
Scaleable Code Clone Detection

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Niko Schwarz
von Deutschland

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Scaleable Code Clone Detection

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Niko Schwarz
von Deutschland

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:
Bern, 7.02.2014 Prof. Dr. S. Decurtins

Acknowledgments

I’d like to dedicate this thesis to my wife, Katja Schwarz.
All results presented in this thesis are the result of collaboration. I have been

helped in various ways by many people, including Ed Tavinor, Adrian Kuhn,
Toon Verwaest, Erwann Wernli, Alexey Kolesnichenko, Aaron Karper, Simon
Vogt, Nicole Haenni, Cedric Reichenbach, Chenglin Zhong, Muyao Zhu, Mircea
Lungu, Romain Robbes, Yingnong Dang, Serge Demeyer, Irina Todoran and
Matthias Zwicker.

All results shown in this thesis are the result of my work at the Software
Composition Group, at the University of Bern, under the wise council of Oscar
Nierstrasz. It was his publications that attracted me to switch fromMathematics
to Software Engineering. Rarely did I choose so wisely. I am immensely grateful
for the opportunities he gave me by letting me join his group.

I feel that I owe special thanks to Michael Conradt and Lars Clausen. They
taught me many of the few things that I understand about computer science
during my internship at Google Munich in 2012.

I’d like to thank Michael Godfrey for refereeing this thesis and accepting to
be on the PhD committee.

i

ii

Abstract

Code clone detection helps connect developers across projects, if we do it on a
large scale. The cornerstones that allow clone detection to work on a large scale
are: (1) bad hashing (2) lightweight parsing using regular expressions and (3)
MapReduce pipelines.

Bad hashing means to determine whether or not two artifacts are similar
by checking whether their hashes are identical. We show a bad hashing scheme
that works well on source code.

Lightweight parsing using regular expressions is our technique of obtaining
entire parse trees from regular expressions, robustly and efficiently. We detail
the algorithm and implementation of one such regular expression engine.

MapReduce pipelines are a way of expressing a computation such that it can
automatically and simply be parallelized. We detail the design and implemen-
tation of one such MapReduce pipeline that is efficient and debuggable.

We show a clone detector that combines these cornerstones to detect code
clones across all projects, across all versions of each project.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Applicability . 3
1.3 Outline . 4

2 Related work 5
2.1 Index-based detectors . 5
2.2 Clustering detectors . 6
2.3 Techniques . 6
2.4 Challenge . 7

3 Information needs across projects 9
3.1 Research Method . 10
3.2 Qualitative Results . 10

3.2.1 Upstream needs . 12
3.2.2 Upstream Motivations . 13
3.2.3 Upstream Practices . 13
3.2.4 Downstream Needs . 13
3.2.5 Downstream Motivations 15
3.2.6 Downstream Practices . 16

3.3 Quantitative Results . 16
3.3.1 Upstream Information Needs 17
3.3.2 Upstream Motivations . 18
3.3.3 Upstream Practices . 18
3.3.4 Downstream Information Needs 18
3.3.5 Downstream Motivations 19
3.3.6 Downstream Practices . 20

3.4 Discussion . 20
3.5 Related Work . 21
3.6 Conclusions . 22

4 Bad hashing 23
4.1 Approach . 24

4.1.1 Type 1: Hashes of source code 24
4.1.2 Type 2: Hashes of source code with renames 24
4.1.3 Type 3: Shingles . 25

4.2 Empirical Study: SqueakSource 26
4.2.1 Space and time performance 27

v

4.2.2 Clones in the SqueakSource ecosystem 27
4.2.3 Multi-Version Analysis . 28

4.3 Discussion . 29
4.4 Conclusions . 29

5 Lightweight parsing using regular expressions 31
5.1 More powerful than standard regular expressions 32
5.2 Algorithm . 33

5.2.1 Thompson’s construction 33
5.2.2 DFAs . 36

5.3 Implementation . 41
5.3.1 DFA transition table . 41
5.3.2 DFA execution . 42
5.3.3 Compactification . 42
5.3.4 Intertwining of the pipeline stages 44

5.4 Benchmark . 44
5.5 Related work . 46

5.5.1 Motivation . 47
5.6 Conclusion . 48

6 Cells 49
6.1 Cells in a nutshell . 51

6.1.1 Codecs and cells . 52
6.1.2 Lookup tables and side outputs and inputs 53
6.1.3 Pipelines . 55
6.1.4 Post-processing using Sources 55
6.1.5 Counters . 55

6.2 Design rationale . 56
6.2.1 Debuggable . 56
6.2.2 Independent of MapReduce 57
6.2.3 Static type checking . 57
6.2.4 Predictable performance 58

6.3 Implementation . 58
6.3.1 Sharding and map execution 58
6.3.2 Lock-free shuffle . 59
6.3.3 In-memory Bigtable . 59
6.3.4 Column-lookup for HBase 59

6.4 Benchmarks . 60
6.5 Related work . 61
6.6 Conclusion . 62

7 Clone detector 63
7.1 Clone detection using bad hashes in a nutshell 64
7.2 Pipeline . 67

7.2.1 Mining the Internet for source code 67
7.2.2 MapReduce pipeline . 69

7.3 Discussion . 76
7.3.1 Precision and Recall . 76
7.3.2 Scale . 77
7.3.3 Lessons learnt . 77

vi

7.3.4 Future work . 77
7.4 Conclusion . 77

Bibliography 79

vii

Chapter 1

Introduction

Detecting code duplication in large code bases, or even across project bound-
aries, is problematic due to the massive amount of data involved. It is attractive,
since studying the code cloned between projects opens a window into developer
collaboration. The clones of a sample snippet of documentation likely finds typ-
ical uses of a library. A slightly modified code snippet in another project may
indicate a fixed bug in that snippet. Clones are connections between different
projects. Scaleable code clone detection provides a platform for helping devel-
opers collaborate between projects.

Software clones are not typically exact copies of each other, but rather start
as exact copies and then evolve in different ways, for a number of reasons in
accordance with the specific needs in their respective environments [49, 45].

Our approach follows the following scheme. An artifact is reduced to a hash,
and then an entry in a big table is stored, which maps that signature to its
origin. This storage scheme scales very well.

Since every artifact has at least one binary representation, the simplest sig-
nature is a hash of that representation. To allow for similar but different things
to be identified, the signatures are derived from abstractions, i.e., reductions of
the original artifact by stripping away minutiae [24] that are not important for
overall similarity. In this thesis, we show an abstraction that maps similar code
snippets to the same hashes. We call the technique mapping similar artifacts to
identical hashes bad hashing.

To eliminate the minutiae of source code, we must parse, which can be very
expensive. However, while regular expressions cannot fully parse source code,
they can approximate a correct parsing remarkably well, at a fraction of the
cost of full parsing, while simultaneously producing simpler parse trees. The
technique of producing parse trees from a single regular expression, we call
Lightweight parsing from regular expressions.

MapReduce pipelines are a way of expressing a computation such that it can
automatically and simply be parallelized. We detail the design and implemen-
tation of one such MapReduce pipeline that is efficient and debuggable.

This thesis suggests an algorithm to detect code clones across all Java
projects, across all versions, using the above ingredients. The algorithm is scaleable,
that is: it can handle growing amounts of work, simply by enlarging the sys-
tem [9].

We can now state our thesis as follows.

1

Thesis:

Code clone detection helps connect developers across projects, if we
do it on a large scale. The cornerstones that allow clone detection
to work on a large scale are: (1) bad hashing (2) lightweight parsing
using regular expressions and (3) MapReduce pipelines.

1.1 Motivation

Since the rise of internet-scale code search engines, searching for reusable source
code has become a fundamental activity for developers [70]. Developers use
search engines to find and reuse software. The promise of search-driven devel-
opment is that developers will save time and resources by using search results.
However, there are perils: the current practice of manually integrating code
search results into a local code base leads to a proliferation of untracked code
clones. As a side effect, bugs fixed in one clone typically do not traverse their
new environment anymore, and the same holds true for extensions and code
cleanups.

Even if they appear in the same project, code clones often cannot be elimi-
nated [49]. But oversights in consistently applying changes to clones may intro-
duce bugs into the system [29]. Therefore, tools have been proposed to maintain
links between code clones [39, 29, 89], but they fail to link clones that are be-
yond project boundaries. Codebook by Begel et al. [5], is a social network in
which people can befriend both other people and the artifacts they produce.
Codebook is intended to maintain links between clones, it is however unclear
how these links come into being. Begel et al. only vaguely suggest how that
should be done: edges are to be added between a definition and its likely clones.

This thesis is motivated by a scheme to initially create and then maintain
such links, called hot clones. While we have not implemented it in full, it shows
that adding scaleability to code clone detection leads to opportunities that were
previously unavailable. Thus, we view code clone detection as a platform to
connect developers across different projects.

Hot clones are to be used as follows. A code search engine assists the devel-
oper by integrating its results into the source code. The IDE then remembers the
origin of the code snippet and informs the repository that a clone was created,
thus creating a link between original and copy. We will refer to clones created
in this way as hot clones. Whenever a hot clone changes, the linked clones’
developers are informed and offered the option to update their instance. Also,
whenever a method is inspected, its clones can be inspected too, providing valu-
able information. The connections between clone instances are thus proactive
and bidirectional.

Since software diverges, it is important to search across all versions of known
software projects, in order to detect a hot clone. Once the same snippet was
found in two different places, it can be traced in both places individually, in
order to provide valuable feedback to the authors on both ends [77]. All methods
that contain the snippet are added to the hot clone. All future versions of the
method, whether or not they contain the original snippet, are now tracked in
the hot clone. Since this is possibly too inclusive, it is vital to give the user the
option to cut off the tracking of hot clones.

2

In the terminology of Koschke [51], this provides compensative clone man-
agement, i.e., we limit the negative impact of existing clones, but we also give
developers benefits from the software duplication introduced by clones by pro-
viding developers with information on how their code is used and modified.

The idea of hot clones scratches two itches. The first is to let developers
benefit from code cloning, and the second is to provide researchers with more
information on how cloning is used.

We believe that hot clones can ease backporting changes that occur in a
linked clone. We believe that during development, hot clones will provide im-
portant feedback to developers. Contrasting one’s own code with modified clones
will give hints to bugs in related code, usage patterns, and plain examples of
usage.

The nature of clones within a single software project has previously been
studied [45], but the evolution of code snippets copied from searches in software
projects has not. A prototypical implementation of hot clones would provide this
opportunity. Being able to track the further evolution of code snippets after they
are copied out of a search engine may give us great insight into the evolution of
code, beyond the classification provided by Kapser and Godfrey [45]. If used by
only a few developers, hot clones can provide insights from both a larger set of
data than before, and from a wider range of uses.

In this dissertation, we show a scaleable clone detector that creates hot clones
but is not yet integrated into development tools.

1.2 Applicability
Bad hashing and hot clones may apply to more than source code. For example,
reducing the resolution of a bitmap image is a simple way of abstracting away
minutiae that are unimportant for overall similarity (albeit this step alone is
probably insufficient).

This scheme is applicable in a much wider context. We can store the sig-
natures of all digital artifacts ever produced, in all of their versions. It maps
from the signature to a descriptor of the origin of the artifact. This allows one
to track the divergent evolution of software artifacts, as well as establish the
provenance of every artifact encountered.

A big database of signatures mapping to sources represents an invaluable
source for future research, going even beyond our use case of hot clones. As
a rule of thumb, with massive amounts of data to help, difficult problems can
suddenly become a lot easier [35]. The following are examples of where we think
a big database of signatures would be valuable.

• License compliance. An organization needs to identify the origin of the
software they create (either locally created or licensed) in order to verify
that it has satisfied any legal obligations.

• Security. The origin of a copy is likely to continue to evolve. It is important
to know if any of the copied artifacts contain security related bugs that
have been fixed after the copy was made.

• Verification of binaries. A customer who subcontracts somebody to de-
velop a software system might have received both source code and bina-

3

ries. In this scenario, the customer might want to verify that the binaries
provided come exactly from the provided source code.

• Plagiarism. The owner of the original artifact might want to verify if a
copy has been improperly made. In this scenario, the owner might want
to find copies of her software artifacts.

1.3 Outline
This thesis is structured as follows.

• In chapter 2, we give an overview of existing clone detection techniques.
The differences between our work and existing regular expression engines
and MapReduce pipelines are presented inline in the relevant chapters.

• In chapter 3, we report on an empirical study to gather the actual in-
formation needs of developers across repositories. We conclude that code
clone detection across repositories can help satisfy some of the information
needs.

• In chapter 4, we detail our approach to bad hashing, and report on an
empirical study on the prevalence of code clones across repositories. We
conclude that code clones are common enough to serve as links between
projects.

• In chapter 5, we show a technique to extract parse trees from regular
expressions. We show that full parse-trees can be produced from matching
regular expressions against input text. We conclude that this can be used
to robustly approximate full parsing of source code in linear time.

• In chapter 6, we show a MapReduce pipeline that makes large-scale soft-
ware easier to test and write.

• In chapter 7, we detail our approach to large scale clone detection. We
show how it combines bad hashing, lightweight parsing using regular ex-
pressions, and MapReduce pipelines.

Acknowledgements
The conceptual design of hot clones was the result of a collaboration with Adrian
Kuhn and Erwann Wernli [79].

4

Chapter 2

Related work

The literature defines three types of clones: type-1—identical source code du-
plication; type-2 clones may feature renames of identifiers; type-3 clones may
feature more extensive changes [73]. Bellon et al. categorize code clones as
follows [8]. Type-1 clones are defined as “identical code fragments except for
variations in whitespace, layout and comments”. Type-2 clones are defined as
“syntactically identical fragments except for variations in identifiers, literals,
types, whitespace, layout and comments” Type-3 clones are defined as “Copied
fragments with further modifications such as changed, added or removed state-
ments, in addition to variations in identifiers, literals, types, whitespace, layout
and comments”.

Cloning is common. 19% of the X Window System are clones[3]. Mayrand
et al. found that between 6.4% and 7.5% of a large telecommunication system
are type-1 clones. Jarzabek and Shubiao[43] go so far as to consider 68% of the
Java Buffer Library clones.

Cloning is common if code needs to be modified that one doesn’t own [23].
Rosson and Carroll [72] notice that sample code is used as a quick-start. Develop-
ing programs as modified clones of other programs is reported to be attractive
in the financial industry[17]. Rysselberghe and Demeyer [91] show that even
simple line-based clone detection is effective for refactoring. Rieger[71] gives an
overview of the tradeoffs that cloning entails.

The quality of a clone detector can be measured in precision and recall [7].
Precision measures the fraction of true clones among reported clones. Recall
measures the fraction of true clones that a detector can find.

There are two fundamentally different categories of clone detectors: clus-
tering detectors, and table- or index-based detectors. Let us discuss the two
categories in turn.

2.1 Index-based detectors

Index-based approaches, first suggested by Hummel et al. [40], save computa-
tion by not having a clustering stage. In their paper, Hummel et al. describe
how they implemented their own tables that could be queried in parallel using
MapReduce. Our approach can be viewed as a refinement of theirs in two ways:
first, Hummel’s approach is not data-local, but requires random lookups across

5

the cluster into a global table of methods during clone detection, making our
detector scale much better.

Keivanloo et al. [48] show that the index-based approach scales to entire
ecosystems. They build up a database of hashes for 18,000 Java programs. Their
hashes are created for 3 consecutive lines while our hashes are created based on
tokens. As a result we can detect type 3 clones that are generated by removing,
adding, or changing a single token whereas their approach requires that three
lines are exactly the same. Furthermore, they use their own storage of the index,
whereas we use an off-the-shelf database, HBase. This enables us to run elab-
orate queries, like “how much cloning exists between different projects” within
hours, even without the use of parallelization.

2.2 Clustering detectors

Traditional clone detection tools compute all pairwise distances of code frag-
ments and then cluster all code fragments based on these distances. A popular
example is CCFinder [44]. Livieri et al. [59] present an extension of the popular
clone detector that is distributed over several machines to improve its scaling,
named D-CCFinder, which they used to have 80 machines find all clones in
10.8 GB of source code in 51 hours.

Uddin et al. [90] show how simhashes can speed up the computation of
all pairwise distances. In their approach, in a first step, all source code is first
hashed, and then in a second step, all pairwise distances are computed from the
hashes only. Their approach still requires a third clustering step.

Krinke et al. [53] investigated cloned code in 30 projects of the Gnome suite
of programs. They found 3096 clone groups (8003 clones in total), and that the
probability of clones being copied between systems increased with the size of
the clones.

Chang and Mockus investigated source code reuse, with FreeBSD as a case
study (57,128 files, 492,583 versions, 7.5 GB). They compared several techniques:
identical file names, identical contents, trigrams, vector spaces, and abstract
syntax trees [15]. They found that a large number of reused files were detectable
based on file name only, and an equally large, but partially overlapping subset
had identical contents.

Davies et al. [24] present a technique for determining the origin of a library
based on the signature of the classes and methods inside. The signatures were
hashed with SHA-1 during corpus indexing. The approach scales to the size of
Maven (130,000 jar files, 150 GB), and was used to identify the version of the
majority of jar files used by a commercial application.

2.3 Techniques

The following techniques are helpful for detecting clones.
Broder [11] uses runs of 4 consecutive words—called shingles—to compute

the similarity of two documents. A subset of these runs is kept as the “sketch” of a
document; comparing two documents boils down to counting how many shingles
their sketches share. This gives a similarity metric: documents are considered
similar if their distance is lower than a threshold. Broder detected clusters in

6

30,000,000 web documents totaling 150 GB. Dig et al. use shingles encoding to
detect renamed methods across versions of software systems, in the context of
refactoring detection [26].

The idea of using bad hashes for clone detection was proposed by Baxter et
al. [4]. Their approach creates bad hashes for sub-trees of the ASTs of classes,
and thus requires full parsing of the source code in question.

2.4 Challenge
We distill as a challenge for a clone detector the ability to scale to arbitrary
amounts of source code, while achieving good precision and recall.

7

8

Chapter 3

Information needs across
projects

To build tools that use code clone detection to connect developers across differ-
ent projects, we need to understand the information needs of developers with
respect to other projects. A common relationship between the systems in a
software ecosystem is that of reuse based dependency: a library or framework
(the upstream) provides the required source code to another project (the down-
stream).

We present the results of an investigation into the nature of the information
needs of software developers across projects. In an open-question survey we
asked framework and library developers about their information needs with
respect to both their upstream and downstream projects. We investigated what
kind of information is required, why is it necessary, and how the developers
obtain this information.

We show that the downstream needs fall into three categories roughly cor-
responding to the different stages in their relation with an upstream: selection,
adoption, and co-evolution. Upstream needs fall into two categories: project
statistics and code usage. We show that to satisfy many of these needs develop-
ers use non-specific tools and ad hoc methods.

The needs are identified by means of an open-question survey[56]. The un-
derlying research questions are:

(RQ.a) What are the information needs of a software developer working in an
ecosystem context?

(RQ.b) Why is this information important to know?

(RQ.c) How do developers obtain this information?

The remainder of the chapter is organized as follows: In section §3.1, we
describe the methodology for this study which comprises both an open-question
survey and a closed-question online questionnaire. In section §3.2 we report
on the identified information needs, by listing and categorizing them, and by
showing a representative quotation to explain each. In section §3.3 we corrob-
orate and correct the identified information needs by presenting the support in

9

terms of agreement on Likert items. In section §3.4, we discuss our methodol-
ogy, research results, and highlight some possible future research directions. In
section §3.5, we show how our work fits in the vein of previous empirical studies
of developer needs. In section §3.6, we draw conclusions.

3.1 Research Method

To identify the needs of developers across projects, we interviewed several via
email and in person. We asked the respondents what their information needs
were corresponding to their upstream and downstream roles in the software
ecosystem in which they craft software.

In table 3.1, we list the survey questions. Our research question (RQ.a)
is split into questions 2 and 3 addressing respectively framework and library
developers, and developers depending on code from other projects. Questions
2 and 3 are further divided into three subquestions each, asking what kind of
information they need (RQ.a), why this information is important (RQ.b) and
how they obtain that information at the moment (RQ.c).

To analyze the answers we received as free-form text, we applied a grounded
theory methodology as introduced by Strauss and Corbin [84]. In this method-
ology, contrary to beginning with a pre-conceived theory, one is evolved from
the data, and continuously refined in an iterative process. The data analysis
includes coding strategies by breaking down the data collection from surveys or
other observations into similar units. The questions are formulated as openly as
possible and do not attempt to influence the participant in a certain direction.

We label each mentioned topic with an assigned code1 This process of qual-
itative data analysis is known as open coding [12]. By grouping similar codes
together we create axial coding categories and themes [84]. For each grouping,
we provide a one-sentence description. The results of the open coding and of
the axial coding are presented in section §3.2.

To triangulate the qualitative results we run a follow-up study in which we
verify our results in a closed-question survey, where the participants do not
answer with free text, but instead agree or disagree with the hypotheses we
present in section §3.3.

3.2 Qualitative Results

In this section, we present a list of codes that resulted from the open-coding pro-
cess. They represent the information needs, motivations, and current practices
of software developers working in an ecosystem context.

We shipped the email survey to a convenience sampled [60] group of 20
framework and library developers. The participants were neither offered nor
given compensation for their participation. Participants were assured of their
anonymity.

Of the developers asked, 65.0% responded. An additional participant gave us
the answers in person. All participants have at least seven years of academic or
professional experience. From the 14 answers, we collected initial codes to answer

1The term “code” refers to a recurring topic in the interviews, and should not be confused
with “source code.”

10

1. In what ecosystem are you most active?

2. Are you the developer of a framework or li-
brary?
If so, what is its name?

2.a What do you most want to know about
the use of your library/framework in your
ecosystem?

2.b Why would that be interesting to know?

2.c What do you currently do to obtain that
information, if anything?

3. Are you using a framework or a library in your
ecosystem? If so, name one.

3.a What do you most want to know about
the libraries/frameworks that you are us-
ing?

3.b Why would that be interesting to know?

3.c What do you currently do to obtain that
information, if anything?

Figure 3.1: The survey as shipped to the participants.

the questions in table 3.1. We assigned each participant a reference letter from
A through N. We explain our findings with quotations of the participants with
the corresponding reference letter.

The goal of the first question was to put the respondent into the right frame
of mind in which he would think about the broader context of his work and the
inter-dependencies of the systems he is working on. We do not analyze these
answers here, but let us mention that we had a variety of ecosystems centered
around different languages (Smalltalk, Python), technologies (Moose, SciPy),
and online source code repositories (SqueakSource2, Github3). Two respondents
mentioned two social websites (StackOverflow4 and Reddit5).

The notation we use is as follows. Every discovered code gets an identifier
(e.g., UN-1), denoting the anonymized participants that named it. We then
explain the definition of the code, and finally give a representative quote of the
code [56, p. 284].

The survey aims at capturing information needs that the developers of li-
braries and frameworks have. To corroborate the identified need, we ask for

2http://www.squeaksource.com
3http://www.github.com
4 http://stackoverflow.com
5http://reddit.com

11

http://www.squeaksource.com
http://www.github.com
http://stackoverflow.com
http://reddit.com

their motivations and current practices. We will list and discuss the codes we
extracted for each of the questions individually.

3.2.1 Upstream needs

This section discusses the information needs of upstream developers.

Code Usage

This grouping holds developer needs that detail how people use source code.

