
Modeling Object-Oriented Software
for Reverse Engineering and

Refactoring

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sander Tichelaar
von den Niederlanden

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut für Informatik und angewandte Mathematik

Modeling Object-Oriented Software
for Reverse Engineering and

Refactoring

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sander Tichelaar
von den Niederlanden

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 14. Dezember 2001 Der Dekan:
Prof. Dr. P. Bochsler

Modeling Object-Oriented Software
for Reverse Engineering and

Refactoring

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sander Tichelaar
von den Niederlanden

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 14. Dezember 2001 Der Dekan:
Prof. Dr. P. Bochsler

Abstract

The increased popularity of the object-oriented paradigm has also increased the interest in object-oriented
reengineering. First of all, object-oriented software systems suffer from similar maintainability problems
as traditional procedural systems, displaying the need for reengineering techniques tailored to deal with ob-
ject-oriented code. Secondly, the increased importance of iterative development processes make reengi-
neering techniques valuable in forward engineering, and thus for all paradigms that software is developed
in.

Reengineering requires tool support to deal with the large amounts of information and the wide variety
of tasks to be performed. An important consideration in building tool environments for reengineering is
what information must be provided and how this information is modelled. Design choices have a consider-
able impact not only on the ability to support reengineering tasks, but also on issues such as scalability and
tool interoperability. Several metamodels exist that model software for the purposes of reengineering. How-
ever, they generally lack a discussion of the relevance of information for reengineering and the trade-offs of
modeling alternatives.

This thesis presents FAMIX, a language-independent metamodel for modelling object-oriented soft-
ware for reengineering purposes. We discuss the exact contents of the metamodel, including its relevance
for reengineering and how the metamodel supports the different object-oriented languages through its lan-
guage-independent core. We also discuss the infrastructural design decisions of FAMIX by placing it into a
design space for infrastructural aspects of reengineering repositories and metamodels. The design space
presents multiple interdependent aspects, their design alternatives and how these impact issues such as scal-
ability, extensibility and information exchange.

We validate the ability of FAMIX to support reengineering on a language-independent level in two ways.
First, we present Moose, a reengineering tool environment with a repository based on FAMIX. Moose
serves as a foundation for multiple reengineering tools and has been applied to reverse engineer several
large industrial case studies. Secondly, we define a set of fifteen low-level refactorings in terms of the infor-
mation available in FAMIX. Refactoring requires sufficient, complete and 100% correct information as
well as a clear interpretation of the supported languages in the language-independent core of the metamod-
el, in order to correctly perform transformations on the language-specific code level. As such the refactor-
ings provide an in-depth validation of the language independence of FAMIX.

Acknowledgements

First of all, I would like to thank Prof. Oscar Nierstrasz for giving me the opportunity to work in the SCG
and for the support I have received through the years. Then I am much indepted to Serge Demeyer and
Stéphane Ducasse for their everlasting support and encouragement, as well as the work that we have done
together on FAMIX, Moose and the reengineering metamodel design space. Without them this thesis would
have been impossible.

I also thank the other members of the SCG, for the good and fruitful time on the work floor, for the careful
reading of drafts of this thesis, and also for the concerts, dinners, and the late night whiskies in town: Franz
Achermann, Gabriela Arévalo, Juan Carlos Cruz, Isabelle Huber, Michele Lanza (another major Moose
contributor), Markus Lumpe, Robb Nebbe (for his work on the Ada extension to FAMIX), Matthias Rieger,
Therese Schmid, Jean-Guy Schneider and Roel Wuyts.

I would also like to mention some other people I was fortunate to work with in the recent years. I thank
all the FAMOOS people, in particular Holger Bär for his work on the C++ extension to FAMIX and Claudio
Riva for his work on FAMIX-based CDIF and XMI. I also thank the students who chose to work with us, in
particular Andreas Schlapbach and Michael Freidig for their work on XMI and Lukas Steiger and Pietro
Malorgio for their unceasing comments on Moose and FAMIX.

Furthermore I am grateful to Prof. Theo D’Hondt for being on my PhD committee.

Finally, I want to thank my parents, for always supporting me and inspiring me to bring out the best in
myself, in education and everything else. My family and (other) friends, and most of all Claudia, I thank for
their love and support. Many thanks.

Sander Tichelaar

November 2001

Table of Contents

CHAPTER 1 Introduction. 1
1.1 Modelling software to support reengineering tools . 2
1.2 Contributions . 3
1.3 Roadmap . 4

CHAPTER 2 State-of-the-Art in Reengineering Metamodels and Tools . 5
2.1 Definitions in Reengineering . 5
2.2 Object-Oriented Reengineering . 7
2.3 Reengineering Tools and Environments. 8

2.3.1 Actual Reengineering Environments . 9
2.3.2 Metamodels for Reengineering . 10

2.4 Refactoring and Code Reorganisation . 11
2.5 Discussion. 12
2.6 Conclusion . 14

CHAPTER 3 A Design Space for Reengineering Tool Infrastructures . 15
3.1 Introducing the design space. 16

3.1.1 Scenario. 16
3.1.2 Infrastructural issues summarised . 16
3.1.6 Design Space in a Nutshell . 17

3.2 Language/Paradigm Axis . 20
3.3 Level of Detail Axis . 21
3.4 Multiple Models Axis . 22
3.5 Grouping Axis . 22
3.6 Extensibility Axis . 23

3.6.1 Adding new entities to a metamodel . 23
3.6.2 Adding attributes to existing entities. 23
3.6.3 Annotating entities . 24
3.6.4 Metametamodel extensibility limits . 25

3.7 Incremental Loading Axis . 25
3.8 Storage Medium Axis . 26
3.9 Exchange Format Structure Axis . 27

3.9.1 Nested, chunk and flat formats . 28
3.9.2 Discussion . 29

3.10 Entity Reference Axis. 30

viii
3.10.1 Unique identifiers . 30
3.10.2 Unique naming scheme . 31
3.10.3 Analysis. 32

3.11 Metametamodeling Axis. 33
3.12 Conclusion . 34

CHAPTER 4 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented
Software. 35

4.1 Requirements . 36
4.2 Overview of the FAMIX core. 36
4.3 Extensibility . 39
4.4 Multiple language support . 40

4.4.1 General multi-language design decisions . 40
4.4.2 Language mappings and extensions . 41

4.5 Reference Schema. 43
4.6 Support for information Exchange . 44
4.7 Metametamodeling . 46
4.8 Why not UML?. 46
4.9 Conclusion . 48

CHAPTER 5 The Moose Reengineering Environment . 51
5.1 Requirements for a Reengineering Environment . 51
5.2 Architecture . 52
5.3 Querying and Navigation . 54

5.3.1 Programming Queries . 54
5.3.2 Querying and navigating using the Moose Explorer. 56

5.4 Metrics and other analysis support . 57
5.5 Grouping . 57
5.6 Moose Refactoring Engine . 58
5.7 Information Exchange and Tool Integration. 58

5.7.1 Information Exchange with CDIF and XMI . 58
5.7.2 Tool Integration Framework and Tools . 59

5.8 Industrial Case Studies . 60
5.9 Discussion. 61

5.9.1 Observations . 62
5.9.2 The requirements revisited . 63

5.10 Conclusion . 64

CHAPTER 6 Language-Independent Refactoring . 65
6.1 Language subsets and mappings. 66

6.1.1 Language subsets . 66
6.1.2 Language mappings . 67

6.2 The Refactoring Template . 68
6.3 The refactorings in detail . 68

Add Class (classname, package, superclasses, subclasses) . 69
Remove Class (class) . 71
Rename Class (class, new name) . 74
Add Method (name, class) . 76

Table of Contents ix
Remove Method (method) . 78
Rename Method (method, new name) . 80
Pull Up Method (method, superclass) . 83
Push Down Method (method) . 91
Add Parameter (name, method) . 97
Remove Parameter (parameter) . 101
Add Attribute (name, class) . 103
Remove Attribute (attribute) . 105
Rename Attribute (attribute, new name) . 107
Pull Up Attribute (attribute, superclass). 109
Push Down Attribute (attribute) . 113

6.4 Validation . 115
6.5 Discussion. 115

CHAPTER 7 The Moose Refactoring Engine . 119
7.1 Architecture . 119
7.2 Validation . 122

7.2.1 A non-trivial refactoring sequence on a toy banking system . 122
7.2.2 Experiments on Moose and JUnit . 124

7.3 Discussion. 125

CHAPTER 8 Conclusion and Future Work . 127

APPENDIX A Table of Refactorings . 131

APPENDIX B The FAMIX 2.1 specification . 137
2.1 Overview. 137

2.1.1 Basic Data Types. 137
2.1.2 Unique Naming Conventions . 139
2.1.3 Level of Extraction . 139

2.2 Definition of FAMIX . 140
2.2.1 The abstract part: Object, Entity and Association. 140
2.2.2 Model . 143
2.2.3 Package . 144
2.2.4 Class . 145
2.2.5 BehaviouralEntity Hierarchy. 146
2.2.6 BehaviouralEntity . 146
2.2.7 Method . 147
2.2.8 Function. 148
2.2.9 StructuralEntity Hierarchy . 149
2.2.10 StructuralEntity . 150
2.2.11 Attribute . 150
2.2.12 GlobalVariable . 151
2.2.13 ImplicitVariable . 152
2.2.14 LocalVariable . 153
2.2.15 FormalParameter . 154
2.2.16 InheritanceDefinition . 154
2.2.17 Access . 155

x

2.2.18 Invocation . 156
2.2.19 Argument Hierarchy . 158
2.2.20 ExpressionArgument. 158
2.2.21 AccessArgument . 158

2.3 Miscellaneous . 160
2.3.1 CDIF Multi-valued String Attributes . 160

APPENDIX C Smalltalk Extension to FAMIX . 161
3.1 Extending FAMIX . 161
3.2 Modified classes . 161

3.2.1 Model (interpreted) . 161
3.2.2 Package (interpreted). 162
3.2.3 Class (interpreted and extended) . 162
3.2.4 BehaviouralEntity (interpreted and extended) . 163
3.2.5 Method (interpreted and extended) . 163
3.2.6 StructuralEntity (interpreted and Extended) . 164
3.2.7 Attribute (interpreted) . 164
3.2.8 GlobalVariable (interpreted) . 165
3.2.9 ImplicitVariable (interpreted) . 165
3.2.10 LocalVariable (interpreted) . 165
3.2.11 FormalParameter (interpreted) . 165
3.2.12 InheritanceDefinition (interpreted) . 166
3.2.13 Invocation (interpreted). 166

3.3 Miscellaneous . 166
3.4 Pending Issues . 167

APPENDIX D Java Extension to FAMIX . 169
4.1 Extending FAMIX . 169
4.2 Modified classes . 169

4.2.1 Model (interpreted) . 169
4.2.2 Package (interpreted). 170
4.2.3 Class (interpreted and extended) . 170
4.2.4 BehaviouralEntity (interpreted and extended) . 171
4.2.5 Method (interpreted and extended) . 171
4.2.6 StructuralEntity (interpreted and Extended) . 172
4.2.7 Attribute (interpreted) . 173
4.2.8 ImplicitVariable (interpreted) . 173
4.2.9 LocalVariable (interpreted) . 174
4.2.10 FormalParameter (interpreted) . 174
4.2.11 InheritanceDefinition (interpreted) . 174
4.2.12 Invocation (interpreted). 175

4.3 New classes. 175
4.3.1 TypeCast . 175

4.4 Miscellaneous . 176
4.5 Pending Issues . 176

Bibliography . 177

CHAPTER 1

Introduction

The ability to reengineer legacy systems has become a vital matter in today’s software industry. Systems
easily get hard to maintain and adapt. Requirements change, platforms change and if a system is not pro-
perly maintained, its usefulness decays over time [LB85]. The law of software entropy dictates that even
when a system starts off in a well-designed state, requirements evolve and customers demand new function-
ality, frequently in ways the original design did not anticipate. Additionally, new technology makes this sys-
tem progressively less valuable. It needs to support new platforms, embrace emerging standards and
leverage better understood technological advancements. A complete redesign may not be practical, and a
system is bound to gradually lose its original clean structure and deform into a Big Ball of Mud [FY00]
[BMMM98]. Typically such a system represents some value to its owner, for instance, in the task it per-
forms or in the knowledge it represents. However, bringing the system back into shape is very costly due to
the poor state it is in.

This is where reengineering — the examination and the alteration of a subject system to reconstitute it in
a new form [CC90] — comes in. Reverse engineering techniques (the examination) help clarifying the
structure by extracting information and providing high-level views on the subject system, while refactoring
(the alteration) modifies software to improve its simplicity, understandability, flexibility or robustness
[FBB+99] [Bec99]. Once the software is better understood and in a better shape, it is ready to fulfil its new
requirements.

Reengineering is not restricted to legacy systems. In recent years the globalisation of markets and the re-
sulting increasing competition make that business environments — and thus the requirements to the soft-
ware that supports these environments — change ever faster. To deal with these rapid changes, iterative
development paradigms have emerged that support constant adaptation of the software, rather than a single
waterfall development cycle [Boe88] [Bec99]. The examination and alteration of the software happens
much earlier in the life cycle and is repeated for every iteration. Reengineering essentially becomes part of
forward engineering.

Originally most of the reengineering efforts were focused on systems written in traditional procedural
programming languages such as COBOL, Fortran and C. But following the increased popularity of object-
oriented programming a growing demand for reengineering object-based systems has emerged in recent
years [Cas98] [WH92] [DD99]. Although sometimes thought of as a silver bullet to software development,

2 Modelling software to support reengineering tools
the mere application of object-oriented techniques is not sufficient to deliver flexible and adaptable systems.
Applying the technology correctly requires knowledge and experience which development teams not al-
ways possess. On top of that, hybrid programming languages such as C++ and Ada often prevent program-
mers from making the necessary paradigm shift away from procedural programming towards object-
oriented programming. Last but not least, object-oriented software systems suffer from the same entropy ef-
fects as any other software system.

As a consequence reengineering has become vital technology also in the area of object-oriented software
development. The technical details of and solutions to the problems may differ from other paradigms, the
source and symptoms are the same.

1.1 Modelling software to support reengineering tools
Reengineering large industrial software systems is impossible without appropriate tool support. First of all,
there is the scalability issue (millions of lines of code are the norm rather than the exception) but there is also
the extra complexity of supporting and combining multiple tools with a wide variety of tasks (standard for-
ward engineering techniques must be combined with reverse- and reengineering facilities). The need for
tool support in reengineering is reflected by the numerous tools and tool prototypes available in the reengi-
neering research community [AT98] [SS00].

To be able to reason about software systems, tools need a common information base, a repository, that
provides them with the information required for reengineering tasks. The properties of the repository, and
thus of the complete environment, are highly influenced by the metamodel that describes what and in which
way information is modelled. The metamodel not only determines if the right information is available to
perform the intended reengineering tasks, but also influences issues such as scalability, extensibility and in-
formation exchange.

