a class. The instru-
mentor iterates over all methods to obtain all the child nodes including the method
node. The decision of which nodes reify the event is delegated to the event itself
with the message reificationNodesIn: nodes. This message answers a set of nodes
that reify the event.

ASTNodeExecutionEvent>>reificationNodesIn: aSet

^ aSet select: [ :node | self shouldBeReifiedOn: node ]

Listing 6.28: Event delegation to decide which AST node reifies a specific event.

In Listing 6.28 we can observe the default implementation of reificationNodesIn:. In
this method the decision whether a node reifies an event or not is delegated to the
event itself through the method shouldBeReifiedOn: node.

In the case of the MethodExectuionEvent the implementation of shouldBeReifiedOn: states
that any node that is an AST method node should reify the event that a method is
being executed.

MethodExectuionEvent>>shouldBeReifiedOn: aNode

^ aNode isMethod

Listing 6.29: Selection of method nodes for reifying the event that a method was
executed.
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In the case of an ASTNodeExecutionEvent every node inside the chosen scope will be in-
strumented. For all other events there are different conditions. For MessageSendEvent
only message send nodes reify this event. StateReadEvent is reified by nodes which
are variable nodes whose name is also a class instance variable name and are not
part of an assignment.
Once the nodes that should reify an specific event are identified the EventInstrumentor

applies AST node instrumentation on them. This instrumentation adds the neces-
sary behavior to trigger the reified event every time each of these nodes are exe-
cuted.
Now all method nodes of the bank-account class are reified with method execution
events. Every time a bank account receives a message and then the method is exe-
cuted the MethodExecutionEvent will be signaled.
Chameleon also provides behavior for instrumenting specific methods in certain
classes.

1 EventInstrumentor>>reify: anEventClass onClass: aClass selector: aKey

2 | allNodes reificationNodes |

3 self targetClass: aClass.

4 anEventClasst adapt: self.

5 allNodes := (aClass>>aKey) parseTree allChildren

6 asSet.

7 reificationNodes := anEventClass

8 reificationNodesIn: allNodes.

9 reificationNodes do: [ :node |

10 self reify: anEventClass On: node].

Listing 6.30: Reifying an event for a particular method of a class.

Here only all nodes within this particular method are reified.
For example, in the case of the ObjectCreationEvent the node on which the event
should be reified might not exist. The object creation event depends on the existence
of the new method. Generally this method is not overridden and is inherited from
the superclass. Therefore the method execution event needs the new method to be
present in the class. The instrumentor allows the event to adapt the application to
add the required node for the reification. This is done through the adapt: method
which double dispatch through the instrumentor to perform the right adaptation.

1 ObjectCreationEvent>>adapt: anEventInstrumentor

2 anEventInstrumentor

3 addMethod: 'new

4 ^ self basicNew.'

5 selector: #new

Listing 6.31: Application adaptation for the reification of the method execution event.
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This creates a new method (if not already existing) in the target class.

6.4.3 Extending Events

We demonstrate that this approach is more general by implementing Iguana/J’s
canonical events on top of Chameleon. Therefore we implemented MessageSend-

Event, MethodExecutionEvent, ObjectCreationEvent, ObjectDeletionEvent, StateReadEvent
and StateWriteEvent on top of AstNodeExecutionEvent.
The method dispatch event was not modeled since it can be easily reified using the
message send event. Note that the event MessageReceiveEvent was also implemented
even though it is not part of Iguana/J canonical events. MessageReceiveEvent accepts
the same nodes as message send but return different arguments for the observers.
It signals the node, receiver and the message. This event is particularly useful when
modeling message meta-level management like CodA.

6.5 Conclusion

In this chapter we have presented Chameleon, a prototype modeling the meta-level
as explicit meta-events observed by development tools. Chameleon realizes a strict
separation of concerns between instrumentation and the consumers of events. More-
over, we presented a simplified approach to behavioral reflection through opera-
tional decomposition. Our approach proposes a single canonical event on top of
which any other object-related event reification can be defined. Event instrumenta-
tion can be dynamically applied to specific objects providing better runtime control.
By explicitly modeling meta-events the scoping of the development tools can hap-
pen at instrumentation time or at event reification time. Our approach provides un-
polluted instrumentation, language-unbiased events and dynamic instrumentation
scoping.
We demonstrated that object-centric reflection avoids the object paradox in the in-
strumentation domain. We can develop tools which benefit from seein the system
as a set of object-centric dynamic events. This fact provides a simplification of be-
havioral reflection operational decomposition.
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Profiling Objects

In this chapter we discuss the presence of the object paradox in traditional profil-
ing. We demonstrate that profilers built on top of object-centric reflection avoid this
paradox. Moreover, the resulting profiler presents a number of advantages over
traditional profilers.

Recent advances in domain-specific languages and models reveal a drastic change
in the way software is being built. The software engineering community has seen a
rapid emergence of domain-specific tools, ranging from tools to easily build domain-
specific languages [Visser, 2004], to transform models [Tisi et al., 2010], to check
source code [Renggli et al., 2010a], and to integrate development tools [Renggli et
al., 2010c].

While research on domain-specific languages has made consistent progress in lan-
guage specification [Deursen et al., 2000], implementation [Cuadrado and Molina,
2009], evolution [Freeman and Pryce, 2006] and verification [Kabanov and Raud-
järv, 2008], little has been done to support profiling. We consider profiling to be
the activity of recording and analyzing program execution. Profiling is essential for
analyzing transient run-time data that otherwise would be difficult to harvest and
compare. Code profilers commonly employ execution sampling as the way to obtain
dynamic run-time information. Unfortunately, information extracted by regularly
sampling the call stack cannot be meaningfully used to profile a high-level domain
built on top of the standard language infrastructure. Specialized domains need spe-
cialized profilers.

Let us consider the example of the Mondrian visualization engine (details follow
in Section 7.1.1). Mondrian models visualizations as graphs, i.e., in terms of nodes
and edges. One of the important performance issues we recently faced is the refresh
frequency: nodes and edges were unnecessarily refreshed too often. Standard code
profilers did not help us to localize the source of the problem since they are just
able to report the share of time the CPU spends in the method displayOn: of the
classes MONode and MOEdge. The problem was finally resolved by developing a custom
profiler that could identify which nodes and edges were indeed refreshed too often.
This domain-specific profiler was able to exploit knowledge of Mondrian’s domain
concepts to gather and present the needed information.
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We argue that there is a need for a general approach to easily develop specialized
profilers for domain-specific languages and tools. A general approach must offer
means to (i) specify the domain concepts of interest, (ii) capture the relevant informa-
tion from the run-time execution, and (iii) present the results to the developer.

In this chapter we detail MetaSpy, an event-based approach for domain-specific pro-
filing. With MetaSpy, a developer specifies the events of interest for a given domain.
A profiler captures domain information either by subscribing to existing applica-
tion events, or by using a reflective layer to transparently inject event emitters into
the domain code. The collected events are presented using graph-based visualiza-
tions.

The remainder of this chapter is structured as follows: Section 7.1 illustrates the
problems of using a general-purpose profiler on code that is built on top of a domain-
specific language. Section 7.2 introduces our approach to domain-specific profiling.
Section 7.3 demonstrates how our approach solves the requirements of domain-
specific profilers with three use cases. Section 7.4 demonstrates how our approach
deals with event causality. Section 7.5 presents our infrastructure to implement
domain-specific profilers. Section 7.6 presents an analysis on the performance im-
pact of MetaSpy. Section 7.7 summarizes the chapter and discusses future work.

7.1 Shortcomings of Standard Profilers

Current application profilers are useful to gather runtime data (e.g., method invo-
cations, method coverage, call trees, code coverage, memory consumption) from
the static code model offered by the programming language (e.g., packages, classes,
methods, statements). This is an effective approach when the low-level source code
has to be profiled.

However, traditional profilers are far less useful for a domain different than the
code model. In modern software there is a significant gap between the model of-
fered by the execution platform and the model of the actually running application.
The proliferation of meta-models and domain-specific languages brings new ab-
stractions that map to the underlying execution platform in non-trivial ways. Tra-
ditional profiling tools fail to display relevant information in the presence of such
abstractions.

MetaSpy1 and the examples presented in this chapter are implemented in the Pharo
Smalltalk2 programming language, an open-source Smalltalk [Goldberg and Rob-
son, 1983].

1 http://scg.unibe.ch/research/bifrost/metaspy/

2 http://www.pharo-project.org/
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7.1.1 Difficulty of profiling a specific domain

This section illustrates three shortcomings of traditional profiling techniques when
applied to a specific domain.

CPU time profiling

Mondrian [Meyer et al., 2006] is an open and agile visualization engine. Mondrian
describes a visualization using a graph of (possibly nested) nodes and edges. In
June 2010 a serious performance issue was raised3. Tracking down the cause of the
poor performance was not trivial. We first used a standard sample-based profiler.
Execution sampling approximates the time spent in an application’s methods by
periodically stopping a program and recording the current set of methods under
executions. Such a profiling technique is relatively accurate since it has little impact
on the overall execution. This sampling technique is used by almost all mainstream
profilers, such as JProfiler, YourKit, xprof [Gupta and Hwu, 1992], and hprof.
MessageTally, the standard sampling-based profiler in Pharo Smalltalk, textually de-
scribes the execution in terms of CPU consumption and invocation for each method
of Mondrian:
54.8% {11501ms} MOCanvas>>drawOn:

54.8% {11501ms} MORoot(MONode)>>displayOn:

30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:

...

| 8.4% {1763ms} MOEdge>>displayOn:

| | 8.0% {1679ms} MOStraightLineShape>>display:on:

| | 2.6% {546ms} FormCanvas>>line:to:width:color:

...

23.4% {4911ms} MOEdge>>displayOn:

...

We can observe that the virtual machine spent about 54% of its time in the method
displayOn: defined in the class MORoot. A root is the unique non-nested node that
contains all the nodes of the edges of the visualization. This general profiling in-
formation says that rendering nodes and edges consumes a great share of the CPU
time, but it does not help in pinpointing which nodes and edges are responsible for
the time spent. Not all graphical elements equally consume resources.
Traditional execution sampling profilers center their result on the frames of the exe-
cution stack and completely ignore the identity of the object that received the method
call and its arguments. As a consequence, it is hard to track down which objects

3 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
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cause the slowdown. For the example above, the traditional profiler says that we
spent 30.9% in MONode>>displayOn: without saying which nodes were actually re-
freshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing, parser
combinators, parsing expression grammars and packrat parsers to model grammars
and parsers as objects that can be reconfigured dynamically [Renggli et al., 2010b].
A number of grammars have been implemented with PetitParser, including Java,
Smalltalk, XML and SQL.
Let us consider a Java grammar in PetitParser which is defined in 210 host language
methods. The if statement parsing rule is defined as follows:
PPJavaSyntax>>ifStatement

^ ('if' asParser token , conditionalExpression , statement) ,

('else' asParser token , statement) optional

These methods build a graph of objects describing the grammar. It would be useful
to establish how much of the grammar is actually exercised by a set of test cases to
identify untested productions.
Traditional coverage tools focus on the source code artifacts instead of domain-
specific data. They assess the coverage of the application source code by listing
the methods and source lines covered by an execution.
In our case all methods and all lines of code are covered to build the grammar, but
some parts of the resulting graph are not exercised by the tests. This is why we
are unable to analyze the parsing and production coverage of this grammar with
traditional tools.

Causality

Traditional profilers report events based on the run-time structure of the application.
A run-time profiling report is typically structured as a tree in which indentation
indicates nested calls. The sequence of methods executed is reported in a linear
fashion: A method m1 that is executed before m2 will be reported as m1 above m2.
This hardcoded presentation is disconnected from the profiled model. When consid-
ering the Mondrian example, the sequence of displayOn: methods executed cannot
be related to the order in which the nodes are rendered. In PetitParser the order
does not represent the sequence in which the parsers are activated.
Understanding the sequence of a large number of events is challenging at best. Un-
fortunately, textual searching over a log file discards the structure of the model by

100

http://www.squeaksource.com/PetitJava.html


7.1 Shortcomings of Standard Profilers

solely operating on what the user decided to log. Textual search is a rather limited
technique, even though it is commonly employed [Nagappan, 2010].

7.1.2 Requirements for domain-specific profilers

The three examples given above are representative. They illustrate the gap between
a particular domain and the source code model. We argue that to efficiently profile
an arbitrary domain, the following requirements need to be fulfilled:

• Specifying the domain. Being able to effectively designate the objects relevant
for the profiling is essential. In Mondrian we are interested in the different
nodes and the invocation of the displayOn: methods, rather than focusing on
the implementing classes. In PetitParser we are interested in how often and
if at all production objects are activated by a given input.

• Capturing domain-related events. Relevant events generated by the domain have
to be monitored and recorded to be analyzed during or after the execution.
An event represents a particular change or action triggered by the domain
being profiled. Whereas the class MOGraphElement and its subclasses total more
than 263 methods, only fewer than 10 methods are related to displaying and
computing shape dimensions.

• Effectively and concisely presenting the necessary information. The information col-
lected by traditional profilers is textual and targets method invocation. A
method that invokes another will be located below it and indented. More-
over, each method frame represented has a class name and a method name,
which completely ignores the identity of the object and arguments that are
part of the call. Collected information has to be presented in such a way as
to bring the important metrics and domain object composition into the fore-
ground.

• Relation between events. An important and recurrent task in profiling is to un-
derstand the meaning of a sequence of emitted events. This is necessary when
a developer wants to understand the causes of a suboptimal execution. Cap-
tured events have to be causally related to each other to trace high level opera-
tions. Since such relation between events cannot be enforced by the domain, it
has to be reconstructed upon reception. Captured events have to be presented
in a sequence that reflects the meaning of the model operations.

• Browsing events. The number of events generated by a typical application ex-
ecution may easily skyrocket. Diving into those events is often the only way
to understand the reason for suboptimal execution. Navigating through and
giving a meaning to such a large number of events requires adequate tools
that are aware of the model used to generate the events.
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Common code profilers employ execution sampling as the way to cheaply obtain
dynamic information. Unfortunately, information extracted when regularly sam-
pling the method call stack cannot be used to profile a domain other than the source
code model.

7.2 MetaSpy in a Nutshell

In this section we will present MetaSpy, a framework that supports building domain-
specific profilers. The key idea behind MetaSpy is to provide domain-specific events
that can later be used by different profilers with different objectives.
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Figure 7.1: The architecture of the MetaSpy profiler framework.

Figure 7.1 shows a class diagram of MetaSpy. There are two main abstractions: the
instrumentation strategies and the domain-specific profilers.

An instrumentation strategy is responsible for adapting a domain-specific model
and triggering specific actions in the profiler when certain events occur. A profiler
models a domain-specific profiling requirement by composing multiple instrumen-
tation strategies.

