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Abstract

Duplication is detected by comparing features of source fragments. The main problem for the detection is that
source code is rarely copied exactly. The detection process must be able to ignore the superficial differences
and to concentrate on fundamental similarities in order to find relevant duplication. While the high level
information yielded by syntactic and semantic code analysis can be put to effective use, the drawbacks of these
deep analysis techniques are most importantly the reduced adaptability to different programming languages.
Because duplication is an ubiquitous problem, however, support for duplication detection and management is
needed for every programming language in use.

In this thesis we investigate how the premises of simplicity and adaptability influence all phases of the clone
detection process. We analyze how line-based string matching as basic feature comparison technique can be
augmented by minimal parsing to improve detection sensitivity. We investigate which code normalization
techniques remove the superficial differences and reveal the similarities. We show how clone candidates are
retrieved from the results of the basic comparison. We propose measures to select the relevant clones from
the set of all retrieved candidates. We finally develop a collection of quantitative visualizations that enable the
assessment of the copied code in the context of the entire system.

We experimentally validate the proposed code normalization technique in terms of precision and recall, show
how the proposed relevancy measures improve on simple size metrics, and discuss scalability issues. We also
validate the line-based granularity, and perform a comparison of our technique with related string matching
detectors.
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Chapter 1

Introduction

Meine Angst: die Wiederholung!

– Max Frisch1

As the first very large software systems were approaching their second decade of productive existence, the
experiences in maintaining many a million source lines were accumulating and fueled the creation of the field
of reverse and re-engineering of software. The research in this area has been growing steadily since the end of
the 1980s. Within this context, research has for a decade now seriously looked at ways to cope with one of the
scourges of the programmer who must keep an evolving system under control: multiple instances of the same
fragment of code hidden in a system. Today, code duplication is recognized as one of the important problems
in software development [FBB+99].

The utopian idea of software development is that an elegant solution is created which solves the task efficiently
and which can be easily extended and adapted to new requirements. Pieces of code should be abstracted into
reusable components on different levels, be it the method, class or component level. The slogan to promote
programming which creates minimal redundancy and ballast goes

Say it once and only once!2

In real life, software gets written under less than ideal conditions, often under considerable stress and deadline
pressure. In real life, software systems are often too big to be fully understood by a programmer [DDN02].
Under these circumstances, programmers neither do nor can strive for ideal structures. They have to create a
working system in the fastest possible way, which often means reusing pieces of software bycopy & paste.

1.1 The Problem

Code duplication, or cloning, is essentially a form of software reuse: existing software artifacts are used in
the construction of new code. As the alternative termcode scavenging[Kru92] insinuates, duplicating code
is considered to be a too primitive reuse activity for the righteous programmer. Reuse by scavenging is an
informal and uncontrollable practice. Duplication activity is usually not documented, making the dependencies
between parts of the code a system characteristic which is completely hidden. If we want to learn about it we
must actively seek it out.

If a system is affected by duplication on a larger scale, the induced problems are summarized as follows:

• The spread of an error potentially contained within the duplicated code.

1“What I fear: Repetition!” Max Frisch, Swiss playwright and novelist, 1911–1991.
2Available fromhttp://c2.com/cgi/wiki?OnceAndOnlyOnce [May 15, 2005]
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Research and Contributions Section 1.2

• The increased amount of source code, leading to bloat, increased cognitive load and multiplied mainte-
nance effort during updates and changes.

A system containing code duplication is more error prone and more resistant to change. If we want to keep our
systems lean we have to expurgate the duplication from time to time, which requires us to first detect where
it hides. However, the problem of detecting duplication is not trivial. Consider the following requirements for
detecting duplicated code:

Self Similarity. We have no way of knowing beforehand which pieces of the code have been copied and cannot
search for specific patterns. Ultimately we must extract the search pattern from the search domain itself,
i.e., compare each element with each other element. This task is ofO(n2) time and space complexity.
Depending on the granularity level on which we have set our aim, this can be a heavy burden for large
systems.

Scalability. Duplicated code is most problematic in large, complex software systems. For this reason, a useful
tool must be able to cope with very large code bases.

Multiple Languages and Dialects.There are thousands of programming languages in use today, and dozens
of dialects of the most popular languages (like COBOL). A useful duplicated code detector must be robust
in the face of syntactic variations in programming languages [BYM+98].

Avoid False Positives.False positives occur when code is marked as duplicated that should not be. Program-
ming language constructs, idioms, and recurring statements should not normally be considered as dupli-
cated code, since they do not indicatecopy & pasteproblems.

Avoid False Negatives.Frequently, duplicated pieces of code are not textually equivalent. Any number of
editing transformations applied to the copied code will disguise the similarity but not break the duplica-
tion relationship.

Useful Results.Detecting duplication is only the first step. The next step is to reengineer the code,e.g., extract
the cloned code into a function or macro which can be invoked from everywhere. The duplicates that
are reported by a tool should thus be code fragments that lend themselves to such a reengineering effort
easily.

These challenges cannot all be addressed simultaneously. For example, like every information retrieval tech-
nique a clone detection method which avoids false negatives will produce more false positives. A choice must
be made to favor some of the challenges over others. Such a choice, made from the perspective of the reengi-
neering endeavor itself and its context, is what guides the work presented in this thesis.

1.2 Research and Contributions

When surveying the literature on clone detectors we find that they mostly emphasize the requirementsAvoid
False Positives, Avoid False Negatives, or Scalability. However, from the viewpoint of continuous software
maintenance we are convinced that since code duplication is an ubiquitous phenomenon, detection techniques
need to be in the toolbox of everybody who is in charge of a reengineering effort. Such efforts are undertaken
for systems written in any language. We therefore have to emphasize the requirement ofMultiple Languages
and Dialects. On the level of tool support this means that a tool should be easy to adapt to a different lan-
guage without requiring an expert in parsing technology. Following these considerations we can formulate our
research question:

What are the potentials and the problems of techniques for clone detection and analysis which are built
under the premise that switching the programming language should not require more than reconfiguration
of a detection tool?

2



“thesis” — 2005/6/13 — 13:54 — page 3 — #17i
i

i
i

i
i

i
i

Chapter 1 Introduction

Mechanical detection of duplication in source code is achieved by comparing some selected attributes of the
code. Not all attributes we can find in source code are of the same importance, however. Where some of
them represent essential features and are therefore strong indicators for the similarity of two source fragments,
others represent only superficial features which may be easily changed, disturbing the detector with unimportant
dissimilarities. To be efficient we need to distinguish between the essential and the superficial attributes. Parsers
are used to build source representations like abstract syntax trees where such distinctions can be made easily.
A common approach to detecting duplication is therefore to compare syntax trees or attributes derived from
syntax trees [MLM96b][BYM+98][Kri01]. The problem is however that a parser is an intricate mechanism.
Getting a grammar—in the appropriate format—for the language at hand, and ‘installing’ it in a parser is an
expensive part of the detection process.

Under theeasy adaptationpremise given above we will have to base the comparison on attributes which can be
extracted from the code without a full parser. This thesis investigates how we can balance the use of parsers by
i) minimizing their usage and trying instead to employ cheaper techniques, andii) by building, where necessary,
generic parsers that can be adapted by simple configuration.

The problems of using parsing only to a minimal extent are that less parsing means less information about the
code. This makes it harder to eliminate false positives and to derive additional knowledge which could guide
the reengineering afterwards. Detecting duplicated code without parsing the source code can be compared to
playing the piano with thick gloves on. The goal of this thesis is to make the tune still pretty enough so people
want to listen to it.

List of Contributions

The overall contribution of this thesis is an in-depth analysis of the possibilities of clone detection using simple
methods which are adaptable for a large range of programming languages. In detail, the work presented in this
thesis contains the following contributions:

• We identify four reengineering goals with which to categorize duplication detection approaches.

• We analyze the process of clone detection in general, identifying for example the notions offixedand
freegranularity clones as an important distinction for clone detectors.

• In addition to the basic entities of theclone pair(two copied fragments) and theclone class(an aggre-
gation of multiple similar fragments) we introduce the notion ofclone class familywhich combines the
clone relation with the physical neighborhood of copied fragments to form an aggregation criteria.

• We analyze and describe the process of code duplication detection under the premises of using only
minimal parsing methods [DRD99]. This process encompasses three steps:

1. Input Transformation:We propose a number of normalization mechanisms for lightweight syntac-
tic elements in source code, and analyze the tendency of these methods to generate false positives
in the comparison.

2. Comparison:We describe a simple comparison algorithm which creates a very detailed picture
of the duplication situation. We then describe how to extract instances of interesting duplication
(clone pairs) from this representation, and how to assemble the pairs to clone classes and clone
class families.

3. Ranking and Filtering:We propose a number of measures for clone pairs to evaluate their relevance
with respect to a number of reengineering tasks. As a basis for these measures we propose a
representation which reduces source code to a number offeaturesthat are being used to get a finer
grained similarity value between two code fragments.

• In order to ease the user’s handling of clones we discuss a set of requirements for clone browsers and
how they could be integrated into editors.

• As another way to give a user insight into the duplication we develop a new approach to visualize dupli-
cation quantitatively, setting it in relation to the context of the system it occurs in [RDL04].
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Outline of the Thesis Section 1.3

• In a number of case studies we validate the effectiveness of the proposed techniques with respect to the
chosen reengineering goals and compare our results to the results of other detection approaches of similar
characteristics [DNR05].

1.3 Outline of the Thesis

In Chapter 2 we explain the problem of duplicated code, how it comes to pass, what its negative effects are and
where it brings benefits. We introduce the measures that are taken to detect and deal with duplicated code. We
present a categorization of the different approaches to detection according to four general reengineering goals,
and we motivate our own position within this categorization.

A survey of the state of the art in clone detection can be found in Appendix A, including brief overviews of
related fields like compiler optimization (Appendix A.7) and plagiarism detection (Appendix A.8), where self
similarity of source code is detected and exploited under different premises.

In Chapter 3 we explore on a general level the definition of clones in source code and introduce the vocabulary
used in the thesis.

In Chapter 4 we study the potential and the problems for detecting and analyzing clones under the restriction
of using only language independent techniques. The chapter covers the three phases before, during, and after
the comparison:

1. Transformation of the source code to normalize superfluous differences (Section 4.2).

2. The organization of the comparison and the retrieval of clone candidates from the atomic matches (Sec-
tion 4.3).

3. Ranking and filtering the candidates in order to obtain relevant clones for a number of reengineering
tasks (sectrefsect:rankingandfiltering).

In Chapter 5 we present different means which make it easier for users to handle the retrieved duplication. We
first discuss the requirements for a code editor which lets users browse clones at the level of source code and
we show two ways to visualize duplication:

• Thedotplot is a viable way to investigate the duplication situation for smaller, constrained areas which
contain many clones (Section 5.3).

• Polymetric viewsenable navigation of large amounts of duplication in bigger systems (Section 5.4).

In Chapter 6 we validate a number of aspects of the proposed techniques such as

• the degree oflanguage independencethat is achieved,

• the influence of thenormalization techniqueson precision and recall of the clone detection,

• a comparison of our results with findings from related string-based detection approaches,

• the influence of code layout normalization measures likepretty printingon recall,

• the effectiveness of the proposedrankingmeasures,

• and thescalabilityof the proposed techniques implementation.

In Chapter 7 we summarize the main contributions of the work and give an outlook on possibilities for future
work in the field.

In the appendix we present some technical discussions:
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Chapter 1 Introduction

• As already mentioned, Appendix A contains the overview of the related work.

• In Appendix B we list all editing operations which can change a piece of code once it is copied. For each
edit operation we list how clone detection is able to deal with it.

• In Appendix C we present how the removal of superfluous detail in program code can be implemented
using an expressive regular expression engine like the one found in PERL.
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Chapter 2

Copy & Paste:
A Simple Reuse Mechanism

The copying1 and subsequent pasting of pieces of written works is an old problem. Even before the advent of
computerized text processing it was well known that ethically challenged authors were taking more than mere
inspiration from related works. Electronic text processing and the ubiquity of the originals in digital formats
just made the task of finding relevant material (and being reasonably sure to go undetected) so much easier
that the problem has gained epidemic status with the advent of the world wide web2. Whereas plagiarism
always entails legal problems, the copying of source code, which has been described as the simplest of reuse
mechanisms by Krueger [Kru92], is only doubtful from the practitioners viewpoint. For software maintainers
duplication of code causes a number of severe problems such as increased work load and defect probability.

In this chapter we elucidate the background of the problem in more detail and in a broader context. Focusing
on the problem of copyingprogram source code, not natural language text, the chapter paints a kind ofclone
life cycle.

In Section 2.1 we investigate the duplicated code from close up. To again make clear why duplication is a
problem we start by listing the negative effects that duplicated code has on, for example, the maintainability of
a system. We explain some of the causes that lead to code being duplicated. We also briefly list situations in
which duplicating code can not be avoided, and finally some actual benefits of clones.

In Section 2.2 we introduce the infrastructure that is developed to combat clones. We describe the basic struc-
ture of clone detectors and the different clone management strategies, most prominently the removal of clones
via reengineering actions such as refactorings.

In Section 2.3 we finally formulate four reengineering goals which allow a categorization of clone detection
approaches according to how they support these goals and we explain a viewpoint which guides our selection
of the two goals that are important to us. The selected goals are the basis for our investigations in Chapter 4.

To avoid blocking the presentation with too much technical detail, the state of the art of clone detection is found
in Appendix A, where we present a detailed comparison of different approaches under various aspects.

1The multiplication of the information only takes place if it iscopiedand pasted, notcut and pasted, as we have seen carelessly written
in many articles and books on the topic.

2Available fromhttp://plagiarism.org/plagiarism.html [May 15, 2005]
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Our Contribution

The contributions of this chapter are:

• The accumulation of the most comprehensive list of duplication causes, problems, and benefits in the
literature to date.

• The description of a design space of duplication detection approaches with a list four reengineering goals.
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Chapter 2 Copy & Paste: A Simple Reuse Mechanism

2.1 Duplication of Source Code

Information on how a piece of software operates—be it an algorithm, a set of constants, human-
readable documentation, or something else—should exist in only one place.

–TheOAOO Principle (Once and only once)

The name of the OAOO principle with its twofold incantation ofonce is of course tongue-in-cheek. The
rhetorical device that is employed—repetition of a word for emphasis (Epizeuxis)—accentuates the importance
of the concept of singularity in software development. On the other hand it also hints at how routinely the
principle is broken. The duplication of information and the problems that arise when trying to keep the different
instances synchronized is one of the major problems of software development, “Number one in the stink parade
is duplicated code” as Fowler et al. [FBB+99] claim in their enumeration of bad softwaresmells.

The range that is currently reported most often as the amount of duplication found in industrial systems is
roughly 10% to 25% (see below). There has however not yet been a comprehensive study of duplication in
industrial systems. All data that exists is anecdotal evidence stemming from the case studies performed by the
detection researchers. Also, these numbers cannot all be compared directly, as the different detection methods
disagree on the exact characteristics of what is considered to be a clone. In a comparison of different clone
detection tools, Bellon [Bel02a] has found that for the same case studies and with a commonly agreed upon
minimal size for a clone, the tools reported wildly differing numbers of clones on account of the differences in
filter criteria employed to select valid clone candidates.

Baker [Bak95a] reports that 19% of the X Window System can be considered duplicated code. Mayrand et
al. [MLM96b] report that 6.4% and 7.5% of the overall number of functions of the system were found to be
exact copies in a large (15 millionLOC) telecommunication system. Case studies that we have performed
[DRD99] have revealed up to 50% of duplication in an accounting system. Jarzabek&Shubiao [JS03] even
found that 68% of the JAVA Buffer Library from JDK 1.4.1 could be considered redundant and be removed
with a fine-grained refactoring technique.

This section presents the negative consequences of code duplication, and the reasons that code gets duplicated.
We also present duplication that cannot be avoided and some positive aspects of duplication.

2.1.1 Negative Effects of Code Duplication

Duplicating code has a number of negative effects on the quality of the code. Besides increasing the amount
of code that has to be maintained, duplication increases requirements on the resources and on the cognitive
performance of the programmer [Joh94a][MLM96a][MLH96]. The following list gives detailed overview of
these negative effects:

• Increased Work Load for Maintainers:

– When maintaining or enhancing a piece of code, duplication multiplies the work to be done.

– If a copied software fragment is found to contain a defect, the defect will probably have to be
corrected in every instance of the code. Since usually no record of the duplication process exists,
one cannot be sure that the defect has been eliminated from the entire system without performing a
clone analysis.

• Increased Defect Probability:

– The adaption of duplicated code to the new context into which it is copied is an informal process
which does not shield the programmer from any details (white box reuse). Errors are thus likely to
happen,e.g., name clashes between variables from the copied code and variables in the new context
may go unnoticed. Dependencies that are not fully understood are another source of potential
defects.

– Adaptations may be forgotten by a hasty programmer because the copied code looks complete.
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Duplication of Source Code Section 2.1

– If in large systems multiple maintainers unaware of each other change or update clones, their fixes
will very likely not be identical and threaten coherent system behavior.

– It is even possible that adaptations are applied erroneously, out of the (wrong) belief that one method
is a clone of another.

• Increased Cognitive Load for Maintainers:

– If large pieces of software are copied, parts of the code may be unnecessary in the new context.
Lacking a thorough analysis of the code, they may however not be identified as such. It may
also be the case that they are not removable without a major refactoring of the code. This may,
first, result indead codewhich is never executed, and, second, the code will be a “red herring”,
increasing the cognitive load of future maintainers.

– Larger sequences repeated multiple times within a single function make the code unreadable, hiding
what is actually different in the mass of code that is the same. Code is then also likely to be on
different levels of detail, slowing down the process of understanding.

– If all copies are to be enhanced collectively at one point, the necessary enhancements may require
varying measures in the cases where copies have evolved differently. As an extreme case, one can
imagine that a fix introduced in the original code actually breaks the copy.

• Increased Resource Requirements:

– The growth rate of the system is much higher than if it was only subject to the normal effects of
new requirements. In systems with stringent hardware constraints, this may result in the premature
exhaustion of the resources (application footprint). If a system is deployed in tandem with a spe-
cific hardware platform, like a telecommunication switch, a software upgrade could entail a costly
upgrade in hardware as well.

– Compilation times will increase if more code has to be translated which has a detrimental effect on
the edit-compile-test cycle.

The overall effect of cloning has been described by Johnson [Joh94a] as a form ofsoftware agingor “hardening
of the arteries” where even small changes on the architectural level become very difficult to achieve in the
actual code. In the same vein the Portland Pattern Repository’s Wiki claims3 that “Redundancy is Inertia” since
it takes more effort to move the system into a new direction.

2.1.2 How Duplication Comes to Pass

Most clones are no accidental creations. It is a rare case that two different programmers would unbeknownst
of each other code up the same piece of functionality in a form that fulfills the definition of a clone. There are
only a few scenarios which describe the creation of accidental redundancy:

• TheNot Invented Heresyndrome, an unwillingness to read and understand the code of other people, may
preclude developers from reusing existing functionality.

• The phenomenon ofReinventing the Wheelis a possibility in large systems with a long history and
poor reuse documentation. If a system or programming library is not prepared for reuse with the proper
description and search facilities [Kru92], the effort to search the library for the needed functionality may
exceed the effort to write the method from scratch.

• Baxter [BYM+98] mentionsmental macros, a short idiomatic piece of logic which is implemented in
the same way from memory every time it is needed.

3Available fromhttp://c2.com/cgi/wiki?RedundancyIsInertia [May 15, 2005]
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Chapter 2 Copy & Paste: A Simple Reuse Mechanism

For these exceptional circumstances the functionality, albeit the same semantically, will probably be embedded
in different syntactic representations, making it difficult to automatically detect it.

The bulk of software clones are however created when programmers scavenge code fragments they already
know—which in most cases means they have written it themselves—from the existing code base and adapt them
to the context of the new location. Code duplication is thus an intentional activity by people who (mostly) are
conscious about what they are doing even when they are not fully aware of the consequences this activity may
have in the long run. Code duplication does not just happen, it is actively produced. A number of environmental
forces however are conducive to programmers reusing code by means of duplication. We roughly order the
following list according to diminishing importance as we perceive it:

• Time Pressure:

If the code has to be finished as quickly as possible there is no time to analyze the context and design
a general solution.4 It is quicker to copy the code and customize it for the new case. As an additional
benefit existing code is already tested and is a safe bet for copying.

• ‘Active’ Programming Strategies:

As Rosson&Carroll have described [RC93], the practice of “reuse of use” is commonplace among profes-
sional programmers. Focusing on the product to be delivered, programmers shy away from a thorough
analysis of existing example code and planning activities, but rather use the available resources for a
quick start towards the implementation goal.

Cordy [Cor03] reports that cloning is a commonly practiced reuse strategy in the financial industry, where
new tasks (representing financial products) do not change very much from the existing ones. Programs
to handle these tasks are copied from the existing source and adapted in the copy rather than being
implemented on top of a newly introduced abstraction layer. The reason is that the high risk (monetary
consequences of software errors can run into the millions in a single day) dictates that code that has been
thoroughly tested (70% of the software effort in the financial domain is spent on testing) is not to be
changed,i.e., abstracted or parameterized.

• Lacking Abstraction Mechanisms:

If the programming language lacks some abstraction mechanisms,e.g., inheritance, generic types (called
templatesin C++) or parameter passing (missing from,e.g., assembly language and COBOL), program-
mers will repeatedly have to implement these asidioms. This will lead to possibly small but potentially
frequent clones. Patenaude et al. [PMDL99] report that 15% of all confirmed clones of seven open source
JAVA systems were due to the absence of generics in the pre-1.5 versions of the language.

• Unfamiliar Technology:

If the developers are unfamiliar with the technology they will use examples as educational and inspira-
tional starting points. This will likely lead towide missclones, duplicated instances where the similarity
is still apparent in the coarse structure but the details have been changed.

• Code Ownership:

In a team development environment with code ownership, situations may arise where the owner is not
able to give access to his code or cannot be convinced to update the function with the enhancements to
make it reusable. The potential reuse client is then forced to appropriate,i.e., copy and adapt the code.

• Lacking Awareness:

Code duplication as a research topic exists for a little over a decade now, and refactoring has become
a well known notion only recently. These topics are thus only now becoming integrated into software
engineering education. Most programmers need a certain experience in maintaining software before they
become aware of the detrimental effects of duplication.

4Yourdon, in theDecline and Fall of the American Programmer, estimates the additional expense to make a component reusable as
“twice the effort of a ‘one-shot’ component”(qtd. in [Bro95]). Brooks l.c. increments the estimate to the threefold effort ratio.
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Duplication of Source Code Section 2.1

• Efficiency Considerations:

Function calls may be deemed too costly,e.g., in real time programs. If the compiler does not offer to
inline the code automatically, this will have to be done by hand.

• Programmer Productivity Evaluation Measure:

If programmers are paid by the number of lines they write, duplication is just the right means to produce
lots of working code fast.

• Different Versions:

Different ports of the same subsystem will likely be similar. LINUX kernel device drivers, for example,
have been found to contain large rates of duplication [GT00]. Among the catalyzers for copy and paste
under these circumstances are:

– The drivers have all the same interface and a rather simple logic. Drivers for the same family of
devices have even more cloning.

– Poor abstraction: The design of the system does not allow for more sophisticated forms of reuse.

• Merging of Two Systems:

If two systems with similar functionality are merged the likelihood of clones is increased, especially in
the base libraries [Gie03]. Since these systems have been developed by different teams, the syntactic
similarity of the clones might not be high, making them harder to detect.

• Deployment Constraints:

Dagenais et al. [DMLP98] mention the case where a function may not be modifiable because it is stored
in the non-volatile memory of an embedded system and cannot be replaced.

There exist to our knowledge no theories and no data on the influence of the following factors on the existence
and the amount of duplicated code found in a system:

• the programming language, or the programming paradigm in general,

• the abilities of the programmers,

• the size of the project,

• the domain of the project,

• organizational conditions of the project, or

• events in the project history like forks, merges, ports, and quick fixes.

It is difficult to find answers to these questions, since to be able to determine the influence of one of the variables
one would have to keep the other variables unchanged. This is an impossible task for real world applications.
All we currently have is anecdotal evidence.

Regarding some of these questions, the data of the comparative study by Bellon [Bel02a], for example, where
four C systems and four JAVA systems were provided for clone-investigation, did not allow any conclusions
on the dependence on project size, and only a feeble indication of a programming language dependency by
a slightly higher duplication rates for the C code. The sample of case studies was however too small to be
able to formulate a firm verdict. From our own research [DRD99] it seems that lower level programming
languages like COBOL that are still very close to assembly language and thus lack a number of higher level
mechanisms, are susceptible to duplication, indirectly confirming the argument of Krueger [Kru92] that higher
level programming languages are the first and most successful code reuse technique in software engineering.
It might however also be the case that the rampant duplication in one COBOL accounting system [DRD99] is
due to the high risk domain which dictates that tested code must be copied rather than abstracted to extend the
system.

We are currently of the opinion that duplication is mainly put forth by programmers remembering their own
solutions in the context of the work they have already done on the system.
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Chapter 2 Copy & Paste: A Simple Reuse Mechanism

2.1.3 Unavoidable Duplication

Sometimes duplication cannot be avoided even with the best intentions. Some of these cases arecontrolled
duplication, other cases do not have any negative consequences beyond an increased workload. Some of the
reasons for such types of duplication we have already seen in the last section:

Missing Generics: Duplication is unavoidable if the programming language does not offer the necessary
mechanisms to safely implement a generic solution to a problem. In C, one has to implement a list
for float -elements as well as one for elements of typechar , whereas in C++ one can use the template
mechanism. The rigidity of static type checking which requires specific language constructs to allow for
generics thus impedes reuse and leads to duplication.

Generated Code: Duplication that is created by code generators,e.g., lexical and syntactic analyzers written
usingLEX andYACC, the generation of object stubs in CORBA, or the template instances in C++, is—
except for the effect of the bloat on system resources—of no concern to the developer. There is always a
single authorative source of the knowledge (e.g., the interface definition in CORBA, the template source
in C++) to which changes must be applied. The duplication is not only machine-generated, it is also
machine-maintained.

Code Ownership: If libraries or frameworks are closed,i.e., have been frozen and cannot be adapted any
more, it is not feasible to extract and share the code.

Duplication can also be forcibly introduced by module borders which are declared impermeable due to archi-
tectural considerations. This can be a layered system architecture, or an object-oriented class hierarchy where
the two methods are in unrelated classes or too far apart in the hierarchy to use inheritance for code sharing.
If the creation of a utility layer or a utility class is not feasible (e.g., when low cohesion is prescribed), the
duplication cannot be extracted.

If we switch to a finer granularity level we find more duplication of information, for example in method signa-
tures. This is mostly due to the distinction betweendeclarationanddefinitionof software entities. Usually, an
entity can be declared multiple times and must be defined once. Examples are the header files in C/C++, and
the import statements in JAVA . Object-oriented polymorphism additionally allows the definition of separate
entities having the same form,i.e., signature. Examples are interfaces and abstract classes which declare a set
of methods. Two reasons speak against the status of “duplication” for this information. For one, the duplication
is not without trace,i.e., does not have to bedetectedspecially. Also, inconsistencies between the different
instances are immediately caught by a compiler. However, the information must be kept consistent manually
which can be tedious.5

2.1.4 Benefits of Code Duplication

While being mostly a scourge to maintainers, duplication can have some benefits too: Software readability
and understanding, design and maintenance, as well as smaller likelihood to fail may all increase thanks to
duplicated code. We will in turn discuss the benefits of consciously implementing similar functionality more
than once, the beneficial knowledge gleaned from finding the duplication, and the benefits derived from not
removing found duplication. As a note of caution, however, it should be emphasized that the beneficial effects
of code duplication are sparse and far between. In general, it can be safely said that duplications detrimental
effects by far outweigh the benefits of a few special situations.

Benefits of Duplicating Functionality: There exist circumstances under which duplicated code is created
with full awareness of the consequences. Among the benefits are:

5This is exemplified by the fact that newer languages like JAVA have abolished the distinction between header and implementation files
from their forebearer language C.
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Duplication of Source Code Section 2.1

• Two instances of copied code are, although conceptually linked, syntactically and semantically indepen-
dent of each other. This means that they can evolve at different paces and there is no danger that a change
to one location will inadvertently affect the other. Had we abstracted the shared functionality into a com-
mon piece of code and a change requirement for only one of the locations made a rewrite of the common
code necessary, the second location could potentially be affected as well: a full test would be required for
both locations. Keeping the two locations independent may thus speed up maintenance, especially when
automated regression tests are absent. Cordy [Cor03] reports that for financial institutions where 70%
of the software maintenance effort is spent on testing, keeping programs for similar domains separate is
imperative.

• In life-critical systems redundancy is built-in by design to increase robustness. Often the same function-
ality is developed by different teams in order to reduce the probability that the implementations fail under
the same circumstances. The exchange of code is thus strictly prohibited which makes this an example
of duplication of functionality rather than code. Since maintenance just as initial development is split,
our problem statement does not really apply to these cases.

• For functions that have a parameter with a very restricted domain,e.g., boolean switches, we can make
the parameter a constant and express it through the names of the copies of the function, kept nearby each
other in the source file. This may make the calling code easier to read. In the same vein, storing a staple
of related values in stand-alone variables instead of in arrays has the drawback of reducing their potential
to be treated using a loop. On the positive side, however, the readability ofA1 is arguably higher than the
one ofA[1] or valueA as can be observed in Listing 2.2 on Page 16.

Benefits of Detecting Duplication: Besides the immediate benefit of knowing how to improve the quality
of the source code through a refactoring, there are other advantages stemming from the awareness of different
instances of the same code.

• Davey et al. [DBF+95] and Burd&Munro [BM97] have remarked that code that has been copied many
times has apparently proven its usability which makes it a prime candidate for inclusion in some sort of
library, to announce its reuse potential officially.

• From just the awareness of the presence of a piece of code in a certain area of the system we can derive
information about the purpose of its context. For example, when we have a piece of code managing
memory we know that all files which contain a copy must implement a data structure with dynamically
allocated space.

• A collection of different copies of the same source fragment may be a good overview of the usage patterns
for this functionality.

Benefits of Not Removing Duplication: There exist a number of reasons why one would deliberately let
duplicated code live in a system. Note that many of these reasons depend on opinion and cannot be decided in
the abstract.

• The simplest reason might be that inlining a piece of code is a possible means to save the cost of a
function call. In the light of current and anticipated speeds of the CPU these kinds of efficiency concerns
are however of diminishing importance.

• Another argument is that writing reusable code needs a lot of work. Maintaining two copies of the same
code may be much easier than the effort to produce a general but probably more complicated solution.

• It is argued6 that it might be better to let duplication live a little before removing it. If we have multiple
copies of the same code we can discern the stable from the variable elements better. This guides an even-
tual abstraction effort. Trying to get an abstraction right from the start may be premature optimization.

6Available fromhttp://c2.com/wiki?CodeHarvesting [May 15, 2005]
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String[] lookup = new String[7];
lookup[0] = createLookupKey(operation,resource,username);
lookup[1] = createLookupKey( null ,resource,username);
lookup[2] = createLookupKey( null , null ,username);
lookup[3] = createLookupKey(operation,resource, null );
lookup[4] = createLookupKey( null ,resource, null );
lookup[5] = createLookupKey(operation, null ,username);
lookup[6] = createLookupKey(operation, null , null );
return lookup;

Listing 2.1: An unfolded loop presents a readable repetition.

• Removing duplication may also be going against an essential purpose of a high-level programming lan-
guage: readability for a human. Picture a functionfoo from which a part is extracted (for duplication
removal reasons) and now forms the functionfoo_extr . Say thatfoo_extr needs a large number of pa-
rameters and performs a conceptually difficult task for which an intuitive name can not be found (abstract
and fragmentary data manipulations are difficult to name). If we additionally assume that the navigation
in the development environment fromfoo to foo_extr is hindered slightly (by long methods, or source
files far apart), it may be likely for the programmer to mentally loose the context of functionfoo while
trying to understandfoo_extr . The original code with the duplication still in place is then certainly
easier to understand than the refactored code.7 The ease of reading source code can thus be an argument
against the refactoring of duplicated code.

• As an extension of the previous argument, Church and Helfman [CH93] have claimed that the rhetorical
device ofrepetition(which is used to convey emphasis or parallelism in human speech) should also be
an admissible means for programmers writing code. This is not such a far-fetched thought since the
rhetorical devices that use repetition for emphatic purposes rely on the fact that the repetitions occur
nearby each other,i.e., in the same sentence. Code duplication that has this same property,i.e., occurring
in the same file or even the same function, is not problematic as it is plainly obvious to the programmer
and thus quickly adapted.8 Repetition of similar code may contribute to the readability of the code (see
Listing 2.1 and Listing 2.2), shedding the extra logic that would be necessary for the generalization and
abstraction (Listing 2.3).

If it is decided, for whatever reason, not to remove duplication from a system, it will be necessary that this
fact is recorded in the source code itself or in other texts which are consulted by the maintainers.Documented
duplicationwill still require more effort to maintain but the potential for negative effects that arise from not
knowing about the multiple instances can be controlled (see alsoCompensatory Clone Managementin Sec-
tion 2.2.3).

7The extension of this argument is of course that iffoo_extr can be fully understood and an intuitive purpose can be mentally
assigned to it by the programmer, thenfoo and the other places wherefoo_extr is invoked are easier to read than before the
extraction.

8This is the reason that certain clone taxonomies, for example Kapser&Godfrey’s [KG03], make a distinction between code copied
within the same file or code copied over the boundaries of files or even across directories
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r1 = r_Init1 & B0;
A0 = ((B0 >>1 ) & CMask) | r1;
r1 = r_Init1 & B1;
r2 = B0 | (((A0 | B0) >> 1) & r_NO_ERR);
A1 = ((B1 >>1 ) & CMask) | r2 | r1 ;
if (D == 1) goto Nextcharfile;
r1 = r_Init1 & B2;
r2 = B1 | (((A1 | B1) >> 1) & r_NO_ERR);
A2 = ((B2 >>1 ) & CMask) | r2 | r1 ;
if (D == 2) goto Nextcharfile;
r1 = r_Init1 & B3;
r2 = B2 | (((A2 | B2) >> 1) & r_NO_ERR);
A3 = ((B3 >>1 ) & CMask) | r2 | r1 ;
if (D == 3) goto Nextcharfile;
r1 = r_Init1 & B4;
r2 = B3 | (((A3 | B3) >> 1) & r_NO_ERR);
A4 = ((B4 >>1 ) & CMask) | r2 | r1 ;
if (D == 4) goto Nextcharfile;

Listing 2.2: Another example of self-similar, repetitive code that is more readable than a construction involving
arrays and loops (from the AGREPsystem).

r1 = r_Init1 & B[0];
A[0] = ((B[0] >>1 ) & CMask) | r1;
for (j=0; j<4; j++)

{
r1 = r_Init1 & B[j+1];
r2 = B[j] | ((( A[j] | B[j]) >> 1) & r_NO_ERR);
A[j+1] = ((B[j+1] >>1 ) & CMask) | r2 | r1 ;
if (D == j+1) goto Nextcharfile;

}

Listing 2.3: The code of Listing 2.2 refactored with array variables and a loop.
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2.2 Duplication Detection and Management

As we have explained in Section 2.1.2, duplication is created both consciously or unconsciously. In any case,
the activity seldomly leaves any traces, neither in the source nor in the documentation. Duplicated code must
therefore be detectedex postby special means. This section discusses (on an abstract level) how duplication is
detected, how clones are managed and eventually removed.

2.2.1 Catching Duplication at Creation Time

Whereas common duplication detection approaches work with the source text that results from the duplication
activity of an engineer, an alternative idea is to catch duplication in the moment of creation. Horwitz mentions
that, following this idea, text editors could be tagging the lines of the source code that are edited with them
[Hor90]. Whenever the programmer uses copy and paste, the correspondence tags along with the source lines
are transferred to the new location. Copied lines that are modified still keep their tags. The data thus collected
represents the source line correspondences that must otherwise be detected by special tools. The information
can be combined to clones straightforwardly. There are a number of open questions and problems with this
idea that arise in all practical settings and can be readily seen:

• What amount of post-copy editing will remove the clone label from the copied line and give it a fresh
one?

• Is the granularity of lines detailed enough or should code be tracked at the level of expressions?

• The tagging data would have to be held in a separate database since it should be hidden from the pro-
grammer and can thus not be put in the source file.

• The tagging scheme is bound to a development environment that supports it. If source code is altered
with an alternate editor, the correspondence tags would still have to be computed by special means.

• Duplication due to “mental macros”—frequently used idioms that are not copied but written in the same
fashion by remembering it—or simple transcriptions would still have to be detected by special means.

In any case, such a system could only be used for new code. Duplication, however, hides out in the millions
of lines of legacy code developed by traditional means. To nab it, we need techniques which detect duplication
after the fact.

2.2.2 Finding Duplication in Source Code

A clone detector must try to find the pieces of code of high similarity in a system’s source text. The main
problem is that it is not known beforehand which code fragments can be found multiple times. The detector
thus essentially has to compare every possible fragment with every other possible fragment.

The detection process is coarsely broken down into phases:

1. Code Partitioning:The entire source text of the system is broken down into the fragments between which
the similarity relation is going to be established. At this point, code that is not interesting (e.g., generated
code) is removed from the input.

2. Transformation:The source code is represented in a format from which the comparable properties can
be extracted.

3. Comparison:The source code properties of the fragments are compared. The output is a list of matches
which are either already clone paircandidatesor must be aggregated to form clone pair candidates
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4. Filtering: Identification of relevant clone pairs among all candidates. A ranking can be established
among the clone candidates to direct the energies of the reengineer.

5. Aggregation:To reduce the amount of clone data, the clone pairs are aggregated to clusters, classes, or
cliques of clones.

What determines a detector approach to the greatest extent is the choice of the features which are used for the
comparison. The source code representation must be chosen so that the comparable features can be extracted.
The comparison function is in turn determined by the source code representation. The complexity of the
detector implementation, the bulk of which is the transformation and comparison, depends largely on the code
representation as well. A detailed list of the diverse code features used by known code duplication detectors
can be found in Appendix A.

2.2.3 Clone Management

The awareness of the existence of duplication in source code requires activities to keep their detrimental effects
in check. These activities can be summarized under the term ofclone management[Gie03]. To manage
clones they of course first have to be detected. Apart from ignoring the knowledge thus gained, one has three
possibilities to deal with clones: Corrective, preventive and compensatory clone management:

Corrective Clone Management:The goal is toreengineerthe system by removing the clones. An example
would be a refactoring that extracts common code into a separate function.

Most of the approaches in the literature focus on corrective activities, as is exemplified by the stand-
alone nature of the tools that are proposed. Correction is usually performed as a singular activity in the
context of an overall reengineering project, akin to the addition of a new feature. The entire system (or a
selected subsystem) is investigated and as much of the detected duplication as feasible is removed. Other
development activities are halted during this operation. We will deal with this predominant management
topic in more detail in Section 2.2.4.

Preventive Clone Management:The goal is topreventnew clones from being introduced into the system,
for example by performing a regular clone check at defined points,e.g., each time new code is entered
into the version control system.

Code duplication, however, arises constantly during the life of a system. It therefore seems reasonable to
institutionalize its removal. Mayrand et al. [MLH96] have proposed to enhance the software engineering
process with preventive clone management activities in two places:

1. Creation of New Code
A check is performed before new source code is entered into the system to reveal similarities with
already existing code. If duplication is found, a sound justification is required for incorporating
affected functions into the code base.

2. Maintenance of Old Code
The maintenance process is extended by a clone check whenever maintained code is checked into
the version control system. In this way, fixes can be made sure to propagate to all instances of the
defect code.

Compensatory Clone Management:The goal is tocompensatefor (potential) negative effects of clones that
are not removed for one reason or another. A list of duplicated functions, for example, will remind an
engineer of all the locations where a change must be applied. Such a list also enables cost estimates of
change propagation to all clone instances versus getting rid of the clones by a one-time reengineering
effort.

Making the step from only supporting corrective actions towards support for all forms of clone management,
clone based reengineering tools strive to integrate with the normal development environment of the program-
mer. The user is notified about new and old duplication in a similar way to error messages reported after a
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recompilation attempt. By implementing incremental algorithms, and triggering them at frequent intervals,
e.g., whenever a method or class is added to the system, detection times can be kept small, an important aspect
that furthers acceptance of the tools. We are currently aware of one such proposal for an implementation on
top of the ECLIPSEdevelopment environment [Gie03].

2.2.4 Reengineering Duplication

As we have seen above, duplication adds unnecessary complexity to a system. The goal of reengineering is
to get rid of this complexity. If similarities have been detected in a system, this knowledge can be used to aid
with “program renovation, program understanding, error detection, program maintenance, product redocu-
mentation, quality assessment, and extraction of reusable components”[CIQW+95]. Removal of duplication
touches all of these application areas for duplication knowledge, put forth in an early workshop on duplication
detection. The goal of the reengineering is to amend the four problem areas explained in Section 2.1.1: reduce
work load and resource requirements by decreasing the amount of code, reduce defect probability by introduc-
ing clearly defined abstractions, reduce cognitive load by simplifying the code and localizing functionality in a
single place.

An important question to ask at this point is how much of the reengineering can be done automatically. The
support for duplication reengineering can either be absent,i.e., the reengineer uses only his experience and some
handbooks, or it can be partial,i.e., computerassistedrefactoring, and ideally it would be fully automated.

Assisting Reengineering with Clone Taxonomies

Assisted reengineering consists in guides to the problem areas which can be remedied most effectively, as well
as hints and suggestions as to how the concrete clones might be refactored. Taxonomies for duplicated code
have the intent to capture common properties of clones. These properties are then used to assess the chances
and means of how the clones could be refactored. A category will thus directly suggest applicable refactorings.
There are three angles which in the literature have been used to build categories.

Locations of clones: These taxonomies focus on the location differences or thephysicaldistance between
clone instance locations. Refactoring opportunities or hindrances are derived from the fact that the source
fragments are found in the same function, same file, or in files from different directories. In object-
oriented systems, clone instances are located at specific places in the class hierarchy. To derive this kind
of categorization for a clone pair, only rudimentary parsing technology suffices. Examples are:

• Kapser&Godfrey [KG03] define a taxonomy based on the location of the copied code fragments
relative to each other (same function, same file, same directory, different directory). For each
category of clones they identify probable reasons why these kind of clones are introduced into the
system and common problems caused by them, as well as reengineering scenarios to remove the
clones from the system.

• Golomingi[KN01] investigates object-oriented systems (in SMALLTALK ) and bases his categories
on the class hierarchy relationships of the methods that contain the copied code fragments. From
this information a number of refactoringscenarioslike “move to common superclass”can be trig-
gered. Giesecke proposes similar refactoring scenarios focusing on JAVA [Gie03] .

Differences between clones:Starting from the ideal of perfect clones comprised of two exact copies, these
taxonomies measure which syntactic elements have been changed by the programmer after copying. For
example, high-similarity clones include methods that are the same except for the name, or methods that
are the same but for the types of parameters. This kind of information usually very directly suggests a
refactoring. To derive these categorizations for a clone pair extensive information is required which can
only be provided by a parser. Examples are:

• Mayrand et al. [MLH96] define an ordinal scale of eight clone levels for functions, going from
exact copy, as the most obvious form of duplication, to clones which have differing control flow.
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Each level is defined as a set of metrics which must have the same value for all the clones in a given
category. This simple categorization can only inform about basic refactoring directions, however.

• Balazinska et al.[BMLK99] propose a classification scheme for cloned methods with 18 different
categories. The categories detail what kind of syntax elements have been changed and also how
much of the method has been duplicated.

• Bellon [Bel02b] defines three different clone types for the sake of a comparison between differ-
ent detection tools: exact clones, parameterized clones (renamed variables), and clones that have
had more extensive edits. This categorization is aimed at testing the detection and categorization
capabilities of different tools.

Context dependencies of clones:From the refactoring perspective it is useful to know how easy the dupli-
cated code can be extracted from its context (to be put in an unifying function, for example). Taxonomies
for these kind of differences are based on the uses of variables and methods defined outside of the copied
source fragment. The more such dependencies exist, the harder it will be to perform the refactoring.
Sophisticated parsing is required to make this kind of analysis. An example is:

• Balazinska et al.[BMLK99] propose context analysis to complete the difference analysis of clones
for computer-assisted refactoring.