There are a number of existing metamodels for representing software. Several of those are aimed at ob-
ject-oriented analysis and design (OOAD), the most notable example being the Unified Modeling Language
(UML) [OMG99]. However, these metamodels represent software at the design level. Reengineering re-
quires information about software at the source code level. The starting point is the software itself deman-
ding for a precise mapping of the software to a model rather than a design model that might have been im-
plemented in lots of different ways.

In the reengineering research community several metamodels exist that model the software itself. They
are aimed at procedural languages (Bauhaus [CEK+00]), object-oriented/procedural hybrid languages
(TA++ [Let98], Datrix [LLB+98]) and systems with multiple paradigms [LS99]. Most metamodels support
multiple languages, either implicitly or explicitly. What is generally lacking in these metamodels is a dis-
cussion of the relevance of the represented information for reengineering and a discussion about the trade-
offs of modeling alternatives. There are some exceptions [Kos00] [LLB+98], but especially in the area of
reengineering object-oriented software no comprehensive list of design choices and clear semantics of the
metamodel exist. This brings us to following research question:

how can we model object-oriented software to adequately
support reengineering tools

This thesis answers this question by specifying a language-independent metamodel for object-oriented
software, which is called FAMIX. It includes an in-depth discussion of the ability of this metamodel to sup-
port reverse engineering and refactoring on a language-independent level, as well as the design decisions

Introduction 3
that influence its scalability and tool integration properties. The main advantage of the language indepen-
dence is that tools that are based on the metamodel, can be applied without adaptation on systems in all sup-
ported implementation languages.

The thesis starts with a design space for the infrastructural aspects of building software metamodels and
repositories. Infrastructural aspects are the design aspects that deal with how the information is organized
and stored rather than the exact contents of a metamodel. For every aspect the design space lists the imple-
mentation options with trade-offs, as well as the interdependencies with other aspects. Although the thesis
focuses on the problems and solutions we have encountered in reengineering object-oriented systems, the
design space is applicable to reengineering environments for any programming paradigm. Following the
design space we present our instance of such a metamodel, namely FAMIX. Our solution to the specific re-
quirements for this metamodel — support for mid-size to large industrial software systems in multiple ob-
ject-oriented implementation languages1 — are discussed in detail.

We validate the ability of FAMIX to support reengineering on a language-independent level in two ways.
First we have developed Moose, a tool environment for reengineering object-oriented systems. It has a re-
pository based on FAMIX and has been used as a foundation for multiple reengineering tools. Moose to-
gether with these tools has been used to successfully reverse engineer several large industrial software
systems. The second validation consists of the definition of a set of fifteen refactorings in terms of FAMIX
and their implementation as part of the Moose reengineering environment. Refactorings are behaviour-pre-
serving code transformations [FBB+99]. Because they change the original software system rather than
merely analyse it, they require sufficient, complete and 100% correct information. The result of a refactor-
ing may never introduce any errors, while reverse engineering techniques typically are not affected by
slightly incomplete or incorrect information [MNGL98] [Bis92]. Furthermore, refactoring needs a clear in-
terpretation of the language-independent model information to perform the correct transformations on the
(language-specific) source code level. Our analysis shows that it is possible to abstract the refactoring defi-
nitions for the greater part from the underlying implementation languages. As such the refactoring analysis
and its implementation provide an in-depth validation of the language independence of FAMIX and espe-
cially how it maps the specific implementation languages to its language-independent core.

1.2 Contributions
The contributions of this thesis can be summarized as follows:

• A design space for infrastructural aspects of metamodels and repositories for reengineering. It makes
explicit what the relevant aspects are, how they interrelate, what implementation options can be chosen
and what the trade-offs of these options are.

• FAMIX, a language-independent metamodel for modelling object-oriented software. It makes ex-
plicit what information about object-oriented software is relevant for reengineering and how multi-
ple languages are modelled in a common way to enable the reuse of analysis and tools.

• An analysis of fifteen low-level refactorings for Java and Smalltalk in the context of language inde-
pendence. The analysis is based on the FAMIX metamodel and shows to which extent the refacto-
rings can be abstracted from the implementation languages.

1. These requirements have been mostly determined by the FAMOOS project [DD99] under which the major
part of this work has been realised. FAMOOS was a European Esprit research project (no. 21975) aimed at the
transformation of object-oriented legacy systems into framework-based applications.

4 Roadmap
1.3 Roadmap
The rest of this thesis is organised as follows. It starts with an overview of the state-of-the-art in reengineer-
ing metamodels and tools (chapter 2). Then it presents the infrastructure design space for reengineering
metamodels and repositories (chapter 3). Following it presents FAMIX (chapter 4) and its implementation
in Moose (chapter 5). Afterwards we present the refactoring analysis (chapter 6) as well as its realisation in
the refactoring engine of Moose (chapter 7). We end with a conclusion.

CHAPTER 2

State-of-the-Art in Reengineering
Metamodels and Tools

This thesis is about modeling object-oriented software in a language-independent way for the purpose of
reengineering. The problem is not new. Many reengineering tools exist and they all need to work with mo-
dels of the software they act upon. This chapter presents the state-of-the-art in reengineering metamodels
and tools. It starts with a set of definitions to set the vocabulary (section 2.1). Subsequently it discusses ob-
ject-oriented reengineering in particular (section 2.2) and gives an overview of tool environments for reen-
gineering including the metamodels they are built upon (section 2.3). Afterwards the chapter presents the
state-of-the-art in the particular case of refactoring (section 2.4). Finally, we discuss the presented tools and
metamodels and point to open problems in the area of modeling software for reengineering.

2.1 Definitions in Reengineering
This section presents definitions for reengineering and related terms. It is largely based on the taxonomy by
Chikofsky and Cross [CC90]. We start with the definition of reengineering:

“Reengineering is the examination and the alteration of a subject system to recon-
stitute it in a new form and the subsequent implementation of the new form.”
[CC90]

As stated by the definition, reengineering consists of two main activities, namely the examination and
the alteration of a subject system. More formal terms for these activities are reverse engineering and for-
ward engineering:

“Reverse engineering is the process of analysing a subject system to (i) identify
the system’s components and their relationships and (ii) create representations of
the system in another form or at a higher level of abstraction.” [CC90]

“Forward engineering is the traditional process of moving from high-level ab-
stractions and logical, implementation-independent designs to the physical im-
plementation of a system.” [CC90]

6 Definitions in Reengineering
The adjective ‘forward’ in ‘forward engineering’ is mainly used to distinguish traditional software engi-
neering from reverse and reengineering. Figure 2.1 illustrates the three notions and their relationships
[Cas98]. Reverse engineering is used to create models, i.e., higher level views, of an existing software sys-
tem. Goals are to understand a system, document it or detect problems. Conversely, forward engineering is
about moving from high-level views of requirements and models towards concrete implementations. Reen-
gineering is a combination of the two, namely transforming concrete implementations to other concrete im-
plementations. As in forward engineering, reengineering is driven by requirements (‘New Requirements’
in Figure 2.1 as opposed to the original requirements for the system). The requirements focus the reengi-
neering effort on the relevant parts of the targeted legacy system.

The process to get from a legacy system to a reengineered system is described by Casais [Cas98] in a five-
step reengineering life-cycle that can be mapped to Figure 2.1:

1. Model capture (documenting and understanding the design of the legacy system),
2. Problem detection (identifying violations of flexibility and quality criteria),
3. Problem analysis (selecting a software structure that solves a design defect),
4. Reorganization (selecting and applying the optimal transformation of the legacy system) and
5. Change propagation (ensuring the transition between different software versions).

The main difference between forward engineering and reengineering is that reengineering starts from an
existing implementation. Consequently, for every change to a system the reengineer must evaluate whether
(parts of) the system need to be restructured (or refactored) or if they should be implemented anew from
scratch. According to Chikofsky and Cross, restructuring generally refers to source code translation (such
as the conversion from unstructured spaghetti code to structured, or goto-less code), but it may also entail
transformations at the design level. This is their definition:

Figure 2.1 The reengineering lifecycle

Source Code

Design
Models

Reengineering

F
or

w
ar

d
E

ng
in

ee
rin

g

R
ev

er
se

 E
ng

in
ee

rin
g

New Requirements

State-of-the-Art in Reengineering Metamodels and Tools 7
“Restructuring is the transformation from one representation form to another at
the same relative abstraction level, while preserving the system’s external beha-
vior.” [CC90]

Refactoring is merely a special kind of restructuring, namely within an object-oriented context and fo-
cused on the level of code. In his catalog of refactorings Martin Fowler defines it as follows:

“Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture.” [FBB+99]

Typical goals of refactoring are to improve the simplicity, understandability, flexibility or performance
[Bec99]. Section 2.4 describes refactoring and the state-of-the-art in tools and research in more detail.

Reengineering versus Software Maintenance

It may be hard to tell the difference between software reengineering and software maintenance. The ANSI/
IEEE standard 729-1983 defines software maintenance as

“Software maintenance is the modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the product
to a changed environment”

This definition focuses on changes after delivery of a product. It does not cover changes that implement
new functionality. However, often any change after delivery, i.e., also implementing new functionality, is
considered maintenance. Indeed, Sommerville categorises maintenance in three kinds [Som96], namely

• corrective maintenance, i.e, fixing reported errors,
• adaptive maintenance, i.e, adapting a system to a new environment (e.g., platform or operating sys-

tem),
• perfective maintenance, i.e, implementing new functional or non-functional requirements.

However, as already argumented by Turski in 1981, adding new features does not conceptually fit the
term maintenance (adding a new wing to a building is not considered maintenance either) [Tur81]. Conse-
quently, the term ‘perfective maintenance’ is a contradictio in terminis. It is also not covered by the above
ANSI/IEEE definition.

Another problem is that the use of ‘after delivery’ in the definition is outdated. It is a backlog of the wa-
terfall model that decomposes development into a single directed flow of activities, the last one being main-
tenance. Such a sequential decomposition of activities prohibits the necessary interaction and feedback
required by software development and addressed by more modern development models such as the spiral
model [Boe88] and eXtreme Programming [Bec99].

Hence, reengineering goes beyond software maintenance. Reengineering techniques can be used to per-
form maintenance tasks such a bug fixing or any other adaptation within its original feature set. However,
reengineering can also be applied to change systems in a more considerable way, i.e., to add new function-
ality.

2.2 Object-Oriented Reengineering
Although the term ‘legacy system’ is often associated with systems in assembler or procedural languages
such as Fortran and Cobol, object-oriented systems suffer from similar problems. The Laws of Lehman

8 Reengineering Tools and Environments
[LB85] [Leh96] tend to be true for systems in any language. This is supported by facts: object-oriented le-
gacy applications exist even in relatively young languages such as Java [DD99]. Furthermore, reenginee-
ring techniques are starting to become part of modern software development processes. Hence, also in that
context reengineering techniques are relevant for systems implemented in languages other than the tradi-
tional COBOL, Fortran or C.

Apart from common legacy problems such as duplicated functionality and insufficient and outdated do-
cumentation, reengineering object-oriented languages presents its own set of problems [WH92]. We list
here some of the most preeminent:

• Polymorphism and late binding make traditional tool analysers like program slicers inadequate.
Data-flow analysers are more complex to build especially in presence of dynamically typed langua-
ges.

• Incremental class definition, together with the dynamic semantics of self or this, make appli-
cations more difficult to understand.

• Dynamically typed languages such as Smalltalk, on the one hand, make the analysis of applications
harder because types of variables are implicit and tool support is needed to infer them. On the other
hand, statically typed languages such as C++ and Java force the programmer to explicitly cast ob-
jects, which leads to applications that are less maintainable and require more effort to be changed.

Apart from the above list, common code-level problems occurring in object-oriented legacy systems are
often due to misuse or overuse of object-oriented features, such as the misuse of inheritance or the violation
of encapsulation.

2.3 Reengineering Tools and Environments

This section discusses existing reengineering tools and tool environments. Too many tools exist to describe
them all. Several surveys have been compiled [AT98] [SS00], but these do not provide exhaustive lists ei-
ther. We focus on the tools that are of interest in the context of modeling software for reengineering.

All tool sets have basically the structure depicted in Figure 2.2. There is a repository to store data about
software system. There are parsers to extract information from source code and model importers to read in
models stored using an exchange format. The tools themselves, browsers, visualisers, etc., use the reposi-
tory as their information base.

Some tools focus on providing an infrastructure that enables multiple tools to perform their reenginee-
ring tasks as well as interoperate with other tools. These are what we call the tool environments, or tool plat-
forms. Other tools focus on one special task, for instance, visualisation of architectures. These tools still
need a repository and import/export facilities, but the role of the repository is less central than in full-blown
tool environments. Section 2.3.1 discusses existing tools and tool environments.

The properties of the repository, and thus of the complete environment, are highly influenced by the
metamodel that describes what information the repository contains. The metamodel not only determines if
the right information is available to perform the intended reengineering tasks, but also influences issues
such as scalability, extensibility and information exchange. Section 2.3.2 introduces some of the meta-
models in existing tools.

State-of-the-Art in Reengineering Metamodels and Tools 9
2.3.1 Actual Reengineering Environments

Several groups of tools exist. There are the general visualisers, not necessarily aimed at software reengi-
neering. Then there are tools that are highly specialised in a certain programming language or even a one
vendor-specific dialect. Furthermore, there are the tool environments, which are explicitly aimed at suppor-
ting multiple, possibly cooperating tools, and generic metadata repositories. For all groups we present a few
examples.

The first group of tools we discuss are the generic visualisers. They are typically based on simple generic
metametamodels to be able to easily handle many different kinds of information. Rigi [Mul86] supports re-
verse engineering by providing a scriptable tool with grouping and graph layout support. It is based on a
graph metametamodel, enabling it to easily visualise any entity-relationship model. The actual metamodel
can be constructed by the user, leveraging his/her domain knowledge. For storing and exchanging models
Rigi provides its own format, the Rigi Standard Format (RSF). Similar to Rigi is Shrimp [MADSM01], a
tool to visually browse and explore complex graph-based information spaces. Exploring large software pro-
grams is only one of many possible applications.

Other tools are focused on specific languages. Consequently their metamodels are highly language de-
pendent. The Mansart tool [HYR96] queries abstract syntax tree (AST), and uses ‘recognizers’ to detect
language-specific clichés associated with specific architectural styles. Multiple views of a same system can
be generated and combined to create new ones [YHC97]. Similarly, Datrix — a source code analysis tool
developed at Bell Canada — stores ASTs with additional semantic information [LLB+98]. Acacia is a tool
that supports reachability analysis and dead code detection for C++ applications [CGK98]. (Q)SOUL
[Wuy01] is a program analysis system based on a logic programming language which is integrated in a

Figure 2.2 Standard structure for reengineering tool sets

browsers visualisers analysers other tools

repository

parsers model
importers

Source Code Model Interchange Files

10 Reengineering Tools and Environments
Smalltalk environment. A declarative framework based on logic rules allows one to reason about Smalltalk
code.