Some instrumentation strategies work by registering to existing events of the ap-
plication domain. Other instrumentation strategies intercept the system by meta-
programming, i.e., conventional instrumentation. Installing an instrumentation strat-
egy activates it and its associated events, while uninstalling deactivates them.

Some of the instrumentation strategies provided by MetaSpy are:

• Announcement Instrumenter dispatches events satisfying a particular condition
from the announcer (subject) to the external profiler (observer).
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• Method Instrumenter triggers an event whenever a specific method is invoked
on any instance of a specified class.

• Object Instrumenter triggers an event whenever a specific method is invoked
on a particular object. This is called object-specific profiling.

• Parser Instrumenter triggers an event whenever a specific grammar production
is activated. This is a very specific instrumentation strategy only working
with PetitParser productions.

Other dedicated instrumentation strategies can be implemented by adhering to the
same interface.

Profilers are responsible for modeling the domain-specific behavior to profile the
main abstractions into each domain. The abstract Profiler class models the behav-
ior of a general profiler. Subclasses are instantiated with a domain-specific model
and implement the set-up and tear-down of one or more instrumentation strategies
into the model. Furthermore, they define how and what data is collected when the
instrumented model is exercised. To actually instrument the model and start collect-
ing events the method install is used. Similarly, to remove all instrumentation from
the model, uninstall is used. Both methods dispatch the requests to the respective
instrumentation strategies using the current model.

Each profiler is responsible for presenting the collected data in the method visual-

ize. Depending on the nature of the data, this method typically contains a Mon-
drian [Meyer et al., 2006] or Glamour [Bunge, 2009] script, or a combination of both.
Mondrian is a visualization engine to depict graphs of objects in configurable ways.
Glamour is a browser framework to script user interfaces for exploratory data dis-
covery.

Next, we will show real-world examples of domain-specific profilers.

7.3 Validation

In this section we will analyze three case studies from three different domains. We
will show how MetaSpy is useful for expressing the different profiling requirements
in terms of events. We will also demonstrate how MetaSpy fulfills the domain-
specific profiling requirements, namely specifying, capturing, and presenting domain-
specific information.

For each case study we show the complete code for specifying and capturing events.
We do not show the code for visualizing the results, which typically consists of 20–50
lines of Mondrian or Glamour script code. We use the Mondrian visualization tool

103



Chapter 7 Profiling Objects

to visually and interactively report profiles. In Section 7.3.1 we also consider Mon-
drian as the profiling subject. We therefore visualize using Mondrian the profile of
Mondrian itself.

7.3.1 Case Study: Displaying invocations

A Mondrian visualization may comprise a great number of graphical elements. A
refresh of the visualization is triggered by the operating system, resulting from user
actions such as a mouse movement or a keystroke. Refreshing the Mondrian canvas
iterates over all the nodes and edges and triggers a new rendering. Elements that
are outside the window or for which their nesting node has an active bitmap in the
cache should not be rendered.
A graphical element is rendered when the method display:on: is invoked. Monitor-
ing when these invocations occur is key to having a global view of what should be
refreshed.

Capturing the events

The MetaSpy framework is instantiated to create the MondrianProfiler profiler.
Profiler subclass: #MondrianProfiler

instanceVariableNames: 'actualCounter previousCounter'

MondrianProfiler defines two instance variables to monitor the evolution of the num-
ber of emitted events: actualCounter keeps track of the current number of triggered
events per event type, and previousCounter stores the number of event types that
were recorded before the previous visualization step.
MondrianProfiler>>initialize

super initialize.

actualCounter := IdentityDictionary new.

previousCounter := IdentityDictionary new

The installation and instrumentation of Mondrian by MetaSpy is realized by the
setUp method:
MondrianProfiler>>setUp

self model root allNodes do: [ :node |

self

observeObject: node

selector: #displayOn:

do: [ :receiver :selector :arguments |

actualCounter
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at: receiver

put: ((actualCounter at: receiver ifAbsent: [ 0 ]) + 1) ] ]

All the nodes obtained from the root of the model object are “observed” by the
framework. At each invocation of the displayOn: method, the block given as pa-
rameter to do: is executed with the object receiver on which displayOn: is invoked,
the selector name and the argument. This block updates the number of displays for
each node of the visualization.

Specifying the domain

The instrumentation described in the setUp method is only applied to the model
specified in the profiler. This model is an object which models the domain to be
profiled, in this case a Mondrian visualization. The instrumentation is only ap-
plied to all nodes in this visualization. Only when these nodes receive the message
displayOn:, the actual counter is incremented. This object-specific behavior is possi-
ble due to the use of Bifröst [Ressia et al., 2010] meta-objects.

Presenting the results

The profiling of Mondrian is visualized using Mondrian itself. The visualizeOn:

method generates the visualization given in Figure 7.2.

Figure 7.2: Profiling (left) the System Complexity visualization (right).

One important point of visualizeOn: is to regularly update the visualization to be
able to see the evolution of the domain events over time.

Figure 7.2 gives a screenshot of a visualization and the profiler. The right-hand side
is an example of the System Complexity visualization [Lanza and Ducasse, 2003] of
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the collection class hierarchy. System complexity is a typical usage of Mondrian,
which exhibits the problem mentioned in Section 7.1.1.

The left-hand side shows the profiler applied to the visualization on the right-hand
side. The profiler lists all the classes visualized in the system complexity. The pro-
filer associates to each class a horizontal bar indicating the number of times the
corresponding node in the system complexity has been displayed. This progress
bar widens upon node refresh. The system complexity visualization remains in-
teractive, even when being profiled. Selecting, dragging and dropping nodes re-
freshes the visualization, thus increasing the displayed progress of the correspond-
ing nodes. This profile helps in identifying unnecessary rendering. Thanks to this
profiler, we identified a situation in which nodes were refreshing without receiving
user actions which caused the sluggish rendering. More precisely, edges were con-
stantly refreshed, even when they were not visible. The profiler is uninstalled when
the profiled Mondrian visualization is closed.

7.3.2 Case Study: Events in OmniBrowser

OmniBrowser [Bergel et al., 2008] is a framework for defining and composing new
browsers, i.e., graphical list-oriented tools to navigate and edit elements from an
arbitrary domain. In the OmniBrowser framework, a browser is described by a
domain model specifying the domain elements that can be navigated and edited,
and a metagraph specifying the navigation between these domain elements. Nodes
in the metagraph describe states the browser is in, while edges express navigation
possibilities between those states. The OmniBrowser framework then dynamically
composes widgets such as list menus and text panes to build an interactive browser
that follows the navigation described in the metagraph.

OmniBrowser uses announcements for modeling the interaction events of the user
with the IDE. A very common problem is to have certain announcements be trig-
gered too many times for certain scenarios. This behavior impacts negatively the
performance of the IDE. Moreover, in some cases odd display problems are pro-
duced which are very hard to track down.

Capturing the events

To profile this domain-specific case we implemented the class OmniBrowserProfiler:

Profiler subclass: #OmniBrowserProfiler

instanceVariableNames: 'actualCounter'

The instrumentation in the setUp method counts how many times each announce-
ment was triggered.
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OmniBrowserProfiler>>setUp

self

observeAnnouncer: self model announcer

do: [ :ann |

actualCounter

at: ann class

put: (actualCounter at: ann class ifAbsent: [ 0 ]) + 1 ]

Figure 7.3: Profiling (left) an OmniBrowser instance (right).

Specifying the domain

We specify the entities we are interested in profiling by defining the model in the
profiler. The model is an instance of the class OBSystemBrowser, the entry point of
OmniBrowser. All OmniBrowser instances have an internal collaborator named an-
nouncer which is responsible for the signaling of announcements. This is the object
used by the profiler to catch the announcement events.

Presenting the results

A Mondrian visualization was implemented to list the type and the number of an-
nouncements triggered (cf. Figure 7.3).

7.3.3 Case Study: Parsing framework with PetitParser

Rigorous test suites try to ensure that each part of the grammar is covered by tests
and is well-specified according to the respective language standards. Validating
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that each production of the grammar is covered by the tests is a difficult activity.
As mentioned previously, traditional tools of the host language work at the method
and statement level and thus cannot produce meaningful results in the context of
PetitParser where the grammar is modeled as a graph of objects.

Capturing the events

With MetaSpy we can implement the grammar coverage with a few lines of code.
The instrumentation happens at the level of the primitive parser objects. The method
observeParser:in: wraps the parser object with a handler block that is called for each
activation of the parser.

1 PetitParserProfiler>>setUp

2 self model allParsers do: [ :parser |

3 self observeParser: parser in: self grammar do: [

4 counter

5 at: parser

6 put: (counter at: parser ifAbsent: [ 0 ]) + 1 ] ]

Line 2 iterates over all primitive parser objects in the grammar. Line 3 attaches the
event handler on Lines 4–6 to each parser in the model. The handler then counts the
activations of each parser object when we run the test suite of the grammar.

Specifying the domain

The domain in this case is an instance of the grammar that we want to analyze. Such
a grammar may be defined using hundreds of interconnected parser objects.

Presenting the results

This provides us with the necessary information to display the grammar coverage
in a visualization such as that shown in Figure 7.4.

7.4 Identifying Event Causality

Mondrian visualizes graphs of nodes and edges. Apart from the edges displayed
in the visualization, nodes can support other relationships: nodes might be nested
within each other, i.e., when a parent is moved, its children have to be redrawn;
nodes might have interaction dependencies, when one node is selected another one
is updated; nodes might have caching dependencies, when one node changes de-
pendent nodes need to invalidate their state; and so on.
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Figure 7.4: Visualization of the production coverage of an XML grammar with un-
covered productions highlighted in black (left); and the same XML grammar with
updated test coverage and complete production coverage (right). The size of the
nodes is proportional to the number of activations when running the test suite on
the grammar.

The use of log files to identify such dependencies may indeed be successful [Yagh-
mour and Dagenais, 2000]. However, producing an adequate log file that covers
all the different situations requires a significant amount of work and good system
knowledge.
We favor prototyping of lightweight tools to address the possible problems on the
spot.

7.4.1 Expressing causality

According to the experience we gain by profiling multiple model executions, events
generated by the model cannot be used to meaningfully structure an execution pro-
file. This is not really a surprise since events are generated from a model to fulfill a
need of the model itself, and not really for profiling purposes. No assumption can
therefore be made on the information carried by those events.
A practical solution is to annotate events upon reception with information about the
sequentiality and the timing. MetaSpy offers a generic event class, called SpyEvent.
A spy event knows its creation time and the previously emitted event.
The class SpyEvent may be subclassed to capture domain relations. For example,
MondrianEvent knows about siblings of the node that emitted the event. This is an
important relation for tracing how the cache is activated.

7.4.2 Navigation between events

To analyze the event activation sequence in Mondrian we have the following spy:
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Profiler subclass: #MSMondrianCacheActivationSequenceProfiler

instanceVariableNames: 'lastEvent mapping announcer'

This profiler has three variables. The last event that has been emitted is kept in the
variable lastEvent. Since all the events are kept in a linked list, it is sufficient to keep
a reference of the last event to access previous events. The association between a
Mondrian node and the events the node has emitted is kept in the variable mapping.
The browser is updated via an announcer.
The profiler is installed with setUp:
MondrianCacheActivationSequenceSpy>>setUp

super setUp.

nodes do: [ :node |

self

observeObject: node

selector: #displayOn:

do: [ :receiver :selector :arguments |

lastEvent := (MondrianEvent for: receiver next: lastEvent).

(mapping at: receiver ifAbsentPut: [ OrderedCollection new ])

add: lastEvent ] ]

MondrianCacheActivationSequenceSpy is responsible for adapting Mondrian nodes to
find out the order in which the method displayOn: was executed. Each execution of
the method displayOn: should create an instance of MondrianEvent. Each Mondrian
node is instrumented so that every time that the message displayOn: is invoked a
MondrianEvent is created and saved within the mappings indexed by node. Each
MondrianEvent knows the node that generated it and the previous event. The setUp is
invoked to install the instrumentation.
Mondrian events are first captured during the profile. The browsing tool described
below is useful to navigate between them.
Glamour [Bunge, 2009] is an engine for scripting browsers. We use it to build naviga-
tion tools for the captured events. The Glamour-based tool is set up in the visualize

method:
MondrianCacheActivationSequenceSpy>>visualize

| browser |

browser := Tabulator new.

browser title: 'Mondrian event crawler'.

browser

column: #events;

column: #model.

browser transmit to: #events;

andShow: [ :constructor | self eventsIn: constructor ].
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browser transmit from: #events; to: #model;

andShow: [ :constructor | self modelIn: constructor ].

browser updateOn: Announcement from: [ :v | announcer ].

browser openOn: lastEvent.

Figure 7.5: Glamour-based event navigation tool.

Figure 7.5 shows the result of a Mondrian profiling using the Glamour script. The
left-hand side gives the sequential list of the events we captured using emitted by
Mondrian. The right-hand side gives the information associated to the event selec-
tion.
The method modelIn: is invoked when one selects an event. The method fills a glam-
our element with three tabs, two lists and a Mondrian visualization:
MondrianCacheActivationSequenceSpy>>modelIn: constructor

modelIn: constructor

constructor list

title: 'sibling';

display: [ :event | self siblingOf: event ].

constructor list

title: 'parent';

display: [ :event | self parentOf: event ].

constructor mondrian

title: 'graph';

painting: [ :view :event |

view nodes: (self siblingOf: event).

view edgesFrom: #owner.

view treeLayout ].

The methods parentOf: and siblingOf: are used to retrieve the data from the Mon-
drian model and are not presented here.
The list of events are accessed using the helper method:
MondrianCacheActivationSequenceSpy>>eventsIn: constructor

constructor list
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title: 'events';

display: [ :event | event allPreviousEvents ];

updateOn: Announcement from: [ :v | announcer ]

Events are linked to each other forming a list. The method allPreviousEvents returns
the list of all previous events.

Using an adequate model, a browsing tool is easily implementable using Glamour.
Presentations are constructed and combined to reflect the navigation flow of the
extracted events.

The variable mapping plays an important role since it associates the events with the
node who emitted them. A hash map effectively implements this relation.

7.5 Implementing Instrumentation Strategies

MetaSpy has two ways of implementing instrumentation strategies: listening to pre-
existing event-based systems, or using the meta-level programming techniques of
the host language to define a meta-event the strategy is interested in.

Let us consider the class AnnouncementInstrumenter, whose responsibility is to observe
the generation of specific announcements.

AnnouncementInstrumenter>>install

self announcer

on: Announcement

send: #value:

to: self handler

The install method installs an instrumentation strategy object on the domain spec-
ified in the install method. In this snippet of code we can see that the strategy is
hooked into the announcement system by evaluating the strategy’s handler when
an announcement is triggered.

