Object-Centric Reflection
Unifying Reflection and Bringing It Back to Objects

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultit
der Universitédt Bern

vorgelegt von
Jorge Ressia
von Argentina

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut fiir Informatik und angewandte Mathematik

This dissertation is available as a free download from scg.unibe.ch.

Copyright © 2012 Jorge Ressia, www.jorgeressia.com.

The contents of this dissertation are protected under Creative Commons
Attribution-ShareAlike 3.0 Unported license. For any reuse or distribution,
you must make clear to others the license terms of this work. The best way
to do this is with a link to creativecommons.org/licenses/by-sa/3.0/.

The logos of Bifrost and Prisma have been influenced by the design channel
abduzeedo.com.

ISBN 978-1-291-07262-4
First Edition, October 2012.

http://scg.unibe.ch/
http://www.jorgeressia.com/
http://creativecommons.org/licenses/by-sa/3.0/
http://abduzeedo.com

Acknowledgements

First of all I would like to thank Oscar Nierstrasz for giving me the opportunity to
work at the Software Composition Group. I thank him for his advice and guidance
and specially for pushing me to go beyond my limitations.

I am grateful to Mira Mezini for writing the Koreferat and for accepting to be on
the PhD committee, as well as for coming to Switzerland to join the jury of the PhD
defense. Also, I thank Matthias Zwicker for accepting to chair the examination.

I would like to thank Gustavo Rossi and Fernando Aramburu for believing in me
before I did. This thesis would have never existed without you two.

I am grateful to Stéphane Ducasse and Marcus Denker for their enthusiasm and
positive support. I would like to thank them for introducing me into the reflection
and meta-programming problems that this thesis addresses.

I thank Tudor Girba for the inspiring discussions and for providing many of the
ideas that have influenced this work. I also thank Alexandre Bergel for his support,
interesting dicusssions and for providing new ideas and applications for the tools
presented in this thesis.

I am much obliged to the people that provided constructive feedback on early drafts
of this dissertation: Orla Greevy, Fabrizio Perin, and Lukas Renggli.

This thesis would have never been completed without Fabrizio Perin and Lukas
Renggli. Their emotional and technical support are directly related to the results of
this thesis.

Special thanks go to Iris Keller who made the administrative work both inside and
outside the university a pleasure.

I would like to thank my master students Andrea Quadri and Daniel Langone, and
my bachelor students Max Leske, Manuel Leuenberger and Chantal Peeters for the
hours we shared discussing and implementing Smalltalk projects and for putting
up with my rather unconventional approach to research.

I would like to thank all the former and current members of the Software Composition
Group. It was a pleasure to work with you: Andrea Caracciolo, Marcus Denker, Tu-
dor Girba, Adrian Kuhn, Jan Kur§, Adrian Lienhard, Mircea Lungu, Fabrizio Perin,
David Réthlisberger, Niko Schwarz, Toon Verwaest, and Erwann Wernli.

I thank the people with whom I shared many interesting discussions at confer-
ences: Nick Ager, Marco D’ Ambros, Michele Lanza, Philippe Marschall, Fernando

Oliveros, Serge Stinckwich and Adrian van Os. Special thanks to the early fanati-
cal Bifrost supporters and believers who kept me going: Alexandre Bergel, Noury
Bouraqadi, Jordi Delgado, Simon Dennier, Luc Fabresse, Dale Henrichs, Rafael Luque
and Erwann Wernli.

I would like to deeply thank Angela for making us feel like home. Many, many
thanks to my family. Thanks for your love and support: Ricardo, Cristina, Mariana,
Luciana, Isabella, Roman, Hernan and Adrian. Above all, I thank my wife Analia
Magurno for putting up with me, which is quite difficult.

Jorge Ressia
October 8, 2012

To Carmela and Nelly

Abstract

Reflective applications are able to query and manipulate the structure and behav-
ior of a running system. This is essential for highly dynamic software that needs
to interact with objects whose structure and behavior are not known when the ap-
plication is written. Software analysis tools, like debuggers, are a typical example.
Oddly, although reflection essentially concerns run-time entities, reflective appli-
cations tend to focus on static abstractions, like classes and methods, rather than
objects. This is phenomenon we call the object paradox, which makes developers less
effective by drawing their attention away from run-time objects.

To counteract this phenomenon, we propose a purely object-centric approach to re-
flection. Reflective mechanisms provide object-specific capabilities as another fea-
ture. Object-centric reflection proposes to turn this around and put object-specific
capabilities as the central reflection mechanism. This change in the reflection archi-
tecture allows a unification of various reflection mechanisms and a solution to the
object paradox.

We introduce Bifrost, an object-centric reflective system based on first-class meta-
objects. Through a series of practical examples we demonstrate how object-centric
reflection mitigates the object paradox by avoiding the need to reflect on static ab-
stractions. We survey existing approaches to reflection to establish key requirements
in the domain, and we show that an object-centric approach simplifies the meta-level
and allows a unification of the reflection field. We demonstrate how development it-
self is enhanced with this new approach: talents are dynamically composable units of
reuse, and object-centric debugging prevents the object paradox when debugging. We
also demonstrate how software analysis is benefited by object-centric reflection with
Chameleon, a framework for building object-centric analysis tools and MetaSpy, a
domain-specific profiler.

Contents

1 Introduction

1.1 Reflection Requirements
1.2 TheProblem
1.3 Problem Statement
14 Challenges.
1.5 ThesisStatement
1.6 OurSolutioninaNutshell
1.7 Contributions
1.8 Outline. e

2 Reflection State Of The Art

2.1 Applications of Reflection
2.2 Reflection Dimensions
221 Definitiono oo oo
222 Elements.
223 Models.
224 Constructs L oo
2.3 State of the Art in Meta-level Engineering
23.1 Reflection requirements
232 Summary
3 Object-Centric Reflection
3.1 Object-Centric Reflectionina Nutshell
32 Meta-objects
3.2.1 Structural Meta-object
322 Behavioral Meta-object
323 Compound Meta-object.
3.24 Scoping Meta-object adaptations
3.3 Meta-object Definition
3.4 Unification of Reflection
35 ObjectParadox
4 Bifrost
41 Meta-objects
41.1 Structural Meta-object
412 Behavioral Meta-object
413 Compound Meta-object.

N NN O N ==

10
11

15
15
16
16
16
17
18
18
18
28

29
29
30
31
31
32
32
34
34
35

37
37
37
38
39

vii

414 Low-level Meta-object 39

4.2 Bifrost Exemplifiedo oo 0oL 40
421 Profiling (Scenario2) 41
4.2.2 Traits (Scenario2) 41
423 Delegates (Scenario2) 44
424 Prototypes (Scenario3) 45
425 Live Feature Analysis (Scenario2) 46
426 Scoped Live Feature Analysis (Scenario2) 47
43 Implementation 48
431 Adapting the Lower-level 49
432 Reflectivemethods 49
4.3.3 Structural and Behavioral Reflection 50
434 Object-specific Behavior 51
435 Micro-Benchmark 52
43.6 Bifrost for other languages 53
44 Conclusion e e 54
Dynamically Composable Units of Reuse 55
51 Motivating Examples 0 0L 56
5.1.1 Moose Meta-model 57
512 Streams e e 58
52 TalentsinaNutshell 58
52.1 DefiningTalents 58
52.2 Composing Objects from Talents 59
5.2.3 ConflictResolution 60
524 StatefulTalents 61
53 Implementation 63
54 RelatedWork 64
55 Discussion e e e e e 68
55.1 ScopingTalents 68
55.2 Flattening 69
55.3 Talents in a statically typed language 69
554 TraitsonTalents 70
56 Examples 70
561 Mocking o 71
5.6.2 Compiler Internal Abstractions 71
5.6.3 StatePattern, 72
5.6.4 Streams e 73
5.6.5 ClassExtensions 73
5.7 UserlInterface e 74
58 Conclusion 76
Decoupling Instrumentation from Software Analysis Tools 77
6.1 RelatedWork 78

6.1.1 Applications of Instrumentation 78

6.1.2 BehavioralReflection 79

6.1.3 Aspect-oriented Programming 80
6.2 ChameleoninaNutshell 82
621 Events 83
6.2.2 Instrumentation for Signaling Events 84
623 Announcer 85
6.24 Observers 86
6.3 ChameleoninAction 86
6.3.1 Domain-Polluted Instrumentation 86
6.3.2 Language-biasedEvents 88
6.3.3 Static Instrumentation Scoping 89
6.4 Implementation 92
6.4.1 Managing AST Meta-Objects 92
6.4.2 Instrumentation Details 94
6.43 ExtendingEvents 96
6.5 Conclusion o 96
Profiling Objects 97
7.1 Shortcomings of Standard Profilers 98
7.1.1 Difficulty of profiling a specificdomain 99
7.1.2 Requirements for domain-specific profilers 101
72 MetaSpyinaNutshell 102
73 Validation Lo 103
7.3.1 Case Study: Displaying invocations 104
7.3.2 Case Study: Events in OmniBrowser 106
7.3.3 Case Study: Parsing framework with PetitParser 107
74 Identifying Event Causality 108
74.1 Expressingcausality 109
742 Navigationbetweenevents., 109
7.5 Implementing Instrumentation Strategies 112
751 Bifrost 113
7.5.2 Feasibility of Domain-specific Profiling 113
7.6 Micro-benchmark L Lo Lo 114
77 Conclusions Lo 115
Object-Centric Debugging 117
81 Motivation. 118
8.1.1 Questions Programmers Ask 118
8.1.2 GettingtotheObjects 120
8.1.3 Intercepting Object-specific State Access 120
8.1.4 Monitoring Object-specific Interactions 121
8.1.5 Supporting Live Interaction 121
8.1.6 Towards Object-Centric Debugging 122
8.2 Object-Centric Debugging 122

8.2.1 Object-Centric Debugging ina Nutshell 122

10

8.2.2 State-related operations. L.
8.2.3 Interactionoperations
8.3 Examples: addressing debugging challenges
8.3.1 Example: Tracking object-specific side-effects
8.3.2 Example: Individual Object Interaction
8.3.3 Example: Live Object Interaction
8.4 Implementation
8.4.1 Debugging Operation Definition.
8.4.2 Extending Operations
8.4.3 User Interface Modifications
8.5 Feasibility of Object-centric Debugging in other languages
86 RelatedWork
87 Conclusion

Reflect As You Go
9.1 Challenges for Dynamic Adaptation
9.1.1 Controlling the scope of adaptation
9.1.2 Activating multiple adaptations
9.1.3 Dynamically updating adaptations
9.2 PrismainaNutshell
93 CaseStudies
9.3.1 LiveFeature Analysis
9.3.2 Back-in-time Debugging,
9.4 Implementation
9.4.1 Reifying Execution
9.4.2 ExecutionScoping
9.4.3 Dedicated Meta-objects
9.44 Activation Conditions
9.45 Explicitdeinstallation
9.4.6 Prisma for otherlanguages
9.5 Performance Analysis
9.6 RelatedWork
9.6.1 Reflective Architectures
9.6.2 Aspect-oriented Programming
9.6.3 ExecutionlLevels
9.7 Conclusion o

Conclusions
10.1 Contributions of this Dissertation
10.2 Future Research Directions v v v v v ..

Getting Started

A.1 BifrostInstallation
A.1.1 Downloading a One-Click Distribution
A.12 BuildingaCustomImage

A2 DerivedTools e 164

A21 Talents 164
A22 Chameleon 164
A23 MetaSpy 164
A.24 Object-Centric Debugging 164
A25 Prisma 164
A3 Continuous IntegrationServer, 165

B Bibliography

List of Figures

1.1
1.2

4.1
4.2
4.3
44

5.1
52

53
5.4

6.1

7.1
7.2
7.3
74

7.5

8.1

9.1
9.2
9.3

The architecture of Bifrost reflective system. 8
Structure of the dissertation and how it covers the problem space. . 13
Meta-Objects class diagram with methods denoted in Smalltalk. . . 38
Bifrost AST adaptation through meta-objects. 49
Reflective Methods in Method Dictionaries. 50

Modified method lookup for a point with an adapted ispoint method. 51

Default message send and method look up resolution. 63
Talent modeling the Moose FAMIX class behavior for the method

ISTESTCLass. « . v v v v v e e e 64
Talents Browser overview. 75
Modified inspector and Talents Browser Insteraction. 76
Chameleon’s core abstractions. 83
The architecture of the MetaSpy profiler framework. 102
Profiling (left) the System Complexity visualization (right). 105
Profiling (left) an OmniBrowser instance (right). 107

Visualization of the production coverage of an XML grammar with
uncovered productions highlighted in black (left); and the same XML
grammar with updated test coverage and complete production cov-
erage (right). The size of the nodes is proportional to the number of

activations when running the test suite on the grammar. 109
Glamour-based event navigationtool. 111
Evolution from stack-centric to object-centric debugging. 125
Prisma’sobjectmodel. o 0oL 138
Capturing historical object state through predecessor aliases. 145

Modified method lookup for a point with a isPoint scoped adapted
method. 148

xiii

List of Tables

2.1 Comparison of different language and reflection extensions.

4.1 Bifrost coverage over reflection requirements.
4.2 1 is the average time in milliseconds and 7 is the standard deviation
for 105 activations of the test method over 100 runs.

53

XV

Chapter 1

Introduction

A reflective computational system is capable of inspecting, manipulating and alter-
ing its representation of itself [Smith, 1982]. Reflection is commonly used to imple-
ment development tools such as debuggers and profilers, and to realize run-time
adaptations for highly dynamic applications that, for example, must generate user
interfaces at run-time. A reflective system can be divided into two levels: the base
level, which is concerned with the application domain, and the meta-level, which
encompasses the self-representation. These levels are causally connected, so any
modification to one level affects any further computation on the other level. There
are two types of reflection: structural reflection is concerned with the manipulation
of structural elements of a program while behavioral reflection is concerned with the
manipulation of the abstractions which govern the execution of a program. These
structural and behavioral abstractions can be queried (introspection) and changed
(intercession) from within the running system.

Reflective applications are able to query and manipulate the structure and behavior
of a running system. This is essential for highly dynamic applications that need to
interact with objects whose structure and behavior are unknown when the applica-
tion is written.

1.1 Reflection Requirements

In recent years researchers have worked on the idea of applying traditional engi-
neering techniques to the meta-level while attempting to solve various practical
problems motivated by applications [McAffer, 1996]. These approaches, however,
offer specialized solutions arising from the perspective of particular use cases. We
have analyzed these approaches and identified six distinct and key requirements
for a meta-level architecture. These requirements are supported only partially by
existing approaches:

1. Partial Reflection makes reflective facilities available only in selected places
where needed. This avoids the inherent inefficiency of a fully reflective sys-
tem [Ibrahim, 1991; Kiczales et al., 1991; Tanter et al., 2003].

Chapter 1 Introduction

2. Selective Reification refers to the ability to define which reifications should be
active from a temporal and spatial point of view. Selective reification extends
partial reflection to allow reifications to be dynamically defined [Ferber, 1989;
Gowing and Cahill, 1996; Redmond and Cahill, 2002; Redmond and Cahill,
2000].

3. Unanticipated Changes enable reflection on a running system without the need
to define statically and up-front where and when reflection is needed [Red-
mond and Cahill, 2002; Redmond and Cahill, 2000; Denker, 2008; Denker et
al., 2007].

4. Runtime Integration refers to a meta-environment that runs at the same level
as the application code, i.e., not in the interpreter of the host language [Tanter
et al., 2003; Denker, 2008; Bouraqadi, 2004].

5. Meta-level Composition enables the combination of meta-level abstractions due
to multiple adaptations taking place on the same base-level abstractions [Tan-
ter, 2006; Bobrow et al., 1988; Kiczales et al., 1991; Redmond and Cahill, 2002;
Redmond and Cahill, 2000].