UN-2. API usage details. (B,F,J,K,L) Developers monitor the way the down-
stream is using the API and collect details about invoked methods and
their arguments. This provides insight into the effectiveness of an API and
its usage: “L: which parts of the code are actively used?” (L). A respondent
confirms: “I like to know how people are using my code in order to make
the framework better. It’s not just about minimizing the impact of changes,
but also about seeing what’s awkward, what features are used in conjunc-
tion and which independently, which areas are performance sensitive etc.”
(LS-57, UN-2).

UN-4. Runtime statistics. (B) Some developers want statistics about the us-
age of their library at runtime to help localize and fix failures: “which
API methods are called how often and which data is passed to them? How
often do they fail with an error?” (B).

UN-5. Code convention compliance. (E) This includes naming conventions,
indentation, comments and so on. A guideline would provide help for main-
tenance issues, consistency and readability. “Variation of lint rules in my
projects along the project history” (E) to ensure that downstream devel-
opers follow the conventions the developer set.

Project Statistics

This grouping holds the need for simple, descriptive numbers describing the
project.

UN-1. Downstream projects. (A,C,D,F,I) Developers want to know how their
code fits in the ecosystem. They want to know the number and nature of
their downstream projects, and for what purposes the downstream is using
a project: “I’d like to know what people build with my frameworks” (A).
Respondent (D) wanted to know number of passive downstream develop-
ers that track a project’s state. A respondent states “if people are making
downstream fixes it would be helpful to know this. So [the code changes]
can be merged.” (LS-42, UN-1/UM-3). :w

UN-3. Forked projects. (D,J,L) Developers want to know about the clones
of their work. With infrastructures like Github this is particularly easy to
do.

12

3.2.2 Upstream Motivations

This grouping holds the answers to question 2.b, representing the motivation
behind the stated needs.

UM-1. Strengthening self-esteem. (A,I,J,K) Pride in one’s work and project
motivates information needs. “It is a good motivation if a lot of people like
my code and build cool stuff on top of it” (A) and “it helps the self-esteem”
(A). Positive feedback and rising popularity keeps a developer motivated
and “gives inspiration and hints where to orient the project’s evolution”
(K).

UM-2. Maintaining downstream compatibility. (F,I,K) When developers
know how their clients use their framework or library, then they are able
to estimate the impact of code changes. If needed, they can notify down-
stream developers on how to stay compatible. A participant explains: “I
want to know [. . .] the impact [. . .] when I modify my source code” (K).
And another developer states: “I want my clients to know how the library
is being used and to assess the impact of possible changes” (F).

UM-3. Managing resources. (B,L) Discover unused functionalities to depre-
cate them out and to better distribute effort. “To conserve my resources.
If people don’t use a method or, a whole feature of the API, why maintain
it?” (B)

3.2.3 Upstream Practices

This grouping holds answers to question 2.c, representing current practices up-
stream developers use to fulfill their information needs.

UP-1. Mailing lists. (A,F,I,J) People with common interests subscribe to a
mailing list to keep up-to-date with a given issue. Problems and solutions
are asked and discussed through email communication with all subscrip-
tions.

UP-2. Repository analytics. (A,C,D) Some source code repositories provide
analytics for projects. GitHub provides information about forks, down-
loads, watches, etc. Even monitoring web traffic is of interest: “I observe
the web analytics of my project’s home page” (A).

UP-3. Monitoring ecosystem commits. (F) In some cases developers track
code changes to many projects of interest at once by monitoring news
services: “I am monitoring the RSS of SqueakSource [NB: which includes
updates on the changes to several hundreds of active projects]” (F).

UP-4. Social media. (A) Developers use social media tools (e.g., Twitter) to
publish the latest news about their project.

3.2.4 Downstream Needs

This section discusses the information needs of downstream developers.

13

Selection

This grouping holds the information needs of a developer during the process of
selecting an upstream.

DN-2. Available public support. (A,B,E,J) Developers want to know the
popularity of a framework “Are they popular enough to find support on
the web in blogs and on StackOverflow?” (B).

A related factor is the responsiveness of the developer team and associ-
ated community to provide support: “How likely are they to fix bugs and
to respond to feature requests” (B). “. . . whether there are bugs that were
left unresolved for a long time” (E). “As a developer (and user in cer-
tain cases), I want to be certain that the community is friendly, accepts
[newbies] and responds fast.” (LS-48)

DN-4. License type. (A,I,L) A common request is: “Is the license compatible
with ours?” (A).

DN-5. Implementation quality. (B,E) A potential client of a library wants
to know how robust its implementation is, how often it is updated, how re-
sponsive the developers are, and how fast the library is evolving. “Whether
[the project’s code] works or not” (E).

People want to know the level of activity around a library: “Whether they
[the libraries] are intensively maintained” (B).

DN-8. Comparison with similar upstreams. (A) Find related libraries and
frameworks that provide similar functionalities but are independently de-
veloped. “Comparison with similar frameworks” (A) gives the opportunity
to consider an alternative upstream.

Adoption

This grouping groups the information needs that pertain to a developer starting
to work with a new upstream.

DN-3. Documentation. (B,G,H,N) The potential users of an API require its
documentation: “I am basically happy with a good API documentation”
(B).

Some developers want to understand the internals of an upstream project
and thus require architectural documentation: “[. . .] expose connections
between high-level elements [. . .] what methods [. . .] of the packages invoke
each other” (N).

DN-7. Real contextual sample code. (C) Developers want example code snip-
pets that are extracted from other projects with similar functionality. “I’d
like to see example code extracted from other projects using the same libs
that corresponds to functions I’m trying to figure out how to use” (C).

Co-evolution

This grouping holds the information needs that arise from developers’ project
co-evolving with others.

14

DN-1. Upstream changes. (E,F,K,N) Developers want notifications of depre-
cations and substitutions that affect the API they use: “What has changed
since the last time I loaded [the library]” (K) and “if they deprecated some
methods” (N)
They might also care about the developers that make the changes: “who
changed what” (F).
Finally, when developers have a portfolio of projects, they care about how
a third-party upstream impacts it: “Which of my projects may be impacted
by some update of Pharo” (E).

DN-6. Compatibility with other systems. (L) A downstream client often
depends on multiple upstreams. They want to know whether an individ-
ual upstream works with the rest of the configuration. “Does the current
version [of the upstream] run on the version of the system I use [down-
stream]” (L).

3.2.5 Downstream Motivations
This grouping holds the answers to question 3.b, representing the motivation
behind the stated needs.

DM-1. API understanding. (C,F,G,I,L,M) Developers want to use function-
alities provided by the API right away. This is eased when API names
are intuitive and well documented. “To see whether I can construct on
the libraries or not” (F). A participant’s answer is that he would like “to
spend less time figuring out how to use new libraries” (C).

DM-2. Keeping up with upstream evolution. (E,I,J,L)
Developers of downstream projects want to keep up to date with upstream
changes. The only way to improve something is to know the existing prob-
lems and to know how it is expected to work (I). “To know whether I
have to update my projects or not” (E), e.g., if there are any new releases.
The same respondent correlates to the credibility of the upstream: “I am
interested to see if the change was performed by someone I trust” (E).

DM-3. Choosing the right upstream. (B,I) Choosing the right upstream will
impact the future of a project: “For example, [our testing framework] uses
JUnit 4, but later I learned that less than 5% of all users of JUnit use ver-
sion 4 and all others still use version 3. So we are stuck with a bad choice”
(B). Another developer argues: “. . . if I don’t know how to use [the library]
after an hour, I throw it away. I won’t look one single day into its code
just to see how to use it” (I).

DM-4. Influencing upstream. (B,J) Sometimes developers would like to mod-
ify the upstream to conform to their needs, but this is not always possible:
“Sometimes I need to collaborate and influence design of frameworks I use
and to ensure I can progress even if the maintainers I depend on are not
responsive” (J).

DM-5. Estimating the impact of changes. (F,H) Before updating to a new
version of the upstream, developers want to estimate the impact of changes.
They are “interested in what the change affected” (F).

15

3.2.6 Downstream Practices

This grouping holds answers to question 3.c, representing current practices
downstream developers use to fulfill their information needs.

DP-1. Monitoring news. (C,E,F,G,I,J) Developers read mailing lists and mon-
itor repositories for commits and activities to be up to date. Developers
monitor the RSS feeds of the upstream projects: “I am monitoring the
RSS of SqueakSource” (F).

DP-2. Searching the Internet. (A,B,C,G,H,I) Downstream developers search
the internet for the upstream developer’s website or third parties blogs and
tutorials. Before using a specific framework, downstream developers like
to play around and modify example code to see how it works.

Developers often estimate the relevance of a library by its popularity on-
line, and in programming related forums. “I look at the most popular tags
on Stackoverflow and pick that library” (B).

DP-3. Continuous integration. (F,K,L) Some developers commit code changes
to the project repository several times a day. As one respondent states,
“I am building regularly to ensure that at least things still work” (F). This
supports fast deployment and uncovers compatibility problems in early
stages.

DP-4.Unit tests. (E) I load the latest upstream version and run my unit tests.

3.3 Quantitative Results

We continued our study by verifying our results in a closed-questioned online
survey6. This time, the participants do not answer with free text, but instead
their answers range from full disagreement to full agreement on a series of nu-
merical 5-point Likert items [58, 56]. The qualitative results from section §3.2
serve as an initial position to formulate suitable statements. For each code, we
formulate at least one statement. If applicable, we used quotations from the
participants.

A total of 68 Likert item questions were asked; 32 questions (Q1.1–Q3.5) to
upstream developers and 36 questions (Q4.1-Q6.7) to downstream developers.
Furthermore, we asked several pre-survey questions about developer background
and three voluntary open-ended post-survey ones.

After testing a pilot version of the survey, we advertised the survey in var-
ious mailing lists: Open JDK, Processing.js, jQuery, CakePHP, SciPy, NumPy,
Pharo, Squeak, Seaside, Drupal, Coreaudio, Apache Hadoop, Apache Cassan-
dra, Google WebToolkit, Ubuntu, Soot and Zend Framework.

We received 75 responses, 46 were framework and library developers and
29 were framework and library users. Even though no response rate could be
determined, we reached participants across the world (46% from Europe, 32%
North America, 8% from Asian, 6% from South America, 4% from Australia
and 1% from Africa).

6The exact survey is available at http://goo.gl/q2ABRd

16

http://goo.gl/q2ABRd

The professional experience of respondents is distributed as follows: 29%
have 5-10 years, 22% have 11-20 years and 22% have more than 20 years. 17%
have less than 5 years experiences and 10% have not answered.

3.3.1 Upstream Information Needs

Let us discuss the needs identified in the qualitative analysis in section §3.2.

Code Usage

The responses to our questions on code usage-related information needs can be
seen in figure 3.2.

Q1.1. The usability of my API. (UN-2)
Q1.2. Which API methods are called. (UN-2)
Q1.3. How the library is being used to asses the impact on changes. (UN-2)
Q1.4. Unused methods and functionalities. (UN-2)
Q1.5. How often a method gets called. (UN-4)
Q1.6. API failure statistics. (UN-4)
Q1.7. What arguments a method is typically invoked with. (UN-4)
Q1.8. Highly often used methods are better maintained by me. (UN-2 / UM-3)
Q1.9. The order in which the API methods are called. (UN-2)
Q1.10. If users follow the coding conventions I set. (UN-5)

Strongly Disagree Disagree Neither Agree Strongly Agree

I need to know ...

Figure 3.2: Downstream code usage.

The information need with the highest confirmation rate was “API usage
details” (UN-2). The most agreed upon statement for developers was that they
want to know the usability of their API. The next was more detailed: what
methods are called by users followed by what methods are not used.

The importance of “Runtime Statistics” (UN-4) is less supported by devel-
oper feedback. The developers that care about this, care about API failures and
the type of data that flows through their programs.

The least agreed upon need is code convention compliance (UN-5).

Project statistics

The responses to our questions on project statistics-related information needs
can be seen in figure 3.3.

Q1.11. Know what people build with my framework. (UN-1)
Q1.12. Know whether people migrate to the latest version of my library. (UN-1)
Q1.13. Know who tracks my project. (UN-1)
Q1.14. Know the number of downloads. (UN-1)
Q1.15. Know all my downstream projects. (UN-1)
Q1.16. Know if many people like my code. (UN-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

I want to ...

Figure 3.3: Downstream project statistics.

The information need “downstream projects” (UN-1) received strongly pos-
itive feedback. The most-agreed-upon statement was that developers need to
know what clients build with their code.

17

3.3.2 Upstream Motivations
The responses to our questions on code upstream motivation can be seen in
figure 3.4.

Q2.1. I want to provide help to clients. (UM-2)
Q2.2. I want to notify clients of changes ot maintain compatibility. (UM-2)
Q2.3. I follow my own vision of the project. (UM-2 / UM-1)
Q2.4. It keeps me motivated if a lot of people like my code. (UM-1)
Q2.5. It helps the self-esteem if a lot of people like my code. (UM-1)

StronglyDisagree Disagree Neither Agree Strongly Agree

I (don't) need to know these things because ...

Figure 3.4: Upstream motivations.

The motivation “strengthening self-esteem” is slightly less supported than
“maintaining downstream compatibility”, though both are strongly supported.

3.3.3 Upstream Practices
The responses to our questions on practices can be seen in figure 3.5.

StronglyDisagree Disagree Neither Agree Strongly Agree

Q3.1. I follow Mailing lists. (UP-1)
Q3.2. I follow Social media. (UP-4)
Q3.3. I use Web analytics (e.g. Google Analytics). (UP-2)
Q3.4. I use RSS Feed Notifications. (UP-3)
Q3.5. I track the clones of my framework. (UP-2)

To obtain information about my downstream users, ...

Figure 3.5: Current practices by upstream.

The statement that got the strongest support was that developers follow
mailing lists in order to learn about the way their code is used. The other state-
ments received generally negative feedback, indicating either that we overlooked
existing tools and practicing, or that such tools do not exist.

3.3.4 Downstream Information Needs
In this section, we address all developers that work in a downstream context.
Upstream developers were also asked to take part in the role as a downstream
developer.

Selection

The response to our questions on selection-related information needs can be
seen in figure 3.6.

For the information need “Implementation quality” (DN-5), developers agree
that knowing whether or not a project works is important for selecting it.

The information need “Available public support” (DN-2) is mostly supported,
but we see that respondents are discordant as to whether or not it is important
to know who the developers are. The information need “Comparison with similar
upstreams” (DN-8) is strongly supported. The information need “License type”
(DN-4) is strongly supported.

18

Q4.1. Whether the project's code works. (DN-5)
Q4.2. How intensively the project is maintained. (DN-2)
Q4.3. Pros and cons of related frameworks/libraries. (DN-8)
Q4.4. How responsive the support team is. (DN-2)
Q4.5. The software license. (DN-4)
Q4.6. The popularity of the project. (DN-2)
Q4.7. Who the upstream developers are. (DN-2)
Q4.8. Whether it takes more than an hour to get started. (DN-5)

StronglyDisagree Disagree Neither Agree Strongly Agree

I need to know ...

Figure 3.6: Downstream selection.

Adoption

The response to our questions on selection-related information needs can be
seen in figure 3.7.

Q4.9. Code examples help to learn a project's design. (DN-7)
Q4.10. Up-to-date API and design documentation. (DN-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 3.7: Downstream adaption.

The information needs “Documentation” (DN-3) and “Real contextual sam-
ple code” (DN-7) are strongly supported. None of the respondents disagreed with
either of the two statements regarding code examples and API documentation.

Co-evolution with an upstream

The response to our questions on co-evolution-related information needs can be
seen in figure 3.6.

Q4.11. Details about which methods and classes have changed. (DN-1)
Q4.12. I want to know the impact before I update to the latest version. (DN-1 / DN-6 / DM-5)
Q4.13. I only want to get notified on code changes when my code is affected. (DN-1 / DM-2)

StronglyDisagree Disagree Neither Agree Strongly Agree

Figure 3.8: Downstream co-evolution.

The information need “Upstream changes” (DN-1) is supported. Developers
are interested in details about which methods and classes have changed and
whether these changes have an impact on their own source code.

3.3.5 Downstream Motivations

The response to our questions on motivation can be seen in figure 3.9.
Our identified motivations “Choosing the right upstream” (DM-3), “API un-

derstanding” (DM-1), “Keeping up with upstream evolution” (DM-2) are all
inconclusive.

Motivation “Estimating the impact of changes” is supported. Developers
agree that they avoid code adaptation if the estimated time is excessive.

19

Q5.1. I avoid code adaptation if the estimated time is excessive. (DM-5)
Q5.2. It is painful to track dependencies among packages. (DM-1)
Q5.3. I stay with the running version as long as possible. (DM-5)
Q5.4. I am curious if code changes are made by someone I trust. (DM-2)
Q5.5. I only use a widely used version of a library. (DM-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 3.9: Downstream motivation.

3.3.6 Downstream Practices

The response to our questions on selection-related information needs can be
seen in figure 3.10.

Q6.1. Searching for blog posts and tutorials. (DP-2)
Q6.2. Building regularly to ensure things still work. (DP-3)
Q6.3. Subscribing to mailing lists to keep up-to-date. (DP-1)
Q6.4. Monitoring commits and activities of a project repository . (DP-1)
Q6.5. Tracking bug reports. (DP-2)
Q6.6. Using unit tests to understand how to use an upstream project. (DP-4)
Q6.7. I update as soon as changes are released on upstream projects. (DP-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 3.10: Current practices by downstream.

Current practice “Monitoring news” (DP-1) is supported. Developers sub-
scribe to mailing lists. Current practice “Searching the Internet” (DP-2) is
strongly supported. Developers routinely search for blog posts and tutorials.
Current practice “Continuous integration” (DP-3) is supported. Developers rou-
tinely run integration tests. Current practice “Unit tests” (DP-4) is inconclusive.

3.4 Discussion

Threats to validity. Since our questionnaire does not use balanced keyin [16],
and therefore is subject to acquiescence bias. This hinders any further statistical
analysis, since we cannot separate acquiescence bias from actual agreement. We
therefore attempted no aggregation over Likert items. We have not confirmed
the that the Likert items we chose operationalize the information needs that
we are interested in. Since our test population was convenience sampled, the
generalizability of our study is limited.

Our qualitative research method based on grounded theory does not guaran-
tee completeness of our results [56]. Most of the results depend on the selected
participants and their opinion and experience.

Tools currently addressing information needs. We identified two cate-
gories of information needs of upstream developers: project statistics and code
usage. Today’s tool support and practices are well-supported with respect to the
first need (project statistics) but fail to support the second need (code usage).

Version control system and hosting platforms like GitHub offer functional-
ities to get information about number of downloads, number of followers [22].
However, information needs pertaining to API usage are ill-supported. Tools
should offer method and parameters calls and function changes.

20

Code clone detection. Code clone detection on a large scale can directly
answer many of the identified information needs. Finding exact duplicates of an
entire library indicates that the library is used as-is in another project, yielding
an important run-time statistic. The number of clones inside of a project may
be indicative of the implementation quality. The most frequent clones of all are
licenses. This gives us a complete list of all commonly used license templates.
Finding their clones in all projects allows us to auto-detect the license of all
projects.

Finding type-3 clones with the documentation of a project is likely to find
projects that used the code samples from the documentation as a starting point.
This gives sample code. Real, contextual sample code is found in the type-3 clones
of the call sequences of the methods of a library. Knowing from clone detection
where a library was taken from allows us to inform developers of upstream
changes.

Even more importantly, scaleable code clone detection can be used as the
platform for more specialized tools addressing these needs. For example, finding
call sequences may need to use another way of bad hashing than finding edited
copies of text.

3.5 Related Work

Sillito et al. [82] identify 44 questions developers ask when changing a software
task. They are specific to their single-system task and refer to implementation
details (e.g., method calls, data structures, type hierarchies). Four categories
could be found. They assume the project’s source code can be represented as a
graph; with software artifacts as nodes and references or relationships as edges.

Ko et al. [50] conducted a study in finding information needs in develop-
ment teams. They collected their data by recording questions developers posed
during their daily programming tasks. Their findings include 21 different types
of information in seven categories. The majority refer to knowledge of software
artifacts or co-workers.

Seichter et al. [81] examine an information retrieval management system
for software artifacts to improve collaborations. Inspired by social networks,
they propose different kinds of relationships to interconnect software artifacts
within a software ecosystem. They define types of interactions but do not declare
specific information needs.

Begel et al. [6] propose Codebook as a code-based social networking web
service that helps developers get information about other activities of their
colleagues. They asked programmers inside Microsoft company about inter-team
collaboration problems. They identified and grouped 31 information needs into
eight categories: “change notification, finding dependents, finding other people,
finding artifacts, awareness of other teams, artifact history, working planning
and social networking”.

They discovered that programmers are often interested in finding the people
responsible for certain parts of the code base. In our case, the respondents were
less interested in who wrote the code, but more interested in its quality and
functionality. Their solution, Codebook, serves as a social networking tool to
connect developers together with software artifacts.

21

Phillips et al. [66] identify information needs to integrate branched ver-
sion of a software project. They found four needs: Identifying conflicts before
they arise, monitoring features with their dependencies, tracking measured data
about number of bugs, test results etc..

In contrast, our study studies the information needs of upstream and down-
stream developers across projects.

3.6 Conclusions
Our study suggests that upstream and downstream developer needs in a software
ecosystem are different and that the downstream needs are more numerous.

The following information needs, motivations behind them, and current prac-
tices to alleviate them were identified, and found support in quantitative anal-
ysis: Upstream developers wish to see “Runtime Statistics” on their code. They
are interested in their “downstream projects”. Upstream developers’ information
needs are motivated by “strengthening self-esteem”, and “maintaining down-
stream compatibility” Currently, they satisfy their needs by “following mailing
lists”.

Downstream developers were found to have a different set of information
needs, motivations, and practices. About the code and projects they depend
on, they wish to know “Implementation quality”, “Available public support”,
“Comparison with similar upstreams”, “License type” Downstream developers,
when adopting a new dependency, need to know “Documentation” and “Real
contextual sample code”. In the face of co-evolving dependencies, they wish
to be informed of “Upstream changes”. Downstream developers’ information
needs are motivated by “Estimating the impact of changes”. Current practices
to fulfill their needs are “Monitoring news”, “Searching the Internet”, “Continuous
integration”, and “Unit tests”.

Code clone detection on a large scale can directly answer many of the iden-
tified information needs. Where it cannot directly answer them, it can serve as
a platform to build tools to answer them.

Acknowledgments
This chapter is based on work I did with Nicole Haenni, Mircea Lungu, and
Oscar Nierstrasz [34].

22

Chapter 4

Bad hashing

Detecting code duplication in large code bases, or even across project bound-
aries, is problematic due to the massive amount of data involved. Large-scale
clone detection also opens new challenges beyond asking for the provenance of
a single clone fragment, such as assessing the prevalence of code clones on the
entire code base, and their evolution.

We propose bad hashing as a technique that may scale up to very large
amounts of source code in the presence of multiple versions.

We report on a case study, the SqueakSource ecosystem, which features thou-
sands of software projects, with more than 40 million versions of methods, across
more than seven years of evolution. We provide estimates for the prevalence of
type-1, type-2, and type-3 clones in SqueakSource.

Detecting clones in source code is computationally expensive and does not
easily scale up to massive amounts of data such as when analyzing entire soft-
ware ecosystems. On the other hand, counting identical duplicates, even in large
amounts of data, is computationally less expensive. It has been shown that in-
dexing source code fragments based on the result of a hashing function, is a
promising approach to achieve good performance when large amounts of source
code must be handled [48]: The problem of finding snippets of similar source
code can be reduced to finding identical hashes, if the hash function is “bad”—
generates collisions on similar documents.