However, not all profiling activities can rely on a pre-existing mechanism for regis-
tering to events. In some cases, a profiler may be hooked into the base code using
an existing event mechanism, for example the OmniBrowser profiler. In other cases,
extending the base code with an appropriate event mechanism is simply too expen-
sive. Because of this, we need to rely on the meta-programming facilities of the host
language. These facilities are not always uniform and require ad hoc code to hook
in behavior. To avoid this drawback we decided to use a framework that provides
uniform meta-programming abstractions.
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7.5.1 Bifröst

MetaSpy instrumentation mechanism is built on top of Bifröst meta-objects. Let us
consider the Message Received Instrumenter, whose responsibility is to instrument
when a specific object receives a specific message.
MessageReceivedInstrumenter>>install

self observerMetaObject bind: self object

MessageReceivedInstrumenter>>setUp

profilingMetaObject := BehaviorMetaObject new

when: self selector

isReceivedDo: self handler

The method install binds a meta-object to the object to be observed. The method
setUp initializes the profiling meta-object with a behavioral meta-object. This meta-
object evaluates the handler when a specific message is received by the profiled
object. This mechanism is termed object-specific instrumentation.
In our Smalltalk implementation of Bifröst, the profiled application, the profiler,
and the visualization engine are all written in the same language, Pharo, and run
on the same virtual machine. Nothing in our approach prevents these components
from being decoupled and having them written in a different language or running
remotely. This approach is often taken with profilers and debuggers running on the
Java virtual machine (e.g., Java debugging interface4).

7.5.2 Feasibility of Domain-specific Profiling

Let us analyze the feasibility of implementing this approach in other contexts. Object-
specific instrumentation is not trivial to achieve in class-based languages like Smalltalk
and Java. Classes are deeply rooted in the language interpreter or virtual machine
and performance is tweaked to rely heavily on these constructs. Moreover, most
languages provide a good level of structural reflection to deal with structural ele-
ments like classes, method, statements, etc. Most languages, however, do not pro-
vide a standard mechanism to reflect on the dynamic abstractions of the language.
There are typically no abstractions to intercept meta-events such as a message send,
a message receive, a state read, etc. There has recently been extensive work on object-
specific runtime adaptations and operation decomposition of the runtime system.
Aspect-Oriented Programming (AOP) [Kiczales, 1996; Kiczales et al., 1997b; Kicza-
les et al., 1997a] is a technique which aims at increasing modularity by supporting
the separation of cross-cutting concerns. Dynamic object-specific aspects have been
introduced with an operational decomposition view of the system.

4 http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html
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Douence, Motelet and Südholt [Douence et al., 2001] introduced a general opera-
tional model for crosscutting based on execution monitors called Event-based Aspect-
Oriented Programming (EAOP). Douence and Südholt [Douence and Südholt, 2002]
later introduced constructor calls and constructor returns as events. The Execution
Monitor in their implementation observes events emitted during execution. The ex-
ecution of the base program is suspended when an event is emitted. The monitor
matches this event against different event patterns. When a pattern is satisfied the
associated actions are executed.
The JAsCo language [Suvée et al., 2003] provides a way of separating when an aspect
should be applied and what should be done. Hooks are defined with abstract point-
cuts. Traps are introduced in the potential places where an event should be trig-
gered. Connectors link these events to the hooks that dictate what should be done.
Connectors can be loaded dynamically making this approach highly dynamic.
Stateful aspects or tracematches make it possible to restrain the application of an as-
pect to the occurrences of certain execution event patterns. AspectJ extension with
tracemath [Allan et al., 2005] events patterns are matched in all threads of the sys-
tem.
Domain-specific profiling can be achieved using other techniques. However, the
biggest difference is the unanticipation present in MetaSpy which is hard to achieve
in other approaches like AOP, EAOP and dynamic aspects. Nonetheless, it is possi-
ble to preplan, before running, which portions of the application might be adapted
for profiling thus achieving a very similar approach to MetaSpy.

7.6 Micro-benchmark

Profiling always impacts the performance of the application being analyzed. We
have performed a micro-benchmark to assess the maximal performance impact of
MetaSpy. We assume that the behavior required to fulfill the profiling requirements
is constant to any instrumentation strategy.
We analyze the impact of MetaSpy on both profiling uses cases. All benchmarks
were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in Pharo 1.1.1
with the jitted Cog VM.
Registering instrumentation strategies to a pre-existing event-based system depends
heavily on the the system used and how it is used.
Using meta-level programming techniques on a runtime system can have a signif-
icant performance impact. Consider a benchmark in which a test method is being
invoked one million times from within a loop. We measure the execution time of
the benchmark with Bifröst reifying the 106 method activations of the test method.
This shows that in the reflective case the code runs about 35 times slower than in
the reified one. However, for a real-world application with only few reifications the
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performance impact is significantly lower. Bifröst’s meta-objects provide a way of
adapting selected objects thus allowing reflection to be applied within a fine-grained
scope only. This provides a natural way of controlling the performance impact of
reflective changes.
Let us consider the Mondrian use case presented in Section 7.1.1. The main source
of performance degradation is from the execution of the method displayOn: and thus
whenever a node gets redisplayed. We developed a benchmark where the user inter-
action with the Mondrian easel is simulated to avoid human delay pollution in the
exercise. In this benchmark we redraw one thousand times the nodes in the Mon-
drian visualization. This implies that the method displayOn: is called extensively.
The results showed that the profiler-oriented instrumentation produces on average
a 20% performance impact. The user of this Mondrian visualization can hardly de-
tect the delay in the drawing process. Note that our implementation has not been
aggressively optimized. It has been shown [Arnold and Ryder, 2001] that combining
instrumentation and sampling profiling leaded to accurate profiles (93–98% overlap
with a perfect profile) with low overhead (3–6%). The profilers we presented in this
chapter are likely to benefit from such instrumentation sampling.

7.7 Conclusions

We demonstrated the need for domain-specific profilers. We argued that traditional
profilers present the object paradox since they are concerned with source code only
and are inadequate for profiling domain-specific concerns. We demonstrated this
drawback with two use cases. Moreover, we demonstrated how the reflective re-
quirements are present in Bifröst unified reflection approach. We formulated the
requirements domain-specific profilers must fulfill: specifying the domain, captur-
ing domain related events and presenting the necessary information. We presented
MetaSpy, a framework for defining domain-specific profilers. We also presented
three real-world case studies showing how MetaSpy fulfills the domain-specific pro-
filer requirements.
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Object-Centric Debugging

In this chapter we demonstrate the presence of the object paradox in traditional
debuggers. We demonstrate that debuggers built on top of object-centric reflection
avoid the paradox. Moreover, the resulting debugger closes the gap between the
developer questions and the debugging operations thus speeding the debugging
and bug fixing process.

During the process of developing and maintaining a complex software system, de-
velopers pose detailed questions about the runtime behavior of the system. Source
code views offer strictly limited insights, so developers often turn to tools like de-
buggers to inspect and interact with the running system. Unfortunately, traditional
debuggers focus on the runtime stack as the key abstraction to support debugging
operations, though the questions developers pose often have more to do with objects
and their interactions.

Sillito et al. [Sillito et al., 2006] identified 44 kinds of questions that programmers ask
themselves when they perform a change task on a code base. A typical such question
which is particularly relevant here is: Where is this variable or data structure being ac-
cessed? Developers take two approaches to answer this question. The first approach
is to follow the control flow and use the step over and step into stack-based operations.
Manual step-wise execution works well when the code space to explore is relatively
small, but may be impractical otherwise. The second approach is to place break-
points in all potential places where the variable might be accessed. Again, this can
work well for a small code space, but can quickly become impractical if a variable is
potentially accessed from many methods. Some debuggers allow the developer to
insert breakpoints on accesses to instance variables. However, when such a break-
point is applied to a particular class all instances of the class are affected. If the
developer needs to follow a specific object’s instance variable access, then he needs
to proceed through breakpoint executions until the right object is found. Even with
a small number of instances this process is error prone and not straightforward.

These approaches are inherently static since they start from the static source code.
Neither approach directly answers the question ”Where is this variable or data structure
being accessed?” for a specific object. There is consequently a gap between the kinds
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of questions developers ask about the running software system and the support
offered by traditional debuggers to answer these questions.
Object-centric debugging attempts to close the gap between developers’ questions and
the debugging tool by shifting the focus in the debugger from the execution stack to
individual objects. The essence of object-centric debugging is to let the user perform
operations directly on the objects involved in a computation, instead of performing
operations on the execution stack. A fundamental difference between conventional
and object-centric debugging is that the latter is specified on an already running pro-
gram. Instead of setting breakpoints that refer to source code, one sets breakpoints
with reference to a particular object.
This chapter is structured as follows: Section 8.1 explains and motivated the need
for object-centric debugging. Section 8.2 presents the object-centric approach with
its operations. In Section 8.3 we demonstrate how our approach solves the chal-
lenges of object-centric debugging with various case studies. Section 8.4 presents
our infrastructure to implement object-centric debuggers. Section 8.5 analyzes how
object-centric debugging can be implemented in other languages. In Section 8.6 we
discuss the state of the art of debugging. Section 8.7 summarizes this chapter and
discusses future work.

8.1 Motivation

During software development and evolution, programmers typically need answers
to various questions about how the software behaves at runtime. Although vari-
ous dynamic analysis tools exist, the programmers’ first mainstream tool choice to
explore the state of a running program is the debugger. The classical debugger re-
quires the programmer to set breakpoints in the source code before debugging is
enabled, and then offers the programmer operations to explore the execution stack.
Unfortunately the debugger is not designed to answered many of the questions that
programmers typically pose, making it difficult, if not impossible for the program-
mer to set meaningful breakpoints.
In this section we explore these questions, and establish three challenges that a de-
bugger should meet to better support software evolution tasks, namely: (i) inter-
cepting access to object-specific runtime state; (ii) monitoring object-specific inter-
actions; and (iii) supporting live interaction. These challenges lead us to propose
object-centric debugging to meet these challenges.

8.1.1 Questions Programmers Ask

Sillito et al. [Sillito et al., 2006] identified 44 kinds of questions that programmers ask
when they perform a change task on a code base. Several of these questions involve
understanding the program execution:
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• When during the execution is this method called? (Q.13)

• Where are instances of this class created? (Q.14)

• Where is this variable or data structure being accessed? (Q.15)

• What are the values of the argument at runtime? (Q.19)

• What data is being modified in this code? (Q.20)

• How are these types or objects related? (Q.22)

• How can data be passed to (or accessed at) this point in the code? (Q.28)

• What parts of this data structure are accessed in this code? (Q.33)

Sillito et al. note: “In several sessions, the debugger was used to help answer ques-
tions of relevancy. Participants set breakpoints in candidate locations (without nec-
essarily first looking closely at the code).” In the context of a running object-oriented
system these questions express that programmers need to deal with specific objects at
runtime.

Consider, for example, questions 13 and 14. Simply by placing a breakpoint in
the method concerned (Q.13), or in the constructor(s) of the class being instanti-
ated (Q.14), and running either the program or its test suite one can quickly obtain
answers to these questions and then explore the execution stack to obtain detailed
information about the calling context.

This procedure works fine when trying to understand the general behavior of ob-
jects. However, when introducing polymorphism and delegation the behavior of
objects of the same class changes depending on their composition. These cases re-
quire an object-specific analysis and simple breakpoint are not the best option. Con-
ditional breakpoints are heavily used in real world application development when
programmers need to interrupt the execution of the application when a particular
expression is evaluated to true. First the programmer needs to find the specific ob-
ject he is interested in. Then the programmer has to specify a suitable condition to
identify the specific object already found, rather than directly interacting with it.
This approach may be feasible if there exist only few objects to analyze. If, however,
there are many instances of many classes, setting conditional breakpoints may be te-
dious and error prone. We present examples of these shortcomings in Section 8.1.3,
Section 8.1.4 and Section 8.1.5.

The situation is much the same with many of the other questions.
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8.1.2 Getting to the Objects

Both traditional stack-centric and object-centric debuggers share a common opera-
tional process. Developers use debuggers to understand the runtime behavior of a
system. In the runtime the developer deals with objects instead of with their static
representation in the source code. Stack-centric and object-centric debugging di-
verge when the developer finds a particular object that is not behaving as expected.
In a traditional stack-centric debugger the developer leaves the debugger and turns
to the static representation of the system to place regular or conditional breakpoints
to steer the execution around a particular object. In an object-centric debugger the
developer does not need to leave the debugger but applies object-centric operations
directly on the object of interest.

In both cases we need to get to the objects that are relevant for the debugging case.
However, once the relevant objects have been detected, the steering method is com-
pletely different. Object-centric debugging allows the developer to continue inter-
acting with the runtime, applying operations directly on the objects, instead of work-
ing with the static representation of the system.

8.1.3 Intercepting Object-specific State Access

Questions 15, 19, 20, 28 and 33 all have to do with tracking state at runtime. Consider
in particular question 15: Where is this variable or data structure being accessed? Let
us assume that we want to know where an instance variable of an object is being
modified. This is known as keeping track of side-effects [Maruyama and Terada,
2003]. One approach is to use step-wise operations until we reach the modification.
However, this can be time-consuming and unreliable. Another approach is to place
breakpoints in all assignments related to the instance variable in question. Finding
all these assignments might be troublesome depending on the size of the use case,
as witnessed by our own experience.

During the development of a reflective tool we faced the situation that an unex-
pected side effect occurred. The bytecode interpreter of the host language1 is mod-
eled by the class InstructionStream. This class defines an instance variable called
pc (i.e., program counter) which models where the execution is in the instruction
stream. The class MethodContext is a subclass of ContextPart, itself a subclass of In-

structionStream. During our development, we encountered an unexpected increase
of the variable pc in an instance of MethodContext. Tracking down the source of this
side effect is highly challenging: 31 of the 38 methods defined on InstructionStream

access the variable, comprising 12 assignments; the instance variable is written 9
times in InstructionStream’s subclasses. In addition, the variable pc has an accessor
that is referenced by 5 intensively-used classes. Without a deep understanding of

1 http://www.pharo-project.org/
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the interpreter, it is difficult to track down the source of the error with simple de-
bugging strategy. Some debuggers provide instance variable related breakpoints.
However, these breakpoints are not object-specific thus requiring the introduction
of conditional breakpoints to interrupt execution only in the right context.
Questions 19, 20, 28 and 33 can also be difficult to answer through classical debug-
ging. The typical approach in each case is to statically identify possible call sites that
may access or modify the data in question, insert breakpoints, and then invoke the
debugger. For complex programs (which are the only programs that are really of
interest), finding and setting suitable breakpoints may be an overwhelming task,
and running the debugger may yield false positives.

8.1.4 Monitoring Object-specific Interactions

Let us reconsider question 13: When during the execution is this method called? If the
programmer is only interested in knowing when the method is called for a specific
object (or caller), then a conditional breakpoint may be set, i.e., which will only cause
the debugger to start if the associated condition is met. This, however, assumes that
the object can be statically identified, since the breakpoint is set in the source code
view, not at runtime. Furthermore, if the source code of the object in question is not
accessible, the programmer will be forced to set breakpoints at the call sites.
Question 22 poses further difficulties for the debugging approach: How are these
types or objects related? In statically typed languages this question can be partially an-
swered by finding all the references to a particular type in another type. Due to poly-
morphism, however, this may still yield many false positives. (An instance variable
of type Object could be potentially bound to instances of any type we are interested
in.) Only by examining the runtime behavior can we learn precisely which types are
instantiated and bound to which variables. The debugging approach would, how-
ever, require heavy use of conditional breakpoints (to filter out types that are not of
interest), and might again entail the setting of breakpoints in a large number of call
sites.