6. Scoped Reflection makes reflective changes only visible in specific contexts; out-
side these contexts the changes are not present [Chiba et al., 1996; Aracic et al.,
2006; Denker ef al., 2008; Tanter, 2009].

No current approach supports all of these requirements. This is problematic because
certain problems can be solved by some approaches and not by others.

1.2 The Problem

Object-oriented languages and methods encourage the design of software systems
in terms of interacting and collaborating objects. Developers of object-oriented ap-
plications, however, spend most of their time interacting not with objects, but with
purely static abstractions, namely classes and methods in the form of source code.
Integrated development environments and related tools tend to focus on the static
source code rather than on the running system. We can also observe this problem in
the area of reflection. Development tools, like debuggers and profilers, are classical
tools that must use some form of reflection to interact with arbitrary applications.
Although the goal of reflection is to enable run-time adaptation, reflective mech-
anisms tend to focus on representation of static artifacts, i.e., related to the source
code, rather than on the run-time entities, i.e., the objects. When we look deeper
into how languages implement reflective applications we observe a chronic pattern
to move away from the runtime abstractions towards static ones.

This is a problem since the developer needs to express his needs in terms of the
object’s static representation instead of directly reflecting on the object. There is an

1.2 The Problem

unnecessary indirection through objects’ static representations to reflect on these
objects. Next we will analyze three examples to clarify this statment.

Debugging

Debugging is formally the process of finding and reducing the number of defects in
a computer program, thus making it behave as expected. More broadly, however,
debugging is the process of interacting with a running software system to test and
understand its current behavior. Software developers frequently turn to debuggers
to obtain insight into parts of a running system before attempting to change it, rather
than to remove defects. Similarly, in test-driven development [Beck, 2002], debug-
gers are frequently used as a development tool to identify those parts of the system
that need to be implemented next.

Traditional debuggers are focused on the execution stack. The developer identifies
parts of the source code of interest and sets breakpoints accordingly. The software
then runs until a breakpoint is reached, and the developer can then inspect and in-
teract with the code and entities in the scope of the breakpoint. Unfortunately this
process is ill-matched to typical development tasks. Breakpoints are set purely with
respect to static abstractions, rather than to specific objects of the running system.
As a consequence, identifying the right place to set breakpoints in the source code
requires a deep understanding of what happens during the execution. Second, de-
bugging operations are focused on the execution stack, rather than on the objects.
There exists therefore a considerable conceptual gap between the interface offered
by the debugger and the questions of interest by the developer. In the debugger we
deal with objects constantly, but when we need to execute a debugging action we
jump out of the runtime environment into the static abstractions.

By forcing developers to work with static abstractions, they become less effective in
debugging.

Profiling

Current application profilers are used to gather runtime data (e.g., method invo-
cations, method coverage, call trees, code coverage, memory consumption) from
the static code model offered by the programming language (e.g., packages, classes,
methods, statements). This is an effective approach when the low-level source code
has to be profiled.

However, traditional profilers are far less useful for a domain different than the
code model. In modern software there is a significant gap between the model of-
fered by the execution platform and the model of the actually running application.

Chapter 1 Introduction

The proliferation of meta-models and domain-specific languages brings new ab-
stractions that map to the underlying execution platform in non-trivial ways. Tra-
ditional profiling tools fail to display relevant information in the presence of such
abstractions.

Execution sampling approximates the time spent in an application’s methods by
periodically stopping a program and recording the current set of methods under
execution. Such a profiling technique is relatively accurate since it has little impact
on the overall execution. This sampling technique is used by almost all mainstream
profilers, such as JProfiler, YourKit, xprof [Gupta and Hwu, 1992], and hprof.

Traditional execution sampling profilers center their result on the frames of the exe-
cution stack and completely ignore the identity of the object that is the target of the
method call and its arguments. As a consequence, it is hard to track down which
objects cause the performance slowdown that triggered the profile. For the exam-
ple above, the traditional profiler states how much time was used by a particular
method in a class without saying which objects were actually involved.

Traditional profilers provide static-related information that is suboptimal for finding
the time consumed by each object.

Feature Analysis

A feature represents a functional requirement fulfilled by a system. Since many
maintenance tasks are expressed in terms of features, it is important to establish the
correspondence between a feature and its implementation in source code.

Many researchers have recognized the importance of centering reverse engineering
activities around a system’s behavior, in particular, around features [Eisenbarth et
al., 2003; Kothari et al., 2006; Salah and Mancoridis, 2004]. Bugs and change requests
are usually expressed in terms of a system’s features, thus knowledge of a system’s
features is particularly useful for maintenance [Mehta and Heineman, 2002].

Features are abstract notions, normally not explicitly represented in source code or
elsewhere in the system. Therefore, to leverage feature information, we need to
perform feature analysis to establish which portions of source code implements a
particular feature. Most existing feature analysis approaches [Salah and Mancoridis,
2004; Kothari et al., 2006] capture traces of method events that occur while exercising
a feature and subsequently perform post-mortem analysis on the resulting feature
traces.

A post-mortem feature analysis implies a level of indirection from a running system.
This makes it more difficult to correlate features and the relevant parts of a running
system. We lose the advantage of interactive, immediate feedback which we would
obtain by directly observing the effects of exercising a feature. Post-mortem anal-
ysis does not exploit the implicit knowledge of a user performing acceptance test-
ing. Certain subtleties are often only communicated to the system developer when

1.3 Problem Statement

the user experiences how the system works while exercising the features. These
approaches typically generate large amounts of data to analyze. Due to their static
nature, these approaches do not support incremental and interactive analysis of fea-
tures. Clearly, in this case, a model-at-runtime of features, with the added ability to
“grow” the feature representation as the user exercises variants of the same feature
offers advantages of context and comprehension over a one-off capture of a feature
representation and post-mortem analysis.

1.3 Problem Statement

These three examples offer a glimpse of the general sate when developing reflec-
tive applications. In the case of feature analysis the approach is defined as a purely
static problem, since we need to detect which source entities were executed. How-
ever, as we showed in live-feature analysis [Denker et al., 2010] approach, having a
purely dynamic approach to feature analysis delivers important advantages. Profil-
ing is a dynamic problem which is generally solved statically. Domain-Specific pro-
filing [Ressia et al., 2012b] showed that profiling and providing information about
dynamic abstraction is more meaningful to the developer. The debugging case is
paradigmatic in the sense that it clearly shows an unnecessary jump out of the run-
time environment. When debugging, many developer questions are targeted to the
live objects not to their static representation. These examples show different levels
of static approaches to dynamic reflection problems, however, to solve this problem
we required a brand new approach to reflection.

Researchers have detected a similar problem in the realm of IDEs. Due to the nar-
row focus of IDEs on static source perspectives, most of dynamic relationships be-
tween source artifacts remain unclear, obscure or simply invisible to the developer
while using the static perspectives of IDEs [Réthlisberger, 2010]. In short, traditional
IDEs lack dynamic information in their usually purely static source perspectives.
Object-oriented language features such as late-binding, inheritance, or polymor-
phism, usually lead to distributed and scattered code which is hard to understand by
just focusing on static source artifacts and static relationships between these artifacts
[Demeyer et al., 2003; Dunsmore et al., 2000; Wilde and Huitt, 1992; Nielson, 1989;
Hamou-Lhadj et al., 2005]. Often it is not possible to identify and locate concep-
tually related code in the static source space as many relationships are purely dy-
namic and thus only present at runtime [Nielson, 1989; Nielsen and Richards, 1989;
Dunsmore ef al., 2000].

Providing dynamic information to enhance the IDEs” purely static source perspec-
tive is important. However, for some problems like feature analysis, debugging and
profiling it is not enough with dynamic information. Why do we analyze the run-
time abstractions from a dynamically enhanced source code perspective when we
can directly deal with runtime objects? IDEs make heavy use of reflection to achieve

Chapter 1 Introduction

their goals. Most programming languages present reflective mechanisms for in-
specting and modifying the internals of the language itself. Even though some of
these mechanisms are highly flexible and capable of changing the behavior of single
objects, reflective applications built on top of them fail to embrace the full dynam-
icity that is required in some cases. The main problem is not what extra dynamic
information the IDE provides to the user, the main problem is that if we want to an-
alyze the runtime we must do it directly looking at objects. IDEs rely on reflective
mechanisms which are targeted to the wrong abstractions.

We call this problem the object paradox: although object-oriented developers are sup-
posed to think in terms of objects, the tools and environments they use mostly pre-
vent this. As we have seen in the previous examples runtime objects are not the
first options from a tool perspective. The object paradox makes us less effective as
developers. A developer needs to understand the run-time behavior of interact-
ing objects in order to reason about the effects of changes to the system, but the IDE
presents only static abstractions, such as classes and their specialization hierarchies,
or methods and source code. This gap forces the user to adapt the system with ad
hoc methods, like conditional breakpoints in debugging, for avoiding the paradox.
Thus rendering the user less efficient than he could actually be.

We can also observe the object paradox in the area of reflection. Reflection is needed
wherever an application must deal at run time with objects that are unknown to it
at compile time. A reflective application, for example, may dynamically generate a
graphical user interface for an object whose structure and behavior is loaded at run
time. Development tools, like debuggers and profilers, are classical tools that must
use some form of reflection to interact with arbitrary applications. Although the goal
of reflection is to enable run-time adaptation, reflective mechanisms tend to focus
on representation of static artifacts, i.e., related to the source code, rather than on
the run-time entities, i.e., the objects. Reflection mechanisms are not object-centric
per se forcing the developer to move away from the runtime. Moreover reflection
mechanisms do not provide a unified approach thus forcing the user to deal with
several different techniques to introspect and intersect and application.

Reflective systems prioritizing static mechanisms over object reflection present a gap
between the user needs and what the reflective systems provides. Thus, the user is
less efficient since he has to introduce ad hoc changes to steer the reflective systems
to solve its object-specific needs.

1.4 Challenges

The challenges that we face in the reflection domain are:

Reflection Targeted Abstractions. To close the gap between the developer’s needs
and the reflection mechanism objects must be the central target of reflection
changes. Since the static representation like classes and source code are also

1.5 Thesis Statement

objects in the system, traditional reflection on these abstractions is also achiev-
able.

Unified Reflection Approach. A fully general approach to reflection must support the
reflection requirements: partial reflection, selective reifications, unanticipated
changes, runtime integration, meta-level composition and scoped reflection.

Uniform Reflection Approach. The mechanism for adapting objects should be con-
sistent. It is extremely undesirable to have various reflection mechanisms de-
pending on the objects being reflected on.

1.5 Thesis Statement

We state our thesis as follows:

Thesis

To overcome the object paradox while providing a unified and uniform solution
to the key reflection requirements we need an object-centric reflective system
which targets specific objects as the central reflection mechanism through ex-
plicit meta-objects.

1.6 Our Solution in a Nutshell

This dissertation tackles the object paradox in the reflection domain. We present
Bifrost, an object-centric reflective system that offers fine-grained unanticipated dy-
namic structural and behavioral reflection based on explicit meta-objects. Reflec-
tive changes are object-centric, meta-objects are tailored to specific objects. Explicit
meta-objects allow us to provide a range of reflective features and thereby evolve
both application models and the host language at run-time. Furthermore, by sim-
plifying the meta-level, Bifrost offers a unified approach to reflection.

Organizing the metal-level behavior into meta-objects has been extensibly researched
and it is area known as Meta-object architecture [Maes, 1987b; Maes, 1987a]. What
this thesis proposes as new is the purely reflective object-centric Bifrést approach. We
are not claiming that by only having a mechanism for applying reflective changes on
specific objects we can solve the previously presented problems. Several reflective
techniques like MOPs CLOS, Ruby, Smalltalk anonymous classes and dynamic as-
pect are already capable of doing that (refer to Chapter 2 for further details). We
claim that reflective changes should only be targeted to objects, they should be
object-centric, then more complex meta-level abstractions like classes, prototypes,
mixins, traits, can be built upon this. Bifrgst only allows the user to change single
objects’ structure and behavior by making objects the central actors. Thus, we are
capable of perceiving known problems like feature analysis, profiling, debugging

Chapter 1 Introduction

and scoped reflection from a completely different point of view. Previous solutions
thought to be dynamic are shown to be partially static. This new meta-object adap-
tation enhances the capacity of the user on top of his objects’ domain.

The Bifrost model provides an object-centric approach while supporting the main
reflection requirements.

e Partial Reflection. Bifrost allows meta-objects to be bound to any object in the
system thus reflecting selected parts of an application.

e Selective Reification. When and where a particular reification should be reified
is managed by the various meta-objects.

* Unanticipated Changes. At any point in time a meta-object may be bound to
any object thus supporting unanticipated changes.

e Runtime Integration. Bifrost reflective model lives entirely in the language
model, so there is no VM modification or low level adaptation required.

* Meta-level Composition. Composable meta-objects provide the means to bring
together different adaptations.

* Scoped Reflection. Meta-objects reflective changes can be scoped to particular
dynamic extents and conditions.

Figure 1.1 depicts the layered architecture of the Bifrost and displays the chapters
in which the respective parts are discussed.

Chapter 7 and Chapter 8:
Applications
. Chapter 6: Chapter 5:
Chapter 9;

P p/‘/ SMA Chameleon Talents
Chapter 3 and Chapter 4: . .-
Object-Centric Reflection B’ 7[}‘ ,\5{
Host Environment Phar (" %)

Figure 1.1: The architecture of Bifrgst reflective system.

Host Environment. At the lowest layer we have the host language and its tools. In
our case, this is Pharo Smalltalk [Black et al., 2009], a dynamically typed object-
oriented programming language with an integrated development environ-
ment. While Smalltalk [Goldberg and Robson, 1989] has proven to be a good
practical choice for Bifrost it is not a requirement.

1.6 Our Solution in a Nutshell

Bifrost. The layer above the host environment is the core of the Bifrost system. This
layer provides the necessary hooks into the host language compiler and the
tools supplied with the development environment. Bifrost realizes a simple
meta-object architecture where reflective changes are object-centric. Meta-
objects can be applied to single specific objects, unanticipatedly, selectively
reifying runtime abstractions and composed to form more complex meta-level
abstractions and adaptations.

Talents. Talents are object-specific units of reuse that model features that an object
can acquire at run-time. Like a trait [Schirli et al., 2003; Ducasse et al., 2006b],
a talent represents a set of methods that constitute part of the behavior of an
object. Unlike traits, talents can be acquired (or lost) dynamically. When a
talent is applied to an object, no other instance of the object’s class is affected.
Talents may be composed of other talents, and, as with traits, the composi-
tion order is irrelevant. Conflicts must be explicitly resolved. Talents are built
on top of Bifrost’s structural meta-objects. Talents address the object-centric
structural reflection domain, in particular, they address all the reflection re-
quirements but scoped reflection.

Chameleon. Chameleon provides a full operational decomposition [McAffer, 1996]
of the meta-level, separating instrumentation from analysis with the help of
explicit meta-level events. The meta-level’s behavioral model is simplified
by offering a single canonical event which models the execution of an ab-
stract syntax tree (AST) node. Any other object-related event can be expressed
in terms of this canonical event. Objects in an application are instrumented
to reify meta-level events. Analysis tools select which events to observe for
the purpose of profiling, logging, coverage, etc. Chameleon is built on top of
Bifrost’s behavioral meta-objects. Chameleon addresses object-centric behav-
ioral reflection, it supports all the reflection requirements but scoped reflec-
tion.