Current hash-based approaches to clone detection handle only type-1 and
type-2. In this chapter, we provide hash functions for type-1, type-2, and type-3
clones which exhibit reasonable detection accuracy.

Beyond mere clone detection, exploiting the results is a challenge. Most ap-
proaches focus on finding the clones of a given code fragment efficiently. In
contrast, we store all hashes of the analyzed corpus in one database. This ded-
icated infrastructure handles large quantities of clone groups, and allows us to
answer cloning-related questions at the level of ecosystems, such as “how much
cloning exists between different projects?”, in contrast to simply searching for
the clones related to one fragment. Similar holistic queries include analyzing the
successive versions of a given piece of code to detect the origin of a clone among
several copies: the version that appeared the first in a software repository is
likely the original clone [49].

In this chapter, we show how bad hashes, i.e., hashes where similar items
collide on the same hash, can identify clones corresponding to each criterion

23

(type-1, type-2, and type-3 clones), and how the analysis must be tailored to
the versioning system in use. We use it on the entire history of an open source
software ecosystem, SqueakSource which features thousands of projects and tens
of thousands of versions in a total of 47 GB of uncompressed source code, or
579 MLOC, to answer holistic queries about clones.

Contributions. The contributions of this chapter are threefold:

1. Three bad hashes that can be used to find cloned methods across an entire
ecosystems.

2. An evaluation of the three detection techniques in terms of performance
on a real-world software ecosystem which demonstrates their scaleability:
running the analysis on 47 GB of source code takes hours.

3. We show that a large amount of code is duplicated, and that clone groups
can feature hundreds of members across many projects.

4.1 Approach
To handle large amounts of data, we took Broder’s [11] similarity metric and
modified it towards greater speed. Instead of a distance metric, we compute
bad hashes of the source code of each method. We compute three hashes: one
for type-1 clone detection, another for type-2 clones, and one for type-3 clones.
Detecting code duplication in an index is fast, because it does not involve cluster
editing. We define the following bad hashes, one for each clone type.

4.1.1 Type 1: Hashes of source code
Type-1 clones are defined as “identical code fragments except for variations
in whitespace, layout and comments” [8]. However, identifying comments is
language-specific, and want to stay language-independent if possible. On the
other hand, if we find a literally copied comment of substantial size, then this
provides strong evidence of cloning having happened. It seems negligent to ig-
nore the information. In our approach, we therefore do not ignore comments.

We define our bad hash such that two documents are detected as type-1
clones iff they differ in nothing but white-space. The charm of this definition is
that to find type-1 clones, it is enough to tokenize the input using the regular
expression /s+/, concatenate the resulting tokens delimited by a separator, and
then compute the SHA1 hash1 of the resulting string. Then, two snippets are
detected as type-1 clones iff they produce the same hash.

4.1.2 Type 2: Hashes of source code with renames
Type-2 clones are detected as “syntactically identical fragments except for vari-
ations in identifiers, literals, types, whitespace, layout and comments” [8]. We
use the following bad hash: Two documents are detected as type-2 clones iff
they are type-1 clones after every sequence of alphabetical letters is replaced by
the letter “t”, and all sequences of digits are replaced with the number “1”. For
an example, see Table 4.1.

1SHA1 hashes are cryptographic hashes. Cryptographic means that we can assume them,
for all practical purposes, to never collide.

24

Table 4.1: Example normalization of type-2 clones.
Source Normalized

myGetProviderFor: aSymbol
|bound|
bound := bindings at: aSymbol
ifAbsent: [^nil].

self assert: bound notNil.
^ bound

t: t |t| t := t
t: t t: [^t]. t
t: t t. ^ t

This is the same definition that has been successfully employed in detecting
plagiarism [10] and it is computationally inexpensive. While this definition ap-
pears to be inclusive, as we will see in Table 4.3, it catches barely more clones
than there are type-1 clones.

4.1.3 Type 3: Shingles

Type-3 clones are defined as “Copied fragments with further modifications such
as changed, added or removed statements, in addition to variations in identi-
fiers, literals, types, whitespace, layout and comments” [8]. This definition leaves
open just how much “further modification” is tolerable; clearly, it appeals to the
intuitive sense of similarity. Broder [11] reports that defining resemblance based
on shingles matches the intuitive sense of similarity in examining their data. We
use this shingles-resemblance, which works as follows:

Let a “shingle” be a consecutive sequence of w tokens in a document, after
the document has been transformed according to the rules of type-2 clones.
The “sketch” of a document is a subset of shingles selected to represent the
document. The last definition hinges on selection of shingles into a sketch of a
snippet. Let s be the set of all (possibly overlapping) runs of four consecutive
tokens of a snippet. Now compute the SHA1 hash of all elements of s and discard
all elements whose hash’s binary representation does not end in “11”. The set of
remaining elements of s is the hash. This definition selects roughly a quarter of
all the elements of s, since the digits of the binary representation of a hash each
have an independent chance of 1/2 to be ‘1’.

We use the following bad hash. Two documents are detected as type-3 clones
if and only if they have the same sketch. By selecting only a subset of all the
shingles two methods can be detected as similar even if they do not share all
shingles. Also, their shingles do not need to appear in the same order to be
detected as similar. While the selection should be random so as to not favor
certain shingles over others, a document should also be equal to itself. Select-
ing shingles based on the bit representation of their hashes achieves just that.
Table 4.2 presents an example.

Note that it is not necessary to keep the shingles that make up the sketch.
Rather, we can XOR them into one hash, which is a measure for whether or
not two sketches are equivalent. This allows us to compute whether or not two
documents are type-3 clones by checking whether their hashes are equal. Since
clones that are too short are meaningless, we consider only documents that are
at least 16 tokens long in our implementation.

While our definition of a type-3 clone is equivalent to Broder’s Option B
predictor with parameters w = 4, m = 4 [11, Theorem 1], it works differently.

25

Table 4.2: Example normalization of type 3 clones. The underlined shingles are
selected, because their binary representation ends in ‘11’. We only show the last
4 hex digits of hashes.

Normalized Shingles hashes

t: t |t|
t := t
t: t t:
[^t]. t
t: t t. ^
t

t: t |t| t, t |t| t :=,
|t| t := t, t := t t:,
:= t t: t, t t: t t:,
t: t t: [^]., t t: [^]. t,
t: [^]. t t:, [^]. t t: t,
t t: t t, t: t t. ^,
t t. ^ t

bd2d, c80b,
a3f8, 11b5,
6951, 4f55,
a43b, 8f58,
f7d2, d549,
bcee, fbe7,
84f4

Choosing only hashes that end in a certain bit pattern is proposed by Broder
in an attempt to estimate the true resemblance, for which it is an unbiased
estimate. Thus, he selects a subset of all shingles to improve performance and
not, like us, to allow for deviation between similar code snippets.

Our definition chooses an expected quarter of shingles by looking for those
whose hash ends in the binary pattern ‘11’. This was done to give every source
code modification a chance of being detected. If, for example, we were to demand
that we keep at least one shingle per line, then all changes that lead to different
shingles in all lines, for example by prefixing every line with //, are undetectable.

There is an obvious downside to our definition: since we define only one hash
per method, we are incapable to detect clones at the sub-method level. Obvi-
ously, this limits the recall of this approach. We’ll see a refinement in chapter 7.

4.2 Empirical Study: SqueakSource

We used our approach to detect code duplication across repositories on Squeak-
Source (http://www.squeaksource.com); SqueakSource was the de-facto stan-
dard code repository in the Smalltalk ecosystem. In June 2011, SqueakSource
contained 2705 projects created by 3188 contributors over 7 years.

Each SqueakSource project is an individual repository. The version control
system SqueakSource uses, called Monticello, creates a snapshot of the program
(or package, depending on coding conventions) at every commit. The snapshot
contains all of the program source code in a zipped text file, as a sequence
of method definitions; this makes the method the natural granularity for our
approach. SqueakSource amounts to a grand total of 47 GB of uncompressed
data.

Projects in SqueakSource often include complete duplications of packages
from other projects they depend on in their own repositories. The duplicated
package has the same name as the original. This happens whenever a devel-
oper marks his own repository to depend on another repository. However, once
stored, one cannot distinguish anymore between packages that directly belong
to a project and those that come from the outside. Whether this inclusion of
dependencies qualifies for code duplication or not may well be discussed. How-
ever, measuring it would report on the workings of Monticello more than on
the behavior of developers. Therefore, while we stored all packages, regardless

26

http://www.squeaksource.com

of origin, we tweaked our analysis to consider two methods to be cloned only if
they were found both in different projects, and in differently named packages.

We compute and store all hashes of all versions of all methods and classes
published on SqueakSource. We obtain a table in which each every hash is stored
together with the clone-type it represents, and the places where it was found (a
place is a tuple consisting of project, version, class, and method).

4.2.1 Space and time performance

We read a total of 22,641,865 method strings, which boil down to 560,842 dif-
ferent methods and 74,026 classes. For our purposes, similar to how Monticello
stores class definitions, a class is merely the set of its methods, thus ignoring
the inheritance hierarchy. For each method string, as well as for every class, we
compute three hashes, one for each clone type. The data weighs in at merely
3.2 GB. However, due to alignment issues, they take significantly more space in
memory. We store all hashes and method descriptors in a Postgresql database,
where the data occupies 20 GB of space.2

Computing and storing all the hashes for the three techniques took 4:45
hours for all of SqueakSource (47 GB), on an 8 core Xeon at 2.3 GHz with
16 GB of RAM, using the Ruby 1.9.1 interpreter. Creating database indexes
for every column took another 3 hours in total. Detecting code duplication
across all projects then took only 2 hours. However, this also counted code
duplication caused by the automated copying of Monticello, rather than willful
code duplication. Removing these uninteresting clones was done with a database
query that took another 10 hours of computation time. In contrast, the D-
CCFinder experiment ran a single clone detection technique on 7.5GB of data
for 51 hours, on 80 machines [59].

What makes our approach lightweight, in comparison, is the lack of a ded-
icated clustering stage. Defining similarity as an equivalence relation makes
clustering trivial.

Since on more than twice the amount of data, and on ten times fewer cores,
all three techniques together ran seven times faster, we can conclude that our
lightweight approaches kept their promises regarding scaleability.

4.2.2 Clones in the SqueakSource ecosystem

Table 4.3 shows the percentage of all methods across all versions and projects
that were cloned in another project. We see that regardless of type, at least
14.5 % of all methods are present in at least two distinct repositories. Classes
are cloned less frequently: only 0.16 %, or 115 classes in an entire repository,
of all classes of all versions are straight copies from another package in another
repository.

The table presents only a small increase in prevalence from type-2 clones
to type-3. This shows that our definition of type-3 clones is rather restrictive.
The reason for this is the following: if any one token changes, or is removed or
added, then at most 4 shingles are removed from the document, and at most
4 are added. The chance of each shingle’s hash to be part of the sketch is 1/4.
If none of the 4 removed shingles and none of the 4 added shingles is part of

2The database can be accessed here: http://scg.unibe.ch/research/hot-clones.

27

http://scg.unibe.ch/research/hot-clones

Table 4.3: Percentage of cloned methods and classes out of 560,842 methods and
74,026 classes on SqueakSource.

Type 1 type-2 Type 3

Percentage of cloned methods 14.55 % 16.33 % 17.85 %
Percentage of cloned classes 0.16 % 0.19 % 0.21 %

the sketch, then the sketch does not change. The chance of that happening is
(3/4)8 ≈ .1. This is somewhat balanced by the fact that the 4 added and removed
shingles don’t have to be different, and that at the start and end of a document,
changes involve fewer shingles. The high chance of the sketch changing explains
why our working definition of type-3 clones in section §4.1.3 clones is much more
restrictive than it appears.

5 10 20 50 100

10

100

1000

104

Figure 4.1: Distribution of clone group sizes for type 1 clones. The x-axis is the
size of the clone groups; the y-axis is the number of clone groups of that size
across the ecosystem.

Figure 4.1 shows the distribution of type 1 clone groups according to their
size. The distribution resembles a Pareto distribution. The median number of
projects a cloned method is in is 3. There are large numbers of small clone
groups, and few large clone groups. Note that some clone groups are very large,
featuring hundreds of identical methods (in the case of type-1 clones). This is
evidence that there are massive amounts of duplication in the ecosystem.

4.2.3 Multi-Version Analysis
We computed how many clones we would have missed using our approach, had
we only looked at the latest versions of packages. Ignoring previous versions is
plausible at first since code in repositories usually grows continuously. Further-
more, even if code changes after being cloned, type-3 clone detection might still
find it. Setting aside the issue that determining the provenance of clones needs
a version history [49], this approach underestimates cloning by more than 20%.

28

Since we look at all versions of all projects, we were interested to find out
whether or not looking only at the latest versions of all projects would have
sufficed. For every clone that we detected, in any version, we checked whether
there is a corresponding clone in the latest version of that method. This serves
as an indicator of how much cloning is missed by examining only latest versions.
We found that 24.4 % of all type-1 clones, 23.1 % of all type-2 clones, and 22.9 %
of all type-3 clones would have been missed.

Note that more type-1 clones than type-2 clones are missed, and more type-2
clones than type-3 clones. Suppose that project A changes a method that was
previously cloned by project B. Now, if we only look at latest versions, we may
or may not detect this duplication as a type-3 clone. If, however, we look at all
versions, we can detect the type-1 clone. Thus, more type-1 clones are missed
than type-3 clones.

4.3 Discussion

We have applied our techniques to a single ecosystem, which is comprised of
Smalltalk projects only. Our findings may not generalize to other ecosystems,
and other programming languages.

Our clone detection techniques function at the granularity of methods only.
If two methods differ by more than two shingles, we are unlikely to detect
them, even if they share long sections. This may have an impact on the type
of clones detected; in particular, type 1 clones that are smaller than method
boundaries may be classified as type 3 clones, or not detected at all. Therefore,
our approach has poor recall for long methods. In chapter 7, we will see a way
to use bad hashing that finds clones within methods.

Our clone detection technique has an important ingredient for scale: it avoids
clustering. But we haven’t yet described how it scales, that is, we have not
yet described a scheme that handles increasing loads by simple growing of the
system. Again, we will rectify this in chapter 7.

4.4 Conclusions

Even though classes are meant to be modular, we have found that methods are
reused in new contexts far more frequently than classes.

Bad hashing simplifies the problem of finding similarities across projects,
such that it can be solved on a large scale. Since bad hashing is such a cheap
approach to clone detection, we can afford to index all versions, and thus detect
clones that would otherwise be missed. In SqueakSource, 22.9 % of all type-3
clones are missed if only the latest versions of all packages are examined. We
conclude that recall of clone detectors can be improved by examining more than
the latest version.

Bad hashes, applied solely at the method level, may lead to poor recall.
Despite that, we found evidence for large amounts of duplication in the Squeak-
Source ecosystem. More than 14 % of all methods are copied from another
package in another project. Regardless of one’s opinion of code duplication: it is
common. This implies that clones are common enough to serve as links between
projects.

29

Our technique of ‘bad hashing’ adds to all index-based approaches the abil-
ity to detect similar snippets that differ in only a few tokens. Without bad
hashes, even small differences produce different hashes, and therefore remain
undetected.

Acknowledgements
This chaper is based on work I did with Mircea Lungu and Romain Robbes [78].

30

Chapter 5

Lightweight parsing using
regular expressions

Regular expressions naturally and intuitively define parse trees that describe
the text that they’re parsing. While regular expressions aren’t powerful enough
to parse many grammars precisely, we can often find a regular expression that
approximates a grammar reasonably well. For example, to split a Java source
code file into classes, the following regular expression will do a reasonably good
job: \bclass\b.*?\{, because class is a reserved keyword in Java. Somewhat
unorthodoxly, the regular expression we gave is intended to match against the
entire file, and match each individual class in a capture group, defined by the
parentheses in the expression. Doing so will guarantee that the time to parse is
linear in the size of the text input.

Lightweight parsing using regular expressions is linear in the size of the text
input, and therefore indispensable to the scale of our clone detector. Lightweight
parsing has another advantage: it is robust in the face of syntax errors. If a Java
source code file cannot be compiled because of a syntax error, using a full Java
parser would not just be expensive, it would also fail. As we will see when we
describe the regular expression used by our clone detector in chapter 7, we will
handcraft our regular expression to only identify the parts of the grammar of
interest to us. If there is a syntactic error in the source code unrelated to our
interests, it will be parsed correctly for our purposes, even if it is ungrammatical
Java.

In this chapter, we describe a technique for building up the complete parse
tree resulting from matching a text against a regular expression, where the nodes
of the parse tree correspond to the repeated matchings of capture groups from
regular expressions.

In standard DFA matching, all paths through the NFA are walked simulta-
neously, as if in different threads, where inside each thread, it is fully known
when which capture group was entered or left. We extend this model to keep
track of not just the last opening and closing of capture groups, but all of them.
We do this by storing in every thread a history of the all groups using the fly-
weight pattern. Thus, we log enough information during parsing to build up the
complete parse tree after matching.

A regular expression can easily describe that a text matches a comma sep-

31

arated values file, but it is unable to extract all the values. Instead it will only
give a single instance of values: ((.*?),(\d+);)+ might describe a dataset of
ASCII names with their numeric label. Matching the regular expression on “Tom
Lehrer,1;Alan Turing,2;” will confirm that the list is well formed, but the
match will only contain “Tom Lehrer” for the second capture group and “1”
for the third. That is, the parse tree found by the posix is seen in Figure 5.1.

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1

Figure 5.1: Parse tree produced by posix-compatible matching
((.*?),(\d+);)+ against input “Tom Lehrer,1;Alan Turing,2;”.

With our algorithm we are able to reconstruct the full parse tree after the
matching phase is done, as seen in Figure 5.2.

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1 1

32

Figure 5.2: Parse tree produced by our approach matching regular expression
((.*?),(\d+);)+ against input “Tom Lehrer,1;Alan Turing,2;”

The amortized run time of our approach is O(nm log(m)), where m is the
length of the regular expression and n is the length of the parsed string. It is
the first algorithm to achieve this bound, while extracting parse trees. The best-
known algorithm to parse regular expressions, without extracting parse trees,
run in time O(mn)[80].

5.1 More powerful than standard regular expres-
sions

It may at first seem as if all capture groups can always, equivalently, be extracted
by splitting the input, and then applying sub-regular expressions on the splits.
This is, for example, an entirely valid strategy to extract the parse tree in
Figure 5.2. However, this can quickly become an exercise of writing an entire
parser, using no regular expression engine at all, even if the underlying grammar

32

is entirely regular. The following grammar is hard to parse using a regular
expression engine, even though it is regular.

Consider a file of semicolon-terminated records, each record consisting of a
comma-separated pair of entries, and each entry can be escaped to contain semi-
colons, as in the regular expression ((".*?"|[a-z]*),(".*?"|[a-z]*);)+.
Here, expression .*? is a non-greedy match which will be discussed in more de-
tail in Section §5.2. This language contains, for example, the string "h;i",there;"h;,i",Paul;.
It is easy to see that, in order to extract all four capture group matches, it is
insufficient to split the input at the semicolon, as that would split the field “h;i”
in half. More involved examples, where hand-written parsers become harder to
make, are easily constructed. In contrast, our approach yields the entire parse
tree, simply from the regular expression.

5.2 Algorithm
Let us recall what DFAs (Deterministic finite automaton) and NFAs (Nonde-
terministic finite automaton). A DFA is a state machine that will walk over the
transition graph, one step for every input character. The choice of transition is
limited by the transition’s character range. A transition can only be followed
if the current input character is inside transition’s character range. NFAs differ
from DFAs in that for some input character and some state, there may be more
than one applicable transition. If there is, an NFA will magically guess the cor-
rect one. Figure 5.3 shows an example of an NFA’s transition graph. For the
moment, let us discuss regular expression matching on NFAs. Assuming that the
NFA just magically knows the right transition lets us focus on the important
things, greediness control and capture groups.

Conceptually, our approach is the following pipeline of four stages.

1. Parse the regular expression string into an AST.

2. Transform the AST to an NFA.

3. Transform the NFA to a DFA.

4. Compactify the DFA.

In reality, things are a little more involved, since the transformation to DFA
is lazy, and the compactification only happens after no lazy compilation has
occurred in a while. Worse, compactification can be undone if needed. We’ll
get back to these details in section §5.3.3. Let’s discuss the stages in turn,
starting with 2, since step 1, the parsing of the regular expression grammar, is
straightforwardly obtained by following the POSIX specification [69].

5.2.1 Thompson’s construction
We transform the AST of the regular expression into an NFA, in a modified ver-
sion of Thompson’s NFA construction. To control greediness, or discern capture
groups, our approach adds ε transitions to the transition graph. An ε transition
has no input range assigned, and can thus always be used. It does not consume
an input character. The additions are needed for greediness control and capture
groups. Let’s look at both, in turn.

33

To see the importance of greediness control, consider again the regular ex-
pression ((.*?),(\d+);)+. The question mark sets the .* part of the regular
expression to non-greedy, which means that it will match as little as possible
while still producing a valid match, if any. Without provisioning .* to be non-
greedy, a matching against input “Tom Lehrer,1;Alan Turing,2;” would
match as much as possible into the first capture group, including the record
separator ‘,’. Thus, the first capture group would suddenly contain only one
entry, and it would contain more than just names, namely “Tom Lehrer,1;Alan
Turing”. This is, of course, not what we expect. Non-greediness, here, ensures
that we get “Tom Lehrer”, then “Alan Turing” as the matches of the first capture
group.

1 2 3

4

6 7

8 9 11 12 1310

5

Figure 5.3: Automaton for ((.*?),(\d+);)+ In the diagram, “−” stands for
low priority. τn ↑ is the opening tag for capture group n, likewise, τ1 ↓ is the
closing tag for capture group n.

In the NFA, we model greedy repetition or non-greedy repetition of an ex-
pression in two steps:

1. We construct an NFA for the expression, without any repetition. Fig-
ure 5.3 shows how this plays out in our running example, which contains
the expression .*?. An automaton for expression . is constructed. The ex-
pression . is modeled as just two nodes labeled 3 and 4, and a transition
labeled “any” between them.

2. We add prioritized transitions to model repetition. In our example, re-
peating is achieved by adding two ε transitions: one from 4 back to 3, to
match more than one time any character, and another one from 3 to 4, to
enable matching nothing at all. Importantly, the transition from 4 back to
3 is marked as low priority (the “–” sign) while the transition leaving the
automaton, from 3 to 5, is unmarked, which means normal priority. This
means that the NFA will prefer leaving the repeating expression, rather
than staying in it. If the expression were greedy, then we would mark the
transition from 3 to 5 as low-priority, and the NFA would prefer to match
any character repeatedly.

34

More generally, the NFA will prefer to follow transitions of normal prior-
ity over those of low priority. Rather than formalize this notion of preference
on NFAs, we come back to prioritized transitions when discussing the transfor-
mation from NFA states to DFA states. For now, note that the NFA we have
constructed encodes, in some way, the preference we have for some states over
others. The complete rules for NFA construction can be seen in figure 5.4.

S2

S1

-

Alternation
S1|S2

S -

Plus operation
S+

S

-

Optional
S?

S

Capture group
(S)

S

-
Non-greedy plus operation

S+?

S-

Non-greedy star operation
S*?

S

-

Star operation
S*?

Figure 5.4: Modified Thompson [87] construction of the automaton:Descend into
the abstract syntax tree of the regular expression and expand the constructs
recursively.