Clone taxonomies can be useful for optimization of detection and reengineering techniques. By knowing the
frequencies with which different categories of clones occur in source code, we can concentrate our efforts on
the most prominent types or on the types which seem most relevant to the reengineering task at hand.

Automatization of Duplication Reengineering

One of the utopian ideas of duplication reengineering is to refactor duplicated code completely automatic,
promising unrivaled gains in productivity. There are technical and social obstacles which make this problem
hard to solve.

On the technical side, fully automating refactoring is difficult and not easily reconciled with the human main-
tenance effort. Except for exact copies and some standard cases, full automation can only be expected from
computers which do their programming themselves,i.e., from “intelligent” machines. Current attempts at com-
plete automation have their own problems. Balazinska et al. [BMD+99] have automated refactoring for certain
types of duplication. Their prototype introduces design patterns likeStrategyandTemplate. Since for each
clone two new classes and a couple of interfaces carrying artificially created names have to be introduced, the
generated code is hard to read and maintain by a human developer.

The social barrier to the adoption of automated techniques is found in the developers who are in general averse
to machines telling them how to program [Gie03]. In the experience of Cordy, programmers feel threatened
by an automated technique that seems to make their jobs superfluous. To counter these fears, which hinder
the adoption of automated program transformation tools, one must declare the results asadviceand leave the
last decision in the hand of the maintainer [Cor03]. The acceptance problem, too, will only go away once
developers have all been replaced by the auto-programmed machine.

In summary, since the problems of automatic duplication reengineering will only be solved completely by
the self-programming computer, a concept still far from realization, an emphasis on the human in the loop is
justified.
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2.3 A Categorization of Detection Approaches

This section categorizes clone detection approaches using four characteristics orgoals. These describe how
an approach fares with regard to important duplication and reengineering concerns. As we have stated in Sec-
tion 2.2.2, the determining characteristics of a clone detector are the representation of the source code and the
properties used for the comparison. We could thus describe any approach concisely by only mentioning the
source code representation and the properties it uses for its comparison. The categorization presented here, on
the other hand, indicates the consequences of the choices of code representation and compared properties in
the context of overarching reengineering concerns. These goals help us to orient ourselves in the selection of
an approach to pursue.

The four goalsAdaptability, Scalability, Duplication Sensitivity, andReengineering Supportare motivated in
this section. In the next section we will select the ones that we emphasize in our thesis.

Adaptability: The current landscape of programming languages for use in commercial systems is wide and
varied and growing. On the one side, new programming languages are invented continously, and on the other
side systems of considerable importance have been proven to be long lasting—thanks to the large investments
and the aggregated business knowledge they represent—and therefore the languages they were written in as
well. Older programming languages will be staying with us for years to come. If we want to build detection
method which can be used by any engineer as part of his daily work, we need to be prepared for all the possible
programming languages that can be found.

Scalability: Software systems are becoming larger and larger. The more has been invested in them, the more
they become valuable and the likelier it is that they must be maintained and adapted to new requirements.
Clone detection as part of a reengineering effort is confronted with source text going into the millions of lines
of code. A scalable detection approach must be able to process all this code in a reasonable amount of time. If
we use code detection in a dedicated reengineering effort the time needed for detection will always be dwarfed
by the time necessary to analyze the results. If clone detection is integrated into the development process,
however, then speed is important for the developer who does not want to be delayed by another bump in the
edit-compile-run cycle.

Duplication Sensitivity: Duplication exists on a continuum from exactly copied fragments to pieces imple-
menting the same functionality in a syntactically different way. Whereas the exact copies are easy to find there
are many cases with more subtle similarities that are not easy to detect. Subtle duplication has however the
same potential to hinder system evolution as the obvious copies. The potential of errors incurred because of
duplication are even higher when the copying is not obvious and therefore overlooked more easily. Subtle
duplication, when it is the result if many evolutionary changes that two copied fragments have undergone, can
also be the last remnant of an original design decision, and thereby help to understand the program, but it must
be found!

To detect subtle duplication both the comparison and the filtering phase must perform a deep analysis which
requires a very detailed code representation. The drawback of methods that perform a fine-grained analysis is
that their implementation is closely tied to a given language and its semantics, and that these tools are therefore
“typically complicated to build, computationally slow and require enormous machine resources to apply to an
entire program” (Atkinson&Griswold, qtd. in [Gri98])

Reengineering Support: After the detector has listed the suspected clones it must be decided what is to be
done with them. It is first necessary to analyze which clones can and should probably be removed from the
system. It is then necessary to determine the means by which this refactoring can be achieved. Since clones can
be arbitrary source fragments, they can be embedded in any context. The various types of differences between
clone instances offer different constraints for the refactorings. Human analysis of context dependencies and
differences can be time-consuming and error prone. The usefulness of automatically gathered information
increases with the number of clones retrieved from a system.
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Goal Selection

The goals presented above are not orthogonal. Some goals can mutually benefit each other: The more we
can automate refactoring support, for example, the more clone data can be handled by a reengineer, which
improves scalability. Also, if an approach invests much in duplication sensitivity, the information gathered in
this deep analysis can be used to improve the support of reengineering actions. Some goals are also mutually
incompatible. For example, the more fine-grained the detection approach is the more time it will usually
require. This conflicts directly with the scalability goal. It is also true that the more fine-grained an analysis
is the more language dependent the algorithms will become, which hurts adaptability. To solve conflicts with
the important scalability goal some approaches implement more than one pass: using a scalable approach in
the first pass to narrow the search, and then using deep analysis on the found candidates in a second pass. This
multi-method technique however tends to be detrimental to adaptability.

Due to the conflicting dependencies among the reengineering goals, we have to choose the goals which should
be emphasized and, conversely, the ones which should be neglected. To make this choice we can take the stance
of one of the following viewpoints:

• A dedicated tool builder who wants to sell a standalone commercial tool and needs competitive advan-
tages.

• A tool builder who wants to integrate duplication detection into the tool suite of an existing development
environment.

• A consulting company who sells reengineering services, among them the detection and reengineering of
duplication.

• A developer who, not having much previous experience in reengineering, is suddenly charged with such
a project.

In our case we take the pragmatic viewpoint of the developer who suddenly needs to make an investigation into
the duplication situation of a project. This viewpoint can be made more explicit with a few slogans:

Lightweight. We want to develop methods that do not need a large up-front investment in source code extrac-
tion techniques needed for deep analysis. In the best case, the implementation of the detector should be
doable in preparation of a reengineering project.

Developer in Charge. We would like to provide technology that can be easily learned, used and even adapted
by any programmer as part of his normal duties.

Good Enough. We are satisfied with finding 80% of the duplication (expending 20% of the effort).

Given these, a proof-of-concept would be the implementation of a small tool in the tradition of the UNIX

command line tools like GREP. A simple configuration interface should enable the use of the tool on a variety
of source texts.

Going back to the reengineering goals, we can see that emphasizing theAdaptabilityandScalabilitygoals
overDuplication SensitivityandReengineering Supportwill adhere most to the principle ofSimplicitythat is
stressed by our viewpoint. There are no immediate conflicts between scalability and adaptability. They could
only prove to be desynchronized if it was shown that a scalable detection method would be dependent on the
programming language or paradigm itself, something which to our knowledge has not surfaced yet.
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2.4 Conclusions

In this chapter we have given an overview of the problem of code duplication, its causes and its consequences.
We have presented the basic stages of the duplication detection process, as well as proposals for the extension
of the software development process to account for the existence of clones and the need to manage them.
We have then described four high-level reengineering goals which help detector builders to orient themselves
in their endeavors. By taking the stance of an everyday user of clone detection we have finally selected the
reengineering goals which we will emphasize in the investigation that follows:

• With the Adaptabilitygoal we want to emphasize that a detector should be configurable and made to
understand programs in different languages with a minimum of effort.

• With the Scalabilitygoal we want to strive for detectors capable of processing systems of large sizes
using a reasonable amount of resources.

In Chapter 4 we will discuss how the selection of these goals leads us to choose strings as code representation
and string matching as comparison method.

In the subsequent Chapter 3 we will focus on the clone pair itself. We explain how we can define the clone
relation between source fragments. Using the notions thus defined we will explain in more detail the stages of
the clone detection process introduced in this chapter.
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Chapter 3

A Conceptual Model for Clones

In this section we want to establish the vocabulary for talking about code duplication detection. We present
a conceptual model of duplicated code and clones which we use to describe all currently existing approaches
to clone detection that we are aware of. The model establishes a framework of terminologies and issues that
are necessary for the discussion. We first describe in a coarse overview the context in which clones are to be
defined. In a next step, we present a detailed list of notions which model the field and describe the process of
clone detection.

Duplication in software does not only occur on the level of the source code. Duplication exists also in re-
quirements, design documents or user documentation. In this work we will consider out of scope all forms of
duplication other than source code. The reason for this choice is that the formats in which the other documents
are written differ significantly from the formal language which is source code. Be it natural language used
in a requirements document or the graphical language of a UML design, the automatic interpretation of these
documents is so much different in each case that we cannot hope to use insights from one field for the others.

Our Contribution

The contributions of this chapter are:

• A discussion of important aspects of the duplication detection,e.g., clone relevance, and influence of
source code structure.

• The presentation of a model of the comparison process which encompasses all known detection ap-
proaches.

• A discussion offixedandfreeclone granularities as important distinction criterion for clone detectors.

• A proposal to aggregate free granularity clones in a hierarchical manner to be able to handle their multi-
tude.

• The definition ofClone Class Familiesas aggregation of source fragments according to the similarities
in both codeand locations linked through copying.

3.1 Preliminary Notions of a Definition for Clones

Before getting into the grey areas of the nuanced description of clones, we circumscribe the phenomenon of
clones by looking at two definitions, one very abstract and the other very concrete.
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We start with the idealistic definition, a cousin of the OAOO principle mentioned in Section 2.1:

TheDRY Principle (Don’t repeat yourself)

Every piece of knowledge must have a single, unambiguous, authorative representation within a
system. [HT00]

The DRY principle implies that whenever the same idea is expressed twice we have an example of unwanted
redundancy. This extends to requirements, design, source, tests, and user documentation. If we constrain
ourselves to the knowledge which is represented in the source code of a system, we can say that whenever a
source fragmentf1 implements the samelogic as a source fragmentf2, the pair(f1, f2) forms a clone, or the
relationclone(f1, f2) holds. It also follows that the clone property of(f1, f2) does not depend on the concrete
implementation of the logic at all: As long as the semantics of the code are the same,f1 can be implemented
in ASSEMBLERandf2 in SQL but they still represent the same knowledge and thus form a clone.

If we want to actually find and process source code redundancy, the definition just sketched out is impractical.
For one, due to the fundamental halting problem it is not possible to algorithmically determine the semantic
equality of two implementations. This means that to be useful, our definition should not be based on formal
semantic equality, but rather should be based on the concrete representation of the algorithm,i.e., the source
text of the implementation. Semantic aspects of the code such as control or data flow can be integrated into
the analysis in small doses for an approximation of the test for semantic equality. These extensions will always
result in increased detection costs.

The other definition of code duplication originates from the action that brings most of the clones into existence.
We call this:

The Operational Definition of Code Duplication

A clone is created when a piece of source code is copied from one location using the copy function
of an editor and then inserted at another location. Optionally it can be transformed by a variety of
editing operations in order for the code to function properly in the new context.

Relying exclusively on this definition would however unreasonably prohibit to be regarded as clones the inde-
pendently created source fragments which have—accidentally or just unconsciously like themental macros—
the same syntactic and semantic structures. Also, since tracing thecopy & pasteactions of a programmer is not
standard practice, finding clones with this definition is not feasible. We therefore conclude that a clone must be
defined basedonlyon the implementation artefact: the source text.

With these two failed definition attempts and the realization that we have to extract (parts of) documents from
source texts, we try to look to the neighboring field of information retrieval for help.

3.1.1 Clone Detection and Information Retrieval

The field of information retrievalhas close ties to the field of clone detection. The exercise of comparing
the two fields is worthwhile because information retrieval has been existing as a research field for a number
of decades and much effort has been invested in developing terminology and models for its study area. The
considerably younger field of clone detection is likely to profit from the insights and experiences of the older
information retrieval [WL03].

“Information retrieval deals with the representation, storage, organization of, and access to information items”
[BYG99]. Although this broad description does not immediately match the clone detection task, the central
aspect of “finding information pertaining to a query” is very similar to clone detection. In information retrieval
(see the schema in Figure 3.1) a set of transformations creates alogical view[BYG99] of a document. The log-
ical view of the document should represent what the document is “about”. Transformations remove superfluous
elements which for natural language texts are articles and connectives and grammatical ‘embellishments’ like
conjugations and declinations. These transformations, apart from reducing the size of the database, prepare the
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Figure 3.1: A schematic of the Information Retrieval Process (adapted from [Ing92]).

documents to be compared effectively with a query. The central element of the information retrieval process is
the matching function which compares the logical view of the query with the entities in the index. In the same
manner clone detection also transforms source code into a representation that is amenable for comparison with
a query.

The decisive difference between the two fields is however that the queries in information retrieval are for-
mulated by a human who requires the information. In clone detection, the query must be derived from the
information database itself. The advantage is that clone detection does not have to deal with the problem of
how to transform the human information need into a query that can be matched with the indexed documents.
The disadvantage is that we have to find the query from within the index itself. This causes the “compare
everything with everything” situation which drives up the computational complexity of the clone detection
techniques. Another difference is that information retrieval has to deal with text collections and digital libraries
of sizes that are currently measured in gigabytes and will grow to terabytes in the future. The indexing ca-
pabilities developed for information retrieval are thus also important to reduce the time to search through the
collection. Their costs are amorticised because a one-time index creation serves a large number of queries. In
clone detection, however, the systems which are searched today are only occasionally in the megabyte range.
In a reengineering project, the system is searched once for the detection. The extra storage of an elaborate
index will be justified only where clone detection is integrated into the software development process and is
scheduled regularly.

3.1.2 Relevance of Retrieved Documents

The notion ofrelevanceis central to evaluate the effectiveness of information retrieval techniques: “The purpose
of an automatic retrieval strategy is to retrieve all therelevantdocuments and at the same time retrieving as few
of thenon-relevantas possible” [vR79]. Relevance measures how well the information contained in a retrieved
document meets the demand for information that a user has expressed in the query. Relevance describes the
user acceptance or rejection of a proposed relationship between a document and a query. More complete,
relevance is

the criterion used to quantify the phenomenon involved when individuals (users) judge the relation-
ship, utility, importance, degree of match, fit, proximity, appropriateness, closeness, pertinence,
value or bearing of documents or document representations to an information requirement, need,
question, statement, description of research, treatment, etc. (A.M. Rees, 1966, qtd. in [Gre00])

Relevance is thus dependent on the judgment of the human user, “linked to the individual user’s problem space
and state of knowledge” [Ing92].

The problem spaceof the user of a clone detector is what we describe in Section 2.1.1. He must evaluate
the documents reported by a clone detection mechanism from this position. Relevance in code duplication
detection, just as in information retrieval, is thus dependent on the contextual information available to the user.
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A clone detection user’s context consists in many pieces of knowledge and many constraints: the exact tasks
he has to perform, functional and non-functional requirements of the system, the architecture of the system,
the current understanding he has of the system, the programming language, his proficiency in programming,
administrative conditions, etc. It is impossible to program a clone detector to respect all of this potential
knowledge in the detection process, it may sometimes even be impossible to formulate the knowledge as an
automatic filter. In the end, judging the relevance of a clone retrieved by a clone detection mechanism is an
essential part of clone detection which we cannot hope to fully automate.

3.1.3 Clone Detection Motivations which Affect Relevance

If we want to find relevancy criteria for clones, we can take orientation from the goals of an engineer who looks
for duplicated code. The user of the clone detection system may be motivated by any of a number of different
software maintenance tasks. These tasks influence the evaluation of the clones that are reported by the clone
detection system (clones are said to betask relevantby Walenstein et al. [WJL+03]). We provide a short list
of tasks accompanied by a description of issues that might influence the evaluation of a clone:

Reverse Engineering and Program Understanding:In program understanding we are interested in redun-
dant code that does not lend itself directly to refactoring but instead helps to understand how different
parts of the source code hang together thematically. Relevance in this context might mean anything that
reveals similar structures on all levels of the code. The granularity of these repeated artifacts can be
as small as part of an identifier name. From this point of view, the granularity and syntactic validity
constraints that are needed for the reengineering task could be relaxed to a great extent.

Reengineering and Perfective Maintenance:In reengineering, we want to actively improve the quality
of a system. Reengineering activities will be controlled by a cost-benefit analysis. Relevance in this
context might mean clones of “refactorable” logic, that is, the duplication can be extracted, unified and
put in a form that is accessible from its original locations via macro invocation, subroutine call or other
control flow mechanisms. The effort to perform the duplication analysis and the subsequent refactoring
must be justified by the gain in code quality. This might entail that the code fragments reported by the
clone detection system must be syntactically valid constructs,i.e., entire functions or blocks, and that
the system is able to automatically propose a straightforward refactoring (see Rysselberghe&Demeyer
[vRD04] for an evaluation how well the results of different clone detectors can be used for refactoring).

3.1.4 Sample Relevance Discussion

To illustrate the type of relevance questions a clone evaluator is confronted with, we discuss an example clone.

Figure 3.2 shows two functions from a medium sized system written in C, the open source MAKE replacement
called COOK. The functions append a new element to a list. Directly from this code and from similar reports
of the clone detector we can get the following bits of information that may affect our decision to refactor the
code or not:

• The memory management idiom is found 34 times in 26 different files (10%) of the COOK system (8
files contain it twice). The files come from all subsystems of COOK. 9 of the files carry the suffixlist in
their name.

• The core idiom of all instances is 5 lines long (lines 5–9). It is used to dynamically manage memory for
data structures like lists, stacks, and caches.

• A refactoring into a function requires about 5 parameters. See Figure 3.3 for a proposal.

Table 3.1 lists a number of arguments that speak for and against the relevance of the copied fragment, in this
case the decision to perform a refactoring.
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void
lex_filename_list_push_back (this, p)

lex_filename_list_ty *this;
lex_filename_ty *p; {

if (this->length >= this->maximum) {
size_t nbytes;
this->maximum = this->maximum * 2 + 4;
nbytes = this->maximum * sizeof (this->list[0]);
this->list = mem_change_size(this->list, nbytes); }

this->list[this->length++] = p; }

void
blob_list_append (lllp, llp)

blob_list_ty *lllp;
blob_ty *llp; {

if (lllp->length >= lllp->maximum) {
size_t nbytes;
lllp->maximum = lllp->maximum * 2 + 8;
nbytes = lllp->maximum * sizeof (blob_ty *);
lllp->list = mem_change_size(lllp->list, nbytes); }

lllp->list[lllp->length++] = llp; }

Figure 3.2: Two fragments of C code (from the COOK system) performing memory management

void extend_if_necessary(len,max,addendum,chunksize,list)
int len;
int *max;
int addendum; /* make this a constant? */
int chunksize;
void *list;

{
if (len >= *max) {

size_t nbytes;
*max = *max * 2 + addendum;
nbytes = *max * chunksize;
list = mem_change_size(list, nbytes); }

}

Figure 3.3: A refactoring of the code from Figure 3.2.
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For Refactoring AgainstRefactoring
The idiom has only small variations over all
the encountered instances and can be refac-
tored easily.

Since the C programming language does not
offer generic types we would have to realize
the shared implementation usingvoid point-
ers. That would forfeit type safety.

Memory management is a basic system func-
tionality which should not interfere with the
domain specific algorithms (separation of con-
cerns).

All the different parts of COOK would be de-
pendent on a single memory management im-
plementation.

The purpose of the idiom is very simple.
It is thus not likely to evolve much. We
could therefore refactor it without fear of many
change requests.

If the requirements for the memory manage-
ment functionalitydo evolve differently in the
34 locations, a change to the central imple-
mentation requires that all uses must be re-
tested.

In some of the files which contain the idiom
twice, a local refactoring would not disturb
anything outside of the file.

A function invocation involving 5 parameters
may be a bit unwieldy to read. Remembering
the purpose of every parameter could prove to
be harder than reading the inlined code, which
as an idiom is instantly recognized.

Table 3.1: Arguments for and against the refactoring of the clones in Figure 3.2.

3.2 Definitions of Clones

The aim of this section is to develop a framework of notions with which we can describe automatic clone
detection approaches. The main goal is to establish the properties of a pragmatic clone relation between source
fragments. From the discussion in the previous section we recapitulate the two principles of a clone model:i)
We derive clone-ship from similarities in the source text, andii) we need human expertise to be the final arbiter
on relevance. A clone definition must have the following characteristics:

Constructive: The definition must be concrete, based on the source text or any derivative thereof. We must be
able to build a mechanical retrieval engine from the definition.

Include Relevance Criteria: Relevance of clones cannot fully be made part of the core definition since it
depends on the various tasks of the engineer. Some but not all criteria from a task dependent list can be
automatized. Many will however have to be left for the “human in the loop” to decide.

The desirable properties of a clone definition are [Gie03]:

• Independent of a Programming Language.

We can express the same logic in all Turing complete programming languages. The form in which a
program is written is thus accidental. We want to find duplication of logic, the essential property of a
program.

• Independent of a Detection Approach.

Clones exist independent of the fact that they are detected by some mechanism. A human programmer
knows when two fragments form a clone. Ideally, we would like to replicate in algorithmic form this
detection capability of the human arbiter.

• Describe a Continuum of Clones from Exact to Non-Exact.

Copied code is changed to many different degrees, from no change to continued development that morphs
the fragment into something different. But even for fragments where the common origin is almost un-
recognizable, similarity knowledge is still valuable for a range of maintenance tasks.
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We first give an overview of clone definitions that have been proposed in the literature. We then describe the
framework in which clones occur, are detected and grouped. This is divided into four parts:i) The description
of the source code and its properties which influence the clone detection process,ii) the description how the
code of a system is partitioned into the source fragments which are ultimately compared,iii) the description of
the clone relationship between two source fragments, andiv) the aggregation of clone pairs into larger clone
sets, which describe similarity relationships between multiple source fragments.

Clone Definitions in the Literature

A commonly agreed upon definition for clones has not yet been established in the literature [LLWY03]. In
the beginning of the research on clones the operational idea of cloning, the fact that programmers usecopy &
pasteto reuse their code, was the direct inspiration for the work. Early attempts like Johnson’s [Joh94a] are
based on this view, implicitly defining a clone as an identical fragment of source text. More detailed models
of how code duplication occurs are used by Baker [Bak93b], for example. She assumes that the code is copied
and subsequently adapted and changed by various editing operations. This leads to a more refined detection
approach. The definition of a clone was, however, still implicit: a clone is what can be detected by the particular
approach. The definition “strategy” of letting the mechanism decide what is a clone is used by most proposals,
circumscribing clones by more or less vague terms like ‘identical’ or ‘similar’ without specifying the meaning
clearly.

A detection-independent definition was first given by Kontogiannis [Kon97]. He defines four basic types of
clones, still based on the operational idea of duplication:i) exact clones where an identity function on each non-
blank character maps fragmentf1 to fragmentf2, ii) clones that are exact except for systematically substituted
variable names and data types,iii) clones where expression and statements have been modified, andiv) clones
where statements and expressions have been either deleted or inserted. The three modification functions can be
combined to get multi-type modifications on a clone.

In a first attempt to define clones outside of the actual research on detection, Giesecke, focusing on cloneman-
agementissues, has proposed a formalization of the entire detection process, from the selection of the source
fragments to be compared until the representation of the sets of reported clones [Gie03]. In his framework,
exact and non-exact clones are described independent of the detection approach.

The idea ofrelevanceof clones has been used implicitly by many of the approaches which focus on clones
that can be easily refactored [BMLK99][KH02]. These are attempts at capturing (in automated filters) some of
the relevance criteria. An explicit formulation of relevance criteria in the form of a handbook for human clone
evaluators has been written by Walenstein et al. [WJL+03], who do not propose a detection mechanism of their
own.

3.3 Important Source Code Aspects

Most clones must be presented to the user for scrutiny. It is therefore advantageous for them to keep the
form and layout from the original source file. This section explains the properties of the source code which
a clone detection mechanism must take care of. For languages like C/C++ we address the problem of code
which includes preprocessor commands in Section 3.3.1. The structural properties of source code, which are
compared by clone detectors is described in Section 3.3.2.

3.3.1 Preprocessing Source Code

The C/C++ programmer has the advantage1 of being able to control compilation with the facilities of the
preprocessor. The use of the preprocessor is associated with a number of problems which have to do with the
macro expansion and conditional compilation.

1For the developers of reverse engineering tools it is often a disadvantage.
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Macro Expansion: This poses two problems. First, it is difficult to map line numbers in the code after the
expansion back to the original code. Using the post-expansion code as reference goes against the stated
goal for clone reporting which is to refer to the source code in the form the programmer sees it in his
editor. The second problem is that expanded macros generate duplication. If this is reported it generates
confusion among the programmers who use macros toavoidduplication. As a reaction to these problems,
many detection tools choose not to expand macros and to treat them as normal code where possible.

Conditional Compilation: The conditional compilation directives (#if , #ifdef ,
#ifndef , #else ) enable code for different deployments, execution modes, or platforms to coexist in
the same source file. At compilation time, flags select the code fragments that are fed to the compiler.
The problems are, first, that a reengineer is interested in potential duplication in all of the mutually ex-
clusive branches of the#if directives. This problem is solved by Baxter et al. [BYM+98] by treating the
preprocessor directives#if , #else , and#endif as elements of the C grammar. In this way all branches
of a conditional compilation can be represented in the abstract syntax tree. Merlo et al. [MAK] use a
heuristic derived from their observation that the#else -branches are used rarely and thus contain much
less code (in the LINUX kernel). As a consequence they parse the code in thethen -branches only.

The more serious problem of the#if directives is however that they can appear anywhere in the code,
i.e., in between any two tokens of C code. In practice that means that the individual branches often
contain incomplete source text which results in legal syntax only after having been preprocessed. A
reverse engineering parser trying to understand both branches at the same time will fail on the illegal
fragments. Parsers have to be made robust for these cases [Meh04].

Tools (like string matching-based tools) that are insensitive to syntactic invalidity do not understand the
difference between preprocessor directives and normal code. They compare every piece of source text
regardless.

Since the preprocessor issues are not at the core of the duplication detection problem and are constrained to
systems written in C/C++ or COBOL, we will not discuss the handling of these problems in more depth here.
We will leave it to the individual approaches to find solutions as to which part of the code is going to be taking
part in the comparison.

3.3.2 Source Code Structure

The structure of source code is expressed on multiple levels. On the lowest level is the textual order of the
tokens and statements. On a higher level we can build a control flow graph representing the syntactic order.
This graph can also represent jumps in the code. To abstract even more from the non-essential ordering of the
source text, we can include the data flow structure to form program dependence graphs.

Since structure is an essential aspect of the code it is so for clone detection too. Any comparison therefore
must account for structural similarity somewhere. The string- or token-based approaches use the token- or
line-order to aggregate the small matching source fragments into clones. Approaches that work on the abstract
syntax trees use the syntactic order to combine matching nodes and subgraphs in close vicinity. Metrics-based
approaches do not use order to aggregate comparison results. Rather they measure the structural properties
and compare these values. Goodnow et al. [GIHK+97] measure thestatement orderof the code by counting
adjacent accesses to pairs of identifiers. On thecontrol flowlevel, the McCabe complexity metric [Kon97], or
cyclomatic complexity metric [MAK] are used among others. Finally, data flow dependencies are exploited by
Krinke [Kri01] and Komondoor [KH01b] with slicing based methods.

With the orders just mentioned we can order the statements of a function naturally. It is however not as
trivial to define an order that goes beyond a single function,i.e., that totally orders all statements of the entire
program. The sequence in which the functions appear in a source file is mostly incidental and will only provide
a partial order. The call graph of a program can be used to order the functions, but since there are a number
of interpretations of what a call graph is [Mur96], some heuristic decisions are needed as well. Only few
approaches exploit a call graph order. Jankowitz [Jan88] and Leitão [Lei03] guide a coarse comparison phase
by the structure of the call graph.

32



“thesis” — 2005/6/13 — 13:54 — page 33 — #47i
i

i
i

i
i

i
i

Chapter 3 A Conceptual Model for Clones

To include the structure of entire programs into the comparison is mainly interesting for plagiarism detection
because overall structural similarity can be a strong hint at large scale copying. In clone detection, rather than
including the whole program in the computationally expensive comparison process, comparison usually stops
at a level where, for example, refactoring opportunities of detected clones are still easy to decide. Similarities
between larger entities than functions can be determined in a later phase by combining clones.

3.4 Source Code Partitioning

At the beginning of the clone detection process, the source code of the system is partitioned. The partitioning
determines the domain of the comparison: Which pieces of the source are to be compared against each other?

The goal of code partitioning is threefold:i) Determine exactly which code is going to be compared,i.e.,
remove the uninteresting parts, andii) split the code intosource units, i.e., the entities which are related with
the clone relation. Eventually, stepiii) splits the source units further intocomparison unitswhich are fed to the
comparison function(s).

3.4.1 Selection of Source Code

We may want to remove source code before the comparison for a number of reasons:

• A preprocessor can be run over C/C++ code to remove parts of the conditional compilation branches if
the comparison cannot handle it (see the discussion on page 31).

• For embedded code (e.g., SQL embedded in COBOL code, or ASSEMBLER inlined in C code) source
partitioning is needed to separate the code for the different languages since they may have to be compared
with different tools or tool-settings.

• Parts of the source code that are not under the direct control of the programmer such as generated code
(LEX- andYACC-generated files, for example) can be excluded.

• Pieces of code which are likely to produce a lot of false positives,e.g., table initializations, can be
excluded.

• For very large case studies where either the time for comparison, or the time for working through the
reported clones cannot be allocated, the parts deemed unproblematic in terms of duplication can be
removed from the study.

3.4.2 Source Units

A system’s source code that has not been removed in the previous step is partitioned into a set of disjoint
fragments calledsource units. The selection of source units is motivated in the following way:

• We want to establish the border beyond which the order of the source code is not taken into account any
more by the comparison.

• With a small amount of parsing we can assign types to the source units (in C, for example, we could
have function bodyunits, andformal parameter definitionunits). We can then remove uninteresting
comparisons between incongruent types from the task list.

The most important property of a source unit is this: It is the largest source fragment that can be involved in
a direct clone relation with another fragment. Since there is not necessarily an order relation defined on the
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Figure 3.4: Two source units are compared on hetero-genic comparison points.

set of source units we cannot aggregate matching fragments beyond the border of a source unit. To find dupli-
cation relationships between entities larger than the chosen source unit granularity, we can apply combination
functions on the set of clones (see Section 3.7) in a post-comparison phase.

Source units can be defined at many granularity levels; examples are files, classes, functions, blocks, statements,
or sequences of source lines. If clone relations are established between source units only (what we define as
fixedclone granularity in Section 3.6.1) the choice of source unit granularity is subject to a number of forces:

• The smaller the granularity becomes, the larger the cardinality of the result set will be.

• The smaller the granularity the less specificity can be expressed in the code of a source unit. This may
result in many false positives.

• If the granularity too big, meaningful duplication on smaller granularity levels may be missed.

3.4.3 Comparison Units

The source unit, even though it is the bearer of the clone relation, must be subdivided further if the comparison
function is to work on fragments of a different (i.e., smaller) granularity level: Source units are then split into
disjoint comparison units. This can either be done uniformly, for example by splitting code into lines or into
tokens. Comparison units can also be derived from the syntactic structure of the source unit: Anif -statement
can be broken intoconditional expression,then - andelse -blocks. If the comparison units are typed in
this manner, the comparison functions can be selected depending on the type. Comparison units are ordered
within their containing source units, in contrast to the unordered set of source units. The order of comparison
units is taken into account by the comparison function.

In some cases the source unit itself is the comparison unit. Metrics, for example can be computed for source
fragments of any granularity [MAK] and a subdivision into comparison units is thus unnecessary.

3.5 Comparing the Code

The actual comparison can be described in three steps:i) transform the code of the comparison unit into a
logical representation,ii) compare the transformed code, andiii) use the results to form clone pairs. In this
section we are describing different implementations of these steps. The process is illustrated in Figure 3.4.

1. The comparison unit is transformed into one or morecomparison points. A comparison point is a trans-
formation or a property extracted from the source code.

This transformation can for example simply mean to extract the name of a function [MLM96b], or
the removal of comments and white space [Bak92], or a parsing pass which builds an abstract syntax
tree [BYM+98] or a program dependence graph [Kri01][KH01a]. Metrics-based approaches usually
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compute an attribute vector for each comparison unit. The combination of all comparison points can be
seen as a signature for the comparison unit.

2. Once the comparison point attributes are computed the comparison takes place. If all attributes are of the
same type, we can measure the similarity between the attribute vectors with a function like the Euclidian
distance metric [Kon97] or the clustering abilities of a neural network [DBF+95]. If the comparison
points are heterogeneous, a different comparison function is applied to each comparison point attribute
[MLM96b] (this case is illustrated in Figure 3.4).

The comparison functions themselves can be as simple as string matching [Joh93], or as complicated as
finding isomorphic subgraphs of a program dependence graph [Kri01]. The comparison function may
also vary with respect to the type of the comparison unit. Leitão [Lei03], for example, uses syntax-aware
comparison,i.e., each special form in LISP has its own comparison function.

3. Using the order of the comparison units, similarities of adjacent units are summed up. For fixed granu-
larity clones all comparison units that belong to a source unit are aggregated. For free granularity clones,
aggregation is continued as long as the aggregated sum is above a given threshold for the number of
aggregated comparison units, making sure that the aggregation continues until the largest possible group
of comparison units is found.

At the end of the comparison process we have declared a number of source units or aggregated comparison
units to be in clone relations.

3.6 The Clone Pair

Although similarity relations in source code are in many cases more complicated than only two fragments
which are copies of each other, we start off with the description of a clone pair for reasons of simplicity.
We first explain the difference between free and fixed granularity clones, then list the properties of the clone
relation, and finally discuss one important property: the size of a clone.

3.6.1 Clone Granularity

An important dichotomy governs the field of clone detection: The clone relation is either established among a
set of preselected source fragments which are all of the same granularity (source units), or clones are combined
(aggregated) from small fragments (comparison units) that have been found similar during the comparison
phase. In other words: Either the clone granularity isfixedbefore the comparison or it isfree, determined ad
hoc from atomic comparison results (see Figure 3.5 for an illustration). We will explain these two choices with
their advantages and disadvantages.
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Source Unit B

Fixed Clone Granularity Free Clone Granularity

Source Unit A Source Unit B Source Unit A

Figure 3.5: Clone relations in fixed and free clone granularities. The black bars represent lines of matching
source code.

Fixed Clone Granularity: In this case, the source code of a system is partitioned into disjointsource units.
These units are used as defining elements for the clone relation,i.e., only pairs of source units are considered
as clones. All similarities of smaller granularity are disregarded.

Advantages Disadvantages
By selecting only valid syntactic fragments as
source units, the detected duplication is likely
to be more easily refactored.

If the source unit granularity is selected to
be large, meaningful self-similaritywithin the
source units may be missed.

The number of potential clones is known. In
a system withn source units, there can be no
more thann(n−1)

2 clones.

The partitioning of the source code may dis-
rupt meaningful duplication that goes beyond
a single source unit.

Relations within the set of clones are simple as
clones cannot overlap with other clones.

When two source units match only partially, a
manual investigation must determine the exact
location of the similarity.

Free Clone Granularity: The source code of a system is partitioned into atomiccomparison units. A clone
is then formedad hoc, derived from the result of the comparison by the aggregation of adjacent comparison
units exhibiting high similarity.

Advantages Disadvantages
We can detect clones at the smallest granular-
ity level that the comparison supports.

Clones may extend over syntactic borders,
e.g., blocks. This may make some of them
difficult to refactor [vRD04]. To avoid this
problem, an additional filter pass is necessary
[HUK+02].

We are able to detect self-similarity within
source units.

The number of potential clones is much higher
than for fixed clone granularity.

The relationships between clones are more
complicated: Clone pairs may overlap or be
contained within each other. This cannot hap-
pen when the clone granularity is fixed.
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Chapter 3 A Conceptual Model for Clones

The main advantage of the similarity induced aggregation is that duplication is found and reported on all
granularity levels simultaneously. We are able to find the clone relations between shared fragments of 20 lines
within two 200 lines functions. With a fixed function granularity this would be noted only as a small 10%
similarity and probably fall under a threshold. Most importantly however, if granularity is free we are able to
detect self similarity of source units. A function which contains 3 times the same 10 lines of code will not be
noticed if we only perform inter-function comparisons.

3.6.2 The Clone Relation Properties

In this section we investigate more formally the notion of theclone relation. We define the clone relation to
be a binary relation between source fragments,clone(f1, f2). For fixed granularity,clone(f1, f2) is defined
onP(SrcUnits), and for free granularityclone(f1, f2) is defined on arbitrary sequences of comparison units
S(CompUnits).

A useful notion of clone relation fulfills the requirements of reflexivity, symmetry but not necessarily transitiv-
ity.

Reflexivity: A clone relation is reflexive ifclone(f, f) always holds,i.e., if every source unit is always a
clone of itself. This is obviously true, as any (syntactically valid) source unit performs the same task as itself
which makes it a clone under the strict criterion of semantic equality (syntactically invalid fragments can be
extended with the same text until valid). Reflexivity can thus be naturally assumed as property of a clone
relation.

Symmetry: A clone relation is symmetric ifclone(f1, f2) ⇔ clone(f2, f1). This is not trivially true for
duplicated code. If a clone instance is created viacopy & paste, a direction from the original to the copy is
implied. This information could be the basis for an asymmetric clone relation (which would be interesting in
the context of evolution analysis). Since in this work we use structural similarity and not the creation history
to identify clones, we have no information about any order between the members of a clone pair. Hence,
symmetry can be claimed as a useful property of a clone relation.

Transitivity: For exact clones transitivity holds trivially. For non-exact clones where a single similarity value
abstracts over matching and non-matching parts, or aspects, of two source fragments, it is easy to construct an
intransitive counter-example: Let source fragmentf1 match the first half of source fragmentf2 and source
fragmentf3 match the second half off2. The pairsclone(f1, f2) andclone(f2, f3) hold under an adequately
relaxed threshold, butclone(f1, f3) obviously does not. We therefore cannot assume transitivity for clone
relations in general.

However, as noted above, transitivity holds for exact matches. Free granularity clones that are built on exact
matches between the comparison units are thus transitive,e.g., the clone relation of Kamiya et al. [KKI02].
Fixed granularity clones that use a zero distance threshold (see Merlo’s et al. [MAK]) also achieve transitivity
for the relation.

Transitivity is a useful property: A relation which is reflexive, symmetric, and transitive is anequivalence
relation. This enables the members of the relation to be represented byequivalence classeswhich possess a
number of advantages:

• An equivalence class representation of clones has the lowest cardinality of all possible clone representa-
tions (see Section 3.7).

• Equivalence classes are strictly disjoint: a clone only belongs to one cluster.

• We can build the equivalence classes during the comparison. A source unit must then only be compared
to a single representative of each class. This may reduce the number of comparison drastically.
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if (num_pos > 30) {
fprintf(stderr,"%s:regular expression too long\n",prgnm);
free(r_pat);
if (!EXITONERROR) {

if (M > 30) {
fprintf(stderr,"%s:regular expression too long\n",prgnm);
if (!EXITONERROR) {

Figure 3.6: The two only occurrences of the literal ‘30’ in the AGREPsystem. The fragments stem from two
files.

filename_split (spec_outfile, &base, &tab, &ext);
full_base_name = xstrndup (spec_outfile,

(strlen (spec_outfile) - (ext ? strlen (ext) : 0)));

filename_split (infile, &base, &tab, &ext);
short_base_name = xstrndup (infile,

(strlen (infile) - (ext ? strlen (ext) : 0)));

Figure 3.7: A clone pair of line size 3 from the BISON system.

olp->length = 0;
olp->maximum = 0;
olp->list = 0;
olp->break_label = 0;
olp->continue_label = 0;
olp->return_label = 0;

this->target = 0;
this->ingredient = 0;
this->set = 0;
this->pred = 0;
this->single_thread = 0;
this->op = 0;

Figure 3.8: Two object initializations from the COOK system.

3.6.3 Minimal Clone Size

To restrict the number of clones that are reported by a detection tool, filters must be implemented. A filter
criterion that is chosen frequently is the minimal size of the clone. This excludes small clones under the
assumption that small equals irrelevant. Logic, however, is embodied in source fragments of any granularity,
there is no lower boundaryper sefor the size of a clone. Expressions, where primitive terms and operators
are combined, can embed important knowledge. Such knowledge can even be embodied in a single constant,
e.g., a string that is the name of a command, or an integer number that is a configuration parameter. This claim
is supported by the fact that programming languages have invented many mechanisms to help avoiding these
types of clones and the potential errors introduced by them.

If a literal number that appears in two locations in the source is a clone or not has to be derived mostly from
contextual information (hopefully from comments) and can only exceptionally be derived from the code,i.e.,
from the number itself (“superstar” numbers like3.141592 are usually recognized on their own account). In
Figure 3.6 we see a clone of about 5 lines. Since one of the instances contains the linefree(r_pat); which
the other does not, a refactoring is not straightforward. Due to its small size a reengineer would probably deem
the clone irrelevant. The literal parameter30 however makes this clone relevant: changing one without the
other may lead to inconsistent system behavior.

Minimal size is commonly measured in number of lines. For the comparative study of Bellon [Bel02a] a
minimal clone length of 6 lines was agreed upon. This measure, however, can skew the results since the

38



“thesis” — 2005/6/13 — 13:54 — page 39 — #53i
i

i
i

i
i

i
i

Chapter 3 A Conceptual Model for Clones

amount of logic per line varies wildly. To illustrate we can compare two clone pairs: In Figure 3.7 we see three
lines of copied code which would be filtered out by the 6-lines threshold. The clone, however, is an interesting
candidate for a macro if found a significant number of times in the code. In Figure 3.8 on the other hand, we
see two code fragments which fulfill the 6-lines threshold. The logic content per line is however small, and
the code does not lend itself to being refactored. The only, quite vague, information that we can get from their
similarity is the common intent ofinitialization.

3.7 The Clone Groups

The question of how the detected duplication is presented to the user—the engineer charged with the reengi-
neering effort—becomes important when confronted with the number of clone pairs that result from analyzing
a system. To facilitate the reengineering tasks it would be favorable to find a structured representation which
reduces the number of clones that one has to process,i.e., a representation which has a cardinality that is
significantly below the number of clone pairs.

A group of clones is essentially a group of source units or source fragments. The fragments can be grouped
together by two criteria: they are all copies of each other, or they are located in close proximity of each other,
neighborhood being another, weaker form ofsimilarity.

3.7.1 Grouping Clones by the Clone Relation

If the clone relation is the criterium for being a member of the group we have the following possibilities:

Clone Pair Enumeration: The simplest aggregation is just an enumeration of all clone pairs. This list,
however, can potentially grow large and contain much redundant data. If we haven instances of the same
source unit, for example, we will have

(
n
2

)
− n clone pairs. To be able to efficiently process the duplication we

must remove the redundancy by creating more concise representations of clones.

Equivalence Classes: The grouping of clones into equivalence classes is the best representation for a number
of advantages:

• The cardinality of the data is reduced most effectively.

• Equivalence classes are disjoint: every clone is only part of a single group.

• Since equivalence implies transitivity it is likely that we can reach all members of an equivalence class
with a single refactoring measure.

Equivalence classes can be formed if the clone relation is transitive. Transitivity is not a general property of
clone relations as we have argued above. Even if transitivity does not hold for all clone pairs, there might,
however, exist subsets consisting of clones which are mutual copies of each other. Groups formed from these
sets might not be disjoint or the number of groups will not be as low as the number of equivalence classes.
If transitivity is completely absent from every possible subset, the size of mutually copied clone groups will
however not be greater than one, we will have no more than an enumeration of clone pairs.