Prisma. Prisma, an approach to support dynamic, scoped, and live reflection on running
systems. By using and extending Bifrost meta-objects Prisma addresses the
scoped reflection requirement. The central idea of Prisma is to dynamically
install reflective meta-objects on the objects reached by a running software
system to adapt their behavior. Prisma’s meta-objects are scoped to individ-
ual objects and threads, though their scope can be enlarged to whole classes or
other threads if needed. The dynamic scope is reified thus allowing the user
to reflect upon and adapt the scope itself. Multiple adaptations can be simul-
taneously installed to enable multiple non-interfering analyses. Meta-objects
are responsible for deciding which should be the behavior and structure of an
object under a specific dynamic scope. Installation is decoupled from dein-
stallation, so adaptations can be retained to support long-lived, iterative and
incremental analyses.

Tools. On the top layer reflective applications can be defined taking advantage of
Bifrost object-centric reflection approach. For example MetaSpy [Ressia et al.,

Chapter 1 Introduction

2012b] is a domain-specific profiler which closes the gap between the domain
and the profiler information. Object-centric debugging [Ressia et al., 2012al
provides the developer with object-centric actions for dealing directly with
runtime objects instead of having to translate the developer needs to the static
domain with conditional breakpoint or similar constructs. We developed all
these tools on top of Bifrdst’s object-centric reflection approach. Debugging
and profiling are canonical examples of applications of reflection. Debugging
is directly related to the development scope, moreover, it is an interesting
example since runtime execution, development and live interaction come to-
gether. Profiling is a typical examples of dynamic application analysis.

1.7 Contributions

The main contributions of this dissertation are:

10

. We present Bifrist, an object-centric reflection approach which overcomes the

object paradox. Bifrost models meta-objects explicitly, exclusively targeting
objects as the sole reflective change unit. This model provides a unification
of different reflection approaches while solving the most important reflection
requirements: partial reflection, selective reifications, unanticipated changes,
runtime integration, meta-level composition and scoped reflection [Ressia et
al., 2010].

. We propose Tulents, a new approach that deals with reuse at the object level

and that supports behavioral and state composition. We introduce a new ab-
straction called a talent which models behavior and state that are shared be-
tween objects of different class hierarchies. Talents provide a composition
mechanism that is as flexible as that of traits but which is dynamic [Ressia et
al., 2011].

. We demonstrate Chameleon, a tool modeling the meta-level as explicit meta-

events observable by development tools. Chameleon provides an operational
decomposition of the meta-level. Instrumentation is dedicated to generating
meta-events, and is fully separated from analysis tools which selectively sub-
scribe to these events by applying the observer pattern at the meta-level.

. We present Prisma, an approach to support dynamic, scoped, and live reflection on

running systems. Prisma dynamically installs reflective meta-objects on the ob-
jects reached by a running software system to adapt their behavior. Prisma’s
meta-objects are scoped to individual objects and threads, though their scope
can be enlarged to whole classes or other threads if needed. The dynamic
scope is reified thus allowing the user to reflect upon and adapt the scope
itself.

1.8 Outline

The following list details the contributions with some extended case studies, which
serve as the validation of our approach:

Domain-specific profiling. We presented MetaSpy, a framework for defining domain-
specific profilers. We also presented three real-world case-studies showing
how MetaSpy fulfills the domain-specific profiler requirements. The use of
Bifrost makes it possible to instrument specific objects to provide runtime ab-
stractions related to profiling information [Ressia et al., 2012b].

Object-centric debugging. We close the gap between developers” questions and the
debugging tool by shifting the focus in the debugger from the execution stack
to individual objects. The essence of object-centric debugging is to let the user
perform operations directly on the objects involved in a computation, instead
of performing operations on the execution stack. Bifrgst’s meta-object were
used to apply object-specific breakpoints dynamically to drive the debugger
from within the runtime environment [Ressia et al., 2012a].

Scoped back-in-time debugger. This technique allows developers to step both for-
ward and backward through an entire execution run. We show how the object-
flow analysis approach to back-in-time debugging, previously supported by
VM modifications, is easily implemented using Prisma’s scoped meta-objects.

Scoped live-feature analysis. Software artifacts that implement a given feature are
identified by instrumenting the system and exercising those features. By us-
ing Prisma we avoid the need to statically instrument the entire system. Fur-
thermore, multiple features can be exercised at the same time, since Prisma
scopes the effect of adaptations to individual execution runs.

1.8 Outline

The dissertation is structured as follows:

Chapter 2 discusses the related work of this thesis. We present various approaches
to reflection and analyze their characteristics.

Chapter 3 presents the object-centric reflection model and explains how explicit meta-
objects can be used to provide object-centric reflection.

Chapter 4 introduces the Bifrost object-centric reflection implementation and vali-
dates this model through a series of examples.

Chapter 5 presents dynamically composable units of reuse called talents.

Chapter 6 introduces an operational decompostion of the meta-level called Chame-
leon.

Chapter 7 presents MetaSpy, a domain-specific profiler which brings profiling re-
sults closer to the domain being analyzed.

11

Chapter 1 Introduction

Chapter 8 introduces a new debugging technique called object-centric debugging.
Developers do not have to leave the runtime environment when debugging
by using object specific actions.

Chapter 9 demonstrate how Bifrost meta-objects reflective changes can be scoped to
dynamic extents with Prisma.

Chapter 10 outlines our conclusions and identifies future work.

Appendix A describes how to get started with Bifrdst and the related tools.

Figure 1.2 displays schematically the chapters and the problem space they cover.

12

1.8 Outline

-a0eds wayqord sy} S19A00 31 MOY pUE UOTILLISSSIP AL} JO 2INJONIIG :g'| 24nbi4

09 NOX SV 19
:6 19)deyn

Sur88nqge(q smuaD-393(qO
:g Ja1deyn

spalqO Suryorg
12 19)deyn

Isoag
iy 19)deyn

uonepIEA

S[00], SISATeUY 9IEM}JOg WOIy
uonejuawmnsuy Suridnooa
19 Jaydeyn

yoeorddy uon
-D3[Jay] WLIOJIU)

asnay jo syun) dqe

tproddy uoy -sodwoy) Ajpeorwreudq

-9y papIun

i J1eydeyn
suonoensqy pajed uond3[AY dHIUD-12(qO
-Ie], UOTOI[Joy i 41e1deyn

saguayrey) yoreorddy

13

Chapter 2

Reflection State Of The Art

In this section we survey the evolution of reflective facilities in various program-
ming languages. We present the applications of reflection. We summarize the practi-
cal problems each new reflection approach has been designed to tackle. We demon-
strate that no approach solves all reflection requirements. Finally, we show that
object-specific reflection is seen as a particular case of the reflection problem instead
of being the central reflection mechanism. This is one of the main reasons why the
object paradox is present in the reflection domain.

2.1 Applications of Reflection

Nowadays object-oriented languages and environment use heavily reflection. There
are two main groups of reflective applications in these languages: program analysis
and development.

Program Analysis. These applications use reflection for querying a system either
from a static or dynamic point of view. Examples of these applications are:
code coverage, profiling, feature analysis, metrics, etc.

Development. This group of applications use reflection to enhance or modify the
way developments is being done. For example source code browsers and ed-
itors help the developer to have an enhanced view on the application. On the
other hand debugging, code generation, dynamic testing, mock generation,
parallelization, database mappings, etc., allow the user to interact with the
system from a dynamic point of view. Finally, language extensions like traits
or mixins are reflection applications that allow the language to evolve.

In this dissertation we use canonical reflection applications to demonstrate our points
of view. From program analyses we use feature analysis and profiling two tradi-
tional and highly used examples in the domain. From development we use debug-
ging, a very special reflection application since it is one of the most used develop-
ment tools and mixes the static point of view with the dynamic execution of the
application.

15

Chapter 2 Reflection State Of The Art

2.2 Reflection Dimensions

Numerous approaches to reflection have been developed over the years, each of
which addresses a different domain of reflection. In this section we analyze the
different dimensions that can be used to categorize a reflective system.

2.2.1 Definition

A reflective system is a system which incorporates causally connected structures
representing (aspects of) itself [Maes, 1987b]. A system is said to be causally con-
nected to its domain if the internal structures and the domain they represent are
linked in such a way that if one of them changes, this leads to a corresponding effect
of the other. A reflective language thus has a representation of its own structure and
behavior available from within. The representation changes if the language changes
and vice versa. It is always in sync with the system itself. Therefore, the represen-
tation can be queried and it can even be changed.

Many programming languages provide mechanisms to query a representation of
the system, known as introspection. Intercession is the mechanisms that allows a
programming language to change the representation of itself. Only when we can
both query and change the representation, we call the system reflective.

2.2.2 Elements

The literature splits reflection into two large categories [Ferber, 1989]: structural re-
flection is concerned with the manipulation of structural elements of a program while
behavioral reflection is concerned with the manipulation of the abstractions which
govern the execution of a program. In an object-oriented language adding a method
or adding an instance variable to a class is an example of structural reflection. Be-
havioral reflection could for instance give access to base-level operations such as
method calls, instance variables accesses, as well as the state of execution.

Behavioral and structural reflection can be seen on the one hand as orthogonal con-
cepts: a language can provide functionality for behavioral or structural reflection
or both. On the other hand, they are connected: any change of structure leads to a
change of behavior and any behavioral change needs to change structure at some
level.

As a structural change can be used to change behavior, structural reflection can
serve as the basis for behavioral reflection. One example for this is MethodWrap-
pers [Brant et al., 1998], which allows methods to be wrapped to execute additional
code before or after the method. Another example is Reflex [Tanter et al., 2003] which
realizes behavioral reflection by transforming bytecode.

16

2.2 Reflection Dimensions

2.2.3 Models

Two core models of object-oriented structural reflection have been proposed in the
past, one based on meta-classes, i.e., classes whose instances are classes, and the other
on meta-objects, i.e., objects that describe or manipulate other objects. Languages
based on these models traditionally provide support for reflecting on a fixed set of
language constructs. A third model diverges from the previous two because it reifies
the action of sending a message, thus it is closer to behavioral reflection.

Meta-class Model. In this model the class of an object is considered to be its meta-
object, since it is responsible for defining its structure and behavior. Every
class is an instance of a meta-class. Since meta-classes specify the structure
and behavior of classes, they are the meta-objects of classes. Some variants
of this model enforce all classes to be instances of a unique meta-class, as in
Smalltalk-76 [Ingalls, 1978] and Java. In other systems, like Smalltalk-80 [Gold-
berg and Robson, 1989], ObjVLisp [Cointe, 1987] and Classtalk [Briot and
Cointe, 1989], each classis a unique instance of its meta-class. The main draw-
back of the meta-class model is that per-object specialization is not possible.
Any change to a class impacts all instances of that class. It is not possible to go
to a more fine-grained level than a class, i.e., methods and operations. Com-
position is not possible since no object can have multiple classes. Each class
share the same message interpreter: there is no possibility to specialize the
interpreter for a unique object. Metaclass substitution is dangerous and can
quickly lead to inconsistencies. Finally, a class cannot keep specific character-
istics of specific objects.

Meta-object Model. In this model every object has its own unique meta-object. This
model was first proposed by Maes in 3-KRS [Maes, 1987b; Maes, 1987a)]. Since
it was conceived for a prototype-based language, the notion of classes was not
supported. Ferber [Ferber, 1989] analyzed how a meta-object model would
behave with the introduction of classes. Behavioral and structural reflection
are separated, and classes handle the definition of the structure and the set of
messages that an instance is able to answer. Meta-objects handle how mes-
sages are interpreted. This model is more flexible than the meta-class model.
By modifying the meta-object we can achieve per-object specific behavior, ob-
ject monitoring, and different message interpretation techniques. However,
this approach is mainly concerned with modeling structural constructs, ne-
glecting the behavioral abstraction. For example, method calls and instance
variables accesses are not reified.

Message Reification. This model reifies the messages sent between objects. Ferber
[Eerber, 1989] introduced this model where each message is an instance of a
message class. Each message is responsible for interpreting itself. The mes-
sage class defines a message send specifying the interpretation. Through the
message class sub-classification the message send semantics can be modified.
In Ferber’s model the sender of the message was not taken into account in

17

Chapter 2 Reflection State Of The Art

the reification. Cazzola [Cazzola, 1998] extended this model by including the
sender object in the message reification.

2.2.4 Constructs

There are two main approaches to specifying which constructs may be reflected
upon. There are interpreter-based approaches like 3-Lisp [Smith, 1982] and 3-KRS
where meta-objects match the structure of the interpreter; and language-oriented ap-
proaches like CLOS-MOP [Bobrow et al., 1988; Kiczales et al., 1991], ObjVLisp and
Classtalk, where the meta-objects match structural elements of the language. This
structural point of view contrasts with the computational or behavioral point of view.

Smith [Smith, 1982; Smith, 1984] pioneered the concept of behavioral reflection in
the context of Lisp. He proposed reifications, such as method invocations, that were
not directly reflected in the structure of the language. Of course, both interpreter-
based and language-based approaches can achieve behavioral reflection but there is
no generalized infrastructure for doing this [Ferber, 1989; McAffer, 1995a].

2.3 State of the Art in Meta-level Engineering

Table 2.1 summarizes previous meta-level engineering approaches. In this table we
show to which extent previous approaches support the four key application require-
ments of partial reflection, selective reification, support for unanticipated changes and of-
fering a runtime integration. We also identify how the various approaches fall short in
supporting the meta-level engineering requirements of offering an unbiased reflective
model, providing high-level abstractions, and offering a means for meta-level composi-
tion.

2.3.1 Reflection requirements

The reflective requirements that we have pointed out are not new. In recent years
researchers have worked on the idea of applying traditional engineering techniques
to the meta-level while attempting to solve various practical problems motivated by
applications. We will contrast object-specific reflection and object-centric reflection
to stress the reasons for the existence of the object paradox. These requirements are
supported at least partially by existing approaches:

1. Partial Reflection makes reflective facilities available only in selected places

where needed. This avoids the inherent inefficiency of a fully reflective sys-
tem [Ibrahim, 1991; Kiczales et al., 1991; Tanter et al., 2003].

18

2.3 State of the Art in Meta-level Engineering

s £ -
E £ § % <
£ g ¥ 5 % & § =
2 9 K= 9 = g = 3
@ &0 2 & o .- 9
> o g T & £ o 2 =
9 B T % & E 3 3 ¢
7] .-
g < % Tt 2§ £ § & &
B & T £ & 5 &€ 5 & 0O
Language ClassTalk Smalltalk [] [] (] [J o O O
Extensions CodA Smalltak O O O @ O O O
Dynamic AOP Various e 6 6 O o O o
Guarana Java ® ¢ O e O O O
Iguana C++ ® 6 O O e O e
Iguana/J Java ®e 6 ¢ O o O o
Kawa Java ®e ¢ O e O O O
MetaClassTalk Smalltalk @ O @ @ @ O O
MetaXa Java ® ¢ O e O O O
PBI Java ® 6 6 O O o o
Reflective Java Java ® 6 O e e O O
Reflex Java ® ¢ O e O e O
Reflectivity Smalltalk € € @ @ O @ O
Language 3-Lisp 3-Lisp o O e O e O O
Implementations 3-KRS 3-KRS o O e O e O O
CLOS CLOS e 6 6 O o O o
Cola Cola e 6 6 O o O o
Java Java o O O O e O O
ObjVLisp ObjVLisp @ O O O @ O O
Ruby Ruby e 6 6 O e O o
Smalltalk-80 Smalltalk O O @ O @ O O
Self Self e 6 6 O o O o

Table 2.1: Comparison of different language and reflection extensions.

. Selective Reification refers to the ability to define which reifications should be
active from a temporal and spatial point of view. Selective reification extends
partial reflection to allow reifications to be dynamically defined [Ferber, 1989;
Gowing and Cabhill, 1996; Redmond and Cabhill, 2002; Redmond and Cahill,
2000].