A third group of tools are the tool environments. They are explicitly aimed at supporting multiple, possi-
bly cooperating tools. The SPOOL environment is an object-oriented reengineering environment that sup-
ports program understanding (e.g., hotspot- and design pattern identification) [KSRP99] [RSK00]. It has
UML as its metamodel with some proprietary extensions. The Generic Software Exploration Environment
(Gsee) [Fav01] is a tool framework targeted at very large software systems. It consists of a repository based
on a generic entity-relationship metametamodel, wrappers to all kinds of storage facilities, a visualisation
framework and a tool builder to interactively and dynamically build exploration tools from the provided
components. GOOSE [Ciu99] [DD99] is a tool set for analysing the design of object-oriented software sys-
tems. It extracts top-level object-oriented entities such as classes, methods and attributes and their relation-
ships such as method invocations. It supports visualisation on higher levels of abstraction and the automatic
detection of potential design flaws. It has its own line based relational storage and exchange format called
the Simple Relational Format.

Instead of purpose-built reengineering environments, generic metadata repositories can be used. Well-
known examples are the Unisys UREP [URE] and the Microsoft Repository [BBC+99]. These repositories
attempt to address the general problem of sharing models between a large variety of different software tools.
The advantages of these kinds of tools is that they are open to any information model and offer industry
standard integration paths to existing systems, for instance, using XMI [OMG98]. All functionality for sto-
ring, querying and exchanging information is available. The disadvantage is that they need considerable tai-
loring for specific uses and can be an overkill for the task at hand.

2.3.2 Metamodels for Reengineering
There are several, mainly research groups that have created metamodels to represent software. Only a few
of the metamodels, however, have explicit descriptions of what information is represented. We list some of
those metamodels here. Note that the list does not contain metamodels aimed at object-oriented analysis and
design (OOAD), the most notable example being the Unified Modeling Language (UML) [OMG99]. These
models represent software at the design level. Reengineering requires information about software at the
source code level. The starting point is the software itself, demanding for a precise mapping of the software
to a model rather than a design model that might have been implemented in lots of different ways.

Bauhaus Resource Graph

The Bauhaus Resource Graph models source code by providing information such as call, type and use rela-
tions [CEK+00] [Kos00]. It is aimed at modeling constructs of procedural programming languages that
have a bearing on architecture recovery. Next to the metamodel, it defines a simple, compact graph-based
exchange format. The format is human-readable, non-nested and has built-in compression through string
reference sharing.

TA and TA++

TA (Tuple-Attribute Language) [Hol98] is a language to record information about certain types of graphs.
It defines a simple format to describe graphs and a basic schema for describing program items such as pro-
cedures and variables and relationships such as call and reference relationships. TA++ [Let98] is an exten-
sion to TA that describes a schema for program-entity level information. It is aimed at providing a
representation of high-level architectural information about very large software systems. Target languages

State-of-the-Art in Reengineering Metamodels and Tools 11
range from Java and C++ to C, Pascal, COBOL, FORTRAN and even assembler. The language mappings
to the described model, however, are not explicitly defined.

Datrix

Datrix is a source code analysis tool developed at Bell Canada [LLB+98]. The model used to describe soft-
ware is the Abstract Semantics Graph (ASG) [BC00]. An ASG represents an abstract syntax tree (AST)
with additional semantic information such as identifiers’ scope, variables’ type, etc. The goal of the Datrix
ASG model is completeness — any kind of reverse engineering analysis should be doable on an ASG with-
out having to return to the source code — and language independence — the model should be the same for
all common concepts of C++, Java and similar languages. This language independence is, however, restrict-
ed to C++- like languages.

Acacia

Acacia implements a C++ metamodel, which is explicitly aimed at reachability analysis and dead code de-
tection [CGK98]. The metamodel models software at the program entity level. The metamodel is C++ spe-
cific (although it has been used to analyse Java as well), hence it contains C++ specifics such as friend
relationships, class and function templates, macros and C++ specific primitive types. It also deals consist-
ently with nested classes and their references.

Acacia’s database size is 1.5 to 2.5 times source code size. [CGK98] mentions to know about software
vendors that create databases that are up to 150 times the source code size.

2.4 Refactoring and Code Reorganisation
Refactorings — behaviour preserving code transformations — are more and more discussed in the context
of reengineering object-oriented applications [SGMZ98] [TB99a] [FBB+99] and as part of new develop-
ment process models such as eXtreme Programming [Bec99].

Research on refactorings originates from the seminal work of Opdyke [Opd92] in which he defined some
refactorings for C++ [JO93], [OJ93]. Similarly, Tokuda and Batory evaluate the impact of a refactoring en-
gine for C++ [TB99a] [TB99b] and also [FR98] reports a reengineering experience where C++ was refac-
tored and dedicated tools were developed. Werner analyses refactorings for Java [Wer99]. Roberts [Rob99]
specifies the Smalltalk refactorings available in the Refactoring Browser and focuses on the possibility to
combine refactorings by analysing postconditions and preconditions of the combined refactorings. Schulz
et al. [SGMZ98] and Ó Cinnéide [OCN99] use refactorings to introduce design patterns.

Besides refactorings, research has addressed the reorganization of class hierarchies. Casais proposes al-
gorithms for automatically reorganizing class hierarchies in Eiffel [Cas91] [Cas92]. These algorithms not
only help in handling modifications to libraries of software components, but they also provide guidance for
detecting and correcting improper class modelling. [DDHL96] proposes an algorithm to insert classes in a
class hierarchy that takes overridden and overloaded methods into account. [Moo96] proposes to decom-
pose Self methods into anonymous methods and then reorganize class hierarchies by sharing as much as
possible of the created methods. Note that this work, while interesting from a scientific point of view, could
only be used to shrink applications for deployment and not for increased understandability, as the symbolic
meaning of method names is lost in the reorganisation process.

Integration of refactoring tools in development environments is getting more and more common. Exam-
ples are the Refactoring Browser [RBJ97] for several Smalltalk dialects and Java tools such as jFactor for

12 Discussion
VisualAge for Java [jFa] and JRefactory for several other Java IDEs [jRe]. Integration in reengineering en-
vironments is to our knowledge not yet widespread. An example is Compost [Uni96], a Java analysis tool
that supports some refactorings.

2.5 Discussion

This thesis is about modeling object-oriented software in a language-independent way for the purpose of
reengineering. Looking at the state-of-the-art from this perspective we can make the following observa-
tions:

No metamodel descriptions. The repository and its underlying metamodel are a crucial part of a reen-
gineering environment. However, although many tools and tool environments exist, for most of them the
metamodel is not explicitly documented. Especially, the relevance of the available information for the reen-
gineering tasks at hand is not made explicit. Consequently, every time a tool is developed the same analysis
needs to be performed anew. Furthermore, multiple implicit metamodels hinder the interoperability be-
tween tools, because required and provided information hardly ever matches.

As section 2.3.2 shows, there are a few exceptions. There are explicit metamodels that focus on a parti-
cular task: Rainer Koschke’s thesis discusses the relevance for modelled information of the Bauhaus Re-
source Graph model for reengineering procedural programs, in particular C, with the purpose of remodular-
isation [Kos00]. Acacia also models C++ with the distinctive purpose of performing reachability analysis
and dead code detection. Other approaches focus on general reengineering support: Datrix has a clear de-
scription of what is modelled, namely abstract syntax trees of C++ programs with added semantic informa-
tion. Basically complete programs are modelled in all possible detail. The relevance question is not
discussed, as the goal is to model everything and make the availability of the original source code irrelevant
for all possible analysis tasks. Only TA++ is a general metamodel for reverse engineering, targeted at many
languages. It models high-level constructs, has a well-defined exchange format and also discusses issues
such as storage and extensibility. However, its definition both lacks a discussion of the design choices and a
clear mapping of the different supported languages to the common concepts.

No multiple-language support. Legacy systems exist in many languages. On top of that, many reen-
gineering tasks are similar for multiple languages, especially within a single paradigm. Consequently, there
is a vast potential for reuse over multiple similar languages. To be able to deal with multiple languages ef-
fectively it needs to be clearly defined how different languages are represented in a common way. Only in
this way tools will be able to base common analysis on the metamodel and be sure that it provides the ex-
pected results for all supported languages.

However, not many metamodels have elaborate multi-language support. Tools like the generic visuali-
sers use simple metamodels that cover common concepts of several languages. Their metamodels are not
very detailed and often ad-hoc, providing simple multi-language support, which is sufficient for visualisa-
tion tasks, such as high-level browsing and grouping. From the metamodels described in section 2.3.2, only
TA++ aims at generally supporting multiple languages for reengineering large software systems. Target lan-
guages range from object-oriented languages to assembler. It does not define, however, how these different
languages are mapped to the TA++ metamodel. In any case, the potential for a common definition lies in the
languages with a common paradigm, rather than in the whole scope of targeted languages.

State-of-the-Art in Reengineering Metamodels and Tools 13
No explicit infrastructural design choices. Apart from the exact contents of a metamodel and its
relevance for reengineering, there are other properties that determine how successful a metamodel supports
reengineering. Most notably these are:

• Scalability. It is not uncommon that legacy systems contain several millions lines of code. A tool
environment must scale up to deal with the vast amounts of information involved. Because a meta-
model determines what information a repository can contain, it has a direct influence on how much
information is generated.

• Extensibility. Not all information needs are known in advance. A metamodel must be able to deal
with information that was not anticipated in its original design. Furthermore, models must be able
to store annotations to capture analyse results and knowledge gained through a reengineering pro-
cess.

• Tool integration. The vast and heterogeneous set of possible reengineering tasks typically results in
multiple specialized tools that need to work together to provide a full understanding of a system
[DDT99].

Other aspects are the ability of a metamodel to support grouping — for the creation of higher-level ab-
stractions or classifying model elements — or multiple models — for evolution analysis.

We call these infrastructural aspects: design aspects that deal with how the information is organized and
stored. They are well-known and often stated as requirements (for instance, in the TA++ definition in
[Let98] and for exchange formats specifically in [SDSK00]). However, similar to the metamodel contents,
hardly any existing tool or metamodel makes explicit the underlying design choices affecting theses as-
pects. Moreover, there is also no general description of what the relevant infrastructural aspects are, how
they impact the metamodel design and how choices for one aspect influence the properties of other aspects.

No refactoring support in multi-language reengineering environments. Not many reengi-
neering environments support refactoring. Most presented tools and environments can be considered re-
verse engineering rather than reengineering tools. The refactoring tools mentioned in section 2.4, are either
stand-alone or part of a forward development environment. Only Compost [Uni96] can be considered a
reengineering tool with refactoring support.

In the context of reengineering, refactoring is clearly interesting, providing the ability to quickly and
safely transform software. Beyond this straightforward application, however, integrating refactorings in
reengineering environments opens a whole new class of possibilities currently not yet explored. Not only
can tools analyse software or apply standalone refactorings, both capabilities can be combined so that a tool
can detect problems and propose solutions to resolve such problems and perform the required transforma-
tions.

From the perspective of metamodels for reengineering, refactoring poses additional constraints on their
design. It demands sufficient, complete and 100% correct information, because the result of a code transfor-
mation should not result in a faulty software system. This is a stricter requirement than required for a typical
reverse engineering task such as visualisation, which is normally not strongly affected if information is
slightly incomplete or incorrect [MNGL98] [Bis92].

Support for multiple programming languages poses an additional challenge. While there is sufficient
proof that a refactoring tool can be built for almost any object-oriented language, it is yet unknown whether
it is feasible to build a language-independent refactoring engine. Only Ó Cinnéide mentions support for

14 Conclusion
multiple languages in a refactoring tool [OCN99]. He presents a layered architecture which shields lan-
guage specifics as much as possible, but so far his tool prototype only supports one language, namely Java.
Likewise, the Refactoring Browser [RBJ97] defines its refactorings in terms of a model of Smalltalk in or-
der to easily deal with differences between Smalltalk dialects. In this case the language differences are quite
small.

Multi-language refactoring requires an analysis to which extent refactorings can be abstracted from their
underlying languages. Separating the analysis for refactorings in a language-independent and a language-
dependent part has basically the advantage that complex analysis can be reused for many languages. This
eases the integration in multi-language environments, such as reengineering environments or other kinds of
CASE tools.

2.6 Conclusion
Wrapping up we can say that a lot of knowledge about how software needs to be modelled for reengineering
purposes is implicit. In this thesis we make parts of this information explicit. First, we discuss in general in-
frastructural aspects of reengineering environments and there underlying metamodels. We present the dif-
ferent choices that a tool developer can make and how the choices for the different aspects interrelate
(chapter 3). After that we look at the specific problem of modeling multiple object-oriented languages in a
common way. We present one metamodel and discuss the trade-offs in its design. This discussion includes
the specific choices for multi-language support and the infrastructural aspects that are discussed in general
before (chapter 4). In the following chapter we discuss an implementation of the presented metamodel and
to which extent it is successful in supporting multiple reengineering tools in practice (chapter 5). We then
use our metamodel to provide an in-depth analysis of multi-language refactoring. Based on our language-
independent metamodel we have analysed fifteen low-level refactorings. The analysis shows to which ex-
tent it is possible to abstract from the underlying languages, in our case Smalltalk and Java (chapter 6). The
refactoring analysis has been validated with an implementation and case studies (chapter 7).

CHAPTER 3

A Design Space for Reengineering Tool
Infrastructures

Figure 2.2 in the previous chapter shows the general structure of a reengineering environment. It illustrates
that the repository is the central part that lets tools work on a common information base. The properties of
the repository, and thus of the complete environment, are highly influenced by the metamodel that describes
what and in which way information is modelled. The metamodel not only determines if the right informa-
tion is available to perform the intended reengineering tasks, but also influences issues such as scalability,
extensibility and information exchange. We call the latter infrastructural aspects: design aspects that deal
with how the information is organized and stored.

This chapter makes explicit these infrastructural aspects. It presents a conceptual space that identifies the
aspects necessary for a reengineering environment developer to consider. For every aspect the space covers
the design options including implementation solutions and a discussion of the trade-offs. Furthermore, dis-
cuss the dependencies between the axes. The goal of this chapter is not to come up with a design for a spe-
cific reengineering platform such as PBS [FHK+97] or Rigi [Mul86] and their underlying metamodels.
Hence we do not cover the ability of an environment to support specific reengineering tasks and the exact
contents of a specific metamodel.

In the context of this thesis, the design space sets the infrastructural context for one particular metamo-
del, namely FAMIX. FAMIX is a concrete metamodel that models object-oriented software in a language-
independent way. It is presented in CHAPTER 4. The design space puts the infrastructural options we have
chosen for FAMIX in perspective. From the other side, FAMIX, presented as an instance within the design
space, validates the usefulness and accurateness of the space.

The rest of the chapter starts with an introduction to the design space before we describe the different as-
pects in detail.

16 Introducing the design space
3.1 Introducing the design space
We start our introduction to the design space with a small scenario that shows how a typical reengineering
environment is used. We use the scenario to illustrate several infrastructural aspects of such an environment.
Afterwards we give an overview of the complete set of aspects that our design space covers in the form of a
list of questions. After that, we show the design space with all the aspects and their interrelationships.