Characteristic Sets: Another type of groups are thecharacteristic sets[Gie03] which groups all clones of a
given source unit into a set:

Definition 3.7.1 Let M : SrcUnits→ SrcUnits× P(SrcUnits) be a function that maps everyx ∈ SrcUnits to
all clones ofx, wherex is the characteristic element:

M(x) = (x, { y | clone(x, y) })
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The Clone Groups Section 3.7

This clone presentation has the following properties:

• The number of groups formed by this representation is|SrcUnits|. This reduces the cardinality of the
clone data in cases where we haven instances of the same source unit (generating

(
n
2

)
− n clone pairs).

• The sets of elements associated with the differentx are not necessarily disjoint.

Overlapping and Containment among Free Granularity Clones

If the clone relation is defined between arbitrary source fragments, the situation is complicated by the relations
of overlappingor containmentwhich can exist between fragments of free granularity clones (in contrast to the
disjoint source units of fixed granularity). Whereas copied fragments which overlap and contain other frag-
ments enable a much more detailed picture of the duplication situation, they also require a more complicated
analysis.

To reduce this complexity we first aggregate the fragments until we have only a single representant for all
overlapping and containing fragments. The relationcontains(f1, f2) means that fragmentf1 contains all of
fragmentf2. The relationoverlap(f1, f2) indicates that a non-empty fragmentg is contained in bothf1 and
f2, but neithercontains(f1, f2) nor contains(f2, f1) holds. For the detailed definitions of these relations see
Appendix D.

Containment is a strong relation among source fragments since the containing fragment covers the contained
entirely. The container can therefore represent the contained fully.

Definition 3.7.2 (Containers)For a set of source fragmentsS and a fragmentf ∈ S, the set of containers of
f in S is defined as

containers(f,S) = { g | g ∈ S ∧ contains(g, f) }

By recursively establishing all possible container relations we get a hierarchy of clones. The top-level fragments
are not contained by any other fragment.

Definition 3.7.3 (Top-Level Fragments)For a set of source fragmentsS we define the setT of top level
fragments ofS as

T (S) = { f | f ∈ S ∧ containers(f,S) = ∅ }

The top level fragment can be said to represent all fragments it contains. The problem is that we can still have
overlapping among the top level fragments. We need to create artifical source fragments that cover overlapping
source fragments fully.

Definition 3.7.4 (Non-Overlapping Top-Level Fragments)We identify all tuples of top level source frag-
ments

(x1, . . . , xn), xi ∈ T
where∀i with 1 ≤ i < n it is true that overlap(xi, xi+1).

For each tuple we create a new source fragmentf where beg(f) = beg(x1) and end(f) = end(xn). We replace
all source fragments from the tuple byf . The new set of source fragments isT ′.

The setT ′ effectively removes the overlapping relations from the set of source fragments involved in a clone.
The elements ofT ′ are disjoint, just like the elements ofSrcUnits. We can now assemble all source fragments
into disjoint containment hierarchies.
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Chapter 3 A Conceptual Model for Clones

Definition 3.7.5 (Containment Hierarchy)A containment hierarchy is created from the elementsx ∈ T ′:

H(x) = (x, { y ∈ S | contains(x, y)})

Each source fragment that is involved in a clone is now represented by a top level fragment. Having a fixed set
of source fragments we can now use the characteristic set representation from Definition 3.7.1 for free clone
granularities as well.

3.7.2 Grouping Clones by Regional Coherence

In the previous section we have assembled groups of clones according to theclonerelation and the relationships
of the source fragments involved in the clones. Additionally, clones can be grouped according to the location
of source fragments,i.e., the containment of the fragments in certain larger regions of the system’s code, for
example files, directories, or subsystems. These regions are independent of the source unit and mostly larger.
The general purpose of the code in these regions is familiar to engineers who have been working with the
system, and by associating the regions with the clones the knowledge about the system is transferred to the
clones.

We build the location-oriented grouping of clones on top of the representations discussed above. This leads to
three levels of duplication entities as illustrated by Figure 3.9. The three entities form a containment hierarchy:
Each higher order entity aggregates the lower level entities.

1. Clone Pairs: The lowest level of detail on which to describe duplication is the clone pairclone(f1, f2).
The pair comprises two source code fragmentsf1 andf2 which are copies of each other.

2. Clone Classes:A clone classis any clone representation which declares more than two source fragments
similar. In the optimal case, this would be the equivalence classes built from a transitive clone relation.

The domainof a clone class is the set of source entities from which its source fragments stem. The
domain of the clone class in the middle of Figure 3.9, for example, are the filesF11, F12, andF13.

3. Clone Class Families: We group all clone classes that have the same domain to form aclone class
family.

Note that the clone class family is not only a convenient way of reducing the cardinality of the set of all clone
pairs. This representation also holds direct interest for the reengineer: First, since clone class families contain
only entire clone classes, they assemble all instances of a source fragment found in the system. Second, a
clone class family reveals duplication activity that goes beyond the duplication of a single continuous source
fragment. If two fragments, which were initially copies of each other, evolve differently over time, they may
not be recognized as one clone pair any more (thesplit duplicatesproblem mentioned in [Kri01]). The clone
detector may identify smaller parts which are still similar individually. A clone class family will reunite those
clone fragments. In summary, a clone class family aggregates all elements that are necessary to make informed
decisions about refactoring measures for a particular fragment of copied code.
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A Clone Pair

A Clone Class

A Clone Class Family

F01 F02

F11 F12 F13

F21 F22

Figure 3.9: Containment hierarchy:Clone Pairs, Clone Classes, andClone Class Familiesand the source files
they are found in.

3.8 Conclusions

A clone is objectively and subjectively defined:

1. An objective way in which similarity between source code fragments is described. This serves as a basis
for the construction of a mechanical detection tool.

2. The relevance of a clone which determines if the mechanically retrieved candidates are useful or not is
dependent on the reengineers tasks. Relevance cannot be encoded in automatic filters in all occasions
which requires human arbitration.

The clone relation that we establish between two similar source fragments is reflexive, symmetric, but only
transitive under certain circumstances.

We can distinguish between fixed and free granularity clones. Fixed granularity constrains the number of
potential clones and its results are interesting from a refactoring perspective. Free granularity clones trace the
similarity of the source code in much greater detail. Not all of the information that we can gain from the free
granularity clones is immediately usable for refactoring purposes, but rather helps us to understand the program
better.

Clones are finally grouped into clusters by two properties: derivation from a common original fragment, and
close physical location in the source text. We are not able to always build equivalence classes of clones since
transitivity is not given in general for the clone relation.
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Chapter 4

An Analysis of Duplication Detection by
String Matching

In Chapter 2 we have selectedAdaptabilityandScalabilityto be the reengineering goals that guide our analysis.
This chapter investigates methods for detecting duplicated code which support these goals. We first select the
basic method and formats on which to base a clone detection approach in Section 4.1, motivating and explaining
the impact that these choices have on the different elements of a detector. The analysis in the rest of the chapter
is then a thorough investigation of the possibilities for clone detection when only using minimal parsing and
string matching for a comparison method. Whereas string matching has been used as a comparison mechanism
before [Bak92][Joh93][CDS04], we extend this investigation to the phases before and after the comparison.

The stages of the clone detection process that have been laid out in Section 2.2.2 give the chapter its structure:

Transformation. Even though string matching is used as comparison function, we do not treat source code
as mere text. We recognize as much syntax elements as we can while remaining language agnostic. We
identify the syntax elements which belong to the superficial features of the code in order to concentrate
the comparison on the essential features. (Section 4.2)

Comparison. The organization of the string matching influences both the performance and the sensitivity of
the detection. (Section 4.3)

Ranking. Since we aggressively remove features from source lines we risk an increase of false positives. To
balance this we must use a post-comparison analysis phase in which to perform more expensive analysis
on the comparatively small population of candidate clones. (Section 4.4)

Each section on a detection stage must be read as a list of options which are open to us if we want to build
adaptableandscalableclone detectors. How many of these options—and in which combinations—are to be
used for a concrete detector is not detailed here. Some selected combinations of ideas presented in this chapter
are investigated in Chapter 6. We derive hints on the construction of a concrete detector from the results
presented in Chapter 6.
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Our Contribution

The contributions of this chapter are:

• An extensive list of source code normalization measures to improve string-based clone detection.

• An analysis of the normalization measures with respect to their potential for generating false positives.

• An argument for the selection of a word-based index to support exact string matching.

• An extensive analysis of the clone ranking measures that are open to a language independent approach.

• A simple representation of source code asfeaturesto extend the exact string matching with a fuzzy
comparison.

• A list of reengineering tasks and how they can be supported with the ranking measures.
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Chapter 4 An Analysis of Duplication Detection by String Matching

4.1 Characteristics of a Simple Detection Approach

To make the lofty goals ofAdaptabilityandScalabilityconcrete, we need to choose characteristics of a clone
detection methods which promise to fulfill these goals. In a nutshell these choices are the following:

Code Representation Strings
Comparison Method Exact String Matching
Clone Granularity Free
Comparison Unit Granularity One Source Line

We explain the motivations for these selections in the next sections.

Code Representation

The selection of the code representation has the largest impact on all aspects of the clone detector. By choosing
thestringas representation format,string matchingas comparison method obviously follows. The string is the
simplest of all possible code representations. This has the following advantages:

• Source code is already in string format. We can essentially just start the comparison without any further
ado. The complexity of the transformation phase can be kept low.

• The string being the original representation of the code it contains all aspects of the code. When we use
the same format we can base our comparison on every such property.

• Strings of source text is the most space efficient form to express the logic of the code.

• The universal data type string can hold any data. We can encode any source code property in string
format.

• It is possible to transform strings efficiently with methods like regular expressions for which mature
implementations abound,e.g., PERL [WCO00].

• A single string or a sequence of strings are a flat format in contrast to linked structures like trees and
graphs. The comparison of flat data is in general simpler than the comparison of structured data.

The problem we face when using strings is its uniform nature consisting only in characters. Conceptually dif-
ferent program elements are no longer distinct when represented as a string. We cannot separate the superficial
from the essential with only string matching. For example, string matching will give equal weight to the name
of a function and the statement delimiter in the stringf(a); , whereas a programmer will weigh them totally
different.

To overcome this problem we can employ parsers which interpret the source text, separating elements of dif-
ferent types and enabling an informed comparison with some distinction capabilities. Parsers, however, are
hampering the goal of adaptability because they are usually tailored to a single programming language. They
are difficult to maintain in the face of proprietary dialects or project dependent quirks of development teams:

Parsing the program suite of interest requires a parser for the languagedialectof interest. While
this is nominally an easy task, in practice one must acquire a tested grammar for the dialect of the
language at hand. Often for legacy codes, the dialect is unique and the developing organization
will need to build their own parser. Worse, legacy systems often have a number of languages and
a parser is needed for each. Standard tools such as Lex and Yacc are rather a disappointment for
this purpose, as they deal poorly with lexical hiccups and language ambiguities. [BYM+98]
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Following the goal of adaptability therefore means to employ onlyminimal parsing technology. Minimal
parsing means two things:

• To only recognize fragments of a language, do not attempt to analyze the entire program. This is basically
the same idea as the one of island grammars [Moo01]. An island parser will only recognize in detail some
islandsof interest in the grammar, and leave the rest of the code uninterpreted.

• To only parse elements which can be found in every programming language and identified easily so as to
make the adaption of the parser to another programming language a matter of configuration.

Comparison Method

There are several advantages to a setup characterized by a simple comparison method like exact string match-
ing:

• The middle step of the detection process is the one that is caught in the grips of the squared time com-
plexity (depending on the size of the input). The first step, transformation, is performed in linear time
depending on the size of the input, and the clone analysis after comparison, has linear time complexity
in the amount of duplication detected. Therefore, using a fast method in the most time-complex area of
the entire process will have the largest impact on the overall performance of the process.

• Since we are using exact string matching the operation is almost trivial. Furthermore exact matching
defines an equivalence relation on the strings. This helps to reduce the time complexity of the comparison
even further.

• Having onlyyes/no results on the lowest comparison level simplifies the interpretation and visualization
of the data when compared to dealing with percentages of similarity.

Clone Granularity

The selection of free over fixed clone granularity is motivated by the following considerations:

• We want to be able to detect self-similarity in source entities like functions. We know from experience in
reengineering projects that functions in legacy systems can be long and self-repetitive and thus contain
interesting examples of duplicated code.

• We put much of the decision about the relevance of detected duplication into the hands of a human
arbiter. The requirements of well-formedness can thus be relaxed compared to what must be given to an
automatic post-processor. This strategy is however only affordable for small- to medium-sized systems.

• We also want to maintain the exploratory nature of duplication detection. The patterns of similarity
revealed by the dotplot visualization presented in Section 5.2 are of a great variety which cannot all be
captured with automatic pattern matchers.

Note that it is straightforward to map free-granularity clones to source entities,e.g., functions, and to report
fixed granularity clones.
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Comparison Unit Granularity

For the chunking of the source code,i.e., the selection of the granularity of the comparison units, we have a
number of options: statements, substrings of fixed length (nGrams), lines, tokens, characters.

The motivation for using sourcelines is the following:

• The chunking of the code into lines is the simplest of all the possible granularities.

• We subscribe to the motivation that Baker has given:

The premise underlying DUP is that copying is most often accomplished by means of an
editor. Therefore, the resulting copies will be largely the same line-for-line [. . . ]. Given these
assumptions, the approach taken in DUP is line-based. [Bak92]

• With a finer granularity resolution like tokens the parts of the algorithm which in time- and/or space-
complexity depend on the size of the input would require more resources.

• Retrieved clone candidates that are presented to the maintainer for investigation are in their original
format that the programmer recognizes from the source file.

User Control

With only the limited knowledge about the code that we can get from simple parsing, we cannot hope to
automate the clone management very much. Manual control is therefore required to a large extent. We can
however profit from some advantages. The following list collects motivations, some of which we have already
mentioned above:

• Language independence enables the user to compare essentially every possible text input. Church&Helfman
have compared DNA sequences, parliamentary discussion protocols, file names, and attributes from ver-
sion control databases [CH93].

• The relatively small granularity which is the result of selecting lines as comparison units, together with
choosing free clone granularity means that a rich variety of similarity patterns is exposed.

• Direct visualization of duplication patterns gives the user control over which clones are worth investigat-
ing.
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4.2 Transformation of the Source Code

As the first step in detecting duplicated code we transform the code into an intermediate format which is
afterwards fed into the comparison mechanism. The general goal of the transformation phase is to increase
recall, i.e., to avoid false negatives. False negatives are introduced by slight alterations of the copied code
which fool the comparison mechanism into overlooking a clone. In Appendix B we give an overview of
post-copy editing changes, which we here to collectively refer to asvariability. Detection techniques must
normalizethe superficial differences and compare only the essential parts of the code. As in our case the
comparison phase is designed to be simple,i.e., doesnot cope with variability, we must take care of variability
during the transformationbefore, and the aggregationafter the comparison phase. The added benefit of such
a configuration of the detection process is that the costly computations which deal with variability are only
applied during the linear transformation phase, and not during the quadratic comparison phase.

This section discusses the possibilities of code normalization under the premises of theadaptability goal.
Since all transformation measures are applied to every line of code once only, giving the transformation a
linear time complexity, thescalabilitygoal can be neglected here. The section starts with a discussion of the
different normalization measures (Section 4.2.1 until Section 4.2.4), and then discusses how the number of
false positives is likely to be affected by the different normalization measures (Section 4.2.5).

4.2.1 Types of Transformations

There are two important dichotomies in the transformation techniques we employ:

Layout Changing: Since our approach is based on lines, it is sensitive to changes in the layout of the code.
Transformations that delete and add line breaks change this layout.

Content Changing: A transformation technique can change the actual source text by removing or replacing
certain elements. Content changing transformations can be further subdivided:

• Normalization: A normalizingtransformation replaces a specific element in the source text, like
the identifiercounter , with a generic element,e.g., p.

• Filter: A filtering transformation deletes an element from the source code without leaving a trace.

We discuss layout changing transformations in Section 4.2.2 and content changing transformations in Sec-
tion 4.2.3 (Normalization) and Section 4.2.4 (Filtering).

4.2.2 Reorganizing the Layout of the Source Code

In our approach the lines of the source code form the set of comparison units. By inserting and removing line
breaks at certain positions of the source text, we influence the individual members of this set, deciding which
strings are presented to the comparison. If we isolate any substring by surrounding it with line breaks we elevate
it into the rank of a comparison unit. Instead of tokenizing the entire input, which incurs the disadvantage of a
large increase of space and time requirements, we can select the exact substrings for which we want to increase
the sensitivity of the comparison.

Pretty Printing of Source Code

Pretty printing is the most obvious technique which reorganizes the layout of a program. The goal of pretty
printing in our context is to prepare a normalized layout of the code,i.e., to split the source code in standard
places. To normalize anif -statement, for example, we put the condition on a line by itself and all the statements
from the then part on their own lines, as well as the statements of theelse part. False negatives due to
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individual alterations of line breaks in copied code—a frequent phenomenon for programmers adapting other
people’s code to their own style—can thus be avoided.

We can employ pretty printing without abandoning the goal of language independence. Two reasons exist:
i) a pretty printer is readily available for every programming language, modern development environments
integrate them into their editors;ii) if none should be available, building a pretty printer from scratch is not
difficult.

Pretty printers are organized as a language dependent front-end, which transforms source code into a markup
language like BOX [dJ00], and a language independent format engine which prints the BOX entities. The
format engine of Oppen [Opp80] is even simpler: it recognizes only strings separated by blanks, and grouped
in blocks.

We can build a configurable pretty-printer which layout-normalizes many languages. Since we only desire
a normalized line as input for a tool, we do not care for a “pretty” format with optimized indentations that
facilitates code reading. A back end that produces useful output for our purposes needs only to insert line
breaks at the appropriate places of the code. For the front end we can build a minimalist parser which reco-
gnizes the basic structure of the code consisting of blocks, statements, expressions, and comma separated lists.
The parser is made configurable with block and statement delimiters and parentheses to recognize expressions.

Since pretty printing does not add or remove anything except line breaks, a mapping of the preprocessed code
back to the original layout for the presentation of the results is not difficult.

4.2.3 Normalizing the Source Code

Many of the changes that programmers apply to copied code are superficial. If fragmentf1 is the same as
fragmentf2 except for the names of the variables, the semantics of the code will not be changed.1 Such
differences do not affect the clone relation between the original and the cloned fragment. Our comparison
function is however confused by these changes which results in false negatives.Normalizingthe source code
means to replace language constructs which could be superficially different from their copies with a generic
token that will let the comparison succeed. When determining whether we should normalize an element or
not, the question is always if the normalized feature carries enough semantic weight so that its differences
break the clone link between two copied fragments. We should only normalize elements which arelightweight.
Examples of elements that should not be normalized because they are too important are:

Assignments: An assignment is an essential operation which is not easily exchanged with another operation.

Function Calls: Names of functions carry considerable semantic weight, namely the entire intent of the func-
tion.

The elements wedo consider useful to be normalized are listed below. All of the normalizations are simple to
handle with only regular expressions.

Identifiers: We normalize the names of variables. This helps to avoid false negatives of the sort that can be
seen in a typical example from the COOK system:

i ˆ= 0x40;
b[0] = ’\\’;
b[1] = ’0’ + ((i>>6)&3);
b[2] = ’0’ + ((i>>3)&7);
b[3] = ’0’ + (i&7);
b[4] = 0;

c ˆ= 0x40;
buf[0] = ’\\’;
buf[1] = ’0’ + ((c>>6)&3);
buf[2] = ’0’ + ((c>>3)&7);
buf[3] = ’0’ + (c&7);
buf[4] = 0;

Normalization replaces each identifier with a special token,e.g., p.

1To be exact, the semantics of the code are unchanged if the variable names have beenα-converted.
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Literal Constants: We normalize numbers and strings. The following is an example from the COOK system
showing as the only difference one literal character:

/* look for the closing paren */
if (s_len < 1 || s[s_len - 1] != ’)’) {

/* look for the closing quote */
if (s_len < 1 || s[s_len - 1] != ’\’’) {

It is common [Bak92][KKI02] to normalize identifiers and literals to the same tokenp. This makes sense
since a literal is just as well a parameter of the computation as a variable is—they are interchangeable
elements of the source code.

Built-In Types: In declarations, basic types likeint , long , are replaced by a generic token likenumi, and
float anddouble are replaced bynumf.

Operators: Arithmetic operators like+ or // are replaced by a generic operator sign. Comparison operators
like <= or == can be normalized by<>. The pre-increment (and decrement) operators in C can be
normalized to post-increment operators.

Access to Member Variables:Members or instance variables can be accessed in different ways. The fol-
lowing motivating example is from a file in the COOK system, the fragments are found about 30 lines
apart:

sp2->next = sp->next;
sp1->next = sp2;

sp2->next = sp->next;
first_shift = sp2;

This case must be extended to the access to member functions:

a.doIt(); b->doIt();

The normalization which unifies these different access modes is the removal of the names of struc-
tures/instances (a andb) and the access operators. and-> , i.e., leaving only the name of the field or the
function (which in turn is then normalized as identifier).

4.2.4 Filtering the Source Code

By filtering the source text we mean the removal without replacement of certain code fragments from the source
text prior to comparison. Removal of elements can be done on the level of the comparison units or below, down
to single characters (since one single-character difference can make the exact string match fail).

Removal of Comparison Units: Entire comparison units (source lines) are removed if they occur in high
frequencies and/or are of minor importance. The motivation for removing them is that they affect resource
requirements throughi) the time they take to be compared, andii) the large number of atomic matches which
are mostly spurious. A high frequency implies also that their similarity is unsurprising and thus uninteresting.
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The following table lists for a number of systems some frequent comparison units with absolute occurrences
and frequency rank:

Comparison Unit AGREP BISON GCC 3.3 MAIL SORTING

{ 255 (4) 742 (1) 63817 (2) 5319 (2)
} 1894 (1) 739 (2) 65324 (1) 9575 (1)
else 94 (5) 11081 (4) 898 (8)
break ; 120 (13) 103 (3) 13961 (3) 474 (13)
return ; 28 (9) 3056 (12) 371 (20)
return 0; 143 (8) 5299 (8) 440 (15)
return -1; 300 (3) 380 (61)
int i; 51 (8) 1541 (21) 104 (78)

Note however, that even though these comparison entities are unimportant if copied alone, they may be im-
portant as part of a longer sequence of copied code, giving a smaller clone candidate just enough weight to
be relevant in the retrieval processes after comparison. It is therefore advisable to remove them for memory
optimization purposes only.

Removal of Tokens: Similar to the motivation for the normalization measures above, sometimes the mere
presence of some token introduces variability without disturbing the fundamental clone relation of two copies.
Contrary to the code constructs which are normalized because their presence is considered important, these
tokens are however of an insignificant weight. To avoid the confusion that the presence of such tokens causes
the comparison, we remove the tokens completely from the source text. Total removal of tokens is akin to the
Information Retrieval techniques ofstopping(removing words occurring in high frequencies), andstemming
(removing word-suffixes to unify variant forms). Stop words and word-suffixes have an “ornamental” character:
they do not carry much semantic weight for the task at hand.

Some of these filterings are useful only in a certain language. We note the names of some of the languages to
which the filters are applicable in the following descriptions.

Delimiters: To remove the statement, expression or block delimiters from the source code, simplest pattern
matching is sufficient.

The this Pseudo Variable (C++, JAVA ): The variablethis is optional when accessing members of C++ or
JAVA classes. The two fragments below come from the same C++ class and refer to the same instance
variable:

return ( this ->validity >= temp_synt_valid);

if (validity == temp_synt_valid)

Namespace Indicators (C++, JAVA , someSMALLTALK dialects): Since the indication of a namespace is op-
tional if the reference is expressed within the same namespace, JAVA package names and C++ names-
paces are removed to normalize the code.

Type Qualifiers (C++, JAVA ): Statically typed languages have a number of type qualifiers likeconst , static ,
or thepublic andprotected access specifiers in C++, which do not carry much semantic weight in
clone detection. Type-casts, C++-template parameters, and the dereference operator&, are other artefacts
of a static type system that do not affect the control and data flow.2

There is also a C idiom to give astruct its name again usingtypedef , for example

typedef struct expr_position expr_position;

2This is exemplified by the existence of dynamically typed languages like SMALLTALK which don’t need any of these elements.
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The removal of thestruct keyword from the text helps to avoid some false negatives as in the following
two function headers from the COOK system:

static int
interpret(idp, ocp, pp)

id_ty *idp;
opcode_context_ty *ocp;
const struct expr_position_ty *pp; {

static int
interpret(idp, ocp, pp)

id_ty *idp;
opcode_context_ty *ocp;
const expr_position_ty *pp; {

Type Casts (C, C++, JAVA ): Type casts are used for a variety of operations, some of which do not carry much
semantic weight. The removal ofconstnessfrom a parameter’s type, for example, is a way to deal with
the constraints of the type system which does not have any effect on the logic of the code. Arithmetic
narrowing or widening is another such operation where the difference between code with or without
the typecast is marginal. Some operations, however, that are triggered by type casts can be arbitrarily
complex conversion routines. Unfortunately, the convoluted type cast syntax rolls all these different
operations into one syntactic representation, making it hard to filter only one type of operation (except
for the arithmetic narrowing or widening, which can be identified by the use of the builtin arithmetic type
names). The more recent C++ standard introduced a range of casting operators,e.g., static_cast <>,
which allow us to filter the lightweight operations and keep the more important ones.

Labels (C, C++): Targets ofgoto -jumps are interesting only if we compare control-flow other than the se-
quential order of statements in a function. Our simple comparison disregards this information. The
following fragments are from two files of the WELTAB system and are exact copies except for a label:

if (card[0] == ’Y’ || card[0] == ’N’ ||
card[0] == ’n’ || card[0] == ’n’) goto x541;

cvcil(card,0,len,&vote[k]);
if (vote[k] >= 0L && vote[k] <= vtpoll) {

totoff = totoff + vote[k];

if (card[0] == ’Y’ || card[0] == ’N’ ||
card[0] == ’n’ || card[0] == ’n’) goto x541;

cvcil(card,0,len,&vote[k]);
x543: if (vote[k] >= 0L && vote[k] <= vtpoll) {

totoff = totoff + vote[k];

Note that the removal of labels implies the normalization of the targets in eachgoto statement.

4.2.5 The Introduction of False Positives through Normalization

When we normalize and filter source code in the manners explained in the previous sections, we remove
distinguishing features from it because we perceive the eliminated differences to be unimportant. As a result,
more matches between the normalized items are found by the comparison. Since we have relaxed the criteria
for what is considered equal, some matches will not keep their equality status under scrutiny of a human expert.
These are called false positives. The question is, how many false positives are generated by the normalization
and filtering techniques. The discussion of this section groups the techniques according tono, some, or high
potential for creating false positives.
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No False Positives

Some normalization and filtering measures do not touch fragments that are relevant for the meaning of the
code. Removal of these elements thus does not have any effect on the ratio of false positives.

• Removal of Non-Code Text: The removal of comments, white space, and especially the deletion or
insertion of line breaks do not increase the number of false positives at all. Since the text fragments
are not source code, their removal cannot make different source fragments the same. An exception are
languages where white space has meaning,e.g., PYTHON, where the beginning and the end of blocks are
signaled by indentation. As an example, the following PYTHON fragments would be declared a clone
even though they are not the same:

l = a[k]
if test(k):

ol = b[k]
if ol:

c[k] = ol
else :

c[k] = l

l = a[k]
if test(k):

ol = b[k]
if ol:

c[k] = ol
else :

c[k] = l

If one wants to avoid false positives in these cases, a small preprocessor can be written as ande-
normalization measure to insert block delimiter tokens into PYTHON code.

• Removal of Statement Delimiters: It is not possible that the removal of a statement delimiter causes
two valid statements to become similar to a single valid statement. The only example where this could
happen is the following, where the first statements ends with an identifier and the second begins with an
identifier on the same line.

int a = b; c = 3; int a = bc = 3;

However, if variable names are normalizedbeforethe removal of statement delimiters and white space,
it is not possible that the two lines of code are transformed to the same string: the transformation result
intp=pp=3 on the left side is not the same asintp=p=3 for the right.

• Removal of Access Specifiers:The C++ (and partially JAVA ) access specifierspublic , protected ,
andprivate do not belong to the part of the code where interesting duplication occurs. Their removal
thus does not create additional false positives.

• Normalization of Literal Constants: Literal constants alone represent just data to the computation. If
two fragments of code become the same after normalization, the constant can always be made into a
parameter of the unified fragment.

a = b / 0.1; a = b / 10;

However, if constants and variable names are normalized with the same replacement token, the false
positives rate will be that of identifier normalization (see below).

• Removal of Type Qualifiers: Type qualifiers likefinal in JAVA or const in C++ give compilers
opportunities for advanced compile time checks. Their removal does not change the semantics of the
code at all.

int foo( const str& a) const ; int foo(str& a);

• Removal of Type Casts:As mentioned above, type casts can represent a variety of operations, some of
which have considerable semantic weight. For example, a type cast-triggered conversion between two
types can involve a large amount of logic,e.g., the conversion from aString to a float involves the
parsing of the string representation. Removing the type casts then means the loss of an important step
in the code. However, the code surrounding the type cast is found duplicated only if the converted value
subsequently has the same operations applied to it than to the non-converted value. If this is the case, the
two types are similar in nature and the code might therefore be considered a clone after all.
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Low Rate of False Positives

The potential for causing false positives increases if transformations remove elements of the source code rel-
evant to the data- or control-flow. The normalization measures in this category supposedly cause few false
positives or only of such kind that the two fragments are so close as to make a refactoring possible.

• Removal of Parentheses:Parentheses are used for three different purposes. First they delimit condi-
tionals inif - andwhile -statements, and loop specifications infor -statements. Removal of these paren-
theses can cause false positives under some (rare) circumstances and in conjunction with the removal of
block and statement delimiters as can be seen in these examples:

for (a=0;a<n;) b++; for (a=0;a<n; a++)

while () { b++; while (b++) {

Parentheses also enclose lists of actual parameters to function invocations. Removing parentheses to-
gether with whitespace collates function names with parameter names. In a presumably rare situation
this can lead to false positives:

list(all); listall();

Parentheses are also used to determine precedence of expression evaluation. If they are removed from
these formulas, false positives can definitely occur:

a = b * (c - 3); x = y * z - 3;

• Removal of Block Delimiters: False positives may be caused by the removal of block delimiters, as can
be seen in the following example:

if (cond) {
a = 1;

}
b = 2;

if (cond) {
a = 1;
b = 2;

}

• Removal of Pointer Type Declarator and Operators: In C/C++ variable declarations, the pointer
operator* represents type information. Its removal, in conjunction with normalization of identifiers
and basic types, can cause false positives. The two follwingstruct s would be considered the same
eventhough they are not clones:

typedef struct {
long * vect;
double val;
char ** ptr;

} a;

typedef struct {
int type;
float * prcnt;
char * cptr;

} x;

The removal of the pointer operators* and & in C/C++ causes false positives only if functions with
the same name but different parameter types exist that have vastly varying purposes, a rare case in our
opinion. The two following fragments would be declared clones even though their logic is quite different:

int a = 1;
int * b = &a;
doThis(&a,b);

int x = 1;
int y = 2;
doThat(x,y);

Note however that these kind of false positives would also occur if the* and& tokens would not be
removed, because the name of the variable usually (especially when normalized) does not tell if its type
is int or int * .
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• Removal of Namespace Indicators:A mismatch can result if classes from different packages have the
same name. Since the same name likely implies similar functionality a match between them is probably
not a completely false positive.

java.sql.Array; java.lang.reflect.Array;

• Removal of Labels: This is a similar case to the removal of block delimiters in that control flow is
occluded by the normalization, as can be seen in the following example:

if (cond1) goto X
else

if (cond2) goto Y;
a = 1

X: b = 2;
Y: c = 3;

if (cond1) goto X
else

if (cond2) goto Y;
a = 1

Y: b = 2;
X: c = 3;

Labels, different from blocks, are however used only occasionally in structured programming. The
contrived example we give here demonstrates that situations which are different but appear the same
when shed of their labels are not occurring very often.

High Rate of False Positives

The normalization measures discussed in this section have the potential to cause many false positives. This is
due to the high frequency of their application.

• Normalization of Identifiers: Identifiers are the most volatile element in source code. The logic of
the code is mainly expressed in the operators and control flow, whereas identifiers ‘only’ describe data.
There are fewer possible statement templates than there are possible identifiers. Removing the identifiers
and leaving only the statement templates generates thus a large number of false positives.

a = b - c;
d = b * 2;

a = c - b;
d = a * 2;

If, instead of normalizing all variable names from two sets with the same replacement token, a bijective
mapping is installed between the sets, many false positives can be avoided [Bak92]. Such a normaliza-
tion requires however a comparison mechanism that is more sophisticated than exact string matching,
since the parameter names must be adjusted with regard to the start of source fragment that is currently
under comparison. If we use free clone granularity, this starting point is constantly moving making
re-adjustments of the parameter names a necessary part of the comparison routine.

• Normalization of Member Access: If access to member variables and functions are normalized to
simple variable accesses, the number of false positives increases because many different source lines are
mapped to a single string.

a = b->c + d.e;
d.foo();

x = y + z;
foo();

• Normalization of Operators: This normalization in combination with the normalization of identifiers
have the potential to create many false positives. If we normalize the operators- and * to the same
replacement token we get a false similarity between the two following statements:

a = b - c; a = b * c;
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• Normalization of Built-in Types: If we normalize all integer types with one replacement token, and all
floating point types with another token, the rate will be small since all integer types are close in their
behavior, just as the floating point types. False positive can occur due to range incompatibilities between
the types, for example in declarations:

int a = -2147483648; unsigned short a = 10;

To normalize all arithmetic types with the same replacement token will lead to many false positives,
especially in conjunction with normalized identifiers.

4.2.6 Related Work in Transformation

Clone detectors which use a parser do not normalize the source text which they need in its entirety to build an
abstract syntax tree. They can disregard certain elements directly during the comparison phase with the benefit
of having at their disposal the semantic knowledge which has been gathered by the parser. Code normaliza-
tion in the source text is done mostly by clone detection approaches which do not parse the code. For these
approaches the following code transformations are very common:

• Removal of Comments:Almost all approaches remove comments, except Mayrand et al. [MLM96a],
who use metrics that measure the amount of comments, and Maletic&Marcus [MM00] who search for
similarities of concepts extracted from comments.

• Removal of Whitespace:White space is disregarded by most approaches. Line-oriented approaches,
however, remove all whitespace except line breaks. Davey et al. [DBF+95] use the indentation pattern
of pretty printed source text as one of the features for their attribute vector. Mayrand et al. [MLM96a]
use layout metrics likeNumber of Nonblank Lines.

• Normalization of Identifiers: This is practiced by all approaches. The most advanced normalization is
the one of Baker [Bak93b] who identifies systematic name changes only. All other approaches change
variable names indiscriminately to a single replacement token.

In general, Kamiya et al. [KKI02] have an extensive list of normalizations and filterings to normalize their
token-based representation of the code. A method which compresses the code in conjunction with applying
some normalizations is used by the plagiarism detector of Finkel et al. [FZMS02]. They reduce each keyword
to a single character,e.g., f replacesfor . They also replace identifiers withi and numbers with0.

4.2.7 Discussion

To remove from the source code superficial features which might disturb the comparison we have to invest
most of our effort into the task of recognizing syntactic elements. In order to follow the goal ofadaptabilitywe
do not employ parsers, but identify only entities which can be recognized via a set of marker tokens. This can
be mostly accomplished with regular expressions. For the pretty printer, which needs to recognize recursive
structures, we must resort to a real parser. Since this parser only needs an understanding of the top level
structure of a program, we can make it configurable for a wide range of programming languages.

To keep the parsing amount small we apply very general normalizations. This will result in many false positives
being retrieved in the comparison. We will therefore need additional analysis post comparison to remove false
positives from the candidate list (see Section 4.4).

4.2.8 Other Transformation Options

The question of input transformations has two obvious fields of further research: the selection of the exact set
of normalization and filtering techniques that should be applied to a given system, and improving normalization
and filtering techniques to reduce the number of generated false positives.
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Selection of Normalization Measures

Some of the normalization measures are liable to generate a large number of false positives. Other filtering
techniques are quite aggressive in removing parts of the source code before the comparison, which again may
lead to a high rate of false positives. We assume that this rate of false positives is dependent on the individual
systems that are analyzed. To exercise a certain level of control the user should be given methods which would
allow him to select only normalization measures which have a favorable ratio of detecting far apart duplication
versus generating many false positives.

The question is very much open if it is possible to estimate the number of false positives before the evaluation
of the candidate clones, or even before the comparison, which is the most time-consuming step. It would also
be helpful if we would identify certain types or zones of source code where certain normalization measures
should not be applied.

Improved Normalization Measures

A problem with the normalizations proposed above is that they are very general. Ifeveryvariable name is
normalized with the same token, ubiquitous statements like assignments and simple computations will all be
matching and generate much noise. More discerning normalizations should group identifiers and replace all
members of a group with the same token. The criterion for grouping identifier names should be a characteristic
which is less volatile than the mere name of the variable. This is based on the assumption that if the programmer
changes some elements (variables, function calls) in a copied fragment he will choose as replacement a similar
one. This is because we think that, most likely, a fragment that is copied forms a conceptual entity and this
context restricts the kinds of changes that can be made to the copied fragment. In the following list we are
going to touch briefly on a few ideas whatsimilar could mean,i.e., what the identifier groups could be based
on.

Exploiting Naming Conventions: If programmers use names consistently,i.e., give similar names to variables
that represent the same concept, we can cluster identifier names according to these rules. An example of
a cluster is for example the names of iteration variablesi , j , n, or count , etc.

Anquetil&Lethbridge [AL98] have investigated how it can be tested if a naming convention is reliable.
It is however not so clear how the clustering of variable names could be done in a fully automatic mode.
A solution will likely require manual intervention of the programmer. The question that arises then
is, however, if the increased work required on the part of user justifies the increased precision of the
detection.

Variable Types: The type of a variable in a given source fragment is more resistant to change than its name.
We can reduce the potential for false positives due to uniform identifier normalization by interpreting the
type of the variables and replacing their names not with a generic token but with an acronym represent-
ing the type, similar to Hungarian notation [Sim76] but without the individualizing name part. As an
example, the left original source fragment is changed into the right fragment by usingi as name for all
variables of typeint , pc for all pointers tochar , andpudt for pointer touser defined type #1 .

str_field(s,sep,fldnum)
string_ty *s;
int sep;
int fldnum; {

char *cp;
char *ep;
cp = s->str_text;
while (fldnum > 0) {

ep = strchr(cp, sep);

str_field(p, p, p)
string_ty *pudt1;
int i;
int i; {

char *pc;
char *pc;
pc = pudt1->str_text;
while (i > 0) {

pc = strchr(pc,i);

Baxter et al. [BYM+98] have mentioned that they were planning to use type information to filter false
positives.
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To realize this normalization we need to build a parser which understands the declaration of variables
and user-defined types in a statically typed language. The parser must maintain a symbol table and needs
to be aware of blocks and the scoping rules of the language. Such a parser is considerablyheavierthan
anything we have proposed above. It is also not immediately clear if we could build a version which is
configurable for multiple languages since variable declarations differ across languages. Note also that
for dynamically typed languages this normalization is not possible since we miss the type information.
Using a type inference engine for such a case would definitely break thelightweightconstraint.

Normalizing Variable Types: Going one step further, we can start to normalize variable types by either the
memory footprint of one of their instances, or the complexity of user defined structured types, measured
for example by the number of fields that it contains and the variety of the types of these fields. Types of
similar complexity would then get the same token to normalize variable names.

A fairly complete parser, including a symbol table, is required to derive from the source code the size
and structure of a type.

Normalizing Function Names: We have argued above that function names should not be normalized since
they represent considerable weight and are therefore less likely to be changed than the name of a variable.
If the non-normalization of function calls leads to many false negatives, we can apply the same grouping
techniques to function names to normalize them in a discriminating manner. Instead of memory footprint
we can compute the size in lines of a function or derive simple complexity metrics to establish the weight
of a function.

The heuristic assumption that programmers will change elements only to similar ones, which is the basis of the
proposed normalizations, may of course break down. These normalizations therefore will, with respect to the
simple version that uses thep token universally, not only decrease the number of false positives but they might
eventually increase the number of false negatives at the same time.

It must also be said that the parsers that gather some of the information as proposed above are fairly large and
it is questionable if we can build them general enough to assert adaptability over language borders.
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4.3 Comparing the Source Text

Finding self similarity in a text using string matching and without a fixed clone granularity can be seen as
a special case of text searching where the problem is as follows: Given a long textT1...n of lengthn and a
shorter patternP1...m of lengthm, retrieve all occurrences ofP within T . The important difference where
code duplication detection deviates from this general model is thatP is not given and must be extracted from
T itself. This leads to theall-against-allcharacter of the detection problem becauseT andP are the same.

In this section we first motivate why we use exact string matching as a comparison method, then we explain the
choice of source text representation to speed up the comparison, and finally we detail the detection algorithm
step by step.

Exact String Matching as Comparison Method

Detecting duplicated code is a matter of text retrieval allowing errors. In spite of the transformations discussed
above which try to cope with a number of potential differences there are always changes in the code that cannot
be leveled by normalization. To retrieve copies despite larger changes is the goal of approximate matching. As
our approach to approximate matching we use the principle of “reduction to exact matching” [NSTT00] where
eitherP or T is split into substrings. Multiple exact matches must then be found in close proximity to trigger
a verification for a full pattern match.

The question can be asked why we do not use an approximate string matching function which could be more
sensitive to varied differences between the comparison units. We consider such a function for comparison
inappropriate for a number of reasons:

• Approximate string matching algorithms have a much higher time complexity than exact matching. Since
the comparison operation is the one algorithmic step which is executed most frequently, its time com-
plexity will have a large impact on the overall time complexity of the algorithm.

• The standard approximate string matching functions are blind towards the different types of elements of
source code. It makes a difference for a software engineer if the change between two lines consists in a
keyword or a literal string.

• The main differences between source code fragments lie not in misspellings,i.e., on the word level, but
on the structural level.

• The result of an approximate comparison is a percentage value, expressing the difference that separates
two comparison units. Partial equality removes transitivity from the relation that is established by the
comparison. With exact similarity an equivalence relation is created which enables better optimization
of the comparison.

Instead ofduring, we are coping with the differences in codebeforeandafter the comparison: the code transfor-
mation levels some of the smaller differences, and the larger disruptions are being taken care of in the analysis
phase.

4.3.1 Indices for Text Searching

As we have said above, the initial absence ofP requires us to run many queries searching for all possible pat-
terns that can be extracted fromT . Since we basically compare everything against everything it is economically
feasible to build anindexfor T . An index helps in two ways: during the construction phase of the index, when
we makedecisionqueries to determine if a substring is already present or not, the index helps to minimize
the number of comparisons. After construction the index represents in a compact form all the similarity of the
source text and we need only to extract it.
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There exist two kinds of indices for text retrieval:word-oriented indices for aT that can be regarded as a
sequence of words (where a word is a maximal substring not including any symbol from a set of delimiters),
andsequence-oriented indices for aT where words cannot be distinguished (such as DNA), or where arbitrary
sequences are searched for. Both index types are used by existing string-based clone detectors.

Sequence-Oriented Indices: A well known idea in text-searching is to consider a text as the set of its suffices.
Since every substringS of T is a prefix of a suffix ofT , the search problem of findingS in T can be reduced
to finding all suffixes that start withS. A suffix tree [McC76] is a data structure which contains all suffices of a
textT and allows searches forP in O(m) time wherem = |P |. Moreover, allz occurrences ofP can be found
in time O(m + z). Suffix trees exploit the self-similarity ofT directly by representing all common substrings
with the same nodes. Since all the suffixes of common substrings are again common substrings, a subsequent
analysis step must enumerate all common substrings to find the matches of maximal length [Bak92].