. Unanticipated Changes enable reflection on a running system without the need
to define statically and up-front where and when reflection is needed [Red-
mond and Cahill, 2002; Redmond and Cahill, 2000; Denker, 2008; Denker et
al., 2007].

. Runtime Integration refers to a meta-environment that runs at the same level
as the application code, i.e., not in the interpreter of the host language [Tanter
et al., 2003; Denker, 2008; Bouraqadi, 2004].

19

Chapter 2 Reflection State Of The Art

5. Meta-level Composition enables the combination of meta-level abstractions due
to multiple adaptations taking place on the same base-level abstractions [Tan-
ter, 2006; Bobrow et al., 1988; Kiczales et al., 1991; Redmond and Cahill, 2002;
Redmond and Cahill, 2000].

6. Scoped Reflection makes reflective changes only visible in specific contexts, out-
side these contexts the changes are not present [Chiba et al., 1996; Aracic et al.,
2006; Denker et al., 2008; Tanter, 2009].

Partial Reflection

Full reflection, where all constructs that may be reflected upon are reified, is inher-
ently inefficient. Partial reflection was first introduced in the 1990 OOPSLA /ECOOP
workshop on Reflection and Meta-level Architectures in Object-Oriented Program-
ming [Ibrahim, 1991]. Partial reflection overcomes this inefficiency by making reflec-
tive facilities available only where they are needed. For example, we can reify the
method lookup for a single class and not for all classes in the system.

Kiczaleset al. [Kiczales et al., 1991] introduced meta-object protocols (MOPs) in CLOS,
an object-oriented extension of Lisp. MOPs encode the properties and semantics of

the language. The MOP is causally connected to the language model. MOPs provide

a form of partial reflection since they offer a means to adapt the meta-level behavior

for selected parts of the system. Partial reflection can be achieved by specializing

the meta-class generic functions for a specific meta-object class [Attardi et al., 1989].

However, CLOS-MOP does not support object-specific method invocation reifica-

tion in a scalable way, as McAffer [McAffer, 1995a] pointed out.

Partial Behavioral Reflection was introduced by Tanter et al. [Tanter et al., 2003]. This
model is implemented in Reflex for the Java environment. Reflex offers an even
more flexible approach than pure Behavioral Reflection. The key advantage is that
it provides a means to selectively trigger reflection, only when specific, predefined
events of interest occur. Reflex uses meta-links to modify the behavior and hook-
sets to specify where this change should take place. A link invokes messages on
a meta-object at occurrences of marked operations. The attributes of a link enable
further control of the exact message to be sent to the meta-object. Reflex was imple-
mented using bytecode transformation in Java, and is thus portable across different
Java VMs. A typical use case for Reflex is the implementation of the Observer pat-
tern [Gamma et al., 1995] at the meta-level by reflecting only on those objects that
are to be observed, adapting their behavior to notify their observers.

Selective Reification

Ferber [Ferber, 1989] introduced a message reification model of reflection where each
message is an instance of a message class. Each message class can define its own

20

2.3 State of the Art in Meta-level Engineering

interpretation of a message send. By changing the implementation of a message
class the message send semantics can be modified. In Ferber’s model the sender
of the message is not taken into account in the reification. Cazzola [Cazzola, 1998]
extended this model by including the sender object in the message reification.

Iguana [Gowing and Cahill, 1996] takes a step forward in the meta-level architecture
through dynamic reifications. Iguana offers a form of selective reification making
it possible to select program elements down to individual expressions. This tool
provides a fine-grained MOP which allows different object-models to coexist at the
same time in the same system. It also allows dynamic changes to be applied in an
object-specific manner. If an object of a given class is adapted, no other instance of
that class should be affected by this change. Iguana was developed for C++ and
works by placing annotations in the source code to define behavioral reflective ac-
tions.

Reifying a message send means to model as an object the event that a message has
been sent to another object. Smalltalk-76 [Ingalls, 1978] reified message sends on
the whole system thus impacting negatively on performance. CodA proposed a de-
composition of the message send into multiple, finer-grained events while imposing
this reification on the whole system. Iguana provided message send reifications not
affecting the whole system.

An example of selective reification in Reflex is transparent Futures. A future is an
object whose value may not yet be available as it is still being computed. Futures
implemented as generic classes rather than as a built-in language construct have the
disadvantage that a client of a future must explicitly request the value of the future
when it is needed, as is the case in Java. A transparent future, on the other hand,
could be used directly as a regular object, without the need to ask for its value. Reflex
implements transparent futures at the meta-level by reifying the message reception
and the object casting.

Tools like Dalang [Welch and Stroud, 1999], Reflective Java [Wu, 1998], Kava [Welch
and Stroud, 2001], the ProActive MOP [Caromel et al., 2001], MetaXa [Golm and
Kleindder, 1999] and Guarana [Oliva and Buzato, 1999] are targeted specifically at
controlling method invocation for Java. All of them work by manipulating byte-
code.

Aspect Oriented Programming (AOP) [Kiczales et al., 1997b] provides a general
model for modularizing cross cutting concerns. Join points define points in the exe-
cution of a program that trigger the execution of additional cross-cutting code called
advice. Join points can be defined on the run-time model (i.e., dependent on control
flow). Although AOP is used to introduce changes into software systems, the fo-
cus is on cross-cutting concerns, rather than on reflecting on the system. Kiczales et
al. [Kiczales et al., 1997b] claim: “AOP is a goal, for which reflection is one powerful tool.”.
Although aspects can be dynamically enabled or disabled, they are specified stati-
cally. AspectS [Hirschfeld, 2003] is a dynamic aspect system defined in the context
of Smalltalk. Aspects lack an important ingredient that we were looking for, namely

21

Chapter 2 Reflection State Of The Art

they do not provide an extensible model for new reifications. The join points pro-
vided by aspect languages, mostly Aspect]-like pointcut-advice models which dom-
inate the landscape of AO language design, are too restrictive. Events that do not
naturally correspond to the boundaries of methods or field accesses cannot be easily
added [Gasiunas et al., 2011]. For example, if we have a temperature sensor and the
event tempChange depends on a thread that tests for temperature changes in a sen-
sor (Listing 2.1 lines 5-15). This event cannot be expressed with the pointcut-advice
model.

1 class TemperatureSensor {

2 public delegate void TempChange(int newTemp);
3 public event TempChange tempChanged;

4

5 public void run() {

6 int currentTemp = measureTemp();
7 while (true) {

8 int newTemp = measureTemp();
9 if (newTemp = currentTemp) {
10 if (tempChanged = null) { tempChanged(newTemp); }
11 currentTemp = newTemp;

12 }

13 sleep(100);

14 }

15 }

16

17}

Listing 2.1: Temperature sensor

Unanticipated Changes

Iguana/J [Redmond and Cahill, 2002; Redmond and Cahill, 2000] is the implementa-
tion of Iguana for Java. This tool enables unanticipated changes to Java applications
at run-time without requiring instrumentation or restarting the application before
the first use of reflection. Since the event reifications are defined in the modified
VM, precise operation occurrences of interest cannot be discriminated nor can the
actual communication protocol between the base and meta-level be specified. For
example, a new event which reifies the execution of the garbage collector cannot be
defined without modifying the VM again.

Both Iguana and Iguana/]J contributed significantly to modeling the meta-level by
proposing fine-grained MOPs. The idea of fine-grained MOPs is to allow multiple
reflective object models to coexist in a given application. Nevertheless, the modi-
fied VM implementation precludes a homogeneous environment; some reifications
work at the VM level while others work at the application level.

22

2.3 State of the Art in Meta-level Engineering

Meta-level engineering in Reflex is highly flexible but it suffers from a key limita-
tion. Although the reflective behavior is available at run-time, the framework forces
the user to anticipate the reflective needs at load time. This means that Reflex does
not allow a programmer to insert new reflective behavior affecting already-loaded
classes into a running application. The application has to be stopped, the reflec-
tive needs have to be specified, and then the application has to be reloaded for the
reflective changes to take place.

Denker introduced Reflectivity [Denker, 2008], an implementation of the Reflex model
for Smalltalk. Reflectivity targets two important problems present in the previous
tools regarding behavioral reflection. These problems are anticipation and sub-
method structure. Iguana/J introduced a working implementation of unanticipated
partial behavioral reflection (UPBR) but suffered from portability issues. Reflex re-
quires the user to anticipate where reflection is going to be needed.

Reflectivity provides UPBR while maintaining portability. This was achieved by
using reflective methods that are dynamically compiled thus enabling unanticipated
change. Persephone [Denker et al., 2007] introduced a model for reflective methods
and was responsible for recompiling methods that had been reflectively modified.

Reflectivity exploits the reflective structures of Smalltalk. ASTs are used as the sole
representation of behavior. Reflex hooksets were removed and links were just real-
ized as annotations to any AST node thus simplifying the Reflex model. Using AST
nodes allowed Reflectivity to achieve sub-method reflection capabilities.

Nevertheless, when faced with a complex adaptation scenario links are too low-
level and their management has to be specified by the user explicitly. For example,
if we need to debug and halt the execution when a particular instance variable is
accessed we need to find all the AST nodes in which the variable is accessed and
attach a link to them. After that we realize that we also want to halt the execution
when a particular method is invoked in a particular object. We require a new link
that checks at runtime that the receiver of the method is the specific object, and then
we attach this link to the AST method node. We have a complex adaptation scenario
with several links to obtain a debugging behavior change. The semantic meaning of
the set of links is lost after they are installed since there is no abstraction that states
that these links belongs to the same adaptation. First, we need to find the right AST
node which, if adapted with a link, will produce the required effect. Second, to
remove the debugging adaptations we have to manually manage many links.

Moret et al. introduced Polymorphic Bytecode Instrumentation (PBI) [Moret et al.,
2011], a technique that enables run-time selection amongst several, possibly inde-
pendent instrumentations. These instrumentations are saved and indexed by a ver-
sion identifier. These versions can control the visibility of the adaptations. Code-
Merger, the PBI implementation for Java, instruments the class library at build-time
and all other classes at load-time, thus achieving full unanticipation is not possi-
ble.

23

Chapter 2 Reflection State Of The Art
Runtime Integration

Iguana/J was implemented using the Java Just-in Time (JIT) interface by defining
a dynamic library. Instead of using annotations in the source code for specifying
reflective actions Iguana/J uses a definition file. This file is compiled by a special
Iguana compiler which generates dynamically the code to be executed. This tech-
nique is useful since the tool has access to the internal structures of the interpreter.
However, this solution is coupled to a particular VM implementation, since the VM
developers did not continue developing the JIT interface, Iguana/] does not run in
more recent VMs. Reflex provides a more portable solution by transforming Java
bytecode.

MetaclassTalk [Bouraqadi, 2004] extends the Smalltalk model of meta-classes by ac-
tually having meta-classes define the semantics of message lookup and instance
variable access. Instead of being hard-coded in the virtual machine, occurrences
of these operations are interpreted by the meta-class of the class of the currently-
executing instance. A major drawback of this model is that reflection is only con-
trolled at class boundaries, not at the level of methods or operation occurrences.
This way MetaclassTalk confines the granularity of selection of behavioral elements
towards purely structural elements.

Meta-level Composition

Tanter [Tanter, 2006] stated that composition of meta-objects is complex and not well
supported. In CodA there is no mechanism for composition. The required changes
have to be composed and placed by hand in the right meta-object. The link abstrac-
tion of Reflex and Reflectivity offers a means to compose adaptations at the bytecode
and AST level, however, these approaches do not provide a mechanism for com-
posing higher-level abstractions. CLOS-MOP provides a composition mechanism
through the method combinations meta-object. Iguana/J provides a composition
mechanism through the definition of MOPs. An Iguana MOP is composed of a set
of meta-level events to adapt an object or class. The composition is limited to the
Iguana predefined events.

Mezini [Mezini, 1997] identified that the mechanisms for incremental behavior com-
position do not support evolving objects at all or do not satisfactorily solve the en-
capsulation and name collision problems associated with them. Mezini points out
that the inability of the existing approaches to uniformly handle dynamic compo-
sition and internal encapsulation is due to the lack of sufficient abstraction levels
in their design. The author proposes a composition mechanism which deals with
these issues by reifying a combination layer between the object and the software
component that defines its behavior. A combiner-metaobject is associated with each
evolving object to control the composition. The adjustments are responsible for pro-
viding mixin-like behavioral adaptations depending on the context.

24

2.3 State of the Art in Meta-level Engineering

Mirrors offer a first attempt to reify reflection. In this approach objects themselves do
not have any reflective capability, but reflection is provided by mirror objects [Bracha
and Ungar, 2004]. Mirrors offer a clear separation of the base level and the meta
layer. However, mirrors do not specify a composition mechanism for the meta-level.
This means that composing two reflective changes on an object’s mirror can only be
done by hand.

Ruby [Matsumoto, 2001] introduced a form of mixins [Bracha and Cook, 1990] as a
building block for reusability, called modules. Modules can be applied to specific
objects without modifying other instances of the class by adding or modifying state
and methods. Aliasing of methods is possible to avoid name collisions, as well as
removing method in the target object. However, instance or class methods cannot
be removed if they are not already implemented. This follows the concept of lin-
earization of mixins. Filters in Ruby provide a mechanism for composing behavior
into preexisting methods. However, they do not provide support for specifying how
method defined in modules should be composed for a single object.

PBI instrumentations are saved and indexed by a version identifier. Thus, this tech-
nique can at runtime control which adaptations are active.

Scoped Reflection

Dynamic adaptation is traditionally realized with the help of activation conditions
evaluated at runtime to decide which parts of the system should be adapted. Even
very dynamic approaches like unanticipated partial behavioral reflection [Réthlis-
berger et al., 2008] only shift the time when conditions are added from load time
to runtime. This flexibility allows the programmer to reduce the number of checks
performed or to remove unneeded ones at runtime. Yet, it does not solve the real
problem: foreseeing the parts of the system where checks are to be added. This is
not always possible, since in many cases the system is unfamiliar to the developer,
or system libraries are also under analysis. Dynamically scoped adaptations were
introduced to deal with these situations. A dynamic extent defines a dynamic scope
by providing a piece of code to be executed. As the code is executed adaptations are
installed, and propagated under certain conditions.

Tanter [Tanter, 2009] formalized dynamically scoped adaptations in terms of (i) the
dynamic extent, (ii) the propagation function, (iii) activation conditions and (iv) the
adaptations to be applied. The propagation function defines how the adaptations
should be propagated in the dynamic extent. The use of activation conditions can
further control the application of the adaptation during the dynamic scope.

However, a key problem with previous techniques is that the scope cannot be mod-
ified at runtime. The propagation function, the activation condition and the adapta-
tions, once defined, cannot change. Recently, Moret et al. introduced Polymorphic

25

Chapter 2 Reflection State Of The Art

Bytecode Instrumentation (PBI) [Moret et al., 2011], a technique that enables run-
time selection amongst several, possibly independent instrumentations. These in-
strumentations are saved and indexed by a version identifier. These versions control
the visibility of the adaptations. For example, if we applied two different analyses,
like feature analysis and profiling, over the same system we would like both adap-
tations not to interfere with each other. This means, that feature analysis should not
take into account extra behavior introduced by the profiling adaptation and vice
versa. If a method is adapted by both analyses then there are two different versions
of the method, one adapted with feature analysis behavior and the other with pro-
filing behavior. When executed each thread of execution will have an index that
defines which version of each method should be selected, thus avoiding conflict.