3.1.1 Scenario
We paint here a typical usage scenario of a reengineering tool environment. The reengineer, let’s call her
Claudia, is confronted with a legacy C++ system of about a million lines of code. Her intention is to extract
the architecture and possible problems in changing it.

First she extracts information from the C++ system into a repository. She decides to only extract program
entity information instead of a full abstract syntax tree. She applies a tool to visualise the structure of the
application and uses grouping techniques to collapse classes into a higher level module view.

Claudia has a third-party metrics tool that can help her to understand the system. Claudia exports the in-
formation from her environment into a standard exchange format and imports it into her metrics tool. She
computes some metrics and combines the obtained results to enhance the views she gets with size informa-
tion. She detects a big class in module X on which many classes in other modules depend. Looking at the
source code she finds that some of the functionality of this class can be distributed over the different mod-
ules.

Analysis

The scenario illustrates the following infrastructural aspects of a reengineering tool environment: the ex-
traction level of detail (Claudia chose the program entity level), different kinds of entities (she produces ar-
chitectural entities), the use of grouping (she groups entities to produce a modular view), the tool
integration, information exchange and incremental loading (she used an integrated visualiser, an external
metrics tool, an interchange format and merged metric results), and the annotation of entities (the metrics
are associated with the entities they relate to).

The scenario only covers a subset of reengineering activities. For instance, Claudia might want to apply
similar analysis on other implementation languages, compare multiple versions of the same system, etc.

3.1.2 Infrastructural issues summarised
We summarise the infrastructural aspects as a list of questions that a developer of a reengineering environ-
ment typically needs to answer.

3.1.3 Questions concerning the information to be modelled

Language/Paradigm support. How many implementation language(s) must be supported? Do all
these languages belong to the same paradigm (e.g., procedural, object-oriented)?

Level of detail. How detailed should the extracted information be? Should the information suffice to re-
generate the source code it represents? Should the information support the creation of higher-level views?

A Design Space for Reengineering Tool Infrastructures 17
Scalability. How large are the programs you deal with? How many versions have been released? How
many models do you need to extract?

Multiple Models. Do you need to represent the software system at several levels of abstraction (code, de-
sign, analysis)? Will you analyse several releases of the same software system?

3.1.4 Questions concerning the tasks to be performed

Grouping. Will you create higher level abstractions by grouping model elements? Do you need to group
these groups? Do you need to group elements of multiple models? Do you need to group relationships?

Tool Integration. Must the tool environment exchange information with other tools? How do you merge
information coming from different tools? Must the repository support parallel access from multiple tools?

Extensibility. Must the metamodel be able to accommodate new kinds of information? Is it needed to an-
notate model elements? Must the environment adapt itself to new kinds of information?

3.1.5 Questions concerning underlying implementation
In addition to the issues directly brought forward by the user requirements, some key under-the-hood im-
plementation aspects need attention as well, because they can make or break the ability to fulfil a require-
ment. These implementation aspects are:

Storage medium. How is the information of a model stored? Does the medium fit your scalability needs?
Does it fit your information exchange needs?

Entity reference. How are model elements identified? Can the reference schema handle references over
multiple files? Can it handle groupings of any model element? Can it handle multiple models?

Incremental Loading. Should the tool be able to work with incomplete models? Must all information be
100% correct? Should the tool be able to merge information from different sources?

Exchange Format. Does the format need to be easily machine? How precise should it reflect the internal
datastructure? Must an industrial standard be supported?

Metamodelling. How do you store information about a model (e.g., name of the creating tool, the level of
detail of the extracted information)? Do you work with an explicit metametamodel? Which kinds of exten-
sibility does the metametamodel support?

3.1.6 Design Space in a Nutshell
The aspects brought up in the previous subsection cannot be considered in isolation. A choice made for one
aspect often influences the choices for another one. An example is the level of detail. When the toolset sup-
ports abstract syntax tree level of information rather than the program entity level, it is much harder to sup-
port multiple languages, because it is easier to map multiple languages to a more abstract higher-level
representation than to a very detailed one.

18 Introducing the design space
We capture these dependencies in a so-called ‘design space’. Each aspect represents an axis into this
multi-dimensional non-orthogonal space. Within the space a single reengineering platform is determined
by the values chosen for each axis.

Before going into the details of the separate axes, we present a roadmap to the design space. Furthermore,
we present the template we use to describe the axes.

A roadmap to the design space
Figure 3.1 provides a roadmap of the design space. It shows the design space with the axes, their main op-
tions and how they interrelate. For every axis it also indicates the number of the section that describes the
axis in detail. We distinguish the following kinds of axes:

• Requirement axes. The requirement axes cover decisions that are depending on the user require-
ments that the environment and its underlying metamodel must fulfil. These cover most of the ques-
tions from sections 3.1.3 and 3.1.4. In Figure 3.1 the requirement axes are represented by ellipses.

• High-level requirement axes. High-level requirements represent key concerns of a reengi-
neering environment. They do not have implementation options themselves, which is why we do
not describe them in detail in a separate section. They are, however, affected by many of the other
axes. The high-level requirement axes are two remaining aspects from sections 3.1.3 and 3.1.4,
namely the Scalability Axis and the Tool Integration Axis. In Figure 3.1 they are represented by
clouds.

• Implementation axes. The implementation axes cover issues that are not directly reflected in the
user requirements. These are the questions brought up in section 3.1.5. In Figure 3.1 the implemen-
tation axes are represented by boxes.

Axis template
The rest of the chapter discusses the requirement and implementation axes in detail. We describe them ac-
cording to the following template:

• Name: the name of the axis.
• Description: an overview of the axis including the design choices.
• Dependencies: a list of the dependencies with other axes.
• Implementation issues: a discussion of implementation solutions and their trade-offs.

A Design Space for Reengineering Tool Infrastructures 19
Metametamodeling
- implicit/explicit
- standard

Entity Reference
- unique naming

Incremental Loading
- with

Grouping
- any entity
- nested groups

Language/Paradigm
- single
- mixed

Level of Detail
- AST
- program entity Extensibility

- support for annotation
- add new entity

- add attribute

- without

- (u)uid
- mix

- textual
- database
- in-memory

Storage Medium

enables

Scalability
Tool Integration

influences

- architecture

Implementation Axis
- design choice

Figure 3.1 Roadmap of the design space. It shows the different axes and their relationships.
The numbers correspond to the sections that describe the axes in detail.

Requirement Axis
- design choice

High-level Requirement

Multiple Models
- single
- multiple

3.2

3.3

3.8

3.7

3.10

3.4

3.5

3.6

3.11

- nested
- chunk
- flat

Exchange Format Structure

3.9

Axis

3.x
section number

20 Language/Paradigm Axis
3.2 Language/Paradigm Axis

The choice which language(s) or paradigm(s) to support is largely driven by the requirements of the end-
user. We categorise the possibilities as follows:

• only one language (such as Smalltalk, C++, Fortran, Lisp)

• only one paradigm (such as object-oriented, procedural, functional, logic programs)

• multiple languages with one paradigm

• one language with multiple paradigms (such as hybrid C++ object-oriented/procedural programs)

• multiple languages with multiple paradigms.

The main issue is if language or paradigms are mixed. The implementation issues below discuss the conse-
quences.

Dependencies

Level of detail. The higher the level of detail, the more reasoning power you get, but the harder it is to sup-
port multiple languages in a common way.

Extensibility. If the metamodel consists of a common core with language extensions, the appropriate exten-
sion mechanisms must be available.

Implementation issues

If only one language, hybrid or not, needs to be supported, the metamodel typically contains constructs of
that language in a straightforward one-to-one mapping. It gets more complex if multiple languages are sup-
ported. The constructs of both languages are modelled either separately or using a common abstraction.
Separate modelling is typical in the case of languages that have dissimilar paradigms. In such a case the me-
tamodel is often constructed with separate, but connected submetamodels for every paradigm [LS99]. If the
supported languages have the same or an overlapping paradigm, common constructs are often modelled
with a single abstraction. The typical structure of such a metamodel is a language-independent core with
multiple language extensions. For instance, a core could contain a Class abstraction which would allow
class concepts in Java, Smalltalk and C++ uniformly, but the C++ class template would be modelled in the
C++ language extension. Treating similar constructs in a similar way results in language independence and
reuse of analysis code. On the other hand, treating them explicitly decreases problems with semantic differ-
ences.

It is often useful to store the mappings. E.g, if Java interfaces and Java classes are modelled using a com-
mon Class abstraction, the information whether the element represents a class or interface is stored as an an-
notation to the Class abstraction. This allows, for instance, visualisation tools to colour Java interfaces
differently from Java classes. Language-independent tools, however, can just treat the common concept
without having to know about the language details. For similar reasons, if the modelled system is imple-
mented in multiple implementation languages, it is often necessary to record what the implementation lan-
guage is for every entity or every group of entities.

A Design Space for Reengineering Tool Infrastructures 21
3.3 Level of Detail Axis
This axis describes the different levels of detail and the consequences of choosing one or the other. We dis-
tinguish the following levels:

1. Abstract syntax tree (AST) level information - a complete view of the source code. It is nor-
mally detailed enough to regenerate the source code and sufficient for control-flow analysis.

2. Program entity level information - abstracted but factual view on source code: classes, me-
thods, functions, etc. It is normally used for a generating structural views on the target system.
Typically only limited information about method bodies is available, normally consisting of
method invocation and variable access information, which is sufficient for dependency analysis.

Dependencies
Language/Paradigm. The higher the level of detail, the more reasoning power you get, but the harder it is
to support multiple languages in a common way.

Scalability. The higher the level of detail, the higher the memory consumption and load time of information
from databases or files and the slower the response times of tools that use the information. To give an idea
for the impact of different detail levels on resource consumption, we show the file sizes of the textual repre-
sentation of a model using our own FAMIX metamodel (see CHAPTER 4) and the two standard exchange
formats, namely CDIF [Com94] and XMI [OMG98]. The numbers are shown in Table 3.1. The default rep-
resentation of both standards is not optimized for space consumption, which is confirmed by the huge com-
pression achieved by zipping the files. The modelled system is the Java Swing framework, version 1.3.0,
consisting of 7.2 MB of source code (225 KLOC). It has been parsed by SNiFF+ parser, version 3.2.1. It
consists of ~2700 classes (including inner classes), ~11500 methods. The metric information contains up to
25 metrics per source code entity where every measurement is stored as a separate element in the file.

Implementation issues

Scalability is an important issue to consider, because the large amounts of information can make it hard to
effectively analyse a system. We describe here two techniques to reduce the amount of information. The first
one incremental extraction by using source anchors, i.e., pointers to the original source code. Source an-
chors allow one to go back to the source code and extract additional information only when needed. Impor-
tant consideration is that the partial information is still sound. For instance, if method information is
required, information about the classes that contain the methods typically needs to be stored as well. A se-
cond technique is to collapse information. For instance, instead of representing all invocations from meth-
ods of one class to methods of another class, this information can be collapsed into a single invocation rela-
tionship between the two classes. The details of which method calls which other method is lost, but the
dependency between the classes is still represented and less information needs to be stored.

Swing 1.3.0: 225 KLOC~ 2700 classes CDIF file, MB (zipped MB) XMI file, MB (zipped MB)
classes, methods, attributes 8.3 (0.53) 21.8 (0.90)
+ invocations and accesses 12.1 (0.82) 28.8 (1.25)
+ formal parameters 15.5 (0.99) 39.7 (1.67)
+ metric information 84.7 (3.15)

Table 3.1: File sizes for different levels of detail of Swing 1.3.0

22 Multiple Models Axis
3.4 Multiple Models Axis
The possibility to analyse multiple models simultaneously is useful in evolution analysis, where multiple
versions of the same system need to be analysed [LDS01] [JGR99]. Likewise, it is interesting to analyse pa-
rallel branches of similar applications, for instance, to develop a framework by abstracting common assets
in these branches. Another aspect is that different models can have different metamodels. This is typically
the case when multiple paradigms are modelled [LS99].

Dependencies
Entity Reference. Multiple models require the possibility to uniquely identify elements from different mo-
dels, even if these elements are similar, for instance, the same class in multiple versions of the same system.
Furthermore, it must be possible to identify which model an element belongs to.

Metamodelling. Information about models can be modelled as part of the model itself or as a meta-entity.

Implementation issues

Instead of making multiple models explicitly part of the metamodel, a tool environment can support multi-
ple models in its implementation. This keeps the metamodel simpler, but makes it impossible to formally
exchange mixed information. Furthermore, tools that use information of multiple models get dependent on
the implementation of the tool rather than its underlying metamodel.

3.5 Grouping Axis
Grouping is an important technique in reengineering, primarily to build higher-level abstractions from low-
level program elements or to categorize elements with a certain property. Two ways of grouping can be iden-
tified: intentional (description-based) and extensional grouping where the group acts as a bag of (references
to) model elements [DD99] [MWD99]. A tool developer should consider the following options:

• the support for nested groups, i.e., groups that can contain other groups
• which entities can be grouped, e.g, can a group only contain named entities such as classes or also

nameless entities such as relationships.
• groups of entities over multiple models, i.e., can a group contains entities belonging to different

models.

Dependencies
Entity Reference. The entities that need to be groupable, must be uniquely referencable. This can include
the groups themselves and entities in multiple models.

Implementation issues

If intentional groups are to be supported, the model must define how descriptions are modelled. Expressions
using the Object Constraint Language (OCL) expressions [SMHP+97] or other formalisms could be used.
Furthermore, intentional groups need strategies for recomputing the contents when a model is adapted or
additional information is incrementally loaded [MWD99]. This all is, however, a topic that goes beyond the
scope of this chapter.

A Design Space for Reengineering Tool Infrastructures 23
3.6 Extensibility Axis
Extensibility is an important issue in modelling software as it allows additions to a model without having to
change the model itself. Typically extensibility is needed for the following kinds of information:

• Language-specific information. In the case of a metamodel with a language-independent core, it is
often still interesting to store language-specific information. For instance, a visualisation tool might
want to colour all Java interfaces different from classes, even if both classes and interfaces are
mapped to a common class concept in the language-independent core. Additionally, languages have
their own specific problems that are interesting in themselves. An example is the analysis of include
hierarchies in C++.

• Tool-specific information. Tools might want to store and exchange tool-specific information such as
analysis results or layout information for graphs.

• Whatever information people find worth modelling. Not all information needs can be known in
advance. Furthermore, being able to annotate any element in a model, can be a great help to store
acquired knowledge in the process gaining understanding of a system.

The following subsections describe the extension mechanisms to be considered.

3.6.1 Adding new entities to a metamodel
To be able to represent constructs that are not yet covered in a metamodel and cannot be mapped in a sensible
way to the existing elements, it must be possible to add entities to an existing metamodel. Examples are the
addition of the C++ include relationship to a language-independent metamodel, or the addition of a special-
purpose container that is relevant in the specific domain of system under investigation.