The drawbacks of suffix trees arei) that they need a lot of space,20n bytes in the worst case (wheren is the
length of the string), andii) that “in most applications the suffix tree suffers from a poor locality of memory
reference, which causes significant loss of efficiency on cached processor architectures” [AOK02]. Large
systems which require the suffix tree to be cached on secondary storage, suffer a significant performance
reduction [vRD03]. Suffix arrays [MM90] reduce the space by about a third at the additional cost ofO(log n)
during search. Space requirements can also be optimized if patterns are known to have certain properties, like
starting only at certain positions inT . In such cases not every suffix ofT must be entered into the index,
the index points can be selected more sparingly which reduces the size of the index. Recently, new index data
structures like theString B-Tree[FG99] are investigated which can manipulate large strings in external memory
and offer the same search operations like suffix trees, improving them in the worst case.

Word-Oriented Indices: Instead of supporting the search for arbitrary substrings ofT , word-oriented indices
allow to find individual words or phrases. To build such an index we need to partitionT into words or terms of
a certain granularity, for example lines, or tokens of source text. Aninverted indexis a list containing all unique
terms from the text (thevocabulary) and, attached to each term, a list of all the positions where the term occurs
in the text (thepostings). The inverted index has the property that its vocabulary is small compared to the text
and can be kept in main memory even for large inputs. The size of the postings list is linear in input size:
it requires a pointer intoT for each index point. Large lists of postings can be easily managed in secondary
memory. After index construction, the sets of postings represent all matches of a single word. If we are looking
for phrases consisting of multiple words using a word-oriented index, we need an additional step: the atomic
matches between word occurrences must be aggregated so that larger matches can be found.

Building a word-oriented index forT also exploits the self-similarity of the text: the more repetition occurs in
T , the smaller the vocabulary is. Vocabulary growth is empirically known to be sub-linear for natural language
text. Heap’s Law3 states that the average vocabulary sizeV depends in the size of the textn by the formula
V = O(nβ) for 0 < β < 1. For some examples of reduction rates of source code vocabularies see the following
table (lines were counted after removal of comments and white space):

System All Lines Unique Lines
BISON 7432 3899 (52.5%)
GCC 3.3 792,051 325,604 (41.1%)
AGREP 12,246 3423 (28.0%)
MAIL SORTING 113,517 31,240 (27.5%)

The smaller the relative size of the vocabulary, the more similarity we will find in the code. The amount of
duplication is therefore presumably higher in MAIL SORTING than in BISON.

3H.S.Heaps. Information Retrieval—Computational and Theoretical Aspects. Academic Press, 1978, qtd. in [BYN00].
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Choice of Index Data Structure

Both index types, sequence-oriented and word-oriented, are useful for our problem. To motivate a choice
between the two we list a number of advantages and disadvantages for each. For the sequence-oriented index
the following issues are important:

Sequence-Oriented
Advantages Disadvantages

• The time to retrieve common substrings
longer than a thresholdt depends on the num-
ber of such common substrings, not on the
number of atomic matches.

• The space requirements are large and the
data structure cannot be managed well in sec-
ondary storage.

• Only detects a single kind of pattern: an un-
broken sequence of copied text.

• The implementation of a suffix tree is not
trivial.

For the word-oriented inverted index we have the following arguments:

Word-Oriented
Advantages Disadvantages

• Makes available for analysis more patterns
than only unbroken sequences.

• The inverted index is implemented easily.

• After the construction of the index it is pos-
sible to make an optimization pass over all
terms and remove those which will create too
many atomic matches.

• A visualization of the comparison matrix as
dotplot is straightforward.

• Time for the extraction of patterns is de-
pendent on the number of distinct atomic
matches.

• Additionally needs the construction of
a comparison matrix to store the atomic
matches in sequence. Matrix construction is
dependent in time and space on the number of
distinct atomic matches.

• Helper data structures like the comparison
matrix are fairly complicated to implement.

The important characteristic for suffix trees is that they store the equality informationin sequence, i.e., they
combine the information about atomic matches with the information about their orderinT . Only a difference
betweenP andT breaks a matching sequence apart. Suffix trees thus value the order of the elements over their
similarity. In contrast to that, word indices break even continously matching sequences apart. Order between
elements is disregarded completely and we need an additional data structure to reintroduce it. Hence comes the
dependence on the number of atomic matches for pattern extraction.

Our final choice of the word-oriented index (inverted index) as the data structure to be used is based mainly
on its smallness and the ease with which it can be implemented. Also we think that the richness of the du-
plication patterns to be found in the comparison matrix is of great interest, at least for exploratory duplication
investigations.

4.3.2 Algorithm Description

The comparison algorithm which takes the transformed source code and delivers a set of candidate clones is
divided into the following steps:

1. Construction of the inverted index.
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Figure 4.1: A sample dotplot of a comparison matrix between two source files. In our display convention, the
coordinate(1,1) is always at the upper left corner of the matrix.

2. Construction of the comparison matrix.

3. Analysis of the comparison matrix and extraction of clone candidates.

4. Construction of clone classes.

In the following sections we detail these individual steps and mention briefly some implementation issues.

Step 1: Construction of the Inverted Index

We consider the code of a system to be a text written using the terms of a large alphabet. Each comparison unit
is such a term. The vocabulary collects all unique terms that occur in the text. An entry in the vocabulary acts a
representative for the equivalence class of all identical terms. This enables a major reduction of the number of
comparisons that must be performed: Each new comparison unit must only be compared with all unique terms
instead of all other terms in the systems source text.

The list of occurrences is filled withpostingsfor each term from the input, recording its specific location.

Implementation Notes: The data structure for the vocabulary is most heavily used during the insertion of all
comparison units. Once the entire system has been read in the postings containers are operated on individually.
A good candidate for the data structure is a chained hash table, as they are performing best for the accumulation
of large in-memory vocabularies [ZHW01].

Step 2: Construction of the Comparison Matrix

The postings for each vocabulary term represent all identical comparison units. By combining the coordinates
of all these postings into pairs we create the atomic matches. In order to find matches longer than a single
comparison unit we must now reinstate the order between the comparison units. We do this by transferring the
atomic matches into a matrix. We can visualize such a matrix with a dotplot (see Figure 4.1). The human eye
immediately discerns a number of patterns in the image, which we automatically detect and interpret in the
next step of the algorithm.
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When using exact string matching we are confronted with the problem of redundancy. If comparison unitc
is identical withc′, andc′ is the same asc′′, then transitivelyc is identical withc′′ as well. In general, forn
identical comparison units we get

(
n

2

)
=

n(n− 1)
2

atomic matches in the matrix. For example, 947 comparison units containing the textmsg_dt(m); create
447931 matches. For large systems the number of atomic matches can be overwhelming as can be seen from
the few examples:

System Lines Atomic Matches
BISON 7432 62,454
AGREP 9490 480,842
MFC 76,166 4,722,096
MAIL SORTING 113,517 80,568,528
GCC 3.3 713,262 3,648,389,733

We have the following options to optimize storage requirements:

Ignoring Uninteresting Comparison Units: The formula which computes the number of atomic matches is
useful for deciding, in conjunction with theweightof the comparison unit, if we want to store its atomic
matches in the matrix. If we deem the expense of time and space not justified we can simply ignore this
comparison unit [Chu93].

Working in Parallel: The task of detecting duplicated code among a set of source units can easily be paral-
lelized. For a vectorsu = (su1, su2 . . . sun) of source units, we let a number of detector instances work
independently, each comparing a range(sui . . . suj) against all ofsu.

Processing the System in Chunks:For each single detector instance we can partition the postings containers
in NewandOld compartments. All postings are first stored inNew. At certain points in time we generate
the atomic matches for all pairs that can be created among postings fromNew, and between postings
from Newand postings fromOld. Once all the matches have been inserted in comparison matrices, the
matrix analysis (see next algorithm step) is performed, after which the matrices are removed again from
memory. EachNewcompartment is then emptied and its contents are added to the correspondingOld.
TheOld compartment then contains all postings for which the atomic matches have already been seen.
We can then read the next source unit in, storing its postings again inNew. If we order the source units
by size, starting with the biggest one (or the one producing the most atomic matches, which we can know
from a dry run), we make sure that towards the end, when the vocabulary and theOld containers become
very full, theNewcompartments will contain less and less postings, thus again optimizing the number of
atomic matches that have to kept in memory at any point in time.

Implementation Notes: Comparison matrices are usually populated sparingly with matches. Sparse matrices
are the data structure of choice for storing this kind of data. Single linked lists as shown in Figure 4.2 can be
used to reduce the overhead per cell. There are multiple possibilities for linking the individual cells. The
upper variant in Figure 4.2 stores the populated cells in columns, whereas the lower variant stores them in
diagonals. The diagonal representation makes diagonal traversal very easy, a method that is needed for the
matrix scanning operation in step 3 of the algorithm (see below). The column organization on the other hand
optimizes access of rectangular areas of the matrix. This form of access is needed when displaying the matrix
as a dotplot in an interactive GUI. If the number of access from the GUI outweighs the scanning accesses, the
column representation is the preferable one. Diagonal traversals on the rectangular representation are realized
with a specialized iterator.
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Figure 4.2: Two sparse matrix representations of the dotplot at left: The upper version is useful for accesses to
rectangular areas of the matrix, the lower variant is optimized for diagonal traversals.

Step 3: Analysis of the Comparison Matrix

A single duplicated line of source code, represented by a single dot in the plot, is nothing to be worried about
and thus not very interesting. What we are really interested in are the configurations of dots,e.g., sequences
of copied source lines. Thesecomparison sequencesform patterns which can be interpreted in terms of copied
source text.

We interpret the following standard dot configurations [Hel95] as instance of copied code in the following
ways:

a) Diagonals of dots indicate copied sequences of source code (Figure 4.3a)).

b) Sequences that exhibit holes or gaps indicate that portions of a duplicated fragment have been changed
(Figure 4.3b)). For example, if we do not normalize variable names in preprocessing, a change of
identifiers will result in such patterns.

c) Broken sequences with lower parts shifted indicate that a new portion of code has beeninsertedor
removed(Figure 4.3c), aboveor belowthe main diagonal, respectively).

d) Rectangular configurations indicate periodic occurrences of the same code (Figure 4.3d)).
An example is thebreak ; at the end of the individualcases in a C/C++switch statement where the
code in the corresponding cases does not match.

We detect some of these dot configurations automatically with simple algorithms.

Identification of Diagonals and Diagonals with Gaps: The identification is done in a straight forward way,
locating any free dot in the comparison matrix and stepping from there in a45o angle downwards to the right.
The last dot in this range marks the end of the diagonal. If the process accepts adjacent empty cells up to a
certain number, we get the diagonals with gaps. The procedure described here ensures that we record always
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a) Diagonals b) Diagonals with Gaps

a b c d e f g h i a b c d e f g h i a b c d e f g h i a b x d e y z h i

c) Broken Diagonals d) Rectangles

a b c d e f g h a b c d x y z e f g a b c d e f g b c h i b c j k b c l

Figure 4.3: Different Configurations of dots. The symmetry of the diagrams stems from the fact that we
compare the string to itself which leads to the characteristic middle diagonal where each line matches itself.

the longest match. All shorter matches are subsumed in the maximal one. This diagonal-traverse method has
already been used by White et al. [WHHE84] for locating similarities in DNA sequences.

Identification of Broken Diagonals Ueda et al. [UKKI02b] have proposed a process to identify broken-
diagonal clones—which they callgapped clones—based on user intervention. From the list of all non-gapped
clones they automatically compute neighborhoods of clones, that is clones which end and start within a certain
distance of each other,i.e., the pieces of a broken diagonal. These neighboring pieces are presented in dotplots
to the user who can then pick the combination that seems to be the best interpretation of copying and the editing
actions. The advantage, they claim, is aO(n log n) time complexity versusO(n2) which a fully automatic
approach would take. The same interactive way of stringing together partial diagonals has been proposed by
Sonnhammer&Durbin [SD95].

Melamed, working on dotplots of bitexts (a correspondence between a natural language text and its translation
into another language), exploits the geometric properties of partial alignments, like for example the constant
slope, to build a greedy algorithm which constrains the search space for the next part of the alignment [Mel96b].
He however has the advantage of knowing that a single alignment path exists for the two texts, something that
is not known for arbitrarily repeated fragments of source code.
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A
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Figure 4.4: A hierarchy constructed from overlapping source fragments. Each level contains only fragments
that are fully contained within its own boundaries.

Step 4: Construction of Clone Classes

Each dot configuration means a pairing of two source fragments. What we extract here are thus clonepairs
only. Once all the clone pairs have been extracted, we want to reduce the amount of data in an aggregation step.
From the set of all clone pairs we want to build clusters of code fragments that belong together, either because
of common locations in the source text or because we have found a clone relation between them. A cluster of
code fragments determines a clone class. We build such a cluster in two steps:

1. Aggregate all duplicated source fragments that include or overlap each other. This clusters source frag-
ments purely according to their relative positions within the source text (see Figure 4.4).

2. We cluster the fragments that do not have a common location by their clone relations. We propagate the
clone relations from the smaller fragment to their containers in the source hierarchy.

Note that since many of the clone candidates retrieved in step 3 will turn out to be false positives, the ranking
and filtering of Section 4.4 should actually be donebeforeaggregating clones into higher level entities. Since
the discussion of the ranking techniques takes more space than explaining how clone classes are built we have
chosen to present it out of order in the next section.

Implementation Notes: Each clone pair is formed by two source fragments which can be distinguished by
the comparison matrix axis they belong to,i.e., they are thevertical or thehorizontal fragment. We split all
clones into these two fragments and build two indices, one for the horizontal and one for the vertical axis, by
aggregating containing and overlapping source fragments intosource fragment hierarchiesaccording to the
definitions of Section 3.7.1. Each level in the fragment hierarchy links to a sorted collection of only its direct
children. Insertion times are thus kept minimal.

In the second step of the clone class construction, the clone relation between two source fragments is propagated
upwards in the two source fragment hierarchies they belong to. This propagation must be limited. It does not
make sense to transfer the clone relation of a five line clone to the entire 1000 line file it is contained in. A
reasonable range for which a clone relation can be transferred seems to be 500%. This guarantees that each
propagated clone relation contains at least 20% of real copied code. For fragment hierarchies where the span
of the code size from bottom to top is greater than this range, we create separate clone classes.

The construction of the highest level clone aggregation, theclone class family(see Section 3.7.2 on Page 41),
is achieved through a simple sorting of all clone classes by the set of source units the clone class members are
found in.
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4.3.3 Time Complexity of the Algorithm

In this section we present a brief overview of the time complexity of our algorithm. We will not do a thorough
formal analysis.

Step 1: The construction of the index depends on the length of the input text,n, both in time and space.

Step 2: The comparison matrix construction depends on the number of distinct atomic matches,i.e., the num-
ber of distinct pairs of matching lines.

Step 3: The extraction of patterns from the comparison matrix depends on the number of atomic matches.

Step 4: The construction of the clone classes depends on the number of clones.

If we implement ann-to-n algorithm naively we achieve a best case ofO(n2). The worst case is however
O(n2) for every algorithm since we can construct cases where the number of matches is quadratic in the size
of the input:

For example, consider strings of the form(0a1a)i0, of length4i + 1. In this case thei substrings
a between0 and1 are maximal matches for thei substringsa between1 and0, contributingi2

maximal matches to the total. [Bak93a]

4.3.4 Discussion

The Adaptabilitygoal has been pursued in the transformation step. In the comparison step we are focusing
solely on theScalabilitygoal. The major problem of this phase is then-to-nnature of detecting self-similarity.
To alleviate this we have selected a text index and the very simple comparison function of exact string matching.

From the set of atomic matches that the comparison creates we have to extract candidate clones by lining up
the atomic matches in a matrix and extracting the longest diagonal match configurations. This process requires
most of the space and must eventually be optimized with parallel or incremental organizations of the general
algorithm.

The implementation overhead of all the methods proposed for this phase is of medium complexity with the
exception of the sparse matrix implementation. The technique can therefore still be claimedsimple.
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4.4 Ranking and Filtering of Clone Candidates

At this stage we have a number of clone candidates that have been found to be similar in the comparison stage.
For comparison methods like ours which are characterized by low precision and high recall this list can be very
long and can still contain many false positives. Manually investigating them all can become very costly. The
goal of the ranking and filtering phase is to identify clones that for the reengineer are either very interesting, or
not interesting at all. The question that is addressed by ranking is the one of therelevanceof a clone candidate.
As we have seen in Section 3.1.3 relevance is to be determined relative to the task that we want to perform with
the detected duplication.

Let us clarify the notions of ranking and filtering first.

Ranking means to order the clones according to a certain notion of relevance [WL03]. Ideally a reengineer
could then work through the list and eventually define the cutoff point where tackling the duplication is
no longer worth the effort.

Filtering means to remove clone candidates that are (most likely) false positives, reducing the amount of
data to be checked by the user. Filtering is basically ranking with a defined threshold below which all
candidates are eliminated automatically.

Ranking and filtering must be performed using information different from the one used by the comparison
method. Such kind of information is usually more detailed than what the comparison method works with and
thus more expensive to extract and to handle. Whereas the comparison method should be kept simple since it
must be applied to the entire source text, the subsequent analysis methods can be more elaborated and costly
since they are applied to the set of retrieved clone candidates which usually is considerably smaller than the
entire source.

In what follows we will first describe the kind of information that in general is available to our approach for
ranking and filtering purposes (Section 4.4.1). We will then describe the tasks for which we want to have
relevance measures (Section 4.4.2), and afterwards detail the measures that we use to rank clone candidates
(Section 4.4.3). We will finally discuss how these measures can be combined to form effective rankings and
filters for clone candidates (Section 4.4.4).

4.4.1 Source Code Characteristics for Ranking

Deep code analysis methods involve abstract syntax trees or control- and data-flow graphs. This kind of knowl-
edge would enable us to pinpoint the exact syntax elements which cause similarities and differences of a clone
pair, facilitating the precise assessment of refactoring opportunities [BMD+00] or even the automatic extrac-
tion of procedures [KH02]. If we refrain from parsing the code fully we have to rely on information that can be
gained with simpler means. This information is either produced during the execution of the various algorithms,
or it can be extracted with lexical analysis from the source code, or it can result from the application of basic
(UNIX ) tools. We are giving here an exhaustive list of the information sources that are at our disposal:

Characteristics of the Source Code:With lexical analysis we can extract the following data from the code:

• Number of lines, tokens, and characters.

• Complexity of the code measured by simple source measures,e.g., number of keywords, variables,
operators, and nesting levels.

• Block boundaries in the source code,e.g., the boundaries of functions or complex statements.

• Location of the code,i.e., occurring within a function body, or a data structure definition.

• Names of variables and functions referenced in the code.

Note that in the presence of preprocessor directives some informations like the boundaries of blocks
might not be extracted easily.
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Characteristics with Respect to the Entire Source:The vocabulary gives us the frequency of every line in
the source text.

Characteristics with Respect to the Normalization Measures:The mappings of variable names and con-
stants to generic names (see Section 4.2.3) can be compared between two clone instances [Bak92]. In-
consistent mappings are hints at false positives.

Characteristics with Respect to Gaps:The gaps which break the diagonals apart (Figure 4.3 on Page 65)
represent unforeseen differences between fragments which have not been removed by the normalization
measures. The differences can be very small (a single character is able to make the string match fail),
or they can indicate a mismatch between completely different code fragments. These characteristics
influence the ranking:

• Size and number of gaps.

• (Edit) Distance between the differing fragments in the gap.

• Weight of matching code versus weight of differing code.

Characteristics of the Clone: The copied code can be investigated with respect to its occurrence in other
clones.

• Number of clone instances in which the fragment appears.

• Distance between the locations of the shared source fragments of a clone,e.g., same file, same
directory, or different subsystem [KKI02][KG03].

• Relative positions of co-located copied fragments. If more than one clone covers a region in the
source text, the two regions are probably related beyond what is evidenced by the duplicated frag-
ments alone (see also the definition of clone class families in Section 3.7.2 on Page 41).

• Relative position of the two copied source fragments. Clones which relate two overlapping source
fragments can be excluded.

An Abstract Representation for Source Code

In addition to the characteristics described above, we need a simplified representation of code which helps us
to derive estimates for the complexity of the code and to approximately compare lines. Similar to the normal-
izations thisdescriptionmust abstract from peculiarities like user-chosen identifier names. To accommodate
size measures, the elements of the description must be easily counted.

We describe a code fragment,e.g., a linel, as a bag of featuresfeat(l), where a feature is a code element like
a keyword, a function call, or an operation.4 We do not include representations for variables or constants (as
they are implicitly represented by operations) and we do not represent delimiters for expressions or statements.
Note thatfeat(l) is not a set as multiple elements of the same type can occur inl.

Some examples of C-fragments and their representations can be seen in the following table:

Source Linel feat(l)
for (i=1;i<maxhash;i++){ KW:for OP:= OP:< OP:++
if (i==j){ KW:if OP:==
tc_patptr[tc_hash[hash]]=pattern; OP:= SUBS:[] SUBS:[]
tc_f_prep1(pat_index,pattern) FUNCTIONNAME OP:,

We can transform source code into this representation with lexical means similar to the transformation mea-
sures we have employed for the normalization of the source code. To configure the analyzer for a specific
programming language, a list of its keywords and its operators is sufficient.

4Some operations like the reference operator in C can be considered too unimportant to be represented.
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4.4.2 Relevant Tasks for Ranking

Clone relevance must be determined with respect to a task that the reengineer wants to perform. We present
a list of tasks inspired by Li et al. [LYW03] and constrained by the kind of support our information sources
can give us. Each task description is supplied with a description of the code and clone properties that we can
employ to select clones relevant for this task.

Refactor Duplication and Eliminate Redundancies.Refactoring the duplicated code is a central concern of
duplication reengineering. To determine the refactorability of a clone to all possible extent, deep code
analysis is necessary. Without parsing we can only assume that clones that surpass a certain size thresh-
old should be investigated for refactoring opportunities. The following hints can be used to assess the
refactorability of a clone candidate:

• The amount of copied code is an important indicator if a clone should be refactored. This includes
the weight of the copied code, a low gap density, or small distance of the fragments in the gaps.

• A high frequency of the copied lines in the entire source text indicates that the copied code is
common and uninteresting, a low frequency indicates that it is surprising and thus more interesting.

• Code that is shared over near distances,e.g., both fragments are located in the same file, is usually
more easy to refactor than code that is copied over directory boundaries.

• A clone that issyntactically cohesive[HUK+02], i.e., its code aligns with a syntactic block like a
function or loop body, is easier to refactor than duplication which crosses these boundaries. This
property can tell us that an entirely copied function of two lines is important, whereas a two lines
clone appearing in the middle of a function is more likely to be irrelevant.

• If we find a clone class that has many instances, it might be advantageous to extract the functionality
into a separate component.

Document the Existence of Duplication.We can help to keep copied fragments synchronized by including
comments which make future maintainers aware of the shared code. This task is a consequence of the
inability to eliminate a clone which has been selected for refactoring and the same indications are valid
as for this first task.

Extraction of Reusable Components.A component, which we take here to mean a set of mid-level source
entities,e.g., functions that are semantically related, is a candidate for being made into an explicitely
reusable entity if it is cloned to a large extent. To support this task we must be able to aggregate the
amount of copied code located within the boundaries of a region of the code,e.g., a file.

Understand the Program via Distributed Aspects. If we know that certain source fragments embody a spe-
cific functionality, everyone of its copies gives us some information about its surrounding code.

For this kind of analysis we need to know the content or semantics of a clone, and then all the places
where it has been copied to.

4.4.3 Measures for Ranking Clones

In this section we define a number of measures with which to rank clone candidates. Each measure individually
describes a single aspect of a clone. Some of the first measures in the list will be used in later measures. The
measures concerning the gaps and clone dissimilarity will be needed to assess the similarity of clones which
contain gaps.

Code Weight: Determines the importance of a piece of copied code.

Gap Difference: Determines in detail how dissimilar the two lines in a gap are. Instead of a boolean value we
compute a percentage value for the similarity.
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Gap Weight: Determine how much a gap detracts from the similarity of the copied fragments. Added to the
weight of the matched code we get a single weight number for a clone, with or without gaps.

Fragment Distance: Determines the likely effort for the extraction of shared code.

Clone Frequency: Determines the gain of extracting shared code.

These simple measures are combined into task relevant rankings in Section 4.4.4.

Code Weight

One of the most important measures is the size of a clone. Whereas clones consisting in a single line will likely
be the result of accidental duplication, a copy of 50 lines will most certainly mean that deliberate duplication
has been going on. The size of a clone can however not simply be equated to the number of lines of the
participating source fragments because lines of source code can differ vastly in length and content. The length
of the line as well as the amount of logic that is found on it must therefore determine how much weight is given
to the fact that the line is copied. In order to determine themassof a fragment we need to define a measure,
which we callcode weight measure.

A measure which takes into account the length of the code in terms of characters would already improve on the
number of lines measure. For our measure we will however count the tokens of the matching code, or, similar,
the number of features in the feature representation introduced above. This gives us the weight of the following
source fragment:

Source Linel weight(l)
m = msg_ct(cat,title_m,"Start system"); 4
cmd->addTranslation("title",msg_text(m)); 5
msg_dt (m); 1
Total Code Weight: 10

To give the measure some kind of code understanding we can weigh the different feature types according to
some criterion. If we are of the opinion that code complexity is determined by the adherence to structured
programming rules, we could for example give agoto statement double the weight of anif statement because
it violates those rules. The drawback is of this idea is that it requires assigning a weight to all operators and
keywords in a consistent manner.

We can however make the measure more expressive without intervention of the user by using the frequency of
the source lines as indication of how interesting their occurrence in a given fragment is. In information theory
this is measured by the negative logarithm of the probability of the statement occurring,i.e., I(l) = − log P (l)
[Lin98]. We assume, for simplicity reasons, that the probability of a linel is independent from its context,i.e.,

P (l) = frequency(l)
n wheren is the total number of lines in the input. Weighing each line by its information

content we get the following numbers for the above code fragment (example frequencies are taken from an
actual file in the MAIL SORTING system):

Source Linel Freq weight(l)
m = msg_ct(cat,title_m,"Start system"); 1 34.4
cmd->addTranslation("title",msg_text(m)); 876 9.1
msg_dt (m); 947 1.8
Total Code Weight: 45.3

With this scheme the weight of a code fragment depends on the contents of the entire system’s code. For
targeted investigations of specific subsystems, the frequency of a source line should be counted only in the
source files which contain at least one of the clone instances.
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Gap Difference

Gaps are the result of mismatches between two lines among a number of matching lines. A mismatch can
occur for two reasons:i) It can be due to a small difference that was not anticipated by the transformation
measures. Such differences do usually not detract from the relevance of a clone.ii) It can also be the result of
the two lines being very much different, which as a consequence might mean that the surrounding matching
lines are only accidentally the same and the clone therefore irrelevant. A distance measure,i.e., the result of
an approximative matching, between the two corresponding lines is able to distinguish the two cases. Using
an approximative matching technique at this point of the process has a significantly less severe impact on the
overall time complexity of the comparison than using such a device in the main comparison since it is only
applied to parts of the retrieved clone candidates.

We use the similarity measure proposed by Lin [Lin98]. He measures the similarity of two entitiesA andB by
the ratio between the amount of information needed to state the commonality ofA andB and the information
needed to fully describeA andB .

sim(A,B) =
log P (common(A,B))

log P (description(A,B))

Thedescriptionof a source fragment is the list of all its features. The commonalitycommon(A,B) computes
the intersection of the two descriptions.− log P (s) is again the information content of propositions.

To exemplify howsimworks we order a number of source lines according to the value ofsim. We use a fixed
set of (normalized) lines of C code and we alternately use various members as the target line to which all other
lines are compared. In the following tables, the targeted line is put fully in bold at the top, and the other lines
are listed according to their rank:

sim if(p+1>=p[p]) sim foo(p,p) sim p=p[1]-p

0.57 if (p>=p) break 1.00 foo(p,"...") 0.79 p=p-1

0.54 p=p+p[p] 0.82 foo(p,"...",s) 0.68 p=p+p[p]

0.29 p=p[1]-p 0.65 if (p) foo(p,p,p) 0.53 p=p+p-p+p+p

0.28 if (p) foo(p,p,p) 0 p=p+p-p+p+p 0.29 if (p+1>=p[p]) {

0.19 p=p+p-p+p+p 0 p+=p 0 p+=p

0 p+=p 0 p=p+p[p] 0 if (p) foo(p,p,p)

0 p=p-1 0 p=p-1 0 foo(p,"...",s)

0 foo(p,"...",s) 0 if (p>=p) break 0 if (p>=p) break

0 p++ 0 p=p[1]-p 0 p++

0 foo(p,p) 0 p++ 0 foo(p,p)

As another example forsim, we list the 10 lines in the AGREPsystem that are closest to an arbitrarily chosen
line (see Table 4.1).

Gap Weight

Not only the distance between gap lines in a clone is important but their number and weight as well. In a
gapped clone we must contrast the weight of the lines that have matched to the weight of the code that did not
match. In the two fragments of the example below, which are retrieved as clone candidate by a pattern matcher
that accepts diagonals with one dot gaps, only the boilerplate lines of thecase statement match, whereas the
code which contains the interesting logic does not match at all.
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sim if((mfp==-1)&&((mbuf==null)||(mlen<=0)))return-1;

0.701 if (temp==null||push(&stk,temp)==null) return null;

0.699 if ((token==’...’)||(token==’...’)) return n;

0.699 if (s==null||node==null) return null;

0.699 if ((cur==’...’)||(cur==’...’)) return 1;

0.693 else if ((ret==0)&&(mfd==-1)&&(mbuf==null)) return -1;

0.657 if ((fpos==null)||(*fpos==null)) return ;

0.657 if (s==null||*s==null) return null;

0.654 if (ret<=-1) return -1;

0.634 if (!aparse&&((m=maskgen(pattern,d))==-1)) return -1;

0.618 if (((limitoutput>0)&&(limitoutput<=num_of_matched))||

Table 4.1: The top ten most similar lines to the source fragment set in bold at the top (from the AGREPsystem).

case 1:
v_mangle_res(str_c(""));
break ;

case 3:
v_mangle_res(str_c(","));
break ;

case 8:
v_mangle_res(vsp[0].lv);
break ;

case 13:
list_ctor(&parse_val.list);
break ;

case 14:
parse_val.list = vsp.list;
break ;

case 15:
parse_val.expr = 0;
break ;

To balance the matching and mismatching lines of a clone candidate we subtract the weight of the code in the
gaps from the weight of the matching code. We distinguish between the larger and the smaller weight of two
lines(k, l) forming a gap:

maxw(k, l) = max(weight(k), weight(l))
minw(k, l) = min(weight(k), weight(l))

To compute the weight of a gap we must consider two possibilities: Whensim does not find any similarity
between the lines of the gap, we removemaxw(k, l) from the sum of the measure. Whensim finds some
similarity between the lines, we multiplyminw(k, l) with the similarity value, adding to the weight of the gap.
The total weight of all gaps of clone candidatec is computed as follows:

gw(c) =
∑

(k,l)∈gaps(c)

{
−maxw(k, l), if sim(k, l) = 0
minw(k, l) · sim(k, l), if sim(k, l) > 0

In fact, this formula can be applied to every line of the copied fragments. For matching lines,weight(k) =
weight(l) andsim(k, l) = 1. This measure therefore gives us a single number for any clone, gapped or not.

Fragment Distance

The two source fragments participating in a clone pair can be related via the files they are a part of. The
distances between the two locations can be represented either as an ordinal scale,e.g., same file, same directory,
different directory, which leads to a taxonomy for clones [KCS02]. Another way is to define a measure as the
length of the path from the files to the lowest common ancestor [KKI02]. A similar measure can also be defined
for object-oriented code which can be located within a class hierarchy.

We can extract this information by simply keeping book about the origins of each line in the code.
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Clone Frequency

The frequency of a clone determines its importance. The more times a source fragment is copied, the more
reduction can be achieved with a refactoring that unifies all instances. Even small fragments if repeated many
times warrant replacement by a macro.

The clone frequency can be determined from the size of the clone classes and clone class families as defined in
Section 4.3.2.

4.4.4 Filters to Remove False Positives

The measures that we have introduced in the preceeding section can be combined to better characterize clones
which are relevant for one of the reengineering tasks introduced in Section 4.4.2. For each task we list the
measures involved, and the general tendency of the measured values (we will only indicate if the values should
be high or low. The definition of concrete thresholds must be done for a concrete example). A combination of
fixed weights would probably not be independent of the system that is screened and therefore we only list the
measures in order of importance giving a rough outline of a possible filter.

Refactor Duplication and Eliminate Redundancies:

Measure Value

Code Weight high
Gap Difference low
Clone Frequency high
Fragment Distance low

The combination of the measures is due to the following reasonings. To be refactored, code should be of
considerable weight (highCode Weight). Experience shows that customers who have their systems screened
for duplicated code usually want then largest clones removed from their code.5 In the same vein, a high
similarity (low Gap Difference) will make the refactoring of the clone easier. If the fragment has been copied
many times a removal action has the chance to affect a large piece of the total amount of duplicated code (which
is called the “high impact” category by Balazinska et al. [BMLK99]). Finally, the farther apart the fragments
are found, the more difficult it is to refactor them because the context (the copied codeplus its surroundings)
that must be considered for a refactoring grows with the distance.

Document the Existence of Duplication:

Measure Value

Fragment Distance high
Gap Difference middle
Clone Frequency low
Code Weight high

We have to document duplication if we do not have the possibility to extract the shared code. This means that
we should first try to remove everything we can and only document the rest. For the clones that are documented
instead of removed, a slightly different set of ranking criteria is important. Fragments that are close together do
not need as much documentation as fragments that are fart apart, where the danger is greater that when changing
only one the other gets forgotten (highFragment Distance). Clones which have already experienced a diverging
evolution are difficult to reconcile, and rather must be documented (middleGap Difference). Even clones which
have only two instances can encompass information which needs to be updated in synchronization (lowClone
Frequency). That larger clones represent more opportunity and therefore greater dangers for diverging evolution
(highCode Weight) is clear.

5Personal Communication by M. Mehlich of Semantic Designs, Inc. who sell professional duplication detection services.
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Extraction of Reusable Components:

Measure Value

Code Weight high
Clone Frequency high
Fragment Distance –
Gap Difference –

Reusable components must be of a certain size to make a function invocation worthwhile (highCode Weight).
The duplicated code must be of a considerable frequency showing that they have proven their usefulness (high
Clone Frequency). If fragments are found in different places of the code (Fragment Distance), we have probably
found code that is applicable universally, but even code copied frequently in only a single subsystem can be a
candidate for a reusable component. Whether cloned fragments encompass differences (Gap Difference) does
not play that important a role, since a component that is used in many contexts will necessitate quite a bit of
parameterization anyway.

Understand the Program via Distributed Aspects:

Measure Value

Fragment Distance high
Clone Frequency high
Code Weight high

Program understanding is a reverse engineering task and thus notably different from the previous ones which
concentrated on reengineering issues. The most important criterion is the distance of the clone fragments (high
Fragment Distance) and the large population (highClone Frequency): Only code that is distributed over the
entire system can be useful in helping to understand diverse system entities. To be able to explain the system a
piece of copied code must represent a considerable amount of logic (highCode Weight).

4.4.5 Discussion

The combination of heuristic normalization methods (Section 4.2) and a simple comparison method (Sec-
tion 4.3) can lead to a list of clone candidates which contains many false positives. In order to reduce this
number, we have proposed a set of simple measures which can be computed with minimal investment in
difficult-to-adapt parser technology.

Following the idea that the relevance of a clone depends on a specific reengineering task one wants to achieve,
we have shown how these measures could be combined into filters which help to emphasize clones that are
particularly interesting for a given reverse engineering task.

To better rank code fragments we need more and improved measures which can be computed from less than
a full-fledged abstract syntax tree. A short list of measures that could be investigated on top of what we have
proposed in this section follows:

• Control flow measures can be computed from a simplified syntax tree representation of the program. The
necessary parser to identify the basic control flow of a piece of code could be built using configurable
island grammars.

• The conformance of a fragment of copied code to the borders of syntactic structures like blocks or
functions can be derived using a minimal parser which understands blocks. We can then identify the
outermost syntactic blockb which is coincident with any part of the copied fragmentf . The amount
of overlap between the entireb andf will be a good indicator of how muchf conforms to syntactic
boundaries as represented by blocks.
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The measures that we have described above are used to rank clone pairs only. Since the engineer will be
working with the clone setsclone classandclone class family, all the measures must be formulated for these
aggregations. Especially the reengineering goal of extracting reusable components makes less sense if it is
applied to clone pairs alone, because a function, for example, may be covered by more than a single duplicated
fragment.

The code representation that we have introduced in Section 4.4.1 can be used as input transformation measure,
before the comparison. The question which should be investigated is then if such a normalized representation
will generate too much noise and overshadow the increased recall.
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4.5 Conclusions

We have selected string matching as basic comparison function. Strings are the format in which the source
code is already from the start, which fostersadaptability. String comparison is a simple function which helps
to achievescalability. Any duplication detection mechanism has to face the two challenges ofi) how we can
recognize duplicated code despite superficial variability in the copied code, andii) how we can handle the
n-to-n character of the self-similarity detection problem. The choice of string matching leads to the following
answers to these challenges:

i) Since the comparison function is not sensitive to the structure of source code we therefore must

– preprocess the code in order to increase recall: we need to normalize certain volatile syntax ele-
ments.

– identify copied fragments despite larger differences that have been applied to their middle parts.

– analyze the detected clones to weed out the false positives that are due to the normalization of the
code.

ii) To improve upon a naive comparison of everything against everything we organize the comparison
around an index.

In the normalization and post-comparison analysis we use multiple minimal parsers for different aspects of
the source code. These parsers only recognize superficial code structure, but we are capable of keeping the
infrastructure simple enough so that it isconfigurablefor many programming languages.

The are always differences between fragments of code which we cannot normalize. We therefore allow our
matching fragments to contain gaps of non-matching code. Changes in the copied code which exceed our
normalization capabilities do not hinder detection if they appear in the middle of a longer copied fragment.

The problems which result from the choice of string matching as comparison function are twofold:

• Some of the normalization measures tend to increase the number of false positives considerably. The
question is then which normalization measures from the set of possible measures to apply for a given
case study. The reengineer should be given some hints which help make this choice.

• Since the comparison resolves duplication on the level of a single line of code, there is a great number
of atomic matches which has to be stored in the comparison matrix. This can be taxing in tight memory
situations.

To cope with the high recall that our method entails, we propose measures for ranking clones (Code weight,
Gap Difference, Fragment Distance, and Clone Frequency) that, when combined, characterize clones that are
relevant for several reengineering tasks.

The drawbacks of choosing not to fully parse the source code are tied to the fact that information from deep
code analysis is not present. With only superficial understanding of the code structure we are unable to detect
similarities which are found in the semantic layers of the code. Instead of automatically evaluating clones our
post-detection analysis will be largely in the hands of the engineer. In the next chapter we therefore investigate
clone presentations which both in overview and in detail allow the engineer to access the clone information
easily.
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Chapter 5

Visualization of Duplication

The result of any code duplication technique is a clone pair, essentially a pair of token or line coordinates. With
this information at hand, we can begin reengineering operations, automated or not, which are the ultimate goal
of the endeavor. A natural question, then, is: Why do we want to visualize the duplication?

The human ability to recognize visual patterns is eminent. The field ofInformation Visualizationinvestigates
the exploitation of these capabilities for the purposes of understanding large amounts of data. According to
Card, Mackinlay and Shneiderman, Information Visualization is“the use of computer-supported, interactive,
visual representation of data to amplify cognition”[CMS99]. Andrews sums it up as being“the visual presen-
tation of abstract information spaces and structures to facilitate their rapid assimilation and understanding”
[And02]. Information visualization takes advantage of the enormous powers of the human visual system:“The
eye and the visual cortex of the brain form a massively parallel processor that provides the highest-bandwidth
channel into human cognitive centers”[War00]. Much of the processing is donepre-attentively, i.e., before we
consciously interpret the parts of an image. For example, the human visual system comprises, among others,
a kind of cells calledsimple cellswhich are excited by lines that have a particular orientation.1 The diagonal
lines which are so easily spotted in a dotplot represent duplication and are thus directly relevant.

By visualizing similarity data we can shift a part of the mental burden we must exercise to understand to the
built–in cognition machinery. The tasks of selecting, assessing, and prioritizing the data can be helped largely.
We want to support the engineer in the understanding of the overall duplication situation as well as in the
fine-grained analysis of concrete cases of duplication.

We take three different perspectives, from the detail (the source code) to the overview (the entire system):

Editors: The most fine-grained view on duplicated code is through an editor which presents copied fragments
side by side. Since clones are frequently members of a clone class, a clone browser must make all related
fragments accessible to foster the understanding of the situation (Section 5.1).

Dotplots: For regions in the source text containing many overlapping clones or clones which are split into
pieces by many small changes, adotplot can give insights faster than a mere listing of all clones. It is
also a useful starting point for interactive exploration of the duplication situation. While still on a low
level it is possible to gain information about the global duplication situation from a dotplot (Section 5.3).

Since the dotplot is a well known technique developed originally for similarity analysis of DNA se-
quences, we will outline its history and the surprisingly many applications it finds in a variety of fields
(Section 5.2).

Polymetric Views: For large systems where the amount of duplication data precludes individual assessment,
we display aggregated quantitative information and relations between high level entities of the system
usingpolymetric viewsthat enable orientation and selection (Section 5.4).

1Work by Huber and Wiesel on the physiology of the nerve cells in the visual system of the brain, qtd. in [Gla02].
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Note that visualizing clones isnot an example ofsoftware visualization[SDBP98] in the truest sense of the
word, despite the fact that we use program code as data. Software Visualization tries to make a program easier
to understand,i.e., it deals with the algorithms which are ahigh-leveldescription of the program. We, however,
are interested in the self similarity of the source text which is alow leveldescription of the program. Knowledge
about repetition of code fragments will contribute only indirectly to the understanding of the program. Rather
than visualization of software dotplots and polymetric views aredata visualization.

Our Contribution

The contributions of this chapter are:

• A comprehensive list of requirements for clone browsers.

• A history of the origins of the dotplot.

• A new approach for the visualization of quantitative duplication data in the context of the system it was
found in.
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Chapter 5 Visualization of Duplication

5.1 Browsing Duplicated Code

If duplicated code is not refactored automatically, the final assessment of a clone instance can only be made
by looking at the source code in an editor. It is thus important to equip code editors with support that lets
programmers investigate clones easily.

The manual investigation of copied code can be supported in the aspects ofi) access to the clones and clone
classes or access to the regions which have been partially copied,ii) special features of the editors, andiii)
presentation of the clones.

Access to the Clones: The clones should not only be ordered by the categories in which they are collected,
but also by the clone classes they are aggregated in. All fragments of a clone class must be comparable since
only then can we decide on a refactoring strategy. The user must be able to combine any two members of the
clone for presentation in the browser window. He should be able to keep a single fragment fixed in one editor
window and to scroll through the all the other clone class members in the second editor window.

Instead of focusing on the clones, the user should be able to select and browse regions of source code [KG04],
e.g., a function or a file. All the clones which are located in a given source regionR should be displayed in the
editor. The user must be able to browse through all regions which are related toR in the other editor window.
The user should be aware of all clones contaiend within the region at once.

Finally, it should be possible to select clones via the dotplot visualization. Access to the source code must be
possible by clicking on the diagonals in the plot.

Editor Enhancements: Clones must be shown in two adjacent browser windows. A horizontal arrangement
is more convenient if the user wants to make line-by-line comparisons. The drawback of the horizontal ar-
rangement is that lines will quickly extend beyond the right border of the editor. We need therefore to be able
to switch to a vertical arrangement of the two editor windows. In the vertical position, it is easier to add more
than two views and still see a reasonable part of the copied fragments.

The most important enhancement of a clone browser is however the synchronized scrolling of the two windows.
The user should be able to view the copied fragments as a single entity. Especially for fragments which either
horizontally or vertically extend beyond a single page, line-by-line comparison is only convenient if we can
change the browser location in the two windows with a single mouse movement.