A key issue in dynamic adaptation is to control the scope and visibility of the adap-
tations. Previous approaches are capable of scoping changes at the class level, for a
single object, thread-locally or globally [Tanter, 2007]. For instance, Caesar] [Aracic
et al., 2006] supports per-thread aspect deployment, where an aspect instance can
see all join points produced in the dynamic extent of an execution of block. A
similar mechanism can be found in AspectScheme [Dutchyn ef al., 2006] and As-
pectS [Hirschfeld and Costanza, 2006]. Other approaches control the scope of as-
pects to be deployed on specific objects [Aracic et al., 2006; Rajan and Sullivan,
2003], or globally [Aracic et al., 2006; Rajan and Sullivan, 2003; Hirschfeld, 2003;
Suvée et al., 2003] Deploying an aspect on a specific object means that if we have a
class with two instances we will only adapt the specific object. Global deployment
will adapt all instances of a class.

Object-Specific Reflection

Object-specific reflection offers an approximation to object-centric reflection. Pre-
vious reflective mechanisms provide reflective models where object-specific capa-
bilities are just one technique amongst many. Object-specific reflection enables re-
flection on specific objects, but may not avoid users reflecting on static abstractions.
Object-centric reflection avoids static abstractions altogether. Several tools present
various mechanisms to achieve it.

CLOS-MOP, for example, has six kinds of meta-objects: classes, slots, generic func-
tions, methods, specializers and method combinations. These concepts relate to
how objects are described by users, not how they are run by computers. Partial
reflection can be achieved by specializing the meta-class generic functions for a spe-
cific meta-object class [Attardi et al., 1989]. However, CLOS-MOP does not support
object-specific method invocation reification in a scalable way, as McAffer [McAffer,
1995a] pointed out. Meta-level changes have to be described in methods. Methods
simply do not provide the infrastructure and abstraction necessary for describing
more than very simple behaviours. They do not directly support reuse, combina-
tion or composition. They are not suitable units of encapsulation for engineering
the meta-level.

26

2.3 State of the Art in Meta-level Engineering

Self [Ungar and Smith, 1987] is a prototype-based language that follows the con-
cepts introduced by Lieberman [Lieberman, 1986]. In Self there is no notion of class;
each object conceptually defines its own format, methods, and inheritance relations.
Objects are derived from other objects by cloning and modification. Object-specific
behavior comes naturally to this model of reflection. From a reflective point of view
Self concentrates on structural reflection and supports behavioral reflection to a cer-
tain extent. For example, method lookup is reified but achieving a full operational
decomposition is not straightforward. Thus, Self has a strong object-oriented reflec-
tion mechanism but the lack of an operational decomposition mechanism prevents
a fully object-centric approach.

Iguana and Iguana/J provide object-specific behavior as a core feature. Reflex and
Reflectivity adaptations can be attached only to operations in the source code rep-
resentation. There is no mechanism to attach a reflective adaptation to a class, in-
stance variable or object. Object-specific adaptations can be achieved by introduc-
ing object-related conditions in the adaptation. However, this is not an object-centric
approach since adaptations are not only targeted at objects and object-specific adap-
tations require conditions introduced by the user. For example, if we want to debug
the access to a particular instance variable of a specific object, we cannot apply a link
to the object. We need to apply a link on all AST nodes which access the variable at
the object’s class level and introduce a special condition. This condition checks at
runtime that we should only halt the execution when the this variable is equals to
the target object.

MetaclassTalk [Bouraqadi, 2004] extends the Smalltalk model of meta-classes by ac-
tually having meta-classes define the semantics of message lookup and instance
variable access. Instead of being hard-coded in the virtual machine, occurrences
of these operations are interpreted by the meta-class of the class of the currently-
executing instance. A major drawback of this model is that reflection is only con-
trolled at class boundaries, not at the level of methods or operation occurrences.
This way MetaclassTalk confines the granularity of selection of behavioral elements
towards purely structural elements. Objects are not the main target of MetaclassTalk
reflective changes thus this approach is not object-centric.

Cola [Piumarta and Warth, 2006] implements an open object model for experiment-
ing with different programming paradigms. Though this model is quite powerful,
the abstractions that it provides are based on lookup tables. The user can deal only
with these abstractions and no higher-level abstractions are provided to leverage
the level of expressiveness.

Dynamically-scoped aspects present different tools supporting object-specific adap-
tations. Following the idea of per-object meta-objects Rajan and Sullivan [Rajan and
Sullivan, 2003] propose per-object aspects. An aspect deployed on a single object
only sees the join points produced by this object. Caesar] [Aracic et al., 2006] pro-
vides deploy blocks which restrict behavioral adaptations to take place only within
the dynamic extent of the block. PBI can scope changes to specific objects, however

27

Chapter 2 Reflection State Of The Art

this is seen as a particular case of scoping and not as a core mechanism thus is not a
pure object-centric approach.

For example, traditional debuggers are focused on the execution stack. The devel-
oper identifies which parts of the source code are of interest and sets breakpoints
accordingly. The software then runs until a breakpoint is reached, and the devel-
oper can then inspect and interact with the code and entities in the scope of the
breakpoint. Unfortunately this process is ill-matched to typical development tasks.
Breakpoints are set purely with respect to static abstractions, rather than to specific
objects of the running system. It has been proved that when debugging the devel-
oper ask question related to the runtime abstractions, like what is the value of an
arguments at runtime [Sillito et al., 2006]. Due to this developers are less efficient
because they have to reflect on classes and methods to reach object-specific infor-
mation.

When we look deeper into how languages implement reflective applications we ob-
serve a chronic pattern to move away from the runtime abstractions towards static
ones. Even though, as we have seen, some reflection approaches are capable of pro-
viding object-specific adaptations. What is missing is to steer the user to think in
terms of object and their runtime behavior by having a reflective system centered
on object reflection.

2.3.2 Summary

There has been extensive work on partial reflection, selective reifications, unantici-
pated changes, runtime integration, meta-level composition, scoped reflection and
object-specific reflection suggesting that they are key requirements in achieving a
compelling approach to reflection.

We have presented various techniques which provide object-specific behavior: as-
pects deployed on specific objects [Aracic et al., 2006; Rajan and Sullivan, 2003], Cae-
sar] [Aracic et al., 2006], PBI [Moret et al., 2011], etc. Each of these approaches solve
some but not all of the presented reflection requirements. Moreover, object-specific
reflection is stressed as an important feature [Rajan and Sullivan, 2003; Aracic et al.,
2006; Moret et al., 2011; Gasiunas et al., 2011] but at the same time these approaches
present heterogeneous mechanisms to achieve other adaptations. Due to this object-
specific reflection is not modeled to be the central reflection mechanism, thus, we
observe the object paradox in many of the reflection applications like debugging,
feature analysis and profiling.

Traditional reflective models are focused around static source artifacts and only pro-
vide very limited access to the dynamic parts at runtime. The research question we
pose is: What kind of reflective model do we need to avoid the object paradox while
supporting the requirements of reflection under a unified and uniform solution?

28

Chapter 3

Object-Centric Reflection

In this chapter we explain the object-centric reflective model of explicit meta-objects.
As we have seen, various approaches to reflection address different needs, but the
object-paradox is not their main concern. We seek to develop a new model of reflec-
tion that addresses the object paradox and the standard requirements identified by
past approaches while integrating and unifying the essential features of these exist-
ing approaches. The key idea behind object-centric reflection is to provide object-
specific capabilities as the central reflective mechanism.

3.1 Object-Centric Reflection in a Nutshell

The key difference with previous approaches is that instead of adding object-specific
capabilities for reflective adaptation to an existing reflective framework, we adopt
object-specific adaptations as the core of our approach. For this reason we refer to
it as object-centric reflection. With object-centric reflection we can: (i) avoid the object
paradox, (ii) provide a unified approach to meta-level engineering, and (iii) simplify
the reflection model.

Meta-objects are responsible for defining the structure and the behavior of specific
objects. Any object can be bound to one or more meta-objects, and various meta-
objects can adapt the behavior or structure of various parts of the same object. When
a meta-object is bound to an object, it forms part of the meta-level description of the
object. For example, we can define a method wrapper for a specific object. When
the meta-object is unbound from an object then this object no longer responds to the
meta-description modeled by that meta-object.

The meta-object abstraction is unique in the sense that every meta-level abstraction
is expressed in terms of a meta-object. Every meta-object instantiation is an instance
of a meta-object or a specialization. A meta-object is also an object, and thus, it is
also possible to create meta-meta objects to control the meta-objects. We can model
a class with a meta-object defining the methods of potential instances. Instance cre-
ation is performed by sending the message new to the class. Thus we can define and
bind another meta-object to our class abstraction where class-side methods such as

29

Chapter 3 Object-Centric Reflection

new are defined. This meta-object models a meta-class, also known as meta-meta-
object (the meta-object of a meta-object).

A structural meta-object is responsible for modeling the structures of a program. An
object-oriented program’s structures are classes, traits, methods, message send AST
nodes, efc. Structural meta-objects deal with the definition of meta-level structural
reifications. For example, adding a method to a particular object. How and when
they are introduced at run time is the job of the behavioral meta-object.

A behavioral meta-object is responsible for modeling the dynamic representation of
a program. Examples of such reifications are: the message send, the method lookup,
or the object creation. We can build a profiler by applying a behavioral meta object
that increments a counter everytime a message is sent. A different counter can exist
for each adapted object and method.

The relationship between object and meta-object is controlled. Compound meta-
objects enable safe meta-level composition. They are reified to avoid potential con-
flicts between meta-objects and to manage meta-object adaptation performed on ob-
jects. These meta-objects are composed of multiple meta-objects.

Compound meta-objects encapsulate the complexity of dealing with multiple meta-
objects at the same time. When an object is bound to more than one meta-object
then there is a single compound meta-object modeling the composition between
these meta-objects. Consider two behavioral meta-objects, one modeling a profiler
with a counter of message sends, and the other a test coverage analysis adaptation
registering the executed methods. If we bind these two meta-object to the same
object the meta-objects are composed and they adapt the object. If we request the
meta-object of the bound object we receive a compound meta-object representing
the composition. This behavior is managed transparently from the user unless a
particular composition requirement needs to be fulfilled. We present examples of
various composition mechanisms in Chapter 5 and Chapter 6.

3.2 Meta-objects

Object-centric reflection supports three kinds of explicit meta-objects, which even-
tually can be extended to reify new meta-level abstractions as we show later in this
dissertation:

® StructuralMetaObject and BehavioralMetaObject reify respectively structural and
behavioral reflective capabilities.

e CompoundMetaObject reifies the composition of meta-objects.

30

3.2 Meta-objects
3.2.1 Structural Meta-object

A structuralMetaObject acts on the basic structural units of an object-oriented lan-
guage which are messages, objects and objects’ states. The responsibilities of a
StructuralMetaObject are:

o Adding a method. A new method is added to the object.

* Removing a method. The adapted object will not understand a particular mes-
sage anymore.

* Replacing a method. The method will have another behavior. Either explicit
source code or a closure can be provided.

e Adding state. The addition of new state to an object allows the user to add
methods that use that state.

* Removing state. Specific state is removed.

Structural meta-objects deal with the definition of meta-level structural reifications.
How and when they are introduced at run-time is the job of the BehavioralMetaob-
ject.

3.2.2 Behavioral Meta-object

A BehavioralMetaObject reifies the meta-object responsible for modeling the dynamic
representation of a program. Examples of such reifications are: the message send,
the method lookup, or the object creation. This abstraction corresponds to the work
done in Iguana and later used by McAffer in CodA. As McAffer pointed out, the
system is modeled as a set of operations whose occurrences “can be thought of as
events which are required for object execution” [McAffer, 1995b].

To dynamically adapt the behavior of an object we need to describe what we would
like to do and when. To specify what we would like to apply, we delegate the
responsibility of managing an event to a specific meta-object. We specify when it
should be adapted by using a computational event in the execution of a program,
e.g., sending a message.

A set of canonical events models the basic operations known as dynamic reification
categories. The dynamic reification categories are: message send, message receive,
state read, and state write. These are not the only reifications possible; new dynamic
reifications can be defined, the only requirement being to specify when they should
be triggered. For example, entering a synchronized block can be modeled by a meta-
object that adapts the points in an object where, depending on the implementation
of the language, a synchronized block is accessed. In Smalltalk this is done using
the method critical: aBlock.

31

Chapter 3 Object-Centric Reflection

We selected the above categories following the Iguana approach. Iguana proposes
seven canonical reification categories, some of which can be defined in terms of the
others. For example, the object creation event can be expressed as a message send
extension, since an object is created when the creation message is sent to a class
(the same applies for object deletion). With these basic categories we can adapt an
object’s behavior from an operation decomposition point of view.

3.2.3 Compound Meta-object

A meta-object can be bound to an object, and unbound. A compound meta-object
manages the composition between meta-objects with two mechanisms:

¢ Order. The order in which the adaptation expressed by meta-objects is applied
might be meaningful in certain cases. By default a meta-object is appended
at the end when composed with a compound meta-object. Otherwise, its po-
sition has to be explicitly stated by using different methods. When two com-
pound meta-objects are composed then either one of them takes precedence
over the other or the user has to order them again.

¢ Conflicts. When a new meta-object is added to a compound meta-object, multi-
ple user-defined conflict validations are evaluated. By default the compound
meta-object checks that behavior that is expected by a meta-object is not re-
moved and modified by other meta-objects. Furthermore, conflict validation
rules can be added to the compound meta-meta object to check for potential
conflicts when new meta-objects are added. Conflict validation rules model
the evaluation of specific behavior to check for adaptation conflicts. When a
conflict is detected between a compound meta-object and a meta-object, this
meta-object throws an exception modeling the error. A meta-object can catch
this exception to either fix the conflict or ignore it. The exception handler’s
default behavior is to reject the composition. For example, two different meta-
objects try to add the same method asstring to a single object. Since there is no
way of deciding which of the two definitions should be used the composition
of the two meta-objects is rejected.

3.2.4 Scoping Meta-object adaptations

Prisma is an approach to dynamically adapt running software systems to support
various forms of dynamic analysis. Prisma uses object-centric reflection to adapt
the behavior of objects at run time. Execution is modeled as a sequence of events that
trigger the reflective meta-objects. Prisma explicitly reifies execution runs to manage
the adaptation process. Dedicated propagation meta-objects assume responsibility for
propagating adaptations to objects accessed within a given run. Adaptations are

32

3.2 Meta-objects

scoped to a particular run, so multiple adaptations can be installed without risk of in-
terference. Installation and deinstallation are decoupled, so adaptations can be retained
for long-lived analyses.

Execution Reification. In many programming languages it is possible to reify ab-
stractions such as activation records, execution contexts, and even the execution
stack, but the concept of an execution run remains implicit. Prisma models execu-
tion runs explicitly to scope adaptations to a specific set of objects reachable from
a particular starting point. An execution run represents a live scope within which
adaptive reflective changes take place.

An execution is composed of a set of meta-objects, each of which adapts a number of
bound objects. Since a meta-object is an object, it can also be adapted by meta-objects.
Meta-objects can be structural or behavioral. An execution models a dynamic scope
whose starting point is an expression defining a dynamic extent.

A dedicated propagation meta-object is responsible for propagating adaptations to the
dynamic extent of an execution run. When an execution run is started the first object,
i.e., the one receiving the first message, is adapted with the meta-objects compos-
ing the execution. One of these meta-objects is the propagation meta-object, which
adapts an object so that every method call to another object causes the execution’s
meta-objects to be applied to that other object. An activation condition can be pro-
vided to restrict which objects the adaptation should be applied to.