3.6.2 Adding attributes to existing entities.
Similar to the addition of new entities to an existing metamodel, it may be necessary to add new attributes
to existing entities. An example is the information that a class in a model represents an Java interface. The
extension adds an attribute isInterface to the Class entity. This can be done through subclassing or by
explicitly adding an attribute. Figure 3.2 shows an example. The subclassing solution (a) demands for all
clients to know the extension and how it relates to the original entity. It demands importers that are fully me-
tamodel aware and can deal with extensions that it did not know yet. When the attribute is just added to the
original entity (b) an importer that does not (want to) know the extension just recognizes the element it
knows and can ignore any attribute of the element it does not recognize.

24 Extensibility Axis
A more severe problem with the subclassing solution is the fact the multiple orthogonal extensions (ty-
pically language and tool extensions) might exist which cannot be modelled by inheritance at all. This is il-
lustrated in Figure 3.3. This is also a problem if an attribute must be added in an existing hierarchy where all
existing subclasses should inherit the attribute.

3.6.3 Annotating entities

Annotations allow any information to be added to any entity. Entity properties, analysis results, human un-
derstanding in the form of notes can then be attached to the entity they refer to. Although a metametamodel
could support a way to support annotations, it is often considered the domain of the metamodel. In such a
case the metamodel explicitly allows any entity to be in relation with some property, annotation or tag ob-
jects (see Figure 3.4).

Class

JavaClass

uniqueName

(JavaClass
(name “Point”)
(isAbstract -FALSE-)
(belongsToPackage “points”)
(isInterface -FALSE-)

)

Figure 3.2 Extending Class with an attribute isInterface by (a) subclassing an Class and (b)
adding the attribute to the existing Class element

isAbstract
belongsToPackage

isInterface

Class
uniqueName
isAbstract
belongsToPackage
isInterface

(Class
(name “Point”)
(isAbstract -FALSE-)
(belongsToPackage “points”)
(isInterface -FALSE-)

)

(a)

(b)

Class

JavaClass

uniqueName

Figure 3.3 Extending Class with two orthogonal attributes by (a) subclassing Class and (b)
adding the attributes to the existing Class element

isAbstract
belongsToPackage

isInterface

Class
uniqueName
isAbstract
belongsToPackage
isInterface

(a)

(b)

MetricsEnhancedClass
NOM

NOM

(Class
(name “Point”)
(isAbstract -FALSE-)
(belongsToPackage “points”)
(isInterface -FALSE-)
(NOM 7)

)

??

A Design Space for Reengineering Tool Infrastructures 25
By following such an approach, the issue of the representation of the annotation object in memory and
in the exchange format have to be answered. Indeed, from our experience of representing metrics as entity
annotations, we learnt that annotation objects can constitute more than 90% of the data processed while
loading and analysing a system. One solution is to only represent properties explicitly in the exchange for-
mat and use appropriately optimized data structures for the in-memory representation.

In the exchange format, annotations can be represented as an attribute of the annotated entity or as an ex-
plicit entity itself (see Figure 3.5 for an example). The first solution precludes loading of annotations sepa-
rate from their containers, but requires less space.

3.6.4 Metametamodel extensibility limits

The extensibility of the metamodel is restricted by the extensibility the metametamodel allows you to have.
This is especially an issue when using modelling standards such as the MOF [OMG97], because they re-
strict you to their extension mechanisms. The MOF and GXL [HWS00] do not support class extensions, i.e.,
the ability to add attributes to existing classes. CDIF [Com94] and RDF [WWWC99] both allow this kind
of extension.

3.7 Incremental Loading Axis
Incremental loading of information is about the ability to load new entities or additional information for en-
tities that already exist in a model. The reasons for considering incremental loading are resource optimisa-
tion and the merging of information from different sources.

Incremental loading generally allows a model to contain references to information that is not in the cur-
rent model. This is interesting for the following reasons. It allows to load only parts of models. This is par-
ticularly useful if only part of a system is available, e.g., the source code of a library is not always accessible,
or if only a part of a system is of interest. Extractors can also make mistakes that result in dangling referen-
ces, especially for complex languages such as C++.

Dependencies
Entity Reference. The way model elements are referenced must support the ability that information ele-
ments in different files or databases can reference each other.

Object Property

Figure 3.4 Object annotation

(Class
(name A)
(annotation NOM 45))

(Class
(name A))

(Annotation
(belongsTo A)
(NOM 45))

(a)
Figure 3.5 Annotations as an attribute of the annotated entity (a) or as a separate entity (b)

(b)

26 Storage Medium Axis
Scalability. Incremental loading can be used for resource optimization. Information about the same system
can be stored (and thus transferred) in separate files or databases. Furthermore, information can be loaded
on demand. For example, computed metrics or analysis results can be so space consuming that you only
want to load them when necessary.

Tool integration. Code analysis can be performed by different tools that do not share a common repository
[DDT99]. Results can be stored in different locations and merged if needed. For example, metric values
computed by one tool can be loaded into a visualisation tool.

Storage. Incremental loading enables the storage of related information in different locations.

Implementation issues

Referenced information which is defined in a separate resource must be able to be filled in later and be cor-
rectly associated with the entity it refers to. A solution is to use stubs, i.e., empty placeholders, that represent
the missing entities. If later the actual element is loaded, it replaces its stub. Note that referenced informa-
tion often is left out on purpose. Frequently we want to model an application but not the complete libraries
or frameworks it uses. In such cases the model ends up with references to non-represented entities.

3.8 Storage Medium Axis
Models, once created, need to be stored and exchanged between tools. One issue is the storage medium: dif-
ferent storage approaches exist such as a textual representation, databases or in-memory repositories that
can be saved to disk, all with their own advantages and disadvantages:

Textual storage

• is simple (even if this depends on the format structure. See section 3.9 for details),
• supports easy information manipulation, for instance, with scripting languages,
• is a good base for information exchange.

Database storage

• scales better,
• has slower response times than an in-memory repository,
• allows tools to work together on a common information base,
• often has support for information exchange standards,
• but less easily serves as information exchange medium itself.

In-memory repository

• provides fast access to information,
• provides easy manipulation of information,
• scales only in the context of the available working memory,
• but its information exchange and storage capabilities are limited to the implementation language.

Dependencies
Scalability. As discussed above the different storage media have different scalability properties.

A Design Space for Reengineering Tool Infrastructures 27
Tool integration. The storage medium determines how tools can integrate. Textual storage is a light-weight
approach mostly for tools that just exchange information. Databases allow tools to work together on a com-
mon information base more easily.

Incremental Loading. Incremental loading allows file exchanges to be divided into multiple files and for
different tools to produce information about a system that can be merged afterwards.

Implementation issues

The choice between textual representation and a database is a choice between a light-weight and a heavy-
weight solution. A text file is easy to produce, to process and move between platforms. It is quite a low-level
solution, however, because users have to deal with saving, parsing and entity reference themselves. A data-
base, on the other hand, is not as easy and quick to set up and normally needs considerable tailoring for a
specific task. Once set up, however, it normally provides integrated support for industry standard informa-
tion exchange and schema transformation.

The in-memory solution is about using the runtime datastructure as a storage format. When loaded, it al-
lows tools fast access and easy manipulation of information. The storage is not necessarily faster or easier
than a textual solution or a database, as the data needs to be stored to a persistent medium such as a harddisk.
Java serialization, for instance, can be used for this purpose. Some development environments, however,
have built-in support for the storage of a complete working session, i.e., all the data and runtime state of the
tools. This is the case for many Smalltalk dialects.

3.9 Exchange Format Structure Axis

Repository information is often stored in text files. It is a lightweigth way of storage, which is particularly
well suited for information exchange. St-Denis et al [SDSK00] describe a set of thirteen criteria that are im-
portant for an exchange format. Many of the criteria they describe are non-functional, such as reliability and
completeness, which rather depend on the quality of the tool that produces the information than that it is an
intrinsic property of the exchange format.

We describe three common format structures and discuss them in the light of three criteria, namely hu-
man readability, machine processability and the ability to incrementally load information. These are aspects
that only depend on the actual structure of the exchange format. They are independent of the quality of the
extractor and the actual encoding (i.e., if the line ends with a bracket or with an XML-tag).

The three format structures store model elements in a nested way, in chunks or in a completely flat way.
We analyse them in a separate subsection and discuss their properties afterwards.

Dependencies

Tool integration. The structure of the textual format influences its fitness for information exchange. This is
discussed in more detail in the following subsections.

Storage Medium. Textual storage is one of the storage approaches presented as part of the Storage Medium
Axis. Consequently, it is influenced by the textual format structure.

28 Exchange Format Structure Axis
3.9.1 Nested, chunk and flat formats

This subsection describes the nested, chunk and flat format and discusses their human readability, machine
processability and incremental loading properties.

Nested. In the nested format every element physically contains its constituents. Relationships other than
containment, are modelled by explicit relationship elements. The following example shows a class A which
inherits from class B and contains two methods (M and N) and an attribute (X).

(class A
(method M

(isAbstract true))
(method N

(isAbstract false))
(attribute X

(visibility public)))
(InheritanceDefinition

(subclass A)
(visibility protected)
(precedence 2)
(superclass B))

Evaluation. The nested format is complex and elements can quickly get large due to the elements they con-
tain. It only favours human readability as long as the elements do not get too large. Incremental loading is
not well supported either, because elements cannot be stored without their containing element, and repla-
cing an element requires finding it inside its containment hierarchy. The format is useful for a one-to-one
representation of the tool-internal datastructure, which is typically optimised for information navigation
rather than storage or exchange.

Chunk. In the chunk format, entities are not nested into their scoping entity. Simple relationships are
stored as attributes of the contained entity. The example hereafter shows the same information as the nested
example, but now in the chunk format. Now the methods and the class are stored as explicit entities and con-
tainment relationship is represented by the belongsToClass attribute in M and N.

For relationships that need additional information to be stored, explicit entities are created. In the exam-
ple, the inheritance relationship is an explicit entity with visibility and precedence as attributes.

(class A
(isAbstract true))

(method M
(belongsToClass A)
(isAbstract true))

(method N
(belongsToClass A)
(isAbstract false))

(attribute X
(belongsToClass A)
(visibility public))

A Design Space for Reengineering Tool Infrastructures 29
(InheritanceDefinition
(subclass A)
(visibility protected)
(precedence 2)
(superclass B))

Evaluation. The chunk format favours human readability, because entities are self-contained with the con-
tainment relationships readily available as attributes. The format supports incremental loading better than
the nested format, because, when loading or updating an element, the containing entity does not need to be
found or even be available. Because the format is less complex, importers can be simpler as well.

The chunk format has as main disadvantage that relationships are stored in two different ways.

Flat. The flat format explicitly represents all entities and relations, typically using a line-based format. For
example, RSF is based on this approach [Mul86]. Contrary to the two other formats, which support entities
with attributes in pair-value form, here the attributes require another storage form. In the pure form they are
all explicit relations. Some formats are more elaborate [Hol98] and allow attributes as pairs on the same line.
This actually goes a step towards the chunk format. The following code shows the flat format with both
kinds of attribute storage:

(class A)
(method M)
(methodBelongsToClass M A)
(attribute X)
(attributeBelongsToClass X A)
(inheritance A B)
(inheritance A B visibility protected)
(inheritance A B precedence 2)

Evaluation. With this approach, incremental loading is well supported and merging of models is easy. Ma-
chine processability is also easy, because the format is conceptually simple. Because it is line based, mani-
pulation of models can be easily done by running a script (in Perl or similar scripting languages) to convert
one file into another one. A drawback is that information representing one single entity can be scattered over
the file, which hampers readability.

3.9.2 Discussion

Table 3.2 summarizes the evaluation of the three format structures. The nested structure does not score well
against our criteria. We do not recommend it for information exchange purposes, although it can be a viable
option to store complex datastructures. The chunk format does well in all three areas. The flat format is less
readable, but easier to process. Note that human readability gets less important when importing and saving
tools stabilize.

readability processability incremental loading
nested - - -
chunk + + +
flat - ++ +

Table 3.2: Textual formats compared

30 Entity Reference Axis
3.10 Entity Reference Axis
As can be seen in Figure 3.1, the entity reference axis directly and indirectly influences many other axes in
the design space. The decision how entities are referenced comes down to a trade-off between heavyweight
solutions that ensure that every element in the model can be uniquely identified, always and everywhere be-
tween different tools, or solutions that are more light-weight, but might not adequately support grouping,
multiple models, or referenced information that is not in the same file or database.

Dependencies
Grouping. The entities that need to be groupable, must be uniquely referencable. This can include the
groups themselves and entities in multiple models.

Multiple Models. Multiple models require the possibility to uniquely identify artifacts from different mo-
dels, even if these artifacts are similar, for instance, the same class in multiple versions of the same system.

Incremental Loading. Incremental loading requires information elements in different files or databases to
be able to reference each other.

Implementation issues

There are several possibilities to identify entities. One is to use the intrinsic unique name of entities that have
one (like a class name or attribute name), or to use a meaningless unique identifier. We present both solu-
tions in the next subsections and finish with a discussion.

3.10.1 Unique identifiers
One approach for model element identification is the use of meaningless identifiers1. Every model element
gets such an identifier attached to it and all references use this identifier as well. The most important issue
is how ‘unique’ this identifier needs to be. Only within one database or file, only within a known set of files
and databases, or always guaranteed unique. Light-weight approaches can be used, the simplest one proba-
bly the use of integers. However, if uniqueness with a broader scope is required, solutions such as Universal
Unique Identifiers (UUIDs) [OG97] must be considered.

UUIDs are unique across both space and time, with respect to the space of all UUIDS. A UUID can be
used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying
very persistent objects across a network. UUIDs are generated using a combination of the network address
and current time at the moment and place it was generated. Assuming that network addresses are unique and
that time never runs backwards, this guarantees that UUIDs really are unique. Furthermore, the UUID ge-
nerator must have access to an IP network address. An example of a UUID:

c842bf06-d202-0000-0282-5c410d000000

However, using UUIDs increases memory consumption and loading and saving times. Table 3.3 shows,
for the same system as discussed in Table 3.1, the file sizes when using UUIDs and plain integers in XMI
files. We see that the file size increases up to 9% when using UUIDs. Similarly the working memory usage
of the same models in our reengineering environment (Moose, see CHAPTER 5) increased by up to 13%.
For Smalltalk systems we measured memory usage increases of up to 40%. This is probably due to the fact

1. We use the word ‘meaningless’ to indicate that the value of the identifier does not have any meaning in itself.

A Design Space for Reengineering Tool Infrastructures 31
that our Smalltalk parser extracts a lot more detailed information (such as arguments) than the parser we use
for Java.

The complexity and resources needed to compute and store these identifiers might however be an over-
kill. More lightweight approaches can be designed, but will rely on proprietary conventions.

