Modeling Object-Oriented Software
for Reverse Engineering and
Refactoring

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Sander Tichelaar

von den Niederlanden

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut fir Informatik und angewandte Mathematik

Modeling Object-Oriented Software
for Reverse Engineering and
Refactoring

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Sander Tichelaar
von den Niederlanden

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut flr Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultdt angenommen.

Bern, 14. Dezember 2001 Der Dekan:
Prof. Dr. P. Bochsler

Abstract

Theincreased popularity of the object-oriented paradigm has also increased the interest in object-oriented
reengineering. First of all, object-oriented software systems suffer from similar maintainability problems
astraditional procedural systems, displaying the need for reengineering techniquestail ored to deal with ob-
ject-oriented code. Secondly, the increased importance of iterative devel opment processes make reengi-
neering techniques valuable in forward engineering, and thus for all paradigms that softwareis devel oped
in.

Reengineering requirestool support to deal with the large amounts of information and the wide variety
of tasks to be performed. An important consideration in building tool environments for reengineering is
what information must be provided and how thisinformation ismodelled. Design choices have aconsider-
ableimpact not only on the ability to support reengineering tasks, but also on issues such as scal ability and
tool interoperability. Several metamodel sexist that model softwarefor the purposesof reengineering. How-
ever, they generally lack adiscussion of therelevance of information for reengineering and the trade-offs of
modeling aternatives.

This thesis presents FAMIX, a language-independent metamodel for modelling object-oriented soft-
ware for reengineering purposes. We discuss the exact contents of the metamodel, including its relevance
for reengineering and how the metamodel supports the different object-oriented languagesthroughitslan-
guage-independent core. We al so discusstheinfrastructural design decisionsof FAMIX by placingitintoa
design space for infrastructural aspects of reengineering repositories and metamodels. The design space
presents multipleinterdependent aspects, their design alternativesand how theseimpact i ssues such asscal -
ability, extensibility and information exchange.

Wevalidatetheability of FAMI X to support reengineering on alanguage-independent level intwo ways.
First, we present Moose, a reengineering tool environment with a repository based on FAMIX. Moose
serves as a foundation for multiple reengineering tools and has been applied to reverse engineer several
largeindustrial case studies. Secondly, wedefine aset of fifteenlow-level refactoringsin termsof theinfor-
mation available in FAMIX. Refactoring requires sufficient, complete and 100% correct information as
well asaclear interpretation of the supported languages in the language-independent core of the metamod-
€l, in order to correctly perform transformations on the language-specific code level. As such the refactor-
ings provide an in-depth validation of the language independence of FAMIX.

Acknowledgements

First of all, | would like to thank Prof. Oscar Nierstrasz for giving me the opportunity to work in the SCG
and for the support | have received through the years. Then | am much indepted to Serge Demeyer and
Stéphane Ducasse for their everlasting support and encouragement, aswell as the work that we have done
together on FAMI X, M oose and thereengineering metamodel design space. Without them thisthesiswould
have been impossible.

| alsothank the other membersof the SCG, for the good and fruitful timeon thework floor, for thecareful
reading of draftsof thisthesis, and al so for the concerts, dinners, and the late night whiskiesin town: Franz
Achermann, Gabriela Arévalo, Juan Carlos Cruz, 1sabelle Huber, Michele Lanza (another major Moose
contributor), Markus Lumpe, Robb Nebbe (for hiswork onthe Adaextensionto FAMIX), Matthias Rieger,
Therese Schmid, Jean-Guy Schneider and Roel Wuyts.

| would aso like to mention some other people | was fortunate to work with in the recent years. | thank
all the FAMOOS people, in particular Holger Bér for hiswork onthe C++ extensionto FAMIX and Claudio
Rivafor hiswork on FAMIX-based CDIF and XMI. | also thank the studentswho choseto work with us, in
particular Andreas Schlapbach and Michael Freidig for their work on XMI and Lukas Steiger and Pietro
Malorgio for their unceasing comments on Moose and FAMIX.

Furthermore | am grateful to Prof. Theo D’ Hondt for being on my PhD committee.

Finally, | want to thank my parents, for always supporting me and inspiring me to bring out the best in
myself, in education and everything else. My family and (other) friends, and most of all Claudia, | thank for
their love and support. Many thanks.

Sander Tichelaar
November 2001

Table of Contents

CHAPTER L1INtroducCtion.ttt e e e e e e e et 1
1.1 Modelling software to support reengineeringtools i 2
1.2 ContribULIONSottt e e e e e e e e e e e 3
1.3 ROAOMAD. . ettt et e 4

CHAPTER 2 State-of-the-Art in Reengineering Metamodelsand Tools. 5
2.1 Definitionsin ReENGINEENING oottt 5
2.2 Object-Oriented REENGINEEIING . . . oottt e et e ettt e 7
2.3 Reengineering Toolsand ENVIrONMENtS.ottt et 8

2.3.1 Actual Reengineering Environmentst 9
2.3.2 Metamodelsfor ReenNgineering.ottt 10
2.4 Refactoring and Code ReorganiSationttt 11
2.5 DISCUSSION. . . et ittt ettt e e e e e e 12
2.6 CONCIUSION . ..o 14

CHAPTER 3 A Design Spacefor Reengineering Tool Infrastructures 15

3.1 Introducingthedesign Space. oot 16
Ll SCONMAIIO. . vt ettt e e e 16
3.1.2 Infrastructural iSSUES SUMMEANSEd. oot e e 16
3.1.6 DesignSpaceinaNutshell i e 17

3.2 Language/Paradigm AXiS . . .ottt 20

3.3 Level of Detail AXiS. ..ot 21

34 MUiple MOodelS AXIS. . ..ot 22

3.5 GrOUPING AXIS . . ettt et e e e e 22

3.6 EXIENS DIty AXIS. .ot 23
3.6.1 Adding new entitiestoametamodel 23
3.6.2 Adding attributesto existing entities.o e 23
3.6.3 ANNotating entities 24
3.6.4 Metametamodel extensibility limits i 25

3.7 Incremental Loading AXiS . ..ottt 25

3.8 Storage MediUm AXIS. .. oottt 26

3.9 Exchange Format StruCtUre AXIS . . . oo vttt e et e 27
3.9.1 Nested, chunk and flat formatsot 28
3.0.2 DISCUSSION .« v\ vttt et et et e e e e 29

3.10 Entity ReEferenCe AXIS. . . oottt 30

viii

3.10.1 Uniqueidentifiersot 30
3.10.2 Unique naming SCREIME. i ettt e e e e e e e e et e e 31
3103 ANAIY SIS, o ottt 32
311 Metametamodeling AXIS. . . .o vttt 33
312 CONCIUSION ..ottt e e e e e e e e e 34
CHAPTER 4 FAMI X, a Language-l ndependent Metamodel for M odeling Object-Oriented
S0 LT = 35
A1 REQUITEMENTS . .. ottt ettt e e e e e e e e e e e 36
4.2 Overview of the FAMIX COre. . . . oo e 36
4.3 EXIENSIDIlItY .. .o 39
4.4 Multiplelanguage SUPPOITottt e e e e e e e 40
4.4.1 General multi-language design deciSioNSottt 40
4.4.2 Language mappings and eXteNSIONS v vttt 41
45 ReEfEreNCE SChEMAL oo 43
4.6 Support forinformation EXchange.ot e 44
47 Metametamodeling.ot 46
4.8 Why Not UM L 2. . oo 46
4.9 CONCIUSION . .ottt e e e e e e 48
CHAPTER 5 The Moose Reengineering Environment i .. 51
5.1 Requirementsfor aReengineering Environment i 51
5.2 ArChiteCtUre 52
5.3 Queryingand Navigationttt e 54
5.3.1 Programming QUENIESottt ittt e e 54
5.3.2 Querying and navigating usingthe Moose Explorer., 56
5.4 Metricsand other analysSiS SUPPOIt oottt 57
L3R T 1 00 1 o 57
5.6 Moose Refactoring ENgine. oo 58
5.7 Information Exchange and Tool Integration.t 58
5.7.1 Information Exchangewith CDIFand XMI i 58
5.7.2 Tool Integration Framework and ToOIS e 59
5.8 Industrial Case StUdIES oot 60
5.9 DUSCUSSION. . . ettt ettt e et e e e e e e e e e 61
5.9.1 ODSEIVELIONS . . . oottt e ettt e e 62
5.9.2 TherequirementS revisited ot 63
B5.10 CONCIUSION .« . oottt e e e e e e e e e 64
CHAPTER 6 Language-Independent Refactoringt 65
6.1 Language SUbSetsS and MappiNgS. « . v« v vt vttt et e e e e 66
6.1.1 Language SUDSELS ottt 66
6.1.2 Language mapPiNgS« v vt ettt e e e e e e 67
6.2 TheRefactoring Template o e 68
6.3 Therefactoringsindetail i 68
Add Class (classname, package, superclasses, subclasses)o i i 69
REMOVE CIasS (ClaSS) oo vttt e e e e e e 71
Rename Class (Class, NeW NAIME)ottt e e e e e e 74

Add Method (name, Class)o 76

Table of Contents ix

RemoveMethod (method) o e e 78
Rename Method (method, Nnew Name)t e e e 80
Pull Up Method (method, SUPErclass)oi i e e e 83
Push Down Method (method) i e e 91
Add Parameter (name, method) e 97
Remove Parameter (parameter)ottt e 101
Add Attribute (NaME, Class) oo it e 103
Remove Attribute (attribute) i 105
Rename Attribute (attribute, new name) i 107
Pull Up Attribute (attribute, SUPErclass).o e e 109
Push Down Attribute (attribute)o 113
6.4 Validationt 115
B.5 DISCUSSION. .« o ottt ettt et e e e e e e 115
CHAPTER 7 TheMoose Refactoring Engine.t 119
7.l ATChIECIUNE . .ot 119
7.2 Validation 122
7.2.1 A non-trivia refactoring sequence on atoy bankingsystem, .. 122
7.2.2 Experimentson Mooseand JUNIt. o 124
7.3 DISCUSSION. . .ttt et e e 125
CHAPTER 8 Conclusion and FutureWork e 127
APPENDIX A Tableof REfaCtorings.o ot e 131
APPENDIX B The FAMIX 2.1 specification.t i 137
2.1 OVBIVIBIN. . v ettt e e e e e e e e 137
211 BaSiC DA Ty PES. . o vttt et e 137
2.1.2 Unique Naming CoONVENLIONSot o ittt et ettt 139
213 Leve Of EXIractionot 139
2.2 Definition of FAMIX ... 140
2.2.1 The abstract part: Object, Entity and Association., 140
22,2 MOOEl .. 143
22,3 PaCKag . . . ottt 144

2. 2. CdaSS o ettt 145
2.2.5 BehaviouralEntity Hierarchy. i e 146
2.2.6 BehaviouralEntity 146
227 Method 147
2.2.8 FUNCHION. . . oottt e e e e e e e 148
2.2.9 StructuralEntity Hierarchy 149
2210 StrUCtUrAlENTILY oot et e e 150
2.2, 0L AHNBULE ... 150
2212 GlobalVariable 151
2213 ImplicitVariableo e 152
2214 LocaVariable 153
2215 FormalParameter.o 154
2.2.16 InheritanceDefinitionot 154

2. 2. 07 ACCESS . . ottt e 155

2.2.18 INVOCAION oottt et e e e e e e 156
2219 Argument Hierarchy o 158
2.2.20 EXPressiONATGUMENE. © o o\ttt e et e e et e e e et e 158
2.2.21 ACCESSAIGUMENE . . o o\ ottt ettt e e e e e e e e 158
2.3 MiISCEIANEOUS. . . . oot 160
2.3.1 CDIF Multi-valued String Attributes 160
APPENDIX C Smalltalk Extension to FAMIXo e 161
31 EXtending FAM X oo 161
3.2 MOdIfied ClasseSot 161
3.2.1 Model (interpreted)o 161
3.2.2 Package (interpreted).ot e 162
3.2.3 Class(interpreted and extended) it 162
3.2.4 BehaviouralEntity (interpretedandextended) i 163
3.25 Method (interpretedand extended) i 163
3.2.6 StructuralEntity (interpretedand Extended) i 164
3.2.7 Attribute (interpreted) 164
3.2.8 GlobalVariable (interpreted)ot 165
3.29 ImplicitVariable (interpreted) 165
3.2.10 LocaVariable(interpreted).t 165
3.2.11 FormalParameter (interpreted) o 165
3.2.12 InheritanceDefinition (interpreted) 166
3.2.13 Invocation (interpreted).ot 166
3.3 MISCEIENEOUS. . . . oot 166
34 PeNAiNg ISSUBS . . o oottt e e 167
APPENDIX D JavaExtension to FAMIX o e 169
4.1 Extending FAM X ..o 169
4.2 Modified Classes. . ..ot 169
4.2.1 Model (interpreted)ot 169
4.2.2 Package (interpreted).ot 170
4.2.3 Class (interpreted and extended)ottt 170
4.2.4 BehaviouralEntity (interpretedandextended) i 171
4.2.5 Method (interpreted and extended)o 171
4.2.6 StructuralEntity (interpretedand Extended) i 172
4.2.7 Attribute (interpreted)o e 173
4.2.8 ImplicitVariable (interpreted)t e 173
4.2.9 LocaVariable(interpreted).t 174
4.2.10 FormalParameter (interpreted)t 174
4.2.11 InheritanceDefinition (interpreted) 174
4.2.12 Invocation (interpreted).ot 175
A3 NOW ClaSSES. . o v ottt ettt et e e 175
431 TYPECESE . ..ottt t et e e 175
44 MIsCElaNOUS.ot 176
A5 Pending ISSUESottt 176

Bibliography . ..ot it i i ittt e 177

CHAPTER 1

Introduction

The ability to reengineer legacy systems has become a vital matter in today’s software industry. Systems
easily get hard to maintain and adapt. Requirements change, platforms change and if a system is not pro-
perly maintained, its usefulness decays over time [LB85]. The law of software entropy dictates that even
when asystem starts off in awell-designed state, requirements evol ve and customers demand new function-
ality, frequently inwaystheoriginal design did not anticipate. Additionally, new technology makesthissys-
tem progressively less valuable. It needs to support new platforms, embrace emerging standards and
leverage better understood technological advancements. A complete redesign may not be practical, and a
system is bound to gradually lose its original clean structure and deform into a Big Ball of Mud [FY Q0]
[BMMM98]. Typicaly such a system represents some value to its owner, for instance, in the task it per-
formsor inthe knowledgeit represents. However, bringing the system back into shapeisvery costly dueto
the poor stateitisin.

Thisiswherereengineering— the examination and the alterati on of asubject systemto reconstituteitin
a new form [CC90] — comes in. Reverse engineering techniques (the examination) help clarifying the
structure by extracting information and providing high-level views on the subject system, whilerefactoring
(the ateration) modifies software to improve its ssimplicity, understandability, flexibility or robustness
[FBB*99] [Bec99]. Oncethe softwareis better understood and in a better shape, it isready to fulfil its new
reguirements.

Reengineeringisnot restricted to legacy systems. In recent yearsthe globalisation of marketsand there-
sulting increasing competition make that business environments — and thus the requirements to the soft-
ware that supports these environments — change ever faster. To deal with these rapid changes, iterative
development paradigms have emerged that support constant adaptation of the software, rather than asingle
waterfall development cycle [Boe88] [Bec99]. The examination and alteration of the software happens
much earlier inthelife cycleand isrepeated for every iteration. Reengineering essentially becomes part of
forward engineering.

Originally most of the reengineering efforts were focused on systems written in traditional procedural
programming languages such as COBOL, Fortran and C. But following the increased popul arity of object-
oriented programming a growing demand for reengineering object-based systems has emerged in recent
years[Cas98] [WH92] [DD99]. Although sometimesthought of asasilver bullet to software devel opment,

2 Modelling software to support reengineering tools

themere application of object-oriented techni quesisnot sufficient to deliver flexibleand adaptable systems.
Applying the technology correctly requires knowledge and experience which development teams not al-
waly's possess. On top of that, hybrid programming languages such as C++ and Adaoften prevent program-
mers from making the necessary paradigm shift away from procedural programming towards object-
oriented programming. Last but not |east, obj ect-oriented software systemssuffer from the same entropy ef-
fectsasany other software system.

Asaconsequencereengineering hasbecomevital technology alsointhe areaof object-oriented software
development. The technical details of and solutions to the problems may differ from other paradigms, the
source and symptoms are the same.

1.1 Modelling software to support reengineering tools

Reengineering largeindustrial software systemsisimpossiblewithout appropriate tool support. First of all,
thereisthescalability issue(millionsof linesof code arethe norm rather than the exception) but thereisalso
the extracomplexity of supporting and combining multipletoolswith awide variety of tasks (standard for-
ward engineering techniques must be combined with reverse- and reengineering facilities). The need for
tool support in reengineering isreflected by the numeroustool s and tool prototypes availablein the reengi-
neering research community [AT98] [SS00].

To be able to reason about software systems, tools need a common information base, arepository, that
provides them with the information required for reengineering tasks. The properties of the repository, and
thusof the complete environment, are highly influenced by the metamodel that describeswhat and inwhich
way information is modelled. The metamodel not only determinesiif the right information is available to
perform theintended reengineering tasks, but al so influencesissues such as scal ahility, extensibility and in-
formation exchange.

There are anumber of existing metamodels for representing software. Several of those are aimed at ob-
ject-oriented analysisand design (OOA D), themost notable exampl ebeing the Unified M odeling L anguage
(UML) [OMG99]. However, these metamodel s represent software at the design level. Reengineering re-
quiresinformation about software at the source code level. The starting point isthe software itself deman-
ding for a precise mapping of the software to amodel rather than a design model that might have been im-
plemented in lots of different ways.

In the reengineering research community several metamodel s exist that model the softwareitself. They
are aimed at procedural languages (Bauhaus [CEK*00]), object-oriented/procedural hybrid languages
(TA++[Let98], Datrix [LLB*98]) and systemswith multiple paradigms[L S99]. M ost metamodel s support
multiple languages, either implicitly or explicitly. What is generally lacking in these metamodelsisadis-
cussion of the relevance of the represented information for reengineering and a discussion about the trade-
offs of modeling alternatives. There are some exceptions [Kos00] [LLB*98], but especialy in the area of
reengineering object-oriented software no comprehensive list of design choicesand clear semantics of the
metamodel exist. Thisbrings usto following research question:

how can we model object-oriented software to adequately
support reengineering tools

Thisthesis answers this question by specifying alanguage-independent metamodel for object-oriented
software, whichiscalled FAMIX. Itincludesan in-depth discussion of the ability of thismetamodel to sup-
port reverse engineering and refactoring on alanguage-independent level, as well as the design decisions

Introduction 3

that influence its scalability and tool integration properties. The main advantage of the language indepen-
denceisthat toolsthat are based on the metamodel, can be applied without adaptation on systemsinall sup-
ported implementation languages.

Thethesisstartswith adesign spacefor theinfrastructural aspects of building software metamodelsand
repositories. Infrastructural aspects are the design aspects that deal with how the information is organized
and stored rather than the exact contents of ametamodel. For every aspect the design space liststheimple-
mentation options with trade-offs, aswell as the interdependencies with other aspects. Although the thesis
focuses on the problems and solutions we have encountered in reengineering object-oriented systems, the
design space is applicable to reengineering environments for any programming paradigm. Following the
design space we present our instance of such ametamodel, namely FAMIX. Our solution to the specific re-
quirements for this metamodel — support for mid-sizeto large industrial software systemsin multiple ob-
ject-oriented implementation Ianguag%l — arediscussed in detail.

Wevalidatetheability of FAMI X to support reengineering on alanguage-independent level intwo ways.
First we have developed Moose, atool environment for reengineering object-oriented systems. It hasare-
pository based on FAMIX and has been used as a foundation for multiple reengineering tools. Moose to-
gether with these tools has been used to successfully reverse engineer severa large industrial software
systems. The second validation consists of the definition of aset of fifteen refactoringsin terms of FAMIX
and their implementation as part of the M oose reengineering environment. Refactorings are behaviour-pre-
serving code transformations [FBB*99]. Because they change the original software system rather than
merely analyseit, they require sufficient, complete and 100% correct information. The result of arefactor-
ing may never introduce any errors, while reverse engineering techniques typically are not affected by
slightly incomplete or incorrect information [MNGL 98] [Bis92]. Furthermore, refactoring needsaclear in-
terpretation of the language-independent model information to perform the correct transformations on the
(language-specific) source code level. Our analysis showsthat it is possible to abstract the refactoring defi-
nitionsfor the greater part from the underlying implementation languages. As such therefactoring analysis
and itsimplementation provide an in-depth validation of the language independence of FAMIX and espe-
cialy how it maps the specific implementation languages to its language-independent core.

1.2 Contributions

The contributions of thisthesis can be summarized asfollows:

» A designspacefor infrastructural aspectsof metamodelsand repositoriesfor reengineering. It makes
explicitwhat therelevant aspectsare, how they interrel ate, what impl ementati on opti onscan bechosen
and what the trade-offs of these options are.

* FAMIX, alanguage-independent metamodel for modelling object-oriented software. It makes ex-
plicit what information about object-oriented software is relevant for reengineering and how multi-
ple languages are modelled in a common way to enable the reuse of analysis and tools.

» Ananalysisof fifteen low-level refactorings for Java and Smalltalk in the context of language inde-
pendence. The analysisis based on the FAMIX metamodel and shows to which extent the refacto-
rings can be abstracted from the implementation languages.

1. These requirements have been mostly determined by the FAMOOS project [DD99] under which the major
part of thiswork has been realised. FAMOOS was a European Esprit research project (no. 21975) aimed at the
transformation of object-oriented legacy systems into framework-based applications.

4 Roadmap

1.3 Roadmap

Therest of thisthesisisorganised asfollows. It startswith an overview of the state-of -the-art in reengineer-
ing metamodels and tools (chapter 2). Then it presents the infrastructure design space for reengineering
metamodels and repositories (chapter 3). Following it presents FAMIX (chapter 4) and itsimplementation
in Moose (chapter 5). Afterwardswe present the refactoring analysis (chapter 6) aswell asitsrealisationin
the refactoring engine of Moose (chapter 7). We end with aconclusion.

CHAPTER 2

State-of-the-Art in Reengineering
Metamodels and Tools

Thisthesis is about modeling object-oriented software in alanguage-independent way for the purpose of
reengineering. The problem isnot new. Many reengineering tools exist and they all need to work with mo-
dels of the software they act upon. This chapter presents the state-of-the-art in reengineering metamodels
andtools. It startswith a set of definitionsto set the vocabulary (section 2.1). Subsequently it discusses ob-
ject-oriented reengineering in particular (section 2.2) and givesan overview of tool environmentsfor reen-
gineering including the metamodels they are built upon (section 2.3). Afterwards the chapter presents the
state-of -the-art in the particular case of refactoring (section 2.4). Finally, wediscussthe presented toolsand
metamodels and point to open problemsin the area of modeling software for reengineering.

2.1 Definitions in Reengineering

Thissection presentsdefinitionsfor reengineering and related terms. It islargely based on thetaxonomy by
Chikofsky and Cross[CC90]. We start with the definition of reengineering:

“Reengineering isthe examination and the alteration of asubject system to recon-
stitute it in a new form and the subsequent implementation of the new form.”
[CCa0]

As stated by the definition, reengineering consists of two main activities, namely the examination and
the alteration of a subject system. More formal terms for these activities are reverse engineering and for-
ward engineering:

“Reverse engineering is the process of analysing a subject system to (i) identify
the system’ s components and their relationships and (ii) create representations of
the system in another form or at a higher level of abstraction.” [CC9Q]
“Forward engineering is the traditional process of moving from high-level ab-
stractions and logical, implementation-independent designs to the physical im-
plementation of a system.” [CC9Q]

6 Definitions in Reengineering

Theadjective‘forward’ in‘forward engineering’ ismainly used to distinguish traditional softwareengi-
neering from reverse and reengineering. Figure 2.1 illustrates the three notions and their relationships
[Cas98]. Reverse engineering is used to create models, i.e., higher level views, of an existing software sys-
tem. Goals areto understand a system, document it or detect problems. Conversely, forward engineering is
about moving from high-level views of requirements and model stowards concrete implementations. Reen-
gineering isacombination of thetwo, namely transforming concreteimplementationsto other concreteim-
plementations. Asin forward engineering, reengineering is driven by requirements (‘ New Requirements’
in Figure 2.1 as opposed to the original requirements for the system). The requirements focus the reengi-
neering effort on the relevant parts of the targeted legacy system.

New Requirements

A Reengineering

Design
Models

Reverse Engineering
Forward Engineering

Source Code

Figure 2.1 The reengineering lifecycle

Theprocessto get from alegacy systemto areengineered systemisdescribed by Casais[Cas98] in afive-
step reengineering life-cyclethat can be mapped to Figure 2.1

Model capture (documenting and understanding the design of the legacy system),

Problem detection (identifying violations of flexibility and quality criteria),

Problem analysis (selecting a software structure that solves a design defect),

Reorganization (selecting and applying the optimal transformation of the legacy system) and
5. Change propagation (ensuring the transition between different software versions).

el S o

Themain difference between forward engineering and reengineering isthat reengineering startsfroman
existing implementation. Consequently, for every changeto asystem the reengineer must eval uate whether
(parts of) the system need to be restructured (or refactored) or if they should be implemented anew from
scratch. According to Chikofsky and Cross, restructuring generally refersto source code translation (such
as the conversion from unstructured spaghetti code to structured, or goto-less code), but it may also entail
transformations at the design level. Thisistheir definition:

State-of-the-Art in Reengineering Metamodels and Tools 7

“Restructuring is the transformation from one representation form to another at
the same relative abstraction level, while preserving the system’s external beha-
vior.” [CC90]

Refactoring ismerely aspecial kind of restructuring, namely within an object-oriented context and fo-
cused on thelevel of code. In hiscatalog of refactorings Martin Fowler definesit asfollows:

“Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture.” [FBB*99]

Typical goals of refactoring are to improve the simplicity, understandability, flexibility or performance
[Bec99]. Section 2.4 describes refactoring and the state-of -the-art in tools and research in more detail.

Reengineering versus Software Maintenance

It may be hard to tell the difference between software reengineering and software maintenance. The ANSI/
| EEE standard 729-1983 defines software maintenance as

“ Softwar e maintenance is the modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the product
to a changed environment”

This definition focuses on changes after delivery of aproduct. It does not cover changes that implement
new functionality. However, often any change after delivery, i.e., also implementing new functionality, is
considered maintenance. Indeed, Sommerville categorises maintenance in three kinds [Som96], namely

* corrective maintenance, i.e, fixing reported errors,

 adaptive maintenance, i.e, adapting a system to anew environment (e.g., platform or operating sys-
tem),

 perfective maintenance, i.e, implementing new functional or non-functional requirements.

However, as already argumented by Turski in 1981, adding new features does not conceptually fit the
term maintenance (adding anew wing to abuilding is not considered maintenance either) [Tur81]. Conse-
guently, the term ‘ perfective maintenance’ isacontradictio interminis. It isalso not covered by the above
ANSI/IEEE definition.

Another problem isthat the use of ‘ after delivery’ in the definition is outdated. It isabacklog of the wa-
terfall model that decomposes devel opment into asingle directed flow of activities, thelast one being main-
tenance. Such a sequential decomposition of activities prohibits the necessary interaction and feedback
required by software development and addressed by more modern devel opment models such as the spiral
model [Boe88] and eXtreme Programming [Bec99].

Hence, reengineering goes beyond software maintenance. Reengineering techniques can be used to per-
form maintenance tasks such a bug fixing or any other adaptation within its original feature set. However,
reengineering can also be applied to change systemsin amore considerable way, i.e., to add new function-
ality.

2.2 Object-Oriented Reengineering

Although the term ‘legacy system’ is often associated with systemsin assembler or procedural languages
such as Fortran and Cobol, object-oriented systems suffer from similar problems. The Laws of Lehman

8 Reengineering Tools and Environments

[LB85] [Leh96] tend to betruefor systemsin any language. Thisis supported by facts: object-oriented le-
gacy applications exist even in relatively young languages such as Java[DD99]. Furthermore, reenginee-
ring techniques are starting to become part of modern software devel opment processes. Hence, alsoin that
context reengineering techniques are relevant for systems implemented in languages other than the tradi-
tional COBOL, Fortranor C.

Apart from common legacy problems such as duplicated functionality and insufficient and outdated do-
cumentation, reengineering object-oriented languages presents its own set of problems [WH92]. We list
here some of the most preeminent:

» Polymorphism and late binding make traditional tool analysers like program dlicers inadequate.
Data-flow analysers are more complex to build especially in presence of dynamically typed langua
ges.

» Incremental class definition, together with the dynamic semantics of sel f ort hi s, make appli-
cations more difficult to understand.

» Dynamically typed languages such as Smalltalk, on the one hand, make the analysis of applications
harder because types of variables are implicit and tool support is needed to infer them. On the other
hand, statically typed languages such as C++ and Java force the programmer to explicitly cast ob-
jects, which leads to applications that are less maintainable and require more effort to be changed.

Apart from the abovelist, common code-level problems occurring in object-oriented legacy systemsare
often dueto misuse or overuse of object-oriented features, such asthe misuse of inheritanceor theviolation
of encapsulation.

2.3 Reengineering Tools and Environments

This section discusses existing reengineering tools and tool environments. Too many toolsexist to describe
them all. Severa surveys have been compiled [AT98] [SS00], but these do not provide exhaustive lists ei-
ther. Wefocus on the toolsthat are of interest in the context of modeling software for reengineering.

All tool sets have basically the structure depicted in Figure 2.2. Thereisarepository to store data about
software system. There are parsersto extract information from source code and model importerstoreadin
models stored using an exchange format. The tools themselves, browsers, visualisers, etc., use the reposi-
tory astheir information base.

Some tools focus on providing an infrastructure that enables multiple tools to perform their reenginee-
ringtasksaswell asinteroperatewith other tools. Thesearewhat we call thetool environments, or tool plat-
forms. Other tools focus on one special task, for instance, visualisation of architectures. These tools till
need arepository and import/export facilities, but therole of therepository islesscentral thanin full-blown
tool environments. Section 2.3.1 discusses existing tools and tool environments.

The properties of the repository, and thus of the complete environment, are highly influenced by the
metamodel that describeswhat information the repository contains. The metamodel not only determinesif
the right information is available to perform the intended reengineering tasks, but also influences issues
such as scalability, extensibility and information exchange. Section 2.3.2 introduces some of the meta-
modelsin existing tools.

State-of-the-Art in Reengineering Metamodels and Tools 9

browsers visualisers analysers other tools

N\ /

/

repository

arsers model
p importers
N N
Source Code Model Interchange Files

Figure 2.2 Standard structure for reengineering tool sets

2.3.1 Actual Reengineering Environments

Several groups of tools exist. There are the general visualisers, not necessarily aimed at software reengi-
neering. Then there are tools that are highly specialised in a certain programming language or even a one
vendor-specific dia ect. Furthermore, there arethetool environments, which areexplicitly aimed at suppor-
ting multiple, possibly cooperating tools, and generic metadatarepositories. For all groupswe present afew
examples.

Thefirst group of toolswediscussarethegeneric visualisers. They aretypically based on simplegeneric
metametamodel sto be ableto easily handle many different kinds of information. Rigi [Mul86] supportsre-
verse engineering by providing a scriptable tool with grouping and graph layout support. It is based on a
graph metametamodel, enabling it to easily visualise any entity-relationship model. The actual metamodel
can be constructed by the user, leveraging his/her domain knowledge. For storing and exchanging models
Rigi providesits own format, the Rigi Standard Format (RSF). Similar to Rigi is Shrimp [MADSMO01], a
tool to visually browse and explore complex graph-based information spaces. Exploring large software pro-
gramsisonly one of many possible applications.

Other tools are focused on specific languages. Consequently their metamodels are highly language de-
pendent. The Mansart tool [HY R96] queries abstract syntax tree (AST), and uses ‘recognizers' to detect
language-specific clichés associated with specific architectural styles. Multipleviews of asame system can
be generated and combined to create new ones[YHC97]. Similarly, Datrix — a source code analysis tool
developed at Bell Canada— stores ASTswith additional semanticinformation [LLB*98]. Acaciaisatool
that supports reachability analysis and dead code detection for C++ applications [CGK98]. (Q)SOUL
[Wuy01] is a program analysis system based on alogic programming language which is integrated in a

10 Reengineering Tools and Environments

Smalltalk environment. A declarative framework based onlogic rulesallows oneto reason about Smalltalk
code.

A third group of toolsarethetool environments. They are explicitly aimed at supporting multiple, possi-
bly cooperating tools. The SPOOL environment is an object-oriented reengineering environment that sup-
ports program understanding (e.g., hotspot- and design pattern identification) [KSRP99] [RSK00]. It has
UML asitsmetamodel with some proprietary extensions. The Generic Software Exploration Environment
(G>*) [Fav01] isatool framework targeted at very large software systems. It consists of arepository based
on a generic entity-relationship metametamodel, wrappersto al kinds of storage facilities, avisualisation
framework and atool builder to interactively and dynamically build exploration tools from the provided
components. GOOSE [Ciu99] [DD99] isatool set for analysing the design of object-oriented software sys-
tems. It extractstop-level object-oriented entities such as classes, methods and attributes and their relation-
shipssuch asmethod invocations. It supportsvisualisation on higher level s of abstraction and the automatic
detection of potential design flaws. It hasits own line based relational storage and exchange format called
the Simple Relational Format.

Instead of purpose-built reengineering environments, generic metadata repositories can be used. Well-
known examples are the Unisys UREP [URE] and the Microsoft Repository [BBC*99]. These repositories
attempt to addressthegeneral problem of sharing model sbetween alargevariety of different softwaretools.
The advantages of these kinds of tools is that they are open to any information model and offer industry
standard integrati on pathsto existing systems, for instance, using XMI [OMG98]. All functionality for sto-
ring, querying and exchanginginformationisavailable. Thedisadvantageisthat they need considerabletai-
loring for specific uses and can be an overkill for thetask at hand.

2.3.2 Metamodels for Reengineering

There are several, mainly research groupsthat have created metamodel s to represent software. Only afew
of the metamodels, however, have explicit descriptions of what information is represented. We list some of
thosemetamodelshere. Notethat thelist doesnot contain metamodel saimed at obj ect-oriented analysisand
design (OOAD), the most notabl e exampl e being the Unified Modeling Language (UML) [OMG99]. These
models represent software at the design level. Reengineering requires information about software at the
source codelevel. The starting point isthe softwareitself, demanding for a precise mapping of the software
to amodel rather than adesign model that might have been implemented in lots of different ways.

Bauhaus Resource Graph

The Bauhaus Resource Graph models source code by providing information such ascall, typeand userela
tions [CEK*00] [KosD0]. It is aimed at modeling constructs of procedural programming languages that
have a bearing on architecture recovery. Next to the metamodel, it defines a simple, compact graph-based
exchange format. The format is human-readable, non-nested and has built-in compression through string
reference sharing.

TA and TA++

TA (Tuple-Attribute Language) [Hol98] is alanguage to record information about certain types of graphs.
It definesasimpleformat to describe graphs and abasic schemafor describing program items such as pro-
cedures and variables and rel ationships such as call and reference relationships. TA++ [Let98] isan exten-
sion to TA that describes a schema for program-entity level information. It is aimed at providing a
representation of high-level architectural information about very large software systems. Target languages

State-of-the-Art in Reengineering Metamodels and Tools 11

range from Javaand C++ to C, Pascal, COBOL, FORTRAN and even assembler. The language mappings
to the described model, however, are not explicitly defined.

Datrix

Datrix isasource code analysistool developed at Bell Canada[L LB*98]. The model used to describe soft-
ware is the Abstract Semantics Graph (ASG) [BC00]. An ASG represents an abstract syntax tree (AST)
with additional semantic information such asidentifiers scope, variables' type, etc. Thegoal of the Datrix
ASG model iscompleteness— any kind of reverse engineering analysis should be doable on an ASG with-
out having to return to the source code — and language independence — the model should be the samefor
all common conceptsof C++, Javaand similar languages. Thislanguageindependenceis, however, restrict-
ed to C++- likelanguages.

Acacia

Acaciaimplements a C++ metamodel, which isexplicitly aimed at reachability analysisand dead code de-
tection [CGK 98]. The metamodel models software at the program entity level. The metamodel is C++ spe-
cific (athough it has been used to analyse Java as well), hence it contains C++ specifics such as friend
relationships, class and function templates, macros and C++ specific primitive types. It also deals consist-
ently with nested classes and their references.

Acacid s database sizeis 1.5 to 2.5 times source code size. [CGK 98] mentions to know about software
vendorsthat create databasesthat are up to 150 times the source code size.

2.4 Refactoring and Code Reorganisation

Refactorings — behaviour preserving code transformations— are more and more discussed in the context
of reengineering object-oriented applications [SGMZ98] [TB99a] [FBB*99] and as part of new develop-
ment process model s such as eXtreme Programming [Bec99].

Research onrefactoringsoriginatesfrom the seminal work of Opdyke[Opd92] in which he defined some
refactoringsfor C++[JO93], [0J93]. Similarly, Tokudaand Batory evaluate theimpact of arefactoring en-
ginefor C++ [TB99a] [TB99b] and also [FRI8] reports a reengineering experience where C++ was refac-
tored and dedicated toolswere devel oped. Werner analysesrefactoringsfor Java[Wer99]. Roberts[Rob99]
specifies the Smalltalk refactorings available in the Refactoring Browser and focuses on the possibility to
combine refactorings by analysing postconditions and preconditions of the combined refactorings. Schulz
et al. [SGMZ98] and O Cinnéide[OCN99] use refactorings to introduce design patterns.

Besidesrefactorings, research has addressed the reorgani zation of classhierarchies. Casais proposesal-
gorithms for automatically reorganizing class hierarchiesin Eiffel [Cas91] [Cas92]. These algorithms not
only help in handling modificationsto libraries of software components, but they al so provide guidancefor
detecting and correcting improper class modelling. [DDHL96] proposes an algorithm to insert classesina
class hierarchy that takes overridden and overloaded methods into account. [M0096] proposes to decom-
pose Self methods into anonymous methods and then reorgani ze class hierarchies by sharing as much as
possible of the created methods. Note that thiswork, whileinteresting from a scientific point of view, could
only be used to shrink applicationsfor deployment and not for increased understandability, asthe symbolic
meaning of method namesis|lost in the reorganisation process.

I ntegration of refactoring toolsin development environmentsis getting more and more common. Exam-
ples are the Refactoring Browser [RBJ97] for several Smalltalk dialects and Javatools such as jFactor for

12 Discussion

VisualAgefor Java[jFa] and JRefactory for several other JavalDES[jRe]. Integration in reengineering en-
vironmentsis to our knowledge not yet widespread. An example is Compost [Uni96], a Java anaysis tool
that supports somerefactorings.

2.5 Discussion

This thesis is about modeling object-oriented software in a language-independent way for the purpose of
reengineering. Looking at the state-of-the-art from this perspective we can make the following observa-
tions:

No metamodel descriptions. Therepository and itsunderlying metamodel areacrucial part of areen-
gineering environment. However, although many tools and tool environments exist, for most of them the
metamodel isnot explicitly documented. Especially, therelevance of the availableinformation for the reen-
gineering tasks at hand isnot made explicit. Consequently, every time atool isdevel oped the sasmeanalysis
needs to be performed anew. Furthermore, multiple implicit metamodels hinder the interoperability be-
tween tools, because required and provided information hardly ever matches.

Assection 2.3.2 shows, there are afew exceptions. There are explicit metamodels that focus on a parti-
cular task: Rainer Koschke's thesis discusses the relevance for modelled information of the Bauhaus Re-
source Graph model for reengineering procedural programs, in particular C, with the purpose of remodular-
isation [Kos00]. Acacia aso models C++ with the distinctive purpose of performing reachability analysis
and dead code detection. Other approaches focus on general reengineering support: Datrix has a clear de-
scription of what ismodelled, namely abstract syntax trees of C++ programswith added semantic informa-
tion. Basically complete programs are modelled in all possible detail. The relevance question is not
discussed, asthegoal isto model everything and makethe availability of the original source codeirrelevant
for al possibleanalysistasks. Only TA++ isageneral metamodel for reverse engineering, targeted at many
languages. It models high-level constructs, has a well-defined exchange format and also discusses issues
such asstorage and extensibility. However, its definition both lacks adiscussion of the design choicesand a
clear mapping of the different supported |anguages to the common concepts.

No multiple-language support. Legacy systems exist in many languages. On top of that, many reen-
gineering tasksare similar for multiplelanguages, especially within asingle paradigm. Consequently, there
isavast potential for reuse over multiple similar languages. To be able to deal with multiple languages ef-
fectively it needsto be clearly defined how different languages are represented in acommon way. Only in
thisway toolswill be able to base common analysis on the metamodel and be sure that it provides the ex-
pected resultsfor all supported languages.

However, not many metamodels have el aborate multi-language support. Tools like the generic visuali-
sers use simple metamodel s that cover common concepts of several languages. Their metamodels are not
very detailed and often ad-hoc, providing simple multi-language support, which is sufficient for visualisa-
tiontasks, such ashigh-level browsing and grouping. From the metamodelsdescribed in section 2.3.2, only
TA++aimsat generally supporting multiplelanguagesfor reengineering large software systems. Target lan-
guages range from object-oriented languages to assembl er. It does not define, however, how these different
languages are mapped to the TA++ metamodel . | n any case, the potential for acommon definitionliesinthe
languages with acommon paradigm, rather than in the whol e scope of targeted languages.

State-of-the-Art in Reengineering Metamodels and Tools 13

No explicit infrastructural design choices. Apart from the exact contents of a metamodel and its
relevancefor reengineering, there are other propertiesthat determine how successful ametamodel supports
reengineering. Most notably these are:

» Scalability. It is not uncommon that legacy systems contain several millions lines of code. A tool
environment must scale up to deal with the vast amounts of information involved. Because a meta-
model determines what information arepository can contain, it has a direct influence on how much
information is generated.

» Extensibility. Not al information needs are known in advance. A metamodel must be able to deal
with information that was not anticipated in its original design. Furthermore, models must be able
to store annotations to capture analyse results and knowledge gained through a reengineering pro-
cess.

» Tool integration. The vast and heterogeneous set of possible reengineering tasks typically resultsin
multiple specialized tools that need to work together to provide a full understanding of a system
[DDT99].

Other aspects are the ability of ametamodel to support grouping — for the creation of higher-level ab-
stractions or classifying model elements— or multiple models— for evolution analysis.

We call theseinfrastructural aspects: design aspectsthat deal with how theinformationisorganized and
stored. They are well-known and often stated as requirements (for instance, in the TA++ definition in
[Let98] and for exchange formats specifically in [SDSK00]). However, similar to the metamodel contents,
hardly any existing tool or metamodel makes explicit the underlying design choices affecting theses as-
pects. Moreover, there is also no general description of what the relevant infrastructural aspects are, how
they impact the metamodel design and how choicesfor one aspect influence the properties of other aspects.

No refactoring support in multi-language reengineering environments. Not many reengi-
neering environments support refactoring. Most presented tools and environments can be considered re-
verse engineering rather than reengineering tools. Therefactoring tools mentioned in section 2.4, are either
stand-alone or part of a forward development environment. Only Compost [Uni96] can be considered a
reengineering tool with refactoring support.

In the context of reengineering, refactoring is clearly interesting, providing the ability to quickly and
safely transform software. Beyond this straightforward application, however, integrating refactorings in
reengineering environments opens awhole new class of possibilities currently not yet explored. Not only
cantoolsanalyse software or apply standal onerefactorings, both capabilities can be combined so that atool
can detect problems and propose sol utions to resolve such problems and perform the required transforma-
tions.

From the perspective of metamodel sfor reengineering, refactoring poses additional constraints on their
design. It demands sufficient, complete and 100% correct information, becausetheresult of acodetransfor-
mation should not result in afaulty software system. Thisisastricter requirement than required for atypical
reverse engineering task such as visualisation, which is normally not strongly affected if information is
slightly incomplete or incorrect [MNGL 98] [Bis92].

Support for multiple programming languages poses an additional challenge. While there is sufficient
proof that arefactoring tool can be built for amost any object-oriented language, it isyet unknown whether
it is feasible to build a language-independent refactoring engine. Only O Cinnéide mentions support for

14 Conclusion

multiple languages in a refactoring tool [OCN99]. He presents a layered architecture which shields lan-
guage specificsasmuch as possible, but so far histool prototype only supports onelanguage, namely Java.
Likewise, the Refactoring Browser [RBJ97] definesitsrefactoringsin terms of amodel of Smalltalk in or-
der to easily deal with differencesbetween Smalltalk dialects. In this casethelanguage differencesarequite
small.

Multi-languagerefactoring requires an analysisto which extent refactorings can be abstracted fromtheir
underlying languages. Separating the analysis for refactorings in alanguage-independent and alanguage-
dependent part has basically the advantage that complex analysis can be reused for many languages. This
easestheintegration in multi-language environments, such asreengineering environmentsor other kinds of
CASE tools.

2.6 Conclusion

Wrapping up we can say that alot of knowledge about how software needsto be modelled for reengineering
purposesisimplicit. Inthisthesiswe make parts of thisinformation explicit. First, wediscussin general in-
frastructural aspects of reengineering environments and there underlying metamodels. We present the dif-
ferent choices that a tool developer can make and how the choices for the different aspects interrelate
(chapter 3). After that welook at the specific problem of modeling multiple object-oriented languagesin a
common way. We present one metamodel and discuss the trade-offsin its design. This discussion includes
the specific choicesfor multi-language support and the infrastructural aspectsthat are discussed in general
before (chapter 4). In the following chapter we discuss an implementation of the presented metamodel and
to which extent it is successful in supporting multiple reengineering toolsin practice (chapter 5). We then
use our metamodel to provide an in-depth analysis of multi-language refactoring. Based on our language-
independent metamodel we have analysed fifteen low-level refactorings. The analysis shows to which ex-
tent it ispossibleto abstract from the underlying languages, in our case Smalltalk and Java (chapter 6). The
refactoring analysis has been validated with an implementation and case studies (chapter 7).