Execution Scoping. When an object is adapted within a particular execution run
this adaptation only affects other objects in the same run. When a meta-object adapts
a method of an object under a specific execution run the method is copied and the
adaptation is applied to that copy. As a consequence, there can be multiple ver-
sions of the same method for a given object depending on the number of scoped
executions. The meta-object is responsible for managing the different method ver-
sions. When the adapted method is invoked under a particular execution run, (i)
the invoked object delegates the execution of the method to the meta-object, (ii) the
meta-object obtains the identity of the current execution, and (iii) with that identity
it selects the version of the method to be executed. If there is no enclosing adaptive
execution then the normal method lookup is used. For example, feature analysis
requires the developer to adapt beforehand all the classes that he wants to be taken
into account by the analysis. This is not always possible because sometimes the ex-
tension of the system is unknown. Execution scoping allows the developer to adapt
objects as they are reached by the execution. Moreover, traditional feature analy-
sis forces the developer to exercise a single feature at a time. For example, if we
have two users trying to exercise at the same time the printing and login features re-
spectively the adapted code when executed cannot easily discerns which feature is
being exercised. Execution scoping allows the developer to have various execution
contexts where different developers are exercising different features.

33

Chapter 3 Object-Centric Reflection
3.3 Meta-object Definition

Meta-objects define the structure and behavior of objects. The meta-level is com-
posed of a set of meta-objects that can eventually be described by other meta-objects.
This renders a complex structure of relationships between objects and meta-objects.
Traditional reflective models tend to simplify this structure by using classes and
meta-classes or by only allowing a single meta-object per object. Removing this limi-
tations leaves us with the complexity of managing meta-objects. To control this com-
plexity we propose a very simple process for defining objects and meta-objects.

There are three cases for defining what should be done to model the meta-level.

1. If we have the object and the meta-object then we just bind them.
2. If we do not have the meta-object then we create it and bind it to the object.

3. If we have neither the object nor the meta-object then we need to create the
object first by locating the meta-object that can create it.

As an example, let us consider a logger which logs the execution of an object’s partic-
ular method. We know the object to be adapted which is the method. Thus, we only
need to create the meta-object and to bind it to the object. This is a case 2 scenario.

Let us consider reifying message sends, which means that when an object sends a
message to another object an event modeling this situation will be explicitly created.
This is a case 3 example since we do not have the object (message send event) and we
do not have the meta-object responsible for the reification. Thus we need to create
both the object and the meta-object.

3.4 Unification of Reflection

Object-centric reflection does not only fulfill the reflection requirements, it also does
it under a unified meta-model. Next we discuss how object-specific meta-objects
simplify the implementation and unification of the reflection requirements.

Partial Reflection. Meta-objects make reflective changes available only in selected
places where needed. There is no need to modify the whole system.

Selective Reifications. Meta-objects can be used to model new reifications, for ex-
ample in the case of Prisma the execution run. Moreover, when adapting a
particular object the meta-object can selectively define which data should be
reified at runtime, for example, the sender and the receiver of a particular
message, the arguments of the message, the continuation, efc..

Unanticipated Changes. Meta-objects can be applied to any object in the system at
runtime without the need of previously stating that this adaptation will take
place.

34

3.5 Object Paradox

Runtime Integration. Low-level meta-objects are responsible for the runtime integra-
tion. This meta-object abstracts away from the lower level implementation
detail thus providing a reusable model. Thus meta-objects live at the same
level as the application.

Meta-level Composition. Compound meta-objects provide the semantics for compos-
ing meta-objects. Adaptations can be composed at runtime according with the
requirements of the user.

Scoped Reflection. Meta-objects can scope their structural and behavioral adapta-
tions. Prisma allows adaptations to be scoped to particular executions as the
system is running.

As we can see the reflective requirements a merged with the meta-object architec-
ture.

3.5 Object Paradox

Object-centric reflection avoids the object paradox by making object specific adapta-
tion the central reflection mechanism. In the remainder of this dissertation we show
how this simple change in perspective forces the developer to first think about the
objects rather than the static representation of the running system. Moreover, we
demonstrate how developers using object-centric reflection become more efficient
due to reduction in the gap between the user’s object-specific questions and the re-
flection mechanism features.

This approach does not at all prevent the user to reflect on the static representa-
tion. On the contrary it allows the user to reflect directly on the objects represent-
ing the static representations. There has been some research on the questions a de-
veloper asks when analyzing and developing a software system [Sillito et al., 2006;
Sillito et al., 2008]. The developers’ questions are mainly centered on specific objects
and particular interactions at runtime. There is a gap between the developer ques-
tions and what traditional tools provide. Traditional tools and reflection techniques
partially cover these requirements without a unified approach. Object-centric re-
flection fills this gap providing a unified approach to organize the meta-level while
fulfilling the reflection requirements.

In the next chapter we present an object-centric reflection implementation and val-
idate the claims stated in this chapter through a series of examples.

35

Chapter 4

Bifrost

In this chapter we present Bifrost!, our object-centric reflection approach imple-
mented in Pharo® Smalltalk [Black et al., 2009]. We also present several examples
of how Bifrost is used and validate how Bifrost solves the object paradox and how
the reflection requirements are fulfilled.

4.1 Meta-objects
We will introduce the various Bifrdst meta-objects and how they support object
centric-reflection.

Bifrost has four kinds of explicit meta-objects, which eventually can be extended to
reify new meta-level abstractions as we will see later in this dissertation:

® StructuralMetaObject and BehavioralMetaObject reify respectively structural and
behavioral reflective capabilities (see Figure 4.1).

* CompoundMetaObject reifies the composition of meta-objects.

* LowLevelMetaObject reifies meta-objects that are responsible for adapting low
level structures like AST nodes.

4.1.1 Structural Meta-object

A structuralMetaObject acts on the basic structural units of an object-oriented lan-
guage which are messages, objects and objects’ states. The responsibilities of a
StructuralMetaObject are:

1 In Norse mythology, Bifrost is the burning rainbow bridge between the worldly realm and the heavens.
2 http://www.pharo-project.org/

37

http://www.pharo-project.org/

Chapter 4 Bifrost

| Object

MetaObject

bindTo: anObject
unbindFrom: anObject

Comp dMetaObject

[BehavioralMetaObject | [LowLevelMetaObject | IiTI

add: aMetaObject
addFirst: aMetaObject
add: aMetaObject
before: anotherMetaObject

StructuralMetaObject

addMethodNarx E
perform

removeMethodNamed: aName

when: aName do: aBlock

when: anEvent do: aBlock

addStateNamed: aName

removeStateNamed: aName

Figure 4.1: Meta-Objects class diagram with methods denoted in Smalltalk.

e Adding a method. A new method is added to the object. A name and the source
code is provided. When the object receives the corresponding message it ex-
ecutes the compiled source code. The source code compilation is performed
when the object is associated with a meta-object. If there is a compilation error
the meta-object association is rolled back.

® Removing a method. The adapted object will not understand a particular mes-
sage anymore.

* Replacing a method. The method will have another behavior. Either explicit
source code or a closure can be provided.

* Adding state. The addition of new state to an object allows the user to add
methods that use that state.

® Removing state. Specific state is removed.

All these adaptations are not permanent, the user can undo an adaptation at any
time. Structural meta-objects deal with the definition of meta-level structural reifi-
cations. How and when they are introduced at run-time is the job of the Behavioral-
MetaObject.

4.1.2 Behavioral Meta-object

We selected the above categories following the Iguana approach. Iguana proposes
seven canonical reification categories, some of which can be defined in terms of the
others. For example, the object creation event can be expressed as a message send
extension, since an object is created when the message basicNew is sent to a class
(the same applies for object deletion). With these basic categories we can adapt an
object’s behavior from an operation decomposition point of view.

The method when:do: specifies that when a particular meta-event happens the par-
ticular behavior in the block should be executed.

38

4.1 Meta-objects

On the other hand, the method structuralMetaobject>>when:do: replaces the body of
a particular method by another method body. As a consequence, the behavior is
also changed but, as we have seen, changes to the structure of a system can affect
its behavior as well.

4.1.3 Compound Meta-object

Talents [Ressia et al., 2011] are dynamically composable units of reuse built on top
of Bifrgst. Talents can be composed. The composition order is irrelevant so conflict-
ing talents must be explicitly disambiguated. Composition operators are used to
solve conflicting compositions i.e., aliasing the names of the adapted methods and
deleting particular methods.

For example, streams are used to iterate over sequences of elements such as se-
quenced collections, files, and network streams. Streams may be either readable,
writeable or both; they can also be binary or character-based; and we can have mem-
ory streams, socket streams, database streams, or file streams. Dynamically com-
posing the right combination of streams required is key for avoiding an explosion
of classes due to all potential combinations. writestreamTalent adds the methods for
writing to a stream, i.e., nextPut: and nextPutAll:. ReadStreamTalent adds the methods
to read from a stream, i.e., next and next:. Composing these two talents delivers a
readable and writable talent. But if we compose this talent with a BinaryReadstream-
Talent which defines nextput: in a different way, then we need to decide how the
combination should be performed. We could choose to keep the implementation of
one of the talents over the other by removing a method from the composition. Or
we could keep both methods by aliasing the method nextput: from one of the talents
to avoid a conflict when composing them.

4.1.4 Low-level Meta-object

Low-level meta-objects are responsible for providing the low-level mechanisms needed
to modify the system behavior.

The design of Bifrdst can be understood as an evolution of Reflectivity, which in turn
was conceived as an extension of the Reflex model of Partial Behavioral Reflection. In
the Reflex model, and in Reflectivity, links are attached to AST nodes to modify their
associated behavior. Links are hard to manage, for example, to produce a debugging
adaptation you need to find the right AST nodes where to place the link or links.
The semantics of the adaptation are distributed across multiple links that have no
connection between each other. Meta-objects offer a solution to this problem by
providing a higher level adaptation abstraction.

The simplest building block provided by our approach is the low-level meta-object.
Bifrost provides low-level meta-objects that adapt AST nodes. The AST meta-objects

39

Chapter 4 Bifrost

are responsible for changing the behavior of an AST node. For example, a simple
message send adaptation can be achieved by attaching a low-level meta-object to a
message send AST node. These meta-objects are used by the compiler to adapt the
compilation process and change the normal behavior of a specific instruction.

4.2 Bifrost Exemplified

In this section we demonstrate how our approach supports the requirements of re-
flection (partial reflection, selective reifications, unanticipated changes, runtime in-
tegration, meta-level composition and scoped reflection) by means of several exam-
ples. Table 4.1 provides an overview of the examples and how they cover the reflec-
tion requirements. The numbered scenarios depicted in every example are related
to the different meta-object cases presented in Section 3.3.

Section
Example

421 Profiling (Scenario 2)

4.2.2 Traits (Scenario 2)

423 Delegates (Scenario 2)

424 Prototypes (Scenario 3)

425 Live Feature Analysis (Scenario 2)

425 Scoped Live Feature Analysis (Scenario 2)

® O® ® ® O @ Sclective Reification
® ® ® ® ® ® Unanticipated Changes
® ® ® ® ® ® Runtime Integration
® @ ®@ O O @ |Meta-level Composition

® O® O ® ® ® Partial Reflection
® O O O O O |Scoped Reflection

Table 4.1: Bifrost coverage over reflection requirements.

Readers unfamiliar with the syntax of Smalltalk might want to read the code ex-
amples aloud and interpret them as normal sentences: An invocation of a method
named method:with:, using two arguments looks like: receiver method: argl with:
arg2. A method with no arguments looks like receiver method. Other syntactic el-
ements of Smalltalk are: the dot to separate statements: statementl. statement2;
square brackets to denote code blocks or anonymous functions: [statements]; and
single quotes to delimit strings: 'a string’. The caret » returns the result of the fol-
lowing expression. In Smalltalk objects interact by sending messages to each other.
A method invocation is therefore called a message send, and an object’s method is
called when a message is received.

40

4.2 Bifrost Exemplified

4.2.1 Profiling (Scenario 2)

Profiling is a common example of object adaptation. We demonstrate how to build
a simple profiler with Bifrost meta-objects. Listing 4.1 demonstrates how to count
instance variable read accesses on a particular object.

variableReadProfiler := BehavioralMetaObject new.
variableReadProfiler
whenStateIsReadDo: [counter := counter + 1].

variableReadProfiler bindTo: anObject.

Listing 4.1: Variable read counter.

The reification is scoped to the bound objects only. Accessing state of another in-
stance of the same or a different class does not increase the counter.

When profiling application code we require that no external stimulus disturb the
measurements. When binding a profiling meta-object to an object we need to be
sure no other meta-object is already adapting the object since this would affect our
measurements. By using reflection we can detect that there is already another meta-
object present. The granularity of the validation depends on the granularity of the
meta-objects. If there is a coverage meta-object adapting a single method of an object
it might happen that the profiling meta-object has no interest in that method so the
composition can take place.

4.2.2 Traits (Scenario 2)

A trait [Ducasse ef al., 2006b] is a composable unit of behavior that can be shared
among classes. If several classes share a trait then all objects that are instances of
these classes are able to understand the messages defined in the trait. In this exam-
ple, we demonstrate how we can introduce traits to objects, i.e., running instances.
For the sake of simplicity we describe only a meaningful subset of the overall traits
mechanisms, namely: definition of a trait, addition of a trait to an object, composi-
tion of traits and conflict resolution. However, we take it a step further in another
direction and show how we can build traits that are shareable between individual
objects, not just classes. This example shows a first attempt at developing talents,
Chapter 5 presents the details of the full implementation of dynamic composable
units of reuse.

Let us assume that we have a financial system and that we want all financial in-
struments to share the same behavior. For example, suppose we want to provide a
common implementation for the recalculate feature. Furthermore, we do not want
to impose a common superclass on all financial instruments to introduce this fea-
ture, but instead keep the possibility to assign the feature dynamically to a financial
instrument. We can fulfill these needs by defining the feature as a trait, however

41

~

w

»

©

S

~

w

IS

Chapter 4 Bifrost

if the host language does not provide traits we cannot introduce this feature as we
would like. Bifrost provides a way to define dynamically the trait abstraction by
adapting the language model.

financialInstrumentTrait := StructuralMetaObject new.
financialInstrumentTrait
addMethodNamed: #recalculate
performing: 'recalculate
self recalculateTaxes.
self recalculateDates’.
bond := Bond new.
loan := Loan new.
financialInstrumentTrait bindTo: bond.
financialInstrumentTrait bindTo: loan.

Listing 4.2: Building the trait abstraction with structural meta-objects.

First, we introduce the trait abstraction itself as a structural meta-object (Line 1).
Then we define the message recalculate (Line 2-6) for this trait, its behavior be-
ing to recalculate taxes and dates. By using the existing class abstraction defined
with meta-objects we instantiate two financial instruments (Lines 7-8). Finally, we
associate the trait as the meta-object to both objects thus making them capable of
answering the message recalculate.

A trait is defined as a StructuralMetaobject. However, by definition, traits should
not have state. To achieve this we need to remove the possibility of adding state in
the trait structural meta-object.

traitBehavior := StructuralMetaObject new.
traitBehavior removedMethodNamed: #addStateNamed:.
traitBehavior removedMethodNamed: #removeStateNamed:.

traitBehavior bindTo: financialInstrumentTrait.

Listing 4.3: Making traits stateless.

We first define another structural meta-object called traitBehavior (Line 1). This
abstraction has the responsibility of defining which are the messages a trait meta-
object is capable of answering. In Lines 2-3 both state-related messages are removed
from the trait behavior definition. Finally, in Line 4 the traitBehavior is set as the
meta-object of the trait meta-object defining its responsibilities. The semantics of
bindTo: dictate that when a meta-object is bound to an object with a preexisting
meta-object then a composition is executed. Objects can only have one meta-object,
calling bindTo: does not replace the object’s meta-object.

By binding meta-objects to meta-objects Bifrost can change itself uniformly. The
system is not biased towards any particular reflection model.