Clone Presentation: Whereas the user can understand clones which consist of entire functions by seeing
only the copied function, clones which occur in the middle of a larger text must always be presented with
their context so that their dependencies on the surrounding code can be gauged. The copied code must be
highlighted to make it stand out to non-duplicated code. Differences of notice,i.e., more than simple variable
renaming, between the copied fragments must also be highlighted to raise the attention for elements that must
be normalized in the clone. It would probably be convenient to implement navigation of only the differences
in a clone, like the TAB-Key in dialog windows of graphical user interfaces. The user can then directly assess
what keeps the code fragments from being unified.

If multiple overlapping clones must be highlighted at the same time, for example when browsing a source
code region containing more than one clone, the standard typographic highlighting method of changing the
background color must be replaced with methods which can accommodate more than a single clone in the
same location. As an example we can use rectangular braces on the left border of the editor marking the
beginning and the end of the clones.

Related Work: Current implementations of clone browsers, for example the GEMINI environment [UKKI02a],
the EMACS clone browser by Bellon2, and the source browser of DUPLOC [RD98], only implement a part of
these features. CLONEDR [BYM+98] reports not only the copied fragments but also produces a unification of

2Available fromhttp://www.bauhaus-stuttgart.de/clones/ [May 15, 2005]
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The Dotplot Section 5.2

all instances, showing the text that is the same for all fragments interspersed with parameters that represent the
differences.

The related source text visualization approaches of SEESOFT[ESEE92] and the Aspect Browser NEBOULOUS

[GJK01] provide ideas which could be used in the presentation of clones as well. These tools shrink the text
to a one pixel height without changing indentation. This keeps the familiar image of the code and enables to
show large portions of the system on screen at once. Like in amapunneeded detail is abstracted away. By
color-highlighting certain features of the code all over the map, the size, location and the location relationships
between highlighted features can be assessed easily. If, for example, all source lines that belong to a clone class
are highlighted, the source map immediately conveys the size of the affected code as well as the spread of the
clones,i.e., which subsystems are involved. This is the same way that a dotplot presents a map of the source
code, indicating location information about the duplicated code ‘aspect’.

5.2 The Dotplot

A dotplot is a visual display of a matrix. A dotplot is not ascatterplot, albeit the two are similar. A scatterplot
is a visualization tool to aid analysis of systematic relationships between two rational variables. The two values
combined form a coordinate in a two-dimensional3 grid. Any number of data points may fall into each cell
of the grid. If too many data points are concentrated on a small area of the grid,overplottingwill reduce the
usefulness of the plot in visual analysis.

The dotplot is a variation of this schema. As dotplots visualize a matrix, they have discrete scales on both
axes,i.e., each axis is a vector,v andw. Each matrix cell at coordinate(i, j) contains the result of a function
f(v[i], w[j]). In contrast to scatterplots, there is exactly one value for each cell in the grid which eliminates
the problem of overplotting. The functionf can be anything, but is mostly computing a kind of similarity, the
simplest being exact equality. If we take string equality as an example forf(), the cell at coordinate(i, j) is set
to 1 iff the elementsv[i] andw[j] are equal strings. This results in the following matrix:

to be or not to be
to 1 0 0 0 1 0
be 0 1 0 0 0 1
or 0 0 1 0 0 0

not 0 0 0 1 0 0
to 1 0 0 0 1 0
be 0 1 0 0 0 1

This matrix is visualized straightforward by a dotplot as seen in the next figure, where each value1 is plotted
as a dot, and each cell with value0 is left blank in the plot.

be
to
not
or
be
to

-

?

yy

y y yyyyyybe ornotto beto

Note that placing the origin of the graph in the upper left corner is a convention we adopted from Church and
Helfman [CH93]. For people who read text (and thus source code) from left to right and from top to bottom, a
dotplot which has the same orientation makes it easy to correlate the image with the text.

3See [HHHW98] for the32D Hypercubevisualization, an extension of scatterplots into three dimensions.
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Chapter 5 Visualization of Duplication

Note to the Reader: The following Sections 5.2.1 to 5.2.5 explain the origins and related work about the
dotplot visualization. They are not necessary for the understanding of the use of dotplots for duplication
detection. Readers which are uninterested in dotplot background can skip to Section 5.3 on Page 86.

5.2.1 Origins of the Dotplot

The dotplot was first proposed by A.J.Gibbs (a biologist) and G.A.McIntyre (a statistician) in 1970 [GM70].
Thediagonal matchor diagrammethod was introduced as a simple way (“can be done by hand if necessary”) to
find similarities between nucleotide or amino acid sequences. The idea for the comparison matrix which under-
lies the diagram visualization was apparently communicated by Saul Needleman to Walter Fitch in September
1965. Fitch himself published an early dynamic programming diagram in [Fit69]. Needleman&Wunsch used
the matrix as basis for the well known algorithm for global sequence alignment [NW70]. The first step of their
dynamic programming algorithms fills the comparison matrix with similarity values between corresponding
nucleotides or amino acid residues. Instead of computing the global alignment, Gibbs&McIntyre then just
visualize the comparison matrix as a dotplot.

The big difference between the diagram method and the alignment algorithms is that the former does not
presuppose a single alignment path between the two sequences. A dotplot presents all possible alignment
fragments of any granularity down to the single comparison unit, without selecting some of them as parts of a
single path through the matrix. This is calledlocal alignment. On the other hand, aglobal alignmentalways
needs an a priori granularity definition,i.e., the definition of a start and an end point, with the assumption
that there is a single alignment path between the two. Any local alignments that do not lie on the main path
will be ignored, which may preclude the detection of smaller but nevertheless important homologies. As
Church&Helfman have said concerning DIFF like global alignment tools

Such programs attempt to find a single match and are therefore unable, in principle, to find the
richer texture of multiple overlapping matches. [CH93]

Additionally, computing the global alignment is an extra step over the computation of the comparison ma-
trix. It is thus advisable to perform it only for sequences that have a good probability of actually yielding an
alignment.4

5.2.2 Dotplot Applications in Molecular Biology

Global and local alignment analysis methods were invented in the context of research in molecular genetics.
Two applications for the dotplot can be found in the literature:

• Analysis of DNA and protein homology,i.e., the attempt to detect similarities between sequences in
order to derive evolutionary relationships, or functional convergence among related genes or proteins.
Alignment data for a family of genes or proteins is the basis for the construction of ancestral trees,i.e.,
how through mutation and rearrangement one gene has evolved from the other.

• The search for secondary structure of the DNA molecule. Since two strands of DNA can be held together
by weak bonds between the nucleotides adenine (A) and thymine (T ), or between cytosine (C) and
guanine (G), it is possible for parts of a molecule to fold in a particular manner.

For the homology analysis, the dotplot is applied to a regular comparison between a sequence on the horizontal
and on the vertical axis. Gibbs&McIntyre [GM70] simply put a dot wherever two elements of the sequence
matched. McLachlan [McL71] has employed a more sophisticated similarity function which reports partial
similarity. Instead of just putting a dot at a matrix cell, then, four different symbols indicate how similar the

4Balazinska [Bal99] follows this principle by extracting candidate clones using a metrics-based approach and then determining fine-
grained differences between candidate pairs with an alignment of the two token sequences that have already been proven similar.
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two sequences are at this coordinate. The same has been achieved later with letters (Pustell&Kafatos [PK82])
and color (Reisner&Bucholtz [RB88]).

For the analysis of secondary structure, a nucleotide sequence is compared with its complimentary sequence
(G = C,A = T ). The diagonals in the dotplot can then be interpreted as places where the strand of nucleic
bases can pair with itself; horizontal or vertical gaps representing loops or internal bulges of the protein struc-
ture. This has been used already by Gibbs&McIntyre [GM70]. Tinoco et al. [TUL71] have also estimated
secondary structure. They were using a measure of the stability of the helical binding between two nucleic
acids as the similarity function.

The important aspects of dotplot analysis of biological sequences are:

Similarity Function: The range of possible similarity functions is much larger than simple equality of the
character symbolsA,C,G, andT . For example, the probabilities of mutation, deletion or insertion of single
bases within a sequence can be derived from sequences for which relations are known. These cost matrices are
the basis for similarity functions.

Noise Reduction: Since DNA has a 4–symbol alphabet and proteins are commonly constructed from 20
different amino acids, the level of noise due to random matches is very high. To enable the visual detection of
significant alignments, noise reduction is tantamount.

Statistical Significance: It is important to discern between chance matches, which due to the smallness of
the alphabet have a considerably high probability, and biologically meaningful matches.

Display Scaling: The amount of sequenced DNA has increased over the course of the last 30 years. Today,
the whole human genome—numbering 3 billion bases—has been sequenced completely. Methods and tools
have to be implemented to display an entire matrix on a single screen and to zoom into smaller areas of interest
on demand.

The currently most widely used homology detectors like BLAST [AGM+90] employ a different approach: they
first construct a list of sequences that are possible mutations of the words from original sequences, and then
search instances of these mutations in the target sequence via pattern matching methods. Matches are combined
to local alignments. Dotplots are only used for visualization purposes.

5.2.3 Dotplot Applications in Natural Language Processing

After a long career in the biological sciences, the dotplot has crossed over into the field of text processing,
displaying similarities in natural language texts.

Church [Chu93] has used dotplots to alignbitexts, i.e., parallel text corpora. He used 37 million words of
the Canadian Hansards which are parliamentary debates published in both English and French. The technique
is based oncognates, i.e., words that are spelled the same or similarly and have the same meaning in both
languages. The matches of cognates between the two corpora form a trail in the dotplot which describes the
alignment. This has advantages in that it does not require the paragraphs or sentences to be pre-aligned. It
can also deal with noise,e.g., artefacts from OCR, much better than previous techniques. The rough alignment
produced by the dotplot is used as input for a second phase, which refine thebitext mapusing statistical methods
(probabilities at the word level) [DCG93].

Melamed [Mel96b][Mel99] pursues the same goal of an accurate bitext map, relying exclusively on the infor-
mation in the dotplot. A greedy search algorithm tries to detect the chain of dots of the bitext map. Relying
on the fact that for a bitext map there is only a single valid chain in the entire dotplot, geometric properties
of found chains, like their slope, are used to asses the validity of a partial chain extracted from the plot. In a
similar application, a slope criterion for chains enables the identification of omissions in a translation [Mel96a].
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Chang and Chen [CC97], too, use the image characteristics of dotplots to find bitext maps. Observing that
non-literal translations with many deletions, or language combinations which do not provide many cognates,
e.g., English-Japanese, will quickly unsettle many bitext map detectors, their goal is to make the technique
more robust. Interpreting the dotplots as binary images, they leverage a number of well known image pro-
cessing methods: convolution (local edge detection), texture analysis (noise reduction), Hough transform (line
detection). Since these image processing techniques work with gray-level images, which means that the grid
cells of the dotplot can contain a similarity percentage.

Reynar [Rey94][Rey98] uses dotplots to identify topic boundaries in newspaper articles or other texts. The
idea is based on the observation that the high number of words repeated within a topical text will lead to
many matches in squares around the main diagonal of the dotplot, where a text is compared with itself. These
areas will show up dark against their surroundings. The boundaries between topics can now be determined by
searching for such a region with maximal density.

Gershon et al. [GLW+95] count the number of times two words appear in close proximity in a corpus of text
and enter this number in the matrix cell. After some clustering—which can be done easily since the order of the
words is not relevant—a dotplot enables analysts to look at word correlations. The count of word proximities
can be seen as a kind of similarity metric. The view generated by this method is symmetric.

5.2.4 Dotplot Applications in other Domains

The connectivity (or adjacency) matrix is an alternative for the node-link representation of graphs. The rows and
columns of the matrix represent the vertices of the graph. The connection between two vertices is represented
by a true value in the cell at the intersection of the corresponding row and column (the value can of course
indicate any edge-weight). The advantage of the adjacency matrix is that thanks to the fixed grid structure
it does not become cluttered, a frequent problem for graphs with many links. Consequently, Ghoniem et al.
[GFC04] have found that as the size of a graph increases, the readability of the connectivity matrix is better
than the one of a nodes-and-edges drawing for almost all basic reading tasks (estimating nodes and edges
count, finding nodes and edges, finding paths). The connectivity matrix is used often for large scale graph
visualizations as can be seen in the following (not exhaustive) list of examples:

• Becker et al. [BEW95] use a matrix to visualize traffic between network nodes. Each node is placed on
the vertical and the horizontal axis. The matrix is not symmetric: the cell(i, j) contains the amount of
traffic flowing from nodei to nodej whereas cell(j, i) contains the traffic in the other direction,i.e.,
from nodej to nodei. The dotplot complements a geographical map where network nodes are placed
in their correct locations. The map visualization is in danger of overplotting when numerous nodes and
their connections are all shown at the same time. The abstracted dotplot view gives equal emphasis to all
network nodes. A problem not solved to satisfaction is, however, in the order in which the nodes should
be arranged on the matrix axes in so that the resulting picture is easily interpreted.

• In building an Information Exploration System which lets users investigate large number of documents
and their interrelationships, Hetzler et al. [HHHW98] have, among other techniques, implemented the
Connexvisualization. This is a 3D extension of dotplots where the axes of the matrix are occupied
by the documents from the collection. The values of the grid cells are represented as colored beads.
By stacking the beads one upon the other, a number of interrelationships between documents can be
correlated. Examples of documents relationships visualized in a simple dotplot are “same author”, “same
publication date”, “same topics”, or “same level of detail”. They also plot asymmetric relationships like
“published before”.

• In software visualization, De Pauw et al. [PHKV93] employ dotplots to show the amount of commu-
nication that goes on between classes and methods. They also present dotplots to illustrate allocation
relationships between classes or highlighting the use of inherited code in subclasses. Aebi [Aeb03] has
extended this work, grouping classes into higher-level entities and recording usage relationships of differ-
ent kinds between the classes. Displaying both types of entities, the groups and their constituents, on the
matrix axes he shows the detailed and the abstracted view of the collaboration patterns at the same time.
Like in the Connex view discussed above we have multiple dotplots stacked on top of each other. Also
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Ham [vH03] has recursively stacked adjacency matrices atop each other (using a hierarchical component
structure) to visualize the call graph of a large software system.

Similar to the visualization of ordered sequences of elements (DNA sequences, lines of source code), Zou and
Godfrey [ZG03] compare sequences of function names, ordered by the files in which they are defined, across
different versions of a system. Their dotplot allows quick insights into functions moving from one file to the
other, and source files being merged or split.

5.2.5 Categorization of Dotplot Applications

From the various dotplot applications presented above we are able to deduct a small categorization of this
visualization technique. The following characteristics can be discerned:

Order of Data Elements: The order of the elements on the axes are either given by the data or can be changed
in the process of visualization. Sequential data like words of a sentence or lines of a text will give the
plot a fixed pattern. If the data elements can be rearranged, it may be necessary to do so in order to find
the plot patterns that are most easily interpreted. The disadvantage in this lies in the work required on
the part of the user.

Values of Matrix Cells: If the range of the functionf(v[i], w[j]) is equal to the boolean set[0, 1], almost
all information from the plot will be gleaned through the arrangement of the dots and their geometrical
relationships. If a broader range of values can be displayed in a cell, the additional complexity of patterns
potentially occurring in the plot will tend to require that fewer data elements are put on each axis.

The dotplots we use for visualizing duplicated source code can be categorized as having a given order for the
axes and having boolean values in the matrix cells.

5.3 Dotplot Visualizations of Duplicated Code

We employ the dotplot for visualizing duplication most of all to get to knowwherethe clones are located. To a
lesser extent we also can derive from a dotplothow muchduplication is going on in the system.

The question about location is answered by the dotplot in the following ways:

• It shows the location and the length of the clones, see for example Figure 5.1.

• If we focus on the gaps between the diagonals, the dotplot shows the exact locations where two closely
related fragments differ. This can be helpful when we compare two versions of the same file, as in Fi-
gure 5.2: the places where source code has been inserted and deleted are clearly visible. The user can
connect the split fragments to form larger structures of copied and changed code.

• A dotplot relates the positions of multiple clones. In situations where duplication relations exist between
many overlapping fragments, a dotplot which extends in 2D space brings insight quicker than a mere list
of the involved clones.

Pustell&Kafatos (using the dotplot for DNA sequence analysis) summarize these advantages of the dot-
plot display:

The important feature of all matrix methods is that they display the regions of homology in
context,i.e., that they reveal the distribution of matched and non-matched segments along the
sequences. ... The overall picture of the forest [instead of only the trees] is communicated.
[PK82]
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Chapter 5 Visualization of Duplication

Figure 5.1: A dotplot showing the common fragments between two files from the AGREPsystem. All spurious
matches and small sequences have been removed so that we can see clearly the location of important clones.

Figure 5.2: A dotplot of evolution in the MESSAGEBOARD system: the square on the left contains the com-
parison of the old version with itself. The plot on the right side shows the comparison of the old with the new
version.
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This can be seen best in the example of repetitive fragments in Figure 5.3. The dotplot always shows
all equivalences at one glance, whereas a list of source fragments requires the mental combination of the
fragments.

We can compress dotplots with Information Mural methods [JS96][Mal99] to show plots of arbitrary side
length in a constrained space (see Figure 5.4). These views do not exhibit the detail of individual comparison
sequences any more. They reveal large-scale structures as well as the overall amount and the distribution of
duplication.

Since dotplots reveal more patterns than can be preconceived and built into an automated pattern matcher, they
support exploratory data analysis. On the other hand, if the goal of the duplication analysis is to uncover clones
that can be immediately refactored, dotplot visualizations are mostly unnecessary. Dotplots are not good at
answering the question of “What?” which is required for a detailed analysis by refactoring engines. Complex
information about the meaning of the matched code cannot be presented in such an abstract visualization as the
dotplot is.

Use of Dotplot In Clone Detection: Dotplots are widely used for visualizations of duplicated code: Helf-
man et al. have looked at versions of a variety of C programs [CH93][Hel94][Hel95][BCHK99]. Baker,
who computes the clones using a suffix tree, illustrates the findings with dotplots [Bak92]. Kamiya et al.
also use dotplots extensively to show where clones occur [KKI02] and to get user input for reconnecting
split clones [UKKI02b]. Detection approaches which focus on the automated analysis of refactoring oppor-
tunities usually do not utilize visualization techniques apart from pretty–printing the affected source code
[BYM +98][BMD+99][Kri01][KH01b].
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Figure 5.3: An extract from a comparison matrix of the AGREPsystem. We see that the code consists in regular
repetitions of the same few lines with only marginal variations.

Figure 5.4: An overview dotplot of 32041 lines of FORTRAN90 code. It reveals the overall distribution simi-
larity as well as a large copied sequence.
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5.4 Quantitative Duplication Visualization

One problem of the reengineer who must deal with duplicated code is that clone detectors report large amounts
of data for which he has little tool support. For industrial systems a duplication rate of 5-10% is considered a
low but common estimate. This means that in a system of 1 million lines of code, 50’000 to 100’000 lines of
code are involved in duplication. If we assume an average length of about 25 lines for a copied fragment, we
get a minimum of 1000 to 2000 clone pairs that have to be investigated.5

The engineers charged with duplication investigation and removal are subject to the usual time and cost con-
straints of an industrial setting. They most likely do not have the resources to remove every last instance of
duplication from the system but have to prioritize and decide which clones to remove. To do so, they have to

• assess the system regarding the occurrence of duplication,i.e., get amental pictureof the redundancy
situation.

• identify and select duplication that is “problematic” or “worthwhile to refactor”. This includes, for
example, large fragments that have been copied multiple times but eventually also duplication that is
easy to refactor.

Moreover, the engineers need to process the duplication data in an organized way by prioritizing the inves-
tigations they must perform. For example one way is to start with the largest clones or the ones involving
the most source files, or the ones where a refactoring would have the most impact. Since the ultimate deci-
sion on whether to refactor or not usually involves a manual investigation of the source code, the information
presentation must be interactive and connected to the underlying code, to allow for short examination cycles.

To solve this problem we propose to apply polymetric views [LD03] to the context of duplicated code,i.e., we
visualize duplicated elements of different levels of abstraction and enrich the views with metrics that present
qualitative information of these abstractions.

Our approach to support the understanding of duplicated code is based on data visualization. According to
Ware [War00], visualization is the preferred way of getting acquainted with and navigating large data pools.
Duplication data is relational data: two source code entities are related by shared pieces of code. A natural way
of expressing these relations is a graph: the nodes of the graph represent the source entities whereas the edges
of the graph represent the duplication relations.

5.4.1 Entities and Relationships

Our hypothesis is that when investigating a system affected by duplication, our mental model basically consists
of the following elements:

The source entitiesrepresent (fragments of) the source code. In the context of this section we use files as
source entities. Other entities such as subsystems, modules, classes, and methods can be used as well.

Theduplication relationshipsconnect the source entities.

Theduplicated fragmentsare the source code that two (or more) source entities have in common.

Since the investigated systems are of huge proportions (millions of LOC), data growth reaches unwieldly
amounts (thousands of clones). Would we visualize all individual clones, we would get views where over-
plotting of nodes and especially of edges are hindering interpretation. To achieve scalability we therefore
aggregate related clones into higher level entities. We use the containment hierarchy defined in section Sec-
tion 3.7.2:clone class familiesaggregateclone classeswhich in turn aggregateclone pairs.

The visualizations we propose use the source files and the clone class families as entities. The decision not
to display clone classes or clone pairs is due to scalability constraints. The lower level clone entities,e.g., the

5In this chapter we are not interested in the method of clone detection and assume that the problem of false positives has been solved.
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Color Metric
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Figure 5.5: The principle of a polymetric view.

clone classes and clone pairs which are the real targets of eventual refactoring operations, must however be
reachable from their containers.

5.4.2 Polymetric Views

Polymetric views [LD03] are a visualization method for nodes-and-edges graphs enriched with semantic infor-
mation such as metrics. Figure 5.5 illustrates how two-dimensional nodes representing entities,e.g., software
artifacts, and edges representing relationships can be enriched by software metrics. A node figure is able to
render up to five metric values: in its width, height, x- and y-position, and in its color. An edge figure is able to
visualize two metric values: width and color.

By applying metrics to the x- and y-position of the nodes, for example, similar entities are clustered close
together in an easily identifiable region of the graph exhibiting some of their defining characteristics. Entities
with differing characteristics are then placed in a distinct region of the graph. In this way the shape of the
visualized graph is able to communicate useful facts about the set of all visualized items.

5.4.3 Duplication Metrics

To discern between instances of code duplication we select a number of metrics that characterize the source
files and clone class families (see Table 5.1). The choice of metrics is guided by the goal to create views that
visually distinguish the entities in the view most effectively and intelligibly. The metrics are simple and can be
computed from the results of any duplication detection tool without the aid of a parser.

The distinction betweenLIC and LEC is motivated by the possibly more complex situation that has to be
understood when clone instances are located in different source entities. The smaller the amount of code that
is involved in the duplication (the copied codeand the surrounding context), the lighter is the cognitive load.
Kapser and Godfrey [KG03] have proposed a clone taxonomy which is built on this distinction.

5.4.4 Display Scalability

A well known problem in graph layouting isoverplotting, i.e., when too many nodes and edges are crammed
on too little screen space, making a diagram unintelligible. Since we want to be able to display large datasets
we are forced to take precautions against overplotting. We employ the following techniques:

Reduction and filtering:By pooling related clones into clone classes and clone class families we reduce the size
of the clone sets significantly. In the same manner source files can be combined into directories and subsystems.

Adaptive Graphical Representation:Since our views are intrinsically interactive, visual enhancements like
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Source File Metrics
Name Description

LOC Lines of code
The size of a file is a common metric, despite its obvious drawbacks. It
is immediately understood by every programmer and thus well suited to
identify important files.

LCC Amount of copied code in the source file
This is the central aspect we are interested in. This records every piece
of code in the file that has been copied somewhere else in the system,
including in the file itself.

LIC Lines of code copied file-internally
A subset ofLCC, this metric records code that has been copiedwithin
a source file.

LEC Lines of code copied file-externally
Another subset ofLCC. This metric records code that is shared with
other files. Note thatLIC andLEC are not necessarily disjoint.

Clone Class Family Metrics
Name Description
NSF Number of Source Files

In how many source files are the copied fragments found? This is the
set that defines the clone class family.

NCC Number of Clone Classes
How many clone classes have been grouped together in a family? This
says how many different source fragments are shared by all the files in
the group.

LCC Lines of Copied Code
How many lines of code does the clone class family encompass? For
each clone instance that is part of the clone class family, the number of
copied lines is summed up.

Table 5.1: Duplication Metrics for source files and clone class families

highlighting can be triggered by roll-over mouse events. Multiple selections of nodes,e.g., via their names or
their connections, are necessary as well to take advantage of the views.

5.5 Polymetric Views of Duplication

This section proposes a set of polymetric views that support the understanding of the duplication situation in a
system and can guide refactoring actions. Each view is presented using the following schema:

Details. Gives a tabular technical description of the view, its entities, re-
lations, and its layout.

Intention. Explains how the view can support the engineer in his tasks.
Symptoms. Details what kind of duplication problems the view reveals.
Examples. Shows sample views and explains their features.
Scaling. Investigates how the size of a system affects the view negatively

and what can be done about it.
Overplotting. Investigates if the amount of data can cause overplotting prob-

lems and how they can be avoided.

We order the description of the views in a sequence that suggests a way for the engineer to walk through the
task of understanding a system’s duplication (areengineering road map). After the discussion of each view we
present a short overview of questions answered and potential further questions that are of interest at this stage.
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Figure 5.6: The Duplication Web of the MAIL SORTING system withLIC (Lines of file-internally Copied Code)as
node width.

5.5.1 The Duplication Web

The Duplication Web is the first view that an engineer can use as it introduces the user to the duplication
situation. It shows all files in the system and all existing clone connections between them.

Nodes Source Files
Edges Clone Connections
Metrics

Node Size Height = –
Width = LIC (Internally Copied Code)

Edge Width LCC Lines of Copied Code
Layout Nodes placed on a circle; Nodes with many connections

are placed apart on the diameter.
Examples Figure 5.6, Figure 5.7

Intention: This view gives an impression of the number of files in the system and the amount of duplication
that connects them. It shows the entire system at once in a well defined shape that is independent of the physical
organization. It improves on a textual report detailing all clones detected in a system.

Symptoms: The view reveals the following duplication problems in a software system:

• Wide nodes represent files that contain a lot of internal duplication.

• Thick edges connect files that share a lot of duplication.

• Nodes with many connected edges represent files sharing duplicated code fragments with many other
files.

Example 1. Figure 5.6 of the MAIL SORTING system shows 101 nodes, 57 of which share code with one or
more other files. Most of the files arecopy-connectedto only one or two other files. The two files with the
largest amounts of internal duplication also exchange the most external duplication.

Example 2.Figure 5.7 shows the application of the Duplication Web view to the Microsoft Foundation Classes
(MFC). It is formed by 240 source files, 50 of which are connected by duplication links. In this variant, node
size corresponds to number of connections. Following the edges one is able to divide the duplication activity
of MFC into two larger groups of multiple interconnected files, and a few file pairs.

Scaling: The dimensions of the view can be controlled because of the fixed shape of the circle. For large
numbers of files the radius of the circle must be reduced, but itsgestaltcan still be recognized. If there are too
many files, grouping them into directories, modules, or subsystems is helpful.
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Polymetric Views of Duplication Section 5.5

Figure 5.7: The Duplication Web view of MFC. Setting heavily-connected nodes apart on the diameter empha-
sizes the overall number of duplication connections.

Overplotting: Since the intention of the view is to give an overview rather than to guide actual refactoring
actions, the overplotting is not too problematic. Thanks to the fixed position for each node, overplotting can
only become a problem if many nodes have a very highLIC value. If too many clone connections exist between
the files, the edges in the center of the view will become impossible to distinguish. The view then only conveys
the information that a lot ofcopy & pasteprogramming has been going on.

Reengineering Roadmap

Having gotten an impression of the duplication activity in general, we want to focus a bit more on the individual
files. Which are the files that are heavily duplicated, which are the ones where only a small part has been
copied?

5.5.2 The Clone Scatterplot

The Clone Scatterplot displays the same nodes and edges as the Duplication Web but the layout takes into
account the size and duplication metrics for each file. It has still overview character but enables informed
selections since more information is included in the presentation.

Nodes Source Files
Edges Clone Connections
Metrics

Node Position X-Pos =LOC Lines of Code
Y-Pos =LCC Lines of Copied Code

Edge Width LCC Lines of Copied Code
Layout Scatterplot
Examples Figure 5.8

Intention: The Clone Scatterplot confronts the size of the files with the amount of duplication they contain.
Files of different duplication levels can be identified by the region they are positioned in. The edges tell us
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45o

22.5o

45o

22.5o

Figure 5.8: Two examples of the Clone Scatterplot: On top is an extract of the ACCOUNTING system. Below,
the entire AGREP system is shown. Both views are overlaid with lines indicating duplication rates of 100%
(45◦) and 50% (22.5◦).

if code is shared between large and small files, or between files of similar size. Heavily copied files can be
selected for closer inspection.

Symptoms:

• Nodes on the left represent small files, while the ones on the right represent large files.

• Nodes at the top of the view represents files having little or no duplication.

• Nodes that are not at the top of the view but are unconnected represent files having only internal dupli-
cation.

• Nodes close to the45◦ diagonal represent files containing a lot of duplication with respect to their size.

Examples: Thegestaltimpression that this view gives can be best observed in the scatterplot of the AGREP

system in the lower half of Figure 5.8. Here the system has very little variation around the main diagonal. This
indicates that the level of duplication is equally high in all of the larger files. The largest file has common code
with all the other files involved in external duplication.

Scaling: Since we use theLOC metric as X-Position, the view can grow very large when files contain a lot of
lines. Logarithmic scales can then be applied to the X-metrics especially.

Overplotting: Thanks to the use of theLOC metric as X-Position, the source files are spread out over the view
area, ameliorating the overplotting situation for the nodes. Smaller files without duplication are clustered in
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Figure 5.9: Node placement in the Treemap. Nodes are separated by their shapes and arranged so that the
values ofLIC andLEC are aggregated horizontally and vertically, respectively.

the upper left corner of the view, frequently overplotting each other. Since these files are not interesting for
the user the problem does not have any impact. Clone edges tend to overplot quickly around the45◦ diagonal,
where the files with high duplication rates are located.

Reengineering Roadmap

Until now the views only contained nodes representing individual files. Files are however part of organizational
system structures. We want to know how these larger entities are affected by duplication. This raises the
abstraction level and we get the useful side effect that we can connect gained duplication knowledge more
easily with the fewer elements of the coarse system structure.

5.5.3 The Duplication Aggregation Tree Map

This view aggregates the duplication that until now we have only seen attached to individual files. It shows
the entire system top-down along the directory structure, annotating each directory node with the recursively
aggregated amounts of internal and external duplication of its files and subdirectories. The view emphasizes
system parts according to their involvement in duplication.

Nodes Source Files, Directories
Edges –
Metrics

Node Size Height =LEC (Externally Copied Code)

Width = LIC (Internally Copied Code)

Node Color LCC Lines of Copied Code
Layout Tree Map; nodes are arranged according to the principle

illustrated in Figure 5.9.
Example Figure 5.10
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A

B

C

D

E

Figure 5.10: The tree map of the APACHE system. The rectangle on the right marked C is an enlargement of
the second top-level node from left.

Intention: The tree map aims to give an overview of the ratio of internal to external duplication, aggregated
from the individual source files up to the root directory of the system. The parts of the system which exhibit
high amounts of duplication can be identified at a glance from the top level. Relative comparison of structures in
the hierarchy is made possible. The view has agestaltproperty,i.e., it can give useful information immediately.

Symptoms:

• Nodes towards the lower left have increasing amounts of external duplication.

• Nodes towards the upper right have increasing amounts of internal duplication.

• Nodes in middle have no duplication or equal amounts of both kinds.

• Wide nodes have more internal than external duplication and vice versa.

Note that node height shows the sum of externally copied code only with regard to files. If two files within a
directoryd share some code, this amount will be aggregated asLEC for the node representingd, even though
the code is not copied to files external ofd.

Examples: From the shape of the overall diagram in Figure 5.10 we can determine that there is a bit more
internal duplication than external duplication in APACHE. The rightmost nodeA representing the directory
lib contains the most internal duplication, whereas leftmost nodeB representing the directorymodules and
its subdirectorystandard contain most of the external duplication. The directoryos (represented by node
C) contains two subdirectorieswin32 (nodeD) andnetware (nodeE) which have a similar amount of
external duplication (possibly shared between them).

Scaling: Thanks to the fractal property of treemaps we can display systems of any size on every screen.
Zooming provides an adequate instrument to navigate even very large systems. Aggregation of data will provide
useful information even at the highest level where the smaller details are not discernible any more. Contrary to
traditional treemaps this variant visualizes two values in every node, resulting in some waste of screen space.
The advantage over the traditional treemaps is that the display is less crowded while still showing every element
of the tree.

Overplotting: The layout precludes all overplotting problems.
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C

D

A B

E

Class 'Object'

Figure 5.11: Two variant System Model views of JBOSS. The upper half shows part of the directory structure.
The thicker edges represent clone relationships between files. The lower half shows extracts from the class
hierarchy. Small squares represent superclasses defined outside of JBOSS.

Reengineering Roadmap

Having gained an overview of the parts of the system involved in duplication, we want to know details about the
copying. Is code shared within directories only, or also across directory borders, and even subsystem borders?
These informations are interesting since they uncover functional relationships between system parts that may
not be documented. Such knowledge can also further the understanding of the design of the system.

5.5.4 The System Model View

This view shows the directory structure of the application, or alternatively the inheritance tree, using the familiar
tree layout.

Nodes Source Files, Directories
Edges Clone Connections, Directory Containment
Metrics

Node Size Height =LEC (Externally Copied Code)

Width = LIC (Internally Copied Code)

Edge Width Clone connections =LCC (Copied Code)

Directory Containment = –
Layout Spaced Tree
Examples Figure 5.11

Intention: The System Model view shows the duplication within the physical location of files,i.e., their direc-
tory structures or the classes and their inheritance relationships. It helps identifying problematic subsystems
and functional connections between subsystems.

Symptoms:

• Small squared boxes represent files without internal or external duplication.
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Chapter 5 Visualization of Duplication

• Flat wide boxes represent files that contain a lot of internally duplicated code.

• Tall narrow boxes represent files sharing a lot of duplicated code with other files.

• Thick edges among tall boxes represent the amount of duplicated code exchanged between them.

Examples. In the upper half of Figure 5.11 the directory structure of the JBOSS system is the basis for the
arrangement of the source files in the view. Internal and external duplication are the metrics that are shown.
Files A and B, as well as C and D share code as indicated by the duplication link between the files, as well as
by the similar shapes of the nodes. What can additionally be seen in Figure 5.11 is that A and B are located in
sibling directories, whereas the duplication between C and D crosses 4 directories,i.e., probably into another
subsystem. This information is useful when deciding about refactoring measures. In the lower half of Fi-
gure 5.11 extracts from the class hierarchy of JBOSSare shown. On the left side, sibling classes copy heavily
from each other. E marks a clone relation between a class and its superclass.

Scaling: The view becomes very large in a system with thousands of source files. Clone edges will likely go
over the screen boundaries when connecting files in directories that are far apart, making good navigational
facilities a necessity.

Overplotting: Trees are simple to layout without node overplotting. Displaying the clone edges, however, can
lead to serious overplotting problems, especially if the system model is a shallow tree.

Reengineering Roadmap

Until now, our focus has been entirely on the files. We know their sizes, their locations and their connections.
We now turn to an investigation of the connections, the code that is shared. How large is it? How many files
has it been spread to? Are other common fragments copied along with it?

5.5.5 The Clone Class Family Enumeration

This view reduces the redundancy of the duplication connections that has been present in all the previous views.
The clones are shown in a concise nodes-and-edges view.

The layout uses theLCC and theLOC metrics to place clone class families and source files, respectively, on
the horizontal axis. The intuition “the farther to the right the bigger” thus can be used to mentally classify both
entity types presented in the view. The edges connect the upper half of the view - the clone class families - with
the source files on the lower half.

Nodes Clone class Families (CCF), Source Files
Edges Participation in a Clone class Family
Metrics

CCF Level NSF (Number of Source Files)

CCF Position X-Pos =LCC Lines of Copied Code
File Level Number of clone class groups
File Position X-Pos =LOC Lines of Code

Layout
Upper half Multiple levels of cloneclass families
Lower half Multiple levels of source files

Examples Figure 5.12

Intention: This view presents the clone class families to the user in a way that eases investigation of individual
instances of duplication. It characterizes the families by the criterion of how many source files they comprise
and how much code they contain. The user can start on a clone class family node and see which source files
are participating. Or he can start with a source file node and see in how many clone class families the file
participates. To make the view fully useful, lower level duplication entities,i.e., clone classes and finally
clones, must be made available to the user via the nodes in this view.
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Figure 5.12: The clone class families of the MULTIMARKE system.

Symptoms: Clone class families in the top rows are less important since they connect only a few source files.
The families located on the rows towards the middle of the view have an increasing number of participating
source files which makes them interesting targets for investigation. Symmetrically, source files at the bottom
of the view are only involved in a single clone class family, whereas files in the middle of the view are more
interesting. Small files are to the left of the view and large files are to the right of the view.

Examples: Figure 5.12 presents 18 files and 13 clone class families which stand for 55 clone pairs (a 76%
reduction of duplication entities). The largest clone class familyA encompasses duplication in the 5 largest
files, as can be seen from the figure. Clone class familyA represents two clone classes—this means two
different source fragments that are present in all 5 files—or 24 clone pairs.

Scaling: Clone class families or source files containing a lot of code are positioned at the far right, likely
offscreen, which will require navigation.

Overplotting: The nodes must not overplot since the user has to be able to select from them. The layout
mechanism thus arranges them side by side. Edge overplotting is of minor concern since the focus of the user
lies on the nodes. Eventually, clone class families which represent only internal duplication in a single file
could be removed from the view.

5.6 Discussion

The views achieve the goal of data reduction on different levels. We are able to display even very large systems
on restricted screen space. Many of the views have agestaltproperty,i.e., they provide overview information
at a glance.

The reduction of the cardinality of the clone sets, however, is sometimes not enough, resulting in cluttered
displays which are hard to read. We must further support readability with interactive enhancements of the
views,e.g., with the highlighting of connected elements on mouse-over.

By using simple and heuristic layout mechanisms we provide a fixed arrangement of the nodes for all views
except the System Model view. This is an advantage as there is no need for the user to rearrange the nodes to
get a better view. This enables him to startinterpretingthe view immediately.
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Chapter 5 Visualization of Duplication

What is missing from the description in this section is the necessary ingredient if the duplication is to be
reengineered: making the source code of the clone instances reachable directly via the nodes and edges of the
views by code browsers. This must be addressed by tool-builders.

That tool support is only one piece of the duplication refactoring puzzle in an industrial context is a fact
which we have not included into our considerations. How business decisions and process questions affect the
engineers in this matter will have to be addressed still.

5.7 Related Work

Visualizing Duplication with Graphs. Johnson [Joh94b] has used Hasse diagrams to visualize textual simi-
larity between files. For each duplication-related cluster of files (a clone class family in our terminology) the
diagram shows the copied source text and the source files as nodes, and the inclusion relationships between the
different code pieces as edges. The height of a node in the graph is determined by its size: large files or code
fragments are towards the bottom, smaller pieces of code towards the top. His graph is similar to the clone
class family enumeration proposed in Section 5.5.5.

In [Joh96] Johnson proposes to navigate the web of files and clone classes via hyper-linked web pages. Al-
though the entities and relationships that he defines are the same as we have used in this section, his system
lacks the overview and selection features that we think are necessary to find one’s way in the mass of duplication
data. His browsing system could however act as a backend for the views proposed in this section.

Visualizing Duplication with Dotplots. The dotplot as we have described it in Section 5.3 has some drawbacks
when it comes to the visualization of large systems:

• Dotplots produce spacious images. The size of the image depends on the size of the input, not on the
amount of the duplication found.

• In a dotplot visualizing the comparison of multiple source entities there is no predetermined organization
of the image. Some features may only be detected after rearrangement of the display.

• Dotplots contain a lot of redundancy. This can be overwhelming in the case of frequently repeated pieces
of code.

• Dotplots give a detailed account of the duplication situation. As a consequence they convey overviews
rather poorly.

Dotplots and polymetric views can be used as complementary duplication visualizations. The polymetric views
are good as a starting point for the assessment phase. They give the user aToDo list that has to be cleared point
for point. Having selected a source file or a clone class, a targeted dotplot displaying only the clones belonging
to the selected clone classes can be presented to the user for close inspection of the situation.

Visualizing Duplication in OO Class Hierarchies. Golomingi [KN01] has investigated how the information
about the location of clones within an object-oriented class hierarchy can be utilized to decide upon refactoring
measures. The focus of his work however was automation rather than visualization,i.e., seeing the classes and
their relationships was not the primary goal.

5.8 Conclusions

If a reengineer has to investigate and refactor duplication in a large system, he is in dire need of support for
understanding and dealing with the potentially huge amount of copied code. To manage the overwhelming lists
of detailed duplication information produced by duplication detection mechanisms, we reckon that he needs to
i) overview of the duplication situation andii) navigate through the sea of information.
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The approach discussed here is putting emphasis on the “human in the loop”, giving human expertise the helm,
instead of pushing automation. In this section we have proposed a number of polymetric views which structure
the data and combine it with the knowledge about the system that the engineer already possesses.

We have only used a small and very simple set of metrics which can be computed without much investment
in parsing infrastructure. Future work should include investigations of metrics or attributes oriented towards
qualitative aspects of duplication. This will increase the selective capabilities of the views.

A pertinent problem is the overplotting of edges and nodes when systems and the amount of data get too large.
We have proposed some aggregation abstractions to reduce the amount of data that must be presented on screen.
Sophisticated filtering techniques should be the focus of tool development efforts if a visualization tool wants
to be applicable to very large systems. Since the views greatly rely on their interactivity they have a limited
usefulness when committed to paper.

Future Work

The views proposed in this section have not yet been validated in reengineering settings. Such an evaluation
could prove the usefulness or eventually lead to the development of better views.

As we have noted above, the metrics we choose to annotate the views are basically various types of size
metrics. If we are able to derive metrics which characterize other aspects of the duplication,e.g., the suitability
for a given type of refactoring, we are able to produce views which cold answer very specific reengineering
questions.

The problem of overplotting is ever present in views which show nodesand edges. An avenue to reduce this
problem is to investigate interactive means of highlighting edges and nodes. One possibility is for example
a slope selectorwith which the user could designate a certain range of slopes. All edges which have a slope
outside of this range would be made invisible. In views like the Clone Scatterplot where the slope of an edge
has semantics (a horizontal slope, for example, indicates that two files are involved in no other duplication than
in the fragment shared among them) slope selection could identify files with similar duplication “profiles”.
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Chapter 6

Experimental Validation

The techniques that we have proposed in Chapter 4 need to be validated against the goals that we have selected
in Section 2.3. We formulate the overall hypothesis that we test here as follows:

We are able to build a clone detector which finds a good nummber of difficult-to-detect clones.
Ranking is an effective means to handle long list of candidates clones containing many false posi-
tives. We are able to implement such a clone detector for a wide range of programming languages
with only small adaption costs. The clone detector is able to treat systems of moderate to large
sizes.

The evaluation of this hypothesis is broken down into the following aspects which are each tested in a separate
section of this chapter:

Language Independence

We can implement the techniques presented in Sections 4.2 and 4.4 in a way that is easily adaptable to a
wide range of programming languages. (Section 6.1)

Code Normalization

Normalizing elements of the source code decreases the number of false negatives for non-exact duplica-
tion. We can distinguish normalization methods which cause an overly large increase of false positives.
(Section 6.2)

Comparison with Other Approaches

The performance of the proposed techniques is comparable with other string-based clone detectors. (Sec-
tion 6.3)

Assessment of Line-Orientation

The choice of line-orientation as comparison unit is not to the detriment of the detection accuracy. (Sec-
tion 6.4)

Ranking of Clone Candidates

We can effectively rank clone candidates so that false positives are ranked behind candidates that are
relevant. (Section 6.5)

Scalability

We can apply our clone detector on case studies of moderate to large sizes. (Section 6.6)

We conclude in Section 6.7.
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Recall and Precision

In this section we explain two important measures that we use in many of the evaluations presented this chapter.