CHAPTER 3

A Design Space for Reengineering Tool
Infrastructures

Figure 2.2 inthe previous chapter showsthe general structure of areengineering environment. It illustrates
that the repository isthe central part that letstools work on acommon information base. The properties of
therepository, and thus of the compl ete environment, are highly influenced by the metamodel that describes
what and in which way information is modelled. The metamodel not only determinesif theright informa-
tion isavailable to perform the intended reengineering tasks, but also influencesissues such as scalability,
extensibility and information exchange. We call the latter infrastructural aspects: design aspectsthat deal
with how theinformation is organized and stored.

Thischapter makesexplicit theseinfrastructural aspects. It presentsaconceptual spacethat identifiesthe
aspects necessary for areengineering environment devel oper to consider. For every aspect the space covers
the design optionsincluding implementation sol utions and adiscussion of the trade-offs. Furthermore, dis-
cuss the dependenci es between the axes. The goal of this chapter isnot to come up with adesign for aspe-
cific reengineering platform such as PBS [FHK*97] or Rigi [Mul86] and their underlying metamodels.
Hence we do not cover the ability of an environment to support specific reengineering tasks and the exact
contents of aspecific metamodel.

In the context of thisthesis, the design space setsthe infrastructural context for one particular metamo-
del, namely FAMIX. FAMIX isaconcrete metamodel that model s object-oriented software in alanguage-
independent way. Itispresented in CHAPTER 4. The design space putstheinfrastructural optionswe have
chosenfor FAMIX in perspective. From the other side, FAMIX, presented as an instance within the design
space, validates the usefulness and accurateness of the space.

Therest of the chapter startswith an introduction to the design space before we describe the different as-
pectsin detail.

16 Introducing the design space

3.1 Introducing the design space

We start our introduction to the design space with asmall scenario that shows how atypical reengineering
environment isused. We usethescenariotoillustrate several infrastructural aspectsof such an environment.
Afterwardswe give an overview of the compl ete set of aspectsthat our design space coversintheform of a
list of questions. After that, we show the design space with all the aspects and their interrel ationships.

3.1.1 Scenario

We paint here atypica usage scenario of areengineering tool environment. The reengineer, let’s call her
Claudia, isconfronted with alegacy C++ system of about amillion lines of code. Her intention isto extract
the architecture and possible problemsin changing it.

First sheextractsinformation fromthe C++ systeminto arepository. Shedecidesto only extract program
entity information instead of afull abstract syntax tree. She applies atool to visualise the structure of the
application and uses grouping techniquesto collapse classesinto a higher level module view.

Claudiahas athird-party metricstool that can help her to understand the system. Claudiaexportsthein-
formation from her environment into a standard exchange format and importsit into her metricstool. She
computes some metrics and combines the obtained resultsto enhance the views she getswith sizeinforma-
tion. She detects abig classin module X on which many classes in other modules depend. Looking at the
source code she finds that some of the functionality of this class can be distributed over the different mod-
ules.

Analysis

The scenario illustrates the following infrastructural aspects of areengineering tool environment: the ex-
traction level of detail (Claudiachosethe program entity level), different kinds of entities (she produces ar-
chitectural entities), the use of grouping (she groups entities to produce a modular view), the tool
integration, information exchange and incremental loading (she used an integrated visualiser, an external
metricstool, an interchange format and merged metric results), and the annotation of entities (the metrics
are associated with the entities they relate to).

The scenario only covers asubset of reengineering activities. For instance, Claudiamight want to apply
similar analysis on other implementati on languages, compare multiple versions of the same system, etc.

3.1.2 Infrastructural issues summarised

We summarisetheinfrastructural aspectsasalist of questionsthat adevel oper of areengineering environ-
ment typically needsto answer.

3.1.3 Questions concerning the information to be modelled

Language/Paradigm support. How many implementation language(s) must be supported? Do all
these languages belong to the same paradigm (e.g., procedural, object-oriented)?

Level of detail. How detailed should the extracted information be? Should the information sufficeto re-
generate the source codeit represents? Shoul d the information support the creation of higher-level views?

A Design Space for Reengineering Tool Infrastructures 17

Scalability. How large are the programs you deal with? How many versions have been released? How
many models do you need to extract?

Multiple Models. Do you need to represent the software system at several levelsof abstraction (code, de-
sign, analysis)? Will you analyse several releases of the same software system?

3.1.4 Questions concerning the tasks to be performed

Grouping. Will you create higher level abstractions by grouping model elements? Do you need to group
these groups? Do you need to group elements of multiple models? Do you need to group relationships?

Tool Integration. Must thetool environment exchangeinformation with other tools? How do you merge
information coming from different tools? Must the repository support parallel access from multipletools?

Extensibility. Must the metamodel be ableto accommodate new kinds of information? I sit needed to an-
notate model elements? Must the environment adapt itself to new kinds of information?

3.1.5 Questions concerning underlying implementation

In addition to the issues directly brought forward by the user requirements, some key under-the-hood im-
plementation aspects need attention as well, because they can make or break the ability to fulfil arequire-
ment. Theseimplementation aspects are:

Storage medium. How istheinformation of amodel stored? Doesthe medium fit your scalability needs?
Doesit fit your information exchange needs?

Entity reference. How are model elementsidentified? Can the reference schemahandle references over
multiplefiles? Can it handle groupings of any model element? Can it handle multiple models?

Incremental Loading. Shouldthetool beabletowork withincomplete models?Must all information be
100% correct? Should the tool be able to merge information from different sources?

Exchange Format. Doestheformat need to be easily machine?How precise should it reflect theinternal
datastructure? Must anindustria standard be supported?

Metamodelling. How do you storeinformation about amodel (e.g., nameof the creating tool, thelevel of
detail of the extracted information)? Do you work with an explicit metametamodel ? Whi ch kinds of exten-
sibility doesthe metametamodel support?

3.1.6 Design Space in a Nutshell

Theaspects brought up in the previous subsection cannot be considered inisolation. A choice madefor one
aspect often influencesthe choicesfor another one. An exampleisthelevel of detail. When the tool set sup-
ports abstract syntax treelevel of information rather than the program entity level, it is much harder to sup-
port multiple languages, because it is easier to map multiple languages to a more abstract higher-level
representation than to avery detailed one.

18 Introducing the design space

We capture these dependencies in a so-called ‘design space’. Each aspect represents an axis into this
multi-dimensional non-orthogonal space. Within the space a single reengineering platform is determined
by the values chosen for each axis.

Before going into thedetailsof the separate axes, we present aroadmap to the design space. Furthermore,
we present the template we use to describe the axes.

A roadmap to the design space

Figure 3.1 provides aroadmap of the design space. It shows the design space with the axes, their main op-
tions and how they interrelate. For every axisit also indicates the number of the section that describesthe
axisin detail. We distinguish the foll owing kinds of axes:

* Requirement axes. The requirement axes cover decisionsthat are depending on the user require-
ments that the environment and its underlying metamodel must fulfil. These cover most of the ques-
tions from sections 3.1.3 and 3.1.4. In Figure 3.1 the requirement axes are represented by ellipses.

» High-level requirement axes. High-level requirements represent key concerns of a reengi-
neering environment. They do not have implementation options themselves, which is why we do
not describe them in detail in a separate section. They are, however, affected by many of the other
axes. The high-level requirement axes are two remaining aspects from sections 3.1.3 and 3.1.4,
namely the Scalability Axis and the Tool Integration Axis. In Figure 3.1 they are represented by
clouds.

* |mplementation axes. Theimplementation axes cover issuesthat are not directly reflected inthe
user requirements. These are the questions brought up in section 3.1.5. In Figure 3.1 the implemen-
tation axes are represented by boxes.

Axis template

Therest of the chapter discusses the requirement and implementation axesin detail. We describe them ac-
cording to thefollowing template:

* Name: the name of the axis.

» Description: an overview of the axisincluding the design choices.

» Dependencies: alist of the dependencies with other axes.

* Implementation issues: a discussion of implementation solutions and their trade-offs.

A Design Space for Reengineering Tool Infrastructures

19

3.3

Level of Detail
- AST

- program entity
- architecture

Multiple Models
- single
- multiple

3.2

- single
- mixed

39

Language/Paradigm

- nested
- chunk
- flat

Exchange Format Structure

/

3.8 ’

Storage Medium
- textual

— 7| - database -~

- in-memory

i

l
\\ 3.7 |

Incremental Loading
- with
- without

3.10 k

S Entity Reference

- unigue naming
- (uuid
- mix

¢

Grouping
- any entity
- nested groups

35

311

M etametamodeling
- implicit/explicit
- standard

Extensibility
- add new entity

- support for annotation
- add attribute

section number
3x <

Requirement Axis
- design choice

High-level Requirement
Axis

Implementation Axis

- design choice
© 7 Tnfivences . ™
enables >

Figure 3.1 Roadmap of the design space. It shows the different axes and their relationships.
The numbers correspond to the sections that describe the axes in detail.

20 Languagel/Paradigm Axis

3.2 Language/Paradigm Axis

The choice which language(s) or paradigm(s) to support is largely driven by the requirements of the end-
user. We categorise the possibilitiesasfollows:

 only one language (such as Smalltalk, C++, Fortran, Lisp)

« only one paradigm (such as object-oriented, procedural, functional, logic programs)

» multiple languages with one paradigm

 one language with multiple paradigms (such as hybrid C++ object-oriented/procedural programs)
» multiple languages with multiple paradigms.

Themainissueisif language or paradigms are mixed. The implementation issues below discuss the conse-
quences.

Dependencies

Level of detail. The higher thelevel of detail, the more reasoning power you get, but the harder it isto sup-
port multiple languagesin acommon way.

Extensibility. If themetamodel consists of acommon corewith language extensions, the appropriate exten-
sion mechanisms must be available.

Implementation issues

If only onelanguage, hybrid or not, needs to be supported, the metamodel typically contains constructs of
that languagein astraightforward one-to-one mapping. It getsmore complex if multiplelanguages are sup-
ported. The constructs of both languages are modelled either separately or using a common abstraction.
Separate modellingistypical inthe case of languagesthat have dissimilar paradigms. In such acasetheme-
tamodel isoften constructed with separate, but connected submetamodelsfor every paradigm [LS99]. If the
supported languages have the same or an overlapping paradigm, common constructs are often modelled
with asingle abstraction. The typical structure of such ametamodel is a language-independent core with
multiple language extensions. For instance, a core could contain a Class abstraction which would allow
class conceptsin Java, Smalltalk and C++ uniformly, but the C++ class template would be modelled in the
C++ language extension. Treating similar constructsin asimilar way resultsin language independence and
reuse of analysiscode. On the other hand, treating them explicitly decreases problemswith semantic differ-
ences.

Itisoften useful to storethe mappings. E.g, if Javainterfaces and Java classes are modelled using acom-
mon Class abstraction, theinformation whether the el ement representsaclassor interfaceisstored asan an-
notation to the Class abstraction. This allows, for instance, visualisation tools to colour Java interfaces
differently from Java classes. Language-independent tools, however, can just treat the common concept
without having to know about the language details. For similar reasons, if the modelled system isimple-
mented in multipleimplementation languages, it is often necessary to record what the implementation lan-
guageisfor every entity or every group of entities.

A Design Space for Reengineering Tool Infrastructures 21

3.3 Level of Detail Axis

Thisaxisdescribesthe different levels of detail and the consequences of choosing one or the other. We dis-
tinguish thefollowing levels:

1. Abstract syntax tree (AST) level information - a complete view of the source code. It is nor-
mally detailed enough to regenerate the source code and sufficient for control-flow analysis.

2. Program entity level information - abstracted but factual view on source code: classes, me-
thods, functions, etc. It is normally used for a generating structural views on the target system.
Typicaly only limited information about method bodies is available, normally consisting of
method invocation and variable access information, which is sufficient for dependency analysis.

Dependencies

Language/Paradigm. The higher the level of detail, the more reasoning power you get, but the harder itis
to support multiple languagesin acommon way.

Scalability. Thehigher thelevel of detail, the higher the memory consumption and load time of information
from databases or files and the slower the response times of toolsthat use theinformation. To give an idea
for theimpact of different detail level son resource consumption, we show thefile sizes of thetextual repre-
sentation of amodel using our own FAMIX metamodel (see CHAPTER 4) and the two standard exchange
formats, namely CDIF [Com94] and XM I [OMG98]. The numbersare shown in Table 3.1. Thedefault rep-
resentation of both standardsis not optimized for space consumption, which is confirmed by the huge com-
pression achieved by zipping the files. The modelled system is the Java Swing framework, version 1.3.0,
consisting of 7.2 MB of source code (225 KLOC). It has been parsed by SNiFF+ parser, version 3.2.1. It
consistsof ~2700 classes (including inner classes), ~11500 methods. The metricinformation containsup to
25 metrics per source code entity where every measurement is stored as a separate element in thefile.

Swing 1.3.0: 225 KLOC~ 2700 classes | CDIF file, MB (zipped MB) XMI file, MB (zipped MB)
classes, methods, attributes 8.3 (0.53) 21.8 (0.90)
+ invocations and accesses 12.1 (0.82) 28.8 (1.25)
+ formal parameters 15.5 (0.99) 39.7 (1.67)
+ metric information 84.7 (3.15)

Table 3.1: File sizes for different levels of detail of Swing 1.3.0

Implementation issues

Scalability isan important issue to consider, because the large amounts of information can makeit hard to
effectively analyseasystem. Wedescribe heretwo techni questo reducetheamount of information. Thefirst
one incremental extraction by using source anchors, i.e., pointers to the original source code. Source an-
chorsallow oneto go back to the source code and extract additional information only when needed. Impor-
tant consideration is that the partial information is still sound. For instance, if method information is
required, information about the classes that contain the methods typically needsto be stored aswell. A se-
cond techniqueisto collapseinformation. For instance, instead of representing all invocations from meth-
ods of one classto methods of another class, thisinformation can be collapsed into asingleinvocation rela-
tionship between the two classes. The details of which method calls which other method is lost, but the
dependency between the classesis till represented and lessinformation needsto be stored.

22 Multiple Models Axis

3.4 Multiple Models Axis

The possibility to analyse multiple models simultaneously is useful in evolution analysis, where multiple
versions of the same system need to beanalysed [L DS01] [JGR99]. Likewise, itisinteresting to analyse pa-
rallel branches of similar applications, for instance, to devel op aframework by abstracting common assets
in these branches. Another aspect isthat different models can have different metamodels. Thisistypically
the case when multiple paradigms are modelled [L S99].

Dependencies

Entity Reference. Multiple models require the possibility to uniquely identify elementsfrom different mo-
dels, evenif theseelementsare similar, for instance, the same classin multiple versions of the same system.
Furthermore, it must be possible to identify which model an element belongsto.

Metamodelling. Information about models can be modelled as part of the model itself or asameta-entity.

Implementation issues

Instead of making multiple modelsexplicitly part of the metamodel, atool environment can support multi-
ple modelsin its implementation. This keeps the metamodel simpler, but makes it impossible to formally
exchange mixed information. Furthermore, toolsthat useinformation of multiple models get dependent on
theimplementation of thetool rather than its underlying metamodel.

3.5 Grouping Axis

Grouping isanimportant techniquein reengineering, primarily to build higher-level abstractionsfrom low-
level program elementsor to categorize elementswith acertain property. Two waysof grouping can beiden-
tified: intentional (description-based) and extensional grouping wherethe group actsasabag of (references
to) model elements[DD99] [MWD99]. A tool developer should consider the following options:

« the support for nested groups, i.e., groups that can contain other groups

» which entities can be grouped, e.g, can a group only contain named entities such as classes or also
nameless entities such as relationships.

» groups of entities over multiple models, i.e., can a group contains entities belonging to different
models.

Dependencies

Entity Reference. The entities that need to be groupable, must be uniquely referencable. This can include
the groups themselves and entitiesin multiple models.

Implementation issues

If intentional groupsareto be supported, the model must define how descriptionsare modelled. Expressions
using the Object Constraint Language (OCL) expressions [SMHP*97] or other formalisms could be used.
Furthermore, intentional groups need strategies for recomputing the contents when a model is adapted or
additional informationisincrementally loaded [MWD99]. Thisall is, however, atopic that goesbeyond the
scope of thischapter.

A Design Space for Reengineering Tool Infrastructures 23

3.6 Extensibility Axis

Extensibility isan important issuein modelling software asit allows additionsto amodel without having to
changethe model itself. Typically extensibility isneeded for the following kinds of information:

» Language-specific information. In the case of a metamodel with alanguage-independent core, it is
often still interesting to store language-specific information. For instance, a visualisation tool might
want to colour all Java interfaces different from classes, even if both classes and interfaces are
mapped to acommon class concept in the language-independent core. Additionally, languages have
their own specific problemsthat are interesting in themselves. An exampleisthe analysis of include
hierarchiesin C++.

* Tool-specific information. Tools might want to store and exchange tool -specific information such as
analysis results or layout information for graphs.

» Whatever information people find worth modelling. Not all information needs can be known in
advance. Furthermore, being able to annotate any element in a model, can be a great help to store
acquired knowledge in the process gaining understanding of a system.

Thefollowing subsections describe the extension mechanismsto be considered.

3.6.1 Adding new entities to a metamodel

Tobeabletorepresent constructsthat arenot yet covered inametamodel and cannot bemappedinasensible
way to the existing elements, it must be possibleto add entitiesto an existing metamodel. Examplesarethe
addition of the C++ include rel ationship to alanguage-independent metamodel, or the addition of aspecial-
purpose container that isrelevant in the specific domain of system under investigation.

3.6.2 Adding attributes to existing entities.

Similar to the addition of new entities to an existing metamodel, it may be necessary to add new attributes
to existing entities. An exampleisthe information that aclassin amodel represents an Javainterface. The
extension adds an attributei s1 nt er f ace to the Class entity. This can be done through subclassing or by
explicitly adding an attribute. Figure 3.2 shows an example. The subclassing solution (a) demands for all
clientsto know the extension and how it relatesto theoriginal entity. It demandsimportersthat arefully me-
tamodel aware and can deal with extensionsthat it did not know yet. When the attribute is just added to the
original entity (b) an importer that does not (want to) know the extension just recognizes the element it
knows and can ignore any attribute of the element it does not recognize.

24 Extensibility Axis

Class (a) (Javad ass
uniqgueName (name “Point”)
l)sggﬁgg%gPackage * (i sAbstract -FALSE)
(bel ongsToPackage “poi nts”)
A (islnterface - FALSE)

JavaClass)

isInterface
(A ass
(namre “Point”)

: Class (b) (i sAbstract - FALSE-)
uriqueName - (bel ongsToPackage “poi nts”)
belongsToPackage (islnterface - FALSE-)
isInterface)

Figure 3.2 Extending Class with an attribute isInterface by (a) subclassing an Class and (b)
adding the attribute to the existing Class element

A more severe problem with the subclassing solution isthe fact the multiple orthogonal extensions (ty-
pically language and tool extensions) might exist which cannot be modelled by inheritanceat all. Thisisil-
lustrated in Figure 3.3. Thisisalso aproblem if an attribute must be added in an existing hierarchy whereall
existing subclasses should inherit the attribute.

Class
unigueName
isAbstract
belongsToPackage (a)

\ o 77
JavaClass MetricsEnhancedClass
isinterface NOM
(d ass
i (name “Point”)

. ass (b) (i sAbstract -FALSE)
gﬂ{g:ﬁﬁgme * (bel ongsToPackage “poi nts”)
bﬁling;sToPackage (islnterface - FALSE-)
Isinterrace
NOM) (NOM 7)

Figure 3.3 Extending Class with two orthogonal attributes by (a) subclassing Class and (b)
adding the attributes to the existing Class element

3.6.3 Annotating entities

Annotations allow any information to be added to any entity. Entity properties, analysisresults, human un-
derstanding in the form of notes can then be attached to the entity they refer to. Although ametametamodel
could support away to support annotations, it is often considered the domain of the metamodel. In such a
case the metamodel explicitly allows any entity to be in relation with some property, annotation or tag ob-
jects(see Figure 3.4).

A Design Space for Reengineering Tool Infrastructures 25

Object % Property

Figure 3.4 Object annotation

By following such an approach, the issue of the representation of the annotation object in memory and
in the exchange format have to be answered. Indeed, from our experience of representing metrics as entity
annotations, we learnt that annotation objects can constitute more than 90% of the data processed while
loading and analysing a system. One solution isto only represent properties explicitly in the exchange for-
mat and use appropriately optimized data structuresfor thein-memory representation.

Inthe exchangeformat, annotations can be represented as an attribute of the annotated entity or asan ex-
plicit entity itself (see Figure 3.5 for an example€). Thefirst solution precludes|oading of annotations sepa-
rate from their containers, but requires|ess space.

(A ass
(a as?narTe " (nane A))
(Annot ati on
(annot ati on NOM 45)) (bel ongsTo A)
(NCQV 45))

(@) (b)

Figure 3.5 Annotations as an attribute of the annotated entity (a) or as a separate entity (b)

3.6.4 Metametamodel extensibility limits

Theextensibility of the metamodel isrestricted by the extensibility the metametamodel allowsyouto have.
Thisis especialy an issue when using modelling standards such as the MOF [OMG97], because they re-
strict youto their extension mechanisms. The M OF and GX L [HWS00] do not support classextensions, i.e.,
the ability to add attributes to existing classes. CDIF [Com94] and RDF [WWWC99] both allow thiskind
of extension.

3.7 Incremental Loading Axis

Incremental loading of information isabout the ability toload new entities or additional information for en-
titiesthat already exist in amodel. Thereasons for considering incremental |oading are resource optimisa-
tion and the merging of information from different sources.

Incremental |oading generally allowsamodel to contain referencesto information that isnot in the cur-
rent model. Thisisinteresting for the following reasons. It allowsto load only parts of models. Thisis par-
ticularly useful if only part of asystemisavailable, e.g., thesourcecodeof alibrary isnot alwaysaccessible,
or if only apart of asystemisof interest. Extractors can also make mistakesthat result in dangling referen-
ces, especially for complex languages such as C++.

Dependencies

Entity Reference. The way model elements are referenced must support the ability that information ele-
mentsin different files or databases can reference each other.

26 Storage Medium Axis

Scalability. Incremental |oading can be used for resource optimization. Information about the same system
can be stored (and thus transferred) in separate files or databases. Furthermore, information can be loaded
on demand. For example, computed metrics or analysis results can be so space consuming that you only
want to load them when necessary.

Tool integration. Code analysis can be performed by different toolsthat do not share acommon repository
[DDT99]. Results can be stored in different locations and merged if needed. For example, metric values
computed by onetool can beloaded into avisualisation tool.

Sorage. Incremental |oading enablesthe storage of related information in different locations.

Implementation issues

Referenced information which isdefined in a separate resource must be ableto befilled inlater and be cor-
rectly associated withtheentity it refersto. A solutionistousestubs, i.e., empty placeholders, that represent
the missing entities. If later the actual element isloaded, it replacesits stub. Note that referenced informa-
tion often isleft out on purpose. Freguently we want to model an application but not the complete libraries
or frameworksit uses. In such cases the model ends up with referencesto non-represented entities.

3.8 Storage Medium Axis

Models, oncecreated, need to be stored and exchanged between tools. Oneissueisthe storage medium:; dif-
ferent storage approaches exist such as atextual representation, databases or in-memory repositories that
can be saved to disk, all with their own advantages and disadvantages:

Textual storage

» issimple (evenif this depends on the format structure. See section 3.9 for details),
» supports easy information manipulation, for instance, with scripting languages,
* isagood base for information exchange.

Database storage

* scales better,

* has slower response times than an in-memory repository,
 alowstoolsto work together on a common information base,
« often has support for information exchange standards,

* but less easily serves asinformation exchange medium itself.

In-memory repository

* providesfast accessto information,

* provides easy manipulation of information,

» scalesonly in the context of the available working memory,

* but itsinformation exchange and storage capabilities are limited to the implementation language.

Dependencies
Scalability. Asdiscussed abovethe different storage mediahave different scalability properties.

A Design Space for Reengineering Tool Infrastructures 27

Tool integration. The storage medium determineshow toolscan integrate. Textual storageisalight-weight
approach mostly for toolsthat just exchange information. Databases allow toolsto work together on acom-
mon information base more easily.

Incremental Loading. Incremental loading allows file exchanges to be divided into multiple files and for
different toolsto produce information about a system that can be merged afterwards.

Implementation issues

The choice between textual representation and a database is a choice between alight-weight and a heavy-
weight solution. A text fileiseasy to produce, to process and move between platforms. Itisquitealow-level
solution, however, because users haveto deal with saving, parsing and entity referencethemselves. A data-
base, on the other hand, is not as easy and quick to set up and normally needs considerable tailoring for a
specific task. Once set up, however, it normally providesintegrated support for industry standard informa-
tion exchange and schematransformation.

Thein-memory solution isabout using the runtime datastructure as a storage format. When loaded, it al-
lows tools fast access and easy manipulation of information. The storage is not necessarily faster or easier
than atextual solution or adatabase, asthe dataneedsto be stored to apersi stent medium such asaharddisk.
Java serialization, for instance, can be used for this purpose. Some devel opment environments, however,
have built-in support for the storage of acompleteworking session, i.e., al the dataand runtime state of the
tools. Thisisthe case for many Smalltalk dialects.

3.9 Exchange Format Structure Axis

Repository information is often stored in text files. It isalightweigth way of storage, which is particularly
well suited for information exchange. St-Deniset al [SDSK00] describe aset of thirteen criteriathat areim-
portant for an exchangeformat. Many of the criteriathey describeare non-functional, such asreliability and
completeness, which rather depend on the quality of thetool that producestheinformation thanthat itisan
intrinsic property of the exchange format.

We describe three common format structures and discuss them in the light of three criteria, namely hu-
man readability, machine processability and theability toincrementally load information. These are aspects
that only depend on the actual structure of the exchange format. They are independent of the quality of the
extractor and the actual encoding (i.e., if theline endswith abracket or with an XML-tag).

The three format structures store model elementsin anested way, in chunks or in acompletely flat way.
We analyse them in a separate subsection and discusstheir properties afterwards.

Dependencies

Tool integration. The structure of thetextual format influencesitsfitnessfor information exchange. Thisis
discussed in more detail in the following subsections.

Sorage Medium. Textual storageisone of the storage approaches presented as part of the Storage Medium
Axis. Consequently, it isinfluenced by the textual format structure.

28 Exchange Format Structure Axis

3.9.1 Nested, chunk and flat formats

This subsection describes the nested, chunk and flat format and discusses their human readability, machine
processability and incremental |oading properties.

Nested. In the nested format every element physically contains its constituents. Relationships other than
containment, aremodelled by explicit relationship elements. Thefollowing example showsaclass A which
inheritsfrom class B and containstwo methods (M and N) and an attribute (X).

(class A
(nethod M
(i sAbstract true))
(nethod N
(i sAbstract false))
(attribute X
(visibility public)))
(I'nheritanceDefinition
(subcl ass A
(visibility protected)
(precedence 2)
(supercl ass B))

Evaluation. The nested format iscomplex and elements can quickly get large due to the el ementsthey con-
tain. It only favours human readability aslong as the elements do not get too large. Incremental loading is
not well supported either, because elements cannot be stored without their containing element, and repla-
cing an element requires finding it inside its containment hierarchy. The format is useful for aone-to-one
representation of the tool-internal datastructure, which is typically optimised for information navigation
rather than storage or exchange.

Chunk. In the chunk format, entities are not nested into their scoping entity. Simple relationships are
stored as attributes of the contained entity. The example hereafter showsthe sameinformation asthe nested
example, but now in the chunk format. Now the methods and the classare stored asexplicit entitiesand con-
tainment relationship isrepresented by thebel ongsTod ass attributein M and N.

For relationships that need additional information to be stored, explicit entitiesare created. In the exam-
ple, theinheritancerelationship isan explicit entity withvi si bi | i t y and pr ecedence asattributes.

(class A

(i sAbstract true))
(method M

(bel ongsTod ass A)

(i sAbstract true))
(nethod N

(bel ongsTod ass A)

(i sAbstract false))
(attribute X

(bel ongsTod ass A)

(visibility public))

A Design Space for Reengineering Tool Infrastructures 29

(I'nheritanceDefinition
(subcl ass A
(visibility protected)
(precedence 2)
(supercl ass B))

Evaluation. The chunk format favours human readability, because entities are self-contained with the con-
tainment relationships readily available as attributes. The format supportsincremental |oading better than
the nested format, because, when loading or updating an element, the containing entity does not need to be
found or even be available. Because the format isless complex, importers can be simpler aswell.

The chunk format has as main disadvantage that rel ationships are stored in two different ways.

Flat. Theflat format explicitly representsall entitiesand relations, typically using aline-based format. For
example, RSF isbased on thisapproach [Mul86]. Contrary to the two other formats, which support entities
with attributesin pair-value form, here the attributes require another storageform. Inthe pureformthey are
all explicitrelations. Someformatsare moreelaborate [Hol 98] and allow attributesaspairsonthesameline.
This actually goes a step towards the chunk format. The following code shows the flat format with both
kindsof attribute storage:

(class A

(nethod M

(et hodBel ongsTod ass M A)

(attribute X)

(attributeBel ongsTod ass X A)

(i nheritance A B)

(inheritance A B visibility protected)
(inheritance A B precedence 2)

Evaluation. With this approach, incremental loading iswell supported and merging of modelsiseasy. Ma
chine processability isalso easy, because the format is conceptually simple. Becauseit isline based, mani-
pulation of models can be easily done by running ascript (in Perl or similar scripting languages) to convert
onefileinto another one. A drawback isthat information representing one single entity can be scattered over
thefile, which hampers readability.

3.9.2 Discussion

Table 3.2 summarizesthe evaluation of thethreeformat structures. The nested structure does not score well
against our criteria. We do not recommend it for informati on exchange purposes, although it can beaviable
option to store complex datastructures. The chunk format doeswell inall threeareas. Theflat format isless
readable, but easier to process. Note that human readability getslessimportant when importing and saving
toolsstahilize.

readability processability incremental loading
nested - - -
chunk + +
flat - ++

Table 3.2: Textual formats compared

30 Entity Reference Axis

3.10 Entity Reference Axis

Ascan beseenin Figure 3.1, the entity reference axisdirectly and indirectly influences many other axesin
the design space. The decision how entities are referenced comes down to atrade-off between heavyweight
solutionsthat ensurethat every element inthe model can be uniquely identified, alwaysand everywhere be-
tween different tools, or solutions that are more light-weight, but might not adequately support grouping,
multiple models, or referenced information that is not in the samefile or database.

Dependencies

Grouping. The entities that need to be groupable, must be uniquely referencable. This can include the
groupsthemselves and entitiesin multiple models.

Multiple Models. Multiple models require the possibility to uniquely identify artifacts from different mo-
dels, evenif these artifacts are similar, for instance, the same classin multiple versions of the same system.

Incremental Loading. Incremental loading requires information elementsin different files or databases to
be ableto reference each other.

Implementation issues

Thereareseveral possibilitiestoidentify entities. Oneisto usetheintrinsic unique name of entitiesthat have
one (like a class name or attribute name), or to use a meaningless unique identifier. We present both solu-
tionsin the next subsections and finish with adiscussion.

3.10.1 Unique identifiers

One approach for model element identification isthe use of meaninglessidentifi erst. Every model element
gets such an identifier attached to it and all references use thisidentifier aswell. The most important issue
ishow ‘unique’ thisidentifier needsto be. Only within one database or file, only within aknown set of files
and databases, or always guaranteed unique. Light-weight approaches can be used, the simplest one proba-
bly the use of integers. However, if uniquenesswith abroader scopeisrequired, solutionssuch asUniversal
Unique ldentifiers (UUIDs) [OG97] must be considered.

UUIDs are unique across both space and time, with respect to the space of all UUIDS. A UUID can be
used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying
very persistent objects across anetwork. UUIDs are generated using a combination of the network address
and current time at themoment and placeit was generated. Assuming that network addressesare uniqueand
that time never runs backwards, this guarantees that UUIDsredlly are unique. Furthermore, the UUID ge-
nerator must have accessto an I P network address. An example of aUUID:

c842bf 06- d202- 0000- 0282- 5¢410d000000

However, using UUIDsincreases memory consumption and loading and saving times. Table 3.3 shows,
for the same system as discussed in Table 3.1, the file sizeswhen using UUIDs and plain integersin XMI
files. We see that thefile sizeincreases up to 9% when using UUIDs. Similarly the working memory usage
of the same modelsin our reengineering environment (Moose, see CHAPTER 5) increased by up to 13%.
For Smalltalk systemswe measured memory usage increases of up to 40%. Thisis probably dueto the fact

1. We usetheword ‘ meaningless’ to indicate that the value of theidentifier does not have any meaning in itself.

A Design Space for Reengineering Tool Infrastructures 31

that our Smalltalk parser extractsalot more detailed information (such asarguments) than the parser we use
for Java.

Swing 1.3.0 XMI file MB (zipped MB) XMI + UUID MB (zipped MB)
classes, methods, attributes 21.8 (0.90) 23.6 (0.93) (+ 8.3 %)
+ invocations and accesses 28.8 (1.25) 31.2 (1.30) (+ 8.3 %)
+ formal parameters 39.7 (1.67) 43.1 (1.75) (+ 8.6 %)

Table 3.3: Textual representation of Swing 1.3.0 without and with UUIDs

The complexity and resources needed to compute and store these identifiers might however be an over-
kill. Morelightweight approaches can be designed, but will rely on proprietary conventions.

3.10.2 Unique naming scheme

Another way of referencing elementsisto reference them by their intrinsic unique names. For instance, the
unique name of the class Box in the Java Swing library would have the unique namej avax. swi ng. Box,
which is known to be unique within a Java system, but not over time or different versions. Using unique
names asidentifier hasthe advantage that reference information is human readable. A second advantageis
that every time amodel is generated from a certain system, exactly the same unique namewill be used in-
stead of generating acompletely new identifier or having to take earlier assignedidentifiersinto account. A
problem is that model elements that do no have an intrinsic unique name such as relations, models and
groups, do not easily fit this scheme:

Relations. Relationscan only partly beidentified with unique names. A simple exampleiswhen class
A inheritsfrom classB, aunique namefor therelationship couldbeA. | nheri t sFrom B. However, this
only worksfor one-to-one relationships and not for any relationship with multiple targets. For instance,
the two invocation relationships resulting from a method that invokes another method twice, would re-
sult in two elements with the same name.

Multiple models. A unigue naming schemein the context of multiple models needsto take the model
into account, especialy if thedifferent modelsmodel the same system (for instance, multipleversions of
this system). In such a case the model should somehow be integrated in the unigue name of an element.
We could, for instance, prepend amodel name to the intrinsic unique name. For example, the Box class
intheJava2 Swinglibrary inversion 1.3.0 could get theuniqguenameJava2v130. j avax. swi ng. Box.
Note that uniqueness of model names depends on convention rather than on alanguage-induced rule.

Grouping. A problem similar to model names existsfor groupings. Although agrouping typically has
anameto describe what is grouped, the uniqueness of those namesis not intrinsic and therefore cannot
be guaranteed.

It isimportant to normalize unique names. The unique naming scheme should be clearly defined so that
unigue names are always the same. An example rule isthat unnecessary spaces are alwaysremoved. If the
metamodel supports different languages, unique names can either be closeto every supported language, or
a common scheme can be defined for all supported languages. The latter requires more thought about the
naming scheme, but allows tools that are independent of the supported languages deal with one naming
schemeonly.

32 Entity Reference Axis

3.10.3 Analysis

Unique names and meaningless identifiers have clear properties. Names can be used to reference entities
with an intrinsic unique name, meaningless identifiers can be used to reference anything. The following
example, expressed in simplified CDIF, shows the class Point, which is referred to by name in the
HasMethod relationship.

(cl ass
(name Point))
(et hod
(nane intersect))
(A ass. HasMet hod. Entity Point intersect)

The same example using meaninglessidentifiers:

(class 111
(nare Point))
(nethod 112
(name intersect))
(A ass. HasMet hod. Entity 111 112)

Another important difference is that unique names are reproducible and other identifiers not. Different
tools generate different identifiers, which hampers incremental loading, because two model entities from
different sourcesthat represent the same code element cannot be linked through the unique identifiers.

A solution that leveragesthe best of both worldsisthefollowing, isto useintrinsic unique namesfor the
named entities and meaningless unique identifiers for the non-named entities. Such a combination pre-
serves the advantages of naming and is able to uniquely identify any non-named element aswell. Clearly,
complexity increases when the two separate schemes are mixed.

A similar solution is to provide both solutions and use them where appropriate without mixing them.
However, when an entity isreferencablein two different ways, incremental loading isnot possible. If acer-
tain entity isnot in the current model, it cannot be determined that areference by name and by uniqueiden-
tifier are actually supposed to reference the same entity.

Comparison with industry standards

CDIF [Com94] and XMI [OMG98] promote an entity referencing schemathat isinternal to the file. As
shown by the code example in section 3.10.3, CDIF relationships use an identifier that is associated to the
entity inthe context of only onesinglefile. However, if entitiesneed to be ableto bereferenced over multiple
files, the referencing scheme needs to be unique over thosefiles, if incremental 1oading isto be supported.
Onesolutionisto use UUIDs. Yet another approach istaken by XLink [DMOQ0], astandard for linking be-
tween elementsin different XML files. It links elementsin different resources by explicitly mentioning the
resource the element is defined in. Thisimpliesthat the exact location of the information must be known.
Theidentifierswe have described, uniquely identify model elementswithin their scope, independent of the
location of thefile or database theinformation isstored in.

A Design Space for Reengineering Tool Infrastructures 33

3.11 Metametamodeling Axis

M etametamodeling i sabout making therepresentation of the metamodel explicit. Hence, ametametamodel
allows oneto reason about, and possibly change the metamodel. Properties of ametamodel such as how it
can be extended, can be defined using such an explicit metalayer. Two options need consideration:

» Doyou want to use an explicit metametamodel ? An explicit metametamodel resultsin a standard
way of describing metamodels. This description can be used for the following capabilities:

- identify metamodels, i.e., are different tools compliant to the same or compatible metamodels?
This issue can be solved simply by providing meta-information representing the metamodel.

- auto-adapt platform, i.e., tools can use an explicit metamodel description to customize them-
selves. For example, a user interface can show, or a saver can store, any information according
to any metamodel, because it knows the structure of the metamodel through the metametamodel.

- create metamodels, i.e., meta-tools use the metamodel description to create metamodels them-
selves. Thisrequires an approach where the metamodel description isinterpreted to create appro-
priate metamodel representation. For instance, it is possible to interpret UML description in
MOF to create UML compliant tools.

» Doyou want use a standard metamodel? A standard metametamodel such asthe MOF [OMG97]
has the advantage that you do not have to build it yourself. Furthermore, it allows you to use com-
pliant tools and other metamodels that adhere to the standard. However, when you build your own
metametamodel you have full control over its capabilities, for instance, that it supports all the ex-
tensibility mechanisms you need.

Dependencies

Extensibility. The extensibility capabilities of ametamodel are determined by its metametamodel. A stan-
dard metametamodel might restrict you too much.

Implementation issues

Theimplementation issuesinclude the storage of model information and the use of explicit metamodel de-
scriptions.

Model Information. To precisely identify amodel, information such astheimplementation language, the
tool that extracted theinformation, the date of creation of themodel and the metamodel to which the model
conforms. Such model information can be represented in two different ways:

 inthe metamodel. For example, headers of CDIF exchange files include such akind of information
in addition to the complete description of the metamodel itself described in terms of the CDIF me-
tametamodel [Com94].

» asacommon entity of the model. This approach is simpler as the model information is trested as
any model element. It is aso independent of any metametamodel. However, because the model in-
formation is information about the model rather than representing a source code element, tools
sometimes need to be aware of the existence of such a specific entity.

Metamodel creation and tool adaptation. Using ametametamodel to generate model isstraightfor-
ward aslong asit dealswith the structural aspect of the metamodel. The specification of entity behaviour,

34 Conclusion

however, for instance, how to compute all inherited methods of a certain class, additionally requiresalan-
guagethat isableto formally express behaviour in terms of the metamodel .

3.12 Conclusion

Inthischapter we have defined adesign spacefor theinfrastructural aspectsof metamodel sand repositories
for reengineering environments. The space spans multiple, non-orthogonal axes, which are either directly
related to requirementsfor arepository (the requirement axes) or they are pureimplementation aspects (the
implementation axes). The design space makes explicit the optionsfor every axis, thetrade-off between the
different options and the dependencies between the axes.

The next chapter describes FAMIX, alanguage-independent metamodel for modelling object-oriented
software. Wediscusstheinfrastructural design choicesfor FAMIX according to the axesof the design space
of this chapter. As such the design space providesthe infrastructural framework in which FAMIX must be
viewed. At the sametime FAMIX validatesthe suitability of the design spaceto describeitsinfrastructural

aspects.

CHAPTER 4

FAMIX, a Language-Independent
Metamodel for Modeling Object-Oriented
Software

This chapter introduces FAMIX, ametamodel for modelling object-oriented software. Themain goal isto
support reengineering activitiesinalanguage-independent way. Theaimisnot to cover all aspectsof all lan-
guages, but rather to capture the common features that we need for reengineering activities, so tools can be
easily reused for multipletarget languages.

This chapter gives an overview of the contents of the FAMIX metamodel, as well as how and why the
informationismodelled asit is. Firstly, the chapter discusses the organisation of theinformation. The me-
tamodel consistsof alanguage-independent core. L anguage mappings describe how language-specific con-
structs are mapped to the core model and how the core model is extended with language-specific informa-
tion. Secondly, the chapter places FAMIX in the design space presented in chapter 3 by discussing the
design choices we have made for theinfrastructural issuesthat form this design space. The complete spec-
ification of the model can befound in appendix B.

One might wonder why we came up with our own model in the first place. One reason isthat when we
started we did not find any model that adequately modelled object-oriented source codein the way we nee-
ded it to. As section 2.3.2 shows, several source code models exist, but they are either focused on another
language paradigm [Kos0Q], or focus on one language only [CGK 98], or they are aimed at multiple lan-
guages but do not have explicit definitions of what is modelled and how the different languages map to the
language-independent part of the model. We have also looked at models such as Unified Modelling Lan-
guage (UML) [OMG99]. However, they are directed towards object-oriented analysis and design rather
than source code representation. Section 4.8 compares the information FAMIX models to UML and dis-
cussesin-depth why UML currently does not fit our needs.

36 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

We start with apresentation of the requirementsthe metamodel should fulfil. Following we givean over-
view of what information isrepresented in the metamodel and how thisinformation is modelled. Wefinish
with adiscussion why we did not use UML and aconclusion.

4.1 Requirements

This section introduces the requirements for the FAMIX metamodel. They are strongly influenced by the
requirements of the FAMOOS project under which the major part of this work has been realised [DD99)].
The FAMOOS project had multiple partnerswith large object-oriented legacy systemsin different languag-
es. Furthermore, thetool s of the different partners should be ableto interchangeinformation. Thisbringsus
to thefollowing list of requirements:

» Support for multiple languages. The metamodel must support multiple object-oriented implemen-
tation languages. It must abstract from those languages to alow tools to be used without adaptation
for the different supported languages. In particular the metamodel needs to support C++, Java,
Smalltalk and Ada.

» SQupport for the whole reengineering lifecycle. The metamodel is targeted at software analysis and
reengineering. It should, therefore, contain relevant information for tasks such as metrics computa-
tion, grouping and reorganisation operations.

» Extensibility. The metamodel needs to be extensible to deal with language extensions, tool-specific
extensions and other information that is not represented in the core metamodel that is considered
useful. Furthermore, it is required that any information about a model element can be attached to it
to store insights gained during exploration.

» Scalability. The metamodel needs to support multi-million line software systems.

 Information exchange. The metamodel must support textual information exchange. For the format
human readability and machine processability aspects aswell asindustry standards support need to
be addressed.

4.2 Overview of the FAMIX core

The FAMIX metamodel models multiple object-oriented languages, i.e., in terms of the design space of
chapter 3, it supports multiple languages within one paradigm. It defines a language-independent core,
which allows tools to be reusable without adaptation over the supported languages. How languages are
mapped to the core and which language specifics can be stored, is specified in language extensions. This
section presents the core part of FAMIX. The language extensions are discussed in detail in section 4.4.

The metamodel represents source code at the programentity level (see also section 3.3). First of al, this
level of information is sufficient for the analysis tasks we want to support. The information allows one to
performstructural analysisand dependency analysis. It supports metrics computation and heuristics. It does
not support control flow analysis and the regeneration of source code from the model. We store, however,
thelocation of the source code, allowing oneto obtain additional information from the source codeitself. A
second reason to choose the program entity level isthat moredetailed information increasesthe size of mo-
dels considerably which hampers scalability. Thirdly, the program entity level enablesto abstract from lan-
guage-specific details and as such allowsfor aclean language-independent metamodel.

Figure 4.1 shows the core entities and relations. All basic elements of an object-oriented languages are
present (Class, Method, Attribute). Furthermore, FAMIX model s dependency information, such as method

Overview of the FAMIX core

37

invocations (which method invokes which method) and attribute accesses (which method accesses which
attribute). Thisisimportant information for, for instance, dependency and impact analysis[CGK 98].

superclass

Class

‘ subclass

belongsToClass
InheritanceDefinition

belongsToClass

invokedBy C Method Attribute
candidates accessedln accesses
Invocation Access

Figure 4.1 The core of the FAMIX model

The complete metamodel isnot restricted to the above el ements. Additionally it also modelsdifferent kinds
of variables, functions and arguments. We give here a short description of these elements. The exact speci-
fication can be found in appendix B. They are modelled in an object-oriented hierarchy, which isshownin

Figure4.2.