3.10.2 Unique naming scheme

Another way of referencing elements is to reference them by their intrinsic unique names. For instance, the
unique name of the class Box in the Java Swing library would have the unique name javax.swing.Box,
which is known to be unique within a Java system, but not over time or different versions. Using unique
names as identifier has the advantage that reference information is human readable. A second advantage is
that every time a model is generated from a certain system, exactly the same unique name will be used in-
stead of generating a completely new identifier or having to take earlier assigned identifiers into account. A
problem is that model elements that do no have an intrinsic unique name such as relations, models and
groups, do not easily fit this scheme:

Relations. Relations can only partly be identified with unique names. A simple example is when class
A inherits from class B, a unique name for the relationship could beA.InheritsFrom.B. However, this
only works for one-to-one relationships and not for any relationship with multiple targets. For instance,
the two invocation relationships resulting from a method that invokes another method twice, would re-
sult in two elements with the same name.

Multiple models. A unique naming scheme in the context of multiple models needs to take the model
into account, especially if the different models model the same system (for instance, multiple versions of
this system). In such a case the model should somehow be integrated in the unique name of an element.
We could, for instance, prepend a model name to the intrinsic unique name. For example, the Box class
in the Java 2 Swing library in version 1.3.0 could get the unique nameJava2v130.javax.swing.Box.
Note that uniqueness of model names depends on convention rather than on a language-induced rule.

Grouping. A problem similar to model names exists for groupings. Although a grouping typically has
a name to describe what is grouped, the uniqueness of those names is not intrinsic and therefore cannot
be guaranteed.

It is important to normalize unique names. The unique naming scheme should be clearly defined so that
unique names are always the same. An example rule is that unnecessary spaces are always removed. If the
metamodel supports different languages, unique names can either be close to every supported language, or
a common scheme can be defined for all supported languages. The latter requires more thought about the
naming scheme, but allows tools that are independent of the supported languages deal with one naming
scheme only.

Swing 1.3.0 XMI file MB (zipped MB) XMI + UUID MB (zipped MB)
classes, methods, attributes 21.8 (0.90) 23.6 (0.93) (+ 8.3 %)
+ invocations and accesses 28.8 (1.25) 31.2 (1.30) (+ 8.3 %)
+ formal parameters 39.7 (1.67) 43.1 (1.75) (+ 8.6 %)

Table 3.3: Textual representation of Swing 1.3.0 without and with UUIDs

32 Entity Reference Axis
3.10.3 Analysis

Unique names and meaningless identifiers have clear properties. Names can be used to reference entities
with an intrinsic unique name, meaningless identifiers can be used to reference anything. The following
example, expressed in simplified CDIF, shows the class Point, which is referred to by name in the
HasMethod relationship.

(class
(name Point))

(method
(name intersect))

(Class.HasMethod.Entity Point intersect)

The same example using meaningless identifiers:

(class 111
(name Point))

(method 112
(name intersect))

(Class.HasMethod.Entity 111 112)

Another important difference is that unique names are reproducible and other identifiers not. Different
tools generate different identifiers, which hampers incremental loading, because two model entities from
different sources that represent the same code element cannot be linked through the unique identifiers.

A solution that leverages the best of both worlds is the following, is to use intrinsic unique names for the
named entities and meaningless unique identifiers for the non-named entities. Such a combination pre-
serves the advantages of naming and is able to uniquely identify any non-named element as well. Clearly,
complexity increases when the two separate schemes are mixed.

A similar solution is to provide both solutions and use them where appropriate without mixing them.
However, when an entity is referencable in two different ways, incremental loading is not possible. If a cer-
tain entity is not in the current model, it cannot be determined that a reference by name and by unique iden-
tifier are actually supposed to reference the same entity.

Comparison with industry standards

CDIF [Com94] and XMI [OMG98] promote an entity referencing schema that is internal to the file. As
shown by the code example in section 3.10.3, CDIF relationships use an identifier that is associated to the
entity in the context of only one single file. However, if entities need to be able to be referenced over multiple
files, the referencing scheme needs to be unique over those files, if incremental loading is to be supported.
One solution is to use UUIDs. Yet another approach is taken by XLink [DMO00], a standard for linking be-
tween elements in different XML files. It links elements in different resources by explicitly mentioning the
resource the element is defined in. This implies that the exact location of the information must be known.
The identifiers we have described, uniquely identify model elements within their scope, independent of the
location of the file or database the information is stored in.

A Design Space for Reengineering Tool Infrastructures 33
3.11 Metametamodeling Axis
Metametamodeling is about making the representation of the metamodel explicit. Hence, a metametamodel
allows one to reason about, and possibly change the metamodel. Properties of a metamodel such as how it
can be extended, can be defined using such an explicit meta layer. Two options need consideration:

• Do you want to use an explicit metametamodel? An explicit metametamodel results in a standard
way of describing metamodels. This description can be used for the following capabilities:
- identify metamodels, i.e., are different tools compliant to the same or compatible metamodels?

This issue can be solved simply by providing meta-information representing the metamodel.
- auto-adapt platform, i.e., tools can use an explicit metamodel description to customize them-

selves. For example, a user interface can show, or a saver can store, any information according
to any metamodel, because it knows the structure of the metamodel through the metametamodel.

- create metamodels, i.e., meta-tools use the metamodel description to create metamodels them-
selves. This requires an approach where the metamodel description is interpreted to create appro-
priate metamodel representation. For instance, it is possible to interpret UML description in
MOF to create UML compliant tools.

• Do you want use a standard metamodel? A standard metametamodel such as the MOF [OMG97]
has the advantage that you do not have to build it yourself. Furthermore, it allows you to use com-
pliant tools and other metamodels that adhere to the standard. However, when you build your own
metametamodel you have full control over its capabilities, for instance, that it supports all the ex-
tensibility mechanisms you need.

Dependencies
Extensibility. The extensibility capabilities of a metamodel are determined by its metametamodel. A stan-
dard metametamodel might restrict you too much.

Implementation issues

The implementation issues include the storage of model information and the use of explicit metamodel de-
scriptions.

Model Information. To precisely identify a model, information such as the implementation language, the
tool that extracted the information, the date of creation of the model and the metamodel to which the model
conforms. Such model information can be represented in two different ways:

• in the metamodel. For example, headers of CDIF exchange files include such a kind of information
in addition to the complete description of the metamodel itself described in terms of the CDIF me-
tametamodel [Com94].

• as a common entity of the model. This approach is simpler as the model information is treated as
any model element. It is also independent of any metametamodel. However, because the model in-
formation is information about the model rather than representing a source code element, tools
sometimes need to be aware of the existence of such a specific entity.

Metamodel creation and tool adaptation. Using a metametamodel to generate model is straightfor-
ward as long as it deals with the structural aspect of the metamodel. The specification of entity behaviour,

34 Conclusion
however, for instance, how to compute all inherited methods of a certain class, additionally requires a lan-
guage that is able to formally express behaviour in terms of the metamodel.

3.12 Conclusion
In this chapter we have defined a design space for the infrastructural aspects of metamodels and repositories
for reengineering environments. The space spans multiple, non-orthogonal axes, which are either directly
related to requirements for a repository (the requirement axes) or they are pure implementation aspects (the
implementation axes). The design space makes explicit the options for every axis, the trade-off between the
different options and the dependencies between the axes.

The next chapter describes FAMIX, a language-independent metamodel for modelling object-oriented
software. We discuss the infrastructural design choices for FAMIX according to the axes of the design space
of this chapter. As such the design space provides the infrastructural framework in which FAMIX must be
viewed. At the same time FAMIX validates the suitability of the design space to describe its infrastructural
aspects.

CHAPTER 4

FAMIX, a Language-Independent
Metamodel for Modeling Object-Oriented
Software

This chapter introduces FAMIX, a metamodel for modelling object-oriented software. The main goal is to
support reengineering activities in a language-independent way. The aim is not to cover all aspects of all lan-
guages, but rather to capture the common features that we need for reengineering activities, so tools can be
easily reused for multiple target languages.

This chapter gives an overview of the contents of the FAMIX metamodel, as well as how and why the
information is modelled as it is. Firstly, the chapter discusses the organisation of the information. The me-
tamodel consists of a language-independent core. Language mappings describe how language-specific con-
structs are mapped to the core model and how the core model is extended with language-specific informa-
tion. Secondly, the chapter places FAMIX in the design space presented in chapter 3 by discussing the
design choices we have made for the infrastructural issues that form this design space. The complete spec-
ification of the model can be found in appendix B.

One might wonder why we came up with our own model in the first place. One reason is that when we
started we did not find any model that adequately modelled object-oriented source code in the way we nee-
ded it to. As section 2.3.2 shows, several source code models exist, but they are either focused on another
language paradigm [Kos00], or focus on one language only [CGK98], or they are aimed at multiple lan-
guages but do not have explicit definitions of what is modelled and how the different languages map to the
language-independent part of the model. We have also looked at models such as Unified Modelling Lan-
guage (UML) [OMG99]. However, they are directed towards object-oriented analysis and design rather
than source code representation. Section 4.8 compares the information FAMIX models to UML and dis-
cusses in-depth why UML currently does not fit our needs.

36 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
We start with a presentation of the requirements the metamodel should fulfil. Following we give an over-
view of what information is represented in the metamodel and how this information is modelled. We finish
with a discussion why we did not use UML and a conclusion.

4.1 Requirements
This section introduces the requirements for the FAMIX metamodel. They are strongly influenced by the
requirements of the FAMOOS project under which the major part of this work has been realised [DD99].
The FAMOOS project had multiple partners with large object-oriented legacy systems in different languag-
es. Furthermore, the tools of the different partners should be able to interchange information. This brings us
to the following list of requirements:

• Support for multiple languages. The metamodel must support multiple object-oriented implemen-
tation languages. It must abstract from those languages to allow tools to be used without adaptation
for the different supported languages. In particular the metamodel needs to support C++, Java,
Smalltalk and Ada.

• Support for the whole reengineering lifecycle. The metamodel is targeted at software analysis and
reengineering. It should, therefore, contain relevant information for tasks such as metrics computa-
tion, grouping and reorganisation operations.

• Extensibility. The metamodel needs to be extensible to deal with language extensions, tool-specific
extensions and other information that is not represented in the core metamodel that is considered
useful. Furthermore, it is required that any information about a model element can be attached to it
to store insights gained during exploration.

• Scalability. The metamodel needs to support multi-million line software systems.
• Information exchange. The metamodel must support textual information exchange. For the format

human readability and machine processability aspects as well as industry standards support need to
be addressed.

4.2 Overview of the FAMIX core
The FAMIX metamodel models multiple object-oriented languages, i.e., in terms of the design space of
chapter 3, it supports multiple languages within one paradigm. It defines a language-independent core,
which allows tools to be reusable without adaptation over the supported languages. How languages are
mapped to the core and which language specifics can be stored, is specified in language extensions. This
section presents the core part of FAMIX. The language extensions are discussed in detail in section 4.4.

The metamodel represents source code at the program entity level (see also section 3.3). First of all, this
level of information is sufficient for the analysis tasks we want to support. The information allows one to
perform structural analysis and dependency analysis. It supports metrics computation and heuristics. It does
not support control flow analysis and the regeneration of source code from the model. We store, however,
the location of the source code, allowing one to obtain additional information from the source code itself. A
second reason to choose the program entity level is that more detailed information increases the size of mo-
dels considerably which hampers scalability. Thirdly, the program entity level enables to abstract from lan-
guage-specific details and as such allows for a clean language-independent metamodel.

Figure 4.1 shows the core entities and relations. All basic elements of an object-oriented languages are
present (Class, Method, Attribute). Furthermore, FAMIX models dependency information, such as method

Overview of the FAMIX core 37
invocations (which method invokes which method) and attribute accesses (which method accesses which
attribute). This is important information for, for instance, dependency and impact analysis [CGK98].

The complete metamodel is not restricted to the above elements. Additionally it also models different kinds
of variables, functions and arguments. We give here a short description of these elements. The exact speci-
fication can be found in appendix B. They are modelled in an object-oriented hierarchy, which is shown in
Figure 4.2.

Function - a definition of behaviour with global scope
LocalVariable - a variable local to a method or function
GlobalVariable - a variable with global scope
ImplicitVariable - variables that are not explicitly defined such as self, this and super
FormalParameter - a parameter of a method or function
AccessArgument - an argument of an invocation that constitutes a simple variable access
ExpressionArgument - an argument of an invocation which is an expression
Package - a scoping mechanism
Model - a meta entity containing information about a model such as creation time

Functions and global variable are modelled because they exist in several object-oriented languages we
want to cover such as C++ and Smalltalk. This effectively makes FAMIX support hybrid object-oriented
and procedural languages.

Figure 4.1 The core of the FAMIX model

38 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
Figure 4.2 The complete hierarchy of the FAMIX model

Extensibility 39
For every model element the metamodel defines a set of attributes. A Method, for instance, has attributes
such as signature and isAbstract. Figure 4.3 shows the Method entity in the FAMIX inheritance hier-
archy.

The semantics are well defined: for every entity and attribute it is described what it is supposed to model,
what its value can be and how it should be interpreted. For example, the isAbstract attribute of method
is describes as follows:

hasClassScope: Boolean; optional

Is a predicate telling whether the method has class scope (i.e., invoked on the class) or instance
scope (i.e., invoked on an instance of that class). For example, static methods in C++ and Java have
a hasClassScope attribute set to true.

The description of all attributes can be found in appendix B.

4.3 Extensibility
Before going into the details of the language extensions, we present the ways in which the FAMIX meta-
model can be extended:

Method

belongsToClass (): Name
hasClassScope (): Boolean
isAbstract (): Boolean
isConstructor (): Boolean

BehaviouralEntity

accessControlQualifier (): Qualifier
signature (): Qualifier
isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

Entity

name (): Qualifier
uniqueName (): Name

Figure 4.3 The Method entity in the FAMIX metamodel hierarchy

Object

uid (): Name
sourcheAnchor (): Qualifier
commentsAt (): Name

40 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
• New model elements. An extension can define new model elements. Examples are the Include rela-
tionship for the C++ extension [Bar99] and the Measurement element for the metrics extension.

• New attributes to existing model elements. Existing elements can be extend to allow one to store ad-
ditional information. An example is the isFinal attribute that the Java extension adds to the defi-
nition of the Method element (see appendix D).

Section 3.6 discusses the advantages and disadvantages of class extension. One of the problems we
have encountered is that not all standard metametamodels support class extension. In the context of
textual information exchange we have worked with CDIF [Com94] and XMI [OMG98]. The CDIF
metametamodel supports class extensions, the XMI metametamodel, i.e., the MOF, does not. This
means that class extensions cannot be expressed in XMI and exchanged with generic XMI compli-
ant tools.

• Annotations. Any model element can be annotated by attaching a Property to it. This is shown in
Figure 4.4 by the Object class, which can have zero or more Properties attached to it.

4.4 Multiple language support
The FAMIX metamodel supports multiple object-oriented languages. This section describes the design de-
cisions that make it easier to support more rather than one specific language. Afterwards we describe the ac-
tual language extensions.

4.4.1 General multi-language design decisions
The following decisions in the design of FAMIX are relevant for the support of multiple languages.