8.1.5 Supporting Live Interaction

Back-in-time debugging [Lewis, 2003; Pothier et al., 2007] can potentially be used to
answer many of these questions, since it works by maintaining a complete execution
history of a program run. There are two critical drawbacks, however, which limit
the practical application of back-in-time debugging. First, the approach is inherently
post mortem. One cannot debug a running system, but only the history of a completed
run. Interaction is therefore strictly limited, and extensive exploration may require
many runs to be performed. Second, the approach entails considerable overhead
both in terms of runtime performance and in terms of memory requirements to build
and explore the history.
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Although conventional debugging is more interactive, it also requires much ad-
vance preparation in terms of exploring the static source code to set breakpoints
of potential interest. As a consequence, also conventional debuggers fall short in
supporting live, interactive debugging.

8.1.6 Towards Object-Centric Debugging

If we reexamine the set of questions identified by Sillito et al. that relate to running
software, we can see that they essentially cover all possible combinations of: “From
where and what is this object’s state accessed?” and “How does this object interact with other
objects?” In other words, the focus of programmers’ questions appears to be not the
execution stack but rather the objects in the running system.

We therefore hypothesize that an object-centric debugger — i.e., a debugger that allows
one to set breakpoints on access to individual objects, to its methods and to its state
— might better support programmers in answering typical development questions.
In particular an object-centric debugger would (i) intercept object-specific state ac-
cess without needing one to set breakpoints in call sites or state. (ii) monitor in-
teractions with individual objects without requiring conditional breakpoints; and
(iii) support lightweight, live interaction with a running system without requiring
breakpoints in source code.

8.2 Object-Centric Debugging

8.2.1 Object-Centric Debugging in a Nutshell

Conventional debugging allows one to interrupt and interact with a running pro-
gram by specifying breakpoints in the execution flow of the program. Object-centric
debugging, by contrast, interrupts execution when a given object is accessed or mod-
ified. Whereas conventional debugging requires breakpoints to be set at locations
corresponding to points in the source code, object-centric debugging intercepts in-
teractions that do not necessarily correspond to specific points in the source code.

As we saw in the previous section, of the questions that programmers pose about
software, the most problematic ones are those dealing with how and where the state
of an object is accessed, and how an object interacts with other objects. Object-
centric debugging therefore introduces mechanisms to intercept execution on pre-
cisely those interactions.

A fundamental difference between conventional and object-centric debugging is
that the latter is specified on an already running program. Instead of setting break-
points that refer to source code, one sets breakpoints with reference to a particular
object. This means that object-centric debugging operations can only be applied to a
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running program that has already been interrupted, possibly with the help of a con-
ventional breakpoint. Clearly this implies that object-centric debugging is intended
to augment conventional debugging, not to replace it.

Let us see which object-centric debugging operations are supported.

8.2.2 State-related operations

There are two object-centric debugging operations that intercept accesses to object
state.

Halt on write. When an instance variable of an object is changed the execution should
be halted. We can scope this operation to any instance variable of the object or to a
particular one.

Halt on read. The execution is halted when an object’s instance variable is used. We
can scope this operation to any instance variable or to a specific one.

8.2.3 Interaction operations

There are six object-centric debugging operations that deal with object interactions.

Halt on call. When any of an object’s methods is called from any other object, execu-
tion should be halted. This operation can be applied to one or several objects and
can be scoped to apply to a single method or to several ones.

Halt on invoke. When an object invokes any method, execution should be halted.
This operation can be applied to one or several objects and can be scoped to apply
to one or several method declarations.

Halt on creation. Execution is halted when an instance of a certain class is created.

Halt on object in invoke. Execution is halted when an object’s method is invoked and
a particular object is present in the invocation parameters. This operation can be
applied to all methods that can be invoked on an object or on a subset of them.

Halt on object in call. When a particular object is used as a parameter of a method call
the execution should be halted. This operation can be applied to all called methods
or to a subset of them.

Halt on interaction. Every time two particular objects interact by one invoking a
method of the other the execution is halted.
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8.3 Examples: addressing debugging challenges

In this section we demonstrate how object-centric debugging fulfills the three key
debugging challenges we identified (Section 8.1): (i) intercepting object-specific state
access without requiring breakpoints in call sites or on state; (ii) monitoring inter-
actions with individual objects without requiring conditional breakpoints; and (iii)
supporting lightweight, live interaction with a running system without requiring
breakpoints in source code. We present three case studies and compare how stack-
based debuggers are used against the advantages of using an object-centric debug-
ger.

8.3.1 Example: Tracking object-specific side-effects

The motivating problem presented in Section 8.1 is an example of tracking the cause
and location of a side effect. Pharo provides a bytecode interpreter modeled by the
class InstructionStream. This class defines an instance variable called pc which mod-
els the current location of execution in the instruction stream. The class MethodCon-

text is a subclass of ContextPart, itself a subclass of InstructionStream. During our
development, we encountered an unexpected increase of the variable pc holds in an
instance of MethodContext. Identifying the circumstance in which a side-effect occurs
is known to be difficult [Banning, 1979; Dolado et al., 2003]. Debuggers are often
employed to understand the cause of execution effect [Sillito et al., 2006].
With a conventional debugger, it takes 18 step in operations to reach the first mod-
ification of the pc instance variable, and over 30 operations to reach the next one.
Setting breakpoints in all possible call sites that might access pc does not offer any
improvement: 31 of the 38 methods defined on InstructionStream access the vari-
able, comprising 12 assignments; the instance variable is written 9 times in Instruc-

tionStream’s subclasses. In addition, the instance variable pc has an accessor that is
referenced by 5 intensively used classes.
Object-centric debugging solves this problem trivially: by applying the halt on write
debugging operation on the MethodContext instance, the source of the problem is
quickly identified. Since this operation can be scoped to a specific instance vari-
able, we can specify that execution should halt only on a write of the pc instance
variable.
We can observe in Figure 8.1 how object-centric debugging differs from conven-
tional debugging. In the upper part of Figure 8.1 we observe a traditional stack-
centric debugger which is manipulated using step-wise operations. In the lower
part of Figure 8.1 we observe two different object-centric debugging scopes for the
same example. In one case we apply the halt on call and halt on write to the Instruc-

tionStream class object, thus we get the debugger to take into account messages to
the class that perform these operations. In the other case we apply the same two
operations to an instance of the class InstructionStream. The debugger takes into
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InstructionStream class>>on: 
InstructionStream class>>new 
InstructionStream>>initialize
CompiledMethod>>initialPC
InstructionStream>>method:pc:
InstructionStream>>nextInstruction
MessageCatcher class>>new
InstructionStream>>interpretNextInstructionFor:
...

on: 
new 

initialize
method:pc:
nextInstruction
interpretNextInstructionFor:
...

step into, 
step over, 
resume

next message, 
next change

stack-centric debugging

object-centric debugging

...

centered on 
the InstructionStream class

centered on 
the InstructionStream object

next message, 
next change

Figure 8.1: Evolution from stack-centric to object-centric debugging.

account the method calls and the instance variables changes happening in this par-
ticular object. The results of object-centric debugging are more concise and directly
related to the developer’s needs. With object-centric debugging we flow through the
execution and see only the points that are relevant to us. With stack-centric debug-
ging we see the whole execution and we need to steer the execution by manually
introducing breakpoints.

This case study illustrates how object-centric debugging intercepts object-specific state
access without needing breakpoints to be set at call sites or on state.

8.3.2 Example: Individual Object Interaction

Modifications to compilers can introduce subtle bugs that are very hard to under-
stand and track down. The compilation process of Pharo Smalltalk transforms source
code to bytecode. In a first phase the source code is parsed and transformed to an
Abstract Syntax Tree (AST) which, afterwards, is processed by the bytecode genera-
tor. It can be cumbersome and extremely complicated to debug during the compila-
tion process. ASTs are traversed using the visitor pattern [Gamma et al., 1995]. The
tree is analyzed several times for different purposes, like semantic analysis, closure
analysis and early optimizations. This data is used by the BytecodeGenerator to pro-
duce the bytecode representation. At bytecode level variables are accessed through
indices. In a compiled method, variables might have different indices depending
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on the context in which they are being used. For example, a variable can have index
3 in the outer scope of the method, but index 2 in an inner scope.

Instances of LexicalScope model the different scopes in a particular method, map-
ping each variable to its index in that scope. A common bug we have encountered
when modifying the compiler is to produce variables with the wrong accessing in-
dex in the bytecode, thus leading to unpredictable behavior. To debug this situation,
we need to be able to track a single AST node, intercept all the messages it receives.
This should enable us to see why the LexicalScope instances indexed are incorrect.

Analyzing the visitor patterns in a stack-based debugger is sometimes difficult due
to the number invoked methods back and forth between the objects and the visitor.
Moreover, we are interested in analyzing the indexing of a single variable. To be able
to follow a single AST node we need to place breakpoints in all potential methods in
which the node might be called, including inherited methods. There are up to 523
methods that can be invoked on instances of the class ASTVariableNode, rendering
this approach impractical. Moreover, in a class-based system like Pharo Smalltalk,
placing a breakpoint in a particular method affects all instances of ASTVariableNode.
Conditional breakpoints could be used, however, we need to manually deal with
the identity of the object and still introduce them in all the methods that may be
possibly invoked (523 methods).

Object-centric debugging offers a high-level operation called halt on call. This oper-
ation allows method calls on a particular object to be intercepted. Using this oper-
ation we are able to follow a particular instance of ASTVariableNode and detect why
a LexicalScope in the compilation process was producing an erroneous index. We
can obtain the problematic instance of ASTVariableNode by inspecting the AST tree.
In this case, the method name was being used by a particular visitor in charge of the
indexing. The indices in an instance of LexicalScope were wrongly calculated due to
a string assignment error in the name of the variable.

With this case study we show how object-centric debugging can monitor interactions
with individual objects without requiring conditional breakpoints.

8.3.3 Example: Live Object Interaction

Mondrian [Meyer et al., 2006] is an open and agile visualization engine. Mondrian
models visualizations as graphs, i.e., in terms of nodes and edges modeled by classes
MONode and MOEdge. Generally, Mondrian visualizations are composed of hundreds
to thousands of nodes and edges. The rendering involves a complex interaction
between the various entities. When a particular node is not being rendered correctly,
it can be very difficult to debug.

The rendering of Mondrian entities is performed by a Shape object. Each node passes
itself as a parameter to a Shape object that specifies the rendering (double dispatch).
In the case of an abnormal rendering for a particular node, traditional debuggers
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promote the insertion of a breakpoint in the rendering method. However, the exe-
cution will be halted each time Mondrian renders a node. This is clearly impractical
for large graphs.

Conditional breakpoints might help in this situation. To achieve this the object be-
ing tracked somehow has to be globally accessible. In languages like Java, C, C#
and Smalltalk, conditional breakpoints have to be defined separately and we can-
not build conditions depending on a manually selected dynamic value.

The debugger has no operations to insert at runtime conditional breakpoints that
are object specific. This means that objects that are not active in the current state can
only be accessed with the help of globals.

Object-centric debugging offers a high-level operation called halt on object in call. We
apply this operation to the Shape object performing the rendering and we specify the
MONode instance that we want to analyze. We obtain the Shape object by invoking a
method on the Mondrian easel which models the plane in which nodes and edges
are rendered. We can inspect a Mondrian graph visualization by clicking on each
node and obtaining the object it represents. In this case the abnormally-rendered
node is not being rendered with the correct size. We select that object from the visu-
alization and thus obtain the MONode instance. We assume that any object constructed
at runtime can be reflectively accessed and used by object-centric debugging oper-
ations. Every time that the node is passed as parameter of a method call by the
particular Shape object, execution will be interrupted. No conditional breakpoints
have to be manually defined. We also avoid dealing with object identity, and we
avoid relying on the static representation of the objects.

With this case study we show how object-centric debugging can support lightweight,
live interaction with a running system without requiring breakpoints in source code.

8.4 Implementation

There were two main implementation requirements for object-centric debugging.
First, the execution of high-level debugging operations should not break other de-
velopment tools such as code browsers and versioning tools. Second, we need to
instrument the application to insert object-specific breakpoints at locations of inter-
est. Because of this, we need to rely on the meta-programming facilities of the host
language. These facilities are not always uniform and require ad hoc code to hook
in behavior. To avoid this drawback we decided to use a framework that provides
uniform meta-programming abstractions.

The prototype of object-centric debugging is built on top of the Bifröst reflection
framework. From an implementation point of view, object-centric debugging re-
quires a mechanism for runtime method redefinition. Object-specific behavior can
be built on top of this mechanism.
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8.4.1 Debugging Operation Definition

Each debugging operation is defined as a method in the Object class. Due to this,
these operations can be executed on any object of the system.
In the next snippet of code we can observe the halt on call operation definition.

1 haltOnCall

2 | aMetaObject |

3 aMetaObject := BehavioralMetaObject new.

4 aMetaObject

5 when: ( MessageReceiveEvent new )

6 do: [ self metaObject unbindFrom: self.

7 TransparentBreakpoint signal ].

8 aMetaObject bindTo: self

Listing 8.1: Pharo Smalltalk implementation of Halt on call object-centric operation.

In line 3 a behavioral meta-object is instantiated. Behavioral meta-objects work by
perceiving the execution of the system as a set of events like: message send, re-
ceived message, state read, state write, object creation, etc. We use this meta-object
to instrument a particular object behavior when it receives a message. The message
when:do: defines that when a particular event happens to an object then we want a
particular behavior to be executed. The class MessageReceiveEvent models the event
when an object receives a message. The second argument is a block with the instru-
mentation behavior. This instrumentation is divided in two steps. First, in line 6 the
instrumentation is removed from the object by unbinding it from the meta-object.
Second, in line 7, a TransparentBreakpoint, an exception used as a breakpoint by the
Smalltalk environment, is signaled thus triggering the debugger. In line 8 the meta-
object that defines the adaptation is bound to the object that received the message
haltOnNextMessage. The instrumentation behavior in lines 4–7 will only be executed
when the object bound to the meta-object receives a message. In this case since we
are not defining any particular message name; the instrumentation will be executed
when any message is received by the adapted object. To instrument an object for a
particular message name, the message when: anEvent in: aMessageName do: aBlock

should be used instead. There is already an object-centric debugging operation de-
fined in Object which does exactly that: haltOnCall: aMessage subjectTo: aBlock.
In the next snippet of code we can observe the halt on write operation definition.