Function - a definition of behaviour with global scope
LocaVariable - avariable local to a method or function
GlobaVariable - avariable with global scope

ImplicitVariable - variables that are not explicitly defined such as self, this and super

Formal Parameter - a parameter of a method or function

AccessArgument - an argument of an invocation that constitutes a simple variable access
ExpressionArgument - an argument of an invocation which is an expression

Package - a scoping mechanism

Model - ameta entity containing information about amodel such as creation time

Functions and global variable are modelled because they exist in several object-oriented languages we
want to cover such as C++ and Smalltalk. This effectively makes FAMIX support hybrid object-oriented

and procedural languages.

FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

38

J9joweledjew.o

a|qeueA[e20]

sse|n

abeyoed

9|qeliep|eqo|D a|qeLreANol|duw) uoljouny
— 9Inqupy poylsn
uoned0AU| 7
vV
sse00y uonuegesUBLIBYU| Anpuzeamonns Apuzeinoineyag

b S

T/

uonelsossy

I9PON

Aypuz

Apadougd

—> p9lqo

juawnBiyuoissaidxy

jJuawnbiyssaosoy

N

jyuswnbiy

Figure 4.2 The complete hierarchy of the FAMIX model

Extensibility 39

For every model element the metamodel definesaset of attributes. A Method, for instance, hasattributes
suchassi gnat ur e andi sAbst r act . Figure4.3 showsthe Method entity inthe FAMIX inheritance hier-
archy.

Object

uid (): Name
sourcheAnchor (): Qualifier
commentsAt (): Name

/

Entity

name (): Qualifier
uniqueName (): Name

<

BehaviouralEntity

accessControlQualifier (): Qualifier
signature (): Qualifier
isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

4

Method

belongsToClass (): Name
hasClassScope (): Boolean
isAbstract (): Boolean
isConstructor (): Boolean

Figure 4.3 The Method entity in the FAMIX metamodel hierarchy

Thesemanticsarewell defined: for every entity and attributeit isdescribed what it i ssupposed to model,
what its value can be and how it should be interpreted. For example, thei sAbst r act attribute of method
isdescribesasfollows:

hasCl assScope: Bool ean; opti onal

Is a predicate telling whether the method has class scope (i.e., invoked on the class) or instance
scope (i.e., invoked on an instance of that class). For example, static methodsin C++ and Java have
a hasClassScope attribute set to true.

The description of all attributes can be found in appendix B.

4.3 Extensibility

Before going into the details of the language extensions, we present the ways in which the FAMIX meta-
model can be extended:

40 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

» New model elements. An extension can define new model elements. Examples are the Include rela-
tionship for the C++ extension [Bar99] and the Measurement element for the metrics extension.

» New attributesto existing model elements. Existing elements can be extend to allow oneto store ad-
ditional information. An exampleisthei sFi nal attribute that the Java extension adds to the defi-
nition of the Method element (see appendix D).

Section 3.6 discusses the advantages and disadvantages of class extension. One of the problems we
have encountered is that not al standard metametamodel s support class extension. In the context of
textual information exchange we have worked with CDIF [Com94] and XMI [OMG98]. The CDIF
metametamodel supports class extensions, the XMI metametamodel, i.e., the MOF, does not. This
means that class extensions cannot be expressed in XMI and exchanged with generic XMI compli-
ant tools.

» Annotations. Any model element can be annotated by attaching a Property to it. Thisis shown in
Figure 4.4 by the Object class, which can have zero or more Properties attached to it.

Property

Object name (): String

value (): Name

Figure 4.4 FAMIX model elements can be annotated with Properties

4.4 Multiple language support

The FAMIX metamodel supports multiple object-oriented languages. This section describesthe design de-
cisionsthat makeit easier to support morerather than one specific language. Afterwardswe describetheac-
tual language extensions.

4.4.1 General multi-language design decisions

Thefollowing decisionsin the design of FAMIX arerelevant for the support of multiple languages.

Multiple inheritance. FAMIX supports multiple inheritance. Thisallows usto deal with single inheri-
tance languages such as Smalltalk, but a so with multiple inheritance languages such as C++. Java alsofits
this scheme by interpreting Javainterfaces as abstract classes and interface implementation as commonin-
heritance.

Statically typed and dynamically typed languages. Static type information isimportant to store,
becauseit reveal simportant dependencies. If theinformation isnot known, whichisnormally the case with
dynamically typed languages such as Smalltalk, the information is left empty. For instance, Figure 4.3
showsthat Methodinheritsthedec! ar edType attribute. It isused to storethe statically declared returntype
for methods, like Point for the method declaration Poi nt get Poi nt () {...} inJava. Itisleft empty for
Smalltalk methods.

Another example of supporting both dynamic and static typing is the candidate methods of an invoca-
tion. Figure 4.5 shows the Invocation entity. The candi dat es attribute stores the methods possibly in-
voked by thisinvocation. In Smalltalk, without static type information, the candidates are all methodsin a

Multiple language support 41

system that have the signature as stored in thei nvokes attribute®. In Javathe static typeinformation redu-
ces the possibly invoked methods to a single inheritance hierarchy or interface implementation hierarchy.
By storing the candidatesindependent of theway theinformationiscollected, toolscan usetheinformation
independent if it concernsadynamically or statically typed language.

I nvocation

invokedBy (): Name
invokes (): Qualifier
base (): Name
receivingClass (): Name
candidatesAt (): Name

Figure 4.5 The FAMIX Invocation

Pointer, array and other non-Class types. FAMIX does not explicitly model pointer, primitive ar-
ray and other primitive types. The Behavioural Entity classin Figure 4.3 illustrates how FAMIX dealswith
such types. The class has two attributes decl ar edRet ur nType and decl ar edRet ur nd ass. decl a-

r edRet ur nType stores the complete type asit is declared in the source code. This can be aregular type
such asaclass, but also primitivetypes, e.g., i nt inJava, or aprimitive array type, e.g., Poi nt [] inJava,
or apointer type, e.g., Poi nt * inC++. Thedecl ar edRet ur nd ass attribute, however, always storesthe
classthatisimplicitinthedecl ar edRet ur nType and that existsasan entity inthemodel. Table4.1 shows
the declared type and declared class for the examples given before. The advantage of this approach isthat
the model does not need to model all complex types of the separate languages. At the same time the type
informationisnot lost and thedependency informationwith classesin themodel isretained. A disadvantage
isthat toolsthat want to use the complex typeinformation, need to extract it themselves from the declared

type.

source code declared (return)type declared (return)class
Poi nt Point Point
Poi nt [] Point[] Point
Poi nt * Point* Point
i nt int

Table 4.1: Declared type and declared class in FAMIX

4.4.2 Language mappings and extensions

Animportant part of the usability of the metamodel depends on how the actual programming languagesare
mapped to language-independent constructs. The goal isto treat as many conceptsof different languagesas
possible uniformly. On the other hand, we store information about the mapping, because the semantic dif-
ference of asimilar concept in different languages might be of interest for certain tools. Figure 4.6 shows

1. There are three specia cases where the set of candidate methods can be reduced, namely if the receiver of
theinvocationissel f, super or aclassname.

42 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

the Java mapping and extension to the Class entity. The common definition of Classincludesthe attributes
i sAbst ract and bel ongsToPackage. The extension specifies additional properties specific to a Java
class, namely if itisdeclared public or final. Furthermore, the Javainterface concept ismapped toaFAMI X
Classaswell, withi si nterface andi sAbstract setto true. Language-independent tools just use the
common interface and tool s that want to use the language-specific information, haveit available.

common for all Class

languages
\ [isAbstract (): Boolean

| belongsToPackage (): Name
[isInterface (): Boolean
isPublic (): Boolean

lisFinal (): Boolean

Java-specific extension

e —

Figure 4.6 The Java mapping and extension to Class

Like in the core model the extensions describe in detail what the model elements and their attributes
mean. Furthermore, for the common attributes the interpretation for the specific language is described. An
exampleisthei sAbstract attribute:

i sAbstract

In Java a class is abstract if the class is declared abstract. This is obligatory if one or more of its
methods are abstract. Even if the class does not contain any abstract methods, it can be declared ab-
stract, preventing the class from being instantiated. |nterfaces are always abstract, but do not have
to be explicitly declared as such.

Extensions can al so define new model elements. The TypeCast entity for Javais an example (see Figure
4.7).

TypeCast
Java-specific extension

belongsToBehaviour (): Name
fromType (): Name
toType (): Name

Figure 4.7 The Java TypeCast entity

Following we summarize the mappingsthat are most important. The complete specification of the sepa-
rate mappings can be found, for Smalltalk in appendix C, for Javain appendix D, for Adain [Neb99] and
for C++in[Bar99].

Classes, Interfaces, Metaclasses and Structs. Classesin the different languages are modelled as
classesin FAMIX. Also Javainterfaces, asdiscussed in the example above, Smalltalk metaclassesand C++
structs are mapped to classes. A Javainterface is modelled as an abstract class that only contains abstract
method definitions and final attributes. An implicit Smalltalk metaclass is modelled as an explicit class.
Consequently, Smalltalk class methods are modelled asinstance methods of the FAMIX classinstance re-
presenting the metaclass. In Smalltalk there exist two kinds of classvariables. Oneisthe common classva-
riablewhichismodelled asan attribute with class scope. The second isthe classinstancevariable, whichis

Reference Schema 43

modelled asinstance scope attribute of the metaclass. C++ structsare modelled asclassesaswell. They dif-
fer only from C++ classesin that their members have default publicinstead of private visibility [Bar99].

Methods, Constructors and Destructors. Apart from common methods the Method entity covers
Javaand C++ constructors as well. Specia rules apply, however, that tools might need to be aware of . For
example, aconstructor hasto have the same name asits class, it does not have areturn type, and the syntax
toinvokeit isdifferent from anorma method invocation. In Smalltalk constructors are common methods.
A method can beinterpreted to be a constructor if it isaclass method returning an instance of its defining
class.

Thefact if amethod representsaconstructor or adestructor isstoredinthei sConst r uct or , respective-
lyi sDestructor attribute.

Global variables. FAMIX defines a Global Variable entity. Smalltalk and C++ have global variables
where Javadoesnot. In Smalltalk classesare global variablesaswell. Consequently, attributesin Smalltalk
cannot havethe same name asaclass(or any other global variable), because thismight hidethese globalsin
thescopeof thenew attribute. In Javatypesand attribute namesdo not interfere. In FAMIX wemodel Small-
talk classes as Classes and not as Global Variables.

Abstractness. For Javaand C++, abstractnessis straightforward to determine asaclass or method is ex-
plicitly tagged withthe* abstract’ keyword respectively aspurevirtual. In Smalltalk abstractnessisimplicit.
A method isabstract when it invokesthe method subcl assResponsi bi | i t y. Thismethod throwsan ex-
ception at runtime with the message that this method should not be called but a subclass method instead.
Similarly aSmalltalk classcan beinterpreted to be abstract if it hasone or more abstract methods. However,
itisstill possibletoinstantiatethisclass. Although abstractnessisimplicit for Smalltalk methods and class-
es, we explicitly model them asabstract in FAMIX.

4.5 Reference Schema

InFAMIX, model elements can bereferenced in two ways. Firstly, every model element hasauniqueiden-
tifier (seethe attribute ui d in Object in Figure 4.2 and Figure 4.3). Secondly, all elementsthat have anin-
trinsic unique name, i.e, all instances of Entity and its subclasses, can be uniquely identified by that name
(seetheuni queNane attributein Entity in Figure 4.2 and Figure 4.3). The advantages and di sadvantages of
naming and uniqueidentification are extensively discussed in section 3.10.

FAMIX uses a unique naming scheme that is normalized over multiple languages. It usesthe intrinsic
unigue name of aprogram element. It ensuresthat names generated by different toolsarethe same and tools
need to deal with only one naming schema. For example, amethod name must ook like

package: : subpackage: : cl assnane. met hodnane(par al, par a2)
Thedetails of the naming scheme can befound in section 2.1.2 of appendix B.

In FAMIX, we reference elements as much as possible by their unique name rather than their ui d, be-
cause the advantages of human readability and the fact that multipletoolsindependently generate the same
unique name. An exampleisthebel ongsTod ass attribute of Method (see Figure 4.3). It will alwaysre-
ference a named element, namely a Class, and thus the unique name of that element is used rather than an
uniqueidentifier.

44 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

Non-named el ements such asrel ations can beidentified using uniqueidentifiers. Basically any identifier
can beused aslong asit isuniquein the scope that you need. We have experimented with plain integersand
Universal Unique Identifiers (UUIDs) [OG97]. Plain integers are only locally valid. UUIDs allow us to
uniquely identify model elements over multiple models and reference model elements over different stor-
age media. They increase of the size of exchange files up to 9% (see Table 3.3) compared to using plainin-
tegers. Wefind thisincrease aminor detriment compared to the advantage of universal uniquenesst.

We have a so experimented with using a‘ best of both worlds' approach where we use the unique name
asuniqueidentifier for the named entitiesand only use non-intrinsicidentifiersfor the non-named elements.
For example, agroup referencing both named and non-named elements would then contain names for the
named entities and meaninglessidentifiers for non-named entities. Such amixed scheme keeps the advan-
tages of using names for the named entities, but allows other elements to be referenced anyway. Further-
more, it solves the above incremental loading problem. Disadvantages are the increased complexity,
because schemaswith different propertiesare mixed. Wefind the advantages outwei ghting the di sadvantag-
es.

Generally unique names together with UUIDs support incremental loading and grouping because the
identification isvalid over multiple databases or exchangefiles. However, when an entity isreferencablein
two different ways, incremental loading is not possible. If an entity is not in the current model, it cannot be
determined that a reference by name and by unique identifier are actually supposed to reference the same
entity.

Generally uniqueidentifiers support grouping of al elements. The FAMIX referencing schemadoes not
take multiple models into account. Although the UUID isvalid over multiple models as well, the unique
naming schema does not take the model an entity belongsto, into account.

4.6 Support for information Exchange

FAMIX usesthe chunk format described in section 3.9. Thisimpliesthat the entitiesare not nested into their
scoping entity and simplerelationshipsare stored as attributes of theentity itislinked to. Theformat ischo-
sen, because of its human readability and support for incremental loading (the latter together with the
FAMIX entity reference schema discussed in section 4.5). Figure 4.8 shows an example using the CDIF
standard format [Com94].

Thechunk format definesitsownway of storing relationshipsrather than using an existing standard such
as XMI and how it encodes relationships. In the chunk format relationships are represented either as at-
tributes of model elements for containment relationships (e.g., thebel ongsTod ass attribute of Method
in the examplein Figure 4.8), or as explicit entities for the other, mostly attributed, relationships (e.g., the
InheritanceDefinition entity in Figure 4.8). Thereis no specific relationship kind of elements.

Sofar we have exchanged information with the CDIF [Com94] and XM [OMG98] standard. Their rela-
tionship representations are not expressive enough to cover our needs. Both XMI and CDIF reference ele-

1. Actually, the bigger problem we encountered was in the implementation of the Moose Reengineering Envi-
ronment (see chapter 5). Our current implementation of UUID creation is very resource intensive causing con-
siderable delays in load and save times. However, we have not yet seriously attempted to optimiseiit.

Support for information Exchange

45

(A ass FML
(ui d "c842bf 06- d202- 0000- 0282- 5¢410d000000")
(nanme "W dget")
(uni queNane "gui::Wdget")
(i sAbstract -FALSE-)
(sourceAnchor #[file "factory.h" start 260 end 653|]#)

(Met hod FMR
(ui d "c842bf 06- d202- 0000- 0282- 5c410d000001")
(name "W dget")
(uni queNane "gui::Wdget.Wdget()")
(signature "Wdget()")
(bel ongsToCl ass "gui::Wdget")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControl Qualifier "public")
(hasC assScope - FALSE-)
(i sAbstract -FALSE-)
(decl aredRet urnType "")
(decl aredReturnC ass "")

(I'nheritanceDefinition FMB
(ui d "c842bf 06- d202- 0000- 0282- 5¢410d000002")
(subcl ass "gui::ScrollBar")
(superclass "gui::Wdget")
(accessControl Qualifier "public")
(i ndex 1)

(Property FMA
(ui d "c842bf 06- d202- 0000- 0282- 5c410d000003")
(nanme "LCC")
(val ue "56")
(bel ongsTol D "c842bf 06- d202- 0000- 0282- 5c410d000000")

)
Figure 4.8 FAMIX information in CDIF format

46 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

ments only locally to afilel. For instance, the belongsToClass relation as a CDIF relation rather than an
attribute of Method looks like:

(Met hod. bel ongsTod ass. d ass REL1 FM2 FML)

(with REL 3, FM 1 and FM2 being local CDIF references). Both standards, however, providewaysto re-
present entities with attributes, and thus can we encode our relationshipslike that.

4.7 Metametamodeling

This section discusses the metametamodeling issues introduced in section 3.11. FAMIX does not have an
explicit metametamodel . Its metametamodel isan implicit entity-relationship model. In the context of tex-
tual information exchangethe metamodel has been described using the CDIF metametamodel andthe M OF
of XMI. Both metametamodel s do not have the expressive power needed to describe FAMIX and its exten-
sionsthey way wewant it. For instance, XMI does not support class extensions as discussed in section 4.3.
Furthermore, both CDIFand XMI only support entity referenceslocal to afile. By defining our own relation
entities and accompanying reference schema, we go around the | atter problem (see section 4.6).

For metametamodel -based tasks such astool generation either the CDIF or XM description can be used.
In our FAMIX-based tool environment we are also experimenting with an explicit metamodel description
for the same purpose.

To storeinformation about the model such asitscreationtime, FAMIX containsan explicit Model entity
(seeFigure 4.9). The choiceto go with an explicit entity is motivated by the fact that it firstly explicitly de-
fineswhat information can be stored about amodel in away that isindependent of any metametamodel or
information exchange standard.

Model

exporterName (): String
exporterVersion (): String
exporterDate (): String
exporterTime (): String
publisherName (): String
parsedSystemName (): String
extractionLevel (): String
sourceLanguage (): String
sourceDialect (): String

Figure 4.9 The Model entity in FAMIX

4.8 Why not UML?

The previous sections show how we model object-oriented software for the purpose of reengineering inthe
form of the FAMIX metamodel. We have also considered object-oriented analysis and design (OOAD)

1. XLink [DMOO0Q] is a standard that isintegrated in XM that allowsto link to entities ‘ somewhere else’ (as
specified with a Universal Resource Identifier (URI) [BLFIM98]). However, XLink stores a specific location,
where our referencing schema stores a unique name or identifier that is independent of the location of storage.

Why not UML? 47

models, but found them unfit to adequately model software for reengineering [DDT99]. In this section we
discusswhy, in particular looking at the Unified M odeling Language (UML) [OMG99], which isbecoming
thedefacto standard for software modeling. Therefore, it seemed aninteresting candidate for our purposes.

Primarily, the problemisthat UML isspecifically targeted towards OOA D and not at representing source
code as such. The specification itself says[OMG99]:

The UML, avisua modeling language, is not intended to be a visual program-
ming language, in the sense of having all the necessary visual and semantic sup-
port to replace programming languages. The UML is alanguage for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive
system, but it does draw the line as you move toward code.

The problemsareillustrated by Figure 4.10 and can be summarized asfollows:

1

2.

FAMIX

Class

Attribute Invocation

Aggregation

InheritanceDefinition = Generalization

Constraint Access

Method

Figure 4.10 Comparison UML with the FAMIX core model

The UML metamodel defines alarge number of concepts that are not relevant for an implemen-

tation modedl. ‘ Aggregation’ and ‘ Constraint’ are two examples but there are many more.

There is asubstantial overlap between the FAMIX core model and UML. With some flexibility

it is possible to map ‘InheritanceDefinition’ onto ‘Generalization' and ‘Class', ‘Method’ and

‘Attribute’ on their respective counterparts with the same name. However, non-standard inter-

pretation of concepts breaks the standard and thus tools that expect the standard interpretation.

For instance, inheritance in source code does not always represent a generalization relationship,

but can represent an implementation inheritance relationship.

Due to its OOAD focus, UML lacks some concepts that are necessary in order to adequately

model source code. Especially the Invocation and Access concepts are non-existent. There are

several waysto extend UML to incorporate these concepts. We present the most plausible solu-
tions:

- Use the Usage dependency to model Invocation and Access. A Usage dependency represents
“arelationship in which one element requires another element (or set of elements) for itsfull
implementation or operation” [OMG99]. A Usage can be stereotyped to represent a call,
which specifies that a source operation invokes atarget operation. However, an UML Opera-
tion specifies a specification of an operation rather than itsimplementation. The implementa-
tion of an operation is represented by a UML Method. The body of a method contains the in-

48 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

vocations we want to represent and consequently we need a dependency between a Method
and an Operation rather than between an Operation and an Operation to represent such an in-
vocation. It is not clear from the UML specification if the intention of a call is the same as
representing an FAMIX invocation. Furthermore, an additional dependency or stereotyped
dependency would be needed between Methods and Attributes to represent an attribute ac-
cess.

- Use CalAction to model Invocation and Access. However, because a CallAction is defined
in the context of instances, i.e. runtime entities, rather than classes a non-standard interpreta-
tion is needed for this solution to work.

- Stereotype Association to let it represent an Invocation or Access. However, an Assocation
normally associates to Classes, not two Methods or Methods and Attributes. Therefore, extra
information needs to be stored in an Assocation to reference the actual contained entities in-
volved.

- Usethe MOF, the OMG Meta Object Facility [OMGO00], the metametamodel of UML to cre-
ate to add new concepts to the language. However, thisis amajor UML extension which will
not be supported by most UML-aware toals.

So modeling Invocations and Accesses requires either minor extensions that need non-standard

interpretations, or major extensions that will break most tools. Apart from the harder Invocation

and Access, there are no straightforward ways to model entities such as Global Variables, Func-
tions and implementation ‘ details' such as LocalVariables either.

Concluding we can say that UML in stricto sensu is not sufficient for modelling source codefor the pur-
pose of reengineering.

4.9 Conclusion

This chapter describes the FAMIX metamodel, which model s object-oriented source code at the program
entity level. It isaimed at supporting tools for analysing and reorganising object-oriented legacy systems.
We have discussed the properties of the FAMIX model are discussed according the design space defined in
chapter 3. Thisissummarised in Table 4.2. Comparing to the requirementswe posed in section 4.1, we see
that FAMI X isdesigned to support multiplelanguages, extensibility and information exchange. Scalability
is addressed by the support of incremental loading and choosing the program entity level of detail rather
thanthe AST level of detail. From the reengineering tasks grouping isexplicitly supported. The support for
other taskscan only bevalidated by actually using themodel abasisfor toolsthat implement them. Multiple
modelsare not supported. Although the uniqueidentifiersallow oneto uniquely identify entitiesin multiple
models, the unique naming scheme does not incorporate model names. The StorageMedium Axisisnot dis-
cussed, becauseit isarepository implementation issue rather than ametamodel design issue.

The applicability of FAMIX asametamodel for reengineering has been validated in thefollowing ways.
A tool environment with arepository based on FAMI X hasbeenimplemented and used asabasisfor aseries
of reengineering tools. Thistool environment is called Moose and is described in chapter 5. Furthermore,
an in-depth analysis has been performed to evaluate the suitability of FAMIX to support refactoringson a
language-independent level. Refactorings strain the model to itslimitsin terms of the compl eteness of the
provided information and the ability to abstract from the modelled implementation languages. The refacto-
ring analysisis presented in chapter 6 and atool prototypeimplementing and validating thisanalysisispre-
sented in chapter 7.

Conclusion

49

Requirement Axes

Language/Paradigm Multiple object-oriented and object-oriented/procedural hybrid
languages. The model has alanguage independent core with explicit
language mappings and extensions.

Level of detail Program-entity level

Multiple models not supported

Grouping supported

Incremental loading supported

Extensibility

New entities can be added, new attributes to existing entities.
Annotations are supported on the metamodel level (an Object can have
Properties).

Implementation Axes

Entity Reference

A unigque naming scheme supports incremental loading and
referencing over multiple files. FAMIX also uses UUIDs to support
these features uniformly for all model elements, not only elements
with an intrinsic unique name.

Exchange Format Structure

The model is designed to support the chunk format. N-ary attributes
are supported, but its representation in the text files depends on the
standard used (CDIF hacked, because it does only support multi-
valued attributes for arestricted set of primitive types, XMI with
multiple instances of single-valued attributes)

Metametamodeling

Explicit definitions of FAMIX asinstance of the CDIF and the MOF
metametamodel exist that can be used for the purpose of tool
generation.

An explicit Model element stores context information about a model,
such as the date and time of extraction, the name of the extracted
system, its implementation language, etc. The Model element goes
around exchange format facilities such as CDIF headers to store this
kind of information

Table 4.2: FAMIX according to the design space from chapter 3

50

FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

CHAPTER 5

The Moose Reengineering Environment

Thischapter presentsthe M oose Reengineering Environment, alanguage-independent tool environment to
reengineer object-oriented systems. Itsrepository is based on the FAMIX metamodel presented in chapter
4. Apart from thetool environment itself, we present some of the toolswe have built on top of it and thein-
dustrial case studieswe have performed.

In thisthesis Moose functions as the validation of the ability of FAMIX to support multiple reenginee-
ring toolsthat work on real-world legacy systems. With real-world we mean that the tool s (and thusthe en-
vironment and thusthe FAM X -based repository) can deal with legacy software of industrial sizeand com-
plexity while providing theuser with useful results. In particul ar wediscusstherel evance of theinformation
FAMIX represents, itslanguage independence, aswell asits extensibility and information exchange prop-
erties.

Thechapter startswith aset of general requirementsfor areengineering environment based on literature
and experience. We then give an overview of the architecture of Moose and discussits built-in servicesfor
guerying and navigation model information, metrics computation, refactoring, source code parsing and
model exchange. For every service we discuss how well they are supported by FAMIX. Then weintroduce
some of thetoolsthat are built around it. First, thetool s show that M oose indeed facilitates concrete reengi-
neering tasks. Secondly, they validate M oose asatool environment: multipletoolsuse Moose astheir infor-
mation base and cooperation platform. After thetoolswe present theindustrial case studiesand adiscussion
to which extent Moose and FAMIX are up to the task. We review how well our requirements are met and
present some general insights we gained while building and applying Moose. We wrap up the resultsin a
conclusion.

5.1 Requirements for a Reengineering Environment

Based on our experiences and on the requirements reported in literature[MN97] [HEH*96] [Kaz96], these
are our main requirementsfor areengineering environment:

52

The Moose Reengineering Environment

Support for reengineering tasks. An obvious requirement which determines the focus of the tool.
It determines the information to store and which services the environment provides. Typical reengi-
neering tasks are metrics, grouping, visualisation and refactoring.

Extensible. An environment for reverse engineering and reengineering should be extensible in
many aspects:

- Therepository (and thus its underlying metamodel) should be able to represent and manipulate
entities other than the ones directly extracted from the source code (e.g., measurements, associa-
tions, relationships).

- Tosupport reengineering in the context of software evolution the environment should be able to
handle several source code models simultaneously.

- The environment should be able to use and combine information from various sources, for in-
stance the inclusion of tool-specific information such as runtime information, metric informa-
tion, graph layout information, etc.

- Theenvironment should be able to operate with external toolslike graph drawing tools, diagram-
mers and parsers.

Exploratory. The exploratory nature of reverse engineering and reengineering demandsthat areen-
gineering environment does not impose rigid sequences of activities. The environment should be
able to present the source code entities in many views, both textual and graphical, in little time. It
should be possible to perform several types of actions on the views the tools provide such as zoo-
ming, switching between different abstraction levels, deleting entities from views, grouping entities
into logical clusters, etc. The environment should also provide away to easily access and query the
entities contained in amodel. To minimize the distance between the representation of an entity and
the actual entity in the source code, an environment should provide every entity with adirect linkage
toits source code. A secondary requirement in this context isthe possibility to maintain ahistory of
all steps performed by the reengineer and preferably allow him to return to earlier statesin the reen-
gineering process.

Scalable. As legacy systems tend to be huge, an environment should be scalable in terms of the
number of entities being represented. Furthermore, it should provide meaningful information at any
level of granularity. An additional requirement in this context is the actua performance of such an
environment. It should be possible to handle alegacy system of any size without long latency times.
I nformation Exchange and Tool Integration. A reengineering effort is typically a cooperation of
agroup of specialised tools [DDT99]. Therefore, a reengineering environment needs to be able to
integrate with external tools, either by exchanging information or ideally by supporting runtimein-
tegration.

In addition to these general requirements, the context of the FAMOOS project [DD99], in which Moose

was originally devel oped, imposed the following requirement:

» Support for multiple object-oriented languages. This specific tool environment must support the

reengineering of software systems written in C++, Java, Adaand Smalltalk.

5.2 Architecture

This section presents the architecture of Moose (see Figure 5.1). The repository is based on the FAMIX
metamodel (see chapter 4). Consequently, the functionality of the services and import/export framework is

Architecture 53

Moose Tools

v Tool Integration Framework Moose
Services Repository (based on FAMIX)
and Model Management
| Navigation |
| Querying |
| Metrics |]
| Analysis | Ifél
| Grouping |
| Refactoring |
Import/Export Framework ﬁ
VisualWorks parser CDIF XMI :
—
f e
SNiFF+ parser
— —= 3
+ X ﬁb O
C,_—(P o S, (@ \z

Figure 5.1 Architecture of Moose

tailored towards and constraint by theinformation that is defined by FAMIX. Moose hasalayered architec-
ture. Therest of thissection givesan overview of thearchitecture. In subsequent sectionswediscussthedif-
ferent functionalitiesin detail including how well FAMIX supportsthem.

Repository and Model Management. The repository stores models of software systems. They con-
tain elementsrepresenting the software artifacts of thetarget system. Thisinformation can be analysed, ma-
nipulated and used to trigger code transformations by means of refactorings. Moose can maintain several
modelsin memory at the same time. The models are based on the FAMIX metamodel. Consequently the
stored information has the following properties. It is language independent. This allows tools that use the
repository to work without adaptation with legacy systems in different implementation languages (C++,
Java, Smalltalk, Ada). It isalso extensible. Thisallowstoolsto deal with information not anticipated by the
core metamodel. It also alows to store language-specific information (e.g., to analyse include hierarchies
in C++) or tool-specific information such as analysis results and layout information for graphs.

Import/Export Framework. Theimport/export framework provides support to import information into
and export information from the M oose repository. Import and export is possiblein the following ways:

« Inthe case of VisuaWorks Smalltalk — the language in which Moose is implemented! — sources
can be directly extracted viathe metamodel of the Smalltalk language or viathe built-in parser.

54 The Moose Reengineering Environment

 For other source languages M oose provides support for the import and export of CDIF [Com94] or
XMI [OMG98] files based on the FAMIX metamodel. CDIF and XMI are industry-standard inter-
change formats for exchanging models viafiles or streams. Over thisinterface Moose uses external
parsers for source languages other than VisualWorks Smalltalk. Currently C++, Java, Ada and se-
veral Smalltalk dialects other than VisualWorks are supported. Information exchange is discussed
in more detail in section 5.7

Services. Moose provides several servicesthat tools can useto perform their reengineering tasks:

» Querying and Navigation. Every element in amodel isrepresented by an object, which allowsdirect
interaction of elements, and consequently an easy way to query and navigate a model. The query
and navigation support is discussed in detail in section 5.3.

» Metricsand other Analysis support. Moose's analysis services are mostly implemented as operators
that can berun over amodel to compute additional information regarding the software elements. For
example, metrics can be computed and associated with the software entities. Section 5.4 provides
more details.

» Grouping. Moose has a grouping mechanism, with which it can group several model elementsinto
agroup entity. Thisisuseful to classify information or to provide views on the available information
at different levels of abstraction. More details can be found in section 5.5.

» Refactoring. The Moose Refactoring Engine implements language-independent refactorings. Sec-
tion 5.6 describes the engine in more detail.

Tools Layer and Tools Integration Framework. The functionality which is provided by Moose is
to be used by tools. Thisisrepresented by thetop layer of Figure 5.1. Tools can use the repository and ser-
vices of Moose and use the Tool s I ntegration Framework to find each other to interoperate. The Tools Inte-
gration Framework and examples of tools based on Moose are described in section 5.7.2.

Thefollowing sectionsdiscussthedifferent partsof Moosein moredetail. For every part wediscusshow
well itissupported by FAMIX.

5.3 Querying and Navigation

One of the challenges when dealing with large complex metamodel sis how to support their navigation and
facilitate easy accessto specific entities. In the following subsectionswe present two different ways of que-
rying and navigating source code modelsin Moose.

5.3.1 Programming Queries

The fact that the metamodel in Moose is fully object-oriented together with the facilities offered by the
Smalltalk environment, makesit simpleto directly query amodel in M oose. We show two examples of que-
ries, both of them in the Smalltalk language. The first query finds all the methods accessing the attribute
nane of theclassNode. Itfirst asksthemodel for the entity with nameNode. nane. From the accessinfor-
mation of thisattribute, it then collectsal Method entities that accessthe attribute.

1. Moose isimplemented in VisualWorks 3.0 with Envy 4.0.

Querying and Navigation 55

(MBEMbdel cur rent Model
enti tyWthNane: # Node. nane’)
accessedBy(ol | ect :
[:each | MBEMbdel current Model entityWthName: each accessedl n]

The second query collects all classes that have more than 10 descendants. It asks the current model for
all classesthat have a property called WNOC (the metric Weighted Number Of Children) that has avalue
higher than 10.

MBEMbdel current Model al | A assesSel ect :
[:each | (each hasPropertyNamed: #WNOO)
i fTrue: [(each get NamedPropertyAt: #WNOO) > 10]]

Moose Finder

TheMoose Finder [Ste01] isatool that allowsoneto express, compose and store queries based on different
criterialikeelement type, propertiesor relationships (see Figure 5.2). Such aquery canin turn be combined
with other queriesto express more complex ones. Furthermore, the Moose Finder supports multiplemodels
in the context of software evolution [LDS01].

#7Moose Query Browser 101 x|
File Options
BlockQuery [Wersiond] [:anObject | anObject isClass | =

Added classes [Version2, Yersion3]
MetricChangesQuery [NOC = diference O] [Wersion1 Yersion2]

ion2 | [output: 1] AND composed

Sibling becomes Subclass [Version2, Version3]
Moved Methods Candidates [output new model] [Version2, Version3]

=

a MSEDbjectCompositeAndQuery Add Query

outputindesx: 1

--> Queries Collection: Result in
- : & Explorer
OneSuperClassConditionQuery wrapped: [MSEMetricChangesCGuery] ~ [
MetricChangesQuery [NOC = difference 0] [Version1 “ersion2]) Cadetrawler
Run

Figure 5.2 Moose Finder

Apart from the query support itself — which isindependent of the metamodel — the M oose Finder de-
finesaset of standard queriesfor reengineering based on FAMIX. These queries have been found useful in
the context of system analysis, and validated on different industrial case studiesin different implementation
languages[Ste0l]. First, FAMIX providessufficient information to definethese queriesand secondly, it en-
ablesthe queriesto be applied without change on systemsin different languages.

56 The Moose Reengineering Environment

5.3.2 Querying and navigating using the Moose Explorer

Reengineering large systems brings up the problem of how to navigate large amounts of complex informa-
tion. Well-known solutions are code browsers, which support browsing and editing code and navigating a
system viasendersand implementersof methods. However, for reengineering these approaches are not suf-
ficient, because:

» Thenumber of potentially interesting entities and their interrelationshipsistoo large. A typical sys-
tem can have several hundreds of classes which contain in turn several thousands of methods, etc.

» All elements need to be navigable in a uniform way.
- Inthe context of reengineering no element is predominant. The relative importance of informa-
tion depends heavily on the current focus and task of the reengineer.
- In presence of an extensible metamodel, the navigation schema should take into account the fact
that new entities and rel ationships can be added and should be navigable as well.

Moose Explorer proposes a uniform way to represent model information (see Figure 5.3). All entities,
relationships and newly added entities can be browsed in the same way. From top to bottom, the first pane
representsacurrent set of selected entities. Herewe see all the classes of the current model. The bottom left
pane represents all the possible waysto access other entitiesfrom the currently selected one, e.g., in Figure
5.3 the attributes of the class Object. The resulting entities are displayed in the right bottom pane. ‘ Diving’
into the resulting entities puts them as the current selection in the top pane again, which allowsfor further
navigation through the model.

FAMIX doesnot support navigation very well. Theinformation isorganised according to the chunk for-
mat structure, because of theincremental |oading and informati on exchange propertiesof thisstructure (see

4% MoosE eXplorer - YisualWorks 10Ol x|

Explore Wiew Model Load all Fewvealon all Reveal oninputlist Edit Operations
I class (B73)

MNumber class =

Cl 'iEel::t

ObjectMernaory

ObjectMermaory_class

ObjectRegistry [

ObjectRegistry_class
ObjectTracer

[pre computation I attribute (0fy

attributes ﬂ Object. DependentsFields A
methods

inherited attributes
inherited methods
not invoked methods
implicit variable(s

i
e (=) ;ldl_axxr|nule _'I inSPECtl dive | anen |

explorer Hedit Bhrowse Bpyirar query

om0) 0) 00)l)

Figure 5.3 Moose Explorer

Metrics and other analysis support 57

section 3.9 and section 4.6 for details). Consequently, FAMIX only defines containment rel ationshipsfrom
acontained entity to itscontaining entity. Full navigation support, however, requiresthat all relationscan be
navigated in both directions. In Moose extrainformation is generated to enable the navigation of relation-
shipsin both directions. On top of that Moose Explorer defines navigabl e rel ationships that are not expli-
citly definedin FAMIX. These are mostly derived rel ationships such asthe methodsinherited by aclass.

5.4 Metrics and other analysis support

Moose includes a metrics engine for the computation and storage of metric measurements. It supports so
called Design Metrics, i.e., metricswhich are extracted from the source entities themselves[LK94]. These
metricsare used to assessthe sizeand in some casesthe quality and complexity of software. The currentim-
plementation of the metrics engine includes language-independent as well as language-specific metrics.
The language-independent metrics are computed based on the core FAMIX metamodel. Examples are the
number of methods or the number of attributes of class. Language-specific metrics are covered by the
FAMIX language extensions. Examplesfor language-specific metrics are the number of method categories
of aclassin Smalltalk or the number of private attributes of aclassin C++ or Java. FAMI X does not support
metricsthat need information about method bodies, e.g., the M ethod Compl exity metric, which requiresin-
formation about nested expressions[LK94].

Moose provides severa other information revealers. Examples are the annotation of entities with in-
ferred typeinformation or the computation of the possibl e targets polymorphic invocations.

5.5 Grouping

M oose supports grouping of any model element. Groups can be described by intention, i.e., by describing
thegroupintheform of aquery, and by extension, i.e., by enumerating the el ementsthegroup contains. Fur-
thermore, groups can be nested, i.e., agroup isamodel element itself. Thefollowing Smalltalk code shows
asimple example of how al classesinamodel can be grouped into groups representing the Smalltalk cate-
goriesthey belong to. For all classesin the current model, the category name is extracted from the class's
source anchor and the classis added to agroup that has the same name as the category name.

MBEMbdel current Model al | A assesDo:
[: aMbosed ass |
| group categoryNarne|
categoryNane := MSEWilities extract Cat egoryNane: aMbosed ass sour ceAnchor .
group : = MBEMbdel current Model enunerat ed@ oupWt hNarre: cat egor yNane.
group add: aMdosed ass]

Note that this code does not manipulate Smalltalk classes directly, but Moose representations of these
classes. Thisrepresentation abstracts from the implementation language. However, the exampleillustrates
that, whilethe core metamodel islanguageindependent, language-dependent information can beused. The
category concept from our example only existsin Smalltalk.

FAMIX doesnot support grouping explicitly, i.e., thereisno concept in FAMI X to captureand exchange
user-defined groups of model elements. The reference schema underlying FAMIX, however, supports
grouping by providing uniqueidentification for any element in amodel. Grouping over multiple modelsis
currently only supported if unique identifiers are used that are unique over multiple models. The unique
name of entitiesis only unique within models of one single system. See section 4.5 for details.

58 The Moose Reengineering Environment

5.6 Moose Refactoring Engine

The Moose Refactoring Engineisthe part of Moose that takes care of behaviour preserving code transfor-
mations. It providessupport for thefifteenlow-level refactoringsthat are described in chapter 6. Theengine
usesthe Mooserepository toretrievetheinformation required to analyse what code needsto be changed and
to check the preconditions. Only the final physical code transformations are performed directly on the
source code. They cannot be applied on the language-independent model level, because the FAMIX meta-
model, and thus Moose's repository, does not contain enough information to reproduce source code. For
these physical code transformations the refactoring engine uses so-called code transfor mation front-ends.
They only perform low-level code changes such as changing a single invocation in a certain method body.
Initscurrentimplementation two languagesare supported, namely Smalltalk and Java. The Smalltalk front-
end uses the Refactoring Browser [RBJ97] to change Smalltalk code. The Java front-end currently uses a
text-based approach based on regular expressions, which suffices to support al refactorings, but requires
that the source code adheresto certain layout rules.

The Moose Refactoring Engineis described in more detail in chapter 7. Inits function asin-depth vali-
dation of FAMI X intheareaof supporting language-independent refactoring, it requiresadetailed descrip-
tion of its inner workings and the experiments that have been performed with it, which goes beyond the
purpose of thissection.

5.7 Information Exchange and Tool Integration

Interoperability between reengineering toolsis supported in two ways. First, there is the possibility to ex-
changeinformation in text filesusing industry standard exchange formats. Second, toolswritten in Visual -
Works Smalltalk can interoperate with the Moose repository, its services and each other at runtime.

5.7.1 Information Exchange with CDIF and XMI

To exchange FAMI X -based information between different tool s, M oose providestwo textual formats. One
iSCDIF[Com94], anindustria standard for transferring models created with different tools. The main rea-
sonsfor adopting CDIF are, that itisan industry standard and hasastandard plaintext encoding which tack-
les the requirements of convenient querying and human readability. Next to that the CDIF framework
supportsthe extensibility we need to define our model and plug-ins. Asshownin Figure5.1 weuse CDIFto
import FAMIX-based information about systems written in Java, C++ and other languages. The informa-
tionisproduced by external parsers such as SNiFF+ [Tak96] [TD99]. Next to parserswe also haveintegra-
tionswith external environments such as the Nokia Reengineering Environment [DD99].

Recently, we have adopted XMI (XML Metadata Interchange [OMG98]) as a second storage and ex-
changeformat [Sch01] [Fre00]. XMI isan OMG standard for exchanging model sbased onthe MOF (Meta-
Object Facility [OMGO00]) and uses XML (Extensible Markup Language [BPSM98]) as the underlying
technology to savethisinformation. The main reason to support asecond standard isthat CDIF did not suc-
ceedin becoming awidely used standard. XM | seemsto stand abetter chance, especially becauseit isbased
on XML, whichislikely to becomethe defacto standard for transferring information between applications
and allowsthe use of XM L-based technologiessuch as XSL. Secondly, XM isbased onthe MOF, whichis
likely to become the de facto standard to describe metamodels and offers excellent integration to MOF-
based metamodels such asUML.

Information Exchange and Tool Integration 59

A third format we plan to support is the Graph eX change Language (GXL) [HWS00]. GXL isacolla
borative effort from several academic and industrial research institutesto come up with an exchange format
and aset of metamodel sfor information exchangefor reengineeringtools. We actively participateinthedis-
cussions and FAMIX isone of the input models that islooked at as a basis for the GXL standard program
entity level metamodel.

5.7.2 Tool Integration Framework and Tools

M oose serves as afoundation for other tools. It acts asthe central repository and provides services such as
metric computation and refactoringsto the reengineering tool s built on top of Moose. To enabletoolstoin-
teract with each other, Moose provides atool registration and lookup mechanism. At this point in timethe
following tools have been devel oped:

» CodeCrawler supports reverse engineering through the combination of metrics and visualization
[Lan99] [DDL99] (see Figure 5.4). Through simpl e visualisations which make extensive use of me-
trics, it enables the user to gain insights in large systems in a short time. CodeCrawler works best
when anew system isapproached for thefirst time and aquick insights are needed to get information
on how to proceed. CodeCrawler has been successfully tested on several industrial case studies.

[a] Conliirrains = Spslion Cump ity mE|
-E. - - h st e . - - - -H .
Bem: Claen CodeOrawier [<HIV TR0 550 <[WLOC 44T - B-: Oj- |

Ji". 5 ELI i v d
FRUT e

- o ¥

150 Blodan, 144 Cdgan | 0 Sabscied Hegden |“I

Figure 5.4 CodeCrawler

* Gaudi [RD99] combines dynamic with static information (see Figure 5.5). It supports an iterative
approach by creating views, which can be incrementally refined by extending and refining logical
gueries on a repository. Moose is used as a source of static information about the target software

60 The Moose Reengineering Environment

system. The dynamic information is generated independently from Moose. In any case, FAMIX
does not currently cover dynamic information.

(=TI

& s

Figure 5.5 Gaudi

e Supremo [KNO1] uses the Moose repository and the duplication detection tool Duploc [DRD99] to
put duplication in context. Figure 5.6 shows an example: the dark nodes in the class inheritance tree
represent the distribution of arecurring code sequence. The language independence of both Moose
and Duploc allows the approach to function for multiple languages.

Except for providing the foundation for our own tools, Moose also interfaces with external tools. Exam-
ples are the Nokia Reengineering Environment [DD99] and (Q)Soul [Wuy01].

Runtime tool integration

Some of the above tools, namely Moose Explorer, Moose Finder and CodeCrawler, use Moose'stool inte-
gration framework to find each other in order to use each others services. For instance, Moose Finder query
results can beviewed and further navigated using the Moose Explorer. Theinteractionisad hoc inthe sense
that thedifferent tool s need to know how tointeract with each specific other tool. A set of standardised com-
mon interfaces for common services could improve the pluggability of thetools.