Multiple inheritance. FAMIX supports multiple inheritance. This allows us to deal with single inheri-
tance languages such as Smalltalk, but also with multiple inheritance languages such as C++. Java also fits
this scheme by interpreting Java interfaces as abstract classes and interface implementation as common in-
heritance.

Statically typed and dynamically typed languages. Static type information is important to store,
because it reveals important dependencies. If the information is not known, which is normally the case with
dynamically typed languages such as Smalltalk, the information is left empty. For instance, Figure 4.3
shows that Method inherits thedeclaredType attribute. It is used to store the statically declared returntype
for methods, like Point for the method declaration Point getPoint() {...} in Java. It is left empty for
Smalltalk methods.

Another example of supporting both dynamic and static typing is the candidate methods of an invoca-
tion. Figure 4.5 shows the Invocation entity. The candidates attribute stores the methods possibly in-
voked by this invocation. In Smalltalk, without static type information, the candidates are all methods in a

Object
Property

name (): String
value (): Name

Figure 4.4 FAMIX model elements can be annotated with Properties

Multiple language support 41
system that have the signature as stored in the invokes attribute1. In Java the static type information redu-
ces the possibly invoked methods to a single inheritance hierarchy or interface implementation hierarchy.
By storing the candidates independent of the way the information is collected, tools can use the information
independent if it concerns a dynamically or statically typed language.

Pointer, array and other non-Class types. FAMIX does not explicitly model pointer, primitive ar-
ray and other primitive types. The BehaviouralEntity class in Figure 4.3 illustrates how FAMIX deals with
such types. The class has two attributes declaredReturnType and declaredReturnClass. decla-
redReturnType stores the complete type as it is declared in the source code. This can be a regular type
such as a class, but also primitive types, e.g., int in Java, or a primitive array type, e.g., Point[] in Java,
or a pointer type, e.g., Point* in C++. The declaredReturnClass attribute, however, always stores the
class that is implicit in the declaredReturnType and that exists as an entity in the model. Table 4.1 shows
the declared type and declared class for the examples given before. The advantage of this approach is that
the model does not need to model all complex types of the separate languages. At the same time the type
information is not lost and the dependency information with classes in the model is retained. A disadvantage
is that tools that want to use the complex type information, need to extract it themselves from the declared
type.

4.4.2 Language mappings and extensions

An important part of the usability of the metamodel depends on how the actual programming languages are
mapped to language-independent constructs. The goal is to treat as many concepts of different languages as
possible uniformly. On the other hand, we store information about the mapping, because the semantic dif-
ference of a similar concept in different languages might be of interest for certain tools. Figure 4.6 shows

1. There are three special cases where the set of candidate methods can be reduced, namely if the receiver of
the invocation is self, super or a classname.

source code declared (return)type declared (return)class

Point Point Point

Point[] Point[] Point

Point* Point* Point

int int

Table 4.1: Declared type and declared class in FAMIX

Invocation

invokedBy (): Name
invokes (): Qualifier
base (): Name
receivingClass (): Name
candidatesAt (): Name

Figure 4.5 The FAMIX Invocation

42 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
the Java mapping and extension to the Class entity. The common definition of Class includes the attributes
isAbstract and belongsToPackage. The extension specifies additional properties specific to a Java
class, namely if it is declared public or final. Furthermore, the Java interface concept is mapped to a FAMIX
Class as well, with isInterface and isAbstract set to true. Language-independent tools just use the
common interface and tools that want to use the language-specific information, have it available.

Like in the core model the extensions describe in detail what the model elements and their attributes
mean. Furthermore, for the common attributes the interpretation for the specific language is described. An
example is the isAbstract attribute:

isAbstract

In Java a class is abstract if the class is declared abstract. This is obligatory if one or more of its
methods are abstract. Even if the class does not contain any abstract methods, it can be declared ab-
stract, preventing the class from being instantiated. Interfaces are always abstract, but do not have
to be explicitly declared as such.

Extensions can also define new model elements. The TypeCast entity for Java is an example (see Figure
4.7).

Following we summarize the mappings that are most important. The complete specification of the sepa-
rate mappings can be found, for Smalltalk in appendix C, for Java in appendix D, for Ada in [Neb99] and
for C++ in [Bar99].

Classes, Interfaces, Metaclasses and Structs. Classes in the different languages are modelled as
classes in FAMIX. Also Java interfaces, as discussed in the example above, Smalltalk metaclasses and C++
structs are mapped to classes. A Java interface is modelled as an abstract class that only contains abstract
method definitions and final attributes. An implicit Smalltalk metaclass is modelled as an explicit class.
Consequently, Smalltalk class methods are modelled as instance methods of the FAMIX class instance re-
presenting the metaclass. In Smalltalk there exist two kinds of class variables. One is the common class va-
riable which is modelled as an attribute with class scope. The second is the class instance variable, which is

Class

isAbstract (): Boolean
belongsToPackage (): Name
isInterface (): Boolean
isPublic (): Boolean
isFinal (): Boolean

Java-specific extension

common for all
languages

Figure 4.6 The Java mapping and extension to Class

TypeCast

belongsToBehaviour (): Name
fromType (): Name
toType (): Name

Java-specific extension

Figure 4.7 The Java TypeCast entity

Reference Schema 43
modelled as instance scope attribute of the metaclass. C++ structs are modelled as classes as well. They dif-
fer only from C++ classes in that their members have default public instead of private visibility [Bar99].

Methods, Constructors and Destructors. Apart from common methods the Method entity covers
Java and C++ constructors as well. Special rules apply, however, that tools might need to be aware of. For
example, a constructor has to have the same name as its class, it does not have a return type, and the syntax
to invoke it is different from a normal method invocation. In Smalltalk constructors are common methods.
A method can be interpreted to be a constructor if it is a class method returning an instance of its defining
class.

The fact if a method represents a constructor or a destructor is stored in theisConstructor, respective-
ly isDestructor attribute.

Global variables. FAMIX defines a GlobalVariable entity. Smalltalk and C++ have global variables
where Java does not. In Smalltalk classes are global variables as well. Consequently, attributes in Smalltalk
cannot have the same name as a class (or any other global variable), because this might hide these globals in
the scope of the new attribute. In Java types and attribute names do not interfere. In FAMIX we model Small-
talk classes as Classes and not as GlobalVariables.

Abstractness. For Java and C++, abstractness is straightforward to determine as a class or method is ex-
plicitly tagged with the ‘abstract’ keyword respectively as pure virtual. In Smalltalk abstractness is implicit.
A method is abstract when it invokes the method subclassResponsibility. This method throws an ex-
ception at runtime with the message that this method should not be called but a subclass method instead.
Similarly a Smalltalk class can be interpreted to be abstract if it has one or more abstract methods. However,
it is still possible to instantiate this class. Although abstractness is implicit for Smalltalk methods and class-
es, we explicitly model them as abstract in FAMIX.

4.5 Reference Schema
In FAMIX, model elements can be referenced in two ways. Firstly, every model element has a unique iden-
tifier (see the attribute uid in Object in Figure 4.2 and Figure 4.3). Secondly, all elements that have an in-
trinsic unique name, i.e, all instances of Entity and its subclasses, can be uniquely identified by that name
(see the uniqueName attribute in Entity in Figure 4.2 and Figure 4.3). The advantages and disadvantages of
naming and unique identification are extensively discussed in section 3.10.

FAMIX uses a unique naming scheme that is normalized over multiple languages. It uses the intrinsic
unique name of a program element. It ensures that names generated by different tools are the same and tools
need to deal with only one naming schema. For example, a method name must look like

package::subpackage::classname.methodname(para1,para2)

The details of the naming scheme can be found in section 2.1.2 of appendix B.

In FAMIX, we reference elements as much as possible by their unique name rather than their uid, be-
cause the advantages of human readability and the fact that multiple tools independently generate the same
unique name. An example is the belongsToClass attribute of Method (see Figure 4.3). It will always re-
ference a named element, namely a Class, and thus the unique name of that element is used rather than an
unique identifier.

44 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
Non-named elements such as relations can be identified using unique identifiers. Basically any identifier
can be used as long as it is unique in the scope that you need. We have experimented with plain integers and
Universal Unique Identifiers (UUIDs) [OG97]. Plain integers are only locally valid. UUIDs allow us to
uniquely identify model elements over multiple models and reference model elements over different stor-
age media. They increase of the size of exchange files up to 9% (see Table 3.3) compared to using plain in-
tegers. We find this increase a minor detriment compared to the advantage of universal uniqueness1.

We have also experimented with using a ‘best of both worlds’ approach where we use the unique name
as unique identifier for the named entities and only use non-intrinsic identifiers for the non-named elements.
For example, a group referencing both named and non-named elements would then contain names for the
named entities and meaningless identifiers for non-named entities. Such a mixed scheme keeps the advan-
tages of using names for the named entities, but allows other elements to be referenced anyway. Further-
more, it solves the above incremental loading problem. Disadvantages are the increased complexity,
because schemas with different properties are mixed. We find the advantages outweighting the disadvantag-
es.

Generally unique names together with UUIDs support incremental loading and grouping because the
identification is valid over multiple databases or exchange files. However, when an entity is referencable in
two different ways, incremental loading is not possible. If an entity is not in the current model, it cannot be
determined that a reference by name and by unique identifier are actually supposed to reference the same
entity.

Generally unique identifiers support grouping of all elements. The FAMIX referencing schema does not
take multiple models into account. Although the UUID is valid over multiple models as well, the unique
naming schema does not take the model an entity belongs to, into account.

4.6 Support for information Exchange

FAMIX uses the chunk format described in section 3.9. This implies that the entities are not nested into their
scoping entity and simple relationships are stored as attributes of the entity it is linked to. The format is cho-
sen, because of its human readability and support for incremental loading (the latter together with the
FAMIX entity reference schema discussed in section 4.5). Figure 4.8 shows an example using the CDIF
standard format [Com94].

The chunk format defines its own way of storing relationships rather than using an existing standard such
as XMI and how it encodes relationships. In the chunk format relationships are represented either as at-
tributes of model elements for containment relationships (e.g., the belongsToClass attribute of Method
in the example in Figure 4.8), or as explicit entities for the other, mostly attributed, relationships (e.g., the
InheritanceDefinition entity in Figure 4.8). There is no specific relationship kind of elements.

Sofar we have exchanged information with the CDIF [Com94] and XMI [OMG98] standard. Their rela-
tionship representations are not expressive enough to cover our needs. Both XMI and CDIF reference ele-

1. Actually, the bigger problem we encountered was in the implementation of the Moose Reengineering Envi-
ronment (see chapter 5). Our current implementation of UUID creation is very resource intensive causing con-
siderable delays in load and save times. However, we have not yet seriously attempted to optimise it.

Support for information Exchange 45
Figure 4.8 FAMIX information in CDIF format

(Class FM1
(uid "c842bf06-d202-0000-0282-5c410d000000")
(name "Widget")
(uniqueName "gui::Widget")
(isAbstract -FALSE-)
(sourceAnchor #[file "factory.h" start 260 end 653|]#)

)

(Method FM2
(uid "c842bf06-d202-0000-0282-5c410d000001")
(name "Widget")
(uniqueName "gui::Widget.Widget()")
(signature "Widget()")
(belongsToClass "gui::Widget")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControlQualifier "public")
(hasClassScope -FALSE-)
(isAbstract -FALSE-)
(declaredReturnType "")
(declaredReturnClass "")

)

(InheritanceDefinition FM3
(uid "c842bf06-d202-0000-0282-5c410d000002")
(subclass "gui::ScrollBar")
(superclass "gui::Widget")
(accessControlQualifier "public")
(index 1)

)

(Property FM4
(uid "c842bf06-d202-0000-0282-5c410d000003")
(name "LOC")
(value "56")
(belongsToID "c842bf06-d202-0000-0282-5c410d000000")

)

46 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
ments only locally to a file1. For instance, the belongsToClass relation as a CDIF relation rather than an
attribute of Method looks like:

(Method.belongsToClass.Class REL1 FM2 FM1)

(with REL3, FM1 and FM2 being local CDIF references). Both standards, however, provide ways to re-
present entities with attributes, and thus can we encode our relationships like that.

4.7 Metametamodeling
This section discusses the metametamodeling issues introduced in section 3.11. FAMIX does not have an
explicit metametamodel. Its metametamodel is an implicit entity-relationship model. In the context of tex-
tual information exchange the metamodel has been described using the CDIF metametamodel and the MOF
of XMI. Both metametamodels do not have the expressive power needed to describe FAMIX and its exten-
sions they way we want it. For instance, XMI does not support class extensions as discussed in section 4.3.
Furthermore, both CDIF and XMI only support entity references local to a file. By defining our own relation
entities and accompanying reference schema, we go around the latter problem (see section 4.6).

For metametamodel-based tasks such as tool generation either the CDIF or XMI description can be used.
In our FAMIX-based tool environment we are also experimenting with an explicit metamodel description
for the same purpose.

To store information about the model such as its creation time, FAMIX contains an explicit Model entity
(see Figure 4.9). The choice to go with an explicit entity is motivated by the fact that it firstly explicitly de-
fines what information can be stored about a model in a way that is independent of any metametamodel or
information exchange standard.

4.8 Why not UML?
The previous sections show how we model object-oriented software for the purpose of reengineering in the
form of the FAMIX metamodel. We have also considered object-oriented analysis and design (OOAD)

1. XLink [DMO00] is a standard that is integrated in XMI that allows to link to entities ‘somewhere else’ (as
specified with a Universal Resource Identifier (URI) [BLFIM98]). However, XLink stores a specific location,
where our referencing schema stores a unique name or identifier that is independent of the location of storage.

Figure 4.9 The Model entity in FAMIX

Model

exporterName (): String
exporterVersion (): String
exporterDate (): String
exporterTime (): String
publisherName (): String
parsedSystemName (): String
extractionLevel (): String
sourceLanguage (): String
sourceDialect (): String

Why not UML? 47
models, but found them unfit to adequately model software for reengineering [DDT99]. In this section we
discuss why, in particular looking at the Unified Modeling Language (UML) [OMG99], which is becoming
the de facto standard for software modeling. Therefore, it seemed an interesting candidate for our purposes.

Primarily, the problem is that UML is specifically targeted towards OOAD and not at representing source
code as such. The specification itself says [OMG99]:

The UML, a visual modeling language, is not intended to be a visual program-
ming language, in the sense of having all the necessary visual and semantic sup-
port to replace programming languages. The UML is a language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive
system, but it does draw the line as you move toward code.

The problems are illustrated by Figure 4.10 and can be summarized as follows:

1. The UML metamodel defines a large number of concepts that are not relevant for an implemen-
tation model. ‘Aggregation’ and ‘Constraint’ are two examples but there are many more.

2. There is a substantial overlap between the FAMIX core model and UML. With some flexibility
it is possible to map ‘InheritanceDefinition’ onto ‘Generalization’ and ‘Class’, ‘Method’ and
‘Attribute’ on their respective counterparts with the same name. However, non-standard inter-
pretation of concepts breaks the standard and thus tools that expect the standard interpretation.
For instance, inheritance in source code does not always represent a generalization relationship,
but can represent an implementation inheritance relationship.