In Information Retrieval, two numbers are used to characterize the effectivity of a retrieval method:recall and
precision. In Figure 6.1 we illustrate their definition. Let us suppose that there exists some ideal setA of actual
clones, which can only be assessed by inspection. In practice, it is too expensive to determineA by manual
inspection, and in any case the results will depend heavily on the subjective opinion of the person performing
the inspection.

An automated tool will identify some setC of candidate clones. Clearly we would likeC to be as close as
possible to the ideal setA. D is the set of candidates that would reasonably be accepted as being actual clones.
Recall measures the fraction of actual clones that are identified as candidates, andprecisionmeasures the
fraction of candidates that are actually clones. A good technique should exhibit both high recall and precision,
but depending on the context, and the numbers of candidates returned, one might accept, for example, better
recall in return for poorer precision.

A = Actual clones C = Candidates

D = Detected clones
False

negatives
False

positives

Recall = | D |
| A | Precision = | D |

| C |

Figure 6.1: Recall and Precision
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Chapter 6 Experimental Validation

6.1 Validation of Language Independence

Whenever source code is treated programmatically ascodeand not only astext (as Johnson [Joh93] does), a
certain amount of lexical analysis is necessary. Language independent does thus not mean that a tool does not
require any adaption for a new programming language. We understand language independence to mean that a
technique can be made to work with a new programming language spending only a modest amount of effort.
The difference between a ‘lightweight’ and a ‘heavyweight’ approach is thus a gradual one.

In the context of detecting duplicated code, we need to recognize certain aspects of the program structure and
certain syntax elements for the purposes of pretty-printing and normalizing the source code. The following list
categorizes the different elements according to how much effort it takes to adapt a parser:

Regions of Text: A sequence of characters in the source text, delimited with some marker tokens:

• Comments

• Literal strings, literal characters

• Blocks, statements, expressions

Simple Words: Single words in the text which can be recognized without any or with only minimal context:

• Keywords, operators, builtin types

• Literal numbers

• User-defined variables

• Function declarations

• Function invocations

Context-Sensitive Elements:These elements require larger grammatical rules and context, as well as symbol
tables eventually:

• Variable declarations

• User-defined types

• Specific expressions such as loop-conditionals, if-conditionals

To be able to switch from one language to the other, we need to make the recognition of these elements
configurable,i.e., we must provide a specification facility which does not require to provide a complex and
error prone formalism like a formal grammar.

We will look in bit more detail how we can build such a specification interface for the two first categories
specified above. We have not described any uses of the information that could be from recognizing the syntax
elements of the third category and will therefore treat them in a future work section.

6.1.1 Recognizing Regions in the Source Text

The most obvious example of a region of source code that we want to recognize is the commentary. Regions
of commentary text are delimited with a marker at the beginning and one at the end. These marker can either
appear anywhere in the text, or only at a fixed position of the line for some older languages with fixed source
layout like COBOL and FORTRAN.1 To recognize commentary we cani) trivially interpret the position based
syntax andii) use a simple scanner for the delimited text. Both types ofcode cleanerscan be made configurable
with the exact positions and/or delimiters. Note that in order toonly remove comments delimited by character

1In COBOL comments always take up the entire source line and are introduced by an asterisk ‘* ’ at position 7 of the line. The part
of the line containing the code ends at position 71. Beginning with position 72 version identifiers may optionally appear, which are again
considered to be commentary by us.
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Validation of Language Independence Section 6.1

sequences, the parser also must recognize literal strings. The reason is that comment delimiters can appear
deliberately (in programs which produce source code as output, such as BISON) or accidentally within strings
(see Listing 6.1). The scanner will be derailed by unbalanced occurrences if it does not take literal strings into
account.

printf(" %-5ld /**",totalines);
ncout = ncout + 11;
break ;

} else {
printf(" %-5ld /*",totalines);
putchar(c);

Listing 6.1: An extract from WELTAB where literal strings contain start- but no end-delimiters for C comments.

A generic implementation of the outlined scanner algorithm lets us adapt the tool to a new language within
minutes. The parameters needed are the following (the provided examples are for the C++ language).

• Start- and end-delimiters for multi-line comments,e.g., ‘ /* ’ and ‘*/ ’.

• Start-delimiters for end-of-line comments,e.g., ‘ // ’.

• Delimiters for literal strings and literal characters,e.g., ‘" ’ and ‘’ ’.

• Escape signs for string-delimiters within literal strings,e.g., ‘ \ ’.

In order to recognize blocks, statements, and expressions which will allow us to pretty-print a program, we
need to build a parser that can interpret recursive structures. We can configure the parser with the tokens which
indicate (the provided examples are for the C++ language).

• Beginning and end of blocks,e.g., ‘{ ’ and ‘} ’.

• Beginning and of Expressions,e.g., ‘( ’ and ‘) ’.

• End-of-statement delimiter,e.g., ‘ ; ’.

• Beginning and end of array indices,e.g., ‘ [ ’ and ‘] ’.

• Delimiters which separate parameters or other list elements,e.g., ‘ , ’ or ‘ ; ’ (in for -conditionals).

With the these few tokens we can create a parse tree down to the level of parenthesized expressions. A nor-
malization of the layout of source code is possible for any language for which these parameters can be defined.
There are some languages, however, for which this simple approach must be extended, or fails:

PYTHON uses indentation levels to indicate blocks. We additionally need a small preprocessor which tracks
the indentation and inserts block delimiter tokens at the appropriate places.

FORTRAN does not have block delimiters. It also misses statement delimiters: each statement normally ends
with the line.

However, since FORTRAN programs are formatted according to a fixed schema, the programmer does
not have much freedom for ‘creative’ formatting experiments, which would necessitate a pretty printer to
undo. The only option is to split statements over multiple lines using continuation lines. In FORTRAN77
a continuation line contains a character in column 5. In FORTRAN90 the continuation character is a ‘&’
as last character of the line. For both cases we can use a small preprocessor to glue the parts together.

COBOL does not have statement delimiters. Since programmers are allowed to continue statements on sub-
sequent lines without any lexical indication, we would need to fully parse the code to detect statement
ends. There is no heuristic solution for this case.

L ISP is not a block–oriented language and needs a different treatment, too. However, LISP code is visually
intolerable if not beautified and pretty printers are therefore used everywhere. Should it still be necessary
to write our own we can rest assured that there is no language simpler to parse than LISP.
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6.1.2 Recognizing Simple Words

The normalization mechanisms that we have introduced in Section 4.2.3 require that we find syntax elements
like literal strings and numbers, variables and function names. For the abstract code representation we employ
in Section 4.4.1 to compute similarity between lines of code we need to recognize expressions, operators, and
array accesses.

All of these elements are single tokens as they come out of a lexical analysis performed with regular expression
matching. All that is necessary is to have for a given programming language the list of the keywords and
operators, also including the diverse delimiters. To distinguish variable names from function names, we use
the heuristic that function names are—in most languages—always followed by the character ‘( ’, the beginning
of the formal/actual argument list. Note that with this heuristic we cannot distinguish is a function invocation
from a function declaration.

There are some exceptions where the heuristics needs to be extended:

FORTRAN: FORTRAN uses parentheses not only for expressions and conditionals but also for array indices.
In the following FORTRAN fragment, the variableA names an array and the identifierDAXPYnames a
function.

IF (L .EQ. K) GO TO20
A(L,J) = A(K,J)
A(K,J) = T

20 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)

To distinguish the array access from the function invocation we need the context of the preceding token,
which must be the keywordCALL for a function invocation.

COBOL: In COBOL, which does not have parameter lists, names of functions must be recognized by the pre-
ceding tokensCALL, or PERFORM, declared function names are recognized by a followingSECTION

keyword.

PL/1: There are no reserved words in PL/1, “keywords” are recognized in context by the parser. Variable
names can be the same as keywords as can be seen in the following code:

IF IF = THEN THEN THEN= ELSE; ELSE ELSE = IF ;

Although this practice is deprecated for PL/1 programmers, a recognizer for normalizing variable names
must in principle have some understanding of statement structure to make the distinction between vari-
able names and keywords.

For these cases, regular expressions are however still enough to do the matching.

6.1.3 Related work

The VIM editor2 provides a syntax highlighting facility which can be programmed with a powerful specification
language. The language has all the hallmarks of a grammar: it does not only allow the programmer to define
tokens (keywords, operators, identifiers), and regions (comments, strings), but one can also define inclusion
relationships between regions and other regions or tokens. Even recursive structures and context sensitive
syntax elements can be recognized.

The A2PStool3 which converts ASCII files written in many programming languages to a pretty-printed postscript
also offers a specification language which identifies keywords, operators, and sequences like comments and
strings. This specification language is entirely based on regular expressions.

2Available fromhttp://www.vim.org [May 15, 2005]
3Available fromhttp://www.gnu.org/software/a2ps/ [May 15, 2005]
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The CTAGS tool4 recognizes and cross-references a number of syntax elements in a wide variety of program-
ming languages. CTAGS does not, however, provide a common specification language for syntax elements. For
a new programming language a parser must be provided, which can be based on regular expressions or on more
traditional techniques.

The work on Island Grammars [Moo01] is a generalization of the idea to describe with detailed grammar
productions only the parts of a language that one is specifically interested in (the islands), and to catch all
remaining, uninteresting constructs with very liberal productions (the water). In our case the islands are literal
strings and comments, as well as block and expressions delimiters. The rest of the source code is recognized
by the catch-all productions.

It is more difficult to describe an island grammar for code normalizations, since variable names can occur
everywhere in a program,i.e., the grammar would quickly grow to be close to a regular and complete grammar
of the language.

A variant of island grammars,fuzzyparsers [Kop96] identify language constructs based on an initial anchor
token. The ‘water’ that lies between recognized constructs is not described by the grammar, which consequently
can be kept small.

6.1.4 Discussion

A small amount of lexical analysis is required even for detection techniques which do not rely on parsed code.

The heuristic nature of our approach, however, enables to build lexical analyzers that can be adapted to a new
language by changing a few simple parameters. We claim that language independence is achieved by our ap-
proach since the adaptation work consists only in configuration which can be done without in-depth knowledge
of any advanced technology like parser construction. Also, the configuration can be achieved in short time
frame. Moreover, the approach is robust and mistakes during the language configuration do not fatally interrupt
the detection process and have at most a detrimental effect on the detection or selection performance.

4Available fromhttp://ctags.sourceforge.net [May 15, 2005]
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6.2 Assessing the Impact of Normalization

Code normalization increases the likelihood that we can detect duplication which has been edited, reducing
the number of false negatives. When we normalize code, however, the probability of retrieving false positives
increases as well. This section reports about an experiment with which we want to assess if the benefit of less
false negatives is balanced by the price of more false positives.

The experiment consist in selecting two example systems and performing the following steps multiple times:
i) select a set of normalization operations and transform the code,ii) compute the candidate clones, andiii) com-
pare the candidates to a reference set to assess precision and recall. In each round, we vary the normalization
parameter, increasing the number of normalization operations.

The section is structured as follows: We first present the comparative study of Bellon from which we have taken
part of our reference set (Section 6.2.1). We then explain the parameters of the experiment (Section 6.2.2), the
systems selected for experimentation (Section 6.2.3), the construction of the set of reference clones (Sec-
tion 6.2.4), and finally the results (Section 6.2.5).

6.2.1 Bellon’s Comparative Study

The large variety of clone detection techniques that have been developed in recent years has spurred interest
in comparing their effectiveness. Bellon [Bel02b] has conducted a comparative case study with the goal of
establishing the relative advantages and disadvantages of the different approaches. In his study representants
of all main detection paradigms participated: string-based ([Bak92], [KKI02], [DRD99]), parse-tree based
([BYM +98]), metrics-based ([MLM96b]), and program dependence graph-based ([Kri01]). We explain here
the setup of Bellon’s experiment:

Reference Set Construction.To compare the different approaches, Bellon built a reference set by manually
confirming a set of participant-submitted candidates to be clones. However, it is important to note that
this reference set was (1) based on candidates identified by tools participating in the comparison, and (2)
incomplete — due to time constraints, Bellon was only able to cover 2% of the candidates.

Clone Types. For his study Bellon categorized all clones into three types: Exact clones (Type 1), clones where
identifiers have been changed (Type 2) and clones where whole expressions or statements have been
inserted, deleted or changed (Type 3).

Mapping Clone Candidates to References.To decide which candidates correspond to a confirmed clone,
Bellon defined a matching criterion based on the notion ofdistancebetween clones. This criterion
assesses a clone pair to be a ‘good enough’ match of another clone pair if the overlap between the two
corresponding source fragments is large enough and they are of comparable size. The OK and GOOD
metrics determine how well two clone pairs overlap each other,i.e., if they can be declared assimilar.

When participating in Bellon’s case study, we compared only non-normalized code. We now wish to consider
the impact of normalizing source code on the effectiveness of our technique.

6.2.2 The Parameters of the Experiment

We have two independently varying parameters in the experiment. Thenormalization degreeis a combination
of normalization operations applied to the source code. The complete set of operations is shown in Table 6.1.
The gap sizeis a parameter of the algorithm which retrieves clone candidates from the comparison matrix
(Section 4.3.2 on Page 64).
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Operation Language Element Example Replacement

1 Literal String "Abort" "..."
2 Literal character ’y’ ’.’
3 Literal Integer 42 1
4 Literal Decimal 0.314159; 1.0
5 Identifier counter p
6 Basic Numerical Type int , short , long , double num
7 Function Name main() foo()

Table 6.1: Normalization Operations on Source Code Elements.

1, 2, 3, 4 5, 6

5, 6, 7

1, 2, 3, 4, 5, 6, 7

No Normalization (—)

Constants 
Normalized (C)

Identifiers 
Normalized (I)

Identifiers and
Function Names
 Normalized (IF)

1, 2, 3, 4, 5, 6

Full Normalization (CIF)

Constants and 
Identifiers 

Normalized (CI)

Figure 6.2: Different degrees of normalizations and their relationships.

Degrees of Normalization

We define six degrees of normalization that make use of various subsets of the normalization operations listed in
Table 6.1. These six degrees form a lattice, illustrated in Figure 6.2, reflecting which normalization operations
are performed. These normalization degrees correspond to the different editing operations a programmer may
perform when duplicating code.

No Normalization (–). Here, only the basic noise reduction is applied to the source code,i.e., removal of
comments, white space, and some uninteresting lines containing onlyelse , for example. The results
gathered for this degree demonstrate the effectiveness of the basic approach.

Constants Normalized (C). In addition to the noise removal we normalize literal characters, strings, and nu-
merical constants,i.e., we map them all to a similar token (operations 1, 2, 3 and 4 of Table 6.1).

Identifiers Normalized (I). After noise removal we normalize some lexical language elements: identifiers,
labels, basic numeric types (operations 5 and 6).

Identifiers and Function Names Normalized (IF). In addition to identifiers, we change all function names
in declarations and invocations tofoo (operations 5, 6, and 7).

Constants and Identifiers Normalized (CI). This includes all operations except function name normaliza-
tion.

Full Normalization (CIF). Here we apply all the normalization operations.

Gap Size

The retrieval of clone candidates from the comparison matrix as described in Section 4.3.2 can be thought of as
anad hocnormalization mechanism. Indeed, a gap in a sequence of matching lines occurs when corresponding
lines fail to match. When we allow a gap in a sequence of matching lines, we are normalizing the contents of
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these lines. Because of the generality of this mechanism, the increase of noise or the loss of precision due to it
is noticeable.

In this experiment we want to compare the gap mechanism with the degree of normalizations. The gaps in a
comparison sequence can be controlled by themaximum gap sizefilter criterion. We have set this parameter
to the values0, 1, and2. Based on our experience, we choose to let no more than 2 consecutive non-matching
lines in a comparison sequence of minimal length 6, which is the same minimal length as was agreed upon
by the participants of the Bellon study. Our experiment generates then 18 different data sets based on the six
different normalization degrees and the 3 gap sizes.

6.2.3 Selection of Experimental Systems

We selected the systems from which the clones are to be retrieved according to the following criteria: (a)
availability of reference data for other clone detection tools, (b) differences in coding style and line layout,
(c) real applications developed by external persons, and (d) common programming language, to avoid possible
influence of programming paradigms.

We chose two systems from Bellon’s comparative study: the WELTAB system consisting of 39 files (9847
LOC) and the COOK system consisting of 295 files (46645 LOC) [Bel02b]. WELTAB is a relatively small
application known to contain considerable amounts of duplicated code, and is therefore convenient for carrying
out experiments. The COOK application adopts a code formatting approach in which function arguments and
parameters are put on separate lines, posing a special challenge to line-based clone detection approaches.

6.2.4 Construction of the Reference Set

To compute recall and precision, we need to compare the candidate clones reported by our tool with a reference
set of validated clones. We have constructed such a reference set from two sources: (1) the (incomplete)
reference set assembled by Bellon [Bel02a] which was assembled by manually examining candidates detected
by various tools, and (2) the result of a manual evaluation of the results reported by our tool as shown by the
following table.

Case Study Retrieved Candidates Evaluated Candidates Confirmed Clones

WELTAB 10,392 8411 6499
COOK 82,655 46,288 5672

To be clear: we measure recall using the confirmed clones that Bellon selected from the candidates of all tools
participating in his study. Precision, on the other hand, will be established using the confirmed clones reported
by our own tool.

Note that, although the reference set is not homogeneous, and not necessarily complete, one can still obtain
meaningful figures for recall and precision. To assess recall, one may use an arbitrary, sufficiently large set of
confirmed clones. The reference set need not be complete. To assess precision, it suffices to manually examine
a representative sample of the candidate clones detected. To determine the recall rate of our tool we have
mapped the retrieved candidates to the reference clones by way of the mapping function defined by Bellon
[Bel02a] with the sameOK threshold of0.7.

6.2.5 Results

We now summarize the results of our experiments. We present the numbers of candidate clones detected, recall
for different categories of clone types, and precision.
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Normalization degree WELTAB Candidates COOK Candidates

– No Normalization 1467 7661
C Constants normalized 2255 12,434
I Identifiers normalized 2565 29,333

IF Identifiers, function names normalized 2608 38,141
CI Constants, identifiers normalized 5946 38,581

CIF Full Normalization 6334 49,789

Table 6.2: Retrieved Candidates for the different normalization degrees (maximum gap size = 2).

Figure 6.3: The increase in retrieved candidates, measured relative to the lowest degree of normalization.

Retrieved Candidates

Table 6.2 shows the number of the candidates identified with the largest setting of the maximum gap size. In
Figure 6.3 we plot the percentage increase in the number of identified candidates that normalization brings,
in comparison to clone detection without normalization. As expected, COOK shows a more-or-less steady
increase in candidates identified as more normalization operations are applied. In WELTAB, however, we
notice a considerable but puzzling jump when constants and identifiers are normalized jointly.

Recall by Clone Types

The effectiveness of a clone detection techniques will vary depending on how much a clone has been edited
after copying. We adopt Bellon’s classification of clone types in an effort to measure recall as a function of
both editing operations and degrees of normalization.

In the WELTAB case study (see Figure 6.4), we see that overall recall (all types) increases from 78.2% to
95% when introducing more normalization. For Type 1 clones (identical clones), the recall rate is 100% at all
degrees, as would be expected from exact string matching.

The lowest recall for non-normalized code is registered for type 2 clones (renamed identifiers). This can be
explained by the observation that identifier changes are likely to occur systematically on most of the lines of a
clone. Exact string matching will therefore miss every line thus modified, and consequently fail to identify the
clone. With the normalization transformation, however, the recall rate rises by a remarkable 25% to a final level
almost equal to that for type 1 clones. It does not reach 100% because we normalized constants and identifiers
with different tokens which fails in the case when a constant parameter has been changed into a variable.

For type 3 clones (arbitrary edits), recall is initially higher than for type 2 clones. This can be explained by
the fact that we take gaps (non-matching lines) into account when collecting the clones. However, since the
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Figure 6.4: Recall for WELTAB and COOK split by clone type. Maximum gap size is 2.

normalization operations we perform are local to a single line, we cannot improve detection rates as much as
for type 2 clones. Nevertheless, we achieve a recall rate of 90% at the most normalized degree.

In the COOK case study, the picture is similar. For type 1 clones, recall is 100% already at the lowest degree of
normalization. For type 2 clones, recall rises from 63% to 88%, again by about 25%. Type 3 recognition is the
worst for all degrees of normalization.

We investigated why the recall was so low for COOK type 3 clones and found a number of reasons:

• code that was syntactically too different to be recognized as a clone,

• altered source elements that we did not normalize,e.g., type casts, pointer dereferences,

• altered formatting of source lines,

• source text inserted or deleted from the middle of a clone, and

• clones too small to be retrieved by our specification.

In Figure 6.5 we see how recall varies in response to increasing degrees of normalization. Increasing the
maximum gap size from 0 to 1 improves recall significantly, whereas a maximum gap size of 2 has less im-
pact. Normalizing constants improves recall for both WELTAB and COOK, whereas normalizing identifiers and
function names is good only for COOK.

Precision

We now consider how precision varies with respect to the degrees of normalization. The studies illustrate well
the common phenomenon that precision diminishes with increasing recall.

With the WELTAB case study, we observe a precision of 94% for non-normalized code, but this drops to 70%
at the highest degree of normalization. The very high precision of WELTAB is consistent with the results of
Bellon’s experience that the confirmation rate for WELTAB candidates (coming from all the participating tools)
was, at 90%, the highest among all the systems under study.

The situation is not so good in the COOK case study, where initial precision (i.e., without normalization) is only
42% and drops to 11.5% for the highest degree of normalization. The latter clearly represents an unattractive
level of noise for an engineer who is searching for refactoring opportunities.
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Figure 6.5: Recall and precision for WELTAB and COOK.

A similar drop in precision from the WELTAB to the COOK case studies was reported by Bellon for both our
approach and that of Baker.

6.2.6 Discussion

Our evaluation shows that allowing for some variation in duplicated code is necessary to get decent recall. We
were not able to conclude that gaps in clones or specific normalization of certain source elements is better.
A maximum gap size of 1 yields good results, but allowing two lines as gaps can lead to an undesirable loss
in precision. However, a similar drop in precision can result from aggressive normalization. In particular,
normalizing function names can lead to a significant loss of precision that is not worth the minimal gain in
recall.

One of the problems with the simple approach we promote is that large numbers of false positives can be
generated. Multiple improvements are possible:

• Normalizing literal arrays, which are a source of many false positives in COOK, reduces the number of
candidates.

• Taking into account function boundaries will remove many false positives which cross from one function
into the other covering mostly boiler plate code,i.e., return -statements followed by the header of the
next function.

• Clustering alln(n− 1)/2 clone pairs that are produced byn instances of the same source fragment into
clone classeswill reduce the number of instances that have to be investigated individually.

The strong variation between the two case studies suggests that future work should also focus on the analysis of
variables that are outside the code itself such as the coding style, the programming language, the development
process, or the programmer’s education. Understanding these factors would help in tuning the detection for a
particular system, improving the efficiency.

6.2.7 Other Systems of the Bellon Study

The Bellon case study comprised six more systems that were to be searched for clones (Figure 6.6). Whereas
Bellon has reviewed manually 2% of the clone candidates found by the studys participants in all eight systems,
we have used only two of the eight systems, manually assessing 80% (WELTAB) and 56% (COOK) of the clone
candidates retrieved by our tool. To give an impression of how our approach performs with the other systems
we present numbers that we could compute automatically without manual intervention.

We let our detector run on all six systems, setting the normalization degrees to the extremes (–) and (CIF)
and fixing gap size at 2. We give the time the comparison took (in seconds), the number of clone candidates
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CaseStudy Normalization Degree Comparison # of Candidates Recall

NETBEANS-JAVADOC – 3s 198 49.1%
CIF 15s 2804 87.3%

ECLIPSE-ANT – 5s 201 56.7%
CIF 30s 2099 90.0%

SWING – 180s 5561 69.9%
CIF 700s 34,659 85.3%

ECLIPSE-JDTCORE – 240s 18,438 54.9%
CIF 1380s 60,314 74.6%

POSTGRESQL – 300s 20,294 66.3%
CIF 3000s 41,083 71.5%

SNNS – 180s 29,767 50.3%
CIF 5400s 88,565 80.8%

Figure 6.6: Other Systems of the Bellon Study

retrieved, and the recall ratio with regard to Bellon’s reference set for that system, computed again using the
mapping function with theOK threshold of0.7. Since Bellon’s reference sets are not complete, precision can
not be evaluated without manually investigating the clone candidates, which we refrained from due to time
constraints.

Recall for unnormalized code is around 50% only in four cases, lower than all values for WELTAB and COOK.
POSTGRESQL is an interesting case, as even with full normalization recall increases only by 5% and stays at
a low 70%. Many of the clones from this system seem to have evolved quite for from each other.
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6.3 Comparison with Other String-Based Approaches

When searching the literature for string-based clone detectors, we find at least the approaches of Johnson
[Joh94a], Baker [Bak95a], Kamiya et al. [KKI02], and Cordy et al. [CDS04], which are closely comparable
to our own. In this section we compare our approach with the ones of Baker and Kamiya et al. which have
both been participating in the Bellon comparative study [Bel02b], thus providing data for a comparison. The
main differences amongst these approaches are the selection of thecomparison granularity, and the choices
regardingcode normalization:

• Baker [Bak95a] selects a single line as comparison unit, just as we do. She describes a mechanism to
normalize identifiers and literal constants which respects the local context in which identifier names are
changed. Two code sections are jointly recognized as duplicates if their identifiers have been systemat-
ically replaced,i.e., x for width andy for height . This prevents some of the false positives that our
more simple approach produces. She uses a suffix tree algorithm for comparison.

• Kamiya et al. [KKI02] work at the granularity level of individual tokens. They perform a subset of the
code normalizations we have proposed in Section 4.2.3 and employ a suffix tree comparison algorithm
similar to Baker’s.

This section is structured as follows: We first report about the experiences with the string-based detectors that
Bellon has made in his comparative study (Section 6.3.1). We then try to find the normalization degree in our
case which comes closest to Baker’s and Kamiya’s results (Section 6.3.2). We finally mimic some of the unique
features of the other two approaches, systematic identifier mapping in Baker’s case (Section 6.3.3), and token-
instead of line-based comparison in the case of Kamiya et al. (Section 6.3.4) and evaluate their influence on
the results.

6.3.1 String Matching as Evaluated by Bellon

To evaluate our approach, we provided Bellon with results obtained from non-normalized source code, allowing
for a gap of 1 line between matching lines. He categorizes our approach with the other string- and token-based
approaches of Baker [Bak92] and Kamiya [KKI02] as having high recall but low precision.

In his summary, Bellon writes (page 123):“We can put the tools into two coarse categories: the ones which
have a high recall but a low precision and the ones that accept low recall to achieve high precision. (...)
Together with Baker, Rieger reports about the same number of candidates. The rate of rejected candidates is
also the same for these two participants.”

More detailed results from Bellon’s study are shown in the next table. We list the differences of Baker and
Kamiya to our own, setting our values as 100%.

Differences to Rieger WELTAB COOK

Baker Kamiya Baker Kamiya

Retrieved Candidates +988 +2144 -113 -6318
References matched with OK +26 -66 -2 -105
References matched with GOOD +50 -97 -1 -42
Precision -0.003 -0.008 0 +0.03

Regarding the number of returned clone candidates, our approach was closest to Baker’s which is normal since
both approaches make line breaks a factor of comparison.

6.3.2 Comparison Against Different Normalization Degrees

We now wish to investigate how the approaches of Baker and Kamiya compare against the different degrees of
normalization that we have introduced in Section 6.2.2. We chose the best result of Kamiya,i.e., the voluntary
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submission where some noise was removed by them. We did not remove any clone candidates from the results
retrieved by our own tool.

To obtain a meaningful comparison, we first determine which choice of minimum gap size and normalization
degree returns a comparable number of candidates. Then we analyze recall and precision5 for this specific
configuration.

Case Study Data Baker Rieger Kamiya Rieger

WELTAB # Cands 2742 2378 (IF, 1) 2608 (IF, 2) 3898 3761 (CIF, 0)
Recall 80% 86% 88% 93% 92%
Prec. 80% 90% 90% 99% 91%

COOK # Cands 8593 9043 (CIF, 0) 7661 (–, 2) 2388 2764 (C, 0)
Recall 70% 71% 64% 43% 36%
Prec. 29% 26% 42% 42% 49%

Contrary to expectations, Baker exhibits a somewhat worse precision for WELTAB. For COOK, her precision
is slightly better than ours, though we can significantly improve precision at a 7% cost in recall. We partly
attribute Baker’s loss in precision to some noise (#include statements) that she does not remove.

Kamiya on the other hand exhibits a better precision than we for comparable recall in WELTAB. In COOK, his
recall is better but our precision is better for a comparable number of candidates.

In a second analysis, we identify configurations of our tool that exhibit similar precision to the other approaches,
and then we compare recall and the number of retrieved candidates.

Case Study Data Baker Rieger Kamiya Rieger

WELTAB Precision 80% 82% (CIF, 1) 99% 98% (IF, 0)
Recall 80% 96% 93% 61%
Candidates 2742 4973 3898 1414

COOK Precision 29% 30% (C, 2) 45% 42% (–, 2) 49% (C, 0)
Recall 70% 89% 43% 64% 36%
Candidates 8593 2255 2388 7601 2764

From these numbers a consistent ranking cannot be derived. We see that our simple approach can achieve
results similar to the other two in all cases. For WELTAB, normalizing identifiers and function names seems
to be important to obtain similar results. For COOK, however, normalizing identifiers results in too many
candidates. We must therefore restrict ourselves to normalizing constants only, or setting the maximum gap
size to 0. The set of applicable normalization operations is thus shown to depend on the system under study.

6.3.3 Impact of Systematic Identifier Normalization

Baker does not replace names of identifiers indiscriminately by one and the same token, but makes the consis-
tent replacement of identifiers one criterion of the comparison. This avoids clone candidates which have the
same syntactic structure but differing identifier usage and is an early filter against false positives.

By filtering out candidate clones where identifiers are mapped inconsistently (according to Baker’s description
in [Bak95a]) we can derive how much precision is lost when uniformly normalizing identifier names. At gap
size 0 we get the following percentages of candidates which exhibit inconsistent identifier mapping:

5We evaluated Baker’s and Kamiya’s candidates in the same manner as our own (see Section 6.2.4).

117



“thesis” — 2005/6/13 — 13:54 — page 118 — #132i
i

i
i

i
i

i
i

Comparison with Other String-Based Approaches Section 6.3

Normalization Degree WELTAB COOK

– 0.0% 0.0%
C 0.0% 0.1%
I 1.0% 5.8%

IF 1.1% 7.3%
CI 3.8% 7.3%

CIF 3.8% 9.6%

The more we normalize identifiers the more inconsistency is naturally found. Filtering ten percent of the
retrieved candidates could certainly be interesting if they all would prove to be false positives. The merit of
using this characteristic as filtering criterion is however less clear for clones where the two copied fragments are
more distant, as can be found among the results of, for example, metrics based methods. Finding inconsistently
mapped identifiers is then no longer very effective at spotting false positives. From the confirmed clones of
Bellon’s study we can flag as having inconsistent identifier mappings 20.2% of WELTAB and 20.5% of COOK

references.

6.3.4 Impact of Token Based Comparison

Kamiya, rather than using source lines, compares the code on the granularity level of tokens. This avoids
problems withline break relocationwhere only the layout of the code is changed. The smaller granularity
however also means that more entities must be processed.

When investigating the references that were detected only by Kamiya but not by us, there was only one example
of a clone where layout changes prevented the line-based comparison from detection. This fact can however not
be generalized, since it is influenced by the particular construction of the reference set and the characteristics
of the case studies. In their own investigations Kamiya et al. [KKI02] have reported that as much as 23% of
the clones found by the token-based comparison exhibited line break relocation. A detailed investigation of the
impact of line break relocation on our results is presented in Section 6.4.
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6.4 Assessing the Impact of Pretty-Printing

A clone detection approach that takes the lines of code as they appear in the original source text is vulnerable
to line break relocation, i.e., programmers formatting the same code in different ways. This can occur if
developers with different programming styles reuse each others code. Also, source lines are usually broken
after 80 characters to maintain readability in editor windows. The lengths of identifier names, string constants,
or the depth of indentation levels can therefore become responsible for layout differences between copied code.
The following two fragments from the ECLIPSE-ANT system which are the same except for identifier names
and linebreaks are an example:

public void setProperty(String name, String value) {
if ( null != userProperties.get(name)) {

log("Override ignored for user prop." + name, MSG_VERB);
}
log("Setting project property: " + name + " -> " +

value, MSG_DBG);
properties.put(name, value); }

public void addReference(String name, Object value) {
if ( null != references.get(name)) {

log("Overriding previous def. of reference to " + name,
MSG_WARN); }

log("Adding reference: " + name + " -> "+value, MSG_DBG);
references.put(name,value); }

An obvious solution to the problem of line break relocation is to transform the source code into a normalized
layout before the comparison by apretty printerin the widest sense of the word. Pretty printers usually strive to
make the code readable for a human. This means that in addition to enforce a common layout for all instances
of a language constructs, tricky issues like indentation or the aforementioned problem of maximum line length
have to be considered as well. These finer aspects can be neglected if we want to just bring the code in a normal
form for line-by-line comparison.

In order to get an impression of the importance of the problem of missing duplication because of line break
relocation, we conduct an experiment detecting duplication in layout normalized code. We want to answer the
following two questions:

1. How many clones we detect contain line break relocations between their two source fragments?

2. How many of the clones which contain line break relocations are (partially) detected in the original code?

We do not expect to derive a common percentage valid for all the different systems that will be participating in
the experiment, since everything from layout style to average identifier length to layout discipline differs from
programmer to programmer. What we expect is an indication of the prevalence of the problem. We want to
assess if it is advisable to apply the layout normalization to all systems before comparison.

The structure of this section is the following: We explain the experimental setup in the next section, then present
the systems we have used in the study, then characterize the results using a few statistics.

6.4.1 Experimental Setup

We take a system and apply a number of normalizations. This version is called theoriginal code, the set of
clones detected in this code is calledOC. A pretty-printer is then applied to theoriginal code, transforming
it into layout-normalizedcode. We map the clones detected in thelayout-normalizedcode back to the line
numbers of theoriginal and are then able to count how many of these clones contain misaligned line breaks, a
set we callLBC. The size ofLBC is the answer to the first question formulated above. To determine how many
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if (line.indexOf("--") >= 0) sql += "\n";
if (dType.equals(DelimType.NORMAL) && sql.endsWith(del) ||

dType.equals(DelimType.ROW) && line.equals(del)) {
log("SQL: " + sql, Project.MSG_VERBOSE);
execSQL(sql.substring(0,sql.length()-del.length()),out);
sql = ""; }

if (p.indexOf(p) >= p)
p += p;

if (
p.equals(T.T)

&&
p.endsWith(p)

||
p.equals(T.T)

&&
p.equals(p)) {

log(
p + p

,
T.T);

execSQL(
p.substring(

p
,

p.length() - p.length())
,

p);
p = p;

}

Figure 6.7: A fragment of ECLIPSE-ANT code before and after the application of code normalization and
layout normalization (the indentation in the layout-normalized version is done by hand to enhance readability).

clones fromLBC we can also detect in theoriginal code, we determine the recall rate when mappingOC to
LBCwith the same mapping function used in Section 6.2.4. The clones that are not in the recall of the mapping
function will show us how much duplication we loose when not applying layout-normalization to the source
code.

Code Normalization

We have chosen to compare normalized code in order to get a reasonable amount of duplication,i.e., to increase
the chances for clones which contain relocated line breaks to be detected at all. We normalize the following
elements of the code:

• Names of variables (not function names).

• Literal constants (numbers, characters, strings).

• Labels in C code.

• Literal Arrays (their content is completely removed).

The decision to remove literal arrays was taken since, first, copies of literal arrays, especially in normalized
code, are uninteresting. Second, in some systems the copies of literal arrays exhibited most of the relocated
line breaks, thereby disturbing the results.
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Layout Normalization

For layout normalization we first remove all line breaks from the original code. Line breaks are then reinserted
according to a few simple rules. The most important rule is that a line break only appears after the end of a
statement or a block. There are three exceptions to this rule:

i) Conditionals ofif -statements,for - andwhile -loops appear alone on a line.

ii) Boolean expressions with&&or || operators separate their subexpressions over multiple lines.

iii) Parameter lists which contain subexpressions instead of only variable names are spread out over multiple
lines (the token ‘, ’ acting as separator).

The goal of rulesii) and iii) is less layout normalization and more the increase of the detection rate, to keep
a change in a subexpression from ‘polluting’ the entire statement. For an example see Figure 6.7. The layout
normalization process is performed by a simple parser which can be configured for many languages by giving
the tokens acting as statement-, block-, expression-, and list element delimiters, as well as some of the operators
mentioned in the list of rules above.

Clone Characteristics

We retrieve clones of the standard length 6 line or longer, and we allow for gaps of at most size one. Allowing
gaps in the retrieved clones means that more duplication is being reported, increasing the chances of encounter-
ing some with relocated line breaks. To assess an eventual influence of the gap we also retrieve clones without
gaps.

Selected Systems

We select a range of small- to medium sized systems, written in JAVA and C, from different sources and with
different layout styles.

System Language Origin

NETBEANS-JAVADOC JAVA Open Source
WELTAB C Industry
AGREP C Academia
ECLIPSE-ANT JAVA Open Source
COOK C Open Source
APACHE C Open Source

6.4.2 Results

The results of the case study will be presented under two aspects:i) the effect that the layout normalization
has on the original code in terms of number of line breaks to give an impressions of the amount of change the
code undergoes in the normalization,ii) the number of clones that we detect that contain line break relocations
(the setLBCmentioned above), andiii) the number of clones fromLBCwhich we cannot detect in theoriginal
source code.

The increase of number of lines by the layout normalization ranges from 30% to 65%. The increase of atomic
matches in the comparison matrix is significant, more than doubling in three cases. For COOK the small
increase of matches is due to the fact that the original layout of the code is already very loose, and that in order
to speed up comparison the term containing a single variable name (’p’ ) has been ignored in the comparisons,
making the brunt of the matches increase invisible.
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System No Gaps Gap Size 1

NETBEANS-JAVADOC 0 0
WELTAB 12 (0.1%) 55 (0.4%)
AGREP 7 (0.2%) 9 (0.2%)
ECLIPSE-ANT 15 (6.4%) 31 (8.8%)
COOK 8 (0.7%) 28 (1.2%)
APACHE 17 (0.4%) 48 (1.1%)

Table 6.3: The number of clone candidates that contain line break relocation (LBC).

System No Gaps Gap Size 1

WELTAB 12 (100%) 22 (39.7%)
AGREP 6 (85.7%) 9 (100%)
ECLIPSE-ANT 5 (32.3%) 10 (32.3%)
COOK 4 (50.0%) 20 (71.4%)
APACHE 10 (58.8%) 22 (45.8%)

Table 6.4: The number and percentage ofLBCcandidates which are also detected in the original code.

System Original Lines Lines Increase Matches Increase

NETBEANS-JAVADOC 9000 41% 46%
WELTAB 10000 54% 106%
AGREP 12000 42% 166%
ECLIPSE-ANT 16000 64% 123%
COOK 43000 29% 6%
APACHE 63000 39% 84%

The number of clones that contain line break relocations (size ofLBC) as shown in Table 6.3 is the answer to
the first question of our experiment. The percentage number is relative to the set of all retrieved candidates,
a set which includes an unknown but potentially large number of false positives. We did not remove the
false positives from this set and neither fromLBC. In most of the investigated systems, the percentage of
clones having line break relocated source fragments is very low. Only in ECLIPSE-ANT we find an elevated
percentage, which is due to the low number of clones detected all in all. We see a tendency of increased number
of LBC when allowing gaps in the clones. This is to be expected when more difference is allowed between the
source fragments.

Table 6.4 shows the recall rates when mappingOC to LBC. This means, for example in the AGREPsystem,
we detect 6 out of 7 clones containing line break relocations in theoriginal code as well. The generally high
recall rates indicate that we can get hints at many of the (especially longer) clones fromLBC by looking at the
original code, that line-break relocation does not hide many clones from our view.

6.4.3 Discussion

In every system that we have investigated for this experiment there are clones which contain line break reloca-
tion. The percentage of these clones is however small, rarely rising over 1% of all candidates. We have also
seen that on average 65.4% (clones without gaps) and 57.8% (clones with gapsize 1) of the line break reloca-
tion affected candidates will still be caught in the original code. Most of the clones which we do not detect are
short ones, as larger clones offer enough surrounding context that does not contain relocated line breaks. We
therefore conclude that even though line based detection misses some duplication, line break relocation is not
preventing us from detecting the major part of duplication using a line-based comparison. And even if we feel
that there is a significant portion of duplication withheld from detection by the line break relocation, we have
the option to use pretty printing techniques for source code normalization.
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6.5 Validation of Clone Ranking

In this section we report on an initial experiment to assess some of the clone ranking measures proposed in
Section 4.4. We want to assess if the measures improve the handling of clones for the user by providing a
ranked list, letting the user investigate the most likely clone candidates first.

We will first explain the experimental setup, and then perform the experiment on different candidate clone sets,
some specially evaluated for this experiment, and some evaluated by different evaluators.

6.5.1 Experimental Setup

We take sets of clone candidates which have been evaluated to determine the relevance, manually sorting them
into ’confirmed clones’ and ’confirmed non-clones’. We then rank the set using one of the metrics proposed
below. Ideally, the ranking should put every confirmed clone before every confirmed non-clone in the list. In
practice, however, both categories will be intermixed, due to failure of the metrics in measuring the aspects
which determines the relevance of a clone, and in some cases also due to faulty evaluations of the candidates.

As the characterizing number for a ranking we take the median for each of the two categories. The median of
the confirmed clones, for example, indicates that 50% of the clones lie above this mark. From the number of
confirmed clones and non-clones we can derive the optimal positions of the two medians. The ranking which
pushes the actual medians as close as possible to the optimal medians is the most successful.

Ranking Measures

We use three measures to rank the clone candidates:

LOC: This measures the length of the clone, regardless of gaps.

LOC is used as a baseline since it has been used frequently to rank clones. That it has some merit is obvious if
one considers that a clone of 50 lines is most likely relevant, whereas a clone of only four lines will be a false
positive with high probability. Since this metric is insensitive to many other aspects which determine clone
relevance, it is also easy to improve upon it.

CCGW (Combined Code and Gap Weight): This computes the weight of matched code and subtracts the weight of
the code in the gaps (see Section 4.4.3). The measure determines relevance from the point of view of
how likely and easy it is to remove the duplication by a refactoring.

CCGW’: This is a variant ofCCGW which is more sensitive to elements that are hindering immediate refac-
toring of a clone. The measure tracks the occurrence of some specific elements on only one side of a gap
and reacts with a larger reduction of the weight. For example, finding one of the keywordsif , else ,
do, for , or while on only one side of a gap spells of a rather important difference between the two
fragments, making refactoring potentially harder. Function invocations6 that occur on only one of the
corresponding lines also speak of a considerable difference and are therefore cause for weight reduction.

Figure 6.8 gives an initial impression of the improvement that the proposed measures have on the baselineLOC
measure. Whereas forLOC the number of clones and non-clones is similar for every percentile of the ranking
with only a slight surplus of clones in the three first percentiles, theCCGW’ measures clearly pushes the clones
to the front and the non-clones to the back of the ranking.

6We employ a simple nGram-based fuzzy string comparison for function names. For example, the namesprintf andfprintf
are considered to be the same.
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Figure 6.8: Two ranked lists of WELTAB candidates shown as frequency distributions of confirmed clones
and non-clones in ten percentiles. The ability to distinguish clones from non-clones is clearly superior for the
CCGW’ measure.

Candidate Sets

Two candidate sets, one from the WELTAB system and the other from COOK, have been evaluated specially
for this experiment. We have normalized the following syntax element before the comparison: variable names,
literal constants, labels, and literal arrays. For COOK we did not normalize certain type names and removed all
code that was not contained within a function body in order to reduce the number of candidates. For WELTAB

we selected all clones with minimal length 6 and maximal gap size 2. For COOK we selected all clones with
minimal length 7 lines and maximal gap size 2.