5.8 Industrial Case Studies

The ability of Moose to support reengineering of object-oriented software in alanguage-independent way
has been validated by applying the environment and its tools on several industrial case studiest. The ap-
proach with these case studies was that ateam of reengineerswas set to work on theindustrial applications
ina“let's see what they can tell us about our system” way. There was no training of the system developers

Discussion 61

4% Supremo - Hierarchy Overview [_[O]X]
e A EESEEEE——————————————————..—. T

ttt
t

[] =
MSEAbstractLocalEntity

Figure 5.6 Supremo

with our tools. The common point about those experiences was that the subject systemswere of considera-
ble size and that there was a narrow time constraint to obtain results. The case studies consist of:

1. A very largelegacy system written in C++. The size of the system was 1.2 million lines of code
in more than 2300 classes. We had four days to obtain results.

2. A medium-sized system written in both C++ and Java. The system consisted of about 120,000
lines of code in about 400 classes. The time frame was again four days.

3. A largesystemwrittenin Smalltalk. The system consisted of about 600,000 lines of codein more
than 2500 classes. Thistime we had less than three days to obtain results.

Thefact that al the industrial case studies where under extreme time pressure lead us to mainly get an
understanding of the system and produce overviews[DDL 99]. We were also able to point out potential de-
sign problemsand on the smallest case study we even had thetimeto propose apossibleredesign of thesys-
tem. Taking the time constraints into account, we obtained very satisfying results. Most of the time, the
(ofteninitially sceptical) developerswere surprised to |earn some unknown aspects of their system. Onthe
other hand, they typically knew already about many of the problemswe found.

5.9 Discussion

This section discusses our experiences building Moose aswell asthe case studieswe have carried out with
it and thetoolswe havebuilt ontop of it. First we present some general observationswe collected during the

1. Some of the case studies have been carried out together with FAMOOS project partners [DD99] and their
tools. Most notably these are Duploc [DRD99], Goose [Ciu99], Audit-RE and the Nokia Reengineering Envi-
ronment [DD99].

62 The Moose Reengineering Environment

case studies. After that we discuss to which extent Moose fulfilsthe requirements we have set in the begin-
ning of this chapter.

5.9.1 Observations
The case studies have given usthefollowing insights:

Code Browsing. In addition to the views provided by our tools, code browsing was needed to get a better
understanding of specific parts of the applications. The case studies show that combining metrics, graphical
analysisand code browsingisasuccessful approachto get to asatisfying understanding of asystem quickly.

Tool Adaptability. The tools needed to be adapted to deal with unexpected requirements of specific case
studies. For instance, custom visualisations were created. Another example is complex invocation depen-
dency information that is part of middlewarelayers such as CORBA. Thisisimplementedin aset of classes
from which the stubs and skeletons are normally generated. The interesting information are not these mid-
dleware classes, but the fact that the application calls some object via some communication means. We
needed to abstract from the details of this communication.

Moose anditstool scould be easily adapted, thispartly dueto the extensibility of FAMIX, which enables
the easy capture of additional information. However, thetoolswere adapted in a static way, i.e., stopping
the analysis process, changing the application, refill the repository and go on. A mechanism to dynamically
add abstractionswould allow the reengineer to record domain-specificinformation during theactual reverse
engineering process.

Language Independence. Out tools did not need to be adapted to deal with systemsimplemented in diffe-
rent implementation languages. It showsthe strength of Moose repository and the FAMIX metamodel with
itslanguage-independent core and carefully designed |anguage mappings.

Incremental Loading and Partial Information. Although we have heavily used the information exchange
capabilities of Moose, its incremental loading capabilities have not been used so far. We have only ex-
changed complete models. Incremental loading might get more important if toolsintegrate their activities
more closely and need to update acommon repository rather than exchange complete model's, or when parts
of systems are loaded only on demand for scalability reasons. The ability to deal with partial information,
whichisalso arequirement for incremental loading, was crucial, however, because we did not have access
to the source code of libraries used by the target applications.

Scalability. Animportant factor for areengineering environment to function in an industrial context isthat
it candeal withlarge systems. The case studies show that Mooseisableto dojust that. Wedid not have prob-
lemsregarding the number of el ementsweloaded into thein-memory coderepository. Intheindustrial con-
text wereached 300’ 000 el ements, with the most limiting factor the small amount of RAM (128 MB) of the
desktop computer M oosewas running on. |n another experiment on aworkgroup server with 2GB of RAM,
we |oaded multiple models comprising of atotal number of entities of around 700" 000. As a comparison,
the Java Swing 1.3.0 libraries modelled on the highest level of detail (i.e., classes, methods, attributes, for-
mal parameters and their invocations and accesses) count only for about 48’ 000 elements.

The following considerations need to be taken into account when speaking about memory problems.
First, the amount of available memory on the used computer system is, of course, an important factor. Se-
condly, we have never tried to heavily optimise our environment neither for access speed nor for memory
consumption. Therefore, thereisroom for improvement, would it be needed in the future. Furthermore, we

Discussion 63

have designed the code repository to support a possible database mapping easily, so that scalability can be
improved by using adatabase instead of having all information in-memory. A last aspect is that tools that
make use of the repository need memory of their own aswell. For instance, CodeCrawler createsal ot of ad-
ditional objects (representing nodes and edges) for the purpose of visualisation. But, as shown by the case
studies, so far this proved to pose no problem.

5.9.2 The requirements revisited

In section 5.1, we have listed the main requirements for a reengineering environment. After presenting
Moose, we now discuss how Moose evaluatesin the context of those requirements.

1

Support for reengineering tasks. Moose supports all major reengineering tasks, which is pri-
marily shown by the servicesit provides and the tools that are built on top of it. Furthermore, the
industrial reengineering experiences show their successful application.

Extensible. The extensibility of Moose is inherent to the extensibility of FAMIX (see section
4.3). Its design enables extensions for language-specific features, for tool-specific information
and annotations of model elements. Several of the Moose tools use these functionalities. For ex-
ample, the metrics service extends the metamodel with a Measurement entity. Other analysis
tools store their analysis results as annotations to the model elements.

Exploratory. Moose is an object-oriented framework and offers as such a great deal of possible
interactionswith the represented entities. It supports several waysto handle, manipulate and nav-
igate entities contained in amodel, as we have described in the previous sections.

Scalable. The industrial case studies presented at the beginning of this section have proven that
Moose can deal with large systems in a satisfactory way: we have been able to parse and load
large systemsin a short time. Since we keep all entitiesin memory we have fast accesstimesto
the model itself. So far we have not encountered memory problems: the largest group of systems
we loaded contained more than 700’ 000 entities and could still be completely held in memory
without any notable performance penalties.

Information Exchange and Tool Integration. Integration with external tools has been repea-
tedly done without major problems. Information can be exchanged with other tool platforms
using text-based standards such as CDIF and XMI. FAMIX clearly defines what information
needs to be stored and its chunk structure supports human readability and incremental 1oading.
Information has been exchanged with several external parsers and reengineering environments.

For runtime integration, Moose provides a small tool integration framework for tools to register
themselves and find other tools. As presented in section 5.7.2, several Smalltalk-based tools use
the tool integration framework to combine each others services. However, more elaborate inter-
operability requires standardised interfaces for provided and required services.

Support for multiple object-oriented languages. The industrial case studies show that Moose
has been successfully applied to systems implemented in different object-oriented languages.
The repository of Moose with its language-independent core allows the different reengineering
toolsto be applied without any change to the different systems.

64 The Moose Reengineering Environment

5.10 Conclusion

Inthischapter we have presented the M oose Reengineering Environment. Itsfacilitiesfor storing, querying
and navigating information, its extensibility and the set of servicesit provides, make it a solid foundation
for reengineering tools. Thisis shown by M oose-based tool s such as Supremo, Gaudi and CodeCrawler.

In thisthesis Moose, the tools and the case studies have the main function to validate that FAMIX suc-
cessfully supports multiple cooperating reengineering tools. In this context we can make the following ob-
servations. Firstly, Moose's built-in services and the Moose-based tools show that FAMIX successfully
supports a whole range of reverse engineering tasks. They also validate the language independence of
FAMIX: the Moose-based tools have been applied without adaptation on systemsin different implementa-
tion languages. Furthermore, asthe above discussion of the tool environment requirements shows, FAMIX
supportsinformation exchange and extensibility well and theamount of information generated for FAMIX-
based models so far does not exceed the scalability needs of thetools.

The case studies show the limitations of FAMIX aswell. Currently it does not support grouping and full
multiple model support in FAMIX. These are both features we have aready implemented and used in
Moose. Other FAMIX features, such asthe ability to incrementally load information, are available but not
heavily used. Furthermore, the way information is structured in FAMIX does not favour information navi-
gation. Thisis, however, a conscious design decision based on trade-offs between navigability on one side
and support for information exchange, incremental oading and minimisation of redundant information on
theother side.

Additionally to thevalidation of FAMI X, thischapter presentsaset general set of requirementsfor reen-
gineering environments. We have analysed M oose according to these requirements. Furthermore, we de-
scribe the lessons we have learned while building Moose and while performing the case studies.
Summarizing the in-depth discussion of section 5.9, we can make the following observations:

» Multiple tools are needed to get useful results. Understanding a system quickly requires the ability
to create different viewpoints and the application of multiple problem detection techniques. Good
old code browsing is an important part of this process.

» Scalahility iscrucial to deal with the typical (large) size of legacy systems. Not only must atool be
able to handle the vast amounts of information, but it must be responsive as well.

» Tools need to be extensible and adaptable to deal with the specific requirements of reengineering
projects.

 Language-independence has proven itself useful and worthwhile. The same tools have been used on
Java, C++ and Smalltalk without adaptation.

Notethat most of thetoolsand also the case studies cover reverse engineering activitiesonly. Systemre-
structuring, in particular refactoring, isthefocusof the next two chapters. They present an analysisof fifteen
refactorings for Smalltalk and Javain the context of language independence. The analysisis based on the
FAMIX metamodel. The analysis firstly shows that language-independent refactoring is feasible. At the
sametimeit provides an in-depth validation of the language-independence of FAMIX.

CHAPTER 6

Language-Independent Refactoring

In recent years refactorings — behaviour preserving code transformations — have become akey topicin
the context of reengineering object-oriented applications [SGM 298] [TB99] or new devel opment process
models such as eXtreme Programming [Bec99]. Tools to support refactorings have been built such asthe
Refactoring Browser [RBJ97]. Refactoring semantics have been the topic of PhD theses for specific lan-
guagessuch as Smalltalk [Rob99], Java[Wer99] or C++ [Opd92]. However, an analysisof the proposed so-
lutionsis missing to understand the exact semantics of certain refactorings. Indeed depending on the tool
used and thelanguage, even with closely related languages|like Smalltalk and Java, the semanticsof certain
refactorings are different.

In this chapter we anal yse fifteen refactorings for the languages Java and Smalltalk. Based on FAMIX,
the language-independent metamodel presented in chapter 4, we capture as many commonalities as possi-
ble. Assuch thework inthischapter isavalidation of FAMIX: it showsthe ability of FAMIX to support re-
factoring on a language-independent level. This involves complex semantical analysis and demands
sufficient, complete and 100% correct information, because the result of atransformation should not result
inafaulty software system. Thisisunliketherequirement for atypical reverse engineeringtask such asvis-
ualisation, which is normally not strongly affected if information is slightly incomplete or incorrect
[MNGL98] [Bis92].

Additionally to thevalidation of FAMIX — and different from the approaches of the variousauthorsand
tool builders mentioned above — we discuss and compare the definition and required analysis of the sepa-
rate refactoringsrather than just presenting our solution. Where applicable, comparisons are madewith the
work presented in the PhD theses mentioned above aswell asthe Refactoring Browser?.

The presented refactorings, listed in appendix A together with their pre- and postconditions, are what
Opdyke [Opd92] callslow-level refactorings, i.e., primitive program transformationsfor adding, removing

1. We compare our work with the latest released version of the Refactoring Browser for VisualWorks at the
time of writing, namely version 3.5.1 (August 2001).

66 Language-Independent Refactoring

and renaming entitiesand moving entitieswithin their inheritance hierarchies. Theselow-level transforma-
tions can be combined to perform more complex transformations, called high-level refactorings, for in-
stance to introduce design patterns [OCN99] [FBB*99]. The high-level refactorings are outside the scope
of thisthesis. They aretypically acombination of low-level refactorings and therefore have not much to do
with language issuesthat are handled on the lower level.

The presented analysis focuses on two issues, the first being tool automation. Tool automation has the
strict requirement that the refactoring operation is behaviour preserving in the sense that input-output be-
haviour isthe same before and after the refactoring. Thisis different from approaches such as Fowler'sre-
factoring catalog [FBB*99] which focuses on manual refactoring. Fowler discusses every refactoring in an
informal manner. Descriptionsareimpreciseand many special casesareleft out. For manual refactoringthis
isnot really aproblem asthereisawaysthe devel oper who monitorsthe processand adaptsit to his’her own
needs. However, atool does not have that [uxury. It should perform arefactoring quickly and securely, ta-
king away the need to test after every small change. It therefore cannot leave out any special case and/or
should be conservative in complex cases.

The second focus is multiple language support [TDDNOO]. The chapter discusses the refactorings for
Smalltalk and Java, two relatively clean object-oriented programming languages. They are close enough to
make a common refactoring definition useful and feasible, but they are different enough to make the com-
parison interesting from aresearch point of view.

Therest of the chapter isorganised asfollows. Beforewe present thefifteen refactoringsthemselves, we
discuss the language subsets considered in the analysis as well as some general issues about the language
mappings and information availability relevant for refactoring (section 6.1). Section 6.2 introduces the
common template we use to describe the refactorings. Section 6.3 presentsthe actual refactorings, and sec-
tion 6.4 presents how we have validated the presented analysis and in section 6.5 we discuss our findings.

6.1 Language subsets and mappings

In general therefactoring analysisisrestricted to theinformation availablein FAMIX. However, evenif in-
formationisavailablein FAMIX, we do not always cover it in our analysis. Furthermore, the analysis must
takelanguage semanticsinto account that go beyond the plain information representation of FAMIX. Inthe
following subsections we discuss the language subsets that are covered by the refactoring analysis, aswell
asthelanguage mappings and level of detail issuesthat are relevant for the refactoring analysis.

For moreinformation on thelanguage extensions: section 4.4 extensively discussesthem and their exact
definitions can be found in the appendix C for Smalltalk and appendix D for Java.

6.1.1 Language subsets

In general wetake all information that is availablein FAMIX into account in our refactoring analysis. We
list here the exceptions and the major omissionsin FAMIX for both Javaand Smalltalk.

Java. FAMIX doesnot cover inner classesand thereforethey are not covered intherefactoring analysisei-
ther. We a so do not support static and instanceinitialisers, inner classes and reflective use of the language.
Furthermore, we do not take into account if attributes, methodsand classesarefinal. Therefactoring analy-
sistakes casts and hiding of attributesinto account.

Language subsets and mappings 67

Smalltalk. Smalltalk has many different dialects. In thisthesis we concentrate on the common core. This
means a single inheritance language without namespaces, with classes that are also global variables, with
attributesthat are only visiblewithin the defining inheritance hierarchy and cannot hide each other. Wehave
taken VisualWorksversion 3.0 [Par98] asour referenceimplementation. Several timestheanalysistellsthat
arefactoring preconditionistrivially preserved for Smalltalk, although it might not befor aspecific dial ect.
Examples of language features not covered by the analysis in this chapter are the namespaces of Visual-
Works 5i, or hiding variablesin Enfin Smalltalk. Note that these language features are probably easily co-
vered, becausethe appropriate elementsare availablein FAMI X (e.g., Package for namespaces) and the ap-
propriateanalysisisalready existent, becauseitisrequired for Java. We do not cover pool variablesand, like
for Java, we do not cover reflective use of the language.

6.1.2 Language mappings

In this subsection we list some language mappings and information availability issues of FAMIX that are
relevant for our refactoring analysis, namely typing information, abstractness, and the ability to semantical
equival ence of methods.

Static vs dynamic typing. Section 4.4 discusseshow FAMIX dealswith typeinformation of staticand
dynamically typed languages. In the context of refactoring threeissues need attention:

» Typerelated analysis. In severa refactorings there exists analysis for dealing with typed informa-
tion. For Smalltalk much of that analysisis unnecessary. For instance, aquery for all attributes with
acertain type will return an empty set and thisis known beforehand. This does not make the refac-
toring language-dependent. It just meansthat analysisisdonethat isunnecessary for Smalltalk: pre-
conditions will not be violated and it will not result in any changes in the Smalltalk sources.

» Dueto thelack of static type information in Smalltalk, invocations to a certain method name can be
to any method with that name in the current system. A variable can reference an object of any type
that understands the method that isinvoked on that variable. In Javathe static type information helps
reducing that information to a single inheritance hierarchy and to the set of methods that have the
same order of types of the parameters. In our metamodel an Invocation records the candidate me-
thods, i.e., the methods that are possibly invoked, which abstracts from the issue whether static or
dynamic information has been available to gather this information.

In the description of the refactorings the question ‘is this method invoked? means ‘is there an in-
vocation that has this method in its set of candidates? .

» Default types. Several creational refactorings (Add Method, Add Attribute and Add Parameter) need
to providetypeinformation for Java. The solution we have chosen isto assign default types (Obj ect
for new attributes and parameters, voi d for method return types). Another solution would be to ask
the user for atype and ignore thisinformation in the Smalltalk case.

Roberts[Rob99] includes an extensive discussion about how dynamic analysisand dynamic refactoring
could solvethelack of statictypeinformationindynamically typed languages. Inthisthesiswehavelimited
ourselvesto statically availableinformation.

Abstractness. Abstractness of classes and methods for the different languages and the interpretation in
FAMIX isdiscussed in section 4.4. The main difference between Javaand Smalltalk isthat abstractnessis
explicitinJavaandimplicitin Smalltalk. In thischapter we assumethat implicitly abstract classesin Small-

68 Language-Independent Refactoring

talk are not instantiated, eventhough they can be instantiated and do not raise an error as long as their ab-
stract methods are not invoked.

Abstractness of classesisimportant information for refactoring, becauseit givesinformationif the class
can possibly beinstantiated. If it cannot, you know that amethod can not be invoked on an instance of that
classand can therefore be pushed down to asubclass. If aclassisnot abstract, you can still know if itisnot
instantiated, namely if it isnot referenced. The Refactoring Browser [RBJ97], for instance, testsif aclassis
referenced. Similarly, Compost [Uni96], aJavaanalysistool, checksif aclassis never instantiated, i.e., no
constructor of the classisinvoked. This is more precise than the Smalltalk test, because the explicit con-
structor concept in Javaallowsfor aconstruction detection wherein Smalltalk all referencesto aclassmake
it possibly non-abstract.

Semantical equivalence. For refactorings that deal with overriding methods or multiple similar me-
thods, itisinteresting to be ableto determineif two piecesof code are semantically equivalent. For instance,
if amethod overrides asemantically equivalent method, it can be removed without changing the behaviour
of the system. Semantical equivalence, however, is hard to determine. Code needs to be transformed into
some common representation and considerabl e dataflow analysisisrequired. FAMIX does not contain the
detailed information needed for this analysis and consequently we cannot determine semantical equiva
lence. In contrast, the Refactoring Browser [Rob99] hasaccessto full parsetreeinformation. It detectsafew
cases of semantical equivalence by checking if two parsetrees are equal with possibly different parameter
and local variable names.

6.2 The Refactoring Template

Before discussing the Pull Up Method and Push Down Method refactoring in the following two sections,
we present the templ ate we use to describe and discuss the two refactorings:

« Name: The name identifies the intent and target entities involved in the refactoring.

» A short description including afigure describes our definition of the refactoring and the key prob-
lemsinvolved.

» Preconditions: This part lists the preconditions that need to be checked to be able to safely apply
the refactoring. Thelist starts with the preconditions that are independent of the language, followed
by the language-specific preconditions for Java and Smalltalk.

» Precondition analysis: This section describes for every precondition why it is necessary and, if ap-
plicable, why we did not select an aternative solution.

» Related work: Different approaches of other authors are analysed.

» Discussion: Finally we discuss the language-independence and the different alternatives.

6.3 The refactorings in detail

This section lists fifteen low-level refactorings using the template presented in the previous section. The
analysisof every refactoring isbased onthe assumption that acomplete and correct model of the system that
isthetarget of the refactoring, isavailable. A further assumption isthat the this system compiles and runs
correctly. Similar to Roberts[Rob99], we define correctness asthat aprogram passes atest suitethat covers
itsfull specification.

Add Class (classname, package, superclasses, subclasses) 69

ADD CLASS (CLASSNAME, PACKAGE, SUPERCLASSES,
SUBCLASSES)

Inserts a new class with name classname in package package where superclasses are
the superclasses of the new class and subclasses are subclasses of all superclasses that
have to become subclasses of the new class.

before after

Figure 6.1 Add Class refactoring with classname N, superclasses A and B and subclasses
Cand D

Typically thisisasimple refactoring, because the new classis not referenced yet, so no relationships need
to be updated and only name clashes need to be checked. However, abstractness of classes and multiplein-
heritance need to be taken into account.

Preconditions

Language-independent preconditions
1. no class may exist with new name in the same scope.
2. noglobal variable may exist with new name in the same scope.
3. all subclasses must be subclasses of al superclasses or no subclasses are specified.

Language-dependent preconditions

4. classname must be avalid name.

Smalltalk-specific preconditions

5. superclasses (and therefore subclasses) must not be metacl asses.

Precondition analysis
1. no classmay exist with new name in the same scope.

Classes within the same scope cannot have the same name.

70 Language-Independent Refactoring

2. noglobal variable may exist with new name in the same scope.

In Smalltalk it isnot allowed for classes and global variablesto have the same name. Actually, classes are
global variablesin Smalltalk. For Javathe absence of global variables makesthis precondition trivially ful-
filled.

3. all subclasses must be subclasses of all superclasses or no subclasses are specified.

This precondition is necessary to support multiple inheritance. If fulfilled, inserting a class in the middle
(likeN inFigure6.1) will have noimpact on the outsi de behaviour, becausethe new classdoesnot add, over-
write or hide any behaviour and the existing classes (C and D in Figure 6.1) still inherit from the same set of
classes. Smalltalk’s singleinheritanceistrivially supported by this scheme and also the Javainterface con-
cept.

4. classname must be a valid name.

The name of the new class should adhere to the naming rules of the implementation language.

5. superclasses (and therefore subclasses) must not be metaclasses.

Smalltalk has explicit metaclasses, which are modelled in FAMIX as classes. Every class has an accompa
nying metaclassand it is not allowed to create a metaclassindependent of aclassand thusto add aclassin
ametaclasshierarchy.

Related work

For thisrefactoring the main difference with the language specific approaches by Werner [Wer99], Roberts
[Rob99] and Opdyke [Opd92] isthat they only support single inheritance. For Smalltalk this just follows
thelanguage, for Javaand C++ thisisdonefor reasonsof simplicity. Our approach goesastep further in sup-
porting multipleinheritance and so Javainterfaces.

Discussion

The preconditions are mainly language-independent. The first language-specific precondition (precondi-
tion 4 about the name of the new class) could be abstracted from if a useful common set of naming restric-
tions can be defined over the languages. The second language-specific precondition (precondition 5 about
the Smalltalk metaclasses) is an exampl e of where the mapping of metaclassesto classesresultsin an extra
precondition rather than that it providestransparency of concepts.

There are someimportant issuesfor thisrefactoring that are not covered by the preconditions.

* When the new class inherits abstract methods without implementing them, it must be declared ab-
stract. This does not need to be dealt with on the Smalltalk source code level, because abstractness
of classesin Smalltalk isimplicit (see section 4.4.2).

* In Java, depending on if the superclasses of the new class are interfaces or classes the new class
needs to be a Java interface or a Java class.

* A new classin Javatypically needs anew file to be created aswell. Thisis transparently taken care
of by the Java front-end.

Notethat thisrefactoring isnot defined to work for Javainner classesaswell and that we currently do not
cope with constructor chaining in Java.

Remove Class (class) 7

REMOVE CLASS (CLASS)

Removes class from a system.

before after
A B A 5
S e TN
F c D F
C D

Figure 6.2 Remove class N

Thisrefactoring removesan unreferenced classtogether withitsunreferenced methods and attributes. After
therefactoring all subclasses of classinherit from all superclasses of class. Thisensuresthat all subclasses
still inherit the same features as before the refactoring.

Preconditions

Language-independent preconditions
1. classmust not have attributes or its attributes are only referenced from within class.
2. class must not have methods or its methods are only referenced from within class.
3. classmust not be referenced.
4

class must not implement abstract methods from its superclass hierarchy or must not have non-
abstract subclasses.

Smalltalk-specific preconditions
5. class must not be a metaclass.
6. the metaclass of class must not have referenced methods or classes.

Precondition analysis
1. class must not have attributes or its attributes are only referenced fromwithin class.

If classhasreferenced (instanceor class) attributes, removing the class breaksthe system. Referencesto at-
tributes of class are alowed, if it isonly classitself that references them, because removing the class re-
movesthereferenceswithit.

2. classmust not have methods or its methods are only referenced from within class.

If class has referenced (instance or class) methods, removing the class breaksthe system. Thisincludesre-
ferences to implicit methods such as Java default constructors. Not referenced means more precisely that
methods are not possibly referenced, because due to polymorphism it might not be statically determinable
which method will be called at runtime. Interms of FAMIX this means that amethod does not have candi-

72 Language-Independent Refactoring

dateinvocations (see section 6.1.2). Likein precondition 1, referencesto methods of classarealowed, if it
isonly classitself that referencesthem, because removing the classremovesthe referenceswith it.

3. class must not be referenced.

Obviously when areferenced classisremoved it will break the system. A classcan bereferencedinthefol-
lowing ways:

» astype of avariable or parameter

 asreturntype of amethod

» aspart of an array type or returntype. In FAMIX the declaredClass attribute of typed elements con-
tains the class reference extracted from the type declaration. See section 4.4.1 for details.

e aspart of array instantiations

* asacast

» when class methods are invoked or class attributes are accessed on class. Thisisthe only reference
in this list that exists in Smalltalk, as Smalltalk is dynamically typed and does not have casts and
primitive arrays.

4. classmust not implement abstract methods fromits superclass hierarchy or must not have subclasses.

If class implements an inherited abstract method and non-abstract subclasses are inheriting this method
without overridingit, in Javacompilationisbroken after therefactoring. For Smalltalk thetarget systemwill
work after the refactoring because the method is not referenced (according to precondition 2) but the resul -
ting unimplemented abstract method isbad style and apossible causefor errorsin thefuture. More complex
analysiscould be performed to check if all non-abstract subclassesimplement or inherit an other implemen-
tation than amethod in class, but we have not donethisfor reasons of smplicity.

5. class must not be a metaclass.

In Smalltalk every class has an accompanying metaclass and it is not allowed to create or remove a meta-
classindependent of aclassand thusto remove aclassin ametaclass hierarchy.

6. the metaclass of class must not have referenced methods or attributes.

Likeinstance and class methods and attributes of classany instance methods and attributes of the metaclass
of class cannot be referenced. Removing class (and thusits metaclass) would break the system.

Related work

Roberts[Rob99] (Smalltalk) has as preconditionsthat the classis not referenced and that it is either empty
or does not have subclasses. Inherited abstract methods are not further analysed, but in Smalltalk thiswill
not break the system. Opdyke [Opd92] (C++) callsthisrefactoring delete_unreferenced classand only al-
lowstheremoval of non-referenced classes without subclasses. Werner [Wer99] (Java) analyses, similar to
our approach, thereferences of methodsand attributesfrom the classto be removed. Hisgraph-based model
actually allowsto easily check any kind of reference to aclass. Like Roberts and Opdyke he does not deal
with abstract inherited methods, which can render thetarget system incompilable. Different from the other
approaches he analysesif the classis only used as a pass through for superclass features and changes casts
accordingly to be ableto remove the class anyway.

All three of the above approachesonly support singleinheritance. For Smalltalk thisjust followsthelan-
guage, for Javaand C++ thisisdone for reasons of simplicity.

Remove Class (class) 73

Discussion

The analysisfor this refactoring is more complex for Javathan for Smalltalk, because due to static typing
together with the concepts of explicit casting and primitive arrays, many more possihilities exist to refe-
renceaclass. Onthe other hand, likeinthe other classrefactoringsthe mapping of Smalltalk metaclassesto
FAMIX classesresultsin extrachecksto be made rather than useful transparency.

Different from the other approaches presented in the related work, our approach supports both multiple
inheritance and the analysis of references of methods and attributes of the classto beremoved. Thisincrea-
sesthe complexity of theanalysis, but providesfor awider applicability of therefactoring aswell.

Currently FAMIX can detect al class references listed in the analysis of precondition 3, except for in-
stantiations of primitive arrays. Although arrays are not explicitly modelled in FAMIX, avariable with a
primitivearray astype or amethod with aprimitivearray asreturn type can be detected viathe declared(Re-
turn) Type attributes (see section 4.4.1). Array instantiations, however, also contain areference to the class
name and are not currently modelled in FAMIX. FAMIX does not currently support nested classes either.
Thisrefactoring probably deal swith nested classeswithout problem, but tests need to be performed to con-
firmthat.

In Javaevery (non-nested) classisstored in a separate file with the same name as the class and the exten-
sion ‘.java'. In such a case removing aclass means therefore the removal of the corresponding file aswell.
Thisistransparently taken care of by the Java code transformation front-end.

74

Language-Independent Refactoring

RENAME CLASS (CLASS, NEW NAME)

Renames the class class and all references to this class to new name.

before
X A X N
y m() > m()
e K > 5
"m0 = 90 E

}

m()

}

Figure 6.3 Rename Class refactoring renaming A to N including updating the references

Renaming a class does not have complex preconditions. Basically if the new nameisvalid and not used al-
ready within the same scope the refactoring can be applied. For thisrefactoring the differences between the
supported languages are more in what needsto be updated. The following class references may occur:

 typesof variables (Java)

* return types of behavioural entities (Java)

* inheritance definitions (Java and Smalltalk)

* class method invocations (Java and Smalltalk)
 classvariable accesses (Java)

 constructor names (Java)

e explicit casts (Java)

e primitive array types (Java)

e primitive array instantiations (Java)

e import statements (Java)

Clearly Javahasmorekindsof referencesto beupdated. Thisispartly becausethe static typing and partly

because of simplicity of Smalltalk which doesnot have specific language constructsfor primitivearraysand
constructors.

Preconditions

Language-independent preconditions
1. no class may exist with new name in the same scope.
2. no global variable may exist with new name in the same scope.
3. classesthat refer to class must not already contain or inherit a variable with new name.

Language-dependent preconditions
4. new name must be avalid class hame.

Smalltalk-specific preconditions
5. class must not be a metaclass.

Rename Class (class, new name) 75

Precondition analysis

1. noclassmay exist with new name in the same scope.

Classes within the same scope cannot have the same name.

2. noglobal variable may exist with new namein the same scope.

In Smalltalk it isnot allowed for classes and global variablesto have the same name. Actually, classes are
global variablesin Smalltalk. For Javathe absence of global variables makesthis precondition trivialy ful-
filled.

3. classesthat refer to class must not already contain or inherit a variable with new name.

The contained or inherited variable would hide the renamed class, which isa problem if the classis refe-
renced inthe scope of that variable. In Javaitisallowed for variablesand typesto have the samenamewithin
the same scope. For instance,
String String;
public String String() {
return String;

}

isvalid Java code. However, applying the renaming will result in less understandable code. Therefore en-
force this precondition for both languages (with the additional advantage of keeping it language indepen-
dent).

4. new name must be a valid class name.

The new name should adhereto the naming rules of the implementation language.

5. class must not be a metaclass.

In Smalltalk it is not allowed to rename ametacl assindependently of its accompanying class.

Related work

Both Opdyke[Opd92] (C++) and Werner [Wer99] (Java) only check if thereare no existing classeswith the
new name already. They also do not take namespaces, respectively packages and thus not scope into ac-
count. Roberts [Rob99] describes for Smalltalk the preconditions that an existing class or global variable
doesnot havethe namealready (seeprecondition 1 and 2). He does not mention precondition 3 although the
Refactoring Browser [RBJ97] implementsthis check.

Discussion

Most preconditions are language independent. The FAMIX unique naming scheme allows for easy
checking of similar names in the same scope transparently of the underlying implementation language.
About the two language specific preconditions. Precondition 4 will always depend on the naming rules of
the specific implementation language. A common subset of those rules could be defined to abstract this
precondition from thelanguagesaswell, but currently thisisnot thecasein FAMIX. Andlikethe other class
refactorings metacl ass definitions can not be changed independent of their accompanying classes (precon-
dition 5).

76 Language-Independent Refactoring

ADD METHOD (NAME, CLASS)

Adds the method with name in class. The new method has an empty body.
before after

A A

'» m()

Figure 6.4 Add Method refactoring adding a method named m in class A

A simple refactoring. No references need to be updated as the new method did not exist before. The only
check needed to be madeisif amethod with name does not already exist in classor itssuperclasshierarchy.
The refactoring adds a method in class with no parameters, an empty body, public visibility and a default
returntypevoi d for Javaand no returntype for Smalltalk.

Preconditions

Language-independent preconditions
1. no (inherited) method with signature derived from name may exist in class.

Language-dependent preconditions
2. name must be avalid method name.

Precondition analysis

1. no (inherited) method with signature derived from name may exist in class.

Otherwise this method would be overridden (and the original thus hidden) or replaced.

2. name must be a valid method name.

Obviously should the new name adhere to the naming rules of the implementation language.

Related work

The Add Method refactoring for Javain [Wer99] (whichiscalled Add Operation there) has, additionally to
name and class, a set of parameter types and a return type as parameters. Opdyke [Opd92] and Roberts
[Rob99] alow overriding if the overridden method is not referenced in class or its subclasses or when the
new method is semantically equivalent with the overridden method. The new method can have abody al-
ready. The semantical equivalenceishard to check in practice. See section 6.1.2 for in-depth discussion.

Discussion

Apart from the ever existing valid name precondition (precondition 2), this refactoring only contains one
language-independent precondition (precondition 1).

Different from Werner [Wer99] we do not have parameter definitions as part of the new method defini-
tions. Thisfor reasons of simplicity. This might be a problem when a user wantsto add anew method with

Add Method (name, class) 77

some parameter and use Add Method and Add Parameter to achieve this. The method without parameter
that is added using Add Method might be rejected because of an existing method with the same signature,
but the combined refactoring would be perfectly valid.

It could beargued toloosen precondition 1 to allow for new methodsthat overl oad existing methods. The
name and return type should be the same, the set of types of the parametersand/or their order should be dif-
ferent. A similar name can be unintentional though whichwould resultinlessunderstandable code, because
asame name communicates a strong relationship. A compromise solution would be to prompt the user for
achoice. In any case, Smalltalk does not allow overloading and therefore we have chosen not to allow this
for reasons of language-independence.

Similarly precondition 1 does not allow for methods to override existing methods. To allow this, exten-
siveanalysiswould be needed to be doneto seeif the now overridden method was never calledin or through
classor its subclasses. Thisto ensure behaviour preservation. Again, also because overriding might be un-
intentional, we do not allow overriding for reasons of simplicity.

Notethat it isnot checked if amethod with name already existsin subclasses of class. Thisisnot neces-
sary to ensure behaviour preservation. However, if thename equivalenceisunintentional, in alater stageun-
intended behaviour might be observed in subclasses dueto overriding of the added method.

78 Language-Independent Refactoring

REMOVE METHOD (METHOD)

Removes method from its containing class.
before after
A A

m() L

Figure 6.5 Remove Method refactoring removing a method named m from class A

A method can beremoved it isnot possibly referenced.
Preconditions

Language-independent preconditions
1. method must not have candidate invocations unless method itself is the only candidate invoker.
2. if method is abstract it must not have static references.

Precondition analysis
1. method must not have candidate invocations unless method itself is the only candidate invoker.

A method cannot be removed if it isreferenced, i.e., if thereisanon-empty set of statically determinable
candidateinvocationsof method. Dueto polymorphismitisnot awayspossibleto determinewhich method
will bethe actual method invoked at runtime, hence the name ‘ candidate’ invocations.

2. if method is abstract it must not have static references.

An abstract method cannot have candidateinvocations. But in statically typed languagesit can be explicitly
referenced anyway, in which case the method cannot be removed. In Smalltalk this precondition alwaysre-
turnstrue.

Related work

Roberts [Rob99] does not allow any invocations in the system to methods with the same name as method.
This reflects the situation in Smalltalk where polymorphism is not tight to a single inheritance hierarchy.
Beyond our approach Roberts all ows method to be removed anyway if asemantically equival ent superclass
method existsthat will be called instead after the refactoring. Asalready denoted in Add Method, semanti-
cal equivalenceisvery hard to determinein practice, which isdiscussed in more detail in section 6.1.2.

Werner [Wer99] does not allow any existing candidate invocations.

Opdyke [Opd92] describes a multiple method version of the Remove Method refactoring
(delete_member_functions). This gives the possibility to delete a referenced methods if the reference is
from another method in the set to be removed. He also allowsremoval if thereisa‘redundant’ method in-
herited from the superclass. Redundant meaning that the method have the same signature and body, which
isthe most basic case of semantical equivalence.

Remove Method (method) 79

Discussion

Thisrefactoring only containstwo preconditions, which are both language-independent. Thisismostly due
totheway candidateinvocationsaretreated in FAMIX. They are stored transparently from thefact how they
are computed. The precondition thereforeisnot depending on the fact that in Smalltalk the set of candidate
invocationsistypically much larger than in Java, because the dynamic typing and polymorphism that goes
beyond asingleinheritance hierarchy. The possibly invoked methodsby aninvocationin Smalltalk are nor-
mally all methods in the system with the invoked name, where in Java the static type information restricts
the possibly invoked methodsto one inheritance hierarchy.

The second precondition dealswith static referencesto abstract methods. In Smalltalk it isnot possible,
so the precondition isalwaysfulfilled for that language. Note that abstractnessisimplicit in Smalltalk and
it isindeed possible to invoke an abstract method, resulting in aruntime error. However, we presume well
running systems and thus no abstract methodsinvoked at runtime.

80 Language-Independent Refactoring

RENAME METHOD (METHOD, NEW NAME)

Renames method and all method definitions with the same signature in the same hier-
archy. All invocations to all changed methods are changed to refer to the new name.

before after
®] ®)
E A E A
bince() bince() balance() balance()
X B D X B D
T bince() bince() T balance() | | balance()
Bb =newB); A Bb =newB(); A
b. bl nc(); C b. bal ance() ; C
bince() balance()

Figure 6.6 Rename Method refactoring renaming bl nc in class B to bal ance

A method can only be renamed in a behaviour-preserving way if al overriding methods and overridden
methods (and all their overriding and overridden methods) are renamed as well. Furthermore, all invoca
tionsto all changed methods need to be renamed accordingly.

Preconditions

Language-independent preconditions

1. all superclasses of the class containing method as well as the subclass hierarchies of the highest
superclasses that define a method with the same signature as method, must not already contain a
method with a signature implied by new name and the parameters of method.

2. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

Language-dependent preconditions

3. new name must be avalid method name.

Java-specific preconditions

4. when method isaconstructor, the refactoring cannot be applied unlessin the context of aRename
Class refactoring.

Rename Method (method, nhew name) 81

Precondition analysis

1. all superclasses of the class containing method as well as the subclass hierarchies of the highest su-
perclassesthat define a method with the same signature as method, must not already contain a method
with a signature implied by new name and the parameters of method.

Firstly, the signature of the renamed methods cannot be the same as an existing method in all superclasses
of the class containing method (O, A and E in Figure 6.6), because renamed methods would override exis-
ting methods. Secondly, asimilar signatureisalso not possiblein thefull subclass hierarchies of the classes
highest in the superclass hierarchies that define amethod with the same signature as method (i.e., A and E
inFigure 6.6 and all their subclasses). This coversoverriding of existing methods, possible replacement or
double definitions of methods in classes that define method or a polymorphic equivalent method, or over-
riding of renamed methods by an existing subclass method. Doubl e definitionsare not allowed, and method
overriding that did not exist before potentially changes behaviour, because the scope of the newly overrid-
den methods would change.

2. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

In Smalltalk it is possible that invocationsinvoke methods with the same signature in different inheritance
hierarchies. These invocations cannot be changed to reference the new name, because they possibly invoke
amethod in ancther inheritance hierarchy that has the old name. In Javathis precondition istrivialy pre-
served, because its static type information and limited polymorphism restrict the candidate invoked me-
thodsto the targeted group of methods within the same inheritance hierarchy.

3. new name must be a valid method name.
The new name must adhere to the naming rules of the implementation language.

4. when method is a constructor, the refactoring can not be applied unless in the context of a Rename
Classrefactoring.

Java constructors have the same name as their containing class. Changing that name independently of
changing the classnameis not allowed.

Related work

Thedifferent approacheswehad alook at haveall adifferent definition of thisrefactoring. Opdyke[Opd92]
(C++) renames method and equivalent methods in the subclasses. Werner [Wer99] (Java) only renames
method. Fowler [FBB*99] (also Java) changes all methods with the same signature within an inheritance
hierarchy, which islike our approach with the difference that he does not discuss Java interfaces. Roberts
[Rob99] renames all methods with the same signaturein a set of classeswhich must contain al classesthat
are polymorphically equivalent with respect to these methods. For Smalltalk, Roberts' target language, this
set can contain classes from different inheritance hierarchies. Like our definition of precondition 2, Ro-
berts' precondition is generic enough to cover both Smalltalk and Java. He does not specify however what
therulesareto determinewhat polymorphically equivalent classes are.

Unlike our precondition 1, Opdyke[Opd92] and Werner [Wer99] allow for methodsto berenamed to an
already existing name from an inherited method when either this other method is not referenced from the

82 Language-Independent Refactoring

class containing method and its subclasses, or, only by Opdyke, if the methods are semantically equival ent.
All of the above approaches only cover singleinheritance.

Discussion

It isinteresting to see that the approaches presented in the Related Work aswell as ours have all adifferent
interpretation of thisrefactoring.

We have chosen ours, because it changes al polymorphically equivalent methods detectable from me-
thod that are explicitly intended to be polymorphically equivalent. These arethe methodswith the samesig-
nature within the same inheritance hierarchy. In Smalltalk there can be more polymorphically equivalent
methods outside of the same inheritance hierarchy, but this equivalence can be, and often is, unintentional.
That iswhy wefilter these cases out in precondition 2. The fact that the candidate methods of a certainin-
vocation already take the difference between Java and Smalltalk in polymorphism into account, keepsit a
language-independent refactoring. It issimilar to Roberts' definition, which isalso language-independent,
only he changesall polymorphically equivalent methodsinstead of changing only when these methods are
within the same inheritance hierarchy.

Another possihility isastronger involvement of the user to restrict changes to method names and invo-
cationsto acertain hierarchy or packageor other kind of part of asystem. The Refactoring Browser [RBJ97]
offers limited user interaction by asking to proceed or not in cases where the polymorphically equivalent
methods are not within oneinheritance hierarchy only. However, the focusin our research has been on au-
tomation, so this path has not been explored any further.

Pull Up Method (method, superclass) 83

PULL UP METHOD (METHOD, SUPERCLASS)

Pulls up method to one of its superclasses (superclass).

before after
A B A B
> 0
AN DA
C D C D
m()

Figure 6.7 Pull Up Method refactoring pulling method C.m() up to superclass B

Pulling up amethod is one of the more complex refactorings, because the set of possible violations of be-
haviour preservationislarge. The main difficulty isthe possible occurrences of methodswith the same sig-
naturein the sameinheritance hierarchy. The effect of the pull-up on the visibility of these methods and the
possible (kinds of) invocations of them (self/this calls, super calls, scoped invocations from within and out-
side of the hierarchy) resultsin agreat number of checksto be made.

Preconditions

Language-independent preconditions
1. method must not be private.
2. method should not directly access attributes from its defining class.

3. method should not directly invoke methods from its defining class unless all those invocations
have self/this asreceiver and are either to methods that are al so defined or inherited in the super-
classor to itself.

4. superclass may not contain or inherit a non-abstract method with the same signature as method.
5. method cannot have super references to superclass.

Java-specific preconditions
6. method must not be a constructor.
7. non-abstract method cannot be pulled up to an interface.

Smalltalk-specific preconditions
8. method should not access methods from its metaclass.

Precondition analysis
1. method must not be private.

If aprivatemethodispulled up, itisnot visibleanymoreinitsoriginal class. Possibleinvocationsfrom with-
inthisclasswill break.

84 Language-Independent Refactoring

2. method should not directly access attributes from its defining class.

If method refersto attributes of itsdefining class, onceit ispulled up, it will either reference avariable that
isundefinedinthe superclassor if avariable with the same name existsin the superclassreferencethisother
variablewhich ispossibly breaks behaviour preservation.

3. method should not directly invoke methods from its defining class unless all those invocations have
self/this as receiver and are either to methods that are also defined or inherited in the superclass or
to itself.

A method cannot be pulled up if it refersto methodsin itsoriginal class, because these methods cannot be
referred to once the method is pulled up into superclass (see case (8) in Figure 6.8).

Only if superclassdefinesor inheritsamethod with the same signature, method will not refer to amethod
that isundefined initsnew location, and at runtimeit will be dynamically bound to the same method as be-
fore. In this case method can be pulled up without problems. In the example of Figure 6.8 this means that
case (a) isalowed if class B containsamethod x aswell. A special caseisif method invokesitself. In that
case it can aso be pulled up, because once pulled up it is still bound to itself (case (b) in Figure 6.8). Note
that these exceptions must be valid for all invocations from method to local methods.