To model capture groups in the NFA, we add commit tags to the transition
graph. The transition into a capture group is tagged by a commit, the transition
to leave a capture group is tagged by another commit. We distinguish opening
and closing commits. The NFA keeps track of all times that a transition with
an attached commit was used, thus keeping the history of each commit. After
parsing succeeds, the list of all histories can then be used to reconstruct all
matches of all capture groups.

We model histories as linked lists, where the payload of each node is a posi-
tion. Only the payload of the head, the first node, is mutable, the rest, all other
nodes, are immutable. Because the rests are immutable, they may be shared be-
tween histories. This is an application of the Flyweight pattern, which ensures
that all of the following instructions on histories can be performed in constant
time. Here, the position is the current position of the matcher.

35

5.2.2 DFAs
Our above definition of regular expression assumes a machine that guesses the
correct transition through magic. To implement regular expression matching
without supernatural intervention, we lazily transform the NFA to a DFA.

A useful metaphor for regular expression matching is that of threads [19].
Whenever we aren’t sure which transition to take, we “fork” a thread for every
option that we have. This way, when the input is over, there must be at least
one thread that guessed correctly at all times. We use the word “thread” here
to guide intuition only. Our approach is not parallel.

The key insight is that we keep all “threads” in lock-step. To achieve this, we
must be very specific about what constitutes the state of a thread. Since every
thread effectively simulates a different NFA state, a thread contains exactly two
items: the NFA state it simulates and the history for every tag. Whenever an
input character is read, we could iterate over all threads, kill the ones that have
no legal transition for the input character, and fork more threads as needed.
Trouble strikes when we want to fork a thread for an NFA state that is already
running. Not only is an explosion of threads bad for performance, it would also
lead to ambiguity: if the two threads disagree on the histories, which one is
correct?

Notation. We use the following vocabulary.

DFA states are denoted by a capital letter, e.g.Q, and contain multiple threads.

Q = [(q1, (h1, h2, h3, h4, h5, h6)), (q2, (h1, h2, h3, h4, h7, h8))]

for example means that the current DFA state has one thread in NFA
state q1 with histories (h1, h2, h3, h4, h5, h6) and another thread in NFA
state q2 with the histories (h1, h2, h3, h4, h7, h8). Note that histories can
be shared across threads if they have the same matches.

Histories are linked lists, where each node stores a position in the input text.
The head is mutable, the rest is immutable. Therefore, histories can share
any node except their heads. We write h = [x1, . . . , xm] to describe that
matches occurred at the positions x1, . . . , xm.

Threads are denoted as pairs (qi, h), where qi is some NFA state, and h =
(h1, . . . , h2n) is an array of histories, where n is the number of capture
groups. Each thread has an array of 2n histories. In an array of histories
(h1, h2, . . . h2n−1, h2n), history h1 is the history of the openings of the first
capture group, h2 is the history of the closings of the first capture group,
and so on.

Transitions are understood to be between NFA states, q1 → q2 means a tran-
sition from q1 to q2.

Take, for example, the regular expression (..)+matching pairs of characters,
on the input string “abcd”. The history array of the finishing thread is [h1 =
[0], h2 = [3], h3 = [2, 0], h4 = [3, 1]]. Histories h1 and h2 contain the positions of
the entire match: position 0 through 3. Histories h3 and h4 contain the positions
of all the matches of capture group 1, in reverse. That is: one match from 0
through 1, and another from 2 through 3.

36

Our engine executes instructions at the end of every interpretation step.
There are four kinds of instructions:

h← p Stores the current position into the head of history h.

h← p+ 1 Stores the position after the current one into the head of history h.

h′ 7→ h Sets head.next of h to be head.next of h′. This effectively copies the
(immutable) rest of h to be the rest of h′, also.

c ↑ (h) Prepends history h with a new node that becomes the new head. This ef-
fectively commits the old head, which is henceforth considered immutable.
c ↑ (h) describes the opening position of the capture group and is therefore
called the opening commit.

c ↓ (h) This is the same as c ↑ (h) except that it denotes a closing commit
marking the end of the capture group. This distinction is only for clarity,
the semantics is the same for opening and closing commits.

Algorithm 1 takes as input a set of threads, an NFA transition graph, and an
input character, and returns the set of threads running after the input character
has been read. It makes sure that if there could be two threads with the same
NFA state, the one that follows greedy matching1 will survive. At no point of
the algorithm are the two states both present in the result and thus in conflict.

In a nutshell, the algorithm works as follows: the threads are racing to cap-
ture states. Low priorities are like big hurdles, slowing a thread dramatically.
The threads are scheduled, in order, they eat one input character, and then
follow only high-priority transitions, saving low-priority transitions on a stack.
Once we’re out of high-priority transitions, we continue with low priority tran-
sitions, until all possible transitions have been followed. Then, we schedule the
next input thread. The starting state is obtained from Algorithm 1, taking the
starting NFA state as input, with the slight twist that no input character is
consumed.

Note that the ordering of threads inside of DFA states is relevant. In Fig-
ure 5.3, after reading only one comma as an input, state 7 can be reached from
two threads: either from the thread in state 3, via 4, or from the thread in state
6. The two threads are ‘racing’ to capture state 7. Since in the starting state,
the thread of state 6 is listed first, he ‘wins the race’ for state 7, and ‘captures
it’. Thus, the new thread of state 7 is a fork of the thread of state 6, not 3. This
matters, since 6 and 3 may disagree about their histories.

Example 5.2.1. Execution of algorithm 1: Consider the automaton in figure
5.3 is in the DFA state2

Q = [(q6, H2 = (h1, h2, h7, h8, h5, h6)),

(q3, H1 = (h1, h2, h3, h4, h5, h6))]

This is the case after initialization or before any commas are read.

1Non-greedy operators work the same way, just with reversed priorities
2This is the starting state, except for the omission of threads that would die immediately

after scheduling because there are no consuming transitions attached to their NFA state.

37

Input : Graph of transitions for an NFA,
Input character a,
Input position pos,
a list of threads Q = [(q, [h1, . . . , hn])], where q is an NFA and [h1, . . . , hn] is an array

of histories.
Output: Set of threads R.

1 begin
2 R← []
3 Initialize empty stack buffer
4 Initialize empty stack high
5 Initialize stack low so that (q, h) ∈ Q are retrieved front to back of Q.
6 Mark all threads in low as hungry.
7 // Follow transitions greedily
8 while high and low are not both empty do
9 if high not empty then

10 pop (q′, [h1, . . . , hn]) from high
11 else
12 pop (q′, [h1, . . . , hn]) from low
13 while buffer is not empty do pop (q, [h1, . . . , hn]) from buffer and add it to R
14

15 end
16 if current thread is marked hungry then
17 foreach a-consuming transition e = q′ → q′′ do
18 push (q′′, [h1, . . . , hn]) to high.
19 end
20 jump to top of while.
21 end
22 if q′ is marked as seen then jump to top of while loop
23

24 mark q′ as seen
25 add (q′, [h1, . . . , hn]) to buffer
26 foreach ε transitions t from q′ to q′′ do
27 if q′′ is marked as seen then continue for loop
28
29 if t is tagged with an open or close tag then
30 Choose i such that hi is the history of t’s open tag
31 Make a new history h′

32 hi 7→ h′ // Copy old history
33 if t has a open tag then
34 Let newHistories be [. . . , hi−1, h

′, hi+1, . . .]

35 h′ ← pos + 1 // Store position after current
36 else
37 // t has a close tag

38 Choose i′ such that hi′ is the history of t’s open tag
39 Make a new history h′′

40 h′
i′ 7→ h′′ // Copy old history

41 h′′ ← pos // Store current position

42 Commit h′

43 Commit h′′

44 Let newHistories be [. . . , hi−1, h
′, . . . , h′′, hi′+1, . . .]

45 end
46 end
47 // Push according to priority of transition:
48 if t has low priority then
49 push (q′′, newHistories) to low
50 else
51 push (q′′, newHistories) to high
52 end
53 end
54 end
55 end
Algorithm 1: onestep(NFA, a,pos, Q): Compute the follow-up state for DFA
state Q.

38

The algorithm uses two stacks, high and low. To find the next transition to
follow, we pop one from the high stack, and only if it is empty do we pop from
the low stack.

We will pretend for clarity that instructions are executed directly after they
are encountered. The actual algorithm collects them and executes them after
the oneStep call to allow further optimizations.

Furthermore, in the scope of this algorithm, threads have one extra bit of
information attached to them: they can be hungry or fed. Hungry threads can
only follow transitions that consume characters, fed threads can only follow ε
transitions.

This is the execution of oneStep(NFA, “,”, 1, Q):

1. Fill the low stack with hungry threads of all states of Q. Now, low =
[(q6, H2), (q3, H1))], where the first element is the head of the stack.

2. Initialize buffer as an empty stack. The buffer stack exists because while
following high priority transitions, states are discovered in an order that is
reversed with respect to the order in which we would like to output them.

3. Initialize R = [], the DFA state under construction.

4. Thread (q6, H2) is popped from the low stack, since high is empty. It is
hungry.

5. We iterate all available transitions in the NFA transition graph, and find
only q6 → q7, which can consume character “,”.

6. (q7, H2) is pushed to high as fed, and we continue the main loop.

7. (q7, H2) is taken from the high stack. It is fed.

8. (q7, H2) is pushed on buffer.

9. Since (q7, H2) is fed, it follows ε transitions.

10. The available transition q7 → q8 is evaluated:

(a) This transition has a opening tag for capture group 3 on it, and so
we’d like to change h5, the relevant history (see definition ofQ above).
However, since we’re spawning a new thread, we cannot change h5
itself. Instead, we copy h5, and change the copy.

(b) A new history h is created.
(c) h5 7→ h. Note that this is constant time, no matter how many entries

h5 already has.
(d) h← p+ 1. This is the position after the “,”, because the comma was

eaten before the capture group starts.
(e) Create H3 = h1, h2, h7, h8, h, h6) as a copy of H2, with h in the

appropriate position.
(f) (q8, H3) is pushed on the high stack.

11. (q8, H3) is taken from the high stack.

12. It is pushed on buffer. buffer= [(q8, H3), (q7, H2)]

39

13. It can follow no further transitions and dies.

14. We discover that the high stack is empty.

15. We now flush buffer : R = [(q8, H3), (q7, H2)], buffer= []. Note that now,
R contains two threads in the reverse order in which they were discovered.

16. (q3, H1) is popped from low. It is hungry.

17. (q3, H1) is one of the two threads that constitute the input of this al-
gorithm. Note how the other, (q6, H2), got a chance to follow all of its
transitions before (q3, H1) was first popped off the low stack.

18. The only transition that consumes “,” is q3 → q4:

(a) (q4, H1) is pushed to high as a fed thread.

19. (q4, H1) is popped from high

20. It is pushed to the buffer. buffer= (q4, H1)

21. q4 → q3 is visited.

(a) Thread (q3, H1) is pushed to low = (q3, H1), because q4 → q3 has low
priority.

22. We flush the buffer again: R = [(q8, H3), (q7, H2), (q4, H1)] Note how
(q4, H1) appears last in R.

23. (q3, H1) is taken from the low stack, because high is empty.

24. It is added to buffer.

25. q3 → q5 is visited:

(a) (q5, H1) is pushed to high.

26. (q5, H1) is taken from the high stack.

27. It is added to buffer.

28. q5 → q6 is visited and contains the closing commit of the second capture
group:

(a) Two histories are created to store the new positions of both the start
and the end of the capture group. This ensures that other threads
will not corrupt the memory.

(b) A new history h is for the opening of the capture group.

(c) A new history h′ is created for the closing position.

(d) h3 7→ h. See the definition of Q above, to see that h3 is the opening
capture group position of H1.

(e) h4 7→ h′.

(f) h′ ← p. This is the position of the “,”.

(g) Create a new history array, with h and h′ in place.H4 = [h1, h2, h, h
′, h5, h6]

40

(h) (q6, H4) is pushed to high.

29. (q6, H4) is taken from the high stack.

30. It is added to the buffer.

31. Both stacks are empty:

32. We flush our buffer :

R = [(q8, H3), (q7, H2), (q4, H1),

(q6, H4), (q5, H1), (q3, H1)]

33. R is returned.

The output contains six threads, but three of them, (q7, H2), (q4, H1), (q5, H1),
will die as soon as they are scheduled in the next iteration of the algorithm, be-
cause there are no outgoing non-ε transitions attached to their NFA states.

The overall run time of algorithm 1 is O(m log(m)). This follows from the fact
that there can be only one thread per NFA state, and therefore there are only
m threads. To achieve this bound, we must be able to copy arrays of histories in
time O(log(m)). This is easily achieved replacing the array by a persistent [27]
data structure to hold the histories. A persistent treap, sorted by array index,
has all necessary properties3.

5.3 Implementation
While repeatedly calling algorithm 1 would be sufficient to reach the theoretical
time bound we claimed, practical performance can be dramatically improved
by avoiding to construct new states. Instead, we build a transition table that
maps from old DFA states and an input range to a new DFA state, and the
instructions to execute when using the transition. We build the transition table,
including instructions, as we go. This is what we mean when we say that the
DFA is lazily compiled.

5.3.1 DFA transition table
The DFA transition table is different from the NFA transition table, in that
the NFA transition table contains ε transitions and may have more than one
transition from one state to another, for the same input range. DFA transition
tables allow no ambiguity.

Our transition tables, both for NFAs and DFAs, assume a transition to map
a consecutive range of characters. If, instead, we used individual characters, the
table size would quickly become unwieldy. However, input ranges can quickly
become confusing if they are allowed to intersect. To avoid this, and simplify
the code dramatically, while keeping the transition table small, we use the fol-
lowing trick. When the regular expression is parsed, we keep track of all input
ranges that occur in it. Then, we split them until no two input ranges intersect.

3Clojure [37] features a slightly more complex data structure under the name of ‘persistent
vectors’. Jean Niklas L’orange offers a good explanation in “Understanding Clojure’s Persistent
Vectors”, http://hypirion.com/musings/understanding-persistent-vector-pt-1.

41

http://hypirion.com/musings/understanding-persistent-vector-pt-1

After this step, input ranges are never created again. Doing this step early in
the pipeline yields the following invariant: it is impossible to ever come across
intersecting input ranges.

To give us a chance to ever be in a state that is already in the transition
table, we check, after executing algorithm 1, oneStep, whether there is a known
DFA state that is mappable to the output of oneStep. If oneStep produced a
DFA state Q, and there is a DFA state Q′ that contains the same NFA states,
in the same order then Q and Q′ may be mappable. If they are, then there is a
set of instructions that move the histories from Q into Q′ such that, afterwards,
Q′ behaves precisely as Q would have. Algorithm 2 shows how we can find a
mappable state, and the needed instructions. The run time of Algorithm 2 is
O(m), where m is the size of the input NFA.

Input : Q = [(qi, hi)]i=1...n is a DFA state.
Output: A state Q′ that Q is mappable to.

The ordered instructions m that reorder the memory locations of Q to Q′ and don’t
interfere with each other.

1 begin
2 foreach Q′ that contains the same NFA states as Q, in the same order do
3 /* Invariant: For each history H there is at most one H′ */

4 /* so that H ← H′ is part of the mapping. */
5 Initialize empty bimap m
6 /* A bimap is a bijective map. */

7 foreach qi = q′i with histories H and H′ respectively do
8 for i = 0 . . . length(H)− 1 do
9 if H(i) is in m as a key already and does not map to H′(i) then

10 Fail
11 else
12 /* Hypothesize that this is part of a valid map */

13 Add H(i) 7→ H′(i) to m;
14 end
15 end
16 end
17 end
18 /* The mapping was found and is in m. */
19 sort m in reverse topological order so that no values are overwritten.
20 return Q′ and m

21 end
Algorithm 2: findMapping(Q): Finding a state that Q is mappable to in
order to keep the number of states created bound by the length of the regular
expression.

5.3.2 DFA execution

With these ingredients in place, the entire matching algorithm is straightfor-
ward. In a nutshell, we see if the current input appears in the transition table.
Otherwise, we run oneStep. If the resulting state is mappable, we map. More
formally, we can see this in algorithm 3. Here, algorithm 3 assumes that algo-
rithm 1 does not immediately execute its instructions, but returns them back
to the interpreter, both for execution and to feed into the transition table.

5.3.3 Compactification

The most important implementation detail, which brought a factor 10 improve-
ment in performance, was the use of a compactified representation of DFA transi-
tion tables whenever possible. Compactified, here, means to store the transition

42

Input : input is a sequence of characters.
Output: A tree of matching capture groups.

1 begin
2 // Lazily compiles a DFA while matching.
3 Set Q to startState.
4 // A thread is an NFA state, with an array of histories.
5 Let Q be all threads that are reachable in the NFA transition graph by following ε transitions

only.
6 Execute instructions described in algorithm oneStep, when walking ε transitions.
7 // Create the transition map of the DFA.
8 Set T to an empty map from state and input to new state and instructions.
9 // Consume string

10 foreach position pos in input do
11 Let a be the character at position pos in input.
12 if T has an entry for Q and a then
13 // Let the DFA handle a

14 Read the instructions and new state Q′ out of T
15 execute the instructions
16 Q← Q′

17 jump back to start of for loop.
18 else
19 // lazily compile another DFA state.

20 Run oneStep(Q, a) to find new state Q′ and instructions
21 Run findMapping(Q′, T) to see if Q’ can be mapped to an existing state Q′′

22 if Q′′ was found then
23 Append the mapping instructions from findMapping to the instructions found

by oneStep
24 Execute the instructions.
25 Add an entry to T , from current state Q and a, to new state Q′′ and

instructions.
26 Set Q to Q′′

27 else
28 Execute the instructions found by oneStep.
29 Add an entry to T , from current state Q and a, to new state Q′ and

instructions.
30 Set Q to Q′.
31 end
32 end
33 end
34 end
Algorithm 3: interpret(input): Interpretation and lazy compilation of the
NFA.

table as a struct of arrays, rather than as an array of structs, as recommended
by the Intel optimization handbook [18, section 6.5.1]. The transition table is
a map from source state and input range to target state and instructions. Fol-
lowing Intel’s recommendation, we store it as an object of five arrays: int[]
oldStates, char[] froms, char[] tos, Instruction[][] instructions,
int[] newStates, all of the same length, such that the ith entry in the table
maps from oldStates[i], for a character greater than from[i], but smaller than
to[i], to newStates[i], by executing instructions[i]. To read a charac-
ter, the engine now searches in the transition table, using binary search, for the
current state and the current input character, executes the instructions it finds,
and transitions to the new state.

However, the above structure isn’t a great fit with lazy compilation, as new
transitions might have to be added into the middle of the table at any time.
Another problem is that, above, the state is represented as an integer. However,
as described in the algorithm, a DFA state is really a list of threads. If we need
to lazily compile another DFA state, all of the threads need to be examined.

The compromise we found is the following: The canonical representation of
the transition table is a red-black tree of transitions, each transition containing

43

n 13 14 15 16 17 18 19 20

Oracle 241 484 1003 1874 3555 7381 14561 30116
Ours 225 252 273 32 327 352 400 421

Table 5.1: Matching times, in microseconds, for matching a?nan against input
an.

source and target DFA state (both as the full list of their NFA states, and
histories), an input range, and a list of instructions. This structure allows for
quick inserting of new DFA states once they are lazily compiled. At the same
time, lookups in a red-black tree are logarithmic. Then, whenever we read a
fixed number of input characters without lazily compiling, we transform the
transition table to the struct of arrays described above, and switch to using it
as our new transition table. If, however, we read a character for which there is no
transition, we need to de-optimize, throw away the compactified representation,
generate the missing DFA state, and add it to the red-black tree.

The above algorithm chimes well with the observation that usually, regular
expression matching needs only a handful of DFA states, and thus, compactify-
ing can be done early, and only seldom needs to be undone.

5.3.4 Intertwining of the pipeline stages
The lazy compilation of the DFA when matching a string enables us to avoid
compiling states of it that might never be necessary. This allows us to avoid the
full power set construction [83], which has time complexity of O(2m), where m
is the size of the NFA.

5.4 Benchmark
All benchmarks were obtained using Google’s caliper4, which takes care of the
most obvious benchmarking blunders. It runs a warm-up before measuring, runs
all experiments in separate VMs, helps circumvent dead-code detection by ac-
cepting the output of dummy variables as input, and fails if compilation occurs
during experiment evaluation. The source code of all benchmarks is available,
together with the sources of the project, on Github. We ran all benchmarks on
a 2.3 GHz, i7 Macbook Pro.

As we will see in Section §5.5, there is a surprising dearth of regular expres-
sion engines that can extract nested capture groups — never mind extracting
entire parse trees — that do not backtrack. Back-tracking implementations are
exponential in their run-time, and so we see in Figure 5.5 (note the log plot)
how the run-time of “java.util.regex” quickly explodes exponentially, even for
tiny input, for a pathological regular expression, while our approach slows down
only linearly. The raw data is seen in Table 5.1.

In the opposite case, in the case of a regular expression that’s crafted to
prevent any back-tracking, java.util.regex outperforms our approach by more
than factor 2, as seen in Table 5.2 – but bear in mind that java.util.regex does not
extract parse trees, but only the last match of all capture groups. A backtracking

4https://code.google.com/p/caliper/

44

https://code.google.com/p/caliper/

time

n

Figure 5.5: Time in nanoseconds for matching a?nan against input an. Bottom
(purple) line is our approach, top (blue) line is java.util.regex.

Tool time

JParsec 4,498
java.util.regex 1,992

Ours 5,332

Table 5.2: Matching regular expression ((a+b)+c)+ against input
(aˆ200bc)ˆ2000, where aˆ200 denotes 200 times character ‘a’. Time in
microseconds.

implementation that actually does produce complete parse trees is JParsec5,
which, as seen in Table 5.2, performs on par with our approach for a regular
expression that is hand-crafted to prevent back-tracking.

Since JParsec is back-tracking, its worst case performance is exponential,
though it could be improved, at the cost of much memory, through memoization,
to perform in cubic time [31].

Note that because java.util.regex achieves its back-tracking through recur-
sion, we had to set the JVM’s stack size to one Gigabyte for it to parse the input.
Since default stack size is only a few megabytes, this makes using java.util.regex
a security risk, even for unproblematic regular expressions that cannot cause
backtracking, since an attacker can potentially force the VM to run out of stack
space.

A more realistic example, neither chosen to favor back-tracking nor to avoid
it, extracts all class names, with their package names, from the project sources
itself. As seen in Table 5.3, our approach outperforms java.util.regex by 40%,

5http://jparsec.codehaus.org

45

http://jparsec.codehaus.org

Tool time

java.util.regex 11,319
Ours 8,047

Table 5.3: Runtimes, in microseconds, for finding all Java class names
in all .java files in the project itself. The regular expression used is
(.*?([a-z]+\.)*([A-Z][a-zA-Z]*))*.*?.

even though our approach constructs the entire parse tree, and thus all class
names, while java.util.regex outputs only the last matched class name. We omit
JParsec, since it offers no direct way of expressing non-greedy matching.

5.5 Related work

Our algorithm is a modification of Laurikari’s algorithm [55], which is itself a
modified power set construction algorithm [83, p. 55].

While there is no shortage of books discussing the usage of regular expres-
sions, the implementation side of regular expression has not been so lucky. Cox
is spot-on when he argues that innovations have repeatedly been ignored and
later reinvented [19, 20, 21].

This chapter is no exception. The author had set out to implement Lau-
rikari’s TDFA algorithm [55], only to discover that Laurikari’s description of a
TDFA is so far from complete that it can rightfully only be called the sketch
for an algorithm. Only late in the process did we discover that the blanks had
already been filled by Kuklewicz in the course of his implementation of TDFAs
in Haskell [54]. Kuklewicz enshrined his added insight into Haskell library, but
never published the algorithm as a whole. If the history of regular expressions
is evidence of one thing, it is that source code is a terrible medium to convey
algorithms.