Candidate Set Size Confirmed Clones c̃ ñc

WELTAB 7087 3684 (52%) 1842 5385
COOK 4583 2153 (47%) 1076 3368

The optimal median of the confirmed clonesc̃ and the optimal median of the confirmed non-clonesñc is directly
derived from the number of confirmed clones. The actual medians resulting from the rankings are compared to
these optimal medians below.

6.5.2 Results

We describe the ranking of the candidate sets by the three measures with the distance from the actual medi-
ansc̃∗ and ñc∗ to the optimal medians. The accumulated distance gives a single number characterizing the
accurateness of the measure.

Candidates Measure |c̃∗ − c̃| |ñc∗ − ñc| Total Distance

LOC 1097 (15.5%) 1444 (20.4%) 2541 (35.9%)
WELTAB CCGW 422 (6.0%) 217 (3.1%) 639 (9.0%)

CCGW’ 219 (3.1%) 58 (0.8%) 277 (3.9%)
LOC 570 (12.4%) 334 (7.3%) 904 (19.7%)

COOK CCGW 132 (2.9%) 16 (0.4%) 148 (3.2%)
CCGW’ 115 (2.5%) 62 (1.4%) 177 (3.9%)
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TheCCGW ranking improves markedly on the simpleLOC ranking in all cases. For WELTAB, theCCGW’
variant improves the ranking yet again for clones and non-clones. For COOK, the non-clones mediañnc∗ is
worse forCCGW’ than forCCGW. When looking at the clones which have been pushed back byCCGW’ but
not byCCGW, we find that many of the confirmed clones have been declared so based on a semantic similarity
which is expressed in idiomatic structures and therefore recognized by the detector. The central part of the
idiom, consisting in an assignment or function call, is however frequently so different as to make the clone
candidates unfit for refactoring. TheCCGW’ measure is able to point out these differences. Another frequent
problem is also that code that is structurally the same differs in nested function calls, as can be seen in the
following example:

if (ewhite)
while (cp > cp1 && wc_find(white, cp[-1]))

cp--;

if (ewhite)
while (cp > cp1 && isspace(cp[-1]))

cp--;

It is a possibility to change theCCGW’ measure in order to weigh nested invocations differently from top level
invocations.

Finally, it happens that some copied code which was confirmed to be a clone has, before or after the bulk of the
copied code, a number of spuriously matching lines which drag the weight down.

6.5.3 Investigation of Fixed-Length Clones

As we have seen above, the length of a clone is a predictor of clone relevance, albeit not a very good one.
TheCCGW andCCGW’ measures also profit from the additional weight of more lines,i.e., they too have a
tendency to push longer clones towards the front of the ranking. An influence of the clone length on all of
the measures used here can therefore not be denied. To remove this influence we repeat the experiment on a
number of sets which contain candidates that are all of the same length. All of these sets are extracted from the
main candidate sets introduced above.

Candidate Set Size Confirmed Clones c̃ ñc

WELTAB Length 6 1972 918 (46.6%) 459 1445
WELTAB Length 7 1502 679 (45.2%) 340 1090
WELTAB Length 8 1086 512 (47.1%) 255 799
COOK Length 7 964 283 (29.4%) 142 623
COOK Length 8 775 92 (11.9%) 46 433
COOK Length 9 848 497 (58.6%) 249 672

Note that the ranking usingLOC as measure is basically random for clones of the same length. We therefore
do not show the values for theLOC measure anymore in the tables below.

Candidates Measure |c̃∗ − c̃| |ñc∗ − ñc| Total Distance

WELTAB L6 CCGW 135 (6.9%) 131 (6.6%) 266 (13.5%)
CCGW’ 223 (11.3%) 28 (1.4%) 251 (12.7%)

WELTAB L7 CCGW 18 (1.2%) 9 (0.6%) 27 (1.8%)
CCGW’ 17 (1.1%) 9 (0.6%) 26 (1.7%)

WELTAB L8 CCGW 0 (0.0%) 28 (2.6%) 28 (2.6%)
CCGW’ 0 (0.0%) 7 (0.7%) 7 (0.7%)

For WELTAB, the CCGW measures are quite accurate for length 7 and 8, and are as good or better as the
numbers for the entire candidate set. For length 6, theCCGW’ measure, while improving the accuracy for the
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non-clone mediañnc∗, reduces the accuracy of the clone medianc̃∗ by 5% with respect toCCGW. Upon close
investigation of the ranked clones, we find that a large number of confirmed clones with anif statement in
only one of the two fragments are pushed back by theCCGW’ measure, rightfully indicating an impedance
for immediate refactoring. The ranks thus emptied are filled with clone candidates which were evaluated as
non-clones due to a subtlety not recognized by the measures. Rather than the evaluation casting doubt on the
measure, theCCGW’ measure thus puts the evaluation in question.

Candidates Measure |c̃∗ − c̃| |ñc∗ − ñc| Total Distance

COOK L7 CCGW 2 (0.2%) 5 (0.5%) 7 (0.7%)
CCGW’ 5 (0.5%) 30 (3.1%) 35 (3.6%)

COOK L8 CCGW 15 (1.9%) 1 (0.1%) 16 (2.1%)
CCGW’ 13 (1.7%) 4 (0.5%) 17 (2.2%)

COOK L9 CCGW 53 (6.3%) 6 (0.7%) 59 (7.0%)
CCGW’ 32 (3.8%) 4 (0.4%) 36 (4.3%)

The measuresCCGW andCCGW’ are very accurate for the given lengths, almost reaching the optimal clone
and non-clone medians. Except for Length 9, the values are as good or better than for the entire candidate set.
Investigating the problem with the Length 9 candidate set, we could identify a number of features found in
many candidates where the automatically derived weight was much higher than the weight the evaluator gave
the code. This pushed confirmed non-clones up in the ranking. Explicitely removing these features from the
ranking algorithm we were able to align the ranking better with the human evaluation (reduce the problematic
difference from 1.4% to 0.5%)

Another slight anomaly can be seen for the non-clone median at Length 7 whereCCGW’ reduces accuracy
by 2.6%. We find that the confirmed clones which are pushed down byCCGW’ actually have significant
differences and should probably be declared non-clones. This would move up the non-clone medianñc, making
CCGW’ more accurate thanCCGW.

6.5.4 Influence of Evaluation Bias

Manual evaluation of clones is difficult and subject to many biases. It is, for example, true that knowledge
of the measure which is used for ranking the clones can guide the evaluation process unconsciously. Since
the evaluations of the WELTAB and COOK candidate sets were performed by a knowledgeable evaluator, the
influence cannot be ruled out. It is also in general not easy to reach an agreement on the status of a given
candidate among a number of evaluators [WJL+03]. Different evaluators have different sets of criteria for
clone relevance. Chances are that a ranking measure models the criteria of one evaluator better than the criteria
of another evaluator.

To get a broader impression of the performance of ranking measures we rank candidate sets which have been
evaluated by a number of evaluators that did not have any knowledge of theCCGW andCCGW’ measures.
The candidate sets of each evaluator are not identical, making a direct comparison impossible. However, the
evaluated sets were randomly assembled from a large set of candidates containing many clones from the same
class. Each set therefore contains a comparable selection of candidates.

Per-Evaluator Results for theWELTAB System

The set of evaluated clone candidates from the WELTAB system were comparably small with around 250
candidates each. The evaluations resulted in elevated ratios for confirmed clones for every evaluator.
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Evaluator Size Confirmed Clones Total Distance
CCGW CCGW’

EVALUATOR A 247 138 (55.9%) 16.2% 10.9%
EVALUATOR B 247 135 (54.7%) 4.5% 3.2%
EVALUATOR C 250 141 (56.4%) 5.2% 4.0%
EVALUATOR D 250 182 (72.8%) 2.4% 4.0%
EVALUATOR E 253 162 (64.0%) 1.2% 2.4%
EVALUATOR F 249 109 (43.8%) 2.4% 1.6%
EVALUATOR G 245 125 (51.0%) 5.7% 6.1%

The CCGW is effective at predicting the ranking of every evaluator, with the exception of EVALUATOR A.
When looking at the details of EVALUATOR A’s evaluation we found that the optimal clone medianc̃ is hit
accurately by both measuresCCGW andCCGW’. The inaccuracy is due to a large difference|ñc∗ − ñc|.
Upon closer investigation we find that about two thirds of EVALUATOR A’s confirmed clones that are placed
belowñc∗ do not allow easy refactoring, vindicating the ranking ofCCGW andCCGW’.

The difference betweenCCGW and CCGW’ is mostly insignificant, whetherCCGW’ is improving upon
CCGW or not (in EVALUATOR D’s case, the difference is only three candidates on the side of the non-clone
median).

Per-Evaluator Results for theCOOK System

The candidate sets from the COOK system were of a medium size with a bit under 2000 clone candidates. The
evaluations show a consistently low percentage of confirmed clones for every evaluator.

Evaluator Size Confirmed Clones Total Distance
CCGW CCGW’

EVALUATOR A 1811 286 (15.8%) 12.5% 12.5%
EVALUATOR B 1806 106 (5.7%) 11.2% 10.1%
EVALUATOR C 1815 171 (9.4%) 9.9% 8.5%
EVALUATOR D 1805 230 (12.7%) 22.2% 24.3%
EVALUATOR E 1818 326 (17.9%) 7.1% 7.8%
EVALUATOR F 1810 89 (4.9%) 12.6% 11.0%
EVALUATOR G 1807 166 (9.2%) 13.5% 12.5%

The accumulated distances from actual to optimal medians for theCCGW andCCGW’ measures are unusually
high for the COOK candidates. Some reasons for the misalignment between ranking and evaluation are:

• Evaluators dismissed copied fragments of densely repetitive code (two or three consecutive lines repeated
with minimal changes), copied within the same function.

• Evaluators dismissed candidates consisting mostly in variable declarations, being only the header of a
function, or consisting only in elements of a literal array.

• In EVALUATOR D’s case, where the largest differences are found, a third of the confirmed non-clones
abovec̃∗ could be also declared as clones.

This shows that the measures are insensitive to a number of criteria that evaluators apply in their decisions.

6.5.5 Discussion

The experiment has shown thatCCGW andCCGW’, a simple set of complexity measures constructed with
only the knowledge about keywords and operators of a programming language, are able to predict the aspect of
refactorability to a good extent and even in cases correct a superficial human evaluation.
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The measures are shown to significantly improve upon the simple line count. The difference betweenCCGW
and the variantCCGW’ is however not that big. In most of the casesCCGW’ improves upon the results of
CCGW, sometimes considerably. The reverse effect is however also possible. The justification to useCCGW’
is that it is sensitive to some obvious impediments for refactoring measures

In this experiment the weights have all been derived from the frequency of the individual elements or features.
We have in only one case tuned the weights manually to adjust the measure to some specific relevance criteria
used by an evaluator.

The experiment conducted here is only a preliminary assessment of the measures as it has the following prob-
lems:

• The accuracy of the candidate evaluations is not assessed.

• The performance of the reviewers is not uniform. There was no common agreement upon what a clone
consists in. The evaluators were also experiencing a learning process but did not revise their earlier
decisions.

• The construction of the ranking measures was known before some of the evaluations, making evaluations
biased in favor of the relevance criteria that were actually assessed by the measures.

• There are many influences that are not controlled, mostly pertaining to the systems used as sources of
clone candidates.
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6.6 Investigation of Scalability

Recalling the description of Section 4.3.2 we briefly list the contributions of each step to time and space
requirements of the algorithm:

1. The construction of the index is linear in input size.

2. The construction of the comparison matrix is quadratic in the number of duplicated comparison units.

3. The analysis of the comparison matrix is linear in the number of atomic matches.

4. Any analysis of the extracted clones, like building clone classes or ranking, are linear in the number of
clones.

By far the largest contributor is the second step. This is mainly due to the number of atomic matches which
dwarfs every other size in the algorithm. It is also due to the complicated operations of memory allocation and
establishing multiple links between cells of a sparse matrix which only happen during the construction of the
comparison matrix, and not during the extraction of the clones from the matrix.

We first illustrate the time and space behavior of the algorithm with data gathered during an experiment and the
discuss some aspects of the comparison matrix.

6.6.1 Experimental Data

The time and space measurements we report were taken in the course of the normalization experiment (see
Section 6.2). Table 6.5 shows values for the different normalization degrees of the WELTAB and COOK sys-
tem.7 The data not only describes how the approach handles systems of different sizes, but also how more
normalization results in less specific code and a less diverse vocabulary. This increases the number of matches
significantly.

The COOK system especially illustrates how the greater uniformity of highly normalized code increases the
number of atomic matches. As stated, the comparison and filtering phases are mostly determined by the number
of atomic matches.

7The platform used for the experiment was a 2.1 GHz AMD Athlon with 550 MB of memory running Linux 2.4 and VisualWorks
SMALLTALK 7.1.

System Normalization DegreeAtomic Matches Time Space
Comparison Filtering

WELTAB – 260,710 5.8s 0.7s 2.2MB
C 388,732 6.4s 0.9s 2.4MB
I 365,289 7.0s 0.8s 3.2MB

IF 429,226 7.3s 0.8s 3.4MB
CI 649,817 8.8s 1.1s 3.8MB

CIF 726,470 9.5s 1.2s 4.2MB

COOK – 1,485,630 150s 15.8s 59MB
C 2,166,832 183s 22.8s 88MB
I 5,771,343 469s 61.3s 252MB

IF 6,825,959 690s 64.3s 330MB
CI 6,629,632 546s 63.7s 289MB

CIF 7,703,927 750s 88.8s 380MB

Table 6.5: Experimental samples of time and space requirements.
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System Granularity Input Size Distinct Terms Atomic Matches
WELTAB Line 9847 2251 260,673

Token 80,601 1230 146,255,494
COOK Line 46,645 21288 1,485,630

Token 278,390 11567 1,297,446,919

Table 6.6: Vocabulary size decreases, input size and number of matches increase when using tokens instead of
lines as comparison unit.

System Atomic Matches % Matches byn Most Frequent Terms
n = 2 n = 5 n = 10

POSTGRESQL 18,900,000 76% 88% 93%
ECLIPSE-JDTCORE 5,800,000 61% 77% 84%
SNNS 3,400,000 59% 70% 77%
SWING 2,800,000 45% 69% 78%
COOK 1,700,000 48% 62% 72%
AGREP 480,000 45% 67% 79%
WELTAB 140,000 15% 26% 38%
ECLIPSE-ANT 70,000 22% 34% 48%
NETBEANS-JAVADOC 40,000 25% 40% 53%

Table 6.7: Number of atomic matches generated by the most frequent terms.

6.6.2 Impact of Comparison Unit Granularity

If the granularity of the comparison is reduced (from lines to tokens to characters), not only does the size of
the comparison matrix grow for a given system, but more importantly the comparison generates more atomic
matches. The reason for this is the reduced variability of the vocabulary (shorter terms mean less distinct terms)
and the therefore increased frequency.

The effects of using tokens instead of lines can be observed in Table 6.6. For WELTAB the increased input size
(8.1 times more) and the reduced term variability (46% less terms) result in a 560 times increased match count.
For COOK, input size increases 6 times, the vocabulary shrinks by 46% and the number of matches increases
873 times. It is thus clear that using tokens instead of lines will lead instantly to a multiplication of any existing
scalability problems.

6.6.3 Impact of Frequent Terms

The distribution of frequencies for the terms in the vocabulary is highly skewed: on the one hand, around 70%
to 80% of the vocabulary terms occur only once, and on the other hand most of the matches are generated by
a few very frequent terms. Table 6.7 shows the total number of matches for a number of systems (without any
normalizations applied to the code) and the percentages of matches that are generated by the 2, 5, and 10 most
frequent terms. The tendency we can observe for this sample is that the larger the total number of matches is
the more skewed the frequency distribution gets.

The advantage of such a distribution is that we are able to significantly reduce the number of atomic matches
that need to be handled by removing a small number of terms from the vocabulary [CH93]. The most frequent
terms are usually uninteresting in themselves,e.g., ‘return false; ’, ‘ break ; ’, or ‘ int i; ’. What is lost
by removing such terms is therefore mostly boilerplate duplication.

130



“thesis” — 2005/6/13 — 13:54 — page 131 — #145i
i

i
i

i
i

i
i

Chapter 6 Experimental Validation

6.6.4 Discussion

Creating and storing atomic matches in a comparison matrix is of quadratic complexity and the major problem
in terms of scalability. The size and diversity of the vocabulary has a large impact on the number of matches that
have to be handled. One of the justifications to use lines as comparison unit granularity is therefore the relative
diversity of its vocabulary with respect to the more uniform token vocabulary. Knowing which are the most
frequent terms and their weight we are able to remove noise prior to the comparison. The separation of source
representation (the vocabulary) and duplication representation (the comparison matrix) is also advantageous if
we want to implement incremental strategies as discussed in Section 4.3.2. After a batch of source code has
been compared and the clones have been extracted, we can delete the comparison matrix again.
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6.7 Conclusions

We list the conclusions on the different aspects presented in this chapter separately.

Language Independence

We can implement the techniques for a wide variety for languages. We can make most of the implemen-
tation configurable, so no new implementation is needed when switching to a different language.

Some older languages with non-standard features like allowing keywords as variable names foil the
simplicity of lexical analysis.

Code Normalization

Code Normalization is necessary to get relevant duplication. It is however important to find a balance,
since too much normalization lets the precision plummet. Allowing gaps of mismatching code in the
middle of a duplicated fragment is a good way to cope with changes that exceed the scope of the normal-
izations. A gap size of 2, however, is already allowing too much difference which makes many smaller
clone candidates invalid.

Comparison with Other Approaches

String-based clone detection can be categorized as having “high recall and low precision” [Bel02a] in
general. We have shown that our approach is close to other well known string-based detectors, and
closest to Baker’s line-oriented detection method.

Assessment of Line-Orientation

We have seen that line-break relocation does not affect recall significantly for all 6 sample systems under
investigation. Also, it is again very simple to build a generic pretty printer which can be configured easily
for the majority of programming languages and which produces a normalized code layout.

Ranking of Clone Candidates

Using a more sophisticated code representation in the ranking phase than in the comparison phase has
proven to significantly improve the ability to present the reengineer with a list of the relevant clones.

Scalability

The chosen granularity of a single line of code lets us treat small to moderate systems easily. For very
large systems the number of atomic matches that is generated during the comparison can grow too large to
keep it in memory all at once. It becomes necessary to selectively remove overly frequent but unimportant
lines, and eventually employ incremental strategies.
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Chapter 7

Conclusions

With this thesis we set out to develop a lightweight approach to code duplication detection which is applicable
to systems of different sizes and languages. In this chapter we summarize the contributions that we have made
towards this goal. We finally list some ideas for future work.

7.1 Contributions

Duplication of source code is a problem that arises in every software project, mostly due to the pressures of
delivering a working system in a certain time span. Since it can have grave consequences—increased main-
tenance costs and error risks—duplicated code must be dealt with in every phase of the software engineering
life cycle: during development when we want to be warned of introducing duplicated functionality, during
maintenance when we want to make sure that we update all occurrences of an irregular source fragment, and
during reengineering phases when we want to remove accumulated duplication.

We have presented the field of duplication detection in detail. We have shown the ties between code dupli-
cation detection and the old field of information retrieval and emphasized the importance of the notion of
relevance. We have explained the different conceptual entities which describe the field of clone detection: How
the programs source text is split intosource units, the independent entities which are not ordered but contain
sequences ofcomparison unitswhich are the object of the comparison function. We have presented the dif-
ference betweenfreeandfixedgranularity clones: Whereas free granularity clones will show the duplication
situation in (sometimes confusing) detail, fixed granularity clones will reduce the duplication to a fixed set of
potential relations between source units. We have also emphasized that clone pairs should not be considered in
isolation, but should however be aggregated, not only via the (occasionally) transitive clone relation, but also
via the neighborhood of their constituting source fragments.

Of the multitude of clone detection approaches which we classify using the goals ofScalability, Adaptability,
Duplication Sensitivity, andReengineering Support, we present a lightweight solution that emphasizesScala-
bility andAdaptabilityas important aspects of a clone detector that belongs in the toolbox of every engineer.

Following the selection of goals, we have chosen to use string matching as the comparison function. To compare
source code using string matching is inherently favorable to both goals: A natural format into which source
code does not have to be transformed, and a simple comparison function which does not need much overhead.
A functioning detector can be set into practice immediately.

One of the big problems for clone detection is that copied source fragments are usually not similar on a tex-
tual level: Many smaller or larger differences conceal an underlying similarity between fragments. To level
the superficial differences between fragments so that they do not hinder the comparison function in detect-
ing similarity, we employ a number of techniques which bring the source code into anormal form: A pretty
printer normalizes the layout, and a number of normalization and filtering techniques remove volatile syntax
elements from the code. We split the source text into lines and compare them, exploiting the fact that exact
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string matching defines a set of equivalence classes to speed up comparison. By integrating gaps at arbitrary
locations in a matching sequence of code, we allow for unforeseen variations of the duplicated code which are
not caught in the normalization. The gaps and the normalization measures, while one the one hand increasing
recall, naturally induce an increase of the number of false positives on the other hand. We counter this effect
with a second analysis phase, this time performing more detailed analysis of the clone candidates. We present
a number of measures which give weight to a clone candidate based on fine-grained similarity analysis of the
gaps, and size, frequency, and distance of the matching code. Combining these measures we form ranking
strategies for a number of different reengineering tasks. The parsing that we have to do for both the normal-
ization of the source code as well as the analysis of the clone candidates is kept minimal, such as to enable a
change of programming language via configuration.

A minimal parsing approach does not, however, gather information necessary for deep code analysis. To cope
with this need and instead of supporting the reengineer with automated proposals for clone refactoring, we have
investigated the possibilities for an improved presentation of the clone data. Apart from creating aggregations
of clones into clone classes and clone class families, we have proposed enhancements for clone browsers and
code editors. This low level presentation is complemented with, on a local level, the well known dotplot
visualization, useful for analyzing rich duplication situations in a close neighborhood. On the global level we
propose a set of visualizations of quantitative aspects of the detected clones. An engineer thus gets insights into
the duplication situation on the system level.

From our validation of some aspects of the proposed techniques we derive the following insights.

String based clone detection is generally characterized as having high recall but low precision,i.e., the engineer
is confronted with a large number of clones, many of which are false positives. We have demonstrated that a
quite simple ranking measure is able to prioritize the list of clone candidates in accordance to human evaluators,
reducing the amount of time that reengineers loose sifting through false positives.

We have also shown that the choice of a single source line as the granularity of the comparison unit is justifiable:
Only a very small percentage of clone candidates from a number of example systems could not be detected due
to relocated line breaks. We have additionally shown that a configurable pretty printer is able to normalize the
layout of source code should it be suspected that many clones were missed due to layout differences.

In summary, we have provided evidence that it is possible to construct efficient clone detectors based on simple,
adaptable techniques. We were able to reduce the impact of drawbacks inherent to string based duplication
detection, increasing recall on the on hand, but also controlling the loss of precision one the other hand. We have
balanced a lack of automation potential with increased support for clone presentation and visualization. This
work is an example of the usefulness of program analysis based on incomplete information [Mur96][vDK99].
We have shown that there is a middle ground between shallow and deep code analysis, where information
extraction is affordable and its results make duplication detection more efficient.

7.2 Future Work

This section is split in aspecificpart which lists ideas that grew out of the techniques and methods presented in
the thesis, and ageneralpart which addresses the wider research field.

Thesis Follow Up

Direct extensions of the thesis work are:

A Methodology: This thesis presents a toolbox of techniques for clone detection, but it provides very little
guidance in how and when to apply them. One of the most important questions is probably which normaliza-
tions should one apply to keep the number of candidates acceptable. Another question is how to deal with large
systems. Such a handbook of best practices, along the lines of the reengineering patterns of Demeyer et al.
[DDN02], is needed to support practitioners in the field.
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Appropriate Clone Granularity: It is a reasonable assumption to make that programmers are copying frag-
ments of source code which represent a conceptual entity, performing a single conceptual task. Such a program
chunkhas for example been defined asa sequence of software instructions that achieves a coherent purpose
and that can be understood outside of the context in which it is used[BRS+97]. Programplans, or clichés,
and how they can be identified have been investigated for program recognition tools. Duplication detection
approaches which use fixed clone granularity do so to reduce the search space by constraining the number of
potential clone relations between program entities. Functions are commonly chosen as the fixed granularity
level which is reasonable because development heuristics suggest that functions should encapsulate a single
conceptual operation. In real world software, however, functions more often than not assemble multiple re-
sponsibilities. Similarities between responsibilities buried in overloaded functions may go undetected for a
detector operating at the function level. It could therefore be interesting to use the results from program plan
identification to define more appropriate potential candidates for clone instances.

Creation of Search Patterns from Source Code: Following an approach used in the domain of DNA se-
quence analysis by the homology detector BLAST [AGM+90], we can attempt to find all duplicates of a given
code fragment by defining a pattern which describes the set of potential clones of the original fragment (like
a regular expression describes a set of strings) and start a targeted search. This will be helpful for maintainers
who have changed a piece of code and want to know if the change has to be applied somewhere else in the
system too.

Exploiting Dotplot Patterns: If we use free clone granularity, relations between copied fragments can be
manifold. For example, smaller fragments can be contained within larger fragments or can overlap with other
fragments. What could be interesting to investigate is what these structures reveal about the source code.
Especially structures that are repeated regularly may offer insight into interesting characteristics of a program.

If we visualize duplicated code with dotplots, we see the relations between copied fragments appear as a
multitude of dot configurations in 2D [Hel94][Hel95]. Many of these configurations are unique, but some are
found over and over again, so that we can identify them asrepetition patterns. We currently retrieve only few
of these patterns. If we find patterns that represent interesting information we can give the software maintainer
a few tools for understanding.

General Ideas

These ideas encompass the wider context of duplication detection:

Causes for Duplication: Understanding which process and organizational properties as well as project his-
tory events can influence the creation of clones can help clone detection. The data collected by version control
systems, for example, could be used to direct detection endeavors.

High Level Duplication: We need to find ways to detect clones within other representations than source
code. If we are able to spot potential duplication on the design level, we could apply preventive measures early
on, for example to propose a library function for tasks needed in several subsystems.

Influence of Source Code Properties on Detector Performance:From the experience of looking at various
systems and also from literature [Bel02a] we have learned that detection approaches behave differently in terms
of recall and precision depending on the system. What we do not know is which properties this behavior is
depending on. A better understanding would allow us to tune detectors for specific systems.

Relevance is Key: As we have discussed in Chapter 3 the relevance of a clone is dependent on the tasks of
maintainers. To advance research, we need examples of tasks that industrial users need clone detection for, as
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well as examples of detected clones that are not suitable for any refactoring measures. Such examples should
be collected in aclone librarywhich could be part of a benchmark suite.

Consequences for Language Design:Following the dictum of Krueger [Kru92] that to date, higher level
programming languages are the most efficient mechanism for reuse, we wonder how much insight into language
design can be gained from code duplication research.

Some concepts that are currently developed in object-oriented programming aim to improve the reuse mecha-
nisms for classes to reduce the number of situations where programmers are forced to implement code twice.
An example for such a mechanism that reduce duplication are traits [BSD03]. However, as Jarzabek&Shubiao
[JS03] have shown, sometimes the duplication is so fine grained that even with the most sophisticated language
mechanisms we cannot avoid duplication. Jarzabek&Shubiao therefore explore meta descriptions of source
code which is free of duplication. Clone detectors could create the meta descriptions automatically.
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Appendix A

Approaches to Code Duplication
Detection

This section strives to give an overview of the code duplication detection approaches that are discussed in
the scientific literature. Recently, companies have been building tools,e.g., SIMSCAN 1 and SIMIAN 2, for
which the details of the approaches are not disclosed. We therefore exclude these from the presentation in this
section. The full list of detection approaches presented in this overview is given in Table A.1. The presentation
in this table adopts a broad classification according to the general level of detail the pre-comparison code
transformation,e.g., lexical, syntacticor semantic. This attribute is a good overall characterization because
it influences the code transformation, comparison technique and analysis capacity of the approach. The next
subsection gives an overview of the structure of the appendix.

Reference Level Code Representation Comparison Technique
[Joh94a] Textual Substrings String-Matching
[DRD99] Textual Normalized Strings String-Matching
[DBF+95] Textual Metric Tuples Neural Networks
[Bak92] Lexical Parameterized

Strings
String-Matching

[KKI02] Lexical Normalized Strings String-Matching
[MM01] Lexical Word in Context Latent Semantic Analysis
[Jan88] Syntactical Call Graph, Metrics Hybrid
[MLM96b] Syntactical Metric Tuples Discrete Comparison
[Kon97] Syntactical Metric Tuples Euclidian Distance
[BYM +98] Syntactical Abstract Syntax Tree Tree-Matching
[BMD+99] Syntactical Abstract Syntax Tree Tree-Matching
[CDS04] Syntactical Strings String-Matching
[Kri01] Semantical Program Depen-

dence Graph
Graph-Matching

[KH01a] Semantical Program Depen-
dence Graph

Backward slicing

[Lei03] Semantical Abstract Syntax Tree Hybrid, Syntax-Driven

Table A.1: List of approaches for detecting duplication of code

1Available fromhttp://www.blue-edge.bg/download.html [May 15, 2005]
2Available fromhttp://www.redhillconsulting.com.au/products/simian/ [May 15, 2005]
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Overview of Clone Detectors Aspects

To structure the overview of the related work we define a number of aspects which characterize the detection
approaches. This will allow us to report concisely about the noteworthy characteristics of the individual ap-
proaches. Organizing the presentation in this way reduces the amount of repetition compared with a detailed
explanation of each individual approach.

We present the following aspects:

Code Features to be Compared:A detection approach extracts attributes from the source code and computes
a profile for each comparison unit. Clones are found by comparing these profiles. The selection of the
comparable features determines what kind of code transformations and which comparison techniques are
needed by the approach.

Comparison Techniques: Apart from the selection of the comparable source code attributes, the way in which
these properties are represented and ultimately compared determines the nature and complexity of a
detection approach.

Clone Granularity: The choice between fixed or free clone granularity (see Section 3.6.1 on Page 35) deter-
mines the amount of data that must be compared and analyzed.

Groups of Clones: The clone pair is the simplest form of clone representation. Grouping clone pairs reduces
the amount of data that must be investigated by a reengineer.

Ranking and Filtering: Detectors use different strategies to distinguish relevant clone candidates from false
positives.

Reengineering Support: Collecting additional information which is used for the classification of the found
clones helps assess the opportunities for clone-based reengineering measures.

There exist, of course, many more properties by which we could categorize the detection approaches, for
example scalability, language independence, space and time complexity, precision and recall behavior. We
have chosen the set of properties above because they can be gained from the literature for all the approaches
and can therefore be compared.

A.1 Source Code Features

As we have stated in Chapter 3 clones must be defined based on the similarity between some objective features
of the source text. We can therefore characterize all possible detection approaches by the kind of features that
they have chosen to base their comparison on. We can distinguish three different types of source code features
that are being used to assess similarity between source fragments:

Textual Features: These features are on the level of the textual representation of the program. They mostly
determine the layout of the source code. Basing duplication detection on these more ‘ephemeral’ features
makes sense when we assume that copying and pasting the source code in an editor transfers these
features from the old to the new location.

Examples are:the source text itself, indentation, number of non-blank lines, line length, identifier length,
number of comments.

Structural Features: These features describe structural properties of the code. Most source code features fall
into this broad category, which is why we define two sub-categories:

Syntactic Features: Syntactic features are derived from the results of parsing the source code such as
an abstract syntax tree. Most of the myriads of source code metrics can be used for comparison
purposes.
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Textual Syntactical SemanticalLexical

incidental code properties
scalability
ease of implementation

essential code properties
automatization potential

Figure A.1: The range of analysis techniques which extract comparable features from source code. Towards the
left, more superficial features need only lightweight analysis techniques which are scalable. Towards the right,
essential features require more complex analysis techniques, but provide enough information for improved
automation.

Examples are:number of statements, nesting level, keywords used, operators used, number of
parameters passed by reference/by value, number of exit points, number of defined/used/updated
variables.

Semantic Features:Semantic features are derived from detailed code representations or the results of
advanced code analysis.

Examples are:call-graph features, program dependence graph features like value and reference
dependencies, features of program slices, pre- and post-conditions.

Symbolic Features: These features come from the elements of a program that stem from natural language.
They are the terms that make the program readable for the programmer.

Examples are:identifier-, function-, and type-names, comments.

The properties used for comparison can be positioned along an axis from shallow to deep code analysis that
is needed to extract the properties from the source text (see Figure A.1). The passage from text- to semantics-
based analysis is a progressive abstraction of incidental properties of source code towards its essentialmeaning.
This brings more opportunities for the comparison and filtering phases, but the cost lies in increased dependence
on difficult-to-adapt parsing technology and increased computational complexity which reduces scalability.

How the selection of the features to be compared influences each step of the detection is described in the
following paragraphs.

Transformation Step: The type of transformation is the basis for the entire approach and from this decision
almost everything else is determined. The transformation itself is of linear time complexity (input program
size) and thus the cheapest of the entire process. Space requirements however depend much on the format. An
abstract syntax tree needs about ten nodes for each line of code [BYM+98]. If control- and data-flow edges are
added to the graph space requirements increase further.

Comparison Step: The more a comparison method is aware of semantic properties of the entities it compares,
the better it can uncover similarities among ever more varied and changed source fragments. For example, if a
comparison algorithm knows that+ is a commutative operator, it will find thata+b andb+a are the same. It is
at this stage where deep knowledge of the source code has its greatest impact, but it is also this stage—which
is characterized by anO(n2) time complexity—where complicated approaches pay most of their price.

Ranking and Filtering Step: Ranking tries to determine which detected clone pairs are relevant. Not all
relevance criteria can be made into an algorithmic filter, however. Detailed knowledge about the copied source
code and how it relates to its context increases chances to express such a criterion in a form that can be used in
an automatic filter.
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Aggregation Step: At this stage, clones having in common some properties are aggregated into groups. A
useful criterion is to collect all clones which copy the same original source fragment. Deep code analysis
additionally enables categories which do not rely on the transitivity of the clone relation. These advanced
properties can be applicability of a specific kind of refactoring, or ease and impact of the refactorings.

A.2 Comparison Techniques

The detection approaches are using a wide range of comparison techniques. We can categorize the most com-
mon ones in these categories:

String Matching: Matching strings is done using the basicstrcmp function or the UNIX DIFF tool [CDS04],
as well as suffix trees [Bak92][KKI02], and dynamic programming (edit distance) [BMLK99].

Tree- and Graph-Matching: If the source code is represented as an abstract syntax tree [BYM+98] or a more
elaborated program dependence graph [Kri01][KH01b], the matching function seeks similar subgraphs.
This can be done by looking for isomorphic program slices.

Vector Comparison: Tuples of attribute measures are compared using distance metrics like the Euclidian
distance for vectors. Machine learning with neural networks has also been used to classify similar tuples
together [DBF+95].

A special comparison technique is used by Leitão [Lei03]: his comparison follows the call graph, selecting
comparators according to the syntactic elements that he finds on the way. This approach could be described
as some sort of parallel execution of two source fragments. Earlier, Jankowitz in a plagiarism detector [Jan88]
used the call graph as well to map procedures of two compared programs onto each other. The procedures are
then compared via a number of code metrics.

A.3 Clone Granularity

The approaches are equally distributed over the two possible choices of clone granularity:

Granularity References
Fixed [Jan88][DBF+95][MLM96b][Kon97][BMD+99][MM01][Lei03]

[CDS04]
Free [Bak92][Joh94a][BYM+98][DRD99][Kri01][KH01a][KKI02]

We can relate the clone granularity to the comparison method by counting the number of approaches that
employ a given method:

Granularity String Tree&Graph Metrics Vector Other
Fixed 1 0 4 3
Free 4 3 0 0

String- and tree/graph-based comparison are methods which lend themselves for free clone granularities.
Metrics-based approaches, however, need a fixed fragment for which they compute a matrics vector which
is then compared.

A.4 Grouping of Clones

Clone groups reduce the amount of data that must be investigated by the reengineer. Clones are grouped using
either the clone relation or the closeness of neighboring fragments in the source code.
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Grouping by Clone Relation: A clone relation is usually reflexive and symmetric, only few are also transi-
tive. Kamiya et al. [KKI02], who use exact string matching for comparison, are able to define clone equivalence
classes from their transitive relation.

If the clone relation does not have the transitivity property, clone groups can not be equivalence classes. Baxter
et al. build groups by afirst-fit strategy: a clone is put into the first group in which it is a copy of all instances
already in the group [BYM+98]. Giesecke defines sets of source fragmentsM(x) that consist of all fragments
that are clones of the given fragmentx [Gie03]. These sets are not disjoint in general. Davey et al. [DBF+95]
use a more refined representation of such sets: they cluster feature vectors by their Euclidian distance and
represent the similar vectors in a dendrogram, similar to a phylogenetic tree. Such a tree does not only contain
all related fragments but also shows which fragments are closer and which are farther apart.

Grouping by Neighborhood: Johnson uses the file as the focal point of duplication investigation. For a set
of files he groups all strings duplicated in each of the files. The size of this shared code is set in relation with the
size of shared code between other file sets and the size of the files. This enables reasoning about the similarity
of files [Joh94b].3

Kapser&Godfrey identifyregionsin the source code on a granularity level below ‘file’: type definitions, proto-
types, and variables; individual macros, structs, unions, enumerations, and functions [KG04]. All clones in the
same region form a group that can be understood as a whole, taking into account the properties of the region.

A.5 Ranking and Filtering

A detection usually retrieves many clones which turn out to be false positives. Detection approaches try to
reduce these numbers by different means.

• String-based comparisons which normalize the names of parameters evaluate the mapping between
the parameter names in the two fragments. An inconsistent mapping might indicate a false positives
[Bak93b].

The token-based string matching of Kamiya et al. reduces the number of likely less useful clones by
allowing clones only to begin with a token out of a set ofleading tokens, e.g., keywords which initiate
statements, block delimiters, and tokens following statement delimiters [KKI02].

• Metrics-based approaches compute a set of metrics which do not correlate to make the comparison de-
pendent on as much information as possible [Kon97]. Smaller instances of the chosen source unit type,
e.g., functions of only a few lines, do not, however, distinguish themselves very well by their metric
values and will produce many false positives [DMLP98].

• Kapser&Godfrey use the characteristics of the region in which the clones are found to determine their
likely importance. Clones between structure definitions, for example, often turn out to be false positives
[KG04].

A.6 Reengineering Support

Clone management only starts with the detection of the clones. Further analysis of the found clones is per-
formed to gather information for the reengineering actions which will ameliorate the duplication situation.

• Computation of the amount of code that could theoretically be removed if all duplication was eliminated
[Bak95a][KKI02].

3Yamamoto et al. [YMKI02] condense this approach into the definition of a metricSline to measure the distance between entire software
systems,e.g., different versions of the BSD UNIX operating system.
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• Documentation of the presence of all clones [Bak95a].

• Analysis of the differences between clone instances to find clone categorizations which contain useful in-
formation for the reengineer [BMLK99][KN01]. This includes the analysis of the dependencies between
the cloned fragments and their context to gauge the ease with which such fragments could for example
be extracted and replaced by a function call [BMLK99].

• Creation of macros abstracting the duplicated code [BYM+98].

• Reengineering an object oriented systems using design patterns likeTemplate methodand Strategy
[BMD+00].

• Extracting copied fragments into procedures in the presence of reordered as well as inserted and deleted
statements [KH02].
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Chapter A Approaches to Code Duplication Detection

A.7 Related Field: Compiler Optimization

For optimization purposes, compiler research has been trying to solve a problem similar to duplication detection
since the 1970s. Compiler optimizers want to know which variables or expressions have the same values during
program execution [AWZ88][RKS99]. This knowledge is used for various code motion activities which reduce
the number of operations that are executed [MR79][Sim96]. The analysis must be provably correct and is thus
of semantic nature. The most important differences to code duplication detection can be stated as follows:

• The detection and subsequent transformationmustbe fully automatic. A “human in the loop” is not
feasible for efficiency reasons.

• Only transformations which provably do not change theobservational equivalenceof the code are ap-
plied.

• The algorithms work on code generated by a compiler front end which is very restricted (three address
code) and does not, for example, contain procedure calls. The formal properties of this kind of code
make semantic analysis feasible.

• The optimization pass must be efficient in order to not slow down the compilation. Due to the complexity
of the analysis, it is not feasible to extend it beyond the limits of a single procedure.

Whereas most of the work on compiler optimization is too much restricted and expensive to be applied to code
duplication detection, some of the ideas have been fueling research on duplication detection. The techniques
of Komondoor&Horwitz [KH01b] and Krinke [Kri01] both use variants of the program representation graphs
that are proposed for program analysis in compiler optimization. Krinke however explicitely refrains from
complete equivalence, a strong prerequisite for automatic code transformations.

Horwitz et al. also use these techniques to automatically integrate different versions of the same program
[HPR89].
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A.8 Related Field: Plagiarism Detection

Plagiarism detection is a field that is important mostly in the area of education where an accurate grading of
assignments is only possible if one is sure that the solution is original. Educational institutions have an interest
in only handing out good marks to students who have earned them rightfully.

The research on plagiarism actually predates the source code duplication research by a number of years (the
earliest papers we are aware of have been published in the 1970s). The reason for this might be that plagiarism is
a problem that educators have faced for centuries. Code duplication has only surfaced as an important problem
when the life cycles of the first very large software systems that were created under industrial conditions entered
the maintenance phase.

Plagiarism is an increasingly real problem in all educational institutions and particularly in programming
courses since it is very easy to copy the solution of a programming assignment and alter a few details to
make it look like original work without having any understanding of the problem or the solution. Plagiarism
is rampant not only in programming courses but also in classes where written essays have to be composed.
The world wide web being the largest collection of publicly accessible information lures many a student into
plagiarizing documents found on the net [WW02]. Much work to uncover plagiarism therefore is focusing on
natural language texts. Natural language differs from programming languages by being much more complex.
Whereas we have complete grammars for our programming languages such a thing does not exist for common
English. Whereas the vocabulary of a program consist in at most 50 keywords (up to 300 for COBOL) and quite
a constrained set of user defined identifiers which all have clearly defined, comparatively simple semantics,
the vocabulary of common newspaper articles alone is about 3000 words which have immensely more difficult
and ambiguous semantics. In summary, plagiarism detection for natural language texts is more difficult and
uses a host of techniques which are different from software plagiarism detectors. In our short overview we will
therefore concentrate on the work being done on uncovering plagiarism in source code.4

Differences in Detecting Duplication and Plagiarism

Since plagiarizing essentially means copying, one would expect a close relation between plagiarism and dupli-
cation detectors. There exist however marked differences between the two problems. To describe this relation-
ship we will first list the common characteristics, then some essential differences which influence the matching
strategies, and finally some practical differences where the requirements for clone detectors can be relaxed
for plagiarism detection. We finally look at the kind of code transformations a plagiarist employs to hide his
activity from the eyes of a detector.

Common Characteristics: In duplication as well as in plagiarism detection the “human in the loop” is of
similar importance. Plagiarism is a serious verdict which eventually leads to dire consequences for the culprit.
One has to be convinced beyond reasonable doubt about the reasons for perceived plagiarism before raising
the flag. The relevance of similarities can also depend on the context of the exercise,i.e., if the assignment
called for the solution to a narrowly defined problem, the solutions by different people can easily become very
similar without being the result of a forbidden collaboration. The confirmation of a perpetration is thus tricky
and cannot be automated. Plagiarism detectors can only provide a preliminary selection of likely candidates
which constrains the number of cases that has to be vetted by the instructor.

Essential Differences: These differences between the two fields have an influence on the design of the com-
parison algorithms:

No Self-Similarity: Plagiarism is strictly a phenomenonacrossprograms. Since nobody plagiarizes himself,
duplicated code within the same program is never plagiarism. The detectors can thus skip intra-file
comparisons completely. Each fragment of the original then has at most one corresponding fragment

4For an overview over plagiarism detection in natural languages see Clough [Clo00].
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Chapter A Approaches to Code Duplication Detection

in the plagiary. The consequence is that the detection process for plagiarism is computationally less
expensive since for every match between original and plagiary the matching fragments can be removed
from the pattern and the text. When matching progresses the search space is thus more and more pruned.
The algorithm of Wise [Wis96] exploits this condition explicitly.