Any references from method to methods of the defining class could be allowed if the invocation is per-
formed on adifferent instance. Thisis not determinable with the level of information available in FAMIX
and thus do we not analyse this case (case () in Figure 6.8). We only analyse the cases where the receiver
of theinvocationissel f in Smalltalk or t hi s in Javal. Even if wewould have accessto full parsetreein-
formation, considerabl e datafl ow analysis would be needed.

before after
1 B
(a) this.x(); . (a)
e
o) \ C
(b) f.hl.s'n()' T~ Imo = (b)
[0
/

v =get\);r

(©) |v.x0; (c)

Figure 6.8 C.m() invokes methods of its defining class. In case (a) m() cannot be pulled up,

because it would reference a subclass method afterwards. In case (b) m() references itself on

the same instance (=this) and can be pulled up without problems. In case (c) m() invokes x()
on a variable v which possibly references the same instance.

1. Weconsider botht hi s. m() andn() inJavaasaninvocationof m() ont hi s, asthelatter isonly ashort-
hand for the former.

Pull Up Method (method, superclass) 85

4. superclass may not contain or inherit a non-abstract method with the same signature as method.

For this precondition we need to look at two cases. Thefirst possibility isthat superclassitself contains a
method with the same signature (e.g., in Figure 6.7, if B would already contain a method m()). Pulling up
C.m() would replace the existing method. Thisisallowedif B.m() isabstract, becausethenitissurely never
invoked at runtime. If B.m() is not abstract, it could be replaced if it is never invoked, but this can only be
determined for certain cases, or if B.m() is semantically equivalent to C.m(). Thisis, however, generally
hard to determine in practice and cannot be determined with our metamodel, because it does not contain
AST-level information (see also section 6.1.2). Therefore we do not allow non-abstract methods to be re-
placed.

The second possihility is that a method with the same signature as method is inherited by superclass.
Pulling up method would hide inherited implementations to other subclasses of superclass. If theinherited
method isabstract thisisnot aproblem, becauseit isknown not to be the method invoked at runtime. If itis
concrete, behaviour changes if the newly hidden method was invoked from the other subclasses. In the
examplein Figure 6.9, D.x() calls X.m() beforethe refactoring and B.m() after therefactoring.

before after

X X

m()
f
B

m()

3

L m(

% 7 % % 7 R TN
C D this.n(); C D this.m);
m() x0- — T - x0- — T L

Figure 6.9 B.m() hides X.m() from some subclasses that use it (D)

The hidden method (X.m()) can be semantically equival ent to method (C.m()), but we cannot determine
that with the available information. Another possibility is that the hidden method is not invoked in or
through superclass or its subclasses (i.e., X.m() is not invoked on instances of B and D in the example).
However, thisisimpossible to statically determine for Smalltalk unless methods with signature m() only
exist in this hierarchy and are only invoked from within the hierarchy using self or super. We do not check
for this special casefor reasons of simplicity.

5. method cannot have super references to superclass.

Super references in method would, after pulling the method up, point to a different (set of) class(es). This
possibly changes behaviour or the possibility to compile the target system. Figure 6.10 shows an example
where m() refersto B.x() with asuper reference. If m() would be pulled up to B, thisreferenceis broken. It
either referencesamethod x() in asuperclassof B, which possibly resultsin achange of behaviour, or it re-
ferences no method at all, resulting in acompilation or runtime error.

For Javaasuper reference always pointsto the superclassand never to aninterfaceitimplements (seethe
mapping from Javainterfacesto FAMI X classesin section 4.4.2). In Smalltalk super aways pointstothe
only one superclass. In Smalltalk only methods, not attributes, can be accessed with super.

86 Language-Independent Refactoring

before

A B
x()

kcﬁ %

Mo

super. x();

D

Figure 6.10 C.m() has a super reference to a method of B

There are several possibilitiesto relax this precondition, but we did not implement them for reasons of

simplicity:

« if the super invocation invokes a method or accesses an attribute even higher up in the hierarchy of
superclass (i.e., in a superclass of B in Figure 6.10). If that is the case for all super references the
method could be pulled up anyway. In our metamodel thisinformation is available for methods, not
for attributes.

» the super references could possibly be replaced with self references and so point to the same class
after the refactoring, preserving behaviour. However, because super is statically bound and self dy-
namically to the current instance, this can only work is subclasses do not define a method with the
same signature.

6. method must not be a constructor.

A Java constructor is bound to its class, even by its name which is always the same as its defining class.
Thereforeit can not be moved out of itsclassin any way.

7. non-abstract method cannot be pulled up to an interface.

A Javainterface can only contain abstract method declarations. Therefore, any method that is pulled up to
an interface must be abstract already.

8. method should not access methods from its metaclass.

Similar to precondition 2, but for the metaclass methods of Smalltalk classes.t

Related work
Opdyke [Opd92] and Roberts [Rob99] do not describe thisrefactoring.

Smalltalk

TheRefactoring Browser [RBJ97] implementsthisrefactoring. It hasaninteresting approach. If pullingthe
method up would result in replacing or hiding amethod of the superclass hierarchy, i.e., aviolation of our
precondition 4, it gives the user the possihility to copy that method down to the other subclasses of super-
class. The possible situations are depicted in Figure 6.11. The refactoring is applicable in more cases than

1. Currently thisis not determinable in FAMIX as class method invocations have the form ‘ self class myMe-
taclassMethod’ => the method ‘class’ isinvoked on self, the method ‘ myMetaclassMethod' is recorded to be
invoked on ‘some’ expression.

Pull Up Method (method, superclass) 87

our approach andisespecially useful when the special case method isinthe superclassinstead of thegeneral
one. However, if amethod is copied down from superclasses of superclass, duplicated code scattered over
theinheritance hierarchy istheresult (case (b) in Figure 6.11).

before after
B B
mt() L m20)

% 7 %
c% D this.nm(); C D this. n();
m2() x0- — T ... x0- — T L

m*()

(a) replacement

before after

X X

m*() m1()

B B
L m()
AR AR "
C D this.m); C D this.n();
m?() X()’/’——"- XO’//""
m%()
(b) hiding

Figure 6.11 C.m() is pushed up to B. The Refactoring Browser copies down any method m that
would be replaced (B.m() in (a)) or hidden (X.m%() in (b)) from other subclasses of B (D in this
figure).

Another useful feature of the Refactoring Browser isthat it removesall duplicate methods from the sub-
classes of superclass. If such duplicated methods exist, typically auser startsto push up method to get rid of
duplicated functionality in the first place, and without the tool support he would have to do manually. In
FAMIX we do not have enough information avail able to determine if the subclass methods with the same
signature are duplicated or not, and as such cannot provide similar functionality.

Furthermore, the Refactoring Browser performsthe following checks:

* It alowsreplacing methods in the superclass or overriding of methods higher up in the hierarchy if
the methods have the same parsetree (with possibly different local variable and parameter names).
In that case they are verifiably semantically equivalent (see also section 6.1.2).

» It analyses super sends of method by checking if superclass defines the invoked method, in which
casetherefactoring cannot be applied, or if theinvoked method is defined higher up in the hierarchy,

88 Language-Independent Refactoring

in which case method can be pulled up without any problem. Thisis equivalent to our precondition
5 described above.

» It checks if super invocations of other subclasses of superclass will invoke the pushed up method
instead of the originally invoked method. If so, the refactoring is rejected. Self invocations are not
checked, because that is not necessary as the possibly replaced or overridden methods are either se-
mantically equivalent or copied to the subclasses.

We seethat the Refactoring Browser does athorough analysis of possible replacement and overriding of
methods. It doesnot, however, completely analyseinvocations performed by method aswediscussedin pre-
condition 2 of thisrefactoring. It allowsthe push up of amethod that invokes methodsinitsoriginally con-
taining class as depicted in case (a) of Figure 6.8. Behaviour will not break in Smalltalk, because method
was only invoked on its originally containing class or its subclasses. However, unless a method with the
same signature is defined higher up in the inheritance hierarchy, the moved code references methodsin its
subclass, which isbad style. In Javait would not even compile. Wedo not allow it for both these reasons.

Java

Werner [Wer99] includes athorough investigation of invocations performed by method. He does not deeply
investigate possi blereplacement and overriding of (inherited) methods of superclass. Hejust doesnot allow
it, which isthe same approach we have taken. He does not analyse super invocations aswe do in precondi-
tion 5 and consequently breaks behaviour in the cases we describe there.

An interesting reference to mention with regard to precondition 6 about Java constructors, is Fowler’'s
Pull Up Constructor Body refactori ngl. Thisrefactoring isabout pulling up part of constructor body to the
superclass constructor and calling the superclass constructor from the subclass one (see Figure 6.12). How-

before after
B 5 B(nane) {

| this.nane = nane;
* B(String)}-| — }

B B

C Q(nane, id) { ¢ Qnane, 1d) {
C(String,in) . | this.nane = nane; C(String,int) L | super (nane) ;
this.id =id; this.id =id;
} }

Figure 6.12 Pull Up Constructor Body as defined by Fowler [FBB 99]

ever, thisismore avariant of the Extract Method refactoring than of the Pull Up Method refactoring. And
for both the Extract Method Refactoring and the Pull Up Constructor Body refactoring information about
the actual method bodiesis needed that we do not have available in our metamodel.

1. The Extract Method refactoring takes a code fragment of a method and turnsiit into its own method
[FBB*99].

Pull Up Method (method, superclass) 89

Discussion

Most of the preconditions are language independent. Some checks need to be performed for the special ca-
ses of constructors (precondition 6), interfaces (precondition 7) and metaclasses (precondition 8). We see
here that the semantical differences of the mapped entities (e.g., Java interface to FAMIX class) to their
standard interpretation (e.g., Javaclassto FAMIX class) result in extralanguage-dependent checks. How-
ever, exactly the same mappings are useful in the language-independent preconditions. For instance, al-
though an explicit check for the case of metaclasses needsto be madein precondition 8, preconditions 2, 4
and 5 areequally valid for Smalltalk classes and metaclasses.

Class-scope methods

The preconditions are also sufficient for the case of class-scope methods. In Smalltalk those are instance
methods of the metaclassand all rulesand transformationsfor instance methods can be applied. In Javasta-
tic methods cannot have the same name as instance methods. Possible violations by the refactoring are
therefore covered by precondition 4, because this precondition does not differentiate between instance and
class-scope methods. Thereby static methods are not allowed to hide instance methods with the same sig-
nature anyway [GJSBOO]. All other preconditionsequally hold for both static and instance methodsin Java.
Even precondition 7 as abstract methods cannot be static [GISBO0Q]. The language-specific precondition 8
that deals with metaclass members could be removed if these metaclass memberswould be interpreted as
class-scope members of the class rather than instance members of the metaclass. However, other problems
with the mapping of Smalltalk to FAMIX — for instance the possibility for classand instance methods hav-
ing the same name — would have to be solved (see also section 4.4.2).

Related work

From the related work we see that the major Smalltalk and Java approaches both have their own foci and
omissions. Especially the copying down of replaced or newly overridden methods in the Refactoring
Browser isinteresting. The Pull Up Method refactoring we present does not involve adowncopy of any ori-
ginal superclassmethod. Partly becauseit doesnot appear in other approaches, especially in Fowler'srefac-
torings catalog [FBB*99], and thusis against common perception of what the refactoring is supposed to do.
Secondly, in cases like situation (b) in Figure 6.11, copying down results in duplicated code, effectively
worsening code quality. In our solution, as aresult from not copying down, we cannot ignore any invoca
tions to methods that are possibly replaced or overridden. The advantage of the Refactoring Browser ap-
proachisthat self invocationsto methodsthat are copi ed down do not need to be checked and therefactoring
istherefore applicablein awider number of cases.

Multiple inheritance

Multipleinheritanceisnot explicitly dealt with in the preconditions. Thisisnot necessary, becausetheonly
multipleinherited related issue that can crop up, namely the unhiding of a method with the same signature
inherited from another superclassthan superclass, doesnot poseaproblem for the supported languages Java
and Smalltalk. Consider the example depicted in Figure 6.13. In Smalltalk this cannot occur asit does not
have multipleinheritance. In Javathis situation can occur with the three following cases:

» BisaJdavaclassand A isaJavainterface. In that case there is no problem. The program still com-
piles and functions as before. The resulting design might be considered bad, because the interface

90 Language-Independent Refactoring

before after

A B A B
m() m() m()

% %
C C
m() -
5 j 5 j
X this.m); X this.m);
0 - — 1 |- X0 - — 1 |-

Figure 6.13 Pulling up C.m() to B unhides A.m() from C and its subclasses

defines amethod that the implementing classinherits from somewhere else. But thisis up to the de-
veloper to consider on a case-to-case basis.

» Aisaclassand B isaninterface. Thisimposesthe additional requirement on C.m() that it isabstract,
which is covered by precondition 7. In this case there is no problem either.

» Both A and B are interfaces. Again the additional regquirement that C.m() is abstract applies. And
again there is no problem with compilation or behaviour preservation after the refactoring.

Support for C++ however would require reconsideration, because for that language the scenario of
Figure 6.13 posesthe problem that the call this.m() from X.x() would be ambiguousin the ‘ after’ situation.
The system would not compile anymore. Solutions would be to not allow the refactoring in that case
resulting either in an additional language-dependent precondition or alanguage-independent precondition
whichwould betoo restrictivefor Java. A second solution would beto explicitly scopeall invocations such
astheonein X.x() to explicitly invoke B.m().

Push Down Method (method) 91

PUSH DOWN METHOD (METHOD)

Pushes down method to all direct subclasses that do not contain amethod with the same
signature.

before after
A B A B
m*() *
N YN NN
C D E C D E
m2() m*() m*() m?()

Figure 6.14 Push Down Method refactoring pushing method B.m() down to C and D

Similarly to Pull Up Method, thelack of typeinformationin Smalltalk makesit hard to determineif method
(B.m() in Figure 6.14) is called on (instances of) its defining class (B in Figure 6.14). The same problem
ariseswhen trying to determine which subclass branches of B possibly invoke m(). Because of this, there-
factoring is specified to push down methods to all subclasses rather than a single subclass. In Java, due to
the static typing, we have sufficient information available to push down to a single subclass. Thiswould,
however, result in separate definitions of thisrefactoring for different languages.

Preconditions

Language-independent preconditions

1

method must not be invoked in or through its defining class unlessit only invokesitself on self/
this.

At least one direct subclass of the defining class of method may not already contain a method
with the same signature as method.

self/this accesses to attributes that are also defined in one or more of the direct subclasses, may
not exist in method.

self/this invocations and accesses to private members of the containing class may not exist in
method.

no super invocations of method may exist in the direct subclasses of the defining class.

super invocations to methods that are also defined in the defining class may not exist in method,
except if the invoked method has the same signature as method itself.

super accesses to attributes that are also defined in the defining class may not exist in method.

subclasses cannot inherit non-abstract methods with the same signature as method from other su-
perclass branches.

Java-specific preconditions

9.

method must not be a constructor.

92 Language-Independent Refactoring

Precondition analysis
1. method must not be invoked in or through its defining class unlessit only invokes itself on self/this.

If method isinvoked onitsdefining class, pushing down can have two results. One possibility isthat the pro-
gramisbroken, because method will not be found anymore by theinvocation either at compile-timein Java
or runtime in Smalltalk. The other possibility is that another method with the same signature is defined
somewhereinthe superclassesof thedefining class(e.g., insuperclassesof B intheexamplein Figure6.14).
In this case behaviour preservation is not guaranteed. In the special case that method only invokesitself, it
can be pushed down, because the self/thisinvocation will be moved with the method®.

In Smalltalk if the receiving class (i.e., the statically determinable type of the receiving variable) of an
invocation isnot known (i.e., if the receiver isnot self, super or aclass), the method can be pushed down if
the containing classis abstract or not referenced. In such a case the containing classis known not to bein-
stantiated and method isthus never invoked on an instance of the containing class. In Javathe static type of
thereceiving variableisalwaysknown.

Cast accesses of Javaare covered by this precondition aswell. E.g., ((B) a) . n() in Javaisinterpreted
asbeing aninvocation of m() on B.

2. Atleast onedirect subclass of the defining class of method may not already contain a method with the
same signature as method.

If all subclasses already define amethod with the same signature as method, thereis no subclassleft where
method can be pushed downto. A pplication of therefactoring would result in removing method without | et-
ting an equivalent method appear in a subclass. Because this code disappearanceis possibly unwanted and
unexpected, we do not apply the refactoring in such as case.

3. sdfithis accesses to attributes that are also defined in one or more of the direct subclasses, may not
exist in method.

Otherwise another attribute will be accessed after the refactoring. The precondition istrivially fulfilled for
Smalltalk asit allows only one attribute with the same namein the same inheritance hierarchy.

4. self/thisinvocations and accesses to private members of the containing class may not exist in method.

Private members cannot be referenced from outside their containing classand are statically linked. Pushing
method down would invalidate these references: either a compile error occurs or another method is refe-
renced, which breaks behaviour preservation. The precondition istrivially preserved for Smalltalk, which
only has public methods.

5. no super invocations of method may exist in the direct subclasses of the defining class.

If this precondition is violated, after pushing method down any super references from subclass methods
would not point to method anymore, but either to another method in the superclass hierarchy of the original
defining class or to no method at all if no such superclass method exists. Figure 6.15 shows an example.

In Smalltalk only methods can be accessed with super, in Java both methods and attributes.

1. Weconsider botht hi s. m() andn() inJavaasaninvocationof m() ont hi s, asthelatter isonly ashort-
hand for the former.

Push Down Method (method) 93

before after

X X
m() m(Q)

: :
m()
X 7

>0

%C% N

TX0 m()
m()

D

D super. () ;

Figure 6.15 The super reference in C.x() points to B.m() before and to X.m() after the refactor-

Thisprecondition could possibly berelaxed by replacing the super referenceswith self referencesand so
point to the same method after the refactoring. However, thisis only possible if no subclasses define me-
thodswith the same signature as method. Because self isdynamically bound to theinstance, it would invoke
the subclass method oninstances of the subclassrather than the method that was statically referenced by su-
per.

6. super invocations to methods that are also defined in the defining class, may not exist in method, ex-
cept if the invoked method has the same signature as method itself.

before after
- \ X X
super.x (); () X()
N
> 4 4
A B A B
~Nm() —
b\ X0 super. x();
A % N Y
C D D

I~

m()
Figure 6.16 The super reference in m() points to X.x() before and to B.x() after the refactoring

If method (B.m() in the example in Figure 6.16) invokes methods (like X .x() in the exampl€) viathe super
keyword and there are al so definitions of these methods in the defining classitself (B.x() in the example),
these other definitions would be called instead afterwards. This possibly changes behaviour. If the method
invoked via super has the same signature as method itself (which is actually the most common case), then
there is no problem because method will be removed from its defining class and the invoked method will
therefore be the same one.

7. super accessesto attributes that are also defined in the defining class, may not exist in method.

Idem asprecondition 6 but for attributesinstead of methods. Thepreconditionistrivially fulfilled for Small-
talk asit allowsonly one attribute with the same name in the same inheritance hierarchy.

94 Language-Independent Refactoring

8. subclasses cannot inherit non-abstract methods with the same signature as method from other super-
class branches.

before after

A B A B
m() m() o |

% & R %C%>

C D

D

m() m()

Figure 6.17 Pushing down B.m() causes A.m() to be overridden in C

This precondition is a general one for multiple inheritance systems. Figure 6.17 shows an example. In
Smalltalk thissituation cannot occur asit hassingleinheritance. For Javathefoll owing casesneed to be con-
sidered:

» BisaJavaclassand A is (consequently) a Javainterface and A.m() is abstract. In this casethereis
no problem, because the implementing method in C stays the same.

* A and B are Java interfaces. A.m() and B.m() is consequently abstract and C is an interface or an
abstract class (asit does not implement m()). Therefore pushing down is not a problem, because no
implementations are hidden.

* BisaJavainterfaceand A isaJavaclass. Pushing it down will hide A.m(). Unless A.m() isabstract,
this cannot be allowed, hence this precondition.

9. method must not be a constructor.

A Java constructor is bound to its class, even by its name which is always the same as its defining class.
Thereforeit can not be moved out of itsclassin any way.

Related work

Opdyke [Opd92] and Roberts [Rob99] do not describe this refactoring.

Smalltalk

The Refactoring Browser [RBJ97] implements this refactoring. It allows the pushing down of amethod if
the defining classis abstract (as defined for Smalltalk in section 4.4.2). In such a case the method isknown
to not beinvoked on an instance of the defining class. However, invocations from within the class itself as
discussed in precondition 1 are not considered. If the method isoriginally invoked from amethod inits de-
fining class, initsfinal positioninasubclassit will beinvoked from asuperclass method. InaSmalltalk this
isnot aproblem dueto the dynamic typing and thefact that the defining (abstract) classisnever instantiated
anyway. But unless amethod with the same signature isinherited the result isbad style code. And in Java,
not rel evant for the Refactoring Browser but relevant for our work, acompilation error will occur. Therefore
wedo not alow this.

The Refactoring Browser al so checksif there are any super referencesto method inthe direct subclasses,
whichisequivalent to our precondition 5. It does not check, however, method calls from the target method.
Thisisno problem for self calls, because after the refactoring they will call the same methods as they did

Push Down Method (method) 95

before (as self is aways dynamically bound to the current instance), but it breaks behaviour in the case of
super references, because they are statically bound and therefore refer to a different class after the refacto-
ring (see our precondition 6).

The other preconditionswe describe aretrivially preserved for the Smalltalk language.

The Refactoring Browser automatically expandsthe scope of pool dictionariesto retain visibility for the
moved methods.

Java

Werner [Wer99] describesthisrefactoring as moving amethod to one of its subclassesinstead of all of them
(as Fowler does [FBB*99)]). He includes a thorough investigation of invocations by method, but does not
check invocations to method as we do in precondition 1 and super invocations by method aswedo in pre-
condition 6. Werner also does not check for constructors (our precondition 9). These omissionscan lead to
achangein behaviour of thetarget system.

Aninteresting precondition he describesisthat method isnot allowed to invoke any method on the same
instance (i.e., using thisor implicitly) that is overridden in the subclass. Thissituation isdepicted in Figure
6.18. However, m() cannot be called on instances of B (through precondition 1). Consequently it can only
be called on instances of C. In both cases, before and after the refactoring, t hi s. x() will call C.x(), be-
causelookup witht hi s awaysstartsat the current instance. Therefore, it isan unnecessary precondition.

before after
B B
1m0 -

x() x()
C

x()

A
c

N [x0
m()

Figure 6.18 Both before and after m() will call C.x() on instances of C

Another choice Werner makesis, instead of not allowing the refactoring if accessed attributes exist that
are accessed by method (as in our precondition 3), to replace the self/this references by explicit casts. See
Figure 6.19 for an example. We do not do this, becauseit isalanguage-dependent solution and widely con-
sidered abad coding style.

before after
B B

A ((Bthis).x; A
C o C
N [x
m()
Figure 6.19 Solving attribute accesses by inserting casts

96 Language-Independent Refactoring

Discussion

For thisrefactoring aclear choice has been made to use a certain definition of it to be able to serve multiple
languages. We have chosen to push down to all subclasses, because it can both be supported by Java and
Smalltalk. Thisisal so the way the Refactoring Browser implementsthisrefactoring. However, asreflected
by both Fowler's[FBB*99] and Werner’s[Wer99] descriptionsthisisnot what Javadevel opers might want
or expect fromthisrefactoring. It might also not be the preferred way for visual toolsthat support thisrefac-
toring by dragging methodsto a subclass.

Thisrefactoring also does not deal explicitly with the pool dictionariesin Smalltalk. If amethod has ac-

cessto pool dictionaries and it is moved to another class, it still needs to have access to the same pool dic-
tionaries. We let the Smalltalk code transformer take care of that transparently.

Add Parameter (name, method) 97

ADD PARAMETER (NAME, METHOD)

Adds parameter with name name to method. All invocations to the method get an added
argument with a default value.

before after
E A E A
m() m() m(Object o) m(Object 0)
X B D X B D
T m() m() T m(Object o) | | m(Object o)
B b = new B(); A B b = new B(); A
b.m); C b.n(nul); (3
m() m(Object o)

Figure 6.20 Add Parameter refactoring adding o to min class B

This refactoring is a variant of the Rename Method refactoring. In both refactorings the signature of
method changes. Analysisof methods and invocationsthat need to be changed istherefore the samein both
cases. A difference with the Rename Method refactoring isthat this refactoring can be applied to Java con-
structorswithout any problem, because, although the signature of method changes, the name of method does
not.

In Smalltalk adding (or removing) aparameter requiresthe name of the method to be changed. Every pa-
rameter in the method name must be preceded by a part of the method name followed by acolon. Example:

create: anChject with: aVal ue

When adding aparameter, amethod without any parameter needs at | east acolon to be added, amethod that
already has parameters needs some text ending with a colon to be added. Some exampl es:

create becomes create: an(hj ect,
create: anChj ect becomes create: anChject w th: anChj ect

Preconditions

Language-independent preconditions

1. method must not already have a parameter with name.

2. method must not already have alocal variable with name.

3. containing class must not have an attribute with name.

4. no classesor global variables with name may exist in the system.

5. all superclasses of the class containing method as well as the subclass hierarchies of the highest
superclasses that define a method with the same signature as method, must not already contain a
method with a signature implied by adding a parameter with name to method.

6. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

98 Language-Independent Refactoring

Language-dependent preconditions
7. name must be avalid parameter name.

Smalltalk-specific preconditions

8. no methods with same original signature as method may exist outside the inheritance hierarchy
of method.

Precondition analysis

1. method must not already have a parameter with name.
Otherwise name clasheswill occur.

2. method must not already have a local variable with name.
Otherwise name clasheswill occur.

3. containing class must not have an attribute with name.

For Smalltalk aviolation of this precondition will result in acompileerror independent of thefact if the ori-
gina attributeisaccessedin method or not. Thelanguagejust doesnot allow it. In Java, aparameter can have
the same name asan attribute. The original attribute will be hiddenin method. If theoriginal attributeisnot
accessed inmethod behaviour will be preserved. If theoriginal attributeisaccessed, the systemwill compile
if the new parameter hasthe same actua interface asthe attribute with the same name, but behaviour isnot
preserved.

We do not allow thissituation for both languages, eventhough in some casesfor Javathispreconditionis
not aproblem. Obviously thisconveniently keepsthe precondition the samefor both languages. For thefew
casesitisallowed for Javawe argue that the resulting codeis confusing, because two entities have the same
namein apartly overlapping scope. Code quality decreasesby allowingit.

4. no classes or global variables with name may exist in the system.

In Smalltalk aglobal variable or classwith acertain nameishidden by aparameter with the same namel. A
second point similar to precondition 3: hiding is confusing and the resulting code is worse than if another
nameis chosen. Therefore, we do not alow the hiding of global variables. Java does not have global varia-
bles so that part of the precondition istrivialy conserved. The case of classeswith similar names asvaria-
blesisallowed in Java and does not hide the class from the scope of the variable with the same name. The
followingisvalid Javacode:

public void aMethod(int String) {
String x = new String();

X = "Sander";
Systemout.printin("int String =" + String);
Systemout.println("String x =" + x);

}
Again confusing codeistheresult, sowedo not allow this.

1. Although the Smalltalk compiler (at least in Visua Works 3.0) warns the user about the hiding.

Add Parameter (name, method) 99

5. all superclasses of the class containing method as well as the subclass hierarchies of the highest su-
per classesthat define a method with the same signature as method, must not already contain a method
with a signature implied by adding a parameter with name to method.

Thispreconditionissimilar to precondition 1 of Rename Method, because both adding a parameter and re-
naming amethod result in achangein the signature of the method and thus may result in aname clash with
existing methods. Seethe analysis of precondition 1 of Rename Method on page 81 for details.

6. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

Thisissimilar to precondition 2 of Rename Method. In Smalltalk it is possible that invocations (possibly)
invoke methods with the same signature in different inheritance hierarchies. These invocations cannot be
adapted to reference achanged method, because they possibly invoke amethod in another inheritance hier-
archy that has not been changed. In Javathis precondition istrivially preserved, because its static type in-
formation and limited polymorphism restrict the candidate invoked methods to the targeted group of
methods within the same inheritance hierarchy.

7. name must be a valid parameter name.

The new name should adhere to the naming rules of theimplementation language.

Related work

Opdyke [Opd92], Roberts[Rob99] and Werner [Wer99] do not describe thisrefactoring. However, the Re-
factoring Browser [RBJ97] implementsthisrefactoring for Smalltalk. It usesadefault namefor the new pa-
rameter (anObject or anObject<nr> if the name ‘anObject’ already exists in the scope of the method). It
does, therefore, not need to check the clasheswith existing local and global variables and attributes. Diffe-
rent from us, it allows the user to enter an initialization expression which isinserted in every invocation of
method and athorough analysis of validity of thisexpressionis performed. We just insert an default empty
value (null or nil depending on the language).

Discussion

Clearly most of the preconditionshaveto do with possible nameclashes. A parameter hasmethod scopeand
if any existing variable existsthat hasthe same name and the same or awider scope (and thereforeisacces-
siblewithin the contai ning method), the new parameter will hidethisvariable and any use of thisvariablein
method will break.

All except one of the preconditions are language-independent, partly because they arejust language-in-
dependent and partly because there are some restrictionsthat would not be necessary for one of the suppor-
ted languages (like in precondition 4). These restrictions, however, contribute to keeping the quality of the
final code higher by enforcing good practices. Some users, however, may not like the fact that they arere-
stricted and cannot make the decision themsel ves.

A language dependent issue not reflected in the preconditions, is the method name change required in
Smalltalk. Theimplementation of precondition 4 depends on the signature after the parameter addition and
thus on a changed namein the case of Smalltalk. Similarly, the Smalltalk code transformer uses achanged
namewhen it appliestheactual code changes. |nour implementation weadd somedefault text to the method

100 Language-Independent Refactoring

name to be a.ble to add the parameter. A nicer, but for thisresearch irrelevant, approach istaken in the Re-
factoring Browser [RBJ97]. It givesthe user the possibility to change the name of the method and the order
of the parameters.

Remove Parameter (parameter) 101

REMOVE PARAMETER (PARAMETER)

Removes parameter from its method. Corresponding arguments are removed from all

invocations.
before after
E A E A
m(Object o) m(Object o) m() m()
DA E DDA
X B D X B D

T m(Object 0)| [m(Object o)

T m() m()

B b = new B(), A B b = new B()/ A
b. n{aval ue) ; C b. m(); C

m(Object 0) m()

Figure 6.21 Remove Parameter refactoring removing o from min class B

Thisrefactoringisavariant of the Rename M ethod refactoring. In both refactoringsthe signature of method
changes. Analysis of methods and invocations that need to be changed therefore is the same in both cases.
A differencewith the Rename Method refactoring isthat thisrefactoring can be applied to Javaconstructors
without any problem, because, athough the signature of method changes, the name of method does not.

In Smalltalk, similar to the Add Parameter refactoring, removing aparameter requires aname change of
the method. We change the name of the method by removing only the colon if the first parameter is being
removed, or the text with colon directly preceeding the parameter being removed. Some examples:

i nvokes: ad ass becomes i nvokes
i nvokes: ad ass with: anArgunment becomes i nvokeswit h: anAr gunent

i nvokes: ad ass with: anArgurent becomes i nvokes: ad ass
Preconditions

Language-independent preconditions

1. parameter must not be referenced in the containing method or equivalent parametersin any over-
riding or overridden method.

2. al superclasses of the class containing the method parameter belongs to, aswell as the subclass
hierarchies of the highest superclassesthat define amethod with the same signature that method,
must not already contain a method with a signature implied by removing parameter from its
method.

3. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

102 Language-Independent Refactoring

Precondition analysis

1. parameter must not be referenced in the containing method or equivalent parametersin any overrid-
ing or overridden method.

If one of parametersisused in the bodies of the containing methodsthe refactoring would break the system.

2. all superclasses of the class containing the method parameter belongs to, as well as the subclass hi-
erarchies of the highest superclasses that define a method with the same signature that method, must
not already contain a method with a signature implied by removing parameter from its method.

Thispreconditionissimilar to precondition 1 of Rename Method, because both removing a parameter and
renaming amethod result in achangein the signature of the method and thusmay result inanameclash with
existing methods. Seethe analysis of precondition 1 of Rename Method on page 81 for details.

3. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

Thisissimilar to precondition 2 of Rename Method and precondition 6 of Add Parameter. In Smalltalk itis
possiblethat invocations (possibly) invoke methods with the same signaturein different inheritance hierar-
chies. Theseinvocations cannot be adapted to reference achanged method, because they possibly invoke a
method in another inheritance hierarchy that has not been changed. In Javathispreconditionistrivially pre-
served, because its static type information and limited polymorphism restrict the candidate invoked me-
thodsto the targeted group of methods within the same inheritance hierarchy.

Related work

Opdyke [Opd92], Roberts[Rob99] and Werner [Wer99] do not describe thisrefactoring. However, the Re-
factoring Browser [RBJ97] implements this refactoring for Smalltalk. It essentially implements the same
preconditions aswe describe here.

Discussion

Basically issues worth mentioning for this refactoring are issues that have been discussed extensively for
other refactorings already. The element to be removed, i.e., parameter here, cannot be removed if it is still
referenced, the resulting method signature may not clash with existing methodswithin theinheritance hier-
archy and then thereistheissue of being ableto link invocationsto acertain method implementationin pre-
condition 3. Similar to precondition 4 in the Add Parameter refactoring, theimplementation of precondition
2 islanguage dependent in the sense that removing a parameter requiresamethod name changein Smalltalk
and not in Java.

Add Attribute (name, class) 103

ADD ATTRIBUTE (NAME, CLASS)

Adds the attribute with name in class.
before after

A A

s P

Figure 6.22 Add Attribute refactoring adding an attribute named x in class A

A simplerefactoring. No references need to be updated asthe attribute did not exist before. The only check
needed to be madeisif an attribute with name does not already exist inthe classhierarchy of class. For Java
weinsert the default type Qbj ect , for Smalltalk we do not need to provide any type information.

Preconditions

Language-independent preconditions
1. theinheritance hierarchy of the containing class must not already contain an attribute with name.
2. no globa variable with name may exist.
3. no class with name may exist.

Language-dependent preconditions
4. name must be avalid attribute name.

Precondition analysis
1. theinheritance hierarchy of the containing class must not already contain an attribute with name.

There are three ways an existing attribute that already has name can occur in the inheritance hierarchy of
class. Firstly, in classitself. Adding an attribute with name would result in two attributes with the same
name, which is not allowed. Secondly, in asuperclass. The new attribute would hide the existing attribute
from the subclasses, changing behaviour if the superclass attribute is accessed in or through those sub-
classes. Thirdly, an attribute with namemight already exist in asubclass. The new attribute would be hidden
from the such asubclass.

In Java the second and third case are allowed and accesses to hidden attributes can be resolved through
the use of explicit scoping. However, thisrequires extensive analysis of the accesses. Furthermore, compa-
tibility of the preconditionwith Smalltalk isbroken, becausein Smalltalk two attributeswith the same name
inthe sameinheritance hierarchy are not allowed.

2. noglobal variable with name may exist.

The new attribute would hide the global variable from the containing class and its subclasses, changing be-
haviour if that global variableisreferenced in those classes. Javadoes not have global variablesand thusthis
preconditionisfor Javatrivially preserved.

104 Language-Independent Refactoring

3. no classwith name may exist.

In Smalltalk the classwould be hidden in the classeswhere the new attributeisvisible, becausein Smalltalk
every classisalso aglobal variable. In Javaclasses and variabl es can have the same name. They do not hide
each other. Thefollowingisvalid Javacode:

public class X {
int X
public X newl nstance() { return new X(); }

}

However, because the resulting codein such asituation isnot considered good style and to keep the pre-
condition language independent, we enforce this precondition for Javaaswell.

4. name must be a valid attribute name.
name should adhere to the naming rules of theimplementation language.

Related work

Roberts [Rob99] describes the same set of preconditions for this refactoring, which is to be expected be-
causeall presented preconditionsare hard preconditionsfor Smalltalk. For Javaand C++ different decisions
can be made. Werner [Wer99], for instance, allows attributes with the same name in the hierarchy of class
and resolves existing access clashes with explicit scoping. Opdyke [Opd92] has as only precondition that
there is‘no name collision with an existing member or global variable’ which includes inherited member
variables. He does not analyse subclass attributes and existing classes, but he does not haveto in C++. As
discussed abovewedo not allow both classesand subcl assattributeswith the same namefor reasons of good
coding style and compatibility of the approach with both Smalltalk and Java.

Discussion

Apart from thevalid name precondition (precondition 4), which isaways present when anew named entity
isadded, thisrefactoring only containslanguage-independent preconditions.

Remove Attribute (attribute) 105

REMOVE ATTRIBUTE (ATTRIBUTE)

Removes attribute from its containing class.

before after
A A

x -

Figure 6.23 Remove Attribute refactoring removing the attribute x from class A

If not accessed by any method the attribute can be removed from its containing class.

Preconditions

Language-independent preconditions
1. attribute must not be accessed.

Precondition analysis
1. attribute must not be accessed.

If attribute is accessed, either from methods in its containing class or subclasses of this class (in Javaand
Smalltalk), or from any other method outside the inheritance hierarchy (only in Java), removing it breaks
compilation or changes behaviour.

If accessesto attributeexist, itisapossibility to analyseattributesthat would be unhidden by the removal
of attribute. Accesses to attribute would access the superclass attribute instead. However, the only casein
which behaviour does not change isif the superclass attribute is not used for other purposes. Figure 6.24
shows an example where both superclass attribute (A.i) and the attribute to be removed (B.i) areused in pa-
rallel. Removing B.i would result in achangein behaviour. We do not analyse unhidden attributes.

before after
Bp:newB(); A B b = new B(); B A
b.i =3 nt i b.i =3 inti
(Ab).i =4 " (Ab).i =4
return b.i + ((Ab).i; 4 * return b.i + ((Ab).i; A
4 X — 4 X —
inti

Figure 6.24 The code returns 7 before and 8 after the removal of B.i

Related work

Opdyke[Opd92] (for C++) and Roberts[Rob99] (for Smalltalk) describe the same precondition. Robertsis
dightly more restrictive in the sense that in his version the attribute is not to be accessed within theinheri-
tance hierarchy, which isan obviousrestriction asin Smalltalk an attribute can only be accessed within the
inheritance hierarchy. With hierarchy Roberts means the subclasses, superclasses and the containing class

106 Language-Independent Refactoring

itself. The superclasses need not really to be checked because an attribute cannot be accessed from a super-
class, but Smalltalk allows only one attribute with a certain namein ahierarchy so it does not really matter.

Werner [Wer99] allows the removal of an attribute even if it is accessed if the removal unhides an at-
tribute with the same type of a superclass that was not used in the subclass hierarchy before (through cas-
ting). The unhidden attribute would take over the role of the removed attribute thereby preserving behav-
iour. However, a simple scenario showsthat thisis not awaysthe case (see Figure 6.24). Also parallel use
of the hiding attributes outside of the containing inheritance hierarchy needsto be analysed.

Discussion

This refactoring is smple and completely language-independent. Only one — language-independent —
precondition exists. The approach of Werner discussed above is firstly not sufficient to ensure behaviour
preservation and secondly FAMIX doesnot provideany datafl ow information to be ableto (attempt to) ana-
lyse aversion of that approach that would take accesses external to the inheritance hierarchy into account.
We also feel that the complexity does not outweight the advantage of being ableto apply therefactoring in
the special case of non-clashing parallel use of hiding attributes.

Note that removing B.i in Figure 6.24 is not a problem if B.i is not accessed (which is expressed in the
only precondition) or if C.i isnot accessed and hasthe sametype asB.i (which isacase we do not cover).

Rename Attribute (attribute, new name) 107

RENAME ATTRIBUTE (ATTRIBUTE, NEW NAME)

Renames attribute to new name. All accesses of attribute are changed to refer to the new
name.

before after

X X - X y

\ \

A a = new A(); A a = new A();
a.x = 10; ay = 10;

Figure 6.25 Rename Attribute refactoring renaming A.x to A.y

An attribute can be renamed to a new name if there is not yet an attribute with the same name in the same
scope aready. The accessesto attribute need to be updated to refer to the new name.

Preconditions

Language-independent preconditions

1. theinheritance hierarchy of the containing class must not already contain an attribute with new
name.

2. no global variable with new name may exist.

3. no class with new name may exist.

4. methods of the containing class and its subclasses that access attribute must not contain alocal
variable with new name already.

Language-dependent preconditions
5. new name must be avalid attribute name.

Precondition analysis
1. theinheritance hierarchy of the containing class must not already contain an attribute with new name.

Thispreconditionisidentical to precondition 1 of Add Attribute. Therefactoring would either result intwo
attributeswith the same namein the sameclass, or the new attribute would hide existing attributes or be hid-
den by it. See Add Attribute for details.

2. noglobal variable with new name may exist.

Thispreconditionisidentical to precondition 2 of Add Attribute. The renamed attribute would hidetheglo-
bal variable. See Add Attributefor details.

3. no classwith new name may exist.

Thisprecondition isidentical to precondition 2 of Add Attribute. In Smalltalk the renamed attribute would
hide the class. To keep the precondition language independent and because the result would be bad style
code, we also enforce this precondition for Java. See Add Attributefor details.

108 Language-Independent Refactoring

4. methods of the containing class and its subclasses that access attribute must not contain a local var-
iable with new name already.

A local method variable with the same name as an attribute in the same scope hidesthis attribute from (part
of) the method scope. Thisisnot aproblem aslong as attributeis not accessed in thismethod. If itis, rena
ming would giveit the same name asthe local variable, turning the access of the attribute into an access of
thelocal variable and changing behaviour.

5. new name must be a valid attribute name.
new name should adhere to the naming rules of the implementation language.

Related work

Opdyke[Opd92] (for C++) describestherefactoring in general terms. Any variable (if global or an attribute
or alocal variable or aparameter) can berenamed including an update of thereferencestoit, aslong asthere
areno name clashesin the scope of the renamed attribute. Consequently he does not allow local method va
riablesto hide the renamed attribute, even if the attribute is not referenced in this method. We do allow hid-
ing if the method does not reference attribute (see precondition 4).

Roberts [Rob99] (for Smalltalk) checks the same as we do except for the local variables, which might
lead to a behaviours change (see precondition 4). The Refactoring Browser [RBJ97], however, does check
for local variables.

Werner [Wer99] allows hiding of existing attributes with new name. Name clashes are resolved with ex-
plicit scoping of the attributesinvol ved. We do not allow this (see precondition 1). Hiding and explicit sco-
ping decreases code quality and is not a viable solution for Smalltalk. Furthermore, Werner, like Roberts,
doesnot takelocal variablesinto account.

Discussion

The same discussion asfor the Add Attribute applieswith asmall addition. The Rename Attribute refacto-
ring has one additional precondition (namely precondition 4), because it needs to deal with possible name
clashesof existing accessesto theattribute. Similarly Rename Attribute needsto update the attribute acces-
seson top of renaming the attribute, where Add Attribute only needsto add the attribute.

Pull Up Attribute (attribute, superclass) 109

PULL UP ATTRIBUTE (ATTRIBUTE, SUPERCLASS)

Pulls up attribute to one of its superclasses (superclass) removing all attributes with the
same name and type from all subclasses of superclass.

before after
A B A B

> :
% £ % % 7 &

N R

E E

X

Figure 6.26 Pull Up Attribute refactoring pulling attribute C.x up to superclass B

Not only isthe attribute pulled up, but all attributes with the same name and typein other subclasses of su-
perclass are pulled up aswell and merged into one declaration. The visibility of the attributeinitsfinal lo-
cationisat least protected to keep it visiblein its previous location, and public if one or more of the pulled
up attributes was public before the refactoring. To resolve visibility differences between the different at-
tributesthat are pulled up the widest visibility needsto be chosen. All original accessesto the attributes till
work because they have either the original accessto the attribute or an even wider one.

Preconditions

Language-independent preconditions
1. superclass must not contain an attribute with the same name as attribute.
2. any attribute in the subclasses of superclass with the same name as attribute must have the same
type as attribute. These attributes must not hide each other.
3. pulling up attribute may not hide in superclass another attribute with the same name.

4. pulling up attribute may not unhide any attribute with the same name from other superclass
branches of the containing class.

Precondition analysis
1. superclass must not contain an attribute with the same name as attribute.

Otherwise the superclass attribute would be replaced (which is equivalent to removing attribute). As at-
tribute and the superclass attribute can be used in parallel as discussed in the motivation of precondition 1
of Remove Attribute on page 105, this cannot be allowed unless either attribute or the superclass attribute
is not accessed within the system, which we do not check for. The precondition istrivialy preserved for
Smalltalk as no two attributes with the same name are allowed in an inheritance path.

110 Language-Independent Refactoring

2. any attribute in the subclasses of superclass with the same name as attribute must have the same type
as attribute. These attributes must not hide each other.

The attributeswith the same namethat are pulled up into acommon attribute in superclass need to have the
sametype, because in Javathe resulting system will not compile otherwise. In Smalltalk the precondition
istrivially preserved as Smalltalk isdynamically typed. Even if the attribute holds attributeswith compl ete-
ly different types at runtime, the system will till function as before, because independent of the typesthe
same objects are used at the same places before and after the refactoring.

Hiding of those attributesis not allowed for the same reasons asin the previous precondition.
3. pulling up attribute may not hide in superclass another attribute with the same name.
before after

X X

Figure 6.27 B.x hides X.x from subclasses that use it (D)

Thissituation could change behaviour, because any referencesin the subclassesto the now hidden attribute
would reference the pulled up attribute instead (e.g., thereferenceto X.x in D.m() in Figure 6.27). In Java
this can be resolved by explicitly scoping to the now hidden attribute, i.e., by changing the code in D.m()
fromthis. x to ((X)this).x.Wedo not do this, because the resulting code is more complex than the
original. Another solution would beto give the user achoice.

1. The precondition can be relaxed by allowing attributes to have substitutable types and giving the pulled up
attribute the general type. We do not analyse this possibility.