The situation dramatically improved with Cox’s simple and concise expla-
nation of regular expression matching [19]. It seems ironic that this well-versed
author published this influential work on his website. The joke, however, may
be on Academia’s side.

When the practitioners acknowledge each other’s work, we can’t help but
disagree almost universally with the characterizations they produce. Sulzmann
and Lu [85] call Kuklewicz’s work an “implementation” of Laurikari’s algorithm,
although Laurikari’s algorithm is far too incomplete for that statement to be
fair. Laurikari’s algorithm is referred to as a POSIX-style automaton. In truth,
Laurikari leaves the matching strategy entirely open. It was Kuklewicz that
found out how to get POSIX-style matching out of Laurikari’s TDFA.

Cox says that Laurikari’s TDFA is a reinvention of Pike’s algorithm, used in
the text editor sam [67]. While sam was released as free software, no description
of his regular expression matching, besides the source code, was published. Sam
uses Thompson’s NFA, but adds submatch tracking. This seems unfair in that
Laurikari’s allows for far more aggressive reuse of old states than Thompson
allows. This should lead to Laurikari’s TDFA having fewer states, and therefore

46

better performance, than even Google’s RE26, which uses Pike’s algorithm. This
is not confirmed by the benchmarks by Sulzmann and Lu [85], but they offer an
explanation: in their profiling, they see that all Haskell implementations spend
considerable time decoding the input strings. In other words, the measured
performance is more of an artifact of the programming environment used.

Another mistake that permeates the scarce literature is to call regular ex-
pression matching linear. As Sedgewick points out correctly [80], Thompson’s
NFA matching is of complexity O(mn), where m is the size of the input NFA,
and n is the size of the input string. To call this linear means to assume that
m is fixed, which is not justified. It may well be true that, at present, m tends
to be small. But that is a natural consequence of the algorithms not scaling
very well with m. If they did, that would allow for fast feature extracting from
text7. Therefore, in this chapter, we consider the state of the art algorithms to
be quadratic, since both m and n are part of the input to a regular expression
matcher. We cannot rule out that a linear algorithm exists, in fact, we hope for
it. To insist that regular expression matching is done in linear time is to insist
that the optimal algorithm has already been found; that is probably not true.

Sulzmann and Lu add to the table a new matching strategy that yields good
practical performance, although the theoretical bounds are considerably worse
than the state of the art, at O(n2m) [85].

Kearns [47] describes the first linear-time algorithm for RE parsing. Dubé
and Feeley [28] produce parse trees in linear time using lists as their data rep-
resentation. Nielsen and Henglein [63] improve on it by storing the trees in
bit-coded form. Neither produces a greedy or non-greedy parse. Grathwohl [33]
produce a greedy parse in two over the input. In comparison, our approach
allows full control over greediness, even for subexpressions, thus generalizing
over all previous approaches. It runs in only one pass and supports charac-
ter ranges, lazy compilation, and compactified DFA representation for practical
performance.

5.5.1 Motivation

Not only clone detectors benefit from lightweight parsing. Regular expressions
make for scaleable and efficient lightweight parsers.[46] The first step of pro-
cessing big data is often to parse strings. As an example, consider log files. As
Jacobs[42] noted, “What makes most big data big is repeated observations over
time and/ or space,” and thus log files grow large frequently. At the same time,
they provide important insight into the process that they are logging, so their
parsing and understanding is important.

The parsing abilities of regular expression have provoked Meiners to declare
that for intrusion detection, “fast and scaleable RE matching is now a core
network security issue.” [62]

For example, Arasu et al. [2] demonstrate how regular expressions are used
in Bing to validate data, by checking whether the names of digital cameras in
their database are valid.

6https://code.google.com/p/re2/
7To check if a document contains features f1, f2, . . . , fn, we would match the document

against regular expression (f1)|(f2)|. . . |(fn).

47

https://code.google.com/p/re2/

5.6 Conclusion
Regular expressions can be used to robustly approximate full parsing of source
code in linear time. Our approach can produce entire parse trees while matching
regular expressions. The performance is on par with traditional back-tracking so-
lutions if no backtracking ever happens, exponentially outperforms back-tracking
approaches for pathological input, and in a realistic scenario outperforms back-
tracking by 40%, even though our approach produces the full parse tree, and
the backtracking implementation doesn’t. All source code and all benchmarks
are available under a free license on Github8.

The fact that our approach is linear in the text input means that it scales
well. Linearity is a key ingredient to scaleability. Every algorithm that isn’t linear
requires to overcompensate load growth by system growth. This recommends
lightweight parsing for use in our clone detector.

Acknowledgements
This chapter is based on work I did with Aaron Karper and Oscar Nierstrasz [75].
This work would not have been possible without Aaron. Aaron and I spent long
afternoons drawing automata on blackboards, until everything worked out.

While much related work has been done, I am ashamed to admit our starting
point was practically only Laurikari’s sketch of an algorithm [55]. After our own
approach was all set and done, I was surprised by the wealth of literature on the
issue. But moreover, I was immensely proud of my collaboration with Aaron. In
all our ignorance, we still pushed the envelope of what can be done.

Our collaboration was productive, friendly, but most of all, great fun.

8https://github.com/nes1983/tree-regex

48

https://github.com/nes1983/tree-regex

Chapter 6

Cells

In this chapter, we explain MapReduce pipelines, the last cornerstone for a
scaleable clone detector. MapReduce [25] is a programming paradigm to dis-
tribute and parallelize computations. A MapReduce pipeline is a library that
allows running several MapReduce programs in sequence. While a simple shell
script that runs MapReduce programs in sequence suffices in theory, we suggest
a different approach, where the developer specifies a sequence of mappers, which
are then automatically composed into MapReduce programs. This simplifies the
writing of scaleable software, and makes it more debuggable. En passant, we will
explain MapReduce and Bigtable, and thus show that expressing a computation
as a Cells program makes it scaleable – if asymptotic run time permits it.

Our MapReduce pipeline is named Cells. It lets developers express pipelines
of MapReduce jobs, so that the same pipeline can be executed either in parallel
on one machine, or in a MapReduce cluster.

The code examples in this chapter give away some of the working of our
clone detector. The full description will follow in chapter 7.

In MapReduce, the developer specifies two operations: map and reduce. On
a cluster with distributed storage, they are used as follows. The map operation
reads the input data, and processes it. The output of the map operation is
grouped and sorted, and passed, in a distributed but non-persistent way, to the
reduce operation. The output of the reduce operation is written back into the
cluster. Map and reduce are different: map can read any format, but must write
key-value pairs. Conversely, reduce can write any format, but must read groups
of key-value pairs.

Cells is non-invasive in that code that uses Cells is in the style of ordinary
Java. It features no special looping constructs.

In Cells, all objects are encoded into cells, a binary format of row header,
column header, and cell contents. Just like Bigtable cells, there is an implicit
grouping and ordering: cells with the same row header are grouped into the same
row, and within rows, cells are sorted by their column headers. This simple idea is
powerful enough to express pipelines of MapReduce jobs without distinguishing
between map and reduce. Furthermore, it lets us express computations without
distinguishing between reading from Bigtables, file directories, or lists.

The resulting computational model is efficient, surpassing PLINQ for non-
distributed computations.

There exist a number of frameworks that help developers express a com-

49

putation in non-blocking terms, so that the framework can then parallelize the
program on behalf of the developer. However, they tend to be invasive, by which
we mean that programs written in those frameworks look fundamentally differ-
ent from those written without it. As an example, consider FlumeJava [13] and
PLINQ [61, 38], frameworks to express parallel computations in Java and C#,
respectively.

The following is a valid statement in PLINQ:

from c in Customers.AsParallel()
where c.Address.City = "Seattle"
select c.Name, c.Phone

The following is an example in FlumeJava:

PTable<URL,DocInfo> backlinks =
docInfos.parallelDo(new DoFn<DocInfo,Pair<URL,DocInfo>>() {
void process(DocInfo docInfoEmitFn<Pair<URL,DocInfo>> emitFn) {
for (URL targetUrl : docInfo.getLinks()) {
emitFn.emit(Pair.of(targetUrl, docInfo));

}
}

}, tableOf(recordsOf(URL.class),
recordsOf(DocInfo.class)));

PTable<URL,Collection<DocInfo>> referringDocInfos =
backlinks.groupByKey()

Both languages play the same trick: they bolt a functional language on top
of their host language, and then try to optimize the functional constructs into
parallel-executable chunks. In the case of FlumeJava, the developer is supposed
to chain together many parallelDo invocations, after which FlumeJava will
execute them in a distributed MapReduce using as few MapReduce stages as
possible. To that effect, where ordinary Java code would loop to select a subset,
FlumeJava demands functional equivalents, provided by the library, effectively
making FlumeJava a programming language in its own right. Even collections
are largely replaced by their parallel counterparts, PCollections. It should be
obvious to anybody versed in C# or Java that the above programs don’t much
resemble ordinary programs in the host language. The framework dominates the
vocabulary and format of the program.

In contrast, Cells1 was conceived from the viewpoint that well-written soft-
ware, even if it is not meant to be run in parallel, is typically expressed in a
pipeline fashion. That is, the computation is broken up into individual stages
that are chained together from the outside. Therefore, a Cells program should
look very similar to any normal program written in a pipeline fashion.

The following snippet and all following snippets are taken from a clone de-
tector that uses Cells. They are simplified, but only slightly.

The following is a mapper — a stage in a pipeline — that extracts snippets
of 5 lines from Java source code after the input source code has been broken up
into functions.

1All code is available on Github. https://github.com/nes1983/cc

50

https://github.com/nes1983/cc

class SnippetExtractor implements Mapper<String, Snippet> {
public void map(Function first, OneShotIterable<Function> functions, Sink<Snippet> sink)

{
for (Function fun : functions) {
for (int frameStart = 0; frameStart + 5 <= fun.nLines(); frameStart++) {
byte[] hash = badHash(getLines(fun.getString(), frameStart, 5));

Snippet snip = Protos.Snippet.newBuilder()
.setFunction(fun)
.setHash(ByteString.copyFrom(hash))
.build();

sink.write(snip);
}

}
}

}

Unlike the PLINQ or FlumeJava examples, the vocabulary of this snippet
is not primarily about being parallel or functional, or even about being part of
a MapReduce job; it is about extracting lines from functions. It runs a sliding
window of 5 lines over a function to compute a bad hash for each window. Hash
value and function together form a snippet Snippet, which is written out.

Only a few unusual features stand out: the output is written into a Sink
instead of being returned, the input collection is a OneShotIterable, and there
is an unused parameter first. We’ll discuss these features in more detail.

To run the entire clone detector, we feed all stages into a Pipeline. There
are pipelines for local execution, and pipelines for distributed (in Hadoop2)
execution. However, Cells was designed to allow the mappers to be written in
way that is agnostic about whether they’re running locally, or distributed in a
cluster. This is how a pipeline can be executed, remotely or locally, depending
on the pipe argument.

void run(Pipeline<Repo, Clone> pipe) {
pipe
.influx(new RepoCodec())
.map(new SnippetExtractor())
.shuffle(new SnippetCodec())
.map(new RoughCloner())
.shuffle(new CloneCodec())
.mapAndEfflux(new FineCloner(), new CloneCodec())

}

The above snippet runs a pipeline of three stages: SnippetExtractor,
RoughCloner and FineCloner. Since we have three stages to execute, but
MapReduce only has two phases, our library will have to break this into two
MapReduce jobs that are executed in succession. The necessary grouping and
sorting is expressed through the codecs between the mappers.

In section §6.1, we present the gist of how cells is meant to be used. In
section §6.2, we explain the design rationale. In section §6.3, we give the most
interesting implementation details. In section §6.4, we show a set of benchmarks
that compare cells to PLINQ and plain Hadoop. In section §6.5, we list related
work. In section §6.6, we draw our conclusions.

6.1 Cells in a nutshell

Cells is a library that parallelizes the execution of jobs that are written in the
style of a chain of MapReduce [25] jobs. In this style, all computation must be

2Hadoop is Apache’s MapReduce implementation. http://hadoop.apache.org

51

http://hadoop.apache.org

expressed as a pipeline of the operations map (filter), group, and sort. The basic
building block of the Cells library is a cell. Cells are modeled after Bigtable [14]
cells: they have a row key, a column key, and cell contents for the payload of the
cell. While the row key and column key must each be non-empty byte arrays, the
cell contents may be an empty byte array. Cells are implicitly grouped by row
key into rows, and ordered by column key within rows. Two cells with identical
row and column key are assumed to be identical, and therefore one is silently
suppressed. Row and column keys are assumed to be short (thousands of bytes
would be big), but there is no assumption on the size of a cell’s contents.

Together, cells form tables, very similar to Bigtables. Bigtables, and therefore
our tables, have a few unusual properties. There’s no limit on the number of
columns that a row can have. They can be sparse, meaning that rows don’t need
to share column keys. It’s idiomatic to store pieces of data, such as a timestamp,
in the column header, leading to potentially long rows. It cannot even safely be
assumed that rows fit into memory. However, it is just as idiomatic to have just
a single column key shared across all rows, effectively degenerating the table to
a set of key-value pairs. There’s no limit on the number of rows.

This explains the unusual features we saw in Mappers earlier: they accept
their input as OneShotIterables, Iterables that can only be iterated once,
and write their output into a sink, rather than returning it as a collection.
Together, they allow processing more data than fits into RAM, by reading input
from and spilling output to disk as necessary.

Our design follows the following principles:

• All input to and output from computations is encoded using cells.

• All input and output is grouped into rows, so that cells with same row key
are in the same row. The elements inside the row are sorted by column
key.

• All computation runs within mappers. Mappers are each single-threaded,
but many mappers can be instantiated to run in parallel. A mapper pro-
cesses one row at a time, in its entirety. Rows are never shared between
mappers.

In sum, these principals ensure that reading and writing to a mapper is
always equivalent to reading its input from, our writing its output to a Bigtable.
We’ll see how this uniformity helps debugging.

We’ll demonstrate Cells’ features through the design of a clone detector that
scales to detecting clones across all Java projects, in all versions available on
the internet.

6.1.1 Codecs and cells

Above, we saw an example of a mapper that runs a sliding window of 5 lines
over it to extract text snippets. Let us examine how the sorting and grouping
of cells is used by examining the output of the mapper, all snippets of 5 lines.
As we saw above, they are written into a sink. The sink then uses a codec to
encode the snippet into cells, and stores the cells into a table.

Codecs decide the cell layout, i.e., which part of our data goes into the row
key, the column key, or into the cell contents. Expressing grouping and sorting

52

in terms of Bigtable cells is necessary if we want to store the intermediate result
between two MapReduce jobs in a Bigtable. As we will see later, lifting cells to a
basic building block makes the distinction between Map and Reduce disappear.

Choosing the row and column key is usually straightforward: if a specific
sorting is needed, that decides the column key. If a specific grouping is needed,
that decides the row key. Otherwise, one needs to be on guard about collisions:
if several cells of identical row and column key are sent to a sink, only one will
be stored.

Therefore a codec is not merely a way of serializing data. Codecs specify
the cell layout, and thus the grouping and sorting of our data. However, the
right layout to pick will depend on what we intend to do in the next stage of
the pipeline. In the case of our clone detector, will only forward snippets that
occur in at least two functions, filtering out everything that isn’t a clone. This
means that we want to group snippets together with the location where we
found them by their snippet hash. This is enough information to specify the
codec. To achieve grouping by snippet hash, the snippet hash is encoded to be
the row key. While the sorting inside the row is irrelevant for the next mapper,
we still have to choose a column key that avoids collisions between snippets from
different functions. Picking the origin of a snippet, its function, as the column
key avoids all collisions. The resulting codec is as follows.

class SnippetCodec implements Codec<Snippet> {
@Override
public Cell<Snippet> encode(Snippet s) {
return Cell.make(s.getHash(), s.getFunction(), s.toByteString());

}

@Override
public Snippet decode(Cell<Snippet> encoded) {
return Snippet.parseFrom(encoded.getCellContents());

}
}

This codec duplicates the snippet hash and function hash: they are stored in
row and column key, respectively, and again in the cell contents. This pattern
simplifies the decode operations at the cost of storage space.

Since in the MapReduce paradigm, all computations must be expressed as
a combination of mapping, grouping and sorting, the design of the codec is not
just a detail. Instead, codecs are a fundamental part of a pipeline. This also
explains why Cells ships without any pre-defined Codecs. Codecs specify the
grouping and sorting of data, and should therefore be specific to their pipeline.

While this puts some constraints on how computations must be expressed,
the constraints are close to how any program must be structured that runs in
a pipeline fashion: computation is broken into named stages that are chained
together.

6.1.2 Lookup tables and side outputs and inputs

Besides writing output to the sink, Cells brings some support for side outputs
and side inputs, i.e., writing to and reading from other tables.

The effect of SnippetCodec was to group Snippets by hash. Therefore, in the
next stage of the pipeline all snippets that are similar to one another now occur
in the same row. The next pipeline stage now filters out snippets that weren’t
similar to any other snippets, i.e., rows of size 1. Next, since any two snippets

53

in a row are similar, and a clone is a pair of two snippets, the clones that can be
extracted from a row is the cross product of the row with itself. However, rows
can get awfully long. In fact, the cross product of a large row might easily go
beyond our computational capabilities. Very long rows arise with very popular
snippets, such as constructors, or getters and setters. We can simply discard
popular snippets, since we’re in the business of detecting interesting clones,
whereas ubiquitous clones, such as constructors that share the same shape, are
necessarily uninteresting. However, there’s a better way: while we don’t output
popular snippets as part of the pipeline stage, we set them aside into a popular
snippets table. This will keep them out of the deadly cross product, and prevent
them from becoming clones in their own right. However, later, when we stitch
together individual clones into bigger ones, they’ll still be available since we’ve
set them aside.

The following mapper filters out rows of size ≤ 1, and outputs the cross
product, unless it is too large, in which case we write it into a side output.

class CloneCrossProduct implements Mapper<Snippet, Clone> {
@Inject
@PopularSnippets
Sink<Snippet> popularSnippets;

@Override
public void map(Snippet first, OneShotIterable<Snippet> rowIterable, Sink<Clone> sink)

throws IOException, InterruptedException {
// rowIterable is not guaranteed to be iterable more than once, so copy.
Collection<Snippet> row = ImmutableList.copyOf(rowIterable);

if (row.size() <= 1) {
return; // prevent processing non-recurring hashes

}

// special handling of popular snippets
if (row.size() >= POPULAR_SNIPPET_THRESHOLD) {
for (Snippet loc : row) {
popularSnippets.write(loc);

}
return;

}

for (Snippet thisSnip : row) {
for (Snippet thatSnip : row) {
if (thisSnip.getFunction().compareTo(thatSnip.getFunction()) < 0) {
sink.write(Clone.newBuilder().setThisSnippet(thisSnip).setThatSnippet(thatSnip).

build());
}

}
}

}

To make the injection of @PopularSnippets Sink<Snippet> work, we need
to teach Cells about the existence of the extra table. Cells offers an abstraction
of Bigtables, called a Table, and a helper method to get one. Furthermore, Cells
ships with an implementation of Table that runs wholly in memory. Therefore,
we can write Cells jobs locally, without ever talking to a Bigtable.

Cells offers a helper method installTable, using Guice for dependency
injection3, to configure which kind of table we would like to have injected into
our mapper. The following code configures PopularSnippets to be either a
Bigtable, or an in-memory table, depending the value of storageModule.

3https://code.google.com/p/google-guice/

54

https://code.google.com/p/google-guice/

installTable(
PopularSnippets.class, // Annotation
Snippet.class, // Generic type of the table
PopularSnippetsCodec.class, // Codec used by the table
storageModule, // HBaseModule or InMemoryModule
new TableModule<>("PopularSnippets")); // Table name. More settings if needed.

Above, we use installTable to obtain a Sink for the table, but we could
equally well have asked for a Source to read from it, or for a LookupTable for
random access into it; installTable installs all three.

6.1.3 Pipelines

We can now return to how a pipeline can be obtained. The following snippet
obtains a pipeline that reads its input from a list: Here, the method Cells.shard
does its best to split the input into even-sized shards of cells.

List<Repo> list = ...
CellSource<Repo> = Cells.shard(Cells.encode(list));
Pipeline<Repo, Snippet> pipe = LocalPipeline.from(source);

On the other hand, the following snippet obtains a pipeline for distributed
execution:

Table<Repo> in = TableAdmin.getInstance().tableNamed("repos");
Table<Snippet> out = TableAdmin.getInstance().tableNamed("snippets");
Pipeline<Repo, Snippet> pipe = HadoopPipeline.fromTo(in, out);

6.1.4 Post-processing using Sources

Near the end of the clone detection pipeline, we’re left with a moderately-sized
set of clones, that is a set of a pairs of source code locations that are considered
to be similar. It would be nice to see the related groups of clones. A clone can be
thought of as an edge in the graph of source code locations. In that case, we’re
interested in all connected components of that graph. Sadly, graph clustering is
notoriously hard to do in parallel [74]. It also isn’t necessary, since the volume of
clones — unlike the volume of all written source code — is perfectly manageable
by a single machine.

To run post-processing on the output of a pipeline, Pipeline offers the
method lastEfflux(), which returns a Source, which is just an iterable over
decoded rows. For the output of the clone detector, we can run the following:

Source<Clone> in = pipe.lastEfflux();
for (Iterable<Clone> row : in) {
for (Clone c : row) {
hashToClone.put(c.getThisSnippet().getFunction(), c);
...

}
}

6.1.5 Counters

Just like MapReduce[25], Cells provides a facility to count occurrences of various
events. For example, user code may want to count the local number of words
processed or the number of German documents indexed, etc.

As with side inputs and outputs, Cells provides a local implementation, as
well as a distributed variant, and an abstraction so Mappers don’t have to
know in which context they’re running. One can use a Cells counter as follows.

55

public static class IdentityMapper implements Mapper<Integer, Integer> {
@GermanDocs
@Inject
Counter germanCount;

@Override
public void map(Integer first, OneShotIterable<Integer> row, Sink<Integer> sink) {

try {
for (Integer i : row) {
sink.write(i);

}
} catch(GermanDetectedException e) {
germanCount.increment(1L);

}
}

}
}

As with tables, counters need to be installed for the injection to work.
installCounter(GermanDocs.class, counterModule);

6.2 Design rationale

Cells is designed from the viewpoint that ordinary code, written with no knowl-
edge of MapReduce, is often written in pipeline style anyway. By pipeline style,
we mean that there are different stages of computation, that data is passed in a
mostly-linear way from one stage to another, and that the individual pieces are
tied together from the outside. Cells programs are meant to look like ordinary
pipeline code.

In Cells, reading any input, even if it is not read from a Bigtable, is read as
if it were stored in a Bigtable. This means that there is always a well-defined
grouping and sorting, independent of the data source. This uniformity means
that we can always, if needed, store intermediate output in a Bigtable, and
resume computation from there.

6.2.1 Debuggable

In classical MapReduce, Mappers and Reducers are different. Mappers can read
all kinds of things, but must output key-value pairs. Reducers can write all kinds
of things but must read key-value pairs. In Cells, the restriction of all mappers
to read and write cells nullifies the distinction. This allows the following.

In MapReduce, re-running a reducer, say, to fix a bug in it, always also
requires re-running the mapper. This can be egregious if a mapper takes a
long time to run, and the reducer fails almost immediately after being started.
Since, in Cells, the computational model is always equivalent to reading from a
Bigtable, we can always write intermediate output to a Bigtable, and run the
remaining data from there.