42

~

®

N}

o

~

@

4.2 Bifrost Exemplified

Let us now consider the definition of another financial trait which has a conflict with
the financialInstrumentTrait.

taxingInstrumentTrait := StructuralMetaObject new.
taxingInstrumentTrait

addMethodNamed: #recalculate

performing: ‘'recalculate

self recalculateTaxes'.

bond := Bond new.
financialInstrumentTrait bindTo: bond.
taxingInstrumentTrait bindTo: bond.

Listing 4.4: Building a conflicting trait abstraction.

In Listing 4.4 we define a trait which adds the method recalculate with a differ-
ent implementation. In lines 7 and 8 we are binding the bond object to the two
traits. The binding in line 8 will throw an exception stating that the adaptation in
taxingInstrumentTrait has a conflict with a previous meta-object adaptation.

A central mechanism of traits is conflict resolution. With Bifrost the user can also
provide a different behavior than the default conflict handler.

taxingInstrumentTrait := StructuralMetaObject new.
taxingInstrumentTrait
addMethodNamed: #recalculate
performing: 'recalculate
self recalculateTaxes'.
traitComposition := CompoundMetaObject new.
traitComposition
when: InvalidAddMethodException
do: [:exception | exception
compoundMetaObject mergelLastConflict].
bond := Bond new.
financialInstrumentTrait bindTo: bond.
taxingInstrumentTrait bindTo: bond.

Listing 4.5: Building a compound trait conflict manager.

In Listing 4.5 we are defining a trait that adds the method recalculate and a com-
pound meta-object. This meta-object defines that when there is an error when adding
a method to an object a different behavior from the default should be executed. In
this case the handler in line 9-10 commands the compound meta-object to merge
the last conflict. The compound meta-object has specific actions when dealing with
conflicts; here it will merge the methods.

This example shows how Bifrgst supports addapting an object without anticipation
at run-time. We can also observe how dynamic traits are composed through the
meta-object definitions.

43

N}

IS

o

Chapter 4 Bifrost

4.2.3 Delegates (Scenario 2)

The method-lookup reification defines the process that specifies which method should
be executed when an object receives a message. Most languages, including Java
and Smalltalk, do not reify method lookup. Most class-based languages impose a
method lookup that follows the class hierarchy and is typically hardcoded into the
execution machinery.

We introduce delegates [Lieberman, 1986; Stein, 1987] as an example of avoiding
class-based method lookup. Objects that have a delegate will be able to forward
messages not understood by the receiver to another object, effectively changing the
traditional lookup.

delegateStructure := StructuralMetaObject new.
delegateStructure addStateNamed: #delegate.

delegateForwarder := BehavioralMetaObject new.
delegateForwarder
when: MessageNotUnderstood new
do: [:receiver :selector :arguments |
receiver delegate
perform: selector
withArguments: arguments].

delegateStructure bindTo: anObject.
delegateForwarder bindTo: anObject.

Listing 4.6: Reifying method lookup with structural and behavioral meta-objects.

First we define a structural change, adding the variable delegate to the bound meta-
objects (Lines 1-2). It will hold the object where messages are sent to if the re-
ceiver cannot handle them. Next we define the behavior with a behavioral change
(Lines 4-10). Whenever a message is not understood (not implemented) by the re-
ceiver, the code block (Lines 7-10) is executed. It first asks the receiver for its dele-
gate, by calling the accessor that was created by the structural meta-object. Then it
invokes the same method with the same arguments on the delegate object. The last
two lines (Lines 12-13) bind the two meta-objects to anobject. Infinite regression can
happen if the object’s delegate is the object itself.

This example shows how Bifrést supports partial reflection by adapting a single
object with delegates. Receiver, selector and arguments are selectively reified in
the behavioral event. The adaptation is achieved without anticipation and at run-
time.

44

w

IS

@

~

@

©

4.2 Bifrost Exemplified

4.2.4 Prototypes (Scenario 3)

Lieberman [Lieberman, 1986] introduced the idea of using the prototype abstraction
to better model the evolution of concepts, and thus the evolution of abstractions.
Modeling with prototypes works by cloning objects from other prototypical objects.
The prototype behavior and state is copied to the cloned objects. The behavior and
the state of every object can be modified to model new abstractions. Any object can
be a prototype.

prototypeMetaObject := CompoundMetaObject new.

prototypeStructure := StructuralMetaObject new.
prototypeStructure
addMethodNamed: #clone
performing: 'clone ”~ Object new metaObject: prototypeMetaObject; prototype:
self'.
prototypeStructure addStateNamed: #prototype.
prototypeStructure
replaceMethodNamed: #addMethodNamed:performing:
performing: 'addMethodNamed: aSelector performing: aString prototype

addMethodNamed: aSelector performing: aString'.

prototypeBehavior := BehavioralMetaObject new.
prototypeBehavior
when: MessageReceived new
do: [:receiver :selector :arguments |
(receiver respondsTo: selector)
ifTrue: [self perform: selector withArguments: arguments].
ifFalse: [receiver prototype
perform: selector

withArguments: arguments]].

prototypeMetaObject add: prototypeStructure.

3 prototypeMetaObject add: prototypeBehavior.

Listing 4.7: Building a prototype object model.

The prototype meta-object is composed of a structural meta-object (Lines 3-10) and
a behavioral meta-object (Lines 12-18) as shown in Listing 4.7. The structural meta-
object defines the clone message (Line 4-6). This message creates an empty ob-
ject and then sets its meta-object to the single prototype meta-object. In Line 7 the
prototype instance variable is added to keep track of the cloning chain. Prototypes
can add behavior and state to themselves. We therefore use a structural meta-object
to model prototypes. To adapt the actual prototype we also have to change the de-
fault meta-object behavior. In Lines 8-10 we can see that the behavior of the struc-
tural meta-object is modified to delegate to the default prototype meta-object the

45

N}

w

@

~

®

Chapter 4 Bifrost

addition, deletion and replacement of behavior and state. For simplicity we only
show the method addition example.

Lines 12-20 define the behavioral meta-object. The message received reification is used
to adapt the behavior of the object. When this event occurs, if the receiver imple-
ments the message then it handles it, otherwise the message is delegated to the re-
ceiver prototype. Finally, a compound meta-object is created (Lines 22-23) with the
behavioral and the structural meta-objects previously defined.

pen := StructuralMetaObject new.
prototypeMetaObject bindTo: pen.
pen prototype: prototypeMetaObject.

pen addMethodNamed: #color performing: 'color ”~ Color red'

pencil := pen clone.
pencil addMethodNamed: #hasRubber performing: 'hasRubber ~ true'

Listing 4.8: A prototype pen use case.

Listing 4.8 presents a user-case for the prototype model. The objective is to model a
‘pen’ and “pencil’ using prototypes. Lines 1-3 define the ‘pen’ prototype. In Line 5
the method color is added to the “pen’ prototype answering red. Then the pencil
prototype is created by cloning the pen prototype (Line 7). The pencil knows how
to answer the color message by delegation to the original prototype. Line 8 adds a
new method to the “pencil’ prototype which is only relevant to the pencil thus the
‘pen’ does not know it.

This example shows how to compose meta-level objects with compound meta-objects.
Dynamically defining prototypes proves that Bifrost is capable of defining new re-
flective models that can coexist with other reflective models; consequentially this
approach is not biased to a particular reflective model.

4.2.5 Live Feature Analysis (Scenario 2)

Feature Analysis determines which software entities in a complex software system
support which end-user features. Traditional approaches to feature analysis es-
tablish this correspondence by exercising features to generate a trace of run-time
events. These traces are then processed in a post-mortem analysis. As such, these
approaches are neither dynamic nor adaptable to changes in the analyzed applica-
tions.

Live Feature Analysis is an approach that overcomes these drawbacks by adapting
the application at run-time. Instead of generating traces, feature information is di-
rectly added to the structural representation of the source code while the features

46

N}

w

@

4.2 Bifrost Exemplified

are exercised. Live Feature Analysis has been originally implemented with Reflec-
tivity [Denker et al., 2010]. Two drawbacks of the previous approach are that it is
difficult to specify an object-specific adaptation and that the management of links
in Reflectivity is by hand and error-prone since there is no reification that models
and adaptation composed of multiple links. Using the meta-object abstraction of
Bifrost, the meta-level management can be handled by the meta-object itself on a
per-object basis.

The following listing shows the next scenario: we instrument a given object before
the execution of a feature with the goal of annotating the AST nodes of the code
fragments that are executed by that feature:

aMetaObject := BehavioralMetaObject new.
aMetaObject

when: ASTNodeExecutionEvent new

do: [:node | node addFeatureAnnotation: #printing].
aMetaObject bindTo: anObject.

Listing 4.9: Live Feature Analysis

To implement live feature analysis we define a new behavioral object (Line 1) which
is triggered every time an AST node is executed (Lines 2—4). The meta-level behavior
is specified using a block closure (anonymous function). In this example, the feature
‘printing’ is added to the execute node (Line 4). Finally, the meta-object is bound to
a particular object, anobject, to be analyzed (Line 5).

The AsTNodeExecutionEvent is an event triggered for every execution of an AST node,
and it contains the knowledge of which are the AST nodes that reify this particular
event. The behavioral meta-object then binds these nodes to an AST meta-object that
will perform the meta-action described in the block. The block uses a helper method
addFeatureAnnotation: which simply adds a symbol in the properties of the node. The
code is automatically installed by Bifrost using an AST transformation. The block
node parameter is a dynamic reification of the executed AST node created at run-
time. Other reifications like the dynamic execution context are available too.

This example shows how Bifrést supports partial reflection by adapting a single
object. The AST node is reified for each occurrence of the newly defined event thus
we selectively reify. The adaptation is achieved without anticipation and at run-
time.

4.2.6 Scoped Live Feature Analysis (Scenario 2)

A key drawback of live feature analysis is that the user still needs to specify where
this adaptation should take place before exercising the features.

47

Chapter 4 Bifrost

Prisma aids the user when the target of the feature analysis is unknown. We need
to define the same meta-object used by live feature analysis inside a Prisma execu-
tion. However, the portions of the system that should be adapted are not selected
by the user but instead by the execution itself. We use the term “AST execution”
figuratively, since AST nodes are not literally executed, but rather their lower level
bytecode representation is. However, when we adapt an application we specify that
we would like something to happen when the bytecode, i.e., the result of compiling
a particular AST node, is executed.

loginExecution := Execution new.
loginExecution when: ASTNodeExecutionEvent
do: [:node | node addFeatureAnnotation: #login]

The Execution>>when: anEvent do: aBlock method is responsible for adding a meta-
object to the execution which should evaluate the provided block when a particular
meta-event is produced. Whenever an AST node is executed for an adapted object
the meta-level behavior is executed.

loginExecution

executeOn: [WebServer new loginAs: 'admin' password: 'pass']

Listing 4.10: Exercising the login feature on a web server.

Prisma applies this meta-object only to the specific method invoked during the exe-
cution. The meta-objects associated to the execution are never applied to a complete
object unless the meta-object specifies so. In Listing 4.10 we are exercising the login
feature on a web server. We are dynamically scoping the adaptation in the execution
to the behavior in the block.

We present a more in-depth explanation of Prisma in Chapter 9.

4.3 Implementation

Bifrost offers a form of partial behavioral reflection that supports a highly selective
means to specify where and when to reify system constructs. Bifrost generalizes and
simplifies Reflectivity by using meta-objects (rather than links) as the sole abstrac-
tion with the responsibility of specifying the structure and behavior of any other
object. Bifrost builds on an earlier prototype, called Albedo [Ressia et al., 2010]. The
main differences between these two prototypes are that Bifrost provides (i) a meta-
object composition mechanism, (ii) a unification of the various meta-objects in the
system, and (iii) a purely object-centric approach for applying meta-objects to ob-
jects.

48

4.3 Implementation

4.3.1 Adapting the Lower-level

Bifrost’s adaptation mechanism is built on top of lower-level meta-objects. In the
Smalltalk implementation of Bifrdst we bind meta-objects to objects representing
ASTnodes. AST nodes are static representations of the running behavior of a method
in a class. Bifrost achieves object-centric reflection by duplicating the AST behavior
representation in the meta-object and modifying it. Objects thereby become owners
of their behavior instead of depending on a meta-class model.

A meta-object can be associated to a single AST node or multiple ones (see Fig-
ure 4.2). The next time the method is compiled the system automatically generates
new bytecodes that take the meta-object into consideration. This behavior allows
Bifrost to adapt the predefined behavior of objects. AST meta-objects can reify AST
related information depending on the AST node. For example, a message send node
can reify the sender, the receiver and the arguments at runtime. The meta-level be-
havior specified in the meta-object can be executed before, after or instead of the
AST node the meta-object is adapting.

AST Meta-objects

R

Source code
(AST)

Figure 4.2: Bifrost AST adaptation through meta-objects.

The following section explains how this dynamic recompilation works in the context
of Smalltalk.

4.3.2 Reflective methods

Bifrost exploits the reflective method abstraction [Marschall, 2006]. A reflective method
knows the AST of the method it represents (see Figure 4.3). In Pharo classes are first
class objects that are accessible and changeable at run-time. Classes hold a reference
to a MethodDictionary, a special subclass of Dictionary. All methods of a class are
stored in its method dictionary. The VM directly accesses class objects and method

49

Chapter 4 Bifrost

methodDict
| | MethodDictionary l—*>| CompiledMethod

ReflectiveMethod

MetaObjectReflectiveMethod

Figure 4.3: Reflective Methods in Method Dictionaries.

dictionaries when evaluating message sends. Normally, only instances of compiled-
Method are stored in the method dictionary of a class but Pharo allows us to replace
it with any other object that obeys the right protocol. When such an object is used
in place of a regular compiled method, the VM sends it the message run:with:in:,
encoding the message, its arguments and the recipient. When a reflective method
receives this message it processes the adaptations specified by the meta-object on
the AST and generates a new compiled method that is eventually executed. If no
adaptation is present the reflective method caches the compiled method to improve
performance.

4.3.3 Structural and Behavioral Reflection

Behavioral reflective changes are achieved by attaching meta-objects to AST nodes,
thus modifying or adding behavior to the target object’s method.

On the other hand, structural reflection is handled differently. For example, when a
method is added to a particular object then the meta-object is responsible for man-
aging this method. The class is modified to understand the method and a reflective
method is installed in the method dictionary. This reflective method delegates to
the meta-object of the receiver object the responsibility of finding the method to be
executed. If the meta-object has a method with the correct selector then the associ-
ated compiled method is executed. Otherwise a does not understand error is triggered,
which is the original behavior. All instances of the class that were not adapted return
does not understand when the added method is invoked.

In the case of adding an instance variable to a particular object, once again the meta-
object is responsible for holding this variable. Behavioral adaptations are introduced
in the methods that access this instance variable to delegate the access to the instance
variable in the object’s meta-object.

50

4.3 Implementation
4.3.4 Object-specific Behavior

A meta-object defines how an object is interpreted. The meta-object abstraction
has a method dictionary in which the corresponding reflective method for that spe-
cific object is stored. In Figure 4.3 we can see a reflective method abstraction called
MetaObjectReflectiveMethod. When an object method is adapted the reflective method
in the method dictionary is replaced by a MetaobjectReflectiveMethod. A copy of the
reflective method is installed in the method dictionary of the object’s meta-object.
Finally the adaptation is performed over the copied AST method node. The key re-
sponsibility of a MetaobjectReflectiveMethod is to delegate the method execution to
the object’s meta-object.