Pull Up Attribute (attribute, superclass) 111

4. pulling up attribute may not unhide any attribute with the same name from other superclass branches
of the containing class.

before after

< - A B A B
C = new :

Cx = 10; X X X
X N
< C C
~d x = S x BN

Figure 6.28 The access to C.x before is ambiguous after the refactoring

Any original accessto attribute would become ambiguous otherwise. Figure 6.28 shows an example. The
presented situation can only occur in Javaas Smalltalk only hassingleinheritance. Explicitly casting theac-
cessesof C.x to access B.x after therefactoring isnot possiblein Java. Thisisnot contradictory to the state-
ment in the analysis of precondition 3. Casting successfully circumvents hiding variables, but does not
resolve ambiguousinherited attributes. In C++ explicitly scoping the variableis possible [Stro7].

Related work

Werner’s definition of this refactoring [Wer99] pulls the attribute up even if it hides an attribute with the
same name higher up intheinheritance hierarchy (asdepictedin theexamplein Figure 6.27). Any accessto
that attributein or through B isexplicitly scoped to use the same attribute after therefactoring. Thefact that
other attributes might hide the pulled up attribute is not analysed, but can be safely ignored in Java.

Roberts [Rob99] describes the Pull Up Attribute refactoring from the point of view of the superclass
(whichisactually the most consistent view given the name of the refactoring). He only checksif thereisa
direct subclass defining the attribute that isintended to be pulled up. If yes, thisattributeispulled up and all
other attributes with the same name in other subclass branches of the superclass are removed aswell. Be-
cause hiswork is focused on Smalltalk he does not need check the type of the attributes (because the at-
tributes do not have a static type) and replacing and hiding (because only one attribute in an inheritance
chainisalowed in Smalltalk).

Opdyke [Opd92] describes this refactoring under the name ‘move_member_variable to superclass'.
Theonly difference with our approach isthat Opdyke does not analyse hiding and the possibility of parallel
use of hidden and hiding attributes.

Discussion

The chosen definition of thisrefactoring fits both languages. The choiceto removeall attributesin the sub-
classbranches of superclassisneeded for Smalltalk, which doesnot allow multipl e attributeswith the same
name in ainheritance chain. For Javait would not be necessary but the resulting code would possibly con-
tain hidden attributes, which isbad coding style.

All preconditions are Java-specific but trivially preserved for Smalltalk. They deal with type informa-
tion, hiding and scoped accesses and visibility of attributes. Which are Java specific features. Smalltalk at-
tributes are (implicitly) protected meaning they are not visible outside of their inheritance hierarchy. Also

112 Language-Independent Refactoring

only one attribute with a particular name may exist in an inheritance chain, which takes away all the diffi-
cultiesthat appear in Javadueto hiding and scoping. Furthermore, the attributes are dynamically typed and
areall interpreted to have the most general type Object.

Push Down Attribute (attribute) 113

PUSH DOWN ATTRIBUTE (ATTRIBUTE)

Push attribute down to its subclasses.

before after
A B A B
X *
AN AN
C D C D
N R
E E

Figure 6.29 Push Down Attribute refactoring pulling attribute B.x down to its subclasses

Thisrefactoring pushes attribute down to all its subclasses.
Preconditions

Language-independent preconditions

1. attribute must not be accessed in or through its containing class.

2. thedirect subclasses of the containing class must not contain an attribute with the same name as
attribute.

Precondition analysis
1. attribute must not be accessed in or through its containing class.

By pushing down the attribute the scope of this attribute is narrowed by taking the containing class away
from the scope. However, if thereisany accessin thisclassit will break afterwards, because attributeis not
available in that scope anymore. In Smalltalk this precondition is easier preserved, because attributes can
only beaccessed fromtheclassitisdefinedin or itssubclasses. In Java, although often regarded asbad prac-
tice, it is possible to access an attribute from outside the class. The receivingClass attribute of the Access
records the class on which an attribute is accessed, because they might have been used in parallel with at-
tribute using scoping.

2. thedirect subclasses of the containing class must not contain an attribute with the same name as at-
tribute.

Thisistrivially preserved for Smalltalk, because there will never be an attribute with the same namein the
subclassessincethelanguagedoesnot allow it. In Javait is possibl e and these subcl ass attributes cannot just
be overwritten, because both attributesmay beused in parallel to store different values (seea sotheanalysis
of precondition 1 of the Remove Attribute refactoring).

114 Language-Independent Refactoring

Related work

We see different definitions of thisrefactoring. Opdyke [Opd92] and Roberts [Rob99] use the same defini-
tion we use, namely pushing attribute down to all subclasses. Werner [Wer99] pushes down to only one
user-definable subclass. Fowler [FBB*99] and the implementation of the Refactoring Browser [RBJ97]
push down to all subclass brancheswherethe attributeis used.

Opdyke checks accesses to attributesin its containing class (i.e., our precondition 1) and does not allow
attribute to be private. Although it can be argued not to push down private attributes, because thereisadif-
ference in reducing the scope of an attribute (which iswhat happenswhen anon-private attribute is pushed
down) and moving an attribute from one scopeto the other (which iswhat happens when a private attribute
ispushed down), thereisno real harm in pushing down aprivate attribute asit is not referenced anyway ac-
cording to precondition 1. Opdyke does not check for subclass attributes with the same name and no muilti-
pleinheritanceissues.

Roberts [Rob99] only checks if attribute is not referenced in class. Thisis sufficient for attributes in
Smalltalk asthey can only bereferenced fromitscontaining classand its subclasses, only one attribute with
acertain name may exist ininheritance chain and Smalltalk does not have multiple inheritance.

Werner [Wer99] pushes down to a one distinct subclass. He checksif that subclass contains an attribute
with the same name already. He does not check accesses on the original containing class, which might
render the refactoring behaviour breaking (see precondition 1).

Discussion

Therefactoring is defined to push the attribute down to al subclassesrather than to only one subclassor the
subclassesin which hierarchiesthe attributeis used (see al so the Rel ated Work section above). It makesthe
analysisdlightly easier, because no checksare needed to find out in or though which subclassesthe attribute
isaccessed.

Aswemodel refactoringsinamultiple-inheritance environment it isnecessary to have alook at possible
consequencesof hiding other attributes by pushing down attribute. Figure 6.30 showsascenario. A.x would
be hidden by C.x after therefactoring possibly breaking accessesto A.x from C or its subclasses. However,
the ‘before’ situation cannot occur. Smalltalk has single inheritance, in Java any access is ambiguous and
cannot be explicitly scoped. In C++ the accesses are ambiguous.

before after
A B A B
X X * X
N AR AN

C D C D
X X

é é

Figure 6.30 Pushing down B.x to C hides A.x from (subclasses of) C

Validation 115

6.4 Validation

Validation of thiskind of work isadifficult point. Without aformal definition of thetarget languages, every
statement will be based on some assumptions somehow. Basically the question that needs answering is, if
the presented preconditions are correct, necessary and sufficient. Firstly, the discussions of therefactorings
in section 6.3 clearly aim at providing confidencein the correctness and necessity of the preconditions. The
sufficiency cannot be proven as such, aswe cannot go further than carefully check the aff ected program ele-
mentsin theoriginal scope of thetarget methods before the refactoring and the possibly final scope after the
refactoring.

Secondly we have compared our findings with existing work in the field [Opd92] [RBJ97] [Rob99]
[Wer99], asshownintherelated work sections of therefactorings. We havefound several holesin these oth-
er approachesin the process.

Thirdly, we have verified the work by doing experiments. We have built a prototype, the Moose Refac-
toring Engine, that supports the fifteen refactorings described in this chapter. It is part of the Moose Reen-
gineering Environment, atool environment for reengineering object-oriented systems, which is discussed
in more detail in chapter 5. We have used the refactoring enginein two ways. Oneisanon-trivial sequence
of refactorings on two similar toy banking system, oneimplemented in Smalltalk and onein Java. Secondly
wehave applied therefactoringson the code of our M oose environment in Smalltalk and on the JUnit frame-
work in Java. These experiments, including adetail ed description of theengineitself, are presented in chap-
ter 7.

6.5 Discussion

Therefactorings areto the greater extent language-independent. It ishard to sensibly quantify thelanguage
independence, but the following numbers give an impression.

The 15 refactorings define 67 preconditions, from which 51 are language independent (~ 76%), 5 are
Smalltalk dependent, 4 are Javadependent and the remaining 7 define the language-dependent precondition
that aentity name should conform to the rules of theimplementation language of thetarget system. The 11
Smalltalk- and Java-specific preconditions can be classified asfollows:

A classisnot aSmalltalk metaclass
Instance methods of Smalltalk metaclassrather than class methods

Method is not a Java constructor

P W N W

Superclassisnot aJavainterface

Mostly the language-dependent checks that need to be performed are simple checks that certain opera-
tions are not possible for certain specific entities. Examples are that the class refactorings (Add Class, Re-
move Class and Rename Class) cannot be applied to Smalltalk metaclasses. And some of the method
refactorings (Rename Method, Pull Up Method and Push Down Method) cannot be applied to Java con-
structors. However, Remove Method aswell asthe parameter refactorings (Add Parameter and Remove Pa-
rameter) can be applied to constructors without any problem. And preconditions for other refactorings
transparently take constructors (asjust another method) and their invocationsinto account. For instance, in
the Push Down Attribute refactoring it is checked if no method (i.e., all methodsincluding constructors) in
its defining class accesses the attribute.

116 Language-Independent Refactoring

A few preconditions arereally specific for the semantics of the language-specific construct. An example
is precondition 7 of Pull Up Method, which states that a non-abstract method cannot be pulled up into an
interface. However, thisisthe only precondition that isinterface specific. In al other casestheinterface as
class can be treated as any other class, including the multiple inheritance. For the actual code transforma-
tionsthe fact if aFAMIX class represents an Javainterface or a Java class, needs to be taken into account
more often, becauseit influencesthe syntax of theresulting code. An exampleistheuseof thei npl enent s
keyword in the case of Javainterfacesand theext ends keyword for Javaclasses.

The following additional observations can be made:

Language independence brings useful reusability. Major parts of the refactorings are described
and analysed on alanguage-independent level. Similar conceptsin the different languages aretreated in a
uniform way, resulting in reuse of analysis and reducing the language specifics to only the changesin the
source code. However, in some cases the advantages of reuse come at acost:

* Increased complexity of algorithms. To deal with multiple languages the underlying model needsto
be general enough to cover the supported languages. For instance, the model supports multiple in-
heritance, which involves more complexity than would be needed, for instance, for single inheri-
tancein Smalltalk alone.

» Mapping back to the actual code. The actual code transformations are, naturally, language specific.
Therefore, in some cases the concepts that are generalized at the language-independent level (e.g.,
Java constructors are methods, Java interfaces are classes) need to be mapped back to their lan-
guage-specific kind, because at the code level they need to be dealt with differently than their ‘nor-
mal’ counterparts. For example, on the code level invocations of Java constructors are different from
invocationsto ‘normal’ methods. Thisimplies that the language-specific information about how an
entity has been mapped needs to be stored, because it is necessary information when mapping back.

» Language-independent defaults. To keep some refactorings as language independent as possible,
some defaults are used. Typical examples are types. some refactorings use the most general type,
i.e., Object for both Smalltalk and Java. Thisworkswell for both languages, althoughit is clear that
support for defining or changing types would be desirable for statically typed languages such as
Java.

» Definitions of refactorings are tuned for compatibility over multiple languages. Thereis (only) one
refactoring in the presented set, namely Push Down Method, which is defined the way it is, because
of one of the implementation languages. It pushes down to al subclasses, although it could have
been defined otherwiseif in Smalltalk there would be enough information to push down to only one
subclass. See Push Down Method on page 91 for more details.

» Checks are not necessary for all supported languages. Depending on the implementation language
some of the presented language-independent checks would not need to be carried out. An example
isthe analysis for attributes hiding each other, which cannot happen
in Smalltalk. Optimisations in the responsiveness of a refactoring tool could be realised by, in the
case of the above example, not checking the language-independent Java-specific preconditions for
Smalltalk. However, as one of the goals of thisresearch isto maximise reusability and language in-
dependence we did not pursue this path.

Not all language differences can be abstracted from. i.e., most refactorings cannot be complete-
ly described at alanguage-independent level. We see the following kinds of issues:

Discussion 117

» Standard issues that are apparent in all languages, but need a language-specific interpretation, like
if aname of aclassisavalid class name for that language.

 Issuesthat are caused by the mapping from the language to FAMIX. For example, the metamodel
does not know the concept of metaclasses or interfaces. Rules that apply to these specific concepts
need to be checked nonetheless and are inherently language specific.

» Themost problematic issues arein the core differences between the languages. The fact that Small-
talk isdynamically and Java statically typed, means that there isless information available at com-
pile-time. Especialy for dependency analysis through invocations and accesses, the type informa-
tion tells much more precisely which method is invoked or which attribute is accessed. In dynami-
cally typed languages a certain method invocation can be any method with that signature, no matter
what classit is defined in. Therefore, some refactorings can only be applied for dynamically typed
languages when more severe restrictions are taken into account. An exampleisthe Rename Method
refactoring which can only be applied when there is no method with the same signature as the me-
thod to be renamed outside of the targeted inheritance hierarchy. Note that the type information for
dynamically typed languages can be refined through additional analysis (for instance, using typein-
ference techniques) [Rob99], but thisis outside the scope of this thesis.

All in all we can say that the presented model is adequate to represent refactorings for multiple object-
oriented languages. The program entity level of information is sufficient for refactorings that do not need
detailed information about method bodies. Some language-dependent details, however, must be coped
with.

Influence of metamodel design decisions. Many design decisions for the model —to apply alan-
guage-independent naming scheme including scoping and the different mappingsto allow to treat similar
constructsin different languagesin asimilar way— result in language independence and reuse of analysis
code. However, especialy withthe mappings, itisalwaysatrade-off between reuse and complexity. Instead
of mapping similar constructs to one representation, the two constructs can be both modelled explicitly.
Naturally this decreases problemswith differences between the constructs, but it al so makesthe model less
general and opportunities for reuse could be missed. Another possibility isto not model aconstruct at al.
Thistypically allowsto get rid of language specifics, but al so makesthe model less useful.

In the context of refactoring the chosen mappings, most notably those of Java constructors to methods
and Javainterfaces and Smalltalk metaclasses, have worked out well. We especially found both Java map-
pingsto easily fit and allow to exploit the similarities with other constructs. For the metaclass mapping the
advantages are less clear. Method and Attribute refactorings can be applied to (members of) metaclasses
without any problems, but the class refactorings are not applicable at al. An alternative would be to not
model metaclasses explicitly and model metaclass methods and attributes as class (in Java static) methods
and attributes of the class the metaclass is representing. We have chosen not to do this, because, as said,
some refactorings do work with this scheme and the alternative mapping results in problems with name
clashes between class methods and instance methods and problemswith the equal treatment of instancele-
vel classattributes and classlevel instance attributeswhich are different conceptsin Smalltalk.

Oneof themodelling decisionsthat hasworked out particularly well istheway candidateinvocationsare
modelled. Ascanalso bereadin section4.4.1 every invocation liststhe possibly invoked methods. In Small-
talk thislist can be considerably larger than in Java, becausein Smalltalk thereis no static typeinformation
isavailabletorestrict aninvocation to acertain classor hierarchy of classes. However, thelist of candidates

118 Language-Independent Refactoring

of an invocation abstracts from the differencesin static and dynamic typing in the analysis of possibletar-
gets of invocations and so hides one of the main differences between Java and Smalltalk at the conceptual
level of defining refactoringsin terms of FAMIX. An exampleis precondition 2 of the Rename Method re-
factoring.

Support for other languages. A word about supporting other languagesthanthe onesdiscussedinthis
chapter. The FAMIX model isalready set up to support more languages than Smalltalk and Java. Explicit
mappings are defined for both C++ [Bar99] and Ada[Neb99] and our FAMIX-based toolset has been ac-
tively used to analyse systemsin these languages. Furthermore, a project isunderway to build a C++ refac-
toring tool based onthe FAMI X metamodel [BorQ1]. Therefore, we are confident we can use our model and
extend our tool to support these and other languages without too many problems. All standard object-ori-
ented features are supported, most notably in comparison with other approaches multipleinheritanceand a
combination of static and dynamic typing. Of course, for every newly supported language the model and the
definition of therefactoring need to be carefully checked to seeif the semanticsof already modelled features
isdifferent and if this difference demands a change in the model and/or a change in the refactoring defini-
tion, for instancein the form of adapted preconditions or an added |anguage-dependent precondition.

CHAPTER 7

The Moose Refactoring Engine

The Moose Refactoring Engine is the part of Moose that provides code transformation support. It imple-
ments the fifteen refactorings described in chapter 6. Consequently, the analysis performed by the refacto-
ring engine, i.e., checking the preconditions and determining what pieces of code need to be changed, is
completely based on the Moose repository, and thus on the information available according to the FAMIX
metamodel and its language extensions. The Moose Refactoring Engine currently supports Smalltalk and
Javarefactorings.

The Moose Reengineering Environment, described in chapter 5, validatesthe FAMI X metamodel for its
adequacy to support multiple cooperating reverse engineering tools. This chapter focuses on validating the
refactoring theory presented in chapter 6. Assuchit also providesin-depth validation of the language-inde-
pendence of FAMIX. Refactoring requires complex semantical analysiswith information that i s sufficient-
ly precise, completeand correct. Otherwiseatransformation cannot not be safely applied. Thismust beseen
in contrast to the analysis tasks that can often work with partia or slightly imprecise information
[MNGL98] [Bis92]. Furthermore, the refactorings change the (inherently language-specific) source code
and therefore require the metamodel to supply sufficient information about the language mappings.

The practical goal of the refactoring engineisto integrate refactoring support in Moose. In thisway re-
verse engineering and reengineering can seamlessly work together to, on the one hand, support system ana-
lysis and on the other hand to propose solutions for problems found in terms of (semi-)automated code
transformations.

We start with adescription of thearchitecturein section 7.1. Afterwardswe describe the experimentswe
have done with the enginein section 7.2. We finish with adiscussion (section 7.3).

7.1 Architecture

Thearchitecture of the M oose Refactoring Engineisdepictedin Figure 7.1. The different partsare (seea so
the numbersin thefigure):

120 Architecture

VisualWorks Smalltalk intern

Moose

Moose Refactoring Engine

Refactoring analysis @
1 |
v

Common Front-end Interface
| . ikl
I \ + 3
Moose Repository] Smalltalk Java
I__IZ_J%| Front-end Front-end
1
|
4 4
| |
| | |
CDIF Importer Smalltalk parser Refactoring

Browser

®

SNiFF+ parser

Figure 7.1 Architecture of the Moose Refactoring Engine

Parsing and importing of the target system (1). First asystemis parsed by either an external par-
ser (SNiFF+ [Tak96] for Java) or an internal parser for Smalltalk, and imported into the repository. Thisis
standard functionality of Moose and is not specific for refactoring.

Refactoring analysis (2). The analysis part implements the analysis that is presented in section 6.3. It
gathersitsdatafrom the Moose repository with which it checksthe preconditions of the refactoring. It also
collectsthe relevant model elementsthat represent the source code that needsto be transformed. If all pre-
conditionsarefulfilled, the engine usesthe gathered information to trigger the actual codetransformers, the
code transfor mation front-ends we discuss hereafter.

The Moose Refactoring Engine 121

The Code Transformation Front-ends (3). The code transformation front-ends perform the final
low-level code transformations. They work directly on the source code, hence they are language specific.
They cannot work on the level of the model, because it does not contain enough information to regenerate
source code. Instead they use the source anchor information in the model to determine where a specific
transformation must take place.

Thefront-end implementation classes have acommon interface for all supported languages. Thismakes
it easy to exchange and add front-ends. Figure 7.2 shows an example. The MethodTransformer interface,
used by the Pull Up Method, Push Down Method, Add Method and Remove M ethod refactorings, contains
three methods that must be implemented by all transformation front-ends. Implementing classes only need
to take care of alocal implementation of theaction, e.g., r enoveMet hod: only physically removesameth-
od. It does not check any preconditions or update any references.

PushDownMethodRefactoring <<interface>>
method: ‘ MethodTransformer
addMethodWithName:in:
- cloneMethod:in:
PullUpMethodRefactoring / removeMethod:
method:superclass: ﬂ AV
/ o~
AddMethodRefactoring / JavaMethodTransformer
name:class: ; addMethodWithName:in:
SmalltalkMethodTransformer | | ¢loneMethod:in:

removeMethod:

addMethodWithName:in:
cloneMethod:in:
removeMethod:

RemoveMethodRefactoring

method:

Figure 7.2 Front-end interface for the method refactorings

In some of thefront-end classes methods exist in the publicinterface that do not have animplementation
for some of the supported languages. As an example Figure 7.3 shows the required interface for Rename
Class front-end classes. The Javafront-end implements all methods. In the Smalltalk front-end only three
methods have a meaningful implementation, namely changed assNane, changeSuper Cl assRef e-
renced : andchangeC assMet hodl nvocat i on: O : . The other four methods have empty implemen-
tations and are there only for interface compatibility reasons. These methods deal with changing type de-
clarations — which Smalltalk does not have — and accesses to class attributes using the classnameto re-
ference the containing class' — which cannot occur in Smalltalk. However, the Rename Class refactoring
invokes all methods of the RenameClassTransformer, becauseit isindependent of the targeted language.

RenameClassTransformer

. . . changeClassName
empty implementations in changeSuperClassReferenceOf:

the Smalltalk front-end changeClassMethodinvocation:Of:

[changeClassAttributeAccessOf:
changeTypeOfVariable:
changeTypeOfParameter:
changeReturnTypeOfMethod:

Figure 7.3 Front-end interface for the Rename Class refactoring

1. Like A. b in Javato access the static variable b of class A

122 Validation

The Smalltalk front-end usesthe parts of the Refactoring Browser [RBJ97] for low-level codetransfor-
mationsto change Smalltalk code. The Javafront-end currently uses atext-based approach based onregular
expressions. It supports all our refactorings as long as the source code adheresto certain layout rules. We
plan to move to an abstract syntax tree based approach in the future, because it better abstracts from these
layout detail sand better fitsthe more complex codetransformations. However, for the purpose of validating
therefactoring analysis of chapter 6 the current implementati on suffices.

7.2 Validation

Wehavevalidated the prototypeintwo ways. Oneisthe application of anon-trivial sequence of refactorings
on atoy banking system, one time implemented in Smalltalk and onetime in Java. Secondly, we have ap-
plied all refactorings on real world code, namely on our Moose environment in Smalltalk and on the JUnit
testing framework in Java[JUn]. We discuss these experiments now in detail.

7.2.1 A non-trivial refactoring sequence on a toy banking system

Thecase study consistsof the application of asequence of refactoringsto two small piecesof similar Small-
talk and Java code. Both implementations have a testsuite included that thoroughly tests the application.
Thisallows usto apply exactly the same transformation sequence on both Smalltalk and Java and test be-
haviour preservation and language independence. The sequence includes all fifteen refactorings of the re-
factoring engine.

The code implements atoy banking system with a Bank, Customers and Accounts (see Figure 7.4 (1)).
Therefactorings are applied to gradual ly add transacti on support to the Customer and Account class. After
every refactoring inthe sequence, atestsuiteisruntotest if the adapted software still functions as expected.
Thistestsuite is adapted by the refactorings aswell, asit contains references to the classes and methods of
the application.

Lockable
Account
accountNr
Account balance
transactionld commit(id)
ggf;)#getNr workingBalance abort(id)
getBalance() gettga:ance((id) t,id)
setBalance(amount,i
Bank % setBalance(amount) Bank getAccountNr(id) Account
ntNr i
seeBalance getaccountNr) ~coBalance !gﬁléggzed() Bank accountNr
(accountNr, P seeBalance balance
customer) (accountnr, Cgmm-'é(ld) (accountNr workingBalance
transfer(amount, Customer customer) | labort(id) | customer) :
from. to customerNr transfer(amount, transf t getBalance(id))
custémér) from,to, rans ‘?:(()an']“t%un) setBalance(amount,id)
getCustomerNr() customer) \ Customer customer) getAccountNr(id)
customerNr

Customer
customerNr

getCustomerNr()

getCustomerNr(id)

1 2 3

Figure 7.4 Refactoring scenario introducing transactional support to a toy banking system

Figure 7.4 showsthe scenario in anutshell. The transactional support that isadded, comprisesthe adap-
tation of the Account and the Customer class with locking functionality for atwo-phase commit protocol.

The Moose Refactoring Engine 123

Thefunctionality isadded in two steps. Inthefirst step the Account class getstransactional support (from 1
to2). Inthe second step (from 2 to 3) thegeneric part of thetransactional support isliftedinto anewly added
common superclass of Account and Customer, so that acustomer can be locked as part of atransaction as
well.

We now list sequence of refactoringsin detail starting with the transformation from 1 to 2:

1. AddAttribute: t r ansact i onl d and wor ki ngBal ance to Account

2. Add Method: | ock(),isLocked(),commit() andabort () to Account

3. Add Parameter: id to getBal ance(), setBal ance(anount) and get Account Nr(),
| ock(),comit() andabort ().

Method bodies need to be added to the new methods| ock() ,i sLocked(),conmit () andabort ()
and the method bodies of get Bal ance, set Bal ance and get Account Nr need to be adapted. Thisisnot
covered by the refactorings and is therefore done by hand. We also add code to Bank to create transaction
ids, but we do not describethe details here. Furthermore, we adapt theteststo cover the added transactional
behaviour. Thisfinishesthefirst step. The step from 2 to 3 involvesthe following refactorings:

4. Add Class: Lockable with subclasses Account and Customer
5. Pull Up Attribute: t ransact i onl d to Lockable
6. Pull Up Method: i sLocked(i d) toLockable

To pull up ! ock(id), conmit(id) andabort (id) the method bodies of these methods need to be
adapted to separate the account specific functionality (such as setting thewor ki ngBal ance) fromthege-
neric transactional functionality. For instance, from theconmi t method the account specific functionality,
namely committing the working balance to the balance, is extracted in a separate method called conmi t -
Wor ki ngSt at e (see Figure 7.5).This separation can be realised using an Extract Method refactoring
[FBB*99], but this refactoring requiresinformation that is not availablein FAMIX. Consequently, it is not
covered by our engine.In this experiment we extract the method by hand.

Thenext actionisto create abstract templ ate methodsin the superclassfor the extracted methods such as
conmi t Wor ki ngSt at e. Thisallowsusto pull up the transactional methods.

7. Add Method: | ockWor ki ngSt at e, conmi t Wor ki ngSt at e and abort Wor ki ngSt at e to
L ockable and make them abstract by hand.
8. Pull Up Method: | ock(i d),commit(id) andabort (id) toLockable

And finally we changetheget Cust oner | d method to use the now inherited transactional support:
9. Add Parameter: i d to get Cust onmer (i d) and adapt its body by hand.

The scenario does not inherently include the renaming refactorings. We just add them to cover the com-
plete set of chapter 6:

10. Rename Class. Customer to Client
11. Rename Method: Lockabl e. i sLocked() tol ocked()
12. Rename Attribute: Account . account Nr to account Nunber

All refactorings that are not covered yet, are covered by reversing the scenario from 3 to 1 to bring the
Bank application back to its original, non-transactional state. Renamed entities are given their origina
name again. Pushed up attributes and methods are pushed down and added parameters, methods, attributes
and the L ockabl e class are removed. Where necessary method bodies are again adapted by hand.

124 Validation

comit: id
self require: [self isLocked: id] usingException: # ockFail ureSignal.
bal ance : = wor ki ngBal ance.

wor ki ngBal ance := nil.
transactionldentifier :=nil.
commt: id

self require: [self isLocked: id] usingException: #l ockFail ureSignal.
sel f comm t Wrki ngState
transactionldentifier :=nil.

commi t Wr ki ngSt at e
bal ance : = wor ki ngBal ance.
wor ki ngBal ance := nil.

Figure 7.5 Separating Account specific from generic transactional code

We have applied the above scenario successfully onimplementationsin Javaand Smalltalk. FAMI X sup-
portsfifteen of the sixteen refactorings needed to perform the scenario. Only the Extract M ethod refactoring
is not supported, because FAMIX does not contain sufficiently detailed information about method bodies.
Obvioudly, the parts of the scenario that change the behaviour of the bank application, for instance, chan-
ging the get Bal ance method to check calling provides theright transaction identifier, are not covered by
theengineaswell.

7.2.2 Experiments on Moose and JUnit

We have applied all fifteen refactorings on the Moose reengineering environment in Smalltalk (see also
chapter 7) and the JUnit testing framework in Java[JUn]. The goal isto show that the refactorings are al'so
applicable to applications that solve real world problems, rather than having been engineered for the pur-
pose of testing therefactoring engine. Criteriafor these case studies are that the software comeswith acom-
prehensivetestsuite that can be run before and after the refactoringsto test behaviour preservation, and that
the source codeisavailableto us. Mooseand JUnit fulfil theserequirements. Mooseisamiddlesized system
(~350 classes, ~2200 methods), JUnit issmall (78 classes (inner classes not counted), ~700 methods)®. We
have applied all refactorings of the refactoring engine and, similarly to the experiment in section 7.2.1, we
have tested behaviour preservation by running the available testsuites. In several cases refactorings were
rightfully rejected, because their preconditions were not fulfilled.

The experiments show no more than that separate refactorings can be successfully applied on larger un-
prepared software systems. The only way to do amore comprehensivereal worldtest, isto usetherefactor-

1. These numbers take the test code into account.

The Moose Refactoring Engine 125

ing engine in day-to-day software development, so that it isverified in many different situations. However,
therefactoring engineisaresearch prototypeand as such not ready for devel opersto useintheir daily work.

7.3 Discussion

Thegoal of the Refactoring Engineisto provide an in-depth validation of the analysis presented in chapter
6. Itisathorough test for the fitness of the FAMIX metamodel as alanguage-independent metamodel for
reengineering object-oriented software.

The sequence of refactoringsin the toy banking example showsthat is possibleto express and execute a
seguence of refactorings that covers all supported refactorings for the languages Java and Smalltalk. Al-
though the example is engineered, we feel the example presents a non-trivial sequence of refactorings,
which reglistically mimics usages of refactoringsin real world development. Secondly, we have tested the
refactorings successfully on two real world systems. The experiments show that the information FAMIX
providesis sufficient for checking the preconditions and determining what code must be transformed.

To assess the M oose Refactoring Engine from the tool point of view, we discussit in the context of a se-
ries of success criteriathat Don Roberts describesin histhesis[Rob99]. Roberts poses the following tech-
nical criteria:

* Program Database. “A refactoring tools needs a programming database to be able to search for var-
ious program elements across a program” [Rob99]. With Moose and its repository this requirement
isobvioudly fulfilled. However, for instance, Smalltalk environments have their own code database,
which is continuously updated with the latest changes to the code, i.e., the repository and the code
are causally connected [Mae87]. Currently our code transformation front-ends do not update the
model in the Moose repository in parallel to code changes. The changed code needs to be reparsed
and effectively a new, updated, model is created. This is something we want to change, because it
clearly hampers the usability of the tool. However, areparse eases the ability to test if arefactoring
has been applied correctly, because the gathered information completely independent of the refac-
toring implementation. This was especially convenient in the early stages of development of our
prototype.

» Abstract Syntax Trees (ASTs). Refactorings require access to method bodies, mainly to update

references to code elements that have been changed. This normally requires ASTs. Our Smalltalk
front-end uses ASTs by means of the Refactoring Browser. In contrast, our Java front-end currently
uses a text-based approach based on regular expressions, because it was easy and quick to set up.
Although this approach is more powerful than we initially expected and supports all code transfor-
mation we need to apply, it requires code layout rulesto be taken into account. We plan to move to
an abstract syntax tree based approach in the future, because it better abstracts from these layout de-
tails and better fits the more complex code transformations.
Furthermore, we do not support refactorings that require detailed information below the method le-
vel, such as Extract Method, because FAMIX does not provide this level of information. Although
it could be added to the metamodel, it is unlikely to happen in the near future, because it is not a
focus of our environment. More detailed information makesit harder to support multiple languages
(see also section 3.3).

» Accuracy. A refactoring tools must “reasonably preserve the behaviour of programs’ [Rob99]. As
discussed in chapter 6, we define behaviour preserving as that input-output behaviour is the same
before and after the refactoring. We do not consider real-time constraints or code that uses reflective

126 Discussion

features of alanguage. The accuracy of the tool depends on the accuracy of the analysis the tool is
based upon. The accuracy of the analysis is discussed in section 6.4, its experimental validation in
section 7.2.

Robertsal so discussesthree practical criteria, namely speed, an undo mechanism and atight integration
with the environment. The M oose Refactoring Engineisresearch tool and assuch isnot aimed at providing
industrial-strength speed and usability to developers. We shortly discuss the practical criteria anyway, for
completeness and to give an impression of the current status of the engine.

» Speed. For atool used in the daily work of a devel oper, the automatic refactoring must execute the
refactoring faster than the developer can do it by hand. The Moose Refactoring Engine is not opti-
mised for speed in daily use. The execution of the refactoring is not particularly slow, but issues
mentioned before such as reparsing the model instead of updating it in parallel with the code trans-
formation, increase the time consumption and make it currently unfit to use as atool in daily work.

* Undo. A multiple undo mechanism increases the support for an exploratory approach as to which
refactoringsto apply to increase a piece of code. The M oose Refactoring Engine does not have undo
support.

» Integration with Environment. The Refactoring Engine is part of Moose. It can be called by any
tool that knows how to use it. However, the engine still realy is an engine. It is not, like the Refac-
toring Browser, integrated with code browsers. Thisis future work. Beyond browser integration we
would like to integrate more strongly with analysis tools. Integrated tools would not only detect
problems, for instance in the design of a system, but aso propose a sequence of refactorings to re-
solve such a problem.

Finally, the Moose Refactoring Engine can be judged on its ability to support other languages than the
currently supported Javaand Smalltalk. Assuming FAMIX and M oose support the newly targeted language
already, two issues need to be considered. First, for every refactoring the analysis of chapter 6 must be
checked to seeif it needs adaptation due to semantics specific to the new language. Thisisdiscussed in sec-
tion 6.5 in more detail. Secondly, a code transformation front-end must be developed. The architecture of
the Moose Refactoring Engine supports easy additions of such front-ends, but, as the front-ends deal with
low-level code transformations, implementation can be complex, mostly depending on the complexity of
the syntax of the new language and the availabl e tool support for parsing and code generation.

CHAPTER 8

Conclusion and Future Work

Designing a metamodel that successfully supports a reengineering environment requires explicit know-
ledge not only about the relevance of the metamodel contents for reengineering, but also about infrastruc-
tural aspects such as scal ability, interoperability and extensibility.

This thesis provides a better understanding of these issues by making explicit a set of possible design
choices including their trade-offs, firstly, with a design space for infrastructural aspects of reengineering
metamodels in general, and secondly, in the particular case of large object oriented systems, with a meta-
model that supports reverse engineering and refactoring in alanguage-independent way.

The metamodel that underlies the repository of areengineering environment, determinesto alarge ex-
tent how well such an environment supports multiple cooperating reengineering tools. However, for only a
few of the existing environments the metamodel design choices are explicitly discussed, and these discus-
sions mostly focus on the support for one particular reengineering task. Indeed, no general comprehensive
overview existsthat describespossible metamodel design decisions, their trade-offsand interdependencies.
Consequently, developers who build tools for reengineering need to gather this knowledge over and over
again. Thisthesis solvesapart of thisproblemin thefollowing ways:

» It makes explicit the infrastructural aspects of reengineering metamodels, i.e., the design aspects
that deal with how information is organised and stored. We capture these aspects, the available de-
sign choices, their trade-offs and interdependencies in a so-called design space.

» It makesexplicit how to model multiple object-oriented languages for the purpose of reengineering.
Not only doesit show the contents of one metamodel (FAMIX), it also makes explicit what choices
this metamodel incorporates to handle multiple object-oriented languagesin acommon way. In par-
ticular:

- it makes explicit the aspects of object-oriented systems that are relevant to reengineering.

- it shows how the use of alanguage-independent core together with mappings of multiple object-
oriented languages to this core, provides an effective common coverage of these languages. The
mappings explicitly define how acertain model of a software system in aspecific implementation
language must be interpreted and also capture relevant language-specific information.

128

- it shows how a metamodel can effectively deal with language differences such as static versus
dynamic typing and single versus multiple inheritance versus Java interfaces.

Our approach hasthefollowing limitations:

» FAMIX doesnot model detailed information about method bodies. Consequently, we do not support
sophisticated control flow analysis. We have chosen not to pursue that path, because we regard the
considerable effort to abstract from the many subtle differences on such a detailed level not
weighting up against the advantages of language independence. We consider language-specific tools
with full AST information such as Datrix for C++ [BCOQ], as more appropriate for casesthat require
this detailed level of information. Furthermore, the additional amount of information would have
serioudly affected the scalability of our approach.

 Language independence increases complexity for certain analysis operations that would be simpler
for a particular language. An example is the refactoring analysis that takes type information and
multiple inheritance into account, which are both unnecessary for Smalltalk.

We have validated the ability of FAMIX to support multiple cooperating reverse engineering tools by
building a reengineering environment (Moose) with a repository based on FAMIX. Severa services and
toolshave been built using this environment and we have used it to perform several case studieson largein-
dustrial software systems. The case studies show that FAMIX indeed supportsawholerange of reverseen-
gineering tasks, that it effectively abstracts from the supported implementation languages and that its
information level scaleswell for large systems.

For amorein-depth validation of FAMIX asametamodel for reengineering, we have analysed itsability
to support refactorings on alanguage-independent level for Smalltalk and Java. Information requirements
for refactoring are tighter than those for most reverse engineering tasks. Refactoring requires sufficient,
completeand preciseinformationto be ableto ensurethat the transformations can be applied correctly. This
isin contrast to most reverse engineering tasks, which are typically not strongly affected if informationis
slightly incomplete or incorrect [MNGL98] [Bis92]. In particular our refactoring analysis shows the fol-
lowing:

* Theanalysisarefactoring requires to perform — to determine what low-level code transformations
it needs to apply and to check if these can be applied safely — can be expressed for the greater part
in alanguage-independent way.

» The metamodel must provide information about the language-specific interpretation of metamodel
elements. Thisfirstly enables the execution of the language-specific part of the analysis. Secondly,
it enables the code transformation engine to apply the correct changes on the (language-specific)
codelevel. Our work provides thislanguage-specific information through well-defined language ex-
tensions to the core metamodel.

» Whilesome of the design decisions of FAMIX work out particularly well (e.g., theway polymorphic
calls are modelled), some are less convenient (e.g., the decision to model metaclasses as classes).

» The language-specific transformation front-ends define the basic code transformations that need to
be implemented for each supported language separately.

Therefactoring analysis hasthe following limitations:

» Refactorings that need control flow information cannot be easily abstracted to multiple languages,
because they need access to detailed information about method bodies that is not available in

Conclusion and Future Work 129

FAMIX. Consequently, our approach does not cover refactorings such as Extract Method and Inline
Method [FBB*99].

» Similarly, the FAMIX metamodel does not contain sufficient information to regenerate the complete
source code from a model. Consequently, the actual code transformations must be applied directly
on the source code rather than on amodel and are therefore language dependent.

Therefactoring analysisisfirstly validated by athorough comparison with other, language-specific def-
initions of the samerefactorings. Secondly, we haveimplemented therefactoringsinthe M oose Refactoring
Engine and applied them on several case studies.

Future Work

First of all, weare still refining FAMIX based on regquirements of new reengineering tasks we want to sup-
port and the experience we get while building the tools that support these tasks. Thisincludes the addition
of language features currently not supported such as nested classes and the support for more languages be-
yondthefour (C++, Smalltalk, Javaand Ada) we currently support. The addition of more detailed informa-
tion below the method body level, such as conditional statements, may seem an obvious extension aswell,
but, assaid above, itisnot likely wewill pursuethispath. Another possibility isto extend FAMIX withmul-
tiplemodel support. Moosealready supportsmultiplemodels, whichisused for evolutionanalysis[LDS01]
[Ste01], but it has not yet been formalized in the metamodel .

Apart from refining the metamodel itself we are also looking at explicit metametamodel support. The
goalsareto be ableto generate generic tool s such asmodel browsers and exchange format saversaswell as
theintegration with other metamodels such asUML [OMG99]. An explicit metametamodel also allowsus
to better expl ore the dynamic adaptati on and extension of metamodels.

A means to get a wider audience for the knowledge about modelling object-oriented software that
FAMIX represents, isthe standardisation of such ametamodel. Wearecurrently involved inthe constitution
of the Graph eXchange Language (GXL) [HWS00]. GXL is acollaborative effort from several academic
and industrial research institutesto come up with an exchange format and a set of metamodelsfor informa-
tion exchange between reengineering tools. We actively participatein the discussionsto cometo astandard-
ized program entity level metamodel with FAMIX being one of the main input metamodels.

In the context of language-independent refactoring, support for more languagesis an obvious direction
to take. For every new language, not only the contents of FAMIX, but especialy the refactoring analysis
needs careful checking, because it depends more on the actual semantics of the language than on the mere
representation of factsthat FAMIX provides. Somework has aready been doneto define C++ refactorings
based on FAMIX [Bor01].

Beyond FAMIX and the refactoring analysis, the addition of refactorings to M oose opens awhole new
classof possihilities, namely the combination of problem detection and analysiswith refactorings. Wewant
to explore to which extent tool s can propose a devel oper solutionsto detected problems and perform trans-
formations based on that analysis. An example isthe adherence of a software system to acertain architec-
ture. Instead of only signalling mismatches between an expected architecture and the actual architecture, an
analysis tool can propose a set of refactorings that resolves the mismatch. For instance, it could move a
method from its containing classto aclassin another layer of the architecture. Similarly, we are exploring
the domain of component mining. We want to support theidentification of potential components, aswell as
the transformation of legacy software to component-based frameworks.

130

A final direction wewould liketo mention, istheintegration of reengineering techniquesin forward en-
gineering tools. The emergence of round-trip engineering tools is a step in that direction. They provide
seamless integration between design diagrams and source code, between modelling and implementation
[Ree96] [JIBR99]. However, round-trip engineering does not need to be restricted to theintegration of mod-
els and code alone. Reverse engineering and refactoring techniques enable a much more sophisticated
round-trip engineering cycle. In additionto model extraction, devel opers can apply problem detection anal-
ysisand create different views on the software to increase their understanding. Furthermore, built-in refac-
toringsallow the devel oper to quickly and safely adapt software. Many of thetechnol ogiesalready exist, but
weseealot of potential in atighter integration.

APPENDIX A

Table of Refactorings

Thisappendix shows an overview of the pre- and postconditions of the refactorings presented in chapter 6.

Refactoring

precondition

postcondition

Add Class (classname,
package, superclasses,
subclasses)

no class may exist with new name in the
same scope.

no global variable may exist with new
name in the same scope.

all subclasses must be subclasses of all
superclasses or no subclasses are specified
[dependent] classname must be avalid
name.

[Smalltalk] superclasses (and therefore
subclasses) must not be metaclasses.

new class is added into the hierarchy
with superclasses as superclasses and
subclasses as subclasses.

new class has name classname.
subclasses inherit from new class and
not any more from superclasses.

Remove Class (class)

class must not have attributes or its
attributes must not be referenced.

class must not have methods or its me-
thods must not be referenced.

class must not be referenced.

class must not implement abstract meth-
ods from its superclass hierarchy or must
not have non-abstract subclasses.
[Smalltalk] class must not be a metaclass
[Smalltalk] the metaclass of class must not
have referenced methods or classes.

classis removed (including non-refe-
renced attributes and methods).
superclasses of class are now super-
classes of its subclasses.

[Smalltalk] corresponding metaclassis
deleted aswell.

132

Refactoring

precondition

postcondition

Rename Class (class, new
name)

no class may exist with new name in the
same scope.

no global variable may exist with new
name in the same scope.

classes that refer to class must not already
contain or inherited a variable with new
name.

[dependent] new name must be avalid
class name.

[Smalltalk] class must not be a metaclass.

class has new name.

all references (types, class method
calls, superclass references) are
updated with the new name.

[Java] constructors are updated with
the new name.

[Java] caststo class have been updated
[Smalltalk] the corresponding meta-
class of class has been renamed as
well.

Add Method (name, class)

no (inherited) method with signature
derived from name may exist in class.
[dependent] name must be a valid method
name.

class has amethod called name with
an empty body or is abstract if class
represents a Java interface.

Remove Method (method)

method must not have candidate invoca-
tions unless method itself is the only can-
didate invoker.

if method is abstract it must not have static
references.

method isremoved from its containing
class.

Rename Method (method,
new name)

all superclasses of the class containing
method as well as the subclass hierarchies
of the highest superclasses that define a
method with the same signature a method,
must not already contain a method with a
signature implied by new name and the
parameters of method.

the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

[dependent] new name must be avalid
method name.

[Java] when method is a constructor, the
refactoring cannot be applied unlessin the
context of a Rename Class refactoring.

method has new name.

relevant methods in the inheritance
hierarchy have new name.
invocations of changed method are
updated to new name.

Table of Refactorings

133

Refactoring

precondition

postcondition

Pull Up Method (method,
superclass)

method must not be private.

method should not directly access
attributes from its defining class.

method should not directly invoke me-
thods from its defining class unless all
those invocations have self/this as receiver
and are either to methods that are also
defined or inherited in the superclass or to
itsalf.

superclass may not contain or inherit a
non-abstract method with the same signa-
ture as method.

method cannot have super referencesto
superclass.

[Java] method must not be a constructor.
[Java] non-abstract method cannot be.
pulled up to an interface.

[Smalltalk] method should not access
methods from its metaclass.

method defined in superclass.
method not defined in original contai-
ning class.

Push Down Method
(method)

method must not be invoked in or through
its defining class unless it only invokes
itself on self/this.