Suppose that our clone detector has a bug in RoughCloner, the second stage
of the algorithm. Once we’ve noticed the bug, we can re-execute the first stage
of the algorithm, but this time, write the result into a temporary table:

HadoopPipeline<Repo, Snippet> pipe = HadoopPipeline.fromTo(inTable, tmpTable);
pipe
.influx(new RepoCodec())
.mapAndEfflux(new SnippetExtractor(), new SnippetCodec());

56

Now, to re-run RoughCloner, all we have to do is start a pipeline from there.
Note that nothing forces us to make that pipeline a Hadoop pipeline. This is
how we can start a local pipeline that reads its data from a Bigtable across the
network. Local pipelines can be debugged like any local-running programs, right
from within the IDE.

LocalPipeline<Snippet, Clone> localPipe = LocalPipeline.from(tmpTable.asCellSource());
pipe
.influx(new SnippetCodec())
.mapAndEfflux(new RoughCloner(), new CloneCodec());

Here, the method asCellSource() returns a cell source that reads directly
from a Bigtable, through the network. The resulting pipeline will pull the data
out of the Bigtable, to our local work station, and execute the job in memory,
shuffling in memory. If the data size is too big to be dealt with in memory, we
can, for debugging, add a filter around the cell source that will only read the
first few thousand cells.

6.2.2 Independent of MapReduce

We want to allow developers to postpone the decision of whether to run locally,
or in a distributed fashion, as long as possible. Therefore, Cells does not depend
on a running MapReduce cluster. It does not even depend on any MapReduce
packages. The cells library is split into two packages, cells and cells.hadoop.
While cells.hadoop depends on Hadoop classes, cells is a from-scratch im-
plementation of the MapReduce paradigm, including its own implementation of
in-memory Bigtables.

We are careful about the distinction because Cells is a general-purpose li-
brary for writing parallel programs, even if no distributed execution is ever in-
tended. Cells, without the Hadoop package, and without the Hadoop libraries,
consists of a total of 2105 lines, including code comments. In contrast, if cells
were to depend on all of Hadoop and HBase, any program using Cells would
grow in size by hundreds of megabytes.

6.2.3 Static type checking

Keeping track of data encoding while reading from and writing to HBase tables is
fragile and dangerous. Since HBase stores only raw bytes, careful programming
is needed to make encoding and decoding match up, as they’re often part of
different mappers and reducers. In an early version of the clone detector that
was made up of hand-written Hadoop jobs, a significant share of the code was
used merely for checking if the encoding of one stage matched the decoding in
another stage.

Cells addresses this by using generics. In the following snippet, we added
casts to show the generic types. Here, Mapper<Repo, Snippet>means a mapper
that accepts rows of Repos, and outputs cells of Snippets.

void run(Pipeline<Repo, Clone> pipe) {
pipe
.influx((Codec<Repo>) new RepoCodec())
.map((Mapper<Repo, Snippet>) new SnippetExtractor())
.shuffle((Codec<Snippet>) new SnippetCodec())
.mapAndEfflux((Mapper<Snippet, Clone>) new RoughCloner(),
(Codec<Clone>) new CloneCodec());

}

57

All of these types are checked by Java’s type system. For example, mapAnd-
Efflux must be called with a codec of generic type Clone, because the type of
the pipeline says that the output is of type Clone. Even more, arbitrarily long
chains can be statically type checked, so that the output type of one mapper
must match the input type of the following mapper, and the codec in between.

6.2.4 Predictable performance

The close correspondence between the computational model of Cells and the
implementation makes performance predictable and controllable. Since shuffling
is a comparatively expensive operation, the developer is well advised to shuffle as
few times as possible. The flip side of this is the lack of automatic optimizations.
We see the usefulness of query optimizers, but we don’t think that Cells is the
right level of abstraction to feature one.

6.3 Implementation

After designing the API of Cells to closely match the computational model of
MapReduce and Bigtable, the implementation of a HadoopPipeline and an
Table implementation that stores in HBase is straightforward. Therefore, in
this section we will explain the implementation of the local and in memory part
of Cells.

6.3.1 Sharding and map execution

To run mappers in parallel, the input must be broken into separately executable
units, called shards. While in our computational model the smallest executable
unit is a row, it can pay off to group more than one row into a shard. That is
because scheduling shards is single-threaded, and we run a risk of under-using
our parallel capabilities. Cells vaguely defines a good shard size as big enough to
avoid spending much time scheduling, small enough to avoid individual shards
taking much more time than others.

Since the definition of a good sharding depends on the size of the input cells
as much as on their number, sharding is best dealt with early in the pipeline.
The user can control sharding by implementing his own CellSource – the input
of a LocalPipeline. For example, a CellSource that reads files from a disk
may choose to group files into a shard, until each shard contains at least one
Megabyte of data, even if the CellSource converts each file into its own cell,
with one cell per row.

To execute a pipeline stage, we clone its mapper until we have as many
mappers as we have threads in our thread pool. Furthermore, we create empty
output shards, as many as we have input shards, to receive the output of running
mappers. In a loop, we pick up a mapper and unprocessed shard, and schedule
the execution in the thread pool. Mappers can be recycled for computing more
than one shard. Because mappers write to an uncontested output shard, mapper
execution is completely lock-free.

58

6.3.2 Lock-free shuffle
After the execution of mappers, as seen in section §6.3.1, the mapper output
is in different shards, without any ordering or grouping. Therefore, before the
next mapper can run, we have to bring all output shards back into order: All
cells inside a shard must be ordered, and for any two shards, all cells in one of
them must be smaller than all cells in the other. Furthermore, after ordering, a
row (several cells of identical row key) must never be split between shards.

We achieve this using a variant of Sample Sort [30], similar to the variant
by Helman et al. [36]. The algorithm works as follows for input inShards, a list
of shards, and output outShards, where SAMPLE_SIZE is some integer constant.

1. From each shard in inShards, we randomly extract SAMPLE_SIZE cells into
a sample. Single-threaded, we sort the sample, and take every kth element
into a list named splitters, so that there is one more element in splitters
than there are shards. Furthermore, we set the column key of all cells in
splitters to be empty to ensures that rows cannot be split between shards.
The first element in splitters must be smaller or equal than all cells, the
last should greater than all cells.

2. In parallel, copy cells frominShards into a new list of shards, outShards,
so that all cells in outShards[i] are greater or equal than splitters[i], but
smaller than splitters[i+1].

3. In parallel, sort all outShards.

Here, only the sampling phase is single-threaded. The other phases are fully
parallel and lock-free. The time spent in sampling depends wholly on the size
of the sample, controlled by the constant SAMPLE_SIZE. We chose the value
empirically, by running WordCount with a range of different values, as seen in
figure 6.1. The best value size turned out to be 16. There are larger values
that yield the same performance, but on very small pipelines a smaller value is
obviously better.

6.3.3 In-memory Bigtable
For side inputs and outputs, Cells offers tables, which are directly modeled
after Bigtable [14]. Since the subtleties of the Bigtable model all involve data
distribution and replication, an in-memory implementation is straightforward.
To further simplify matters, tables cannot be both written and read during the
same pipeline stage. This means that we can write, sort and shuffle them exactly
like the main output at the end of a pipeline stage, as described in section §6.3.2.

To read the table again, the data is offered through the LookupTable inter-
face, outlined in section §6.1.2. The implementation of lookups in LookupTable
is simple enough: since cells are sorted inside each shard, and since shards are
sorted too, to lookup a row key, we can first binary search for its shard, and
then binary search inside of the shard, to find its row. To lookup by column, we
maintain an index, exactly as we do in section §6.3.4.

6.3.4 Column-lookup for HBase
HBase doesn’t support lookup by column key [32], unlike Bigtable [14]. To
support lookup by column key, Cells maintains an index over every HBase table.

59

12

13

14

15

16

17

18

19

20

0 20 40 60 80 100 120 140 160 180 200 220 240

R
u

n
n

in
g

ti
m

e

Sample Size

Sample Size and Performance

Figure 6.1: Run time, in seconds, as function of SAMPLE_SIZE.

In HBase, columns can be kept in different namespaces, using ‘column families’.
Whenever a cell is written into an HBaseSink, we store an additional cell in the
‘index’ column family, which has the row and column keys flipped, but no cell
contents.

Using this structure, we can efficiently look up column keys. We simply look
up the column key in the index, retrieving all row keys that contain cells with
this column key. Then, we can lookup the actual cells by looking up the retrieved
row keys with the column key.

6.4 Benchmarks

We chose two problems to test the performance of Cells. The first is WordCount,
which makes for a great benchmark because the operation inside of the Mappers
is relatively inexpensive, leading us to mostly measure the time spent in library
code. The second is distributed Support Vector Machine training, which is a
more realistic benchmark, as it is much more computationally demanding, but
can easily be expressed as a MapReduce job [92] . We compare Cells’ perfor-
mance both with plain Hadoop and PLINQ. All benchmark code can be found
on Github, together with the project sources4.

For WordCount, we sampled a number of books from project Gutenberg5 —
600 files, 240mb in total. The data is available together with the project sources.
For SVM training, we use a dataset6 provided to us by Yahoo with around 40

4Link removed for anonymity
5http://www.gutenberg.org
6http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

60

http://www.gutenberg.org
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

million log lines of user interactions with Yahoo’s front page.
Our local benchmarks were run on an 2.4 GHz 8 core i7 PC with 16Gb of

memory. Our cluster setup consists of three server machines, with 8, 8 and 32
cores, and 16, 16 and 120 GB of RAM, respectively. The code of benchmarks
is available on GitHub, together with the Cells sources. We make a sequence
of 50 runs and measure the minimum time taken. Using the minimum helps us
mitigate VM-related blunders.

Table 6.1: Cells vs PLINQ Benchmark in seconds.
Cells PLINQ

WordCount 14.3 26.5
SVM 261.1 N/A

On WordCount, Cells is almost twice as fast as PLINQ. This is somewhat
surprising because our approach by design, during shuffling, brings the cells into
a well-specified ordering that is irrelevant to counting words. The benchmark
results indicate that this design choice does not hurt performance.

We couldn’t run the SVM training problem on PLINQ due to the excessive
memory consumption, leading, eventually to OutOfMemoryException.

Table 6.2: Cells vs Hadoop Benchmark in seconds.
Cells plain Hadoop

WordCount 411.7 392.2
SVM 437.02 413.13

On both problems, Cells is on par with the plain Hadoop version for dis-
tributed execution. Cells uses Hadoop to run distributed MapReduce job, so it
would be surprising to outperform hand-written Hadoop. However, the price for
using Cells is small.

The difference in efficiency between in-memory execution and execution in
Hadoop is dramatic, but not unusual. Hadoop’s poor efficiency is well-known [1,
65].

6.5 Related work

Lee et al. [57] survey how MapReduce is used for parallel data processing.
Compared to MapReduce [25], Cells offers side inputs, side outputs, the

ability to run jobs locally, and an abstraction for inputs and outputs that is in-
dependent of their storage, simplifying testing and debugging drastically. Stock
MapReduce offers no support for pipelines, and running a Reduce must always
be preceded by running a Map stage.

FlumeJava [13] is a framework using a flavor of functional programming
that is automatically executed either locally, or on MapReduce. FlumeJava is
a complex framework, automatically combining as many operations as possible
into the map and the reduce stages, and automatically estimating whether jobs
should be executed locally or remotely. Unlike Cells, FlumeJava does not require

61

its computation to be a pipeline, but instead allows arbitrary DAGs. In con-
trast, Cells is a simple library, only about 4500 lines, including comments, with
completely predictable performance, in a style that is not specific to parallel
execution.

PLINQ [38] is an extension of LINQ [61] that mixes imperative with func-
tional programming to automatically determine which parts of a program can
be run in parallel. PLINQ programs aren’t restricted to MapReduce style. Since
the level of abstraction of expressing computations is high, PLINQ makes it hard
to predict which, if any, parts of a program will run in parallel. If PLINQ fails
to detect a parallelizable execution, it will simply run single-threaded. PLINQ
supports arbitrary data flow graphs, which do not have to be known to the
framework upfront. In practice, this means that PLINQ executes everything as
lazily as possible, and avoids throwing away intermediate results, in case they
will be needed again. In contrast, Cells’ simple computational model makes the
implementation very easy, and allows us to throw away intermediate results of
a shuffle once the following mapper has read them completely. This leads to
Cells using significantly less RAM than PLINQ. In our benchmarking, a job
that required only 4 GB of RAM in Cells could not be made to run using 7 GB
of RAM in PLINQ.

Dryad [41] allows more more complex computational structures than just
pipelines. Directed acyclic graphs are supported, and there is a great deal of
liberty in how the individual stages are executed: even SQL queries can be
executed as part of a computational graph. Configuration is therefore necessarily
more complex, up to the point where Dryad features a separate tool just to help
configure computational graphs. By contrast, Cells is simple and small, with a
computational model that makes performance predictable.

Various high-level tools build on MapReduce to distribute execution. Ex-
amples include Apache Pig [64] and Apache Hive [88]. All translate declarative
queries automatically into MapReduce jobs. All of these tools directly generate
distributed jobs. If, instead, they were to generate Cells jobs, this would simplify
testing of the generated jobs, without incurring significant cost in performance
on the distributed execution.

6.6 Conclusion
Cells is a simple and small library for writing parallel jobs. For local execution,
it can even outperform PLINQ by factor 2 on the WordCount benchmark. For
distributed execution, it adds only a small overhead to the execution. It makes
parallel and distributed computation easier to test and write.

We wrote Cells after having written the entire clone detector as raw MapRe-
duce jobs already. The problems that Cells solves: better debuggability, cleaner
support for coding and decoding, were very much exactly the problems we had
while implementing our clone detector without it.

Acknowledgements
This chapter is based on work I did with Alexey Kolesnichenko and Oscar Nier-
strasz [76].

62

Chapter 7

Clone detector

In chapter 4, we found clones in a big repository, but our suggested approach was
not yet scaleable, i.e., could handle growing amounts of data without changing
the approach [9]. That is because we have failed to show a scheme to distribute
our computation such that it can handle growing load by enlarging the system.

We improve on our detector in chapter 4 in the following ways. Rather than
produce only one hash per function, we now produce one per line. This greatly
improves recall, as it now becomes possible to detect clones that are only a
fraction of a function. Furthermore, we will add language-specific parsing to
our approach. Rieger [71] shows that minimal parsing improves recall of clone
detectors. Finally, we describe how to employ MapReduce pipelines to compute
the clones fully distributed in mappers that are data-local, i.e., without lookups
across the cluster, and quasilinear, and therefore fully scaleable.

Our clone detector achieves scaleability by combining the cornerstones we’ve
seen before: we use bad hashing to avoid a clustering phase and build an algo-
rithm where all stages are data-local, regular expressions to achieve quasilinear
run time, and MapReduce pipelines to distribute the computation.

We show a clone detector that can scale to all source code ever written,
in all versions. This is achieved by completely avoiding random reads from a
central table, in other words all mappers and all reducers use, as input, only a
contiguous slice of their input tables. Furthermore, we show the results of using
our clone detector on 15,180 projects, all downloadable Java projects listed on
the public meta repository “ohloh”. On just three machines, we can finish clone
detection across projects and versions in less than 20 hours. Besides a scaleable
clone detector, our libraries allow anyone to download massive amounts of source
code, store it space-efficiently and run cluster-style analysis on it, on commodity
hardware.

In this chapter, we describe a clone detector that is conceptually similar
to conQAT [40] (and should find roughly the same clones), but can compute
the clones without the requirement of global memory. Without global memory,
implementing the clone detection as a MapReduce job becomes easy, and leads
to remarkable speed. The asymptotic complexity of our clone detector is log-
linear in the size of the input, as can easily be verified below for each step
individually. The logarithmic factor stems from sorting the output of every stage
before feeding it into the next.

The algorithm we describe is one long pipeline. We can summarize it as

63

follows. We start by mining the Internet for software repositories. We download
those repositories to local disk. We convert the repositories to git format. We
copy the repositories into a distributed file system. We unpack the repositories
into Bigtables. We run a sliding window of 5 lines over each over each source
file. If we find a similar snippet in another file, we have found a clone and try
to expand the clone to maximum size. Once all clones are found, we run a filter
over the results to increase precision.

Altogether, the entire pipeline runs in 3 computers in below 48 hours, in-
cluding downloading the repositories. Clone detection itself takes 19 hours, 30
minutes, for 15,180 Java projects and all tagged versions in each. Our cluster
setup consists of three server machines, with 8, 8 and 32 cores, and 16, 16 and
120 GB RAM, respectively.

We detect clones in 15,180 projects, including all commonly known Java
frameworks and libraries, in all tagged versions. We detect code clones across
16,953,815 Java methods, totaling 476,069,312 lines. In this metric, we count
Java methods only once, even if the same method appears verbatim in a different
file, or in a different project. The compressed and fully packed git repositories
total 105 GB of data. The Snappy-Compressed tables (using HBase1) containing
all versions, projects, functions and snippets total 53.9 GB. We will discuss the
remarkable efficiency of our storage.

7.1 Clone detection using bad hashes in a nut-
shell

At its core, our approach uses ‘bad hashes’, i.e., hashes that may collide, to
define the similarity of two snippets. When two snippets of code produce the
same bad hash, they are considered similar.

Kamiya et al. proposed the following rules to abstract minutiae irrelevant to
overall similarity [44]. We apply all of them. (RJ1) Remove package names,
(RJ2) Supplement callees, (RJ3) Remove initialization lists, (RJ4) Separate
class definitions, (RJ5) Remove accessibility keywords, (RJ6) Convert to com-
pound block.

These rules require some parsing of the sources, which we can achieve via
lightweight parsing using regular expressions, as we have discussed in chapter 5.
This ensures that the computation of a bad hash is linear in time. We can
achieve all replacing in just one pass, by extracting all the relevant information
in just one pass, by setting the grammar complex enough. Then, walking the
parse tree, we output the transformed tree, similar to how Structural Regular
Expressions[68] work.

Let a ‘snippet’ be a run of five consecutive lines of code. We use the same
bad hashing as in section §4.1, but now applied to snippets rather than entire
methods. Let us recap.

• Two snippets are detected as type-1 clones iff they differ in nothing but
white-space, after all rules (RJ1) through (RJ6) were applied.

• Two snippets are detected as type-2 clones iff they are type-1 clones after
every sequence of alphabetical letters is replaced by the letter “t”, and all

1http://hbase.apache.org

64

http://hbase.apache.org

sequences of digits are replaced with the number “1”. For an example, see
Table 4.1.

• Two documents are detected as type-3 clones if and only if they share the
same sketch.

Note that, for all three clone types, to test whether or not two snippets are
similar, we never have to compare the snippets themselves. All we have to do
is abstract both snippets, compute the SHA1 hashes of the abstractions, and
compare the hashes.

This somewhat involved definition of type-3 clones pays back manyfold in
performance, while achieving good precision. Let us discuss these two claims in
reverse order. As for precision, it suffices to see that there are only marginally
more type-3 clones than there are type-1 clones [78], as seen in chapter 4. How-
ever, the precision of type-1 clones is very high, given that they are exact clones,
which rarely occur by chance. Since there are, as a percentage, only few more
type-3 clones than type-1 clones, precision of type-3 clones must be high. As for
performance, our definitions for type-1, type-2, and type-3 clones form equiva-
lence relationships. Clustering equivalence relationships is trivial. In our case,
we must only sort all snippets by their hashes, and then each cluster will be at
consecutive positions after sorting. However, sorting across clusters is efficient
and very well understood.

As an example, let us consider detecting clones in the three functions in
Figure 7.1. We move a sliding window of 5 lines over every source file. For each
snippet, we compute three normalizations, one for each clone type, and from
the normalization, the resulting bad hash. The first five normalized snippets
and their hashes are seen in Figure 7.2.

This process of subsequent normalizing and hashing will produce a sequence
of hashes for every input function. From this point on, the raw source files are
no longer needed and we can detect clones using the sequences of hashes alone.
If we now write the snippet into a sorted table, under the row key of its bad
hash, together with location data of the snippet, then we will find all colliding
snippets as a consecutive subtable. As we will see below, with only a few efficient
transformations, we can achieve a slightly modified table where we can find all
collisions for a function in order. As seen in Figure 7.1, functions FUN1 and FUN2
collide in three different snippets. Since the colliding snippets between FUN1 and
FUN3 are less than 10 lines apart, we merge all of them, and the lines between
them, into one clone. Merging all mergeable collisions between pairs FUN1–FUN2,
FUN1–FUN3, FUN2–FUN3 produces, as seen Figure 7.1, three clones. They are the
output of the clone detector.

Finally, we filter out all clones that are less than 10 lines long. Then, for every
clone, we compute the set of identifiers on both sides of the clone. If the intersec-
tion of their identifiers smaller than 85 % of the size of their union, we discard
the clone. The latter rule has been proposed and validated by Koschke [52].
It follows from the intuition that if code is copied, the invoked API methods
cannot be renamed and aggressive renaming of identifiers is unusual.

65

FUN2: public static int log10(int x, RoundingMode mode) {
int logFloor = log10Floor(x);
int floorPow = powers_Of_10[logFloor];
switch (mode) {

FUN2: case FLOOR:
FUN2: case DOWN:
FUN2: return logFloor;

case CEILING:
FUN2: case UP:
FUN1,FUN2: return (x == floorPow) ? logFloor : logFloor + 1;
FUN1,FUN2: case HALF_DOWN:
FUN2: case HALF_UP:
FUN2: case HALF_EVEN:
FUN2: // sqrt(10) is irrational, so log10(x) - logFloor is never exactly
FUN2: // 0.5

return (x <= half_Powers_Of_10[logFloor]) ? logFloor : logFloor + 1;
default:

throw new AssertionError();
}

 }

 public static int log10(int x, RoundingMode mode) {
checkPositive("x", x);
int logFloor = log10Floor(x);
int floorPow = POWERS_OF_10[logFloor];
int result = -1;

FUN2: switch (mode) {
case UNNECESSARY:

checkRoundingUnnecessary(x == floorPow);
// fall through

case DOWN:
result = logFloor;

case CEILING:
case UP:

FUN2,FUN3: result = (x == floorPow) ? logFloor : logFloor - 1;
FUN2,FUN3: case HALF_DOWN:

case HALF_UP:
case HALF_EVEN:

// sqrt(10) is irrational, so log10(x) - logFloor is never exactly
// 0.5
result = (x <= HALF_POWERS_OF_10[logFloor]) ? logFloor : logFloor - 1;

}
return result;

 }

FUN3: public static int log10(int x, RoundingMode mode) {
int logFloor = log10Floor(x);
int floorPow = powers_Of_10[logFloor];

FUN1: switch (mode) {
case UNNECESSARY:

checkRoundingUnnecessary(x == floorPow);
// fall through

FUN3: case FLOOR:
FUN3: case DOWN:
FUN3: return logFloor;

case CEILING:
FUN3: case UP:
FUN1,FUN3: return (x == floorPow) ? logFloor : logFloor + 1;
FUN3: case HALF_DOWN:
FUN3: case HALF_UP:
FUN3: case HALF_EVEN:
FUN3: // sqrt(10) is irrational, so log10(x) - logFloor is never exactly
FUN3: // 0.5

return (x <= half_Powers_Of_10[logFloor]) ? logFloor : logFloor + 1;
default:

throw new AssertionError();
}

 }

F
U
N
1

F
U
N
2

F
U
N
3

Figure 7.1: Collisions of similar snippets between three functions. The collisions
for each snippet are given on the left, in bold. FUN2 in bold means that the
following five lines (a snippet) collide with a snippet from FUN2. FUN1 and FUN2
collide in three snippets, FUN1 and FUN3 collide in 3 snippets, FUN2 and FUN3
collide in 11 snippets. The frames show the merged snippet collisions, which we
call clones.