1 haltOnWrite

2 | aMetaObject |

3 aMetaObject := BehavioralMetaObject new.

4 aMetaObject

5 when: ( StateWriteEvent new )

6 do: [ self metaObject unbindFrom: self.

7 TransparentBreakpoint signal ].
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8 aMetaObject bindTo: self

Listing 8.2: Pharo Smalltalk implementation of Halt on write object-centric operation

As we can see the definition is almost identical to Listing 8.1 but with a different
meta-event. The class StateWriteEvent models the event when an object’s instance
variable is changed. This particular example instruments an object to trigger a halt
when any instance variable is changed. For specifying a particular instance variable
the object-centric operation haltOnWriteFor: aVariableName of the class Object should
be used instead.

8.4.2 Extending Operations

Bifröst meta-objects provide facilities to manage the extension to which the adap-
tation should be applied. When a particular event is triggered the instrumentation
block can reify various abstractions which will only be known at runtime.

1 aMetaObject

2 when: ( MessageReceiveEvent new )

3 do: [:receiver :selector :arguments | ... ].

In line 3 we can observe that the receiver, selector and arguments of the message
received will be available as arguments of the block. The developer can use these
arguments for evaluating conditions at runtime and define new and more specific
object-centric debugging operations.

8.4.3 User Interface Modifications

To facilitate the use of object-centric debugging features the Pharo debugger and
inspector were modified. The debugger was enhanced with direct buttons for halt
on call and halt on write. We added menu items to the inspector with direct access to
the object-centric operations. From the debugger, a developer may thus inspect any
object in the current context, and from the inspector apply object-centric operations
to objects of interest.

A key requirement of our implementation is not to break the existing toolchain.
Smalltalk is a class-based language, so code browsers show the method definitions
for each class. Object-specific modifications of the code are not well-suited to these
browsers, so object-centric debugging operations are only available in the debugger
and inspector.
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8.5 Feasibility of Object-centric Debugging in other
languages

Dynamically modifying the behavior of individual objects is an essential ingredi-
ent for implementing an object-centric debugger. This section revises the available
approaches for that purpose outside Pharo Smalltalk.

Iguana [Gowing and Cahill, 1996] offers selective reification making it possible to
select program elements down to individual expressions. It also allows dynamic
changes to be applied in an object-specific manner. Iguana is developed for C++
and works by placing annotations in the source code to define behavioral reflective
actions.

Java is a class-based object-oriented language with good support for introspection
but poor support for intercession. However, several tools and techniques have been
developed to overcome this limitation.

Iguana/J [Redmond and Cahill, 2002; Redmond and Cahill, 2000] is the implemen-
tation of Iguana for Java. Iguana/J enables unanticipated changes to Java applica-
tions at run-time without requiring instrumentation or restarting the application for
the changes to be available. Object-specific adaptation behavior is built into the VM
modifications provided by this tool.

Partial Behavioral Reflection was introduced by Tanter et al. [Tanter et al., 2003]. This
model is implemented in Reflex for the Java environment. The key advantage is that
it provides a means to selectively trigger reflection, only when specific, predefined
events of interest occur. Object-specific behavior can be introduced at runtime with
conditional instructions in the adapted behavior.

Developers can define object-centric debugging operations and offer them through
the Java Debugging Interface (JDI). It is then up to the IDE, i.e., Eclipse, IntelliJ
IDEA or NetBeans, to provide a user interface for object-centric actions in the de-
buggers.

Aspect-Oriented Programming (AOP) [Kiczales et al., 1997b] modularizes cross-cutting
concerns. Join points define all locations in a program that can possibly trigger the
execution of additional cross-cutting code (advice). Pointcuts define at run-time
whether an advice is executed. AOP features have been introduced in various lan-
guages thus making object-centric debugging feasible in these languages. Recently,
new advances in AOP, like AspectWerkz [Bonér, 2004] and EAOP [Douence et al.,
2001], provide dynamic aspects that can be defined at runtime for specific objects.
Object-centric operations can be then modeled by advice containing a breakpoint.

Self [Ungar and Smith, 1987] is a prototype-based language which follows the con-
cepts introduced by Lieberman [Lieberman, 1986]. In Self there is no notion of class;
each object conceptually defines its own format, methods, and inheritance relations.
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Objects are derived from other objects by cloning and modification. Modifications
can be applied to a specific object at runtime.
Ruby [Matsumoto, 2001] introduced mixins as a building block of reusability, called
modules. Modules can be applied to specific objects without modifying other in-
stances of the class adding or modifying state and methods. Object-centric opera-
tions can be modeled as modules for modifying the behavior of a particular method
of an object introducing breakpoints.
Object-centric debugging can be achieved by using other techniques than a purely
reflective solution as the one built on top of Bifröst.

8.6 Related Work

In recent years researchers have worked on enhancing debuggers to address the
questions the developers ask themselves. In this section we review research related
to object-centric debugging.

Breakpoint generation Most development environments offer convenient break-
point facilities, however the use of these environments usually requires consider-
able effort to set useful breakpoints. Determining the location to insert a breakpoint
entails programmer knowledge and expertise. Breakpoint generation has been pro-
posed to reduce the effort required to select the location to insert breakpoints [Zhang
et al., 2010] by identifying the execution path commonly taken by failed tests. This
approach uses dynamic fault localization techniques to identify suspicious program
statements and states, through which both conditional and unconditional break-
points are generated.

Dynamic languages The popularity of dynamic web content produced a number
of debugging techniques for dynamic languages and web pages. Web page break-
points [Barton and Odvarko, 2010] are conditional breakpoints dedicated to the web
domain. For example, this approach proposes operations like “Break on attribute
change” and “Break on element removal”. The authors added domain-specific break-
point capabilities to a general-purpose debugger for Javascript allowing the devel-
oper to initiate the debugging process via web page abstractions rather than lower
level source code views.

Omniscient debugging Omniscient debugging [Lieberman, 1987; Lewis, 2003; Hofer,
2006] is also known as back-in-time debugging or reversible debugging. These de-
buggers record the whole history, or execution trace, of a debugged program. De-
velopers can explore the history by simulating step-by-step execution both forward
and backward. However, omniscient debugging has scalability issues due to the
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large number of traces to manage and the challenge of quickly responding to queries
on these. To overcome these issues Pothier et al. [Pothier et al., 2007] proposed a trace
oriented debugger (TOD) in the context of Java. TOD is composed of an efficient in-
strumentation for event generation, a specialized database for scalable storage, and
support for partial traces to reduce trace volume. While this approach has the ben-
efit that no data is lost, its drawback is that it requires extensive hardware power,
which is not available for many developers today.
Lienhard et al. [Lienhard et al., 2008] presented a practical approach to back-in-time
debugging using partial traces in a different way than TOD. Information about ob-
jects that are eligible for garbage collection is discarded. Performance is also signif-
icantly better than in TOD because this approach is implemented at the virtual ma-
chine level, whereas all previously mentioned approaches are based on bytecode in-
strumentation. This approach stores historical data directly in the application mem-
ory, so does not require any additional logging facility to gather and store data.
In query-based debugging the user defines a query in a higher-level language that is
then applied to the logged data [Martin et al., 2005; Lencevicius et al., 1997; Potanin
et al., 2004; Ducasse et al., 2006a]. Queries can test complex object interrelationships
and sequences of related events.
Some back-in-time debuggers instead of saving the execution data replay the pro-
gram until a desired point in the past. The main advantage of replay-based ap-
proaches over logging-based approaches is their low performance overhead. De-
buggers like Bdb [Feldman and Brown, 1988] and Igor [Boothe, 2000] take periodic
state snapshots to optimize the time required to reach a particular point in the past.
A drawback of replay-based approaches is that deterministic replay cannot be guar-
anteed depending on the behavior of program.
Omniscient debugging looks backwards to analyze the static history of a debugged
program. Object-centric debugging looks forward to analyze the relationships be-
tween objects. Object-centric debugging avoids these scalability issues by using a
runtime object-specific operations. Object-centric debugging can answer the same
questions as Omniscient debugging without the scalability issues.

8.7 Conclusion

In this chapter we have presented a new debugging approach called object-centric
debugging. By focusing on objects, natural debugging operations are defined to
answer developer questions related to runtime behavior. Object-centric operations
directly act on objects by intercepting access to runtime state, monitoring how ob-
jects interact, and supporting live interaction. Object-centric debuggers avoid the
object paradox.
We demonstrated that the results of object-centric debugging are more concise and
directly related to the developer’s needs. With object-centric debugging we flow

132



8.7 Conclusion

through the execution and see only the points that are relevant to us. In contrast,
with traditional stack-centric debuggers we see the whole execution and we need to
steer the execution by manually introducing breakpoints.
We have presented a fully working prototype of an object-centric debugger and
shown how this debugger is used to solve three non-trivial realistic examples. The
Smalltalk prototype implementation has shown the feasibility of this approach. The
impact on performance due to instrumentation is not perceived by the user. Since
the history of the execution is not saved both performance and memory consump-
tion are not as important as in omniscient debugging approach.
We have discussed how other mainstream languages can provide object-centric de-
bugging thus demonstrating that this approach is not limited to a single language.
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Reflect As You Go

In this chapter we concentrate on the scoped reflection requirement. We show how
object-centric reflection helps scoped reflection mechanims to avoid the object para-
dox.

Software systems must typically be adapted to enable software analyses such as
coverage, performance, or feature analysis. It may not be possible to predict in
advance which parts of the system need to be adapted, in which case either too
much is adapted, or one risks to miss important parts of the system under analysis.
Adaptation can therefore be both costly and awkward. We propose to avoid these
problems by adapting systems on the fly. Only the entry points of the application
are initially adapted with the help of reflective meta-objects that intercede on be-
half of the adapted object. Each adaptation triggers further adaptations of objects
reached during a run. We support adaptive software analyses by reifying the dy-
namic scope itself and execution events of running applications. Long-lived analy-
ses are supported by decoupling deactivation and deinstallation of adaptations from
the dynamic scope of an individual run. Multiple adaptations can be supported in a
single running system, since the meta-objects keep track of the scope of each adap-
tation. As a consequence, only the code that needs to be adapted is touched, and the
various adaptations exist in different dimensions. We present Prisma, an implemen-
tation of on-the-fly reflective software adaptation, we present examples of analyses
supported by Prisma, and we demonstrate that Prisma is cost-effective from a per-
formance perspective.

This chapter is structured as follows: in Section 9.1 we analyze the challenges for
dynamic adaptation in the context of long-lived software analyses. We introduce
the Prisma approach in Section 9.2. In Section 9.3 we take a closer look at live feature
analysis and back-in-time debugging, two motivating use cases for dynamic adapta-
tion. We present the design and implementation of Prisma in Section 9.4 and in Sec-
tion 9.5 present performance benchmarks. We discuss related work in Section 9.6,
and in Section 9.7 summarize the results and conclude with some remarks on future
work.
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9.1 Challenges for Dynamic Adaptation

Dynamic adaptation of a running software application entails the propagation of an
adaptation to code that is reached dynamically by an executing thread. A propa-
gation condition determines whether the adaptation is propagated further or not.
Dynamic adaptations are particularly interesting to perform various kinds of soft-
ware analysis, such as profiling, or coverage analysis. Long-lived analyses can espe-
cially benefit from dynamic adaptation, since the cost of installing adaptations and
rerunning the analysis can be prohibitive.
In this section we consider one kind of long-lived analysis, namely live feature anal-
ysis, to elicit three general challenges for dynamic adaptation. The design of object-
oriented applications typically reflects domain concepts, but not the features seen
by end users. As a consequence, developers may be at pains to determine which
software components support which features. Feature analysis attempts to recover
this information, typically by instrumenting the code, exercising features, and per-
forming post mortem analysis on the resulting data. Live feature analysis [Denker et
al., 2010] avoids the need for post mortem analysis by gathering feature informa-
tion on the running system over a longer period of time, thus reducing the amount
of data to be collected, and enabling the analysis of multiple features and multiple
scenarios for the same features at run time.
Dynamic adaptation can ideally support such a long-lived analysis, however there
are several challenges that a suitable approach must address. In particular, we iden-
tify the need to (i) control the scope of adaptation over longer periods of time, (ii) al-
low multiple adaptations to coexist, and (iii) dynamically update a long-lived adap-
tation.

9.1.1 Controlling the scope of adaptation

Existing approaches (see Section 9.6) limit dynamic adaptations to a single dynamic
extent: adaptations are deactivated and uninstalled after the execution of the dy-
namic extent ends.
Live feature analysis, on the other hand, can be used to gather information about
features exercised over multiple runs, and multiple scenarios. Such “feature grow-
ing” can thus provide more detailed information about support for features within
a system than is possible to obtain with a single run. To support feature growing,
however, it is important that the adaptations that monitor features remain in place
after the dynamic extent of a single run has completed. Deactivating and unin-
stalling an adaptation therefore needs to be logically decoupled from the dynamic
scope responsible for installing it in the first place for long-lived analyses that re-
quire this. The notion that a dynamic scope should be defined by a single dynamic
extent is unsuitable for long-lived analyses. Multiple dynamic extents can define a
valid dynamic scope as is the case in live feature analysis.
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9.1.2 Activating multiple adaptations

Typical adaptations to support dynamic software analysis are very specific to a par-
ticular task, and are normally not combined with other adaptations. Test cover-
age instrumentation and profiling instrumentation, for example, are not normally
applied to the same system at the same time, since these may interfere in unpre-
dictable ways. For long-lived analyses, however, it would be attractive, perhaps
even essential, to be able to combine analyses. Live feature analysis, for example,
loses its benefits if it must be deactivated to perform test coverage analysis or pro-
filing. Furthermore, to properly support feature growing, it should be possible to
gather information about multiple features over time. The coexistence of multiple
adaptations over the same objects requires a scoping mechanism to avoid interfer-
ence between analyses.

9.1.3 Dynamically updating adaptations

The degree, nature and scope of information gathered by an adaptation may need
to change over time.
The conditions under which adaptations are propagated may need to be refined, for
example, with live feature analysis, one might initially focus only on components
responsible for business logic, and later wish to assess core libraries as well. Rather
than scrapping all the information gathered and restarting, one may simply adapt
the propagation condition.
Alternatively, the adaptation itself may need to be changed to gather more informa-
tion, for example, which specific instances of components are involved in particular
features, rather than just the classes of components. A traditional problem in fea-
ture analysis is the amount of data gathered by the analysis. The adaptation can
be updated to avoid saving data that is not essential to the analysis objectives thus
reducing the memory footprint.
In long-lived analyses, restarting and readapting a use case can be costly. A mech-
anism to dynamically update adaptations is therefore key to supporting such anal-
yses.