At least one direct subclass of the defining
class of method may not already contain a
method with the same signature as
method.

self/this accesses to attributes that are also
defined in one or more of the direct sub-
classes, may not exist in method.
self/thisinvocations and accesses to pri-
vate members of the containing class may
not exist in method.

no super invocations of method may exist
in the direct subclasses of the defining
class.

super invocations to methods that are also
defined in the defining class may not exist
in method, except if the invoked method
has the same signature as method itself.
super accesses to attributes that are also
defined in the defining class may not exist
in method.

subclasses cannot inherit non-abstract
methods with the same signature as
method from other superclass branches.
[Java] method must not be a constructor.

method not defined in original contai-
ning class.

method defined in subclasses of the
containing class.

134

Refactoring

precondition

postcondition

Add Parameter (name,
method)

method must not already have a parameter
with name.

method must not already have alocal vari-
able with name.

containing class must not have an attribute
with name.

no classes or global variables with name
may exist in the system.

all superclasses of the class containing
method as well as the subclass hierarchies
of the highest superclasses that define a
method with the same signature as
method, must not already contain a
method with asignatureimplied by adding
aparameter with name to method.

the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

[dependent] name must be avalid parame-
ter name.

method and all relevant methodsin the
inheritance hierarchy have an extra
parameter with name.

invocations of method are updated to
invoke it with an extra parameter with
adefault value.

Remove Parameter
(parameter)

parameter must not be referenced in the
containing method or equivalent parame-
tersin any overriding or overridden
method.

all superclasses of the class containing the
method parameter belongsto, aswell as
the subclass hierarchies of the highest
superclasses that define a method with the
same signature that method, must not
aready contain amethod with a signature
implied by removing parameter from its
method.

the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

method and all relevant methodsin the
inheritance hierarchy have parameter
removed.

invocations of method are updated to
invoke it without parameter.

Add Attribute (name, class)

the inheritance hierarchy of the containing
class must not aready contain an attribute
with name.

no global variable with name may exist.
no class with name may exist.

[dependent] name must be avalid attribute
name.

class has attribute named name.

Remove Attribute (attribute)

attribute must not be accessed.

attribute is removed from its contai-
ning class.

Table of Refactorings

135

Refactoring

precondition

postcondition

Rename Attribute (attribute,
new name)

theinheritance hierarchy of the containing
class must not already contain an attribute
with new name.

no global variable with new name may
exist.

no class with new name may exist.
methods of the containing class and its
subclasses that access attribute must not
contain alocal variable with new name
already.

[dependent] name must be avalid attribute
name.

attribute has name new name.
all accessesto attribute are to use the
new name.

Pull Up Attribute (attribute,
superclass)

superclass must not contain an attribute
with the same name as attribute.

any attribute in the subclasses of super-
classwith the same name as attribute must
have the same type as attribute. These
attributes must not hide each other.
pulling up attribute may not hide in super-
class another attribute with the same
name.

pulling up attribute may not unhide any
attribute with the same name from other
superclass branches of the containing
class.

superclass contains attribute.

all attributes in the subclasses of
superclass with the same name and
type as attribute have been removed.

Push Down Attribute
(attribute)

attribute must not be accessed in or
through its containing class.

the direct subclasses of the containing
classmust not contain an attribute with the
same name as attribute.

attribute is removed from its contain-
ing class.

al subclasses that need it (i.e. that
have areference to the attribute some-
wherein its hierarchy) define an
attribute with the same name and type
as attribute.

136

APPENDIX B

The FAMIX 2.1 specification

Thisappendix describesthe FAMIX metamodel version 2.1. It startswith an overview of the metamodel be-
fore describing the metamodel in detail.

2.1 Overview

FigureB.1 showsan overview of the core FAMIX metamodel. Section 2.2 describesall the shown elements
in detail. In this section we introduce some information that is necessary for the rest of the metamodel de-
finition, such as some basic data types, unique naming conventions and extraction levels.

2.1.1 Basic Data Types

Besides the usual primitive data types (String, Integer, Boolean, ...) we have anumber of extra datatypes
in our metamodel that are considered ‘basic’. TheseareNane, Qual i fi er and| ndex:

Nane vs. Qual i fi er

A Nane isastring that bears semantics inside the metamodel, whileaQual i fi er isastring that getsits
semantics from outside the metamodel. A String does not bear any semantics. For instance, a
uni queName may be used to refer to another object, hence bears semantics inside the metamodel. How-
ever, asour ceAnchor will storesomeinformation that must beinterpreted by applicationsoutsidethe me-
tamodel, henceisaqualifier. Finaly, acomment lineisastring, sinceit does not bear any semantics under-
standable by acomputer. In CDIF these types are simply represented by Strings, or TextValuesif they are
multi-valued (see section 2.3.1 for adescription of multi-valued stringsin CDIF).

| ndex

An Index represents aposition in some sequence. Indices always have abase of 1. In CDIF thistypeisrep-
resented by an integer.

Overview

138

sse|n

abeyoed

Jajoweledjew.oy a|qellep|e20]
d|qelieAleqo|D a|qerLiep}o1dwy uonoung
— INqLUPY poylap
7 uoned0AU| 7
vV
sse00y uonuegesUBLIBYU| Anpuzeamonns Apuzeinoineyag
uojejoossy I9poN fpuz

Apadougd

—> p9lqo

juawnBiyuoissaidxy

jJuawnbiyssaosoy

N

jyuswnbiy

Figure B.1 The complete hierarchy of the FAMIX model

The FAMIX 2.1 specification 139

2.1.2 Unique Naming Conventions

The naming conventions used in the FAMIX metamodel is as much as possible compliant with UML
[OMG99]. Thismeansthat thefollowing rules apply:

1. Scoping via packages. Global entities, such as classes, functions, global variables and packages
themselves receive a unigque name by concatenating with the containing package nameusing “::”
as aseparator. They will typically look like “package: : subpackage: : cl assname”.

2. Naming of variables. Variables, such as attributes, local variables, etc. receive a unique name
by concatenating with the containing entity using a“.” as a separator. They will typically look
like “package: : subpackage: : cl assnane. attri but enane”,

“package: : subpackage: : cl assnane. net hod() . | ocal vari abl enane”.

3. Naming of methods and functions. Methods and functions distinguish themselves from varia-
bles because they have an parameter list. Therefore, they are named by concatenating their scope
and their signature. For functionswefollow the convention of package scoping, thus separate the
scope and thesignatureviaa“::”. For methodswe follow the convention of variable naming, thus
separate the scope and the signatureviaa“.”.

The signature of amethod and a function contains the name of the method or function, followed
by its parameter list surrounded by parentheses. The return typeis not part of the signature. They
will typically look like

“package: : subpackage: : f uncti onnanme(par al, par a2)”,

“package: : subpackage: : cl assname. met hodname(par al, par a2)”

To achieve anormal form for signatures, parameter lists should not contain unnecessary spaces.
Thus

“functi onnane(paral, para2)”

instead of

“functi onnane(paral, para2)”.

However, sometimes languages include keywordsin their parameter list, and then spaces can not
be avoided. For instance, the C++ const parameters will be represented like

“functi onnane(const paral, const para2)”.

2.1.3 Level of Extraction

Thecoremetamodel containsentitiesthat not all parsersmay provide. Next to that, sometool sdo not always
need all of thisinformation (e.g., ametrics tool might not need Invocation and Access, because many me-
trics can aready be gathered from Class and Method alone). To allow focused models, weintroducethele-
vel of extraction.

Basically, thelevel of extraction isan integer, representing how much of the core metamodel isavai-
lablein amodel. The higher the number, the more information is available. The levelsare set upin such a
way that no information isavailable on alevel that needsinformation from higher levels (for instance, Ac-
cessis not usable if there are no Attribute's available). Next to that, it is possible that on the higher levels
parts of the information are not necessary for a certain task, or simply not computable by a certain tool.
Thereforeitisallowed to only provide parts of theinformation (designated by the“ +/-"). Table B.1 givesan
overview of thelevelsof extraction.

140 Definition of FAMIX

Level 1 Cl ass, InheritanceDefinition, Behavioural Entity (Method, Function)
+/- Package

Level 1isthe minimal information that parsers should be able to provide and corresponds
with what isusually understood astheinterface of aclass.

Level 2 Level 1 +/-Attribute
+/- Package
Leve 3 Level 2 +/- Access
+/-1 nvocati on
Level 4 Level 3 +/- Ar gumrent

+/- For mal Par anet er
+/-Local Vari abl e
+/-1mplicitVariable

Table B.1: Levels of Extraction
2.2 Definition of FAMIX

This part describes the various classes that together specify the FAMIX metamodel. Thefollowing subsec-
tions describe the different elements with their attributes, and give examplesin the CDIF transfer format.
Mandatory attributes must always be present. Optional attributes may be omitted. Some optional attributes
have adefault value.

2.2.1 The abstract part: Object, Entity and Association

Object Property
uid (): Name name (): Qualifier
sourceAnchor (): Qualifier value () : String
commentsAt(pos Integer) : String

.
| |

Association Entity

name(): Name
unigueName (): Name

Figure B.2 The basic classes Object, Entity and Association

The classes Object, Assocation, Entity and Property capture the commonalities in the design of FAMIX.
Furthermore, they provide the hooks to extend the core metamodel with new elements and, through the
Property element, with the ability to annotate any Object inamodel. Thisarethe different classesin detail:

The FAMIX 2.1 specification 141

Object

uid (): Name
sourceAnchor (): Qualifier
commentsAt (pos Integer): String

Object isan abstract class without asuperclass. The attributes of Object are:

ui d: Nanme; mandatory
Denotesan identifier that isunique for every element in amodel. FAMIX does not impose aschema
or format. It is recommended to use Universal Unique Identifiers (UUIDs) [OG97], which is a
standard way of constructing identifiers that are unique over space and time. The resources to store
and compute UUIDs, however, might clash with scalability needs (see also section 3.10).
sourceAnchor: Qualifier; optional
| dentifiesthelocation in the source where the information is extracted. The exact format of the qual-
ifier is dependent on the source of the information. Usually, it will be an anchor in asourcefile, in
which case the following format should be used

file "<filespec>" start <start_index> end <end_i ndex>

where<f i | espec>isastring holding the name of the source-file in an operating system dependent
format (preferably afilename relative to some project directory). Note that filenames may contain
spaces and double quotation marks. A double quotation mark in afilename should be escaped with
a\".<start_i ndex> and <end_i ndex> are indices starting at 1 and holding the beginning re-
spectively ending character position in the source file. Extra position indices or whole source an-
chors may be added to handle anchors in files that may need to be displayed with external editors.
For instance, the line and column of the character (st art 1 i ne, st art col ,endl i ne,endcol). Or
the negative offset counting from the end of the fileinstead of from the beginning (negst ar t , ne-
gend). In CDIF abasic source anchor looks as follows (delimited with a‘ |, see section 2.3.1 for a
description of multi-valued stringsin CDIF):

(sourceAnchor #[file "factory.h" start 260 end 653|]#)

conments: 0..N String; optional

Entities and associations may own a number of comments, where devel opers and tools store textual
information about the object. In CDIF we represent this with a CDIF TextValue, where the blocks
aredelimited by a*|' (see section 2.3.1 for a description of multi-valued stringsin CDIF):

(comrent s #[comrent Li nes|] #, # cooment Li nes| 1 #, ...)

Property

name (): Qualifier
value (): String
belongsToUid (): Name

Entities and associations may own anumber of propertieswhere extensions of the core metamodel may be
stored. Property hasthe following attributes:

name: Qualifier; mandatory
Is astring that identifies a Property within an Object. Thus, the name should be unique for all pro-
perties of a single Object.

142 Definition of FAMIX

e value: String; mandatory

Contains the value of the property. The meaning of the valueis not defined within this metamodel.
* bel ongsToUi d: Nane; nandatory

Contains the uid that identifies the Object this Property is a property of.

CDIF example showing aclassW dget withaPr oper ty containing the value 5 for the number-of-meth-
odsmetric. They arerelated by thebel ongsToui d attribute.

(d ass ENTO01
(name "Wdget")
(ui d "c842bf 06- d202- 0000- 0282- 5c410d0000")

)....

(Property PRO05

(name "metric_NaV)

(val ue #[5]#)

(bel ongsToU d " c842bf 06- d202- 0000- 0282- 5c410d00000")
)

Entity

name (): Qualifier
unigueName (): Name

To enableaglobal referencing scheme based on names, the key classesin the metamodel should respect the
minimal interface of Entity. Entity isan abstract classinheriting from Object. Besides inherited attributes,
it hasthefollowing attributes:

 nane: Qualifier; nandatory
Isastring that provides some human readable reference to an entity.

e uni queNane: Nane; mandatory
Is a string that is computed based on the name of the entity. Each class of entities must define its
specific formula. Theuni queNane serves as an external referenceto that entity and must be unique
for all entitiesin amodel.

Association

Associationisan empty common superclassfor all associationsin themetamodel. Assocation isan abstract
classinheriting from Object. It definesno new attributesitself.

The FAMIX 2.1 specification 143

2.2.2 Model

Model

exporterName (): String
exporterVersion (): String
exporterDate (): String
exporterTime (): String
publisherName (): String
parsedSystemName (): String
extractionLevel (): String
sourceLanguage (): String
sourceDialect (): String

Figure B.3 Model

A Mode represents information about the particular system being modelled. Extractors must ensure that
thereis only instance of aModel in amodel. Information exchange standards often provide means to ex-
change similar information in special sections of the exchange stream. However, having an explicit Model
element in FAMIX allows usto transfer thisinformation independent of the chosen exchange format.

Model is a concrete class inheriting from Object. Besides inherited attributes, it has the following at-
tributes:

exporterNanme: String; nmandatory

Represents the name of the tool that generated the information.
exporterVersion: String; mandatory

Represents the version of the tool that generated the information.
exporterDate: String; nmandatory

Represents the date the information was generated.
exporterTime: String; mandatory

Represents the time of the day the information was generated.
publ i sher Name: String; mandatory

Represents the name of the person that generated the information. Provide an empty string if this
information is not known.

par sedSystenNane: String; optional

Represents the name of the system where the information was extracted from.
extractionLevel: String; mandatory

Represents the level of extraction used when generating the information (see Table on page 139).
sour ceLanguage: String; mandatory

| dentifies the implementation language of the parsed source code, for instance‘C++', ‘Ada’, ‘ Java’,
or ‘Smalltalk’.

sourceDi al ect: String; optional

Identifies the dialect of the implementation language of the parsed source code. The exact contents
of the string is alanguage-dependent issue, e.g., ‘Borland’ or ‘ANSI’ for C++.

144 Definition of FAMIX

CDIF example of aModel instance for aWidgetLibrary system implemented in Java:

(Model FMD
(exporterNamre "sniff2fam x")
(exporterVersion "2.0")
(exporterDate "1999/10/19")
(exporterTime "00.00.01")
(publ i sher Nare " Sander Ti chel aar")
(par sedSyst emNarre "W .dget Li brary")
(extractionLevel "3")
(sour ceLanguage "Java")
(sourcebial ect -NJULL-)

2.2.3 Package

Package

belongsToPackage (): Name

Figure B.4 Package

A Package represents a named sub-unit of a source code model, for example namespaces in C++, and
packages in Java. What exactly constitutes such a sub-unit is a language-dependent issue. Packages and
other entities can only bel ong to zero or one Package, and their name must be unique withintheir containing
Package.

Package is a concrete class inheriting from Entity. Besides inherited attributes, it has the following at-
tributes:

» bel ongsToPackage: nane; optional

Isthe unique name of the package containing this package. A null value representsthe fact that there
is o containing package.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions’ on page 139):

if isNull (bel ongsToPackage(package)) then
uni queNane (package) = nane (package)
el se
uni queNane (package) = bel ongsToPackage (package) +

+ name (package)
CDIF example of apackagegui :

(Package FML
(name "gui")
(bel ongsToPackage - NULL-)
(uni queNane "gui ")

)

The FAMIX 2.1 specification 145

2.2.4 Class

Class

isAbstract (): Boolean
belongsToPackage (): Name

Figure B.5 Class

A Classrepresentsthe definition of aclassin source code. What exactly constitutessuch adefinitionisalan-
guage-dependent issue.

Class is a concrete class inheriting from Entity. Besides inherited attributes, it has the following at-
tributes:

* isAbstract: Bool ean; optional
Isapredicate telling whether the classis declared abstract. Abstract classes are important in object-
oriented modelling, but how they are recognised in source code is alanguage-dependent issue.

» bel ongsToPackage: Nane; optional
Is the unique name of the package defining the scope of the class. A null bel ongsToPackage is
allowed, it means that the class has global scope. The bel ongsToPackage concatenated with the
name of the class must provide a unique name for that class within amodel.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (bel ongsToPackage (cl ass)) then
uni queNane (cl ass) = name (cl ass)
el se
uni queNane (cl ass) = bel ongsToPackage (class) + "::" + name (cl ass)

CDIF example of a non-abstract class W dget in package gui (note the difference between nanme and
uni queName):
(dass FML
(name "Wdget")
(uni queNane "gui::Wdget")
(i sAbstract -FALSE-)
(sourceAnchor #[file "factory.h" start 260 end 653|]#)
)

146

Definition of FAMIX

2.2.5 BehaviouralEntity Hierarchy

BehaviouralEntity

AN

Function Method

Figure B.6 The BehaviouralEntity hierarchy

The entitiesthat define behaviour in our metamodel are all subclasses of Behavioural Entity.

2.2.6 BehaviouralEntity

Behavioural Entity

accessControlQualifier (): Qualifier
signature (): Qualifier
isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

Figure B.7 BehaviouralEntity

A Behavioura Entity represents the definition in source code of abehavioural abstraction, i.e., an abstrac-
tion that denotes an action rather than a part of the state. Subclasses of this class represent different mecha
nismsfor defining such an entity.

Behavioural Entity isan abstract classinheriting from Entity. Besides inherited attributes, it hasthe fol-
lowing attributes:

accessControl Qualifier: Qualifier; optional

Isastring with alanguage-dependent interpretation that defines who is allowed to invokeit (for in-
stance, ‘public’, ‘private’).

signature: Qualifier; nmandatory

Isastring that allowsto uniquely distinguish abehavioural entity. Thisisnecessary, because object-
oriented languages exist that allow to overload methods, so that the same method name may be
associated with different parameter lists, each with its own method body (e.g., C++, Java). The way
asignature string is composed is language-dependent, but it should at least include the name of the
method. The UML [OMG99] compliant notation will be used, which will typically look like (see
also section 2.1.2 “Unique Naming Conventions’ on page 139)

“package: : subpackage: : cl assnane. net hodnane(par aneters)” .

i sPureAccessor: Bool ean; optional

Is a predicate telling whether the behavioural entity is a pure accessor. There are two kinds of ac-
cessors, a reader accessor and a writer accessor. A pure reader accessor is an entity with asingle
receiver parameter, only returning the value of an attribute of the class the method is defined on. A

The FAMIX 2.1 specification 147

pure writer accessor is amethod with one receiver parameter and one value parameter, only storing
the value inside the attribute of a class. How accessor methods are recognised in source code is a
language-dependent issue.

e declaredReturnType: Qualifier; optional

Isaqualifier that refers to the declared type of the returned object. Typically thiswill be aclass, a
pointer or a primitive type (e.g., i nt in Java). decl ar edRet ur nType isnull if the return typeis
not known or the empty string (i.e., ") if the Behavouria Entity does not have areturn typel.

Note that the decl ar edRet ur nType does not have meaning in amodel (although it obviously has
meaning in the context of the specific implementation language). We need a language-dependent
interpretation to link atype name to a class name, because in most object-oriented languages, types
are not always equivalent to classes. How the declared return type can be recognised in source code
and how the return type matches to a class or another type are language-dependent issues. The de-
clared return class is stored in the decl ar edRet ur nCl ass attribute (see below for the definition
of decl ar edRet ur nC ass and see section 4.4.1 for an in-depth discussion).

* decl aredRet urnC ass: Nane; optional

I ndicates the unique name of the class that isimplicit in thedec! ar edRet ur nType, with the goal
of capturing the dependency to the corresponding Class instance in a model. The decl ar edRe-
t ur nC ass always contains the name of aclass, or null if it isunknown if thereis an implicit class
inthedecl ar edRet ur nType, and the empty string (i.e., “”) if it is known that there is no implicit
classinthedecl ar edRet ur nType. What exactly is the relationship between decl ar edRet ur n-
Cl ass and decl ar edRet ur nType is alanguage-dependent issue.

2.2.7 Method

Method

belongsToClass (): Name
hasClassScope (): Boolean
isAbstract (): Boolean
isConstructor (): Boolean

Figure B.8 Method

A Method representsthe definition in source code of an aspect of the behaviour of aclass. What exactly con-
stitutes such a definition is alanguage-dependent issue.

Method isaconcrete classinheriting from Behavioural Entity. Besidesinherited attributes, it hasthefol-
lowing attributes:
* bel ongsTod ass: Nane; nandatory

Is a name referring to the class owning the method. It uses the uni queNane of the class as arefe-
rence.

1. In C++ thefact that afunction does not have areturn typeis denoted by the keyword voi d. We do not use
voi d in FAMIX to denote ‘ no type’, because this causes problems for languages whereit is possible to define
aclasscalled “void”, like for instance Smalltalk and Ada. Note that thisis consistent with UML 1.3
[OMG99).

148

Definition of FAMIX

hasC assScope: Bool ean; opti onal

Is a predicate telling whether the method has class scope (i.e., invoked on the class) or instance
scope (i.e., invoked on an instance of that class). For example, static methodsin C++ and Java have
their hasC assScope attribute set to true.

i sAbstract: Bool ean; optional

Isapredicate telling whether the method is declared abstract, i.e., when non-abstract subclasses are
forced to provide an implementation for this method. Abstract methods are important in object-ori-
ented modeling, but how they are recognised in source code is a language-dependent issue.

i sConstructor: Bool ean; optional

Is apredicate telling whether the method is a constructor. A constructor is a method that creates an
(initialised) instance of the classit is defined on. Thus a method that creates an instance of another
class is not considered a constructor. How constructor methods are recognised in source code is a
language-dependent issue.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions” on page 139):

uni queNane (net hod) = bel ongsTod ass (nethod) + "." + signature (nethod)

CDIF example(constructor for aclassw dget . Thismethod hasno returntypeand thereforealsono ‘return
class', hence both attributes are empty):

(Method FMR
(name "Wdget")
(bel ongsTod ass "gui::Wdget")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControl Qualifier "public")
(hasd assScope - FALSE-)
(signature "Wdget()")
(i sAbstract -FALSE-)
(decl ar edRet ur nType "")
(decl aredReturnd ass "")
(uni queNane "gui::Wdget. Wdget()")

2.2.8 Function

Function

belongsToPackage (): Name

Figure B.9 Function

A Function represents the definition in source code of an aspect of global behaviour. What exactly consti-
tutes such adefinition isalanguage-dependent issue.

The FAMIX 2.1 specification 149

Functionisaconcrete classinheriting from Behavioural Entity. Besidesinherited attributes, it hasthefol -
lowing attributes:

* bel ongsToPackage: Nane; optional
I's the unique name of the package defining the scope of the function. A null bel ongsToPackage
isallowed, meaning that the function hasglobal scope. Thebel ongsToPackage concatenated with
the name of the function must provide a unique name for that class within amodel.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions’ on page 139):

if isNull (bel ongsToPackage (function)) then
uni queNarre (function) = nane (function)
el se
uni queNane (function) = bel ongsToPackage (function) + "::" + name (function)

CDIF example (of aglobal functiont est Fact or y without argumentsand return typein subpackaget est
of packagewi dget f act ory):

(Function FM
(name "testFactory")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControl Qualifier "public")
(signature "testFactory()")
(bel ongsToPackage "wi dgetfactory::test")
(decl ar edRet ur nType "")
(decl aredReturnd ass "")
(uni queNane "wi dgetfactory::test::testFactory()")

)
2.2.9 StructuralEntity Hierarchy

e T TR

StructuralEntity
Bada= gEToClas
ACCORS
A&tiribute
Clags
ImplicitVariable { GlobalVariable
i e ToCipes
Localvariable | - FormalParameter
Method
e-nga Toldechod roings Tobdothod

Figure B.10 The StructuralEntity hierarchy

All possible variable definitions are subclasses of the class Structural Entity. Structural Entity itself partici-
patesin the Access association.

150 Definition of FAMIX

2.2.10 StructuralEntity
Structural Entity

declaredType (): Qualifier
declaredClass (): Name

Figure B.11 StructuralEntity

A Structural Entity represents the definition in source code of astructural entity, i.e., it denotes an aspect of
the state of asystem. The different kinds of structural entitiesmainly differ inlifetime: some have the same
lifetimeasthe entity they belongto, e.g., an attribute and aclass, some have alifetimethat isthe sameasthe
whole system, e.g., aglobal variable. Subclasses of this class represent different mechanisms for defining
such an entity.

Structural Entity isan abstract classinheriting from Entity. Besidesinherited attributes, it hasthefollowing
attributes:

o decl aredType: Qualifier; optional
Isaqualifier that refers to the declared type of the structural entity. Typically thiswill be aclass, a
pointer or aprimitivetype (e.g., i nt inJava). decl ar edType isnull if thereturn typeisnot known
or theempty string (i.e., *”) if the Behavourial Entity does not have areturn typel.
Notethat thedec! ar edType doesnot have meaning inamodel (although it obviously has meaning
in the context of the specific implementation language). We need a language-dependent interpreta-
tion to link a type name to a class name, because in most object-oriented languages, types are not
always equivalent to classes. How the declared type can be recognised in source code and how the
return type matches to a class or another type are language-dependent issues. The declared classis
stored in the decl ar edCl ass attribute (see below for the definition of decl ar edd ass and see
section 4.4.1 for an in-depth discussion).

* decl aredd ass: Name; optional
Indicates the unique name of the class that isimplicit in the decl ar edType, with the goa of cap-
turing the dependency to the corresponding Class instance in a model. The decl ar edd ass con-
tains the name of aclass, or null if itisunknown if thereisan implicit classin thedecl ar edType,
and the empty string (i.e., “") if it is known that there is no implicit class in the decl ar edType.
What exactly is the relationship between decl ar edCl ass and decl ar edType is alanguage-de-
pendent issue.

2.2.11 Attribute

Attribute

belongsToClass (): Name
accessControlQualifier (): Qualifier
hasClassScope (): Boolean

Figure B.12 Attribute

1. In C++ thefact that afunction does not have areturn typeis denoted by the keyword voi d. We do not use
voi d in FAMIX to denote ‘ no type’, because this causes problems for languages whereit is possible to define
aclasscalled “void”, like for instance Smalltalk and Ada. Note that thisis consistent with UML 1.3
[OMG99).

The FAMIX 2.1 specification 151

An Attribute represents the definition in source code of an aspect of the state of aclass. What exactly con-
stitutes such adefinition is alanguage-dependent issue.

Attribute isaconcrete classinheriting from Structural Entity. Besides inherited attributes, it hasthe fol-
lowing attributes:

* bel ongsToC ass: Nane; nmandatory
Is a name referring to the class owning the attribute. It uses the uni queNane of the class as arefe
rence.

e accessControl Qualifier: Qualifier; optional
Isastring with alanguage-dependent interpretation that defines who is allowed to access it (for in-
stance, ‘public’, ‘private’).

* hasC assScope: Bool ean; optional
Is apredicate telling whether the attribute has class scope (i.e., a shared memory location for all in-

stances of the class) or instance scope (i.e., separate memory location for each instance of the class).
For example, static attributes in C++ and Java have ahasCl assScope attribute set to true.

Formulafor uni queNane (seealso section 2.1.2 “ Unique Naming Conventions” on page 139):
uni queNane (attribute) = bel ongsTod ass (attribute) + "." + nane (attribute)
CDIF example of aprivate attribute wTop in classW dget :

(Attribute FMR2
(namre "wTop")
(bel ongsTod ass "gui:: Wdget")
(sourceAnchor #[file "factory.h" start 281 end 284|]1#)
(decl aredType "int")
(decl aredd ass "")
(accessControl Qualifier "private")
(uni queNane "gui :: Wdget.wlop")
)

2.2.12 GlobalVariable
GlobalVariable

belongsToPackage (): Name

Figure B.13 GlobalVariable

A Global Variable represents the definition in source code of avariable with alifetime equal to thelifetime
of arunning system, and which is globally accessible. What exactly constitutes such a definition is alan-
guage-dependent issue.

GlobalVariableisaconcrete classinheriting from Structural Entity. Besidesinherited attributes, it hasthe
following attributes:
* bel ongsToPackage: Name; opti onal

Is the unique name of the package defining the scope of the variable. A null bel ongsToPackage
isallowed, it meansthat the variable has global scope. Thebel ongsToPackage concatenated with
the name of the variable must provide a unique name for that class within a model.

152 Definition of FAMIX

Formulafor uni queNane (the second branch of theif statement is necessary because aglobal variable can
have package scope) (see also section 2.1.2 “ Unique Naming Conventions” on page 139):

if isNull (bel ongsToPackage (gl obal Variabl e)) then
uni queNae (gl obal Vari abl e) = name (gl obal Vari abl e)
el se
uni queNare (gl obal Vari abl e) = bel ongsToPackage (gl obal Vari abl e)
+ "::" + name (gl obal Vari abl e)

CDIF example of aglobal variablecalled‘ TRUE’ withtype‘int’:

(Qd obal Vari abl e FM23
(name "TRUE')
(sourceAnchor #[file "factory.h" start 287 end 291|]#)
(decl aredType "int")
(declaredd ass "")
(accessControl Qualifier "public")
(uni queNane "TRUE")
)

2.2.13 ImplicitVariable

ImplicitVariable

belongsToContext (): Qualifier

Figure B.14 ImplicitVariable

AnlImplicitVariablerepresentsthedefinitionin source code of context dependent referenceto amemory lo-
cation(i.e.,t hi s andsuper inC++andJava, sel f andsuper in Smalltalk). What exactly constitutessuch
adefinition isalanguage-dependent issue.

ImplicitVariable is a concrete classinheriting from Structural Entity. Besides inherited attributes, it has
the following attributes:

* bel ongsToContext: Qualifier; optional
Isastring with alanguage-dependent interpretation, that defines a possible scope of the variable. A
null bel ongsToCont ext isallowed, it meansthat the variable has global scope. Thebel ongsTo-
Cont ext concatenated with the name of the variable must provide a unique name for that variable
within amodel.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (bel ongsToContext (inplicitVariable)) then
uni queNanme (inplicitVariable) = nane (inplicitVariable)
el se
uni queNarre (inplicitVariable) = bel ongsToContext (inplicitVariable)
+ "." + name (inplicitVariable)
Example of animplicit variablesuper :
MotifWdget.print () {
super.print();
Systemout.print("Mtif");
}

The FAMIX 2.1 specification 153

In CDIF thisgivesthefollowing result:

(I'nplictVariable FM7
(narre "super")
(decl aredType "gui::Wdget")
(decl aredd ass "gui::Wdget")
(bel ongsToCont ext "gui:: MtifWdget")
(uni queNane "gui:: MtifWdget. super™)

2.2.14 LocalVariable

LocalVariable

belongsToBehaviour (): Name

Figure B.15 LocalVariable

A LocalVariablerepresentsthedefinitionin source code of avariabledefined locally to abehavioural entity.
What exactly constitutes such adefinition is alanguage-dependent issue.

LocalVariableisaconcrete classinheriting from Structural Entity. Besidesinherited attributes, it hasthe
following attributes:

* bel ongsToBehavi our: Nane; mandatory

Is a name referring to the Behavioural Entity owning the variable. It uses the uni queNane of this
entity as areference.

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions’ on page 139):
uni queNane (Il ocal Var) = bel ongsToBehavi our (local Var) + "." + name (| ocal Var)
Exampleof alocal variableposi ti on_:

d ass Scrol |l Bar {
conputePosition(int x,int y,int width,int height) {
int position_;
}
}
InCDIF:

(Local Vari abl e FM/6
(name "position_")
(sourceAnchor #[file "factory.h" start 85 end 89|]#)
(decl aredType "int")
(decl aredd ass "")
(bel ongsToBehavi our "Scrol | Bar. conputePosition(int,int,int,int)")
(uni queNane "qgui:: Scrol | Bar. conputePosition(int,int,int,int).position_")

154 Definition of FAMIX

2.2.15 FormalParameter

FormalParameter

belongsToBehaviour (): Name
position (): Index

Figure B.16 FormalParameter

A Formal Parameter represents the definition in source code of aformal parameter, i.e., the declaration of
what abehavioural entity expects as an argument. What exactly constitutes such adefinition isalanguage-
dependent issue.

Formal Parameter isaconcrete classinheriting from Structural Entity. Besidesinherited attributes, it has
the following attributes:
* bel ongsToBehavi our: Nane; mandatory

Is a name referring to the Behavioural Entity owning the variable. It uses the uni queNane of this
entity as areference.

e position: |Index; mandatory

Indicates the position of the parameter in thelist of parameters. Language extensions should specify
what the position of a parameter is and this should be consistent the posi t i on attribute of Argu-
ment (See page 158).

Formulafor uni queNane (seealso section 2.1.2 “Unique Naming Conventions’ on page 139):
uni queNane (fornal Par) = bel ongsToBehavi our (fornmal Par) + "." + nane (fornal Par)
Example (wistheformal parameter):
Wndow. : addWdget (Wdget&w { };
InCDIF:

(For mal Paraneter FMi1
(nane "w')
(decl aredType "gui:: Wdget &)
(decl aredd ass "gui::Wdget")
(bel ongsToBehavi our "gui : : Wndow. addW dget (W dget & ")
(position 1)
(uni queNane "gui : : Wndow. addW dget (W dget & . w")

2.2.16 InheritanceDefinition
InheritanceDefinition

subclass (): Name

superclass (): Name
accessControlQualifier (): Qualifier
index (): Index

Figure B.17 InheritanceDefinition

The FAMIX 2.1 specification 155

An InheritanceDefinition representsthe definition in source code of aninheritance associ ation betweentwo
classes. Oneclassthen playstherole of the superclass, the other playstherole of the subclass. What exactly
constitutes such adefinition is alanguage-dependent issue.

InheritanceDefinition isaconcrete classinheriting from Association. Besidesinherited attributes, it has
thefollowing attributes:

e subcl ass: Nane; nmandatory

Is a unique name referring to the class that inherits. It uses the uni queNane of the class as arefe-
rence.

* superclass: Nane; mandatory

Isaunique namereferring to the class that isinherited from. It usesthe uni queName of the classas
areference.

e accessControl Qualifier: Qualifier; optional

Isastring with alanguage-dependent interpretation, that defines how subclasses access their super-
classes (for instance, ‘public’, ‘private’).

* index: |ndex; optional

In languages with multipleinheritance, thisisthe position of the superclassin thelist of superclasses
of one subclass. The information is of interest for object-oriented languages with multiple inheri-
tancethat resolve name collisionsviathe order of the superclasses (e.g., CLOS). For most languages
the index does not have any semantics and the attribute will have anull value.

CDIF example of an inheritance relationship between Scr ol | bar and itssuperclassW dget :

(I nheritanceDefinition FM27
(subcl ass "gui::ScrollBar")
(superclass "gui::Wdget")
(accessControl Qualifier "public")
(index 1)

)

2.2.17 Access

Access

accesses (): Name
accessedIn (): Name
isAccessLValue (): Boolean
hasArgument (): Name

Figure B.18 Access

An Accessrepresentsthe definition in source code of aBehavioural Entity accessing a Structural Entity. De-
pending onthelevel of extraction (see Table on page 139), that Structural Entity may be an attribute, alocal
variable, anargument, aglobal variable.... What exactly constitutes such adefinition isalanguage-depend-
ent issue. However, when the same structural entity isaccessed morethan oncein amethod body, then pars-
ers should generate a separate access-association for each occurrence.

156

Definition of FAMIX

Accessisaconcrete classinheriting from Association. Besidesinherited attributes, it has the following
attributes:

accesses: Nanme; nandatory

I's a unique name referring to the variable being accessed. It uses the uni queNane of the variable
as areference.

accessedl n: Name; mandatory

Is a unique name referring to the method doing the access. It uses the uni queNane of the method
as areference.

i sAccessLVal ue: Bool ean; optional

Is a predicate telling whether the value was accessed as Lvalue, i.e., alocation value or avalue on
the left side of an assignment. When the predicate is true, the memory location denoted by the va-
riable might change its value; false means that the contents of the memory location is read; null
means that it is unknown.

Note that LValueistheinverse of RValue.

hasArgunents: 0 .. N Nanme; optional

An Access can have arguments. Typically thiswill be one, namely the receiving, argument. For in-
stance, in the case of x. a, x is the receiving argument of the access of a. The hasAr gunent at-
tribute denotes the uid of the argument.

Example of themethod pri nt () accessingwTop (both defined in classw dget):

virtual print () { cout << "top of widget " << wlop; };
InCDIF:
(Access FML8

)

(accesses "gui:: Wdget.wTop")
(accessedln "gui::Wdget.print()")
(i sAccessLVal ue - FALSE-)

2.2.18 Invocation

Invocation

invokedBYy (): Name

invokes (): Qualifier

base (): Name

candidatesAt (pos Integer): Name

Figure B.19 Invocation

An Invocation represents the definition in source code of a Behavioura Entity invoking another Behaviou-
ralEntity. What exactly constitutes such a definition is a language-dependent issue. However, when the
samebehavioural entity isinvoked morethan oncein amethod body, then parsersshould generate aseparate
invocati on-association for each occurrence.

Itisimportant to notethat dueto polymorphism, thereexistsat parsetimeaone-to-many relationship be-
tween the invocation and the actual entity invoked: a method, for instance, might be defined on a certain
class, but at runtime actually invoked on an instance of a subclass of this class. This explainsthe presence
of thebase attribute and thecandi dat es aggregation.

The FAMIX 2.1 specification 157

Invocation is a concrete class inheriting from Association. Besides inherited attributes, it has the
following attributes:

e invokedBy: Nane; nandatory
Is a unique name referring to the Behavioural Entity doing the invocation. It uses the uni queNane
of the entity as areference.

 invokes: Qualifier; nmandatory
Isaqualifier holding the signature of the Behavioural Entity invoked. Due to polymorphism, the sig-
nature of the invoked Behavioural Entity is not enough to assess which Behavioural Entity is actually
invoked. Further analysis based on the arguments is necessary. Concatenated with the base at-
tribute this attribute constitutes the unique name of abehavioural entity.

e base: Nane; optional
I's the unique name of the entity where the invoked entity is defined on. Null means unknown and
an empty string means the attribute has no base (the invoked entity may be a global function). To-
gether withthei nvokes attribute, this attribute constitutes the unique name of abehavioural entity.

« candidates: 0 .. N Name; optional
Isamulti-valued attribute holding a number of names of BehaviouralEntities. Each name refersto
aBehavioura Entity that may be the actual oneinvoked at run-time. See section 2.3.1 for a descrip-
tion of multi-valued stringsin CDIF.

* hasArgunents: 0 .. N Nane; optional
An Invocation has arguments. The hasAr gunent attribute denotes the uids of the arguments.

CDIF example. Themethod W dget . pri nt () isinvoked according to the source code. The actual method
invoked at runtime, however, could be the pri nt () method of one of the subclasses Mot i f W dget or
Swi ngW dget :

(I'nvocation FMBS
(i nvokedBy "gui::ScrollBar.print()")
(i nvokes "print()")
(base "gui::Wdget")
(candi dat es#[gui : : Wdget.print()]|]#,
#motif::MtifWdget.print()|]#,
#[j avax: :swi ng: : Sni ngWdget. print()|]1#)

158

Definition of FAMIX

2.2.19 Argument Hierarchy

Argument

hasArguments
Invocation {>—7

E—

position (): Index

O/ isReceiver (): Boolean
Access hasArguments

ExpressionArgument

AccessArgument

hasAccess

—
—

Figure B.20 Argument Hierarchy

Access

An Argument represents the passing of an argument when invoking a Behavioural Entity or accessing a
Structural Entity. What exactly constitutes such a definition is alanguage-dependent issue.

Argument isan abstract classinheriting from Object. Besidesinherited attributes, Argument hasthefol-

lowing attributes:

e position: Index; nandatory

The position of the argument in the list of arguments. Language extensions should specify what the
position of aargument is and this should be consistent with the posi t i on attribute of FormalPa
rameter (see section 2.2.15 on page 154).
* isReceiver: Bool ean; mandatory
Is a predicate telling whether this argument plays the role of the receiver in the containing invoca-
tion. Knowing which argument plays the role of the receiver may help resolving polymorphic invo-

cations.

2.2.20 ExpressionArgument

ExpressionArgument

An ExpressionArgument modelsan argument that isacomplex expression. Thisexpressionisnot modelled
infurther detail (at least in the context of arguments; any accessthat ispart of the expression should be mod-
elled anyway). ExpressionArgument is a concrete subclass of Argument. It does not define any new at-

tributesitself.

2.2.21 AccessArgument

AccessArgument

hasAccess (): Name

An AccessArgument model s an argument that isareferenceto a Structural Entity.

The FAMIX 2.1 specification 159

AccessArgument is a concrete subclass of Argument. Besides inherited attributes, it has the following
attributes:

* hasAccess: Nane; nandatory

Denotes the uniqueidentifier (uid) of the Accessinstance that model s the access of by the argument
of a Structural Entity.

Exampleof amethod pri nt () withtwo method invocationsand their arguments. Notethat thefirst call
has one argument (namely super) and the second call hastwo (namely Syst em out and" Moti f"):

MotifWdget.print () {
super. print (a+3);

InCDIF:

#| FMBO expresses the access of the super inplicit variable |#

(Access FMRO
(uid "c842bf 06- d202- 0000- 0282- 5c410d00000")
(accesses "qgui:: MtifWdget. super")
(accessedln "gui:: MtifWdget.print()")

)

#| FMP1 expresses the passing of super as an argunent to print |#

(AccessArgurent FMP1
(ui d "c842bf 06- d202- 0000- 0282- 5c410d00001")
(position 1)
(i sRecei ver -TRUE-)
(hasAccess " c842bf 06- d202- 0000- 0282- 5c410d00000")
)

#| FMD2 expresses existence of the a+3 expression |#

(Expr essi onAr gunent FMD2
(ui d "c842bf 06- d202- 0000- 0282- 5c410d00002")
(position 2)
(i sRecei ver -FALSE-)

)

#| FMLO1l expresses the invocation of print wth argument super.
Note that gui::Wdget is the only candidate of the invocation. |#

(I nvocation FMLO1
(ui d "c842bf 06- d202- 0000- 0282- 5c410d00002")
(i nvokedBy "gui::MtifWdget.print()")
(invokes "print()")
(base "gui::Wdget")
(candi dates #[gui::Wdget|]#)
(hasArgunent s #[" c842bf 06- d202- 0000- 0282- 5c410d00001" |] #)

160 Miscellaneous

2.3 Miscellaneous

This section contains some miscellaneoustopics.

2.3.1 CDIF Multi-valued String Attributes

CDIF isone of the standard exchange formats we use to transfer FAMIX-based models. In this appendix it
ismainly used asameansto give exampl esfor the different elements of the metamodel . One of the problems
CDIF posesisthat is does not provide multi-val ued string attributes. We need those to deal with many-to-1
relationships (e.g., thecandi dat es attribute of Invocation). Indeed, using the chunk format we encodere-
|ationshi psthrough unique names stored in attributes. However, using astring attribute to encode arel ation-
ship only allowsfor 1-to-many relationships.

CDIF providesIntegerList and PointList inits set of basic datatypes, thus— in principle — CDIF per-
mits the use of multi-valued attributes. Unfortunately, there is no basic data type that copes with multi-va-
lued strings. Yet, the CDIF TextValue data type comes near, thusin somerare occasionswe interpret Text-
Value asamulti-valued text attribute.

Intheoriginal CDIF standard, a TextValue denotes a set of characterswhich isdivided into blockswith
amaximum of 1024 characters. The beginning of each block ismarked by “#[” while the end is marked by
“1#". The actual value of the text is the concatenation of the blocks. To represent a multi-valued string at-
tribute with a TextValue, we interpret each block in a TextValue as a separate string. Also, we require that
each one of those strings must append aspecial delimiter character (whichis“|") toitsend so that the orig-
inal multi-valued strings can be retrieved from the concatenated blocks. In the (unlikely) situation that a“|”
appearsin astring valueit should be escaped with “\|". Thuswe get

(I'nvocati on FMB5
(invokedBy "ScrollBar.print()")
(i nvokes "print()")
(candi dat es#[Wdget . print()|]#,
#[Moti fWdget. print()|]#,
#[Swi ngWdget . print()|]#)
)
instead of (using CDIF relationships):

(I nvocati on FMBS
(i nvokedBy "ScrollBar.print()")
(invokes "print()")
)
(Candi date FMiI5
(val ue "Wdget.print()")
)
(Candi dat e FMi6
(value "MotifWdget.print()")
)
(Candi date FMi7
(val ue "SwingWdget.print()")
)
(I'nvocat i on. HasCandi dat e. Candi dat e FMB7 FMBS FMWA5)

APPENDIX C

Smalitalk Extension to FAMIX

This appendix describesthe Smalltalk extension to FAMIX. Before discussing the specific interpretations
and extensions, it gives a short overview of how FAMIX can be extended.

3.1 Extending FAMIX
Thebasic FAMIX model ismadified in three different waysto handle Smalltalk sources:

* New classes are added to the common exchange model to model entities and associations unique to
Smalltalk. These classes are marked as new entities respectively associations.

* New attributes are added to existing classes of the basic FAMIX model. In this case the class is
marked “extended” and only the new and modified (see below) attributes are listed in the definition
of the modified class.

» The definition of attributes of existing classes are modified or are made more specific. In this case
the corresponding class is marked “interpreted” and the interpreted attributes are listed in the defi-
nition of the modified class. To discriminate new from interpreted attributes, new attributes are ex-
plicitly tagged as being new and interpreted attributes are listed without any type information since
that information hasn't changed anyway.