66

98DB

A9BB

0FA2

0FA2

58BA

FUN1
t t t1(t t, t t) {
t("t", t);
t t = t1t(t);
t t = t_t_1[t];
t t = -1;
t (t) {
t t:
t(t == t);
// t t
 ...

Figure 7.2: The first few snippets and their hashes, for the first function in
Figure 7.1.

7.2 Pipeline
Even though our approach can be thought of as just one long pipeline, it can
be broken into two parts. The first part is concerned with moving data into the
distributed file system; the second part reads from the distributed file system
and writes clone data into it. The first part is implemented in Ruby, and con-
currency is achieved using GNU parallel [86] and Unix pipes. The second part
is implemented in Java and achieves parallelism using a MapReduce pipeline.

7.2.1 Mining the Internet for source code
In this section, each paragraph corresponds to a separate Ruby script in our
pipeline. The scripts are connected via Unix pipes, so that the output of one
script forms the input of the next, leading to a naturally concurrent implemen-
tation, without our having to worry about locks.

We further increase parallelism by running stages of the pipeline using GNU
parallel [86]. This is powerful, as it even allows distributing the computation
seamlessly across our cluster, using the -sshloginfile switch. It is also a very
clean design: even though, conceptually, our computation is parallel, concurrent
and even distributed, it makes little difference for understanding the individual
steps of the pipeline.

Ohloh aims to be a nearly comprehensive online directory of open source
projects, regardless of where they are hosted. By June 2013, it had nearly
600,000 projects listed.

Produce a list of all project names. We crawl the ohloh website to produce
a list of Java project names. The URL https://www.ohloh.net/p?q=java
returns a list of 50,000 projects spread over 5,000 html pages. We parse all html
pages to extract the project names of each project.

Gather download URLs. For each project name, we produce a list of its
download URLs. Ohloh offers an http API that lists all download URLs, given a

67

https://www.ohloh.net/p?q=java

project name. For example, to get the list of all download URLs for project Tom-
cat, http://www.ohloh.net/p/tomcat/enlistments produces all download
URLs.

After downloading all enlistments, we found download URLs to 3077 Git
repositories, 662 Mercurial repositories, 15982 Subversion repositories and 6418
CVS repositories. Note that there can be several download URLs, or none, for
a project.

Choosing the best download URL. To choose the best download URL for
a project, we use a hand-crafted scoring system. The download URL with the
highest score gets sent to the next stage.

• We boost a repository score by 75 points if the URL contains one of the
following keywords: src, source, core, standard, build, master. On the other
hand we lower a repository score by 75 points if the URL contains one of
the following keywords: doc, docs, extras, extra, tool, tools, test, testing.

• For each time time that the project name occurs in the download URL,
the score gets increased by 10.

• We add 1000/l, where l is the length of the repository URL. This follows
from the observation that the projects’ official repository URL tends to
be short.

Download repositories and convert to git format. For each download
URL, we download the repository. If the project cannot be downloaded as a
bare (i.e., without a checked out version) git repository, we convert it into one.
In the case of Subversion repositories, we do not use the git-svn scripts from
the git distribution, but instead check out the repository using svn directly, and
commit the contents into a new git repository.

The output of this stage is, unlike all previous stages, not written to stdout,
but is a directory on the local disk containing all repositories in git format.

pack-refs with: peeled
1f8d1c6b1d8d refs/heads/master
bf2e04ae5fbe refs/tags/v0.1

Figure 7.3: Example of a pack-refs file. Each line represents a version of, named
by the right-hand side. So, version v0.1. is found in the commit of SHA1 hash
bf2e04ae5fbe.

Move local repositories into distributed file system. In a bare git repos-
itory that’s fully packed (this is ensured by ‘git repack’), two files suffice to de-
scribe all versions: the packfile and the pack-refs file. The pack-refs file contains
all named versions (or ‘tags’ in git parlance), the packfile contains the source
trees and some meta information. See Figure 7.3 for an example of a pack-refs
file.

For each repository, we move these two files into the distributed file system.
Fully packed repositories are more simply structured than general repositories,
and use less space.

68

http://www.ohloh.net/p/tomcat/enlistments

The median size of a pack file is 1.5 megabytes. Hadoop’s distributed file
system, HDFS, effectively sports a minimum file size of 64 megabytes, meaning
that a naive import would cost more than an order of magnitude in space con-
sumption. Hadoop offers an archive format similar to tar files, called HAR files.
Before creating the HAR file we generate an index file holding the path and size
of all contained pack files. Running a ‘find’ command inside HDFS on the HAR
file otherwise is tremendously slow. After moving all pack files and pack-ref files
into one big HAR file, space is efficiently used on the distributed file system.
The HAR file takes up only 103.1 GB of space on the distributed file system.

7.2.2 MapReduce pipeline

Let us now describe the second half of the pipeline, where all projects have
already been downloaded and now reside in the distributed file system. This is
the algorithmic part of the pipeline. Note that at no point is there a requirement
to read from arbitrary tables. Every step can be implemented by mappers that
accept only a slice of the overall input data, and produce their own slice of
the overall output data, without ever needing more than their own slice. An
overview of the pipeline is seen in Figure 7.4. Let us discuss all mappers in turn.

Git repositories

function2fact file2function

version2file project2version

Populate

MakeSnippet2Function

snippet2function

MakeFunction2RoughClones

function2roughclones

MakeFunction2FineClones

function2fineclones

Figure 7.4: The pipeline architecture of our algorithm.

69

Populate In this mapper, we merge all incoming git repositories into one, split
files into functions, and compute all hashes. Git stores a software repository in
a persistent data structure [27], more specifically, as a directed acyclic graph of
immutable nodes. Files are the leaves of this graph. The advantage of this model
is that if the same file appears in two source trees, the leaf representing that file
can be shared between the source trees. This idea is easily generalized to allow
sharing of identical files across project repository boundaries, as exemplified in
Figure 7.6.

PROJECT VERSION TAG NAME

VERSION FILE FILEPATH

FILE FUNCTION Baseline

FUNCTION Type + SNIPPET Location

STRING Value

project2version:

version2file:

file2function:

function2snippet:

strings:

Figure 7.5: The table design for storing all repositories using the flyweight pat-
tern. Names printed in all caps are hashes.

This mapper produces several tables whose layout can be seen in Figure 7.5.
For every version in the input project, we walk the entirety of its source tree,
and write the entire source tree into just one table row. Note that HTable poses
no limit on the number of columns per row.

For each file we write one row to table ‘version2files’. Its cell key is the SHA1
hash of the file contents. Its column key is the file name. The file contents itself
are stored separately, in a ‘strings’ table, where we store a cell whose row key
is the SHA1 hash of the file contents, and the cell value is the raw file contents.
Thus, no matter how many projects share the same file, the file contents are
stored exactly once, in the ‘strings’ table. This is illustrated in figure 7.6.

We use the same trick throughout: even if a function appears in multiple files,
there is only one row in table ‘function2snippet’ for that function. Effectively,
we’re using the Flyweight pattern to reduce our data size, just as Git does.

To apply rules (RJ1) through (RJ6), we use lightweight parsing on Java
source files. Our parsing has to be powerful enough to identify class defini-
tions, function definitions, package names, method invocations, initialization
lists, remove accessibility keywords, and the statements if, while, for with
the following statement.

Using our regular expression engine from chapter 5, we can parse this in one
pass, from one single regular expression. Since the resulting regular expression is
quite involved, let us discuss a simpler one, identifying all functions and classes.

Class definitions are much easier to express as a regular expression, since
Java has a reserved keyword for them. A class definition can be expressed as
\bclass\b.*?\{.

70

World.java

Player.java

v14

Map.java

Player.java

v15

1AF37B92

CAB1CAB1

Map.javaPlayer.java

v15

World.java

v14

1AF3CAB17B92

Figure 7.6: Versions v14 and v15 (possibly from different projects!) both contain
a file named Player.java, whose contents has hash CAB1 (above). We save space
by forcing v14 and v15 to share Player.java, thus preventing the duplication of
Player.java in our database.

Since Java’s function declaration uses no keyword, functions are the hardest
thing to parse from a regular expression alone. However, the following features
of function definitions can be exploited to craft a regular expression that works
well in practice: there are at least two distinct words before an open parenthe-
sis (method name and return type), there’s exactly one open and one closing
parenthesis, followed by exactly one opening curly brace. Semicolons, periods,
etc, are disallowed.

Let FUNC be our regular expression to parse function declarations, and CLASS
our regular expression to parse class declarations, then the following regular
expression parses Java source files, splitting them into classes and functions:
.*?(CLASS.*?(FUNC.*?)*?)*?.

Note that our regular expression contains nested asterisks. In a back-tracking
implementation, this could easily lead to exponential run-time. However, our
algorithm is guaranteed to be linear in the input size, even for a complicated
regular expression like ours.

The other features are added to the regular expression analogously. Our reg-
ular expression engine will produce a full parse tree from this regular expression.
Walking this tree, we can apply all rules at once.

The main output of this mapper is table ‘function2snippet’, the other tables
are side outputs. This means that the next mapper will receive, as its input,
table ‘function2snippet’.

In our example, after loading in the three source files from Figure 7.1, the
main output is seen in Table 7.1.

Reverse index In this mapper, we build a reverse index from snippet hashes
to the functions that contain them. This simply means to exchange row and
column keys in Table 7.1. After this is done, snippets that have collisions will
appear in the same row. For our data, the output of this stage is 21.8 GB in

71

Table 7.1: Table that maps from functions to snippets.

FUN1 0FA2 2 1474 12

FUN2

2786 15

20A4 13

83017 38C3 6

48C3 17 58BA 0

98DB 46F45 14

9C62 11 A4A8 9

03D8 9

5985 7

5F72 10

1FF0 2 20A4 12

4FE1 11 136F4554F4 4

8889 1 9721 0

ABB0 15 3BB3E

A037 7

C751 17

BFEA 14

D0AF 16

ECBB 5 8FC06

E444 6

Function Snippet Position

FUN3 03D8 6 20A4 9

35752

4FE1 8

6F45 10

ABB0 12

BB95 1 11BFEA

B437 2

D0AF 13

C751 14

FC06 5

4A037

9721 0

A9BB 3

BB3E 5

size, snappy-compressed.

Filter In this mapper, we remove all rows from the previous stage that have
at most one column. In other words, we ignore snippets that are found in at
most one function, since they can per definitionem not be part of a clone, and
treat popular snippets specially.

This stage reduces the amount of input data we deal with substantially. The
output of this mapper is 5.2 GB in size, and another 294 MB in the side table
of popular snippets.

Rough clones In this mapper, we gather, for every function, all collisions
with it. For example, in the example in Table 7.3, the first row contains all
collisions that involve FUN1, ordered first by colliding function, and second by
position of the collision in FUN1. The input to this mapper is a table that maps
from a snippet to all functions containing it. As can be seen in the pseudocode of
this operation in Figure 7.7, the output of this mapper is of size O(c2n), where

72

Table 7.2: Output of the mapper from Paragraph §7.2.2. Row keys are snippets,
cell values are functions that contain these snippets.

03D8 FUN2 9

0FA2

12FUN1

FUN1 1

FUN3 6

1474

Snippet Function Position

1FF0

13FUN1

FUN2 2

20A4

10FUN24FE1

14FUN16F45

9721

7FUN2

FUN2 0

A037

ABB0

5FUN1

FUN2 15

BB3E

BFEA

17FUN2

FUN2 14

C751

D0AF

8FUN2

FUN2 16

FC06

FUN2 12 FUN3 9
...

FUN3 8
...

FUN2 13 FUN3 10

FUN3 0

FUN3 4

FUN3 12

FUN2 3

FUN3 5

FUN3 13

FUN3 14

FUN3 11

...

...

...

...

...

...

n is the number of functions with collisions, and c is the maximal number of
functions that a snippet occurs in.

Since c can reach substantial sizes, c’s distribution can be seen in Figure 7.8,
we have to introduce special treatment to snippets that occur in very many
functions, thus providing an upper bound for c. As seen in Figure 7.8, skipping
snippets that occur in more than 1,000 functions, suppresses only 0.04 % of all
snippets, but dramatically decreases the output size. In fact, only this restriction
ensures that the output of this mapper is linear in its input.

Snippets that occur in more than 1,000 functions are still written out, but
into a side table named ‘popularSnippets’. We still use these snippets in match-
ing, but only if a snippet that occurs less frequently than some threshold2 also
matches. This serves as a useful filter: if a snippet is extremely common, it prob-

2In our experiments, threshold c = 1000 worked out well.

73

Input : A map from sn ippe t s to a l l o f i t s l o c a t i o n s .
A l o c a t i o n i s a l i n e and a func t i on .

Output : A map from func t i on to a l l o f i t s c o l l i s i o n s .
A c o l l i s i o n i s a pa i r o f l o c a t i o n s .

f o r entry : inputMap {
f o r th i sLoca t i on : entry . l o c a t i o n s {

f o r thatLocat ion : entry . l o c a t i o n s {
i f th i sLoca t i on == thatLocat ion {

cont inue
}
c e l l := new Ce l l ()
c e l l . setRowKey (th i sLoca t i on . func t i on)
c e l l . setColumnKey (concat (

thatFunct ion . funct ion , th i sLoca t i on . l i n e))
wr i t e (c e l l)

}
}

}

Figure 7.7: The pseudocode that produces Table 7.3 from input Table 7.2

1 ´ 104 2 ´ 104 5 ´ 104 1 ´ 105

0.0001

0.0002

0.0003

0.0004

2000 50001000
0

Figure 7.8: Percentage of snippets that have more than n clones. The y-axis
shows the percentage, the x-axis shows the number of clones. If a snippet occurs
in two places, it has two clones. The x-axis is shown in range [1000, 100000].

74

ably represents merely an artifact of the programming language or API, rather
than code duplication worth studying.

In our example, for a threshold of 3, the output of this mapper is seen in
Tables 7.3 and 7.2.

Table 7.3: The table from functions to collisions. For our data set, this table is
32.4 GB in size.

FUN1 FUN2, 5 BB3E, 3

FUN2

FUN2, 13 20A4, 12 FUN2, 14 6F45, 13

FUN3, 0 9721, 0 FUN3, 7 A037, 4 FUN3, 8 FC06, 5

thisFunction thatFunction,
Position in thisFunction

Snippet,
Position in thatFunction

FUN3, 9 03D8, 6 FUN3, 11 4FE1, 8

FUN3, 14 BFEA, 11 FUN3, 15 ABB0, 12

FUN3, 16 D0AF, 13 FUN3, 17 C751, 14

FUN3, 13 20A4, 9 FUN3, 14 6F45, 10

FUN3, 12 20A4, 9

FUN3, 13 6F45, 10

Table 7.4: The content of the popular snippets Table. For our data set, this
table is 293.3 MB in size.

FUN1 6F45 1420A4 13

FUN2 20A4 12 6F45 13

Function Snippet Position

FUN3 20A4 9 6F45 10

To simplify the code of this mapper, we assume that a snippet can occur
at most once in a function. We tested this assumption. We sampled 405 Git
projects with a total of 9,410,813 functions in normalized form. We count 210,774
functions where our assumption that one snippet occurs at most once in a
function is violated. That is about 2 %.

Clone expansion The input to this mapper is seen in Table 7.3: Rows con-
tain one function in the row key, and the sorted list of matching snippets with
another function, in the column key. The snippets are sorted with respect to
their occurrence in the row key function, meaning they may be out of order with
respect to the function in the column key.

The snippets are stitched together into clones. A clone is a match between
two functions, and can be arbitrarily long. It is no longer restricted to 5 lines.
When stitching together clones, we make sure that the gap in each clone, in
either of the involved functions, is at most 4 lines long. If the gap is greater
than that, more than one clone is output. While the popular snippets from

75

table 7.4 are never used to initiate a clone, they are used during stitching, and
may prevent a gap from becoming too large.

Note that our promise to avoid lookups into a global table was not vio-
lated by using the popular snippets table. The full size of the table is only 500
megabytes, meaning we can copy it in full to all mappers, avoiding a central
lookup completely.

The output of this mapper is seen in table 7.5. Going back to the input files
in figure 7.1, we see that we have detected, meaningful and intuitive clones for
this input.

Table 7.5: Final output, the detected clones.

5Position 3

14 15Length

FUN2FUN1Function

13 9

6 6

FUN3FUN1

0 0

22 19

FUN3FUN2

Clone 3Clone 2Clone 1

Clone filter For every clone, we compute the set of identifiers on both sides
of the clone. If the intersection of their identifiers is smaller than 85 % of the
size of their union, we discard the clone.

In our example, the vocabulary for all snippets is above the threshold, mean-
ing that all survive filtering.

7.3 Discussion
The time to detect clones across versions and across all Java-projects on Ohloh
can be found in Table 7.6. The key ingredients to its performance are two-
fold. First, we forbid any global reads across the cluster, leading to a data-local
algorithm. Second, we employ data reduction by eliminating, as early as possible,
all snippets that cannot partake in a clone, because they do not collide. This
step alone eliminates 3/4 of the data.

7.3.1 Precision and Recall
We have yet to measure precision and recall of our algorithm, but since our
normalizations are the same as those used by CCFinder [44], our approach
should provide roughly the same numbers (CCFinder achieves 40 % precision
and 40 % recall in Bellon et al. ’s study [8]), or perhaps better, since we added
Koschke’s filtering [52] of false positives to the approach.

Table 7.6: Time taken in minutes, per mapper. Total time taken is 19 hours, 30
minutes

Populate Reverse Index Filter Rough clones Fine clones

427 60 25 207 451

76

7.3.2 Scale

While our current implementation is restricted to Java source code, we con-
sider our mission to scale to all public source code to be accomplished. Java
is, according to TIOBE3, the second most popular programming language lan-
guage, meaning that we’re already covering a significant fraction of all open
source code, on only three machines, in 24 hours of cluster time. Given that
our pipeline computes locally, without global lookups, it is expected to scale up
linearly to more machines.

7.3.3 Lessons learnt

Working with a small Hadoop cluster afforded us a chance to learn valuable
lessons, although we are sure that they are well-known to the initiated.

At first, for only 405 repositories, stage “populate” took over 60 minutes,
which seemed fairly long. We later realized that this was caused by a small check
to see whether or not a file has been written before. Alas, as we described earlier,
reading while writing forces all write-buffers to be flushed, causing performance
to degenerate. Removing the check and writing source trees regardless of whether
or not they’ve been written before, which is safe, improved the time down to 2
minutes.

7.3.4 Future work

We have outlined in chapter 1 that clone detection can serve as a platform to
build tools to connect projects. We are in a great position to build these tools.

We have already implemented one to group clones into groups, to be able
to better display our results. It works as follows. We define functions to be the
vertices of a graph, and clones the edges on it. Then, for each connected compo-
nent, the set of all vertices is defined as one clone group. We have implemented
this in a non-parallel way, simply because the data volume of filtered, interesting
clones is small enough to permit it, even for our input size.

We have not yet measured precision and recall of our approach. Precision
could be measured by deciding letting a group of experts mark, for each clone,
whether or not it is interesting. Recall could be measured by running our clone
detector on Bellon’s data [7], which will require us to implement a C++ frontend
to our detector.

7.4 Conclusion

Our clone detector combines bad hashing, lightweight parsing using regular
expressions, and MapReduce pipelines. We show that clone detection can be
achieved without random reads across the network, in log-linear time, and there-
fore scales well. Our clone detector finds clones in all open source Java projects,
across all versions.

Our clone detector achieves scale through quasilinear run-time, distribution,
and data locality. We achieve them by relying three cornerstones. Lightweight
parsing using regular expressions lets us parse all input in one pass in linear time.

3http://www.tiobe.com/, viewed in December 2013

77

http://www.tiobe.com/

MapReduce pipelines let us distribute a computation to an arbitrary number of
machines, and therefore makes our algorithm scaleable, so long as all computa-
tion is data local. Bad Hashing lets our clone detector not require a clustering
phase, and therefore make it easy to keep all computation data local.

Acknowledgements
This chapter is based on work I did with Simon Vogt and Oscar Nierstrasz.
Simon wrote substantial parts of the pipeline, and the parts he did not write,
he code reviewed.

78

Bibliography

[1] Eric Anderson and Joseph Tucek. Efficiency matters! SIGOPS Oper. Syst.
Rev., 44(1):40–45, March 2010. doi:10.1145/1740390.1740400.

[2] Arvind Arasu, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Raghav
Kaushik, and Vivek R. Narasayya. Experiences with using data cleaning
technology for bing services. IEEE Data Eng. Bull., 35(2):14–23, 2012.

[3] Brenda S. Baker. On finding duplication and near-duplication in large
software systems. In Proceedings of the Second IEEE Working Conference
on Reverse Engineering (WCRE), pages 86–95, July 1995.

[4] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’ Anna, and Lor-
raine Bier. Clone detection using abstract syntax trees. In Proceedings
of the International Conference on Software Maintenance (ICSM 1998),
pages 368–377. IEEE Computer Society, Washington, DC, USA, 1998.
doi:10.1109/ICSM.1998.738528.

[5] Andrew Begel and Robert DeLine. Codebook: Social networking over
code. In ICSE Companion, pages 263–266, 2009. doi:10.1109/
ICSE-COMPANION.2009.5070997.

[6] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: dis-
covering and exploiting relationships in software repositories. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 125–134, New York, NY, USA, 2010. ACM.
doi:10.1145/1806799.1806821.

[7] Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten
Quellcodes. Master’s thesis, Universität Stuttgart, September 2002. URL:
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.
pdfhttp://www.bauhaus-stuttgart.de/clones/index.html.

[8] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE Trans-
actions on Software Engineering, 33(9):577–591, 2007. doi:10.1109/TSE.
2007.70725.

[9] André B. Bondi. Characteristics of scalability and their impact on per-
formance. In Proceedings of the 2Nd International Workshop on Software
and Performance, WOSP ’00, pages 195–203, New York, NY, USA, 2000.
ACM. doi:10.1145/350391.350432.

79

http://dx.doi.org/10.1145/1740390.1740400
http://dx.doi.org/10.1109/ICSM.1998.738528
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070997
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070997
http://dx.doi.org/10.1145/1806799.1806821
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf http://www.bauhaus-stuttgart.de/clones/index.html
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf http://www.bauhaus-stuttgart.de/clones/index.html
http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1145/350391.350432

[10] Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain
Robbes. Language-Independent clone detection applied to plagiarism de-
tection. In SCAM, pages 77–86, 2010. doi:10.1109/SCAM.2010.19.

[11] A. Z. Broder. On the resemblance and containment of documents. In
Proceedings of the Compression and Complexity of Sequences 1997, SE-
QUENCES ’97, pages 21–29. IEEE Computer Society, June 1997.

[12] Paul Cairns and Anna L. Cox. Research Methods for Human-Computer
Interactions. Cambridge University Press, 2008. Chapter 2, 7, 9.

[13] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava:
Easy, efficient data-parallel pipelines. SIGPLAN Not., 45(6):363–375, June
2010. doi:10.1145/1809028.1806638.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):1–26, June 2008. doi:10.1145/1365815.
1365816.