Whole Program Structure: Early plagiarism detectors were considering the structure of the entire program
instead of only looking at a set of unordered functions. Jankowitz [Jan88] and Cunningham&Mikoyan
[CM93], for example, use the call graph as a first similarity criterion, and deepen the analysis by an
investigation of individual functions. Code duplication on the other hand is normally not interested in
code structure beyond the borders of a function. Later plagiarism detectors have relaxed this requirement
as partial plagiarism has entered into focus.

Semantic Equality: Plagiarized code must behave exactly as the original. In clone detection, on the other
hand, we are also interested in structural similarities of semantically diverse fragments. Leitão mentions
an instructive example to illustrate this difference [Lei03]: Two functions, one to sum up all integers in a
list and the other to concatenate all sublists of a list, cannot be result of plagiarism but can very well be
considered duplication and refactored using thefold -operator in LISP.

Quality of Matches: Since the final verdict must result from a manual comparison of two candidates, match
results with low confidence are acceptable. The cost of a false positive is much lower than that of
a false negative for a small population such as the exercises handed in by a computer science class
(see for example Prechelt et al. [PMP00] who measure the performance of their tool with the formula
Precision+ 3 · Recall).

Practical Differences: A few differences have to do with factors which are important for clone detectors but
which plagiarism detectors do not have to take into account.

Scalability: Checking for plagiarism among the weekly assignments of a computer science class will burden
a system with a few dozen programs of small to moderate size. Never will the detector have to tackle
millions of lines of code.

For detectors that must verify the originality of natural language essays written for school or university
assignments, the scalability issue is however a relevant one. The text database that must be searched for
possibly plagiarized documents is either the world wide web or a large collection of documents covering
all possible topics.

Language Variety: Rarely will the plagiarism detector be confronted with systems written in different lan-
guages. Also, the range of languages used for education is quite narrow and constrained to mainstream
languages. An institution will not change their course language frequently.

Refactoring Support: Found plagiarism will not have to be remedied. Additional information to support the
refactoring process which duplication detectors collect is not needed.

Attacks on Plagiarism Detectors: Another difference between plagiarism- and duplication detectors is that
the former ones are participating in an arms race. The foremost goal of every plagiarist is always to hide the
origin of his work,i.e., to confuse the an eventual detector, be it human or automated. This leads to a number of
code transformations which areattackingthe correct functioning of the detector. To be winning the arms race
the detector must continuously analyze which attacks are effective against it and develop new defenses. There
are no fundamental differences between transformations applied by plagiarists and by code duplicators. All
transformations (see Appendix B) that are applicable in one case could also be found in the other case, the only
difference being the intention behind them. The plagiarist is however constrained by the following conditions:

• The strongest of all constraints is that the overall semantics of the code are not changed.5 Even if
additional statements are inserted they will be redundant with respect to the already existing code.

5Normally, that is. Prechelt et al. [PMP00] report about plagiarists who inserted program errors on purpose.
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• Changes should achieve maximal efficiency against a (human or automatic) detector. This implies (real
or imagined) knowledge on what kind of changes are able to fool the detector.

• Changes should be minimal. The effort for plagiarizing must be smaller than the effort for doing the
work from scratch. The smaller the assignment, the less effort economically still makes sense.

• Changes must be applied to all of the code to avoid that the detector picks up partial plagiarism and the
summoned human investigator is able to complete the analysis.

Against an advanced detection algorithm like the one of Wise [Wis96], only a small number of disguising
techniques are effective. All of them change the sequence of statements in order to confuse the detector.
Examples are:

• repetition of side-effect free assignments.

• redundantif statements with identicalthen andelse clauses.

• frequent invocations of dummy functions.

The requirement to change code everywhere and the nonsensical nature of the inserted statements make the
disguised code immediately suspicious to a human inspector. It might even be the case that certain disguising
strategies create patterns that can be picked up by other program analysis tools, exposing a plagiarist through
exactly the means behind which he wanted to hide.

In summary: duplication detectors could be employed as plagiarism detectors. Plagiarism detectors, however,
which exploit the one-to-one correspondence between pattern and text, are not useful for duplication detection.
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Appendix B

Post-Copy Editing of Code

One of the central problems of code duplication detection is that instances of copied code are not identical. A
common duplication scenario is that a programmer working on implementing some functionality remembers
the place of a fragment of code which serves this same purpose already. The size of the fragment can range
from single expressions to whole subsystems consisting in multiple source files. The programmer copies the
fragment and inserts it at the new place. In many cases the programmer then has to adapt the copy to the
new location. These immediate changes are, in the longer run, followed by maintenance cycles that can have
diverse effects on the two fragments. All of these adaptions are of varying magnitudes. They can roughly be
characterized as eitheressentialor superficialaccording to if they affect the purpose of the code or not. The
changes progressively disconnect the original from the copy, essential changes putting more distance between
them than superficial ones.

The challenge for a detection mechanism is to see through the changes, to bridge the distance between the
fragments and to recognize the original clone relation. For fixed granularity clone detectors this simply means
that a threshold must be established which draws the line between what is still considered a clone and what a
false positive. A detector of free granularity clones, which is the kind we are going to discuss in this chapter,
has two ways to handle changes:

• Normalize certain elements of the source code and compare the deeper code structure that is revealed.
The moreessentiala change, the greater the normalization that is necessary to bridge it. Greater normal-
ization always means deeper program analysis, starting from lexical, then syntactic, and finally semanti-
cal analysis.

Only smaller changes which do not destroy the structure of the clone can be handled in this manner.

• Aggregate separate adjacent sub-clones that result from larger changes in the middle of a copied frag-
ment. Sub-clone aggregation is an additional analysis step after the initial clone candidates have been
assembled from the atomic matches.

This type of handling changes between copied source fragments is necessary if the changes are disruptive,
e.g., insertion, deletion or moves of code, which cannot be normalized.

The clone relation can be broken for each pair of copied fragments if the accumulation of changes becomes
too large. The breaking point is reached when the two fragments no longer fulfill the same purpose. The ideal
detector would recognize each clone pair exactly up to this “breaking point”. Since the purpose of a fragment
is difficult to capture current clone detectors will miss clones which would still be acknowledged by human
experts.
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Structure of the Appendix

This appendix presents a list of changes which programmers typically apply to copied code. We will list edit
operations in increasing severity, from superficial to essential to disruptive. We can not propose a more relevant
order without having data about the frequency of each of the operations. For each transformation we will
discuss the influences which are conducive to these changes, the evolution of the code in the course of its life
cycle not being mentioned especially. We then show small examples, and finally investigate the type of change
from the point of view of how it can be dealt with by a clone detector, putting emphasis more on normalization
and less on sub-clone aggregation. For the sake of simplicity of the discussion we will assume that only one
transformation has been applied to the code. Nothing will be said on how the techniques react when multiple
transformations have been applied at once.

For changes which can be dealt with by code normalizations we are especially interested in the question of how
much program analysis is needed to perform the normalization, or concretely: Can we build a configurable
lexical analyzer or parser that is able to normalize this kind of changes?

B.1 Superficial Edit Operations

Edit operations which change the code superficially do not alter the purpose of copied fragment at all. A clone
detector can handle these kinds of changes exclusively by using normalizations.

Editing White Space

White space normally does not carry any other semantics than acting as a delimiter between tokens (languages
like PYTHON are exceptional as they use tabulators as block and scope delimiters). Although of no great
importance for the purpose of a source fragment, white space determines the human readability of the source
code.

Editing Incentives: The code layout is a usually subject to personal preferences of a programmer and is only
likely to be changed if another programmer adjusts a copied fragment to his or her own liking (in the absence
of a coding style guide that must be adhered to).

Example: The only type of white space changes that affects clone detectors is theline break relocationwhich
can throw detectors off course that are line-oriented. The following examples differ only in line-breaks:

for (i=0;i<TABSIZE;i++)
{

bp = symtab[i];
while (bp)

{
bptmp = bp->link;
XFREE (bp);
bp = bptmp;

}
}

for (i = 0;
i < TABSIZE;
i++)

{bp = symtab[i];
while (bp) {

bptmp = bp->link;
XFREE(bp); bp=bptmp;}}
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Chapter B Post-Copy Editing of Code

Coding styles which are followed by development teams usually are only guidelines and can be easily broken
by a programmer. Line breaks can also be forced incidentally,e.g., when long identifier names push the line
length over a given character threshold: The following example demonstrates this:

for (i=0; i<MAX; i++) memset(d[i], ’\0’, MAX);

for (counter=0; counter<MAXNUM_PAT; counter++)
memset(tc_aduplicates[counter], ’\0’, MAXNUM_PAT);

Normalization Measures: For detectors which are sensitive to line-break relocation, pretty printing is a way
to normalize the source code and remove all the effects of these kind of changes. We can build a pretty printer
which is configurable for a number of languages (see Section 4.2.2 on Page 48).

Editing Comments

Comments are not executed at runtime of the program and therefore have only a marginal importance (and,
unfortunately, are often treated that way by programmers). If they are present and well written, however, they
should explain the purpose of the code on a more abstract level than the source code. This ideally would make
them robust against changes in a new context and they would therefore be good indicators of copy and paste. In
practice, however, programmers often do not add comments to their code at all, or rarely at the right abstraction
level.

Comments are usually disregarded by clone detectors. We are only aware of the approach of Maletic&Marcus
[MM00] that uses the information in comments to detect code fragments with similar functionality.

Editing Incentives: Inadequate commentary is likely to be removed or improved by a programmer. During
an attempt to understand the intricacies of a foreign fragment, programmers might annotate pieces of the code.

Normalization Measures: Commentary is removed previous to comparison by almost all detection ap-
proaches. This filtering can be implemented in a lexical analyzer which can be configured with the comment
delimiter signs of the programming language in question.

Editing Redundant Syntax Elements

We call syntax elementsredundantif they only have little semantic content,i.e., if their absence does not affect
the behavior of the code. Changing them will therefore not alter the purpose of a fragment much or not at all.

Examples of tokens which do not change the semantic at all are:

• Block delimiters for blocks consisting of only a single statement.

• Statement delimiters for the last statement in a block.

Example of syntactic elements which control the semantics of a piece of code slightly (from the local perspec-
tive of a copied fragment) are:

• Type modifiers in variable and parameter declarations,e.g., const , struct , static , andextern .

• Access specifiers in C++ or JAVA : public , protected , andprivate .

• Namespace indicators.
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Superficial Edit Operations Section B.1

• Labels as targets ofgoto statements.

• Type casts. Strictly speaking a type cast may alter the behavior of the code due to late-binding in object-
oriented code or the invocation of complicated conversion functions.

Editing Incentives: Changing block and statement delimiters is dependent on coding style. Type modifiers
are dependent on the context of the code. Labels depend on control flow.

Example: This example shows two completely equal fragments of code where block delimiters for thethen

andelse blocks have been omitted on one side:

if (t == ’\n’)
complain("Skip to \n");

else
complain("Skip to %c",t);

if (t == ’\n’) {
complain("Skip to \n");

} else {
complain("Skip to %c",t);

}

The full package specification of a JAVA class is optional if the package as been properly imported and no name
clashes occur.

import java.lang.reflect.*;
Method m = myClass.getMethod(mname, null );

java.lang.reflect.Method m = myClass.getMethod(mname, null );

Normalization Measures: These syntax elements are all tokens or keywords which can be found and re-
moved with regular expressions searches. Configuration is done by listing all necessary tokens and keywords
of a programming language.

Editing Parameters

A parameter is either a literal constant (number or string) or a variable name. These are probably the most
frequently changed elements in a copied fragment.

Editing Incentives: The names of variables and the use of constants are determined by the context into which
the copied fragment is inserted. Only fragments that are large enough so that they carry their own context with
them will preserve their identifier names.

Example: This example from the AGREPsystem showssystematic replacement of identifiers. The uses of
identifiersr2 andr3 are switched but the two fragments behave exactly the same.

if (CMask != 0) {
r1 = Init1 & r3;
r2 = ((Next[r3>>hh] |

Next1[r3&LL]) &
CMask) | r1;

} else {
r2 = r3 & Init1;

}

if (CMask != 0) {
r1 = Init1 & r2;
r3 = ((Next[r2>>hh] |

Next1[r2&LL]) &
CMask) | r1;

} else {
r3 = r2 & Init1;

}
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Chapter B Post-Copy Editing of Code

Normalization Measures: Names of identifiers as well as literal strings or numbers can be detected with
regular expressions (see Appendix C). Normalizing all variables to the same token may produce clones which
cannot immediately be refactored due to differences in variables usage. Thesystematicreplacement of iden-
tifiers can be made an integrated criterion of the comparison [Bak95b] or can be made a filter for the clone
filtering phase.

Editing Value Access

By value accesswe mean the way a memory location is accessed. This can be done either by using a di-
rect name, or by dereferencing aliases.Access chainsare formed when multiple interconnected records are
dereferenced. Changing the value access in a copied fragment is behavior preserving for the fragment.

Editing Incentives: Like the change of variable names, value access is also dependent on the context of the
copied source fragment.

Example: This clone from the APACHE system shows how theconfig data is accessed over three stations
in the first case and over two stations in the second case.

void *sconf = r->server->module_config;
alias_server_conf *serverconf =

(alias_server_conf*) ap_get_module_config(sconf,&alias_module);

void *dconf = r->per_dir_config;
alias_dir_conf *dirconf =

(alias_dir_conf *) ap_get_module_config(dconf, &alias_module);

Normalization Measures: All but the last name in an access chain can be removed with regular expressions.

Editing Types

If only the type of a variable is changed but the purpose of the code is preserved,i.e., the operations that are
applied to the variables remain the same, the new type can be considered similar to the original type. The
change is therefore only superficial.

Editing Incentives: Choosing a type for a variable is dependent on the context in which the code is executed.

Normalization Measures: Types only occur in variable or parameter declarations. Since declarations are
essentially a help for static error checking and allocation optimization by a compiler, they have less semantic
weight than processing logic. If we take this stance we could remove types completely from the source code,
provided our lexical analysis is able to distinguish between variable and type names. Less radically, we can
normalize all type names to the same token just like we do with parameter names. We can also be a bit more
discriminating and form equivalence classes,e.g., normalize all builtin numeric types to the same token.
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B.2 Essential Edit Operations

Essential edits change the purpose of the code in smaller or larger ways,i.e., the copied and edited fragment
behaves differently from the original. These changes can still be handled through code normalizations, however
the amount of parsing information is significantly greater.

Editing Expressions

An expression is the smallest program fragment which carries logic, fulfills a purpose and can therefore be the
target of a copy operation. Any larger fragment of code contains multiple expressions.

Expressions can be changed in three ways which we are going to look at in more detail:i) replacement of a
parameter by the result of a function invocation,ii) change of operators, or operand order, andiii) change of
invoked functions.

Editing Expression Structure

An expression can consist in a simple term like a precomputed value represented as a literal constant or it can
be a complex term,e.g., the invocation of a function which computes the value at runtime. Editing expressions
will most likely change the semantics of the source code.

Editing Incentives: If we keep in mind that a source fragment is copied because it contains a certain amount
of logic (“fulfills a purpose”) then we can say that an expression is more likely to be edited if the change does
not affect the purpose of the copied fragment. A simple expression,e.g., a variable reference, in a fragment of
a dozen lines is therefore much more likely to be replaced than a complicated term in a two-line fragment.

If a fragment of code is copied with the intention to variate its purpose in some way, any expression is likely to
be changed to accommodate the variation. It is however impossible to find out if a given expression is part of a
large or small copied fragment, or if it is not duplicated at all.

Example: This example stems from the APACHE system. It shows how a constant variable is changed into a
function invocation:

client_mm = mm_create(SHMEM_SIZE, tmpnam(NULL));

opaque_mm = mm_create( sizeof (*opaque_cntr), tmpnam(NULL));

This example from the APACHE system shows a changed condition:

if (apisdigit(PEEK())) {
count = p_count(p);
REQUIRE(c<=count,REG_BADBR)

}

if (MORE() && apisdigit(PEEK())){
count = p_count(p);
REQUIRE(c<=count,REG_BADBR)

}

Normalization Measures: Since we have no way of telling which expression the programmer is going to
change, it is difficult to normalize any of them. One could only define a certain threshold of expression com-
plexity and replace any expression below this threshold with the simplest expression: a variable name or a
literal constant.
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Chapter B Post-Copy Editing of Code

Editing Operators

Changed operators affect the behavior of the code. If only one operator is changed, the variant computation
may still fulfill the same purpose.

Example: Similar computations with different operators occur for example in situations where symmetry
plays a role. Such code, albeit functionally different, is conceptually the same:

lowerBound = pos - range/2; upperBound = pos + range/2;

Normalization Measures: We can normalize operators by using single representatives for operator equiva-
lence classes,e.g., from the following set of C operators:

Equivalence Class Equivalent Operators
+ +,-,*,/,%,ˆ,<<

++ ++,--

+= +=,-=,*=,/=

Editing Operand Order

The order of operands for commutative operators like+ can be re-arranged without affecting the result of the
operation.

Editing Incentives: Changing operand order is probably only the result of a “mental macro” implementation
[BYM +98], a memorized piece of logic where irrelevant details such as operand order are likely to be forgotten
and randomly changed.

Example: This conditional was found in the COOK system:

if (sp == last_shift)
last_shift = sp2;

if (last_shift == sp)
last_shift = sp2;

The following fragments stem from two files in the AGREPsystem:

alloc_buf(text, &buffer,
BlockSize+Max_record+1);

alloc_buf(text, &buffer,
Max_record+BlockSize+1);

Normalization Measures: In order to normalize operand order one has to know which operators allow com-
mutation. Normalization here requires therefore deep code analysis and detailed knowledge of the operators.
If normalization is to be done before the comparison, one would have to define a universal order for operands
to map all similar terms to the same representation. Lakhotia&Mohammed [LM04] have defined normal forms
for expressions. If the normalization is done during comparison we can enumerate all possible permutations
and compare each combination, a potentially time consuming tasks which needs some heuristic constraints (see
Leitão [Lei03] for a discussion).

Editing Function Invocations

A function invocation is the best example of code duplication that is avoided. A copied fragment consisting
only in a function invocation is therefore not considered duplicated code. Function calls copied along with

153



“thesis” — 2005/6/13 — 13:54 — page 154 — #168i
i

i
i

i
i

i
i

Essential Edit Operations Section B.3

larger fragment are however subject to edits just as any other part of copied code. By changing an invoked
function the semantics to the source code are very probably changed.

Editing Incentives: Since functions usually represent a fair amount of programming logic, changing them is
likely to alter the purpose of the copied fragment. This would support the opinion that editing functions calls
does not happen often and it is more likely that the parameters of the function invocations are edited since they
are semantically more lightweight and less prone to change the purpose of the code. If there exists a function
foo_b implementing a variation offoo , replacingfoo by foo_b will only marginally alter the purpose of the
overall code, making such an edit more likely.

Example: The following example was found in the AGREPsystem. Three other copies of this fragment, each
with a different function but the same parameter list, can be found at the same location.

if (-1 == monkey(pat, m, text+start, text+end, oldpat, oldm)) {
free_buf(fd, text);
memcpy(text+end+1, tempbuf, m); /* restore */

if (-1 == bm(pat, m, text+start, text+end, oldpat, oldm)) {
free_buf(fd, text);
memcpy(text+end+1, tempbuf, m); /* restore */

The following example was found in the AGREPsystem as well. Almost every line contains not only different
variables but also different function calls. Thetc_ prefix by which the function names in the second fragment
differ from the names of the first fragment indicates that the functions are probably only marginally different
from each other so that the purpose of the code is the same in both fragments.

for (i=1; i<=num_pat; i++) f_prep(i, patt[i]);
accumulate();
memset(pat_indices, ’\0’, sizeof ( int ) * (num_pat + 1));
for (i=1; i<=num_pat; i++) f_prep1(i, patt[i]);

for (i=1; i<=tc_num_pat; i++) tc_f_prep(i, tc_patt[i]);
tc_accumulate();
memset(tc_pat_indices, ’\0’, sizeof ( int ) * (tc_num_pat + 1));
for (i=1; i<=tc_num_pat; i++) tc_f_prep1(i, tc_patt[i]);

This example comes from the AGREPsystem as well.FirstPos() andLastpos() are macros and will be
interpreted as functions only by detection approaches which do not parse the code.

pos = Lastpos(e);
while (pos != NULL) {

tpos = pos;
pos = pos->nextpos;
free(tpos);

}
Lastpos(e) = NULL;

pos = Firstpos(e);
while (pos != NULL) {

tpos = pos;
pos = pos->nextpos;
free(tpos);

}
Firstpos(e) = NULL;

The plagiarism detector of Wise maps variant function names likestrncmp to the common formstrcmp

[Wis96].

Normalization Measures: The names of functions can be normalized with lexical means just as parameter
names. Knowledge about conceptual similarity of some functions could be used to form equivalence classes
and normalize more specifically.
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Chapter B Post-Copy Editing of Code

B.3 Disruptive Edit Operations

Disruptive changes break the copied fragment apart by inserting or deleting statements, or moving code around.
These severe changes can be covered up only by code normalizations based on deep source analysis methods,
if at all. If the deep analysis fails or is deemed to costly, the change must be dealt with by assembling partial
clones.

Insertion or Deletion of Statements

Inserting or deleting statements can change the behavior of a fragment of source code in a drastic manner and
render the clone relation between copies not only unrecognizable, but also make it very difficult to reconcile
the two fragments in an eventual refactoring operation.

Editing Incentives: Inserting or deleting statements is most likely done during the continued evolution of the
system when new requirements make the overhaul of some parts of the code necessary.

Since statement deletions and insertions have the potential to heavily alter the purpose of the code they will be
applied only to copies where the change is small relative to the entire fragment.

Example: These fragments stem from the regular expression parser of the APACHEsystem, they interpret the
same command in two different contexts. The fragments are found in two functions about 600 lines apart.

INSERT(OCH_, pos);

ASTERN(OOR1, pos);
AHEAD(pos);
EMIT(OOR2, 0);
AHEAD(THERE());
ASTERN(O_CH, THERETHERE());

INSERT(OCH_, start);
repeat(p, start+1, 1, to);
ASTERN(OOR1, start);
AHEAD(start);
EMIT(OOR2, 0);
AHEAD(THERE());
ASTERN(O_CH, THERETHERE());

Normalization Measures: Davey et al. mention that by reducing source lines to their indentation level only,
the resulting representation is relatively robust against the insertion or deletion of a line in the middle of a block
[DBF+95].

In general, however, insertion or deletion of statements cannot be normalized since such changes may affect the
code on every structural level. Control flow and even data flow dependencies can be disrupted by the insertion
of additional code which means that there is no structural level any more which is not affected by such a change,
i.e., where similarity between the fragments could still be recognized.

However, if statement insertions alter the code at such a fundamental level as the data-flow, chances are that
the clone relation between the fragments will be broken and consequentially detectors should not retrieve them
any more.

Editing Control Flow

Editing control flow means to add new (or delete existing) potential execution paths through the code. Con-
trol flow is an essential structure in the code which makes changes to it hard to cope with if we use only
normalizations.

Editing Incentives: This kind of change is usually the result of broadened requirements. A new use case for
which the control flow of the copied fragment must be extended is either the result of a different context, into
which the fragment is being inserted, or is introduced during the evolution of the system.
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Disruptive Edit Operations Section B.3

Example: The following examples show how conditionals change the control flow of an original fragment:

foo();
bar();

foo();
if (cond) bar();

foo();
if (cond)

baz();
else

bar();

Normalization Measures: When only control flow is changed it is possible that data flow dependencies are
not affected. A data flow representation is then able to capture the commonality which still exists between the
two fragments.

Reordering Statements

When altering the sequential order of statements their set remains the same, in contrast to statement insertion
or deletion. By moving the existing statements around the behavior of the code may be or may not be af-
fected. Changing the order of the cases in a selection orswitch -statement, for example, has a good chance of
preserving the behavior.

Editing Incentives: A behaviorally neutral statement reordering is rare, since programmers will not bother to
edit code without a concrete difference. Reorderings are likely to occur when programmers implementmental
macroswhere they might accidentally interchange statements which are independent of each other. Statement
reorderings that alter the code’s behavior are also possible whenever a slight variation of the computation is
necessary.

Example: This PYTHON example stems from the ZOPE system. The array accessl = sktl[k][:] has
moved into theif statement on the right side.

otest = oktl.has_key
for k in sktl.keys():

l = sktl[k][:]
if otest(k):

ol = oktl[k]
for x in ol:

otest = oktl.has_key
for k in sktl.keys():

if otest(k):
l = sktl[k]
ol = oktl[k]
for x in l:

The following example has been taken from [KH02]. The move of the statement ‘base = BasePay[emp]; ’
is behaviorally neutral:

overPay = 0;
if (hours > 40) {

oRate = OvRate[emp];
excess = hours - 40;
overPay = excess*oRate;

}
base = BasePay[emp];
Pay[emp] = base+overPay;

base = BasePay[emp];
overPay = 0;
if (hours > 40) {

excess = hours - 40;
oRate = OvRate[emp];
overPay = excess*oRate;

}
Pay[emp] = base+overPay;

Normalization Measures: If control- or data-flow are unaffected by the reordering a control- or data-flow
representation of the code will normalize the changes.
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Appendix C

Implementation of Normalization

For the purpose of hiding superficial differences of copied source code from the comparison we need to identify
certain elements of a low level source model, like comments and literal strings, or names of variables and
functions. These elements will be either rewritten (normalized) or removed (filtered). This section discusses
the strategy we use to recognize the elements of the source model and shows some example implementations
for recognizers.

For our purposes we need to understand the syntax of the source code on a coarse level only. We mostly have to
identify high level structures which are delimited by a set of (usually) unambiguous tokens. The text between
the delimiters is mostly uninteresting for our purposes and can often be ignored completely (in the manner of
island parsing). A grammar to identify such elements of the source code model can be kept shallow, which
reduces its complexity.

Grammar definitions come from two different sources:

Traditional Specifications: The specifications for literal numbers, for example, can be taken from the gram-
mar specification of any programming language. These specifications are in regular expressions format
and can just be copied.

Special Analysis: To identify syntax elements we often need to analyze their context:

• Is there a unique token which unambiguously identifies the syntax element?

As an example, the scope operator:: in C++ uniquely identifies namespace indicators.

• Is the potential position of syntax elements on the source line fixed?

The labels in C, for example, can occur only at the beginning of a line and are delimited by a colon.

• Can short sequences of tokens identify a syntax element?

An identifier which is not a keyword and is followed by the token ‘( ’ indicates a function invocation
in most languages.

Regarding the language independence of parsers it can be generally stated that on the coarse level of source
code understanding that we operate, the various programming languages mostly differ by the tokens used for the
delimiters. An adaption of the regular expressions for a new programming language is therefore straightforward
and can be automated in many cases. Some normalizations are however more complicated to adapt for another
language, some others are even particular to a language. Since the parsers are small they are written easily.

We are going to specify separate partial parsers, orrecognizers, for each element of the source model that we
want to filter or normalize. Assembling a set of partial parsers which are triggered by some anchor tokens
(for example the keywordclass in C++ triggers a recognizer for member functions and variables) has been
called fuzzy parsingin [Kop96]. Not integrating the different recognizers into a single grammar has a set of
advantages and disadvantages as discussed in Table C.1.
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Advantages Disadvantages
We do not have to write and maintain a com-
plete grammar which recognizes a program in
its entirety. Partial parsers are therefore more
robust and can deal, for example, with un-
preprocessed code.

A full grammar which recognizes the entire
structure of a program has better disambigua-
tion capabilities.

Recognizers for coarse entities can be writ-
ten concisely, especially since the more com-
plicated syntactic entities are mostly skipped.
Small specifications are easy to understand.

Reuse of grammar elements is more difficult.
This may lead, for example, to duplication oc-
curring in the specifications.

The areas ofinterestand ignoranceof differ-
ent recognizers will not align. For example,
whereas one recognizer detects function calls,
another skips everything within an array ref-
erence, even if it contains function calls. The
recognizer specifications are easier to write if
they can be formulated without being aware of
such overlaps.

Each recognizer needs its own pass over the
code. This is alleviated by the fact that a single
recognizer usually skips more than 90% of the
code.

Since the specification of a recognizer is easy
to understand and change, it is possible to tune
it ad hoc for the specific system that is in-
vestigated, without fearing to negatively affect
other recognizing tasks.

Table C.1: Advantages and disadvantages of having a set of small, independent recognizers instead of an
integrated grammar for normalization purposes.

As the tool to implement the recognizers we have chosen the regular expressions (RE) found in PERL 5. We
assume that many maintenance engineers already have a working knowledge of regular expressions, GREP

being still one of the most popular tools for software maintenance. Modern RE engines integrate many features
which overcome some of the shortcomings of traditional regular expressions: The PERL RE can be named
and therefore easily reused which makes the specification of entire grammars feasible. Also, recursive def-
initions can now be written which makes it possible to recognize nested and balanced structures using REs.
Filtering—removing completely—repetitive or nested structures, can often be achieved by re-applying a sim-
ple RE multiple times,i.e., expressing the repetition in the programming language and not in the RE itself.
Thanks to the tight integration between REs and PERL, recursion which is not permitted in the RE can be per-
formed in the programming language. This removes more complexity from the RE than it adds to the program.
This advantage is the benefit of the RE engine being embedded in a full programming language like PERL,
where every kind of supporting task can be programmed easily.

A recognizer implemented using a regular expression engine combines lexical and syntactic analysis. We apply
each of the recognizers individually to the source text, obeying some constraints for the order: comments and
literal strings have to be removed from the source text prior to identifier normalization.

An important topic when using a rewriting approach is to make sure that the transformed code can be mapped
back to the original code, the format in which we want to present the found clones to the engineers. The clones
are reported on the granularity of lines. If we retain all line breaks in the rewriting, the mapping is trivial.

We are going to present four different examples of recognizers:i) delimited text,e.g., commentary and literal
strings,ii) recognizers for nested structures,iii) recognizers for identifiers and function names, and foriv) type
casts.
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Chapter C Implementation of Normalization

Normalizing Delimited Text

Just as in a normal parsing pass, removing comments from the source text is the first step.

The following substitution recognizes comments from C/C++/JAVA programs. To be able to deal with spe-
cial cases like comment delimiters within literal strings, the scanner also recognizes strings. The variable
$sourceText holds the entire contents of a source file.

$sourceText =˜ m{
2 (

/\*.*?\*/ # recognize multiline comments
4 |

//.*?\n # recognize C++-style comments
6 |

" # recognize literal strings
8 (

\\. # do not choke on "\"" etc.
10 |

[ˆ\\] # recognizes all unescaped characters
12 )*?

"
14 |

’ # recognize literal characters,
16 \\? # do not choke on ’\n’ etc.

.
18 ’

)
20 }xgs

Normalizing Nested Structures

Traditional regular expressions are unable to match structures which are nested or require a balanced number
of delimiters [ASU86]. Current implementations of RE engines are however offering limited recursive capa-
bilities. In PERL 5 we can for example recognize nested expressions with the following RE. The matching text
is guaranteed to have balanced delimiters. The RE is given the name$expression so that it can be reused in
other grammar productions.

$expression = qr{
2 \( # opening parenthesis

(?:
4 (?> # Non-capture group w/o backtracking

[ˆ()]+
6 )

|
8 (??{$expression}) #group w/ matching parens

)*
10 \) # closing parenthesis

}x;

The$expression RE illustrates how shallow the required syntax understanding is: all the complex expres-
sions which potentially are found between the parentheses are skipped.
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With the same principle we can identify nested blocks:

$nestedblock = qr(
2 {

(?:
4 (?> [ˆ{}]+)

|
6 (??{$nestedblock})

)*
8 }

)x;

With the $nestedblock RE we can identify and filter away literal arrays, which when normalized usually
result in much uninteresting duplication:

$sourceText =˜ s /
2 (

\]\ s* # end of array typespec
4 (?:$identifier\ s*)? # name of array variable

(?:=\ s*)? # assignment
6 )

($nestedblock) # (multidimensional) array
8 (\ s*[;,)}]) # end of statement, parameter,

# parameter list, or block
10 /

"$1\{ \}$3" # filter array contents
12 /xeomg;

Using this RE we transform the left fragment into the right:

static unsigned long
crc_32_tab[] = {

0x00000000, 0x04c11db7,
0x09823b6e, 0x0d4326d9,
...

};

static unsigned long
crc_32_tab[] = { };

The$nestedblock RE can also be used to filter all code that lies outside of function bodies1, a quite drastic
normalization. The following RE removes everything outside of the top-level blocks.

$sourceText =˜ s /
2 \G # where the last match left of

.+? # uninteresting code
4 ($nestedblock) # a function body or type

/ # specification
6 $2

/xeomg;

With the$expression RE defined above (and its cousin$arrayaccess ) we can define a pattern that matches
any value which is represented as a single variable name, an array reference, or a function invocation:

$aValue = qr{
2 $identifier # the user defined name

(
4 $arrayaccess # an array reference

|
6 $expression # a function invocation

)?
8 }x;

1Note that problems may arise if block delimiters are not balanced due to conditional compilation.
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Chapter C Implementation of Normalization

With this library of REs we can recognize access chains and implement a filter which only retains the final
function or variable. The code on the left is then, for example, transformed into the code on the right:

thing.fetch()->text;
list[i]->next->message(&p);

text;
message(&p);

This can be achieved with the following PERL substitution statement:

$sourceText =˜ s /
2 $aValue # leftmost name

4 (?:
\ s*

6 (?:\.|->) # pointer or ref
\ s*

8 $aValue
)+ # can be a chain

10 /
getLastId($&)

12 /xeomg;

The functiongetLastId removes all but the last instance of$aValue in the chain:

sub getLastId {
2 my ($sourceText) = @_;

$sourceText =˜ s /$aValue(\.|\ s*->\ s*)//omg;
4 return $sourceText

}

Normalizing Identifiers

One of the most important elements of the source model are names of functions and variables. Distinguishing
the names of variables from the names of functions is useful since function names are much less volatile than
variable names and might therefore not be normalized. For many programming languages a function name can
be recognized by the parameter list that it is adjacent to. The first token of a parameter list is usually the ‘( ’.
The RE which recognizes names of functions is the following:

$sourceText =˜ s /
2 $identifier # normal identifier

4 (?= # look-ahead assertion, does not
# include matched text in $&

6

\ s* # optional white space
8 \( # start of parameter list

10 )
/

12 foo # generic function name
/xeomg;

For a language like FORTRAN, where the token ‘( ’ after an identifier introduces a parameter list as well as
access to an array member, we need a different expression however. In FORTRAN, function invocations are
introduced with the keywordCALL. They can therefore be recognized with the following expression:

$sourceText =˜ s /
2 (?i: # match ’call’ and ’CALL’

(?<CALL) # look-behind assertion, does not
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4 # include matched text in $&
)

6 (\ s+) # some white space

8 $identifier # normal identifier
/

10 $1.foo # generic function name
/xmeog;

The names of variables are then the strings which are not keywords and are not followed by a ‘( ’ token.
The regular expression presented below implements a scanner with lookahead one non-whitespace character
which recognizes identifiers in C code and replaces them with a generic token. A list of all the reserved
words of the programming language is needed to distinguish identifiers from keywords (the implementation of
replaceIfNotKeyword() , being only a comparison of strings with the keyword list, is not shown).

$sourceText =˜ s /
2 ((?>$identifier)) # no backtracking once matched

4 ( # Identifiers are followed
\ s* # by white space

6 )
/

8 # disambiguation between function
# and identifier names

10 if ( length $’ && substr($’,0,1) eq ’(’) {
$1.$2

12 } else {
replaceIfNotKeyword($1).$2

14 /xeomg;

Filtering Typecasts

Filtering the typecasts in a statically typed language like C is difficult because there is no unique token that is
involved in a typecast (to address this problem a recent C++ standard has introduced keywords for typecast
operators,e.g., dynamic_cast <> for navigating the class hierarchy). The general appearance of a typecast
can be specified like this (where$builtintype is a list of all types that the programming language provides
of its own).

$typecast = qr{
2 \(\s*

(?:$builtintype|$identifier)
4 (?:\s|\*|&|\[\])*

\s*\)
6 }x;

Since this pattern also recognizes C code likesizeof ( char *) which is not a typecast, we have to insert a sep-
arate disambiguation step after the match. The routine
hasIdentifierSuffix($string) returns true if the token before the typecast is not an identifier, which
would indicate that the entire syntax element is a function invocation2.

$sourceText =˜ s /
2 $typecast

/
4 hasIdentifierSuffix($‘) ? ’’ : $&

/xeomg;

2The exception from the exception is that a precedingreturn indicates again a typecast,e.g., return ( char *) -1;
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Chapter C Implementation of Normalization

Since type casts can frequently be enclosed in parentheses which are not removed by the above RE, the rewritten
code still differs from code which would have been written if no typecast was involved. On the left we have the
original code, on the right the code with type casts removed:

((MyThing &) list[i]).doit();
p = ((Widget *) getit())->var

(list[i]).doit();
p = (getit())->var

With another rewriting step we remove the superfluous parentheses. We take advantage of the regular expres-
sions$aValue defined above which matches any value, be it the result of an array reference or a function
invocation. We again have to make sure that no identifier precedes the match to avoid changing code like
foo(p) .

$sourceText =˜ s /
2 \(\ s*($aValue)\ s*\)

/
4 hasIdentifierSuffix($‘) ? $1 : $&

/xeomg;
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Appendix D

Source Locations

A software system consists of a collection of documents which contain source code in the form of a character
sequence. In order to delimit parts of the documents to identify source fragments, we need the notion of a
source locationwhich is the “address” of a single character in a given source document.

Definition D.0.1 (Source Location). A source locationp is a tuple(ln, cn) consisting in the line number ln
and the column number cn. The set of all source locations isS which can be totally ordered by first ln and
secondly cn.

Usually, source code detection techniques have a coarser granularity than the individual character as the defini-
tion above could indicate. Most approaches work on the level of tokens, expressions, or statements, and some
on the level of lines.

The notion of thesource fragmentdesignates a piece of source code which is an extract from a single source
document, a consecutive sequence of characters including all of the source text.

Definition D.0.2 (Continuous Source Fragment). A source fragmentf is a continuous sequence of charac-
ters1 between a start and stop location. It has the following attributes:

• Filename doc(f) locates the fragment in the set of source documents that make up the system.

• The location beg(f) designates where its text starts in the document.

• The location end(f) designates where its text ends in doc(f).

It always holds that beg(f) ≤ end(f). The characters at beg(f) and end(f) belong to the fragment.

Source fragments cancontainandoverlapeach other. The weaker of the two relations isoverlap:

Definition D.0.3 (Overlap between Source Fragments)Two source fragmentsf1 andf2 overlap, written

overlap(f1, f2)

if either
beg(f1) < beg(f2) < end(f1)

or
beg(f1) < end(f2) < end(f1)

The overlap relation is reflexive, symmetric, but not transitive.

1For approaches that work with token or line granularity the start and stop locations can be projected onto the token or line granularity.
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The stronger relation, thanks to transitivity, iscontainment:

Definition D.0.4 (Containment between Source Fragments)The source fragmentf1 contains the fragment
f2, written

contains(f1, f2)

if
beg(f1) ≤ beg(f2) ≤ end(f1)

and
beg(f1) ≤ end(f2) ≤ end(f1)

The contains relation is reflexive, transitive, but not symmetric.

Trivially, contains(f1, f2) ⇒ overlap(f1, f2) ∧ overlap(f2, f1).

If copied code is changed,i.e., statements are inserted and deleted, clones will consist of matching fragments
interspersed with non-matching parts. To be able to describe such clones as a collection of non-overlapping but
non-continuous fragments, we define the general source fragment:

Definition D.0.5 (General Source Fragment). A general source fragmentg is a tuple of continuous source
fragments

(x1, . . . , xn)

where
¬ overlap(xi, xj), 1 ≤ i, j ≤ n

Note that source fragments are arbitrarily delimited pieces, they do not have to align with syntactic borders like
blocks, statements or expressions. Such constraints can be established, if needed, later in the partitioning of the
system’s code or in the comparison process.
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Appendix E

Example Systems

These tables show the sizes of the systems that we have used for our experiments. The last eight systems in the
following table were used in the Bellon comparative study.1

System Size Language Origin
Files LOC

MAIL SORTING 101 39,000 C++ Industry
MFC 4.2 245 107,000 C++ Industry
ACCOUNTING 336 22,000 COBOL Industry
APACHE 1.3.20 141 65,000 C Open Source
JBOSS2.3 BETA 403 35,000 JAVA Open Source
BISON 54 14,000 C Open Source
DIFFUTILS 24 10,000 C Open Source
ZOPE2.4.0 417 74,000 PYTHON Open Source
AGREP2.04 22 12,000 C Academia
MULTIMARKE 70 7,000 JAVA Stud.Proj.

ECLIPSE-ANT 178 15,000 JAVA Open Source
ECLIPSE-JDTCORE 741 90,000 JAVA Open Source
SWING 538 97,000 JAVA Industry
NETBEANS-JAVADOC 101 8,000 JAVA Industry
WELTAB 39 9,000 C Industry
COOK 295 36,000 C Open Source
SNNS 141 61,000 C Academia
POSTGRESQL 322 127,000 C Open Source

1Available fromhttp://www.bauhaus-stuttgart.de/clones/ [May 15, 2005]
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[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views — a lightweight visual approach to
reverse engineering.IEEE Transactions on Software Engineering, 29(9):782–795, September
2003.

[Lei03] António M. Leitão. Detection of redundant code using R2D2. InProc. Third IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM), pages 183–192. IEEE, September
2003.

[Lin98] Dekang Lin. An information-theoretic definition of similarity. InProceedings of the 15th ICML,
pages 296–304, Madison WI, 1998.

[LLWY03] Arun Lakhotia, Junwei Li, Andrew Walenstein, and Yun Yang. Towards a clone detection bench-
mark suite and results archive. InProc. of the 11th International IEEE Workshop on Program
Comprehension (IWPC’03), pages 285–286. IEEE, May 2003.

[LM04] Arun Lakhotia and Moinuddin Mohammed. Imposing order on program statements to assist
anti-virus scanners. InProceedings of Eleventh Working Conference on Reverse Engineering
(WCRE’04), pages 161–170, Delft, the Netherlands, November 2004. IEEE Computer Society.

[LYW03] Junwei Li, Yun Yang, and Andrew Walenstein. Clone detector benchmark suite and results
archive. InProceedings IWPC 2003, Portland, Oregon, May 2003.

[MAK] Ettore Merlo, Giulio Antoniol, and Jens Krinke. Identifying similar code with metrics and pro-
gram dependence graphs. To appear.

[Mal99] Pietro Malorgio. An information mural visualization for duploc. Informatikprojekt, University
of Bern, July 1999.

[McC76] Edward M. McCreight. A space-economical suffix tree construction algorithm.JACM,
23(2):262–272, April 1976.

[McL71] A.D. McLachlan. Tests for comparing related amino-acid sequences. cytochromec and cy-
tochromec551. J. Mol. Biol., 61:409–424, 1971.

[Meh04] Michael Mehlich. Transformation systems for real programming languages. preprocessing direc-
tives everywhere. In Ying Zou and James R. Cordy, editors,Proceedings of the First International
Workshop on Software Evolution Transformations (SET), pages 25–28, Delft, the Netherlands,
November 2004.

[Mel96a] I. Dan Melamed. Automatic detection of omissions in translations. InProceedings of the 16th
International Conference on Computational Linguistics (COLING’96), Copenhagen, Denmark,
1996.

[Mel96b] I. Dan Melamed. A geometric approach to mapping bitext correspondence. In Eric Brill and Ken-
neth Church, editors,Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1–12. Association for Computational Linguistics, Somerset, New Jersey, 1996.

[Mel99] I. Dan Melamed. Bitext maps and alignment via pattern recognition.Computational Linguistics,
25(1):107–130, 1999.

174



“thesis” — 2005/6/13 — 13:54 — page 175 — #189i
i

i
i

i
i

i
i

Chapter E BIBLIOGRAPHY
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