3.2 Modified classes

3.2.1 Model (interpreted)
Model

sourceLanguage
sourceDialect

162 Modified classes

The new or modified attributes are:
* sourcelLanguage
For Smalltalk models this attribute always contains the string “ Smalltalk”.
* sourcebi al ect
The Smalltalk language has different dialects, with different versions. If known, thisversion can be
stored in this attribute. Regarding FAMIX, certain Smalltalk dialects such as VisuaWorks 5i or
Quasar Smalltalk have the notion of namespaces.

3.2.2 Package (interpreted)

Package

Smalltalk namespaces (only availablein certain dialects) are mapped to FAMIX Packages. Namespacesin
Smalltalk have the following properties:

» Namespaces can contain classes and namespaces. Both classes and packages can belong to only one
package.
» Namespaces names should be unique within their encapsulating package.

These properties are in sync with the expected propertiesin the core FAMI X definition.

3.2.3 Class (interpreted and extended)

Class

isAbstract
categories #new
isMetaclass #new
metaclass # new

Both Smalltalk classes and metaclasses are modelled using the FAMIX Class concept. In Smalltalk every
class has ametaclass associated with it. The metaclass does not have its own name, so we create the name
from the sole metaclassinstance concatenated with“_class’.

The new or modified attributes are:

* isAbstract
In Smalltalk aclassis abstract if at least one of its methods is declared abstract or if it inherits ab-
stract methods and does not provide an implementation for them.

e categories
A class hasalist of categories to which methods can be associated.

* isMetacl ass: Bool ean; required
Returnstrueif the class represents a Smalltalk metaclass.

 netacl ass: Nane; required
if isMetaclass is false, metaclass returns the unique name of a associated metaclass, null otherwise.
Although in Smalltalk asking the class of a metaclass or the metaclass of a metaclassispossible, we
cut the recursion at the level of the class. Otherwise the whole reflective kernel of Smalltalk would
have to be represented.

Smalltalk Extension to FAMIX 163

3.2.4 BehaviouralEntity (interpreted and extended)

BehaviouralEntity

declaredReturnClass
declaredReturnType
inferredReturnClasses #new

In Smalltalk returntypes of methodsare not explicit. Therefore, decl ar edRet ur nCl ass anddecl! ar ed-

Ret ur nType containthemost general type available, namely Object. Asin Smalltalk thereareonly classes
and no primitive typesor pointers, decl ar edRet ur nType and decl! ar edRet ur nd ass awaysdenotea
class.

The new attributeis:

* inferredReturnC asses 0..N Nane; optional
Contains possible inferred returned types of the Behavioral Entity.

3.2.5 Method (interpreted and extended)
Method

accessControlQualifier

signature

isPureAccessor

hasClassScope

isAbstract

isConstructor

isPrimitive (): Boolean #new
belongsToCategory (): String #new

Each definition of amethod in source code constitutesthis entity.
The new or modified attributes are:

 accessControl Qualifier
In Smalltalk, all methods are public.
e signature
The signature followsthe FAMIX conventions (see section 2.1.2). For instance, m anl nt isstored
as.m (Obj ect) .
* isPureAccessor
A pure read accessor in Smalltalk normally looks like (accessing a variable nane):
namnme
Anamne
A pure write accessor normally looks like:
name: astring
name := astring
* hasC assScope
In Smalltalk, class methods are instance methods of a metaclass. As metaclasses are represented in
FAMIX as classes and thus distinguished from the class with which they are associated, hasClass-
Scope can only be false.

164 Modified classes

* isAbstract
A method is abstract, if it invokes the method subcl assResponsi bi | i ty. Consequently, an ab-
stract method in Smalltalk has an implementation (contrary to languages such as Java). An example:

nane
sel f subcl assResponsi bility

* isConstructor
In Smalltalk thereis no special constructor concept. Every class method that returns an instance of
that classis normally considered a constructor. However, there are no special rules. It isjust another

method. Therefore, isConstructor isfalse by default and may be set to true if further analysisis per-
formed.

e isPrimtive: Bool ean; optional
Isapredicate telling if the method is a primitive or not.
» bel ongsToCategory: String; optional.
In Smalltalk, a method is defined into a category, a name for a group of methods.

3.2.6 StructuralEntity (interpreted and Extended)
StructuralEntity

declaredType
declaredClass
inferredClasses #new

In Smalltalk typesof variablesare not explicit. Any object of any type canbestoredinavariable. Therefore,
decl aredType and decl aredC ass contain the most general type available, namely Object. Asin
Smalltalk there are only classes and no primitive types or pointers, the decl ar edType and decl ar ed-
C ass always denote the same FAMIX class.

Thenew attributeis:

e inferredd asses 0..N Nane; optional
Contains possible inferred returned types of the Structural Entity.

3.2.7 Attribute (interpreted)
Attribute

hasClassScope
accessControlQualifier

The new or modified attributes are:

* hasC assScope
An attribute in Smalltalk has class scopeif it is defined as ClassVariable, e.g., shared by al thein-
stances of aclass and its subclasses. Metaclass instance variables are stored as instance variabl es of
the metaclass (which is modelled as just another class) and hence do not have class scope.

e accessControl Qualifier
In Smalltalk all attributes are protected, i.e., only accessiblewithin the classthat definesthe attribute
and its subclasses.

Smalltalk Extension to FAMIX 165

3.2.8 GlobalVariable (interpreted)
GlobalVariable

Smalltalk global variables are mapped to the Global Variable concept with the exception of classes. These
are modelled as Classes, although a Smalltalk classisaso aglobal variable.

3.2.9 ImplicitVariable (interpreted)

ImplicitVariable

Implicit variablesin Smalltalk are sel f , super andt hi sCont ext in certain Smalltalk dialects (such as
VisualWorks, Squeak and Dolphin). sel f isanimplicit instance variable which refersthe current object a
method isexecutingin. super refersto the superclass of the current class defining the method in which su-
perisused. t hi sCont ext isavariablethat representsthe execution stack. Implicit variableswill only ap-
pear inamodel when they are explicitly referred to.

3.2.10 LocalVariable (interpreted)

LocalVariable

Smalltalk local method variables are mapped to the Local Variable concept. Variables that are local to a
subscope of a method body (f.i., a block definition) are also considered Local Variables. This leads the
problem of multipleentitieswith the same unique nameif multiple subscopes definelocal variableswiththe
same name. For instance, the following code results in two LocalVariables with the unique name
nyCd ass. myMet hod. each.

nyd ass>>nyMet hod
collection do: [:each | each doSonethi ngN ce].
collection do: [:each | each doSonet hi ngBad]

A possible solution isthe explicit representation of blocks.

3.2.11 FormalParameter (interpreted)
FormalParameter

In Smalltalk, formal parameters are read-only. For instance,

name: astring
astring := "’

isnot allowed.

166 Miscellaneous

3.2.12 InheritanceDefinition (interpreted)
InheritanceDefinition

accessControlQualifier
index

In Smalltalk classes alwaysinherit from asingle class (except the root class Object which does not inherit
from any class). Classand metaclassinheritance hierarchiesare parallel. So ametaclassalwaysinheritsthe
metaclass of the superclass of itsassociated instance (whichisaclass).

The new or modified attributes are:

e accessControl Qualifier

The access control in Smalltalk is aways ‘public’. It means that all public methods and protected
attributes are inherited by the subclass and keep their declared visibility.

* index

Theindex isaways ‘null’ as Smalltalk has single inheritance, so an index has no meaning.

3.2.13 Invocation (interpreted)
Invocation

base
receivingClass
candidatesAt

The new or modified attributes are:

* base

Duetothelack of static typeinformation, in Smalltalk the class of the receiver (and the base through
that class) can only be statically determined when a method is sent to the sel f or super implicit
variables (note that this does not take the runtime aspect into account, but the static definition of
methods).

* receivingd ass

Similar to base, thereceiving class can only be statically determined when the receiver is self, super
or aclass.

* candi dates

For invocations the candidates attribute holds any method with the same signature as invokes. Note
that if the base or receiving class are known the candidates can be restricted to the hierarchy of
base.

3.3 Miscellaneous

Smalltalk does not have functions, thus those entities will never appear in a FAMIX model of a Smalltalk
system.

Smalltalk Extension to FAMIX 167

3.4 Pending Issues

Issues not yet covered in thisextension are;

In Smalltalk classes are also global variables. Normally any references to classes are covered
through method of the class that are invoked or attributes that are accesses. However, FAMIX does
not record the dependencies when a class is used only as aglobal variable (i.e., without a message
send). Some examples:

x = (bj ect

“(bj ect

self m bject

(hj ect := OrderedCol | ection

If aclass would be modelled as a kind of StructuralEntity (like any other variable) then the above

cases would be modelled as accesses to this Structural Entity. However, thisrequires achangein the

FAMIX core.

Pool dictionaries and pool variables are currently not covered. Possibilities to model these concepts

are

- to create two new Structural Entity’ s called Pool Dictionary (as a subclass of GlobalVariable) and
PoolVariable. Additionally, to capture which classes use which pool variables, a relation be-
tween Classes and Pool Dictionaries is must be created.

- tomodel apool dictionary asa classwith only class-scope attributes (the pool variables). Access
to pool variableswould be an Accessto the class attribute. Note that in Smalltalk it isnot possible
to access normal attributes from outside the hierarchy they are defined in.

Currently it is not determinable in FAMIX that an invocation of the form ‘self class myMetaclass-

Method’ is an invocation of a metaclass method. It is interpreted as follows: the method ‘class’ is

invoked on self, the method ‘ myM etaclassM ethod’ is recorded to be invoked on ‘ some’ expression.

It might be desirable to interpret this special differently for the purpose of recording class method

accesses.

Depending on the dialect, other grouping concepts such as ‘parcels’ and ‘applications’ exist. We

currently do not cover these.

We do not cover block closures. Asthese are submethod-level concepts, it is not likely that we will

cover them in the near future.

168 Pending Issues

APPENDIX D

Java Extension to FAMIX

This appendix describes the Java extension to FAMIX. Before discussing the specific interpretations and
extensions, it givesashort overview of how FAMIX can be extended.

4.1 Extending FAMIX
Thebasic FAMIX model ismodified in three different waysto handle Java sources:

* New classes are added to the common exchange model to model entities and associations unique to
Java. These classes are marked as new entities respectively associations.

* New attributes are added to existing classes of the basic FAMIX model. In this case the class is
marked “extended” and only the new and modified (see below) attributes are listed in the definition
of the modified class.

» The definition of attributes of existing classes are modified or are made more specific. In this case
the corresponding class is marked “interpreted” and the interpreted attributes are listed in the defi-
nition of the modified class. To discriminate new from interpreted attributes, new attributes are ex-
plicitly tagged as being new and interpreted attributes are listed without any type information since
that information hasn't changed anyway.

4.2 Modified classes

4.2.1 Model (interpreted)
Model

sourceLanguage
sourceDialect

170 Modified classes

The new or modified attributes are:

» sourcelLanguage
For Java models this attribute always contains the string “ Java’.

» sourcebDi al ect
The Java language does not have dialects, but it has versions. If known, this version can be stored
in this attribute. The possibly interesting issues for FAMIX on the language-feature- and-syntax le-
vel (as opposed to added libraries) between the different versions are:

1.0x->11x: - Addition of inner classes (including anonymous ones)
- Final method parameters and local variables

1.1x->12x: - Addition of anew keyword (strictfp)

4.2.2 Package (interpreted)
Package

A Package mapsin Javato the Java package construct. Packagesin Java have the following properties:

» packages contain classes and packages. Both classes and packages can belong to only one package.
» package names should be unique within their encapsulating package.

These properties arein sync with the expected propertiesin the core FAMIX definition.

Normally packagesin Javamap directly to the directory structure of source code, i.e. the source codefor
a certain class in a certain package appears in a directory with the same name as the package. Nested
packages appear as subdirectories of the directory with the source code of the encapsulating package.

4.2.3 Class (interpreted and extended)

Class

isInterface (): Boolean # new
isPublic (): Boolean # new
isFinal (): Boolean # new
isAbstract
belongsToPackage

Both classes and interfacesin Java are mapped to the FAMI X entity Class. Interfacesdiffer from classesin
that they can only define abstract methods and final static variables. Interfaces cannot inherit from classes
(for afull discussion, see“InheritanceDefinition (interpreted)” on page 174).

The new or modified attributes are:
 islnterface: Bool ean; optional
Isapredicate telling if the entity is an interface as opposed to a normal class.
* isPublic: Bool ean; optional

Is a predicate telling if the class is defined public or not. Public (as opposed to default) visibility
means the class is visible outside its containing package.

Java Extension to FAMIX 171

e isFinal: Bool ean; optional
Isapredicatetelling if the classis defined final or not. Final classes cannot be subclassed (and sub-
sequently its methods cannot be overridden). Interfaces cannot befinal.

* isAbstract
In Java a class is abstract if the class is declared abstract. This is obligatory if one or more of its
methods are abstract. Even if the class does not contain any abstract methods, it can be declared ab-
stract, implying that the class is not allowed to be instantiated. Interfaces are always abstract, but
don’t have to be declared as such (although you may if you want to).

» bel ongsToPackage
The package to which a class belongsis defined by the package statement at the beginning of a Java
source file that aso contains the class definition.

4.2.4 BehaviouralEntity (interpreted and extended)

Behavioural Entity

declaredReturnClass
declaredReturnType

Thefollowing attributes areinterpreted asfollows:
» decl aredRet ur nType
In Javathis attribute can contain any primitive types, array types or classes (and interfaces).
* decl aredRet urnd ass

This attribute contains the unique name of the FAMIX class entity (which is a Java class or inter-
face) if the declaredReturnType denotes such an entity.

4.2.5 Method (interpreted and extended)
Method

isFinal (): Boolean # new
isSynchronized (): Boolean # new
isNative (): Boolean # new
accessControlQualifier

signature

isPureAccessor

hasClassScope

isAbstract

isConstructor

Each definition of amethod in source code constitutesthis entity.
The new or modified attributes are:
* isFinal: Bool ean; optional
Isapredicate telling if the method is defined final or not. Final methods cannot be overridden.
e isSynchroni zed: Bool ean; optional

Is a predicate telling if the method is defined synchronized or not. Only one of the synchronized
methods of an instance of a class can be accessed at once at runtime.

172

Modified classes

i sNative: Bool ean; optional

Is apredicate telling if the method is defined native or not. Native methods are implemented in an
external language (for instance, C++) and therefore do not have an implementation in the Java side
of the code.

accessControl Qualifier

The allowed access specifiers for methods are: public, protected, private. An empty specifier means
default visibility, which denotes that the method is visible for all classes within the same package.
signature

In Javaisamethod is uniquely distinguished by its name and the number, the types and the position
of its formal parameters. Therefore, the signature string takes the form methodname(T1, ..., Tn)
where T1..n are the types of the formal parameters of the method (see also the FAMIX naming con-
ventions in section 2.1.2). Note that parameters can be declared final, but that this finalness is not
part of the method signature. A subclass can override amethod and add or drop any final parameter
modifiers you wish. You can also add or drop final modifiers in a method’'s parameters without
causing any harm to existing compiled code that uses that method [GJSBOQ].

i sPur eAccessor

A pure reader accessor in Java normally looks like (accessing a variable name):

String get Name {
return nane;

}
A pure writer accessor normally looks like:

voi d set Nanme(String name) {
thi s. name = nane;

}
hasC assScope
A method in Java has class scope if it is defined static.
i SAbstract

A method isabstract, if it is declared abstract with the abstract keyword. An abstract method in Java
doesn’t have an implementation.

i sConstruct or

A constructor in Java has the form of a method with no declared return type and anameidentical to
the name of the class it belongs to.

4.2.6 StructuralEntity (interpreted and Extended)

StructuralEntity

declaredType
declaredClass

Thefollowing attributes are interpreted asfollows:

decl aredType
In Javathis attribute can contain any primitive types, array types or classes (and interfaces).

Java Extension to FAMIX 173

decl aredd ass

This attribute contains the unique name of the FAMIX class entity (which is a Java class or inter-
face) if the declaredType denotes such an entity.

4.2.7 Attribute (interpreted)

Attribute

isFinal (): Boolean # new
isTransient (): Boolean # new
isVolatile (): Boolean # new
hasClassScope
accessControlQualifier

The new or modified attributes are:

i sFinal : Bool ean; optional

Isapredicatetelling if the attribute is defined final or not. Final attributes are set only once and can-
not be changed afterwards.

i sTransi ent: Bool ean; optional

Is apredicate telling if the (non-static) attribute is defined transient or not. Transient indicates that
an attribute is not part of an object’ s persistent state and thus needs not to be serialized with the ob-
ject.

i sVol atil e: Bool ean; optional

Isapredicate telling if the attribute is defined volatile or not. Volatile specifies that an attribute is
used by synchronized threads and that the compiler should not attempt to perform optimisations
with it.

hasC assScope

An attribute in Java has class scopeif it is defined static.

accessControl Qualifier

The allowed access specifiers are: public, protected, private. An empty specifier means default vi-
sibility, which denotes that the attribute is visible for all classes within the same package.

4.2.8 ImplicitVariable (interpreted)

ImplicitVariable

Implicit variablesin Javaaret hi s, super andcl ass. t hi s isan implicit instance variable which refers
the current object amethod is executing in. super refersto the superclass of the current object. cl ass is
not an implicit variable in the strict sense of theword (asit is also akeyword in Java). An expression like
String. cl ass evaluates to areference to the String class object. Thisworks for al types, including the
primitive types. It is close enough, however, to an implicit static variable to be modelled as an implicit va-
riable. Implicit variableswill only appear in atransfer when they are explicitly referenced by other entities.

174

Modified classes

4.2.9 LocalVariable (interpreted)

LocalVariable

isFinal (): Boolean # new

The new or modified attributes are:

i sFinal : Bool ean; optional

Isapredicatetelling if the attribute is defined final or not. Final local variables are set only once and
cannot be changed afterwards.

4.2.10 FormalParameter (interpreted)

FormalParameter

isFinal (): Boolean # new

The new or modified attributes are:

i sFinal : Bool ean; optional

Isapredicatetelling if the attribute is defined final or not. Final parameters cannot be changed with-
in the body of the method it is a parameter of. Note that the finalness of a parameter is not part of
the method signature — it issimply adetail of the implementation. A subclass can override ameth-
od and add or drop any final parameter modifiersyou wish. Y ou can also add or drop final modifiers
inamethod’ s parameters without causing any harm to existing compiled code that uses that method.

4.2.11 InheritanceDefinition (interpreted)

InheritanceDefinition

accessControlQualifier
index

In Javaclassesalwaysinherit from asingle class (except theroot class Object that doesnot inherit from any
class). A classcanimplement multipleinterfaces, which simul ates some kind of multipleinheritance, but as
interfaces do not have any implementation, resolving which method needsto be executed, isnot aproblem.
Interfaces can inherit from multiple interfaces. In FAMIX classes and interfaces are treated similarly, as
shown by thefact that they are both represented as classes, therefore both classinheritance and interfaceim-
plementation is represented by an InheritanceDefinitionin FAMIX.

The new or modified attributes are:

accessControl Qualifier

The access control in Javais aways ‘public’. It means that all public and protected attributes and
methods are inherited by the subclass and keep their declared visibility.

i ndex

The index isaways ‘null’ as Java has single inheritance and therefore name collisions cannot ap-
pear. Java classes can implement multiple interfaces, but as interfaces do not implement any beha-
viour name collisions do not cause any problems. | nterfaces can contain constants, but aclass cannot
implement multiple interfaces that contain constants with the same name with possibly different
values.

Java Extension to FAMIX 175

4.2.12 Invocation (interpreted)

Invocation

base
receivingClass
candidatesAt

The new or modified attributes are:

base
In Java this attribute contains the statically determinable class of the expression receiving the invo-
cation. For example:

M/d ass r = new M/A ass();

r.n();
Thenr isthereceiver and therefore MyClass the receiving class. If the receiving class aso contains
amethod with the invoked signature, it isthe base. Otherwise the class defining the inherited meth-
od with that signature it the base.
recei vi ngd ass
See the definition of base.
candi dat es
For invocations the candidates attribute holds either all methods overriding the method base: : i n-
vokes, or if baseisaJavainterface it holds all methods with the same signature in the class hierar-
chies that implement that interface.

4.3 New classes

4.3.1 TypeCast

TypeCast

belongsToBehaviour (): Name
fromType (): Name
toType (): Name

TypeCast isasubclassof Assocation. It models Javatypecast (e.g., (M/Cl ass) vari abl e). Typecastsare
interesting for reengineering asthey often point to problemsin the design of asystem. Therewill beanin-
stance of this class for every type cast occurring in the source code, even if the cast is between the same
types, because we areinterested in all the placeswhere casts occur.

Theattributes of TypeCast are:

bel ongsToBehavi our: Nane; mandatory

Refers to the Behavioural Entity the cast appearsin.

fronType: Nane; optional

Refers to the unique name of the type the cast expression has. Thisis the declared type of variable
in the above example.

toType: Nane; optional

Refers to the unique name of the type the expression is cast to (MyClass in the above example).

176 Miscellaneous

4.4 Miscellaneous

Javadoes not havefunctions or global variables, thusthose entitieswill never appear inaFAMIX model of
aJavasystem. Next to that, arrays and primitive types are not handled explicitly in this FAMIX extension
either.

Then thereisaminor issue about filevisibility. Normally a classwith default visibility isvisible within
its package. However, when such a classis defined in the samefile of another class and the name of thefile
isthe sameasthe nameof theother withthe' .java extension and thesesclassesarenot defined inthe default
package, then the classis not visible outside thefile, even to classesin the same package that are defined in
other files. Thisissueisnot dealt with in this Javalanguage plug-in, becauseit’saminor issue and in model
transfers we assume a compilable system anyway.

4.5 Pending Issues

Issues not yet covered inthisplug-in are:

* Nested classes, inner classes, anonymous classes. A solution for this needs to be synchronized with
other language plugins (most notably C++).

» Implicit methods. In Java there are certain methods defined implicitly. These are the default con-
structors and the methods this(..), super(..) (with or without parameters), which are somekind of ali-
ases to constructors of either the current class or its superclass. If introduced in the FAMIX exten-
sion, theseimplicit methods should only appear in atransfer when they are explicitly referenced by
other entities. Implicit methods can be introduced as Methods with aboolean isimplicit attribute set
to true. Another possibility isto create a new entity called ImplicitMethod (similar to ImplicitVari-
able). However, this causes problems on the language independent level, as entities and associations
on the language independent level (such asin Invocations) may reference this language specific en-
tity. For that to work, ImplicitMethod should be defined on the FAMIX core level rather than the
Javaextension level.

» Static and instance initialisers. A possibility isto model these as a specia kind of method.

Bibliography

[ATOS]

[Bar99]

[BBC+99]

[BCOO]

[Bec99]
[Bis92]

[BLFIM98]

[BMMM98]

[Boess]

[Bor01]

[BPSM98]

[Cas91]

M. N. Armstrong and C. Trudeau. Evaluating architectural extractors. In Proceedings of
WCRE' 98, pages 30—-39. |EEE Computer Society, 1998.

Holger Bar. FAMIX C++language plug-in 1.0. Technical report, University of Berne, Sep-
tember 1999.

Philip A. Bernstein, Thomas Bergstrésser, Jason Carlson, Shankar Pal, Paul Sanders, and
David Shutt. Microsoft Repository Version 2 and the Open Information Model. Informa-
tion Systems, 24(2):71-98, 1999.

Bell Canada. DATRIX abstract semantic graph reference manual (version 1.4). Technical
report, Bell Canada, May 2000.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

Walter R. Bischofberger. Sniff: A pragmatic approach to ac++ programming environment.
In C++ Conference, pages 67-82, 1992.

T. Berners-Leg, R. Fielding, U. C. Irvine, and L. Masinter. Uniform Resource Identifiers
(URI): Generic syntax. Technical report, RFC 2396, August 1998. http://www.ietf.org/rfc/
rfc2396.txt.

William J. Brown, Raphael C. Malveau, Hays W. McCormick, I11, and Thomas J. Mow-
bray. Antipatterns, 1998.

Barry W. Boehm. A spiral model of software development and enhancement. |EEE Com-
puter, 21(5):61-72, 1988.

Michael Borchardt. A feasibility study for aC++ refactoring engine. Master’sthesis, Uni-
versity of Antwerp, August 2001.

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0 - w3c recommendation 10-february-1998. Technica Report REC-xml-
19980210, World Wide Web Consortium, February 1998.

Eduardo Casais. Managing Evolution in Object Oriented Environments: An Algorithmic
Approach. Ph.D. thesis, Centre Universitaire d’ Informatique, University of Geneva, May
1991.

178

[Cas92]

[Cas98]

[CC90]

[CEK+00]

[CGK 98]

[Ciu9g]

[Com94]

[DD99]

[DDHL96]

[DDL99]

[DDT99]

[DLTOO]

[DMOOO]

Eduardo Casais. Anincremental class reorganization approach. In O. Lehrmann Madsen,
editor, Proceedings ECOOP’ 92, LNCS 615, pages 114-132, Utrecht, The Netherlands,
June 1992. Springer-Verlag.

Eduardo Casais. Re-engineering object-oriented legacy systems. Journal of Object-Ori-
ented Programming, 10(8):45-52, January 1998.

Elliot J. Chikofsky and James H. Cross, |1. Reverse engineering and design recovery: A
taxonomy. | EEE Software, pages 13-17, January 1990.

Jorg Czeranski, Thomas Eisenbarth, Holger M. Kienle, Rainer Koschke, Erhard Plddere-
der, Daniel Simon, Yan Zhang, Jean-FrancoisGirard, and Martin Wirthner. Dataexchange
in Bauhaus. In Proceedings WCRE' 00. | EEE Computer Society Press, November 2000.

Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. A C++ data model sup-
porting reachability analysis and dead code detection. | EEE Transactions on Software En-
gineering, 24(9):682—-693, September 1998.

Oliver Ciupke. Automatic detection of design problems in object-oriented reengineering.
In Proceedings of TOOLS30 (USA), pages 18-32, 1999.

CDIF Technica Committee. CDIF framework for modeling and extensibility. Technical
Report EIA/IS-107, Electronic Industries Association, January 1994. See http:/
www.cdif.org/.

Stéphane Ducasse and Serge Demeyer, editors. The FAMOOS Object-Oriented Reengi-
neering Handbook. University of Berne, October 1999. See http://www.iam.unibe.ch/~fa-
moos/handbook.

H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with over-
loading. In Proceedings of OOPSLA' 96, pages 251267, 1996.

Serge Demeyer, Stéphane Ducasse, and MicheleLanza. A hybrid reverse engineering plat-
form combining metricsand program visualization. | n Francoise Balmas, Mike Blaha, and
Spencer Rugaber, editors, Proceedings WCRE' 99 (6th Working Conference on Reverse
Engineering). |EEE, October 1999.

Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why unified is not universal.
UML shortcomings for coping with round-trip engineering. In Bernhard Rumpe, editor,
Proceedings UML’99 (The Second International Conference on The Unified Modeling
Language), LNCS 1723, Kaiserslautern, Germany, October 1999. Springer-Verlag.

Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. M oose: an extensible language-
independent environment for reengineering object-oriented systems. In Proceedings of the
Second International Symposium on Constructing Software Engineering Tools (CoSET
2000), June 2000.

Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink) version
1.0 - w3c proposed recommendation 20 december 2000. Technical Report PR-xlink-
20001220, World Wide Web Consortium, December 2000.

179

[DRD99]

[Fav01]

[FBB+99]

[FHK+97]

[FROS]

[FreQ0]

[FY00]

[GJSBOO]

[HEH+96]

[Hol9g]

[HWS00]

[HYR96]

[JBR99]

[iFal
[JGROY]

[JO93]

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent ap-
proach for detecting duplicated code. In Hongji Yang and Lee White, editors, Proceedings
ICSVI'99 (International Conference on Software Maintenance), pages 109-118. |EEE,
September 1999.

Jean-Marie Favre. G=*. ageneric software exploration environment. In Proceedings of the
oth International Workshop on Program Comprehension, pages 233-244. |EEE, May
2001.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S.
Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564-593, November 1997.

Richard Fantaand Vaclav Rajlich. Reengineering object-oriented code. | n Proceedings of
the International Conference on Software Maintenance, 1998.

Michael Freidig. XM|I for FAMIX. Informatikprojekt, University of Berne, June 2000.

Brian Foote and Joseph W. Yoder. Big ball of mud. In N. Harrison, B. Foote, and H. Roh-
nert, editors, Pattern Languages of Program Design, volume4, pages 654-692. Addison-
Wesley, 2000.

James Gosdling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Database reverse engi-
neering: From requirements to CARE tools. Automated Software Engineering, 3(1-2),
June 1996.

Richard C. Holt. Anintroduction to TA: The Tuple-Attribute language. Technical report,
University of Waterloo, November 1998.

Richard C. Holt, Andreas Winter, and Andy Schiirr. GXL: Towards a standard exchange
format. In Proceedings WCRE’ 00, November 2000.

D. R. Harris, A. S. Yeh, and H. B. Reubenstein. Extracting architectural features from
source code. Automated Software Engineering, 3(1-2):109-139, 1996.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel opment
Process. Addison-Wesley, 1999.

jFactor. http://www.instanti ations.com/jfactor/.

Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing softwarerelease histories: The
use of color and third dimension. In ICSW’'99 Proceedings (International Conference on
Software Maintenance). | EEE Computer Society, 1999.

Ralph E. Johnson and William F. Opdyke. Refactoring and aggregation. In Object Technol-
ogies for Advanced Software, First JSSST International Symposium, volume 742 of Lec-
ture Notesin Computer Science, pages 264—278. Springer-Verlag, November 1993.

180

[iRe]
[JUn]
[Kaz96]

[KNO1]

[Kos00]

[K SRP9Y]

[Lan99]

[LB85]

[LDS01]

[Leho6]

[Letog]

[LK94]

[LLB+98]

[LS99]

[MADSMO01]

[Mae87]

[MNO7]

JRefactory. http://jrefactory.sourceforge.net/.
JUnit. http://www.junit.org.

R. Kazman. Tool support for architecture analysisand design, 1996. Proceedings of Work-
shop (ISAW-2) joint Sigsoft.

Georges Golomingi Koni-N’'sapu. A scenario based approach for refactoring duplicated
codein object oriented systems. Diplomathesis, University of Berne, June 2001.

Rainer Koschke. Atomic Architectural Component Recovery for Program Under standing
and Evolution. PhD thesis, Universitét Stuttgart, 2000.

Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-based
reverse engineering of design components. In Proceedings of ICSE’ 99, May 1999.

Michele Lanza. Combining metricsand graphsfor object oriented reverse engineering. Di-
plomathesis, University of Bern, October 1999.

M. M. LehmanandL. Belady. ProgramEvolution - Processes of Software Change. London
Academic Press, 1985.

Michele Lanza, Stéphane Ducasse, and L ukas Steiger. Understanding software evolution
using aflexible query engine. In Proceedings of the Wbrkshop on Formal Foundations of
Software Evolution, 2001.

M. M. Lehman. Laws of software evolution revisited. In European Workshop on Software
Process Technol ogy, pages 108-124, 1996.

Timothy C. Lethbridge. Requirements and proposal for a Software | nformation Exchange
Format (SIEF) standard. Technical report, University of Ottawa, November 1998. http://
www.site.uottawa.cal/~tcl/papers/sief/standardProposal-v1.html.

Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical Guide. Pren-
tice-Hall, 1994.

Bruno Lagué, CharlesLeduc, AndréLeBon, Ettore Merlo, and Michel Dagenais. An ana-
lysis framework for understanding layered software architectures. In Proceedings
IWPC’ 98, 1998.

PanagiotisK. Linosand Stephen R. Schach. Comprehending multilanguage and multipar-
adigm software. In Proceedings of the short papers of ICSV'99, pages 25-28, August
1999.

C.Best, M.-A. D. Storey and J. Michaud. Shrimp views: An interactive and customizable
environment for software exploration. In Proceedings of International Workshop on Pro-
gram Comprehension (IWPC 2001), 2001.

Pattie Maes. Concepts and experiments in computational reflection. In Proceedings
OOPS_A 87, ACM SIGPLAN Notices, pages 147-155, December 1987. Published as Pro-
ceedings OOPSLA'87, ACM SIGPLAN Notices, volume 22, number 12.

Gail C. Murphy and David Notkin. Reengineering with reflexion models: A case study.
|EEE Computer, 8:29-36, 1997.

181

[MNGLOS]

[Mo096]

[Mul86]

[MWD99]

[Nebog)]

[OCN99]

[0G97]

[0J93]

[OMG97]

[OMG98]

[OMG99]

[OMGO0]

[Opd92]

[Par98]
[RBJO7]

[RD9Y]

[Ree96]

Gail C. Murphy, David Notkin, William G. Griswold, and EricaS. Lan. An emperical study
of static call graph extractors. ACM Transactions on Software Engineering and Methodo-
logy, 7(2):158-191, April 1998.

Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. In
Proceedings of OOPS_A' 96 Conference, pages 235-250. ACM Press, 1996.

H. A. Mller. Rigi - AModel for Software System Construction, Integration, and Evalua-
tion based on Module Interface Specifications. PhD thesis, Rice University, 1986.

Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying software architec-
tures using virtual software classifications. In Proceedings of TOOLS-Europe 99, pages
3345, June 1999.

Robb Nebbe. FAMIX Ada language plug-in 2.2. Technical report, University of Berne,
August 1999.

Mel O Cinnéide and Paddy Nixon. A methodology for the automated introduction of de-
sign patterns. In Proceedings |CSWI' 99. | EEE Computer Society Press, August 1999.

Open Group. DCE 1.1: Remote procedure call. Technical Report C706, Open Group, Au-
gust 1997.

William F. Opdykeand Ral ph E. Johnson. Creating abstract superclassesby refactoring. In
Proceedings of the 1993 ACM Conference on Computer Science, pages 66—73. ACM
Press, 1993.

Object Management Group. Meta object facility (MOF) specification. Technical Report
ad/97-08-14, Object Management Group, September 1997.

Object Management Group. XML Metadata Interchange (XM1). Technical Report ad/98-
10-05, Object Management Group, February 1998.

Object Management Group. Unified Modeling Language (version 1.3). Technical report,
Object Management Group, June 1999.

Object Management Group. M etaObject Facility (M OF) specification (version 1.3). Tech-
nical report, Object Management Group, March 2000.

William F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
[llinois, 1992.

ParcPlace. VisualWorks 3.0, 1998. User Guide, Cookbook, Reference Manual.

Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk. Theory
and Practice of Object Systems (TAPOS), 3(4):253-263, 1997.

Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-oriented ap-
plications from static and dynamic information. In Hongji Yang and Lee White, editors,
Proceedings |CSM’ 99 (International Conference on Software Maintenance), pages 13—
22. |EEE, September 1999.

Trygve Reenskaug. Working with Objects: The OOram Software Engineering Method.
Manning Publications, 1996.

182

[Rob9g]

[RSKOO]

[Scho1]

[SDSK00]

[SGMZ98]

[SMHP+97]

[Somge]
[SS0q]

[Ste01]

[Stro7]

[Tako6]
[TB99%]

[TBY%b]

[TD99]

[TDDNOO]

[Ticog]

Donald Bradley Roberts. Practical Analysisfor Refactoring. PhD thesis, University of |-
linois, 1999.

Sébastien Robitaille, Reinhard Schauer, and Rudolf K. Keller. Bridging program compre-
hension tools by design navigation. In Proceedings of the International Conference on
Software Maintenance (1CSM 2000), 2000.

Andreas Schlapbach. Generix XMI support for the MOOSE reengineering environment.
Informatikprojekt, University of Bern, June 2001.

Guy Saint-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting amodel interchange
format. the SPOOL case study. I n Proceedings of the Thirty-Third Annual Hawaii | nterna-
tional Conference on System Sciences, 2000.

Benedikt Schulz, Thomas Genssler, Berthold Mohr, and Walter Zimmer. On the computer
aided introduction of design patterns into object-oriented systems. In Proceedings of the
TOOLS27 Conference (Asia 1998). | EEE Computer Society Press, 1998.

Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, iLogix, IBM, ObjecTime, Platinum Tech-
nology, Ptech, Taskon, Reich Technologies, and Softeam. Object Constraint Language
Soecification (version 1.1). Rational Software Corporation, September 1997.

lan Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.

Susan Elliott Sim and Margaret-Anne D. Storey. A structured demonstration of program
comprehension toals. In Proceedings of WCRE 2000, pages 184193, 2000.

Lukas Steiger. Recovering the evolution of object oriented software systemsusing aflexi-
ble query engine. Diplomathesis, University of Bern, June 2001.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third edition,
1997.

TakeFive Software GmbH. SNiFF+, 1996.

Lance Tokuda and Don Batory. Automating three modes of evolution for object-oriented
software architecture. In Proceedings COOTS 99, May 1999.

Lance Tokudaand Don Batory. Evolving object-oriented designswith refactorings. In Pro-
ceedings of Automated Software Engineering, 1999.

Sander Tichelaar and Serge Demeyer. SNiFF+ talksto Rational Rose—interoperability us-
ing a common exchange model. In SNiFF+ User’s Conference, January 1999. Also ap-
peared in the "Proceedings of the ESEC/FSE’'99 Workshop on Object-Oriented Re-
engineering (WOOR’99)" — Technical Report of the Technical University of Vienna
(TUV-1841-99-13).

Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-model
for language-independent refactoring. In Proceedings | SPSE 2000. | EEE, 2000.

Sander Tichelaar. FAMIX Java language plug-in 1.0. Technica report, University of
Berne, September 1999.

183

[Tursl]

[Uni96]

[URE]
[Wer99]

[WH92]

[WuyO1]

[WWWC99]

[YHC97]

W. Turski. Software stahility. In Proceedings for the 6th ACM Conference on Systems Ar-
chitecture, 1981.

University of Karlsruhe. COMPOST, 1996. http://iddwww.info.uni-karlsruhe.de/
compost.

Unisys Universal Repository (UREP). http://www.unisys.com/marketplace/urep/.

Michael M. Werner. Facilitating Schema Evol ution With Automatic Program Transforma-
tion. PhD thesis, Northeastern University, July 1999.

Norman Wilde and Ross Huitt. Maintenance support for object-oriented programs. |EEE
Transactions on Software Engineering, SE-18(12):1038-1044, December 1992.

Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of Ob-
ject-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.

World Wide Web Consortium. Resource Description Framework (RDF) model and syntax
specification. Technical report, World Wide Web Consortium, February 1999.

A. S. Yeh, D. R. Harris, and M. P. Chase. Manipulating recovered software architecture
views. In Proceedings of ICSE’ 97, 1997.

184

Curriculum Vitae

Personal Information

Name:

Date of Birth:
Place of Birth:
Nationality:

Education

1997-2001

1990-1997

1984-1990

Sander Tichelaar

07-03-1972

Bergambacht, The Netherlands
Dutch

PhD student in the Software Composition Group, University of Berne,
Switzerland. During thistime | have been mainly working on a European Esprit project
(FAMOOQOS) on reengineering object-oriented systems.

Rijksuniversiteit Groningen (University of Groningen, The Netherlands),

Master's degree in Computer Science, May 1997,

Master’sthesistitle: “A Coordination Component Framework for Open Distributed Sys-
tems’.

Christelijk Gymnasium Utrecht (Grammar School in Utrecht, The Netherlands).

186

	Modeling Object-Oriented Software for Reverse Engineering and Refactoring
	Modeling Object-Oriented Software for Reverse Engineering and Refactoring
	CHAPTER 1 Introduction
	1.1 Modelling software to support reengineering tools
	1.2 Contributions
	1.3 Roadmap

	CHAPTER 2 State-of-the-Art in Reengineering Metamodels and Tools
	2.1 Definitions in Reengineering
	2.2 Object-Oriented Reengineering
	2.3 Reengineering Tools and Environments
	2.3.1 Actual Reengineering Environments
	2.3.2 Metamodels for Reengineering

	2.4 Refactoring and Code Reorganisation
	2.5 Discussion
	2.6 Conclusion

	CHAPTER 3 A Design Space for Reengineering Tool Infrastructures
	3.1 Introducing the design space
	3.1.1 Scenario
	3.1.2 Infrastructural issues summarised
	3.1.6 Design Space in a Nutshell

	3.2 Language/Paradigm Axis
	3.3 Level of Detail Axis
	3.4 Multiple Models Axis
	3.5 Grouping Axis
	3.6 Extensibility Axis
	3.6.1 Adding new entities to a metamodel
	3.6.2 Adding attributes to existing entities.
	3.6.3 Annotating entities
	3.6.4 Metametamodel extensibility limits

	3.7 Incremental Loading Axis
	3.8 Storage Medium Axis
	3.9 Exchange Format Structure Axis
	3.9.1 Nested, chunk and flat formats
	3.9.2 Discussion

	3.10 Entity Reference Axis
	3.10.1 Unique identifiers
	3.10.2 Unique naming scheme
	3.10.3 Analysis

	3.11 Metametamodeling Axis
	3.12 Conclusion

	CHAPTER 4 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
	4.1 Requirements
	4.2 Overview of the FAMIX core
	4.3 Extensibility
	4.4 Multiple language support
	4.4.1 General multi-language design decisions
	4.4.2 Language mappings and extensions

	4.5 Reference Schema
	4.6 Support for information Exchange
	4.7 Metametamodeling
	4.8 Why not UML?
	4.9 Conclusion

	CHAPTER 5 The Moose Reengineering Environment
	5.1 Requirements for a Reengineering Environment
	5.2 Architecture
	5.3 Querying and Navigation
	5.3.1 Programming Queries
	5.3.2 Querying and navigating using the Moose Explorer

	5.4 Metrics and other analysis support
	5.5 Grouping
	5.6 Moose Refactoring Engine
	5.7 Information Exchange and Tool Integration
	5.7.1 Information Exchange with CDIF and XMI
	5.7.2 Tool Integration Framework and Tools

	5.8 Industrial Case Studies
	5.9 Discussion
	5.9.1 Observations
	5.9.2 The requirements revisited

	5.10 Conclusion

	CHAPTER 6 Language-Independent Refactoring
	6.1 Language subsets and mappings
	6.1.1 Language subsets
	6.1.2 Language mappings

	6.2 The Refactoring Template
	6.3 The refactorings in detail
	Add Class (classname, package, superclasses, subclasses)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Class (class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Class (class, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Method (name, class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Method (method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Method (method, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Pull Up Method (method, superclass)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Push Down Method (method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Parameter (name, method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Parameter (parameter)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Attribute (name, class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Attribute (attribute)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Attribute (attribute, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Pull Up Attribute (attribute, superclass)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Push Down Attribute (attribute)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	6.4 Validation
	6.5 Discussion

	CHAPTER 7 The Moose Refactoring Engine
	7.1 Architecture
	7.2 Validation
	7.2.1 A non-trivial refactoring sequence on a toy banking system
	7.2.2 Experiments on Moose and JUnit

	7.3 Discussion

	CHAPTER 8 Conclusion and Future Work
	APPENDIX A Table of Refactorings
	APPENDIX B The FAMIX 2.1 specification
	2.1 Overview
	2.1.1 Basic Data Types
	2.1.2 Unique Naming Conventions
	2.1.3 Level of Extraction

	2.2 Definition of FAMIX
	2.2.1 The abstract part: Object, Entity and Association
	2.2.2 Model
	2.2.3 Package
	2.2.4 Class
	2.2.5 BehaviouralEntity Hierarchy
	2.2.6 BehaviouralEntity
	2.2.7 Method
	2.2.8 Function
	2.2.9 StructuralEntity Hierarchy
	2.2.10 StructuralEntity
	2.2.11 Attribute
	2.2.12 GlobalVariable
	2.2.13 ImplicitVariable
	2.2.14 LocalVariable
	2.2.15 FormalParameter
	2.2.16 InheritanceDefinition
	2.2.17 Access
	2.2.18 Invocation
	2.2.19 Argument Hierarchy
	2.2.20 ExpressionArgument
	2.2.21 AccessArgument

	2.3 Miscellaneous
	2.3.1 CDIF Multi-valued String Attributes

	APPENDIX C Smalltalk Extension to FAMIX
	3.1 Extending FAMIX
	3.2 Modified classes
	3.2.1 Model (interpreted)
	3.2.2 Package (interpreted)
	3.2.3 Class (interpreted and extended)
	3.2.4 BehaviouralEntity (interpreted and extended)
	3.2.5 Method (interpreted and extended)
	3.2.6 StructuralEntity (interpreted and Extended)
	3.2.7 Attribute (interpreted)
	3.2.8 GlobalVariable (interpreted)
	3.2.9 ImplicitVariable (interpreted)
	3.2.10 LocalVariable (interpreted)
	3.2.11 FormalParameter (interpreted)
	3.2.12 InheritanceDefinition (interpreted)
	3.2.13 Invocation (interpreted)

	3.3 Miscellaneous
	3.4 Pending Issues

	APPENDIX D Java Extension to FAMIX
	4.1 Extending FAMIX
	4.2 Modified classes
	4.2.1 Model (interpreted)
	4.2.2 Package (interpreted)
	4.2.3 Class (interpreted and extended)
	4.2.4 BehaviouralEntity (interpreted and extended)
	4.2.5 Method (interpreted and extended)
	4.2.6 StructuralEntity (interpreted and Extended)
	4.2.7 Attribute (interpreted)
	4.2.8 ImplicitVariable (interpreted)
	4.2.9 LocalVariable (interpreted)
	4.2.10 FormalParameter (interpreted)
	4.2.11 InheritanceDefinition (interpreted)
	4.2.12 Invocation (interpreted)

	4.3 New classes
	4.3.1 TypeCast

	4.4 Miscellaneous
	4.5 Pending Issues
	Curriculum Vitae Personal Information
	Education