9.2 Prisma in a Nutshell

Prisma is an approach to dynamically adapt running software systems to support
various forms of dynamic analysis. Prisma uses reflective meta-objects to adapt the
behavior of objects at run time. Execution is modeled as a sequence of events which
trigger the reflective meta-objects. Prisma explicitly reifies execution runs to manage
the adaptation process. Dedicated propagation meta-objects assume responsibility for
propagating adaptations to objects accessed within a given run. Adaptations are
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scoped to a particular run, so multiple adaptations can be installed without risk of in-
terference. Installation and deinstallation are decoupled, so adaptations can be retained
for long-lived analyses. Adaptations are thread-local, but can optionally be made
global.

MetaObject

Object

*

boundObjects

Execution

*

*
metaObjects

propagationMetaObject

deinstallationMetaObject

relatedExecutions

1

*

BehavioralMetaObject StructuralMetaObject

1

1

Figure 9.1: Prisma’s object model.

Reflective meta-objects. Prisma makes use of reflective meta-objects known from
the domain of reflective architectures [Maes, 1987b] to adapt software systems on-
the-fly. Such meta-objects control various aspects of reflection offered by the under-
lying programming language. Meta-objects provide the implementation of adaptive
behavior which is invoked at specific locations in the base system.

These reflective meta-objects address the first challenge: dynamic adaptive adaptations.
The adaptations defined in the meta-object can change at any point during the life
time of the target system. As the dynamic scopes propagates through the system the
a meta-object can be changed thus changing the adaptation of the next object reached
by the dynamic extent. When previously adapted objects are reached since the a
meta-object was changed, the adaptation is applied anew on the original behavior,
not on the adapted one.

Prisma views a running system from the perspective of operational decomposition
[McAffer, 1995b], which means that execution is modeled as a sequence of meta-
events, such as invoke method and access state. Meta-objects are triggered when a
particular meta-event occurs. Behavioral meta-objects adapt the behavior of an ob-
ject, whereas structural meta-objects adapt an object’s structure, for example, to add
or remove instance variables or methods.

Execution Reification. In many programming languages it is possible to reify ab-
stractions such as activation records, execution contexts, and even the execution
stack, but the concept of an execution run remains implicit. Prisma models execution
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runs explicitly to scope adaptations to a specific set of objects reachable from a par-
ticular starting point. An execution run represents a live scope in which adaptive
reflective changes take place.

An execution (see Figure 9.1) is composed of a set of meta-objects, each of which adapts
a number of bound objects. Since a meta-object is an object, it can also be adapted by
meta-objects. Meta-objects can be structural or behavioral. An execution models a
dynamic scope whose starting point is an expression defining a dynamic extent.

Reified execution scopes address the first point of the scope control for long-lived adap-
tations challenge. An explicit execution scope allows two developers to use the same
scope starting from two different dynamic extents. Two developers exercising the
same feature can be scoped in the same domain using the same adaptations even
though they are exercising the features from different parts of the system. Moreover,
combining multiple adaptations is controlled in a finer way since explicit executions
can be useed to control the interactions of different analyses. Executions prevent
analyses from seeing each others’ adaptions but at the same time executions can be
dynamically changed to be able to allow adaptations to see their adaptations.

Propagation. A dedicated propagation meta-object is responsible for propagating adap-
tations to the dynamic extent of an execution run. When an execution run is started
the first object, i.e., the one receiving the first message, is adapted with the meta-
objects composing the execution. One of these meta-objects is the propagation meta-
object (Figure 9.1), which adapts an object so that every method call to another object
causes the execution’s meta-objects to be applied to that other object. An activation
condition can be provided to restrict which objects the adaptation should be applied
to.

Execution Scoping. When an object is adapted within a particular execution run
this adaptation only affects other objects in the same run. When a meta-object adapts
a method of an object under a specific execution run the method is copied and the
adaptation is applied to that copy. As a consequence, there can be multiple ver-
sions of the same method for a given object depending on the number of scoped
executions. The meta-object is responsible for managing the different method ver-
sions. When the adapted method is invoked under a particular execution run, (i)
the invoked object delegates the execution of the method to the meta-object, (ii) the
meta-object obtains the identity of the current execution, and (iii) with that identity
it selects the version of the method to be executed. If there is no enclosing adaptive
execution then the normal method lookup is used. This mechanism addresses the
third challenge combining multiple adaptations. We can dynamically introduce multi-
ple adaptive analyses which will not interfere with each other if applied on different
execution runs scopes. However, if they are applied in the same execution run the
analysis will be able to see the other adaptations.
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Explicit deinstallation. By default adaptation continues until the dynamic extent
ends, at which point all adaptations are uninstalled with the help of the deinstal-
lation meta-object. Alternatively, an explicit deactivation condition can be specified to
indicate when adaptations should be uninstalled. As a consequence, adaptations
that have not been uninstalled can be “reused” for future analyses. This is partic-
ularly interesting for long-lived analyses that may require multiple execution runs
to gather sufficient data as described by scope control for long-lived adaptations chal-
lenge.

Thread Locality. Thread locality determines whether an adaptation is local to a sin-
gle thread or global to all running threads. Since a single execution run may make
use of multiple threads, thread locality may or may not be appropriate for a given
analysis. The propagation meta-object is responsible for propagting adaptations to
newly-created threads, if this is desired.

9.3 Case Studies

In this section we will consider two case studies of dynamic analyses which illus-
trate how the challenges are addressed by the Prisma approach to dynamic, scoped
adaptation.

The first is live feature analysis, in which software artifacts that implement a given
feature are identified by instrumenting the system and exercising those features.
Prisma avoids the need to statically instrument the entire system. Furthermore,
multiple features can be exercised at the same time, since Prisma scopes the effect
of adaptations to individual execution runs avoiding undesired adaptation inter-
actions. The data gathered by the feature analysis can be dynamically changed to
support dynamic updating of adaptations. Finally, Prisma naturally supports the
ability to “grow” the feature analysis over multiple runs, since adaptations may be
retained.

The second case study is back-in-time debugging, a technique that allows developers
to step both forward and backward through an entire execution run. We show how
the object-flow analysis approach to back-in-time debugging, previously supported
by VM modifications, is easily implemented using Prisma. Controlling the scope to
which particular objects should be adapted helps the analysis to reduce the size of
history information. Moreover, the Prisma back-in-time debugging implementation
does not interfere with the rest of the application, only with the objects reached by
the dynamic extent. Adaptations can also be reused to avoid multiple adaptations
of the same objects. Section 9.5 analyze the performance impact of our approach.
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9.3.1 Live Feature Analysis

A feature represents a functional requirement fulfilled by a system from the per-
spective of a user. Since many maintenance tasks are expressed in terms of features,
it is important to establish the correspondence between a feature and its implemen-
tation in source code. Traditional approaches to establish this correspondence ex-
ercise features to generate a trace of run-time events, which is then processed by
post-mortem analysis. These approaches typically generate large amounts of data
to analyze. Due to their static nature, these approaches do not support incremental
or interactive analysis of features.
Live Feature Analysis proposes a radically different approach that provides a model
at run time of features [Denker et al., 2010]. This approach analyzes features on
a running system and also makes it possible to “grow” feature representations by
exercising different scenarios of the same feature, and identifies execution elements
even to the sub-method level.
In contrast to typical dynamic feature analysis approaches, live feature analysis does
not need to retain a large trace of executed data. This is because the analysis is
live rather than post-mortem. Live feature analysis focuses on exploiting feature
knowledge directly while the system is running. Instead of recording traces, the
analysis tags with a feature annotation all the AST nodes that are executed as a result
of invoking features at run time. This analysis can annotate every statement that
participates in the behavior of a feature. To achieve this, we define a meta-object
which specifies that when the associated AST node is executed the FeatureTagger

object should be called to annotate the AST node.
The adaptation is achieved without any anticipation and at run-time. The user, how-
ever, still needs to specify where this adaptation should take place before exercising
the features. This is a key drawback of live feature analysis as it was originally pro-
posed [Denker et al., 2010].
Prisma aids the user when the target of the feature analysis is unknown. We need to
define the same meta-object used by live feature analysis inside a Prisma execution.
However, the portions of the system that should be adapted are not selected by the
user but by the execution.
loginExecution := Execution new.

loginExecution when: ASTNodeExecutionEvent

do: [ :node | node addFeatureAnnotation: #login ]

The Execution>>when: anEvent do: aBlock method is responsible for adding a meta-
object to the execution which should evaluate the provided block when a particular
meta-event is produced. Whenever an AST node is executed for an adapted object
the meta-level behavior is executed. We use the term “AST execution” figuratively,
since AST nodes are not literally executed, but rather their lower level bytecode rep-
resentation is. However, when we adapt an application we specify that we would
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like something to happen when the bytecode that is the result of compiling a partic-
ular AST node is executed.
loginExecution

executeOn: [ WebServer new loginAs: 'admin' password: 'pass' ]

Listing 9.1: Exercising the login feature on a web server.

Prisma applies this meta-object only to the specific method invoked during the exe-
cution. The meta-objects associated to the execution are never applied to a complete
object unless the meta-object specifies so. In Listing 9.1 we are exercising the login
feature on a web server. We are dynamically scoping the adaptation in the execution
to the behavior in the block.

Dynamically updating adaptations

With the live feature analysis approach only one user can exercise a particular fea-
ture at any given time. Otherwise, feature collisions can be produced, since the
whole application under analysis is globally instrumented.

Prisma solves this problem. Only users exercising features within the same exe-
cution run are affected by the adaptation defined for that run. While one user is
analyzing the login feature, another could analyze the printing feature, without any
interference occurring, even if the two features share some common components.
printingExecution := Execution new.

printingExecution when: ASTNodeExecutionEvent

do: [ :node | node addFeatureAnnotation: #printing ]

When an activation condition is provided it should be possible to change it at run
time. For example, we can define a dynamic scope only to be applied on objects
instances of classes defined in the package LiveFeatures-Model.
loginExecution executeOn: aBlock

subjectTo: [ :object |

object class package name = 'LiveFeatures-Model']

As we can see in the previous snippet, the condition accesses the object being adapted.
While adapting the system at run time with this particular execution, we realize that
we should also adapt objects in LiveFeatures-Core. To achieve this, we can change
dynamically the execution activation condition as follows.
loginExecution updateCondition: [ :object |

( object class package name = 'LiveFeatures-Model' )

or: [ object class package name = 'LiveFeatures-Core' ] ]
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While the execution is being propagated the new condition is going to be applied.
Objects already adapted will be readapted when the execution reaches them again.
An object which is still defined in these two packages will remain adapted. How-
ever, if an object previously adapted is now left out of the dynamic condition then
the adaptation will be removed from it.

Controlling scope of adaptation

Feature growing is one of the contributions of live feature analysis [Denker et al.,
2010]. Variants of the same feature can be exercised iteratively and incrementally,
thus allowing the analysis representation of a feature to “grow” within the devel-
opment environment. For example, we could exercise a feature multiple times with
different parameters to obtain multiple paths of execution. This can be important, as
the number of traces obtained can be considerable depending on the input data. For
trace-based approaches this results in multiple traces being recorded. One feature is
represented by multiple traces and therefore it is needed to manage a many-to-one
mapping between features and traces. If the execution path differs over multiple
runs, newly executed instructions will be tagged in addition to those already tagged.
Thus we can use live feature analysis to iteratively build up the representation of a
feature covering multiple paths of execution.
Retaining adaptations naturally supports feature growing over multiple runs. An
execution adaptation defined by a dynamic scope can be reused multiple times by
applying it over different dynamic extents. By retaining the adaptations after the
dynamic extent has finished we are able to reuse the adaptation that is already in
place, thus avoiding the need to adapt over and over again the same objects.

9.3.2 Back-in-time Debugging

Omniscient debugging [Lieberman, 1987; Lewis, 2003; Hofer, 2006] is also known
as back-in-time debugging or reversible debugging. These debuggers record the
whole history, or execution trace, of a debugged program. Developers can explore
the history by simulating step-by-step execution both forward and backward. How-
ever, omniscient debugging has scalability issues due to the large number of traces
to manage and the challenge of quickly responding to queries on these. To over-
come these issues Pothier et al. [Pothier et al., 2007] proposed a trace oriented debugger
(TOD) in the context of Java. TOD is composed of an efficient instrumentation for
event generation, a specialized database for scalable storage, and support for partial
traces to reduce trace volume. While this approach has the benefit that no data is
lost, its drawback is that it requires extensive hardware power, which is not avail-
able for many developers today.
Lienhard et al. [Lienhard et al., 2008] presented a practical approach to back-in-time
debugging based on object flow analysis (OFA) [Lienhard et al., 2009], which tracks
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the flow of objects through an execution run with the help of first-class alias ob-
jects. Information about objects that are eligible for garbage collection is discarded.
Performance is also significantly better than in TOD because this approach is imple-
mented at the virtual machine level, whereas all previously mentioned approaches
are based on bytecode instrumentation. This approach stores historical data directly
in the application memory, so does not require any additional logging facility to
gather and store data.
Back-in-time debugging consumes a considerable amount of memory and requires
extensive hardware power. OFA addresses these issues by providing a solution at
VM level thus delivering better performance. However, this requires developers
to use a modified VM instead of the mainstream one, which leads to compatibility
issues and difficulties to carry the modifications forward to later versions of the
VM.
Prisma provides a solution to these issues. By providing a back-in-time data record-
ing adaptation, Prisma can control in which executions the adaptation should take
place. Since Prisma strictly controls the scope within which these adaptations are
applied, this leads to a reduction in the impact on memory and performance.
We implemented a simplified version of the OFA alias model. An alias represents
an object reference. There are three types of aliases:

• AllocationAlias is created when an object is instantiated.
• FieldReadAlias is created when an object instance variable is read. It is also

used for modeling the references in an argument passed to a method.
• FieldWriteAlias is created when an object instance variable is written.

An alias is composed of:
• Value. Any kind of value of the language.
• Context. Used to navigate to the method invocation in which the alias was

created. It represents a frame on the execution stack and also is a real object
on the heap.

• Ancestor. The ancestor of any alias is the previous alias of the value.
• Predecessor. The predecessor of a field write alias is the field write alias of the

value previously stored in the field. Only field write aliases have a predeces-
sor.

Figure 9.2 illustrates an example of a Person object with the attribute name. When
the object is allocated at time t1, the field is initially undefined. Later, at time t2,
the string “Doe” is written into the field and at t3 it is renamed to “Smith”. In the
OFA model, the initial undefined value is captured by an alias of type allocation
and all subsequent stores into the field are captured by aliases of type field write. In
the example the field first points to the alias of null, then to the alias of “Doe” and
finally to the alias of “Smith”. The key idea is that each alias keeps a reference to its
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Figure 9.2: Capturing historical object state through predecessor aliases.

predecessor, that is, to the alias that was stored in the field beforehand. In this way,
the alias pointed to from a field is the head of a linked list of aliases that constitute
the history of that field.
The HistoryAnalysisExecution models the execution for the history analysis for the
back-in-time debugger. This object defines the adaptation that should be applied to
every object that is reached by the execution. The Prisma adaptation is divided into
three parts.

• When a method is invoked on an object, a FieldReadAlias should be created
for each method argument.