[15] Hung-Fu Chang and Audris Mockus. Evaluation of source code copy de-
tection methods on freebsd. In MSR ’08: Proceedings of the 2008 inter-
national working conference on Mining software repositories, pages 61–66,
New York, NY, USA, 2008. ACM. doi:10.1145/1370750.1370766.

[16] Jonathan Cloud and Graham M. Vaughan. Using balanced scales to control
acquiescence. Sociometry, 33(2):pp. 193–202, 1970. URL: http://www.
jstor.org/stable/2786329.

[17] James R. Cordy. Comprehending reality—practical barriers to industrial
adoption of software maintenance automation. In Proc. 11th Int. Workshop
on Program Comprehension (IWPC’03), pages 196–205, Portland, Oregon,
USA, May 2003. IEEE.

[18] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel, 248966-028 edition, July 2013.

[19] R. Cox. Regular expression matching can be simple and
fast (but is slow in java, perl, php, python, ruby,...). URL:
http://swtch.com/˜rsc/regexp/regexp1.html, 2007.

[20] R. Cox. Regular expression matching: the virtual machine approach. URL:
http://swtch.com/˜rsc/regexp/regexp2.html, 2009.

[21] R. Cox. Regular expression matching in the wild. URL:
http://swtch.com/˜rsc/regexp/regexp3.html, 2010.

[22] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social cod-
ing in github: transparency and collaboration in an open software reposi-
tory. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1277–1286, New York, NY, USA, 2012.
ACM. doi:10.1145/2145204.2145396.

80

http://dx.doi.org/10.1109/SCAM.2010.19
http://dx.doi.org/10.1145/1809028.1806638
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1370750.1370766
http://www.jstor.org/stable/2786329
http://www.jstor.org/stable/2786329
http://dx.doi.org/10.1145/2145204.2145396

[23] Michel Dagenais, Ettore Merlo, Bruno Laguë, and Daniel Proulx. Clones
occurrence in large object oriented software packages. In Proceedings of
CASCON 1998, pages 192–200, 1998.

[24] Julius Davies, Daniel M. Germán, Michael W. Godfrey, and Abram Hindle.
Software bertillonage: Finding the provenance of an entity. InMSR’11: Pro-
ceedings of the 8th International Working Conference on Mining Software
Repositories, pages 183–192, 2011. doi:doi.acm.org/10.1145/1985441.
1985468.

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, January 2008.
doi:10.1145/1327452.1327492.

[26] Danny Dig and Ralph Johnson. How do APIs evolve? a story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice
(JSME), 18(2):83–107, April 2006.

[27] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. Journal of Computer and System Sci-
ences, 38(1):86–124, February 1989.

[28] Danny Dubé and Marc Feeley. Efficiently building a parse tree from a
regular expression. Acta Informatica, 37(2):121–144, 2000. doi:10.1007/
s002360000037.

[29] Ekwa D. Ekoko and Martin P. Robillard. Clonetracker: tool support for
code clone management. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 843–846, New York, NY, USA,
2008. ACM. URL: http://dx.doi.org/10.1145/1368088.1368218,
doi:10.1145/1368088.1368218.

[30] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach to
minimal storage tree sorting. J. ACM, 17(3):496–507, July 1970. doi:
10.1145/321592.321600.

[31] Richard A. Frost and Barbara Szydlowski. Memoizing purely functional
top-down backtracking language processors. Science of Computer Pro-
gramming, 27(3):263–288, November 1996. doi:10.1016/0167-6423(96)
00014-7.

[32] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[33] Niels Bjørn Bugge Grathwohl, Fritz Henglein, Lasse Nielsen, and Ulrik Terp
Rasmussen. Two-Pass greedy regular expression parsing. In Stavros Kon-
stantinidis, editor, Implementation and Application of Automata, volume
7982 of Lecture Notes in Computer Science, pages 60–71. Springer Berlin
Heidelberg, 2013. doi:10.1007/978-3-642-39274-0_7.

[34] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nier-
strasz. Categorizing developer information needs in software ecosys-
tems. In Proceedings of the 1st Workshop on Ecosystem Architec-
tures, pages 1–5, 2013. URL: http://scg.unibe.ch/archive/papers/
Haen13a-EcosystemInformationNeeds.pdf.

81

http://dx.doi.org/doi.acm.org/10.1145/1985441.1985468
http://dx.doi.org/doi.acm.org/10.1145/1985441.1985468
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/s002360000037
http://dx.doi.org/10.1007/s002360000037
http://dx.doi.org/10.1145/1368088.1368218
http://dx.doi.org/10.1145/1368088.1368218
http://dx.doi.org/10.1145/321592.321600
http://dx.doi.org/10.1145/321592.321600
http://dx.doi.org/10.1016/0167-6423(96)00014-7
http://dx.doi.org/10.1016/0167-6423(96)00014-7
http://dx.doi.org/10.1007/978-3-642-39274-0_7
http://scg.unibe.ch/archive/papers/Haen13a-EcosystemInformationNeeds.pdf
http://scg.unibe.ch/archive/papers/Haen13a-EcosystemInformationNeeds.pdf

[35] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24:8–12, 2009. doi:
10.1109/MIS.2009.36.

[36] David R. Helman, David A. Bader, and Joseph Jájá. A randomized parallel
sorting algorithm with an experimental study. Journal of Parallel and
Distributed Computing, 52(1):1–23, July 1998. doi:10.1006/jpdc.1998.
1462.

[37] Rich Hickey. The Clojure programming language. In DLS ’08: Proceed-
ings of the 2008 symposium on Dynamic languages, pages 1–1, New York,
NY, USA, 2008. ACM. URL: http://doi.acm.org/10.1145/1408681.
1408682, doi:10.1145/1408681.1408682.

[38] Gastn Hillar. Professional Parallel Programming with C#: Master Parallel
Extensions with .NET 4. Wrox Press Ltd., Birmingham, UK, UK, 2010.

[39] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. Cnp: Towards an en-
vironment for the proactive management of copy-and-paste programming.
In 2009 IEEE 17th International Conference on Program Comprehension,
pages 238–242. IEEE, May 2009. URL: http://dx.doi.org/10.1109/
ICPC.2009.5090049, doi:10.1109/ICPC.2009.5090049.

[40] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based
code clone detection: incremental, distributed, scalable. In ICSM, pages
1–9, 2010. doi:10.1109/ICSM.2010.5609665.

[41] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks.
In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages 59–72, New York, NY, USA,
2007. ACM. doi:10.1145/1272996.1273005.

[42] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44,
August 2009. doi:10.1145/1536616.1536632.

[43] Stan Jarzabek and Li Shubiao. Eliminating redundancies with a ‘composi-
tion with adaptation’ meta-programming technique. In Proceedings ESEC-
FSE’03, European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 237–246.
ACM Press, September 2003.

[44] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A
multi-linguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28(6):654–670,
2002.

[45] Cory Kapser and Michael W. Godfrey. "cloning considered harmful" con-
sidered harmful. WCRE ’06, 0:19–28, 2006. URL: http://dx.doi.org/
10.1109/WCRE.2006.1, doi:10.1109/WCRE.2006.1.

[46] L. Karttunen, J. P. Chanod, G. Grefenstette, A. Schiller, and Received
February. Regular expressions for language engineering. In Natural Lan-
guage Engineering, pages 305–328, 1996. doi:10.1.1.28.4880.

82

http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1006/jpdc.1998.1462
http://dx.doi.org/10.1006/jpdc.1998.1462
http://doi.acm.org/10.1145/1408681.1408682
http://doi.acm.org/10.1145/1408681.1408682
http://dx.doi.org/10.1145/1408681.1408682
http://dx.doi.org/10.1109/ICPC.2009.5090049
http://dx.doi.org/10.1109/ICPC.2009.5090049
http://dx.doi.org/10.1109/ICPC.2009.5090049
http://dx.doi.org/10.1109/ICSM.2010.5609665
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/1536616.1536632
http://dx.doi.org/10.1109/WCRE.2006.1
http://dx.doi.org/10.1109/WCRE.2006.1
http://dx.doi.org/10.1109/WCRE.2006.1
http://dx.doi.org/10.1.1.28.4880

[47] Steven M. Kearns. Extending regular expressions with context operators
and parse extraction. Softw: Pract. Exper., 21(8):787–804, August 1991.
doi:10.1002/spe.4380210803.

[48] Iman Keivanloo, Juergen Rilling, and Philippe Charland. Internet-scale
real-time code clone search via multi-level indexing. In WCRE, pages 23–
27, 2011. doi:10.1109/WCRE.2011.13.

[49] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An em-
pirical study of code clone genealogies. In Proceedings of European Software
Engineering Conference (ESEC/FSE 2005), pages 187–196, New York NY,
2005. ACM Press. doi:10.1145/1081706.1081737.

[50] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in
collocated software development teams. In Proceedings of the 29th interna-
tional conference on Software Engineering, ICSE ’07, pages 344–353, Wash-
ington, DC, USA, 2007. IEEE Computer Society. doi:10.1109/ICSE.
2007.45.

[51] Rainer Koschke. Identifying and removing software clones. In Software Evo-
lution, chapter 2, pages 15–36. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008. URL: http://dx.doi.org/10.1007/978-3-540-76440-3_2,
doi:10.1007/978-3-540-76440-3_2.

[52] Rainer Koschke. Large-Scale Inter-System clone detection using suffix trees.
In Proceedings of the 2012 16th European Conference on Software Main-
tenance and Reengineering, CSMR ’12, pages 309–318, Washington, DC,
USA, 2012. IEEE Computer Society. doi:10.1109/csmr.2012.37.

[53] Jens Krinke, Nicolas Gold, Yue Jia, and David Binkley. Cloning and copying
between gnome projects. In MSR, pages 98–101, 2010. doi:10.1109/MSR.
2010.5463290.

[54] Chris Kuklewicz. Regular expressions/bounded space proposal, February
2007.

[55] V. Laurikari. Nfas with tagged transitions, their conversion to determinis-
tic automata and application to regular expressions. In String Processing
and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh Inter-
national Symposium on, pages 181–187. IEEE, 2000.

[56] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research meth-
ods in Human-Computer Interaction. Wiley, 2010.

[57] Kyong H. Lee, Yoon J. Lee, Hyunsik Choi, Yon D. Chung, and Bongki
Moon. Parallel data processing with MapReduce: A survey. SIGMOD
Rec., 40(4):11–20, January 2012. doi:10.1145/2094114.2094118.

[58] Rensis Likert. A technique for the measurement of attitudes. Archives of
Psychology, 22(140):1–55, 1932.

[59] Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue. Very-
large scale code clone analysis and visualization of open source programs
using distributed ccfinder: D-ccfinder. In ICSE, pages 106–115, 2007.

83

http://dx.doi.org/10.1002/spe.4380210803
http://dx.doi.org/10.1109/WCRE.2011.13
http://dx.doi.org/10.1145/1081706.1081737
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1007/978-3-540-76440-3_2
http://dx.doi.org/10.1007/978-3-540-76440-3_2
http://dx.doi.org/10.1109/csmr.2012.37
http://dx.doi.org/10.1109/MSR.2010.5463290
http://dx.doi.org/10.1109/MSR.2010.5463290
http://dx.doi.org/10.1145/2094114.2094118

[60] Xin Lu. Respondent-Driven Sampling: Theory, Limitations & Improve-
ments. PhD thesis, Karolinska Institutet, 2013.

[61] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling object,
relations and XML in the .NET framework. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, pages 706–706, New York, NY, USA, 2006. ACM. doi:10.1145/
1142473.1142552.

[62] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu.
Fast regular expression matching using small TCAMs for network intrusion
detection and prevention systems. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, page 8, Berkeley, CA, USA,
2010. USENIX Association. URL: http://portal.acm.org/citation.
cfm?id=1929831.

[63] Lasse Nielsen and Fritz Henglein. Bit-coded regular expression parsing. In
Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors,
Language and Automata Theory and Applications, volume 6638 of Lecture
Notes in Computer Science, pages 402–413. Springer Berlin Heidelberg,
2011. doi:10.1007/978-3-642-21254-3_32.

[64] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: A not-so-foreign language for data processing.
In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1099–1110, New York, NY, USA,
2008. ACM. doi:10.1145/1376616.1376726.

[65] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A comparison of ap-
proaches to large-scale data analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09,
pages 165–178, New York, NY, USA, 2009. ACM. doi:10.1145/1559845.
1559865.

[66] Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information needs for
integration decisions in the release process of large-scale parallel develop-
ment. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pages 1371–1380. ACM, 2012.

[67] R. Pike. The text editor sam. Software: Practice and Experience,
17(11):813–845, 1987.

[68] Rob Pike. Structural regular expressions. In Proc. EUUG Spring Conf.,
Helsinki 1987, 1987.

[69] POSIX.1-2008. The open group base specifications. Also published as IEEE
Std 1003.1-2008, July 2008. doi:10.1109/IEEESTD.2008.4694976.

[70] S.P. Reiss. Visualizing the java heap demonstration proposal. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages
389 –390, September 2009. doi:10.1109/ICSM.2009.5306287.

84

http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/1142473.1142552
http://portal.acm.org/citation.cfm?id=1929831
http://portal.acm.org/citation.cfm?id=1929831
http://dx.doi.org/10.1007/978-3-642-21254-3_32
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1145/1559845.1559865
http://dx.doi.org/10.1145/1559845.1559865
http://dx.doi.org/10.1109/IEEESTD.2008.4694976
http://dx.doi.org/10.1109/ICSM.2009.5306287

[71] Matthias Rieger. Effective Clone Detection Without Language Barriers.
PhD thesis, University of Bern, June 2005. URL: http://scg.unibe.ch/
archive/phd/rieger-phd.pdf.

[72] Mary Beth Rosson and John M. Carroll. Active programming strategies in
reuse. In Oscar Nierstrasz, editor, Proceedings ECOOP ’93, volume 707 of
LNCS, pages 4–20, Kaiserslautern, Germany, July 1993. Springer-Verlag.
URL: http://link.springer.de/link/service/series/0558/tocs/
t0707.htm.

[73] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative ap-
proach. Sci. Comput. Program., 74:470–495, May 2009.

[74] Satu E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64,
August 2007. doi:10.1016/j.cosrev.2007.05.001.

[75] Niko Schwarz, Aaron Karper, and Oscar Nierstrasz. Efficient regular ex-
pressions that produce parse trees. Report, University of Bern, January
2014. submitted for publication.

[76] Niko Schwarz, Alexey Kolesnichenko, and Oscar Nierstrasz. Cells: Express-
ing parallel pipelines for local and cluster execution. Report, University of
Bern, January 2014. submitted for publication.

[77] Niko Schwarz, Mircea Lungu, and Oscar Nierstrasz. Seuss: Decoupling
responsibilities from static methods for fine-grained configurability. Journal
of Object Technology, 11(1), 2012. URL: http://www.jot.fm/issues/
issue_2012_04/article3.pdf, doi:10.5381/jot.2012.11.1.a3.

[78] Niko Schwarz, Mircea Lungu, and Romain Robbes. On how often code is
cloned across repositories. In Proceedings of the 2012 International Con-
ference on Software Engineering, ICSE 2012, pages 1289–1292, Piscataway,
NJ, USA, 2012. IEEE Press. URL: http://scg.unibe.ch/archive/
papers/Schw12a-scalable-clones.pdf.

[79] Niko Schwarz, Erwann Wernli, and Adrian Kuhn. Hot clones, maintain-
ing a link between software clones across repositories. In IWSC ’10:
Proceedings of the 4th International Workshop on Software Clones, pages
81–82, New York, NY, USA, April 2010. ACM. URL: http://scg.
unibe.ch/archive/papers/Schw10b-hot-clones.pdf, doi:10.1145/
1808901.1808915.

[80] Robert Sedgewick. Algorithms in C (paperback). Addison-Wesley Profes-
sional, 1 edition, January 1990. URL: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20&path=ASIN/0768682339.

[81] Dominik Seichter, Deepak Dhungana, Andreas Pleuss, and Benedikt Haupt-
mann. Knowledge management in software ecosystems: software artefacts
as first-class citizens. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, pages 119–126. ACM, 2010.

85

http://scg.unibe.ch/archive/phd/rieger-phd.pdf
http://scg.unibe.ch/archive/phd/rieger-phd.pdf
http://link.springer.de/link/service/series/0558/tocs/t0707.htm
http://link.springer.de/link/service/series/0558/tocs/t0707.htm
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://www.jot.fm/issues/issue_2012_04/article3.pdf
http://www.jot.fm/issues/issue_2012_04/article3.pdf
http://dx.doi.org/10.5381/jot.2012.11.1.a3
http://scg.unibe.ch/archive/papers/Schw12a-scalable-clones.pdf
http://scg.unibe.ch/archive/papers/Schw12a-scalable-clones.pdf
http://scg.unibe.ch/archive/papers/Schw10b-hot-clones.pdf
http://scg.unibe.ch/archive/papers/Schw10b-hot-clones.pdf
http://dx.doi.org/10.1145/1808901.1808915
http://dx.doi.org/10.1145/1808901.1808915
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0768682339
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0768682339

[82] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions pro-
grammers ask during software evolution tasks. In Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software
engineering, SIGSOFT ’06/FSE-14, pages 23–34, New York, NY, USA,
2006. ACM. URL: http://people.cs.ubc.ca/~murphy/papers/other/
asking-answering-fse06.pdf, doi:10.1145/1181775.1181779.

[83] Michael Sipser. Introduction to the Theory of Computation. Course Tech-
nology, 2 edition, February 2005. URL: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20&path=ASIN/0534950973.

[84] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. SAGE Publica-
tions Inc., 1998.

[85] M. Sulzmann and K.Z.M. Lu. Regular expression sub-matching using par-
tial derivatives. In Proceedings of the 14th symposium on Principles and
practice of declarative programming, pages 79–90. ACM, 2012.

[86] O. Tange. GNU parallel - the Command-Line power tool. ;login: The
USENIX Magazine, 36(1):42–47, February 2011. URL: http://www.gnu.
org/s/parallel.

[87] Ken Thompson. Programming techniques: Regular expression search algo-
rithm. Commun. ACM, 11(6):419–422, June 1968. doi:10.1145/363347.
363387.

[88] Ashish Thusoo, Joydeep S. Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy.
Hive- a warehousing solution over a Map-Reduce framework. In IN VLDB
’09: PROCEEDINGS OF THE VLDB ENDOWMENT, pages 1626–1629,
2009. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.151.2637.

[89] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing du-
plicated code with linked editing. In VLHCC ’04: Proceedings of the
2004 IEEE Symposium on Visual Languages - Human Centric Com-
puting, pages 173–180, Washington, DC, USA, 2004. IEEE Computer
Society. URL: http://dx.doi.org/10.1109/VLHCC.2004.35, doi:10.
1109/VLHCC.2004.35.

[90] Md. Sharif Uddin, Chanchal K. Roy, Kevin A. Schneider, and Abram
Hindle. On the effectiveness of simhash for detecting near-miss clones
in large scale software systems. In WCRE, pages 13–22, 2011. doi:
doi.ieeecomputersociety.org/10.1109/WCRE.2011.12.

[91] Filip van Rysselberghe and Serge Demeyer. Evaluating clone detection
techniques from a refactoring perspective. In Proc. 19. Intl. Conference on
Automated Software Engineering (ASE’04). IEEE, September 2004.

[92] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li.
Parallelized stochastic gradient descent. In NIPS, pages 2595–2603, 2010.

86

http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://people.cs.ubc.ca/~murphy/papers/other/asking-answering-fse06.pdf
http://dx.doi.org/10.1145/1181775.1181779
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0534950973
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0534950973
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1145/363347.363387
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.2637
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.2637
http://dx.doi.org/10.1109/VLHCC.2004.35
http://dx.doi.org/10.1109/VLHCC.2004.35
http://dx.doi.org/10.1109/VLHCC.2004.35
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/WCRE.2011.12
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/WCRE.2011.12

! " # $ % " & '(()

!"#$%%&'()*&+,&'-%*&+&./0&12

34#"567(84#"9 **

:4)(;<"=8>##"(9 **

/)>?;"8!48!9 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@

A4BC"=7(&&&&! :4%)"(&&&&! &&&&&&&&&&&D;%%"()4);78&&&&!

E;)"=&?"(&'(-";)9 **

**

**

0";)"(F8&?"(&'(-";)9 **

**

FBC&"(<=$("&C;"(#;)G &?4%%& ;BC&?;"%"&'(-";) &%"=-%)$8?;!&H"(I4%%)&>8?&<";8"&48?"("8&4=%&?;"&

48!"!"-"8"8&J>"=="8&-"8>)K)&C4-"*&'=="&/)"=="8G&?;"&LM()=;BC&7?"(&%;88!"#$%%&4>%&J>"=="8&

"8)87##"8&L>(?"8G&C4-"&;BC&4=%&%7=BC"&!"<"88K";BC8")*&:;(&;%)&-"<488)G&?4%%&48?"(8I4==%&

?"(&/"84)&!"#$%%&'();<"=&NO&'-%4)K&P&A>BC%)4-"�U&?"%&Q"%")K"%&H7#&2*&/"R)"#-"(&PSSO&

T-"(&?;"&U8;H"(%;)$)&K>#&V8)K>!&?"%&4>I&Q(>8?&?;"%"(&'(-";)&H"(=;"C"8"8&E;)"=%&-"("BC);!)&;%)*

**

W()5D4)>#

U8)"(%BC(;I)

88

Curriculum Vitae

Personal Information

Name: Niko Schwarz
Date of Birth: 8 September, 1983
Place of Birth: Heidelberg, Germany
Nationality: Germany

Education

2009–2014 PhD in Computer Science
Software Composition Group,
University of Bern, Switzerland
http://scg.unibe.ch

2005–2009 M. Sc. in Mathematics
University of Jena, Germany.
Thesis title: Rank aggregation by criteria

89

http://scg.unibe.ch

	Introduction
	Motivation
	Applicability
	Outline

	Related work
	Index-based detectors
	Clustering detectors
	Techniques
	Challenge

	Information needs across projects
	Research Method
	Qualitative Results
	Upstream needs
	Upstream Motivations
	Upstream Practices
	Downstream Needs
	Downstream Motivations
	Downstream Practices

	Quantitative Results
	Upstream Information Needs
	Upstream Motivations
	Upstream Practices
	Downstream Information Needs
	Downstream Motivations
	Downstream Practices

	Discussion
	Related Work
	Conclusions

	Bad hashing
	Approach
	Type 1: Hashes of source code
	Type 2: Hashes of source code with renames
	Type 3: Shingles

	Empirical Study: SqueakSource
	Space and time performance
	Clones in the SqueakSource ecosystem
	Multi-Version Analysis

	Discussion
	Conclusions

	Lightweight parsing using regular expressions
	More powerful than standard regular expressions
	Algorithm
	Thompson's construction
	DFAs

	Implementation
	DFA transition table
	DFA execution
	Compactification
	Intertwining of the pipeline stages

	Benchmark
	Related work
	Motivation

	Conclusion

	Cells
	Cells in a nutshell
	Codecs and cells
	Lookup tables and side outputs and inputs
	Pipelines
	Post-processing using Sources
	Counters

	Design rationale
	Debuggable
	Independent of MapReduce
	Static type checking
	Predictable performance

	Implementation
	Sharding and map execution
	Lock-free shuffle
	In-memory Bigtable
	Column-lookup for HBase

	Benchmarks
	Related work
	Conclusion

	Clone detector
	Clone detection using bad hashes in a nutshell
	Pipeline
	Mining the Internet for source code
	MapReduce pipeline

	Discussion
	Precision and Recall
	Scale
	Lessons learnt
	Future work

	Conclusion

	Bibliography