Object Key
A run: #isPoint with: #() in: aPoint instance-of —>p

message send ———>
3 aMethodDictionary lookup ... >
A /\ T~ isPoint : aMetaObjectReflectiveMethod
Point isZero : aCompiledMethod
isPoint
Kl run: #isPoint with: #() in: aPoint
2 4

'aMetaObiect | ["aScopedMethodDictionary |
>

|isPoint : aReflectiveMethod |
1 5

run: #isPoint with: #() in: aPoint

aPoint isPoint

Figure 4.4: Modified method lookup for a point with an adapted isPoint method.

In Figure 4.4 we can see an example of the modified method lookup for aPoint>>isPoint
in Bifrost. First the method lookup finds the method isPoint defined in the Point
class. This method is not a compiled method but a reflective method. The VM does
not know how to execute this abstraction thus it delegates the execution to the reflec-
tive method itself with run:with:in:. We can observe that the MetaobjectReflective-
Method instance delegates to a meta-object through the message run:with:in:. In step
4 the reflective method delegates the execution of the method isPoint to the re-
ceiver’s meta-object. To find the corresponding method to be executed the meta-
object indexes by method name. The meta-object finds the corresponding method
which is a reflective method containing the a copy of the original AST plus adapta-
tions. The message run:with:in: is sent to the reflective method which first triggers
the compilation of the method, second replaces the reflective method in the method
dictionary with the resulting compiled method, and finally executes the compiled
method.

If the message is sent to another object of the same class, for which no adaptation
has been performed, the MetaobjectReflectiveMethod placed in the class method dic-
tionary sends the message run:with:in: to the original reflective method cached in
the reflective method.

51

Chapter 4 Bifrost

There are other implementation mechanisms that we could have used to obtain the
same behavior. Next we introduce these options and we explain why we did not
use them:

e Anonymous Classes are a Smalltalk mechanism for changing the class of an ob-
ject at runtime. When changing the class of an object the original class shape
and the new class shape should be the same. This implies that the number of
instance variables defined in the class cannot change. Also managing anony-
mous classes is not trivial, the IDE does not take into account these classes.
Moreover, changing an object’s class has important consequences over a class-
based language, for example the inheritance chain is severed disrupting the
normal behavior of the object when delegating to inherited behavior.

* Lookup Method modification is another option for achieving dynamic meta-objects.
Instead of using reflective methods we can redirect the method lookup to an
object’s meta-object before reaching the object’s class. However, this implies
changing the VM since the method lookup in Smalltalk is not reified. We
wanted to have a system that can be loaded and used in any Smalltalk envi-
ronment regardless of the VM they are using.

e Droxies are objects that are placed before other objects. For example, if we want
to count the number of times a specific object is invoked we create a proxy and
change all references to the specific object to point to the proxy. This means
that to invoke a method on the specific object we always have to go through
the proxy which counts the invocations. In Smalltalk, there is a mechanism
known as become which transforms all references to an object to another object,
which in this case is a proxy. The problem with become is that it is slow and
there is no way of doing it lazily. Due to this, we decided to use the reflective
method mechanism which has no performance impact if the method is not
used and when used the performance impact is smaller than changing all the
references to an object.

4.3.5 Micro-Benchmark

We have performed a micro-benchmark to assess the maximal performance impact
of Bifrost. We follow the test setup of Tanter [Tanter et al., 2003] and base our bench-
marks on the message send reification only, the other reifications having similar per-
formance characteristics. All benchmarks were performed on an Apple MacBook
Pro, 2.16 GHz Intel Core Duo in Pharo 1.1.1 with the jitted Cog VM. To avoid pos-
sible execution artifacts disturbing the benchmark we ensure that the involved re-
flective and jitted methods are created in advance and that method lookup caches
are filled.

In our benchmark we measure the execution time of a test method being invoked one
million times from within a loop. This test method is performing a simple constant
time arithmetic operation to avoid the VM optimizing the method call. In Table 4.2

52

4.3 Implementation

we report the average 1 and standard deviation 7 of running this benchmark one
hundred times with three different setups:

o T
1. No reification 21.54 1.05
2. Disabled reification 21.53 1.07

3. Message send reification 729.60 16.52

Table 4.2: 1 is the average time in milliseconds and 7 is the standard deviation for
106 activations of the test method over 100 runs.

1. In the first test case (no reification) we measure the execution time of the appli-
cation without Bifrgst.

2. Inthesecond test case (disabled reification) we measure the execution time of the
application with Bifrost, but without reification on our benchmarked method.
We see that there is no performance impact on parts of the system that do not
use reflection.

3. In the third test case (message send reification) we measure the execution time
of the application with Bifrost reifying the 106 method activations of the test
method. This shows that in the reflective case the code runs about 35 times
slower than in the reified one.

This micro-benchmark shows that reflection on a runtime system can have a signif-
icant performance impact. However, as we have demonstrated in the past and we
will exemplify in the next section, the performance impact for real-world applica-
tion with fewer reifications is lower and in some cases imperceptible for the user.
Bifrost’s meta-objects provide a way of adapting selected objects thus allowing re-
flection to be applied within a fine-grained scope only. This provides a natural way
of controlling the performance impact of reflective changes.

4.3.6 Bifrost for other languages

In this section we discuss the feasibility of implementing Bifrost in other languages
and environments.

There has been extensive work in AOP to support adaptation mechanisms. As
Tanter [Tanter, 2008] has pointed out, there are several techniques to support dy-
namic deployment of aspects: residues [Masuhara et al., 2003], meta-level wrap-
pers [Hirschfeld, 2003], optimized compilers with static analysis [Avgustinov et al.,
2005; Bodden et al., 2007], and VM support [Bockisch et al., 2004]. Moreover, there
has been promising work on aspect-aware VMs [Bockisch et al., 2006b; Bockisch et
al., 2006a] and dynamic layer (de)activation [Costanza et al., 2006], suggesting that
such advanced scoping mechanisms can be efficiently supported.

53

Chapter 4 Bifrost

Object-centric reflection is not hard to achieve in other languages. The key problem
of this approach for other languages is its requirement for unanticipated changes.
A more static mainstream language (e.g., Java) solution would likely be more static
in nature. There are numerous instrumentation libraries for Java bytecode, such as
BCEL, ASM, or Javassist [Chiba, 2000]. The key problem in this approaches is that
adaptations can be only introduced at either build-time or at load-time. Achieving
the same dynamic behavior and unanticipation as in Bifrgst’s Smalltalk implemen-
tation is not possible.

4.4 Conclusion

In this chapter we have presented Bifrost the Smalltalk implementation of object-
centric debugging. We explained the particularities of the Smalltalk implementa-
tion. We validated the object-centric approach through a set of examples that show
that: (i) different reflection models are achievable, (ii) all the reflection requirements
are covered by Bifrost, (iii) object-centric reflection allows developer to reflect on
objects and their static representation (also objects) with a unified model, and (iv)
the absence of the object paradox in the presented examples (the validation and
demonstration of how the object paradox is avoided is presented in Chapter 8 and
Chapter 7).

In the next chapters we discuss structural adaptations (Chapter 5) and behavioral
adaptations (Chapter 6). In these chapters we concentrate on how the object paradox
is implicitly present in the language abstractions and how object-centric reflection
can avoid the paradox while providing an improved development approach.

54

Chapter 5

Dynamically Composable Units of Reuse

In this chapter we demonstrate how the object paradox is present in the reuse of
behavior and state. Generally class-based solutions are used as the main target of
reuse techniques, like traits. We demonstrate how object-centric reflection improves
the reuse mechanism by providing a dynamic approach which avoids the object
paradox.

Classes in object-oriented languages define the behavior of their instances. Inher-
itance is the principle mechanism for sharing common features between classes.
Single inheritance is not expressive enough to model common features shared by
classes in a complex hierarchy. Several forms of multiple inheritance have conse-
quently been proposed [Borning and Ingalls, 1982; Keene, 1989; Meyer, 1997; Schaf-
fert et al., 1986; Stroustrup, 1986]. However, multiple inheritance introduces prob-
lems that are difficult to resolve [Dixon et al., 1989; Sweeney and Gil, 1999]. One can
argue that these problems arise due to the conflict between the two separate roles
of a class, namely that of serving as a factory for instances, as well as serving as a
repository for shared behavior for all instances and the instances of its subclasses. As
a consequence, finer-grained reuse mechanisms, such as flavors [Moon, 1986] and
mixins [Bracha and Cook, 1990], were introduced to compose classes from various
features.

Although mixins succeed in offering a separate mechanism for reuse they must be
composed linearly, thus introducing new difficulties in resolving conflicts at compo-
sition time. Traits [Schirli et al., 2003; Ducasse et al., 2006b] overcome some of these
limitations by eliminating the need for linear ordering. Instead dedicated operators
are used to resolve conflicts. Nevertheless, both mixins and traits are inherently
static, since they can only be used to define new classes and not to adapt existing
objects.

Ruby [Matsumoto, 2001] relaxes this limitation by allowing mixins to be applied to
individual objects. Object-specific mixins however still suffer from the same com-
positional limitations of class-based mixins, since they must still be applied linearly
to resolve conflicts.

55

Chapter 5 Dynamically Composable Units of Reuse

We introduce talents, object-specific units of reuse that model features an object can
acquire at run-time. Similar to traits, a talent represents a set of methods that consti-
tute part of the behavior of an object. Unlike traits, talents can be acquired (or lost)
dynamically. When a talent is applied to an object, no other instance of the object’s
class are affected. Talents may be composed of other talents, however, as with traits,
the composition order is irrelevant. Conflicts must be explicitly resolved.

Like traits, talents can be flattened, either by incorporating the talent into an existing
class, or by introducing a new class with the new methods. However, flattening is
purely static and results in the loss of the dynamic description of the talent on the
object. Flattening is not mandatory, on the contrary, it is just a convenience feature
which shows how traits are a subset of talents.

The remainder of this chapter is structured as follows: In Section 5.1 we motivate
the problem. Section 5.2 explains the talent approach, its composition operations
and a solution to the motivating problem. In Section 5.3 we present the internal
implementation of our solution in the context of Smalltalk. In Section 5.4 we discuss
related work. Section 5.5 discusses about features of talents such as scoping and
flattening. In Section 5.6 we present examples to illustrate the various uses of talents.
Section 5.7 presents a dedicated user interface for managing and defining talents.
Section 5.8 summarizes the chapter and discusses future work.

5.1 Motivating Examples

In this section we analyze two examples that demonstrate the need for a dynamic
reuse mechanism.

Moose is a platform for software and data analysis that provides facilities to model,
query, visualize and interact with data [Nierstrasz et al., 2005; Girba, 2010]. Moose
represents source code in a model described by FAMIX, a language-independent
meta-model [Tichelaar et al., 2000]. The model of a given software system consists of
entities representing various software artifacts such as methods (through instances
of FAMIXMethod) or classes (through instances of FAMIXClass). Each type of entity offers
a set of dedicated analysis actions. For example, a FAMIXClass offers the possibility
of visualizing its internal structure, and a FAMIXMethod offers the ability to browse
its source code. Selecting the needed features for an entity is awkward within the
constraints of a fixed class hierarchy.

In a second example, we consider various kinds of streams, whose features can be
combined at run time, rather than requiring that a class be created for every con-
ceivable combination of features.

56

5.1 Motivating Examples
5.1.1 Moose Meta-model

Moose can model applications written in different programming languages, includ-
ing Smalltalk, Java, and C++. These models are built with the language independent
FAMIX meta-model. However, each language has its own particularities which are
introduced as methods in the different entities of the meta-model. There are dif-
ferent extensions which model these particularities for each language. For exam-
ple, the Java extension adds the method issessionBean to the FAMIXClass, while the
Smalltalk extension adds the method isextended. Smalltalk however does not sup-
port namespaces, and Java does not support class extensions. Additionally, to iden-
tify test classes Java and Smalltalk require different implementations of the method
isTestClass in FAMIXClass.

Another problem with the extensions for particular languages is that the user has
to deal with classes that have far more methods than the model instances actually
support. Dealing with unused code reduces developer productivity and it is error
prone.

A possible solution is to create subclasses for each supported language. However,
there are some situations in which the model requires a combination of extensions:
Moose JEE [Perin, 2010; Perin et al., 2010] — a Moose extension to analyze Java En-
terprise Applications (JEAs) — requires a combination of Java and Enterprise Ap-
plication specific extensions. This leads to an impractical explosion of the number
of subclasses. Moreover, possible combinations are hard to predict in advance.

Multiple inheritance can be used to compose the different behaviors a particular
Moose entity requires. However, this approach has been demonstrated to suffer
from the “diamond problem” [Snyder, 1986; Bracha and Cook, 1990] (also known
as “fork-join inheritance” [Sakkinen, 1989]), which occurs when a class inherits from
the same base class via multiple paths. When common features are defined in differ-
ent paths then conflicts arise. This problem makes it difficult to handle the situation
where two languages to be analyzed require the addition of a method of the same
name.

Mixins address the composition problem by applying a composition order, this
however might lead to fragile code and subtle bugs. Traits offer a solution that is
neutral to composition order, but traits neither solve the problem of the explosion in
the number of classes to be defined, nor do they address the problem of dynamically
selecting the behavior. Traits are composed statically into classes before instances
can benefit from them.

We need a mechanism capable of dynamically composing various behaviors for dif-
ferent Moose entities. We should be able to add, remove, and change methods. This
new Moose entity definition should not interfere with the behavior of other entities
in other models used concurrently. We would like to be able to have coexisting mod-
els of different languages, formed by Moose entities with specialized behavior.

57

Chapter 5 Dynamically Composable Units of Reuse

5.1.2 Streams

Streams are used to iterate over sequences of elements such as sequenced collections,
files, and network streams. Streams offer a better way than collections to incremen-
tally read and write a sequence of elements.

Streams may be either readable, writeable or both readable and writeable. They can
also be binary or character-based. Furthermore, streams can have different back-
ends, such as memory streams, socket streams, database streams, or file streams.

The potential combination of all these various types of streams leads to an explosion
in the number of classes.

Similar solutions to the Moose meta-model problem can be provided, however they
present the same shortcomings. Multiple inheritance can be used to compose the
different behaviors of a particular stream. However, the diamond problem again
makes it difficult to handle the situation where two streams want to add a method
of the same name. Mixins address the composition problem by applying a com-
position order, this however might lead to fragile code and subtle bugs. Although
inheritance works well for extending a class with a single orthogonal mixin, it does
not work so well for composing a class from many mixins. The problem is that usu-
ally mixins do not quite fit together, i.e.,, their features may conflict, and inheritance
is not expressive enough to resolve such conflicts.

Traits offer a solution that is neutral to composition order, but traits neither solve
the problem of the explosion in the number of classes to be defined, nor do they
address the problem of dynamically selecting the behavior. Traits are composed
statically into classes before instances can benefit from them.

We need a mechanism capable of dynamically composing the right combination
of streams required for each particular occasion. The key objective is to avoid an
exponential increase in the number of classes needed to provide all the different
combinations.

5.2 Talents in a Nutshell

In this section we present a new approach of composable units of behavior for ob-
jects, called talents. These abstractions solve the issues present in other approaches.

5.2.1 Defining Talents

A talent specifies a set of methods which may be added to, or removed from, the
behavior of an object. We will illustrate the use of talents with the Moose extension
example introduced in the previous section.

58

EN

N}

3

5.2 Talents in a Nutshell

A talent is an object that specifies methods that can be added to an existing object.
A talent can be assigned to any object in the system to add or remove behavior.

aTalent := Talent new.
aTalent

defineMethod: #isTestClass

do: '~ self inheritsFromClassNamed: #TestCase'.
aClass := FAMIXClass new.

aClass acquire: aTalent.

We can observe that first a generic talent is instantiated and then a method is defined.
The method isTestclass is used to test if a class inherits f