• A FieldReadAlias is created when a field of a particular object is read.
• When a field is written on a particular object a FieldWriteAlias is created.

When an object is asked for its aliases and this object has none, then an AllocationAlias

is created on the fly for that object.
These three adaptations would normally need to be applied to the whole system or
to those classes that the user thinks are important. However with Prisma the user
only needs to know how to start the case study and let the execution take care of
scoping the adaptation. Listing 9.2 presents the steps to create a HistoryAnalysisExecution

and how to apply it to a particular execution run. In line 1 we create an instance of
HistoryAnalysisExecution, in lines 2–3 we create an object and define it as the start-
ing point of the run. The method defaultNames is defined as the starting selector in
line 4. When the execution instance is run in line 5 the starting receiver method
defaultNames is adapted with the reflective changes defined in the execution. These
adaptations then are propagated to all objects reached during the run.
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1 anExecution := HistoryAnalysisExecution new.

2 anObject := Person new.

3 anExecution startingReceiver: anObject.

4 anExecution startingSelector: #defaultNames.

5 anExecution execute.

Listing 9.2: History analysis creation as a Prisma execution.

1 Person>>defaultNames

2 name := 'Doe'.

3 self fullName: name.

4

5 HistoryObjectMock>>fullName: anObject

6 fullName := anObject.

Listing 9.3: Code snippet being analyzed by the history analysis

For the snippet of code presented in Listing 9.3 the ancestor relationship of instance
variable name is:

alloc(“Doe”) ⇐= fieldWrite(“Doe”)(name)
⇐= fieldRead(“Doe”)(name)
⇐= fieldRead(“Doe”)(anObject)
⇐= fieldWrite(“Doe”)(fullName)

The ancestor relationship allows the developer to flow back in time and analyze how
a particular object flowed through the execution.
On the other hand the predecessor relationship allows the developer to analyze the
history of values for a particular instance variable.

alloc(“Doe”) ⇐= fieldWrite(“Doe”)(name)
⇐= fieldWrite(“Doe”)(fullName)

Activating multiple adaptations

Let us consider a use case in which we have a running application and we want to
apply back-in-time debugging to detect a particular bug. There are several other
users working with the application and their work should not be disturbed nor
should the system behavior change in any way. Due to this we cannot use the back-
in-time debugger modified VM approach since the application is running too many
users and the overall impact will be extremely high. Prisma can apply back-in-time
debugging adaptations to a particular dynamic extent without affecting the normal
application behavior and other dynamic scopes. In this scope we can select which
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objects should be adapted and which information should be saved for the historical
information.

At the same time other developers might need to run their own back-in-time debug-
ger adaptations for finding specific bugs in their developed part of the application.
We can choose to keep these adaptations separate in different scopes so they will
not interfere with one another. Or we can reuse the same dynamic scope execution
for all back-in-time debuggers.

Dynamically updating adaptations

The performance and memory footprint problem of back-in-time debuggers is well
known. As we have pointed out we can selectively control which objects in the
system should be adapted through the propagation. This has a positive impact on
the performance. Moreover, at run time, while the scoped adaptation is in place we
can selectively change the adaptation to change or reduce the data being saved. We
can also change the objects that should be reached by the adaptation.

9.4 Implementation

Prisma1 and the examples presented in this chapter are implemented in Pharo Smalltalk.
Prisma is built on top of the Bifröst reflection framework.

9.4.1 Reifying Execution

A Prisma execution run models the process of executing a particular snippet of be-
havior. An execution is composed of Bifröst meta-objects which define how objects
executed during the run should be adapted.

Beside the adaptation provided by the user there is a dedicated propagation meta-
object responsible for propagating the adaptations to all objects reached during the
run. This meta-object ensures that when a message send event occurs the receiver
will also be adapted.

To start a scoped adaptation the user can trigger an execution on a dynamic extent:

anExecution executeOn: aBlock

1 http://scg.unibe.ch/research/bifrost/prisma/
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9.4.2 Execution Scoping

Since method lookup is not reified in Smalltalk we simulate the redefinition of the
method lookup. What really happens is that the method defined in the class is re-
placed by a set of bytecodes that delegate to the meta-object the responsibility of
deciding which is the actual set of bytecodes that should be executed. If the object
is not adapted then the original method in the class is executed. On the other hand,
if the object has been adapted by the meta-object for the received message then the
meta-object is responsible for selecting which version of the method should be exe-
cuted. In Prisma the reified execution run is used as the key for deciding the method
version. This technique allows the user to adapt the same object for different pur-
poses in different execution runs avoiding adaptation conflicts.

aPoint isPoint

Key
instance-of
message send
lookup

Object

isPoint
Point

aPoint

1

2 4

aMetaObject

isZero : aCompiledMethod
isPoint : aReflectiveMethod
aMethodDictionary

nullExecution : isPoint : aCompiledMethod
anotherExecution : isPoint : aCompiledMethod
anExecution : isPoint : aReflectiveMethod

aScopedMethodDictionary

3

run: #isPoint with: #() in: aPoint

run: #isPoint with: #() in: aPoint

5
run: #isPoint with: #() in: aPoint

Figure 9.3: Modified method lookup for a point with a isPoint scoped adapted
method.

In Figure 9.3 we can see an example of the modified method lookup for aPoint>>is-

Point in a scoped environment in Prisma. First the method lookup finds the method
isPoint defined in the Point class. This method is not a compiled method but a re-
flective method. The VM does not know how to execute this abstraction thus it
delegates the execution to the reflective method itself with run:with:in: The respon-
sibility of this reflective method is to delegate the execution of the method isPoint

to the receiver’s meta-object, which is done in step 4. To find the corresponding
method to be executed the meta-object indexes by the execution under which the
current code is running and the name of the method. The null execution models the
case in which no execution is present thus this adaptation is globally visible. The
meta-object finds the corresponding method which is a reflective method containing
the a copy of the original AST plus adaptations. The message run:with:in: is sent
to the reflective method which first triggers the compilation of the method, second
replaces the reflective method in the method dictionary with the resulting compiled
method, and finally executes the compiled method.
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A dynamic variable in Smalltalk holds a value that depends on the current thread. In
Pharo Smalltalk a dynamic variable can be simulated by subclassing a Notification

which inherits from Exception. This dynamic variable implementation reuses the
resumable exception mechanism. If the value of the dynamic variable is required
at any point during the execution the exception (the dynamic variable) is signaled.
The execution is triggered by aBlock on: self do: [ :notification | notification

resume: anObject ]. The handler of the exception resumes the execution returning
the object modeling the value the dynamic variable should have.

Prisma uses dynamic variables to mark the execution context in which objects are
used. The execution sets the dynamic variable to be itself when it receives the mes-
sage execute.

Execution>>execute

DynamicVariable

use: self

during: aBlock

The execution value is not limited to a single thread. A single execution run can
spread along several threads. This propagation is controlled by the propagation meta-
object.

The execution abstraction should transcend the limitation of the lower level thread-
ing model. To achieve such a model the Prisma execution propagation system keeps
a special adaptation for applying over spawning of new threads. This adaptation
sets the execution dynamic variable in the created newly created thread to be the
same in which the fork was executed.

9.4.3 Dedicated Meta-objects

Propagation meta-object. This meta-object decides which objects should be adapted
while the dynamic extent unfolds. The next snippet of code shows how to change
the propagation in Prisma dynamic scope:

anExecution propagatingWith: aMetaObject

By default, the propagation is defined by a meta-object that applies the adaptations
on any receiver of a message send. The propagation meta-object adaptation is also
applied to these objects thus producing the actual propagation. The propagation
meta-object is also responsible for deciding if an adaptation should be reapplied on
an already adapted object. Adaptations are not reapplied to an adapted object in
the same execution scope.
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Deinstallation meta-object. This meta-object is responsible for determining when
the dynamic adaptation scope should finish. The next snippet of code describes
how to set the deinstallation meta-object for a particular execution run:
anExecution deinstallingWith: aMetaObject

By default, scoped adaptations are not removed after the dynamic extent has fin-
ished. The user can execute anExecution uninstall at any point to remove the adap-
tations in the dynamic scope. Another option is to provide an explicit deinstalla-
tion condition. However, this approach has the disadvantage that there is no meta-
level event provided by the user thus all potential triggering events points should
be adapted. This has a negative impact on performance. It is simpler when the user
provides a meta-object which under certain circumstances will uninstall the adap-
tations. Practically, the user can provide several of these meta-objects which control
different features of the adapted application. This approach provides a more mod-
ular solution and avoids complex deinstallation conditions.

9.4.4 Activation Conditions

The user can define an activation condition to filter which objects the adaptation
should be propagated to. The following snippet of code shows the activation con-
dition used in feature analysis to adapt only objects whose class is defined in the
packaged named LiveFeatures-Model:
anExecution executeOn: aBlock

subjectTo: [ :object |

object class package name = 'LiveFeatures-Model']

The user can update this condition dynamically as follows:
anExecution updateCondition: [ :object |

( object class package name = 'LiveFeatures-Model' )

or: [ object class package name = 'LiveFeatures-Core' ] ]

Since Prisma adopts a reflective architecture it also provides another level for filter-
ing which objects are adapted. Each meta-object added to the execution can have
its own activation condition which provides a more fine-grained filtering approach.
Meta-objects can therefore choose if they should be applied or not.

9.4.5 Explicit deinstallation

Adaptations are removed by unbinding meta-objects from their bound objects. This
can be done at the end of the execution or immediately after the adapted object’s
method has been executed. The first approach is called “scarring” since it leaves
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the adaptation in place to be reused in case the same execution run calls the same
adapted object’s method again. The second approach is called “scanning” since the
adaptation moves throughout the system without leaving any mark behind.

By default, the execution uses the first approach. But the execution provides two ex-
ecution methods to control this behavior: Execution>>executeScarring and Execution

>>executeScanning. The adaptations are applied in the same way, and only deinstal-
lation is affected.

9.4.6 Prisma for other languages

In this section we discuss the feasibility of implementing Prisma in other languages
and environments.

Prisma’s implementation can be broken down into support for the following fea-
tures:

• Expressing adaptations as behavioral and structural changes at run time.

• Reflective changes can be defined unanticipatedly.

• Explicitly representing dynamic scopes to be able to reflect on them, grow and
reuse.

• Avoiding scope interference.

• Supporting thread independent scopes. In Prisma the dynamic scopes are
not tied to a single thread (thread local). Dynamic scopes can spread across
several threads.

Having multiple scopes unfolding at the same time on a particular system requires
the scoping system to keep separated various adaptations on the same objects. In
a language like Java bytecode level manipulation tools like Javassist or BCEL can
be used. The key point is to achieve scoped multiple versions for specific methods.
Methods can be instrumented to first evaluate code implementing the decision of
which method version should be executed depending on the execution run. In this
way we would be simulating the method lookup redefinition. In Java it is possible
to assign values to specific threads thus allowing us to associate the execution ab-
straction with particular threads. Extra adaptations can be introduced to detect the
point in the code when a new thread is spawned and thus associating the current
execution run abstraction to the newly created thread. An important problem in
providing a Prisma like adaptation in the context of Java is unanticipation. Byte-
code manipulation tools restrict the adaptation to take place at either compilation
time or loading time thus limiting the ability of the tool to dynamically modify an
object without unticipation.
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As Tanter [Tanter, 2008] has pointed out, there are several techniques to support
dynamic deployment of aspects: residues [Masuhara et al., 2003], meta-level wrap-
pers [Hirschfeld, 2003], optimized compilers with static analysis [Avgustinov et al.,
2005; Bodden et al., 2007], and VM support [Bockisch et al., 2004]. Moreover, there
has been promising work on aspect-aware VMs [Bockisch et al., 2006b; Bockisch et
al., 2006a] and dynamic layer (de)activation [Costanza et al., 2006], suggesting that
such advanced scoping mechanisms can be efficiently supported.

Recently, Moret et al. introduced Polymorphic Bytecode Instrumentation (PBI) [Moret
et al., 2011], a technique that supports dynamic dispatch amongst several, possibly
independent instrumentations. These instrumentations are saved and indexed by a
version identifier. A Prisma scope can be related to a particular version of instru-
mentations over objects’ methods. When the dynamic extent is running only the
method’s instrumented versions indexed by the scope should be executed. How-
ever, a more static mainstream language (i.e., Java) solution would likely be more
static in nature. CodeMerger, the PBI implementation for Java, instruments the class
library at build-time and all other classes at load-time. As such, achieving the same
dynamic behavior and unanticipation as Prisma Smalltalk implementation is not
possible.

9.5 Performance Analysis

In this chapter we focus on developing an approach to dynamic adaptation that
is expressive enough to support practical forms of dynamic analysis, not on pro-
ducing an efficient implementation for production environments. Nevertheless we
have carried out some micro-benchmarks to assess the performance impact of our
(unoptimized) system.

Dynamic scoping impacts the performance of the application being analyzed. We
have performed a micro-benchmark to assess the maximal performance impact of
Prisma. All benchmarks were performed on an Apple MacBook Pro, 2.8 GHz Intel
Core i7 in Pharo 1.1.1 with the jitted Cog VM.

Let us consider the live features analysis example. We developed a benchmark
where the user interaction is simulated to prevent human interaction from pollut-
ing the measurements. In this benchmark we exercised one thousand times the
same feature under the same dynamic scope. This implies that the adapted objects’
methods are called extensively. The results showed that the adaptation produces
on average a 20% performance impact. Note that our implementation has not been
aggressively optimized.

The OFA-modified VM is 7 times slower than the VM without modifications [Lien-
hard et al., 2008]. Benchmarks suggest that a significant overhead incurs because of
the additional pressure on the garbage collector. The Prisma implementation can
control the scope in which the adaptations have to be installed. Furthermore, these
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adaptations can be adapted, installed and uninstalled at run time. Due to this, our
approach has an average of 35% slowdown. As with OFA the memory usage char-
acteristics of each benchmark has a considerable impact on performance. However,
emulating the OFA recording mechanism can produce slowdowns up to a factor of
35. This is expected since our solution does not rely on any VM optimization. Fi-
nally, when OFA recording is switched off the overhead is still 15% due to the VM
modification, while in the Prisma solution there is no impact.

In conclusion, under certain circumstances Prisma OFA is faster than the VM OFA,
but when the objects adapted and the data gathered grow the performance of Prisma
OFA is worse. The key point is that with Prisma OFA we can control which objects
should be adapted and which information should be saved. However, as we state in
the chapter, fully emulating the VM OFA recording mechanism can produce slow-
downs up to a factor of 35.

The AOP residues approach [Masuhara et al., 2003] uses partial evaluation to find
places in program text to insert aspect code and to remove unnecessary run-time
checks. The same technique can be used to remove run-time checks in meta-object
adaptations. In the context of Smalltalk and dynamic languages this technique has
been used with good performance results in a transactional memory implementa-
tion [Renggli and Nierstrasz, 2009]. The transactional and non-transactional ver-
sions of a method coexist and inserted static checks decide which version should be
used. Lienhard et al. [Lienhard et al., 2008] have shown that modifying the VM to
directly support the adaptations provides performance benefits.

These benchmarks show that Prisma approach is cost-effective from a performance
perspective.

9.6 Related Work

In this section we discuss related work in the domain of controlling and adapting
dynamic scope. We particularly concentrate on various systems and frameworks
which provide different scoping mechanism.

Reflection, a feature common to many modern programming languages, is the abil-
ity to query and change a system at run time [Kiczales et al., 1991]. Reflection is
particularly useful for long-lived and highly dynamic systems since it allows them
to evolve and adapt dynamically.

The original model of reflection as defined by Smith [Smith, 1982] is based on meta-
level interpretation. The program is interpreted by an interpreter, which is inter-
preted by a meta-interpreter, and so on, leading to an unending tower of interpreters
each defining the semantics of the program (the interpreter) it interprets. A tower
of interpreters clearly poses performance issues in practice. To enable reflection in
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mainstream languages the tower of interpreters is replaced by a reflective archi-
tecture [Maes, 1987b] where meta-objects control the various aspects of reflection
offered by the language.

9.6.1 Reflective Architectures

There have been multiple approaches to define object specific adaptations. These
approaches follow the per-object meta-object protocols where a meta-object modi-
fies the behavior of the bound object [Maes, 1987b]. Composition filters are another
instantiation of this same model [Bergmans and Aksit, 2001]. Composition filters
can define a new program entity with behavior composed from two or more other
program entities. However, there is no stack propagation proposed in these ap-
proaches. There is no way of specifying how the adaptations should me transfered
to other object during execution.
ContextL is a context-oriented programming (COP) [Hirschfeld et al., 2008] approach
defined as an extension of CLOS. This approach provides dynamic mixin layers
which are dynamically scoped. A layer is composed of structural refinements which
can be dynamically activated in a dynamic extent. The definition of the scope has
an explicit entry point and an implicit exit point. A mixin layer can be deactivated
by using a with-inactive-layers expression, thus, this approach supports dynamic
binding at run time. It is however impossible, to specify at deployment time a condi-
tion upon which the layer must be either uninstalled or deactivated. Activation and
deactivation of layers is thread-local. A mixin layer applied in a particular thread
cannot be seen by other thread unless this thread explicitly expressed that it is run-
ning under a particular layer.
Classboxes [Bergel et al., 2005] and Expanders [Warth et al., 2006] model class ex-
tensions that can be statically-scoped. In these approaches, a class extension is only
applied to a predefined portion of the code. On the other hand, ContextL intro-
duces the notion of dynamically-scoped class extensions. One disadvantage of this
approach is that only classes and functions that are explicitly declared to be lay-
ered can partake in layered activations of new partial definitions. Thus ContextL
adaptations are not unanticipated.

9.6.2 Aspect-oriented Programming

Aspect-oriented Programming (AOP) [Kiczales, 1996; Kiczales et al., 1997b; Kiczales
et al., 1997a] is a technique which aims at increasing modularity by supporting the
separation of cross-cutting concerns. Pointcuts pick out join points, i.e., points in the
execution of a program that trigger the execution of additional cross-cutting code
called advice. Join points can be defined on the run-time model (i.e., dependent on
control flow). Although AOP is used to introduce changes into software systems, the
focus is on cross-cutting concerns, rather than on reflecting on the system. Kiczales
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et al. [Kiczales et al., 1997b] claim: “AOP is a goal, for which reflection is one powerful
tool.”.

Dynamically-scoped aspects have attracted considerable attention in the object-based
aspect community. Examples are their incarnation in the CaesarJ [Aracic et al., 2006]
language, as well as in related mechanisms outside of the pointcut-advice family,
like dynamic mixin layers as provided by ContextL.

Many AOP languages provide adaptations scoped on control flow known as cflow

pointcuts in AspectJ. The main use of this construct is to analyze the stack and when
certain conditions are met regarding the stack execute and advise. cflow in AspectJ
is by default thread local. Prisma offers a different scope mechanism since dynamic
execution runs define the dynamic context. Conditions are applied not only to the
control flow but also to the properties of the objects reached by the execution.

AspectS [Hirschfeld, 2003] is a dynamic aspect system defined in the context of
Smalltalk. AspectS supports first-class activation conditions, which are objects mod-
eling a dynamic condition. Since this a Smalltalk implementation the condition can
be dynamically bound at runtime. This means that conditions can be installed and
uninstalled at runtime. Generally, these changes are global but as Hirschfeld and
Costanza [Hirschfeld and Costanza, 2006] showed thread locality can be achieved.

CaesarJ [Aracic et al., 2006] provides deploy blocks which restrict behavioral adapta-
tions to take place only within the dynamic extent of the block. The scope is explic-
itly embedded within the application code, but the this approach has an implicit
exit point which is the ending of the execution of the deploy block. No value can
be parameterized in the deploy block. The adaptation is bound at run time but
the adaptation cannot be unbound nor rebound during the execution. Finally, the
adaptation is applied locally to the thread executing the deploy block.

Following the idea of per-object meta-objects Rajan and Sullivan [Rajan and Sulli-
van, 2003] propose per-object aspects. An aspect deployed on a single object only
sees the join points produced by this object. This join point observation can be
stopped at any time.

AspectScheme [Dutchyn et al., 2006] is an aspect-oriented procedural language where
pointcuts and advices are first-class values. AspectScheme introduces two deploy-
ment expressions. One expression can dynamically deploy an aspect over a body
expression. The other can statically deploy an aspect which only sees join points
occurring lexically in its body.

Tanter [Tanter, 2008] proposes an expressive scoping model for dynamically-deployed
aspects: deployment strategies. Deployment strategies provide explicit control over
the propagation properties of a deployed aspect, both along call stack and delayed
evaluation dimensions, as well as deployment-specific join point filters. Deploy-
ment strategies are formulated for both functional and object-oriented based aspect
languages.
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Tanter [Tanter, 2009] further argues that changing the point of view on scoping from
a textual/dynamic dichotomy to a propagation and activation problem, enables us
to formulate a general model of scoping. The author calls this new model scoping
strategies. Tanter formalized dynamically scoped adaptations in terms of (i) the dy-
namic extent, (ii) the propagation function, (iii) activation conditions and (iv) the
adaptations to be applied. A dynamic extent defines a dynamic scope by providing
a piece of code to be executed. As the code is executed adaptations are installed,
and propagated under certain conditions. The propagation function defines how
the adaptations should be propagated in the dynamic extent. The use of activation
conditions can further control the application of the adaptation during the dynamic
scope.

Prisma follows the same idea but it addresses some of the modeling issues of this
approach, like adaptation retention and dynamic scope reuse.

9.6.3 Execution Levels

The issue of infinite regression in meta-level architectures has been previously iden-
tified [des Rivières and Smith, 1984]. As a solution, Chiba et al. [Chiba et al., 1996]
present MetaHelix. The key point in this architecture is that levels are reified and
there is a representative of each object in each level. Object extensions are layered
one on top of one another. All meta-objects have a field implemented-by that points
to a version of the code that is not reflectively changed.

Denker et al. [Denker et al., 2008] introduced the idea of explicitly modeling the meta-
level execution and the possibility to query at any point in the execution whether
we are executing at the meta-level or not. An implicit meta-context is passed to meta-
object so that they can determine at which level of execution they are.

Execution levels for aspect-oriented programming was proposed by Tanter [Tanter,
2010] to address the issue conflation in aspect-oriented programming. The author
structures computation in execution levels. When fine-grained control is necessary,
level shifting operators make it possible to deploy aspects at higher levels, or move
computation up or down, selectively.

9.7 Conclusion

We have exemplified the limitations of previous approaches. Following the line of
thought that dynamic scoping is a problem defined in terms of propagation and
activation we have proposed a step further in this domain. We claimed and proved
that explicit reification of the scope, in this case depicted as an execution for dynamic
scopes, is key for achieving scope unanticipated deployment, scoping and condition
adaptability.
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We have demonstrated how Prisma is well-suited for supporting long-lived dy-
namic analyses. Prisma has a more fine-grained control of scope of adaptation since
more than a single dynamic extent can define a dynamic scope. Multiple adapta-
tions can coexist within the same application without interfering with each other.
Finally, adaptations can be dynamically updated, avoiding the cost of deinstalling,
updating and reinstalling the adaptations.
Object-centric reflection not only fulfills the scoped reflection requirement, it also
allows this requirement to concentrate on objects and thus be more flexible.
Our approach is not a general solution to the scoping problem as deployment strate-
gies and scoping strategies. Our approach is a solution for the dynamically scoped
adaptation space and particularly addresses issues not solved by previous approaches.
However, we plan to extend the idea of explicitly reifying the scope so as to be able
to reflect and manage it dynamically and thus bring a general solution to the reflec-
tion and meta-objects domain.
We believe that research in programming languages constructs can benefit from a
more flexible notion of dynamic scoping in which the scope is modeled explicitly.
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Chapter 10

Conclusions

In this last chapter we summarize the contributions made by this dissertation and
point to directions for future work.

10.1 Contributions of this Dissertation

Our thesis states that an object-centric reflection approach is needed to avoid the
object paradox and to unify and simplify reflection.
We have presented Bifröst, an environment for engineering the meta-level through
explicit meta-objects which embodies the object-centric reflection idea. Bifröst’s
meta-objects can be attached to any object at any time, changing its structure and be-
havior. Thus partial reflection and unanticipated changes are achieved. Bifröst’s meta-
objects are first-class objects accessible at run time. By having explicit meta-objects,
meta-level composition can be defined for any meta-object by using composition op-
erators.
Our contributions are the following:

1. We have demonstrated the existence of a paradox. Reflective approaches, in-
cluding those with object-specific capabilities, force developers away from the
runtime and the very live abstractions that they want to analyze (Chapter 1).

2. We have surveyed (Chapter 2) prior work and identified key requirements
motivated by practical applications: Partial Reflection, Selective Reifications,
Unanticipated Changes, Runtime Integration, Meta-Level Composition and
Scoped Reflection.

3. We have presented a novel approach to meta-level engineering that organizes
the meta-level into meta-objects. These meta-objects reify both structural and
behavioral abstractions.

4. We have demonstrated a fully working object-centric reflection system called
Bifröst and presented the implementation of non-trivial adaptations. Bifröst
supports the requirements of reflection and solves the object paradox.
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5. We have demonstrated how object-centric reflection addresses cannonical ap-
plication of reflection: software analysis (Chapter 6, Chapter 7 and Chapter 9)
and development (Chapter 5, Chapter 8 and Chapter 9).

6. We have presented talents (Chapter 5), a dynamic compositional model for
reusing behavior. Talents are composed using a set of operations: composi-
tion, exclusion and aliasing.

7. We have presented Chameleon (Chapter 6), our prototype modeling the meta-
level as explicit meta-events observed by development tools. Chameleon pro-
vides a dynamic model of behavioral reflection which realizes a strict separa-
tion of concerns between instrumentation and the consumers of events.

8. We have demonstrated how reflective applications like debugging, profiling
and feature analysis can be redefined to be a fully dynamic (Chapter 7 and
Chapter 8), closing the gap between what the developer needs at runtime
and what the reflective environment provides. Due to this, the object para-
dox is mitigated and the user can transcend the limitations and biases of the
reflective language.

9. We have presented Prisma (Chapter 9), a Bifröst extension which allows adap-
tation to be scoped to particular execution runs. We proved that explicit reifi-
cation of the scope, in this case depicted as an execution for dynamic scopes,
is key for achieving scope unanticipated deployment, scoping and condition
adaptability.

10.2 Future Research Directions

Having defined an object-centric reflection approach and various tools for address-
ing reflection applications, we identify scope of further work in this area.

Object-Centric Reflection Applications. We plan to investigate other reflective appli-
cations; like percistency mappings, coverage, system browsing, etc.; to explore
if object-centric reflection would have a similar impact as on debugging, fea-
ture analysis and profiling.

Scoped Talents. We plan on providing a more mature implementation of the talents
scoping facilities. This technique shows great potential for the requirements
of modern applications, such as dynamic adaptation and dependency injec-
tion for testing, database accesses, profiling, and so on.

Object-Centric Debugging for Statically Typed Languages. As we have demonstrated,
object-centric debugging is feasible in statically typed languages, however,
the lack of unanticipated changes is a key drawback. We plan to analyze
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different techniques, like dynamic aspects and polymorphic bytecode instru-
mentation, to assess the advantages and disadvantages of this approach in
statically typed languages.

General Scoped Reflection Solution. Prisma is not a general solution to the scoping
problem as deployment strategies and scoping strategies. Our approach is
a solution for the dynamically scoped adaptation space and particularly ad-
dresses issues unsolved by previous approaches. However, we plan to extend
the idea of explicitly reifying the scope so as to be able to reflect and manage
it dynamically and thus bring a general solution to the reflection and meta-
objects domain.
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Appendix A

Getting Started

This appendix gives instructions on how to install the Bifröst system and all its de-
rived tools.

A.1 Bifröst Installation

There are two ways to get the Bifröst system. The recommended quick and easy
way is to use the pre-built one-click distribution.

A.1.1 Downloading a One-Click Distribution

1. Download the one-click Bifröst distribution from http://scg.unibe.ch/research/

bifrost.

2. Launch the executable of your platform:

• Mac: bifrost-OneClick.app

• Linux: bifrost-OneClick.app/bifrost-OneClick.sh

• Windows: bifrost-OneClick.app/bifrost-OneClick.exe

A.1.2 Building a Custom Image

1. Get a Pharo-Core image from http://www.pharo-project.org/.

2. Execute the following Gofer script which executes the Metacello configuration
of Bifröst:
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Gofer new

squeaksource: 'bifrost';

package: 'ConfigurationOfBifrost';

load.

(Smalltalk at: #ConfigurationOfBifrost)

perform: #loadDefault.

A.2 Derived Tools

A.2.1 Talents

The installation and downloading instructions for talents distribution are at http:

//scg.unibe.ch/research/bifrost/talents.

A.2.2 Chameleon

The installation and downloading instructions for Chameleon distribution are at
http://scg.unibe.ch/research/bifrost/chameleon.

A.2.3 MetaSpy

The installation and downloading instructions for MetaSpy distribution are at http:
//scg.unibe.ch/research/bifrost/metaspy.

A.2.4 Object-Centric Debugging

The installation and downloading instructions for object-centric debugging distri-
bution are at http://scg.unibe.ch/research/bifrost/ocd.

A.2.5 Prisma

The installation and downloading instructions for Prisma distribution are at http:
//scg.unibe.ch/research/bifrost/prisma.
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A.3 Continuous Integration Server

A.3 Continuous Integration Server

The latest changes and the various distributions of Bifröst and its derived tools are
regularly built and tested with a Jenkins server. These Smalltalk images can be ob-
tained at http://scg.unibe.ch/jenkins.
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