3. Due to its OOAD focus, UML lacks some concepts that are necessary in order to adequately
model source code. Especially the Invocation and Access concepts are non-existent. There are
several ways to extend UML to incorporate these concepts. We present the most plausible solu-
tions:
- Use the Usage dependency to model Invocation and Access. A Usage dependency represents

“a relationship in which one element requires another element (or set of elements) for its full
implementation or operation” [OMG99]. A Usage can be stereotyped to represent a call,
which specifies that a source operation invokes a target operation. However, an UML Opera-
tion specifies a specification of an operation rather than its implementation. The implementa-
tion of an operation is represented by a UML Method. The body of a method contains the in-

Figure 4.10 Comparison UML with the FAMIX core model

UML FAMIX

Aggregation

Constraint

Attribute
Class

InheritanceDefinition = Generalization

Method

Invocation

Access

...

...

48 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
vocations we want to represent and consequently we need a dependency between a Method
and an Operation rather than between an Operation and an Operation to represent such an in-
vocation. It is not clear from the UML specification if the intention of a call is the same as
representing an FAMIX invocation. Furthermore, an additional dependency or stereotyped
dependency would be needed between Methods and Attributes to represent an attribute ac-
cess.

- Use CallAction to model Invocation and Access. However, because a CallAction is defined
in the context of instances, i.e. runtime entities, rather than classes a non-standard interpreta-
tion is needed for this solution to work.

- Stereotype Association to let it represent an Invocation or Access. However, an Assocation
normally associates to Classes, not two Methods or Methods and Attributes. Therefore, extra
information needs to be stored in an Assocation to reference the actual contained entities in-
volved.

- Use the MOF, the OMG Meta Object Facility [OMG00], the metametamodel of UML to cre-
ate to add new concepts to the language. However, this is a major UML extension which will
not be supported by most UML-aware tools.

So modeling Invocations and Accesses requires either minor extensions that need non-standard
interpretations, or major extensions that will break most tools. Apart from the harder Invocation
and Access, there are no straightforward ways to model entities such as GlobalVariables, Func-
tions and implementation ‘details’ such as LocalVariables either.

Concluding we can say that UML in stricto sensu is not sufficient for modelling source code for the pur-
pose of reengineering.

4.9 Conclusion
This chapter describes the FAMIX metamodel, which models object-oriented source code at the program
entity level. It is aimed at supporting tools for analysing and reorganising object-oriented legacy systems.
We have discussed the properties of the FAMIX model are discussed according the design space defined in
chapter 3. This is summarised in Table 4.2. Comparing to the requirements we posed in section 4.1, we see
that FAMIX is designed to support multiple languages, extensibility and information exchange. Scalability
is addressed by the support of incremental loading and choosing the program entity level of detail rather
than the AST level of detail. From the reengineering tasks grouping is explicitly supported. The support for
other tasks can only be validated by actually using the model a basis for tools that implement them. Multiple
models are not supported. Although the unique identifiers allow one to uniquely identify entities in multiple
models, the unique naming scheme does not incorporate model names. The Storage Medium Axis is not dis-
cussed, because it is a repository implementation issue rather than a metamodel design issue.

The applicability of FAMIX as a metamodel for reengineering has been validated in the following ways.
A tool environment with a repository based on FAMIX has been implemented and used as a basis for a series
of reengineering tools. This tool environment is called Moose and is described in chapter 5. Furthermore,
an in-depth analysis has been performed to evaluate the suitability of FAMIX to support refactorings on a
language-independent level. Refactorings strain the model to its limits in terms of the completeness of the
provided information and the ability to abstract from the modelled implementation languages. The refacto-
ring analysis is presented in chapter 6 and a tool prototype implementing and validating this analysis is pre-
sented in chapter 7.

Conclusion 49
Requirement Axes

Language/Paradigm Multiple object-oriented and object-oriented/procedural hybrid
languages. The model has a language independent core with explicit
language mappings and extensions.

Level of detail Program-entity level

Multiple models not supported

Grouping supported

Incremental loading supported

Extensibility New entities can be added, new attributes to existing entities.
Annotations are supported on the metamodel level (an Object can have
Properties).

Implementation Axes

Entity Reference A unique naming scheme supports incremental loading and
referencing over multiple files. FAMIX also uses UUIDs to support
these features uniformly for all model elements, not only elements
with an intrinsic unique name.

Exchange Format Structure The model is designed to support the chunk format. N-ary attributes
are supported, but its representation in the text files depends on the
standard used (CDIF hacked, because it does only support multi-
valued attributes for a restricted set of primitive types, XMI with
multiple instances of single-valued attributes)

Metametamodeling Explicit definitions of FAMIX as instance of the CDIF and the MOF
metametamodel exist that can be used for the purpose of tool
generation.
An explicit Model element stores context information about a model,
such as the date and time of extraction, the name of the extracted
system, its implementation language, etc. The Model element goes
around exchange format facilities such as CDIF headers to store this
kind of information

Table 4.2: FAMIX according to the design space from chapter 3

50 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software

CHAPTER 5

The Moose Reengineering Environment

This chapter presents the Moose Reengineering Environment, a language-independent tool environment to
reengineer object-oriented systems. Its repository is based on the FAMIX metamodel presented in chapter
4. Apart from the tool environment itself, we present some of the tools we have built on top of it and the in-
dustrial case studies we have performed.

In this thesis Moose functions as the validation of the ability of FAMIX to support multiple reenginee-
ring tools that work on real-world legacy systems. With real-world we mean that the tools (and thus the en-
vironment and thus the FAMIX-based repository) can deal with legacy software of industrial size and com-
plexity while providing the user with useful results. In particular we discuss the relevance of the information
FAMIX represents, its language independence, as well as its extensibility and information exchange prop-
erties.

The chapter starts with a set of general requirements for a reengineering environment based on literature
and experience. We then give an overview of the architecture of Moose and discuss its built-in services for
querying and navigation model information, metrics computation, refactoring, source code parsing and
model exchange. For every service we discuss how well they are supported by FAMIX. Then we introduce
some of the tools that are built around it. First, the tools show that Moose indeed facilitates concrete reengi-
neering tasks. Secondly, they validate Moose as a tool environment: multiple tools use Moose as their infor-
mation base and cooperation platform. After the tools we present the industrial case studies and a discussion
to which extent Moose and FAMIX are up to the task. We review how well our requirements are met and
present some general insights we gained while building and applying Moose. We wrap up the results in a
conclusion.

5.1 Requirements for a Reengineering Environment

Based on our experiences and on the requirements reported in literature [MN97] [HEH+96] [Kaz96], these
are our main requirements for a reengineering environment:

52 The Moose Reengineering Environment
• Support for reengineering tasks. An obvious requirement which determines the focus of the tool.
It determines the information to store and which services the environment provides. Typical reengi-
neering tasks are metrics, grouping, visualisation and refactoring.

• Extensible. An environment for reverse engineering and reengineering should be extensible in
many aspects:

- The repository (and thus its underlying metamodel) should be able to represent and manipulate
entities other than the ones directly extracted from the source code (e.g., measurements, associa-
tions, relationships).

- To support reengineering in the context of software evolution the environment should be able to
handle several source code models simultaneously.

- The environment should be able to use and combine information from various sources, for in-
stance the inclusion of tool-specific information such as runtime information, metric informa-
tion, graph layout information, etc.

- The environment should be able to operate with external tools like graph drawing tools, diagram-
mers and parsers.

• Exploratory. The exploratory nature of reverse engineering and reengineering demands that a reen-
gineering environment does not impose rigid sequences of activities. The environment should be
able to present the source code entities in many views, both textual and graphical, in little time. It
should be possible to perform several types of actions on the views the tools provide such as zoo-
ming, switching between different abstraction levels, deleting entities from views, grouping entities
into logical clusters, etc. The environment should also provide a way to easily access and query the
entities contained in a model. To minimize the distance between the representation of an entity and
the actual entity in the source code, an environment should provide every entity with a direct linkage
to its source code. A secondary requirement in this context is the possibility to maintain a history of
all steps performed by the reengineer and preferably allow him to return to earlier states in the reen-
gineering process.

• Scalable. As legacy systems tend to be huge, an environment should be scalable in terms of the
number of entities being represented. Furthermore, it should provide meaningful information at any
level of granularity. An additional requirement in this context is the actual performance of such an
environment. It should be possible to handle a legacy system of any size without long latency times.

• Information Exchange and Tool Integration. A reengineering effort is typically a cooperation of
a group of specialised tools [DDT99]. Therefore, a reengineering environment needs to be able to
integrate with external tools, either by exchanging information or ideally by supporting runtime in-
tegration.

In addition to these general requirements, the context of the FAMOOS project [DD99], in which Moose
was originally developed, imposed the following requirement:

• Support for multiple object-oriented languages. This specific tool environment must support the
reengineering of software systems written in C++, Java, Ada and Smalltalk.

5.2 Architecture
This section presents the architecture of Moose (see Figure 5.1). The repository is based on the FAMIX
metamodel (see chapter 4). Consequently, the functionality of the services and import/export framework is

Architecture 53
tailored towards and constraint by the information that is defined by FAMIX. Moose has a layered architec-
ture. The rest of this section gives an overview of the architecture. In subsequent sections we discuss the dif-
ferent functionalities in detail including how well FAMIX supports them.

Repository and Model Management. The repository stores models of software systems. They con-
tain elements representing the software artifacts of the target system. This information can be analysed, ma-
nipulated and used to trigger code transformations by means of refactorings. Moose can maintain several
models in memory at the same time. The models are based on the FAMIX metamodel. Consequently the
stored information has the following properties. It is language independent. This allows tools that use the
repository to work without adaptation with legacy systems in different implementation languages (C++,
Java, Smalltalk, Ada). It is also extensible. This allows tools to deal with information not anticipated by the
core metamodel. It also allows to store language-specific information (e.g., to analyse include hierarchies
in C++) or tool-specific information such as analysis results and layout information for graphs.

Import/Export Framework. The import/export framework provides support to import information into
and export information from the Moose repository. Import and export is possible in the following ways:

• In the case of VisualWorks Smalltalk — the language in which Moose is implemented1 — sources
can be directly extracted via the metamodel of the Smalltalk language or via the built-in parser.

Navigation

Metrics

Analysis

Grouping

Querying

Refactoring

Services

Figure 5.1 Architecture of Moose

SNiFF+ parser

CDIF XMIVisualWorks parser

Repository (based on FAMIX)

Moose

Import/Export Framework

Moose Tools

Sm
al

lta
lk

Ja
va C++

CO
BO

L

Ada

CDIF
XM

I

Tool Integration Framework

and Model Management

54 The Moose Reengineering Environment
• For other source languages Moose provides support for the import and export of CDIF [Com94] or
XMI [OMG98] files based on the FAMIX metamodel. CDIF and XMI are industry-standard inter-
change formats for exchanging models via files or streams. Over this interface Moose uses external
parsers for source languages other than VisualWorks Smalltalk. Currently C++, Java, Ada and se-
veral Smalltalk dialects other than VisualWorks are supported. Information exchange is discussed
in more detail in section 5.7

Services. Moose provides several services that tools can use to perform their reengineering tasks:

• Querying and Navigation. Every element in a model is represented by an object, which allows direct
interaction of elements, and consequently an easy way to query and navigate a model. The query
and navigation support is discussed in detail in section 5.3.

• Metrics and other Analysis support. Moose’s analysis services are mostly implemented as operators
that can be run over a model to compute additional information regarding the software elements. For
example, metrics can be computed and associated with the software entities. Section 5.4 provides
more details.

• Grouping. Moose has a grouping mechanism, with which it can group several model elements into
a group entity. This is useful to classify information or to provide views on the available information
at different levels of abstraction. More details can be found in section 5.5.

• Refactoring. The Moose Refactoring Engine implements language-independent refactorings. Sec-
tion 5.6 describes the engine in more detail.

Tools Layer and Tools Integration Framework. The functionality which is provided by Moose is
to be used by tools. This is represented by the top layer of Figure 5.1. Tools can use the repository and ser-
vices of Moose and use the Tools Integration Framework to find each other to interoperate. The Tools Inte-
gration Framework and examples of tools based on Moose are described in section 5.7.2.

The following sections discuss the different parts of Moose in more detail. For every part we discuss how
well it is supported by FAMIX.

5.3 Querying and Navigation

One of the challenges when dealing with large complex metamodels is how to support their navigation and
facilitate easy access to specific entities. In the following subsections we present two different ways of que-
rying and navigating source code models in Moose.

5.3.1 Programming Queries

The fact that the metamodel in Moose is fully object-oriented together with the facilities offered by the
Smalltalk environment, makes it simple to directly query a model in Moose. We show two examples of que-
ries, both of them in the Smalltalk language. The first query finds all the methods accessing the attribute
name of the class Node. It first asks the model for the entity with name Node.name. From the access infor-
mation of this attribute, it then collects all Method entities that access the attribute.

1. Moose is implemented in VisualWorks 3.0 with Envy 4.0.

Querying and Navigation 55
(MSEModel currentModel
entityWithName: #’Node.name’)

accessedByCollect:
[:each | MSEModel currentModel entityWithName: each accessedIn]

The second query collects all classes that have more than 10 descendants. It asks the current model for
all classes that have a property called WNOC (the metric Weighted Number Of Children) that has a value
higher than 10.

MSEModel currentModel allClassesSelect:
[:each | (each hasPropertyNamed: #WNOC)

ifTrue: [(each getNamedPropertyAt: #WNOC) > 10]]

Moose Finder

The Moose Finder [Ste01] is a tool that allows one to express, compose and store queries based on different
criteria like element type, properties or relationships (see Figure 5.2). Such a query can in turn be combined
with other queries to express more complex ones. Furthermore, the Moose Finder supports multiple models
in the context of software evolution [LDS01].

Apart from the query support itself — which is independent of the metamodel — the Moose Finder de-
fines a set of standard queries for reengineering based on FAMIX. These queries have been found useful in
the context of system analysis, and validated on different industrial case studies in different implementation
languages [Ste01]. First, FAMIX provides sufficient information to define these queries and secondly, it en-
ables the queries to be applied without change on systems in different languages.

Figure 5.2 Moose Finder

56 The Moose Reengineering Environment
5.3.2 Querying and navigating using the Moose Explorer
Reengineering large systems brings up the problem of how to navigate large amounts of complex informa-
tion. Well-known solutions are code browsers, which support browsing and editing code and navigating a
system via senders and implementers of methods. However, for reengineering these approaches are not suf-
ficient, because:

• The number of potentially interesting entities and their interrelationships is too large. A typical sys-
tem can have several hundreds of classes which contain in turn several thousands of methods, etc.

• All elements need to be navigable in a uniform way.

- In the context of reengineering no element is predominant. The relative importance of informa-
tion depends heavily on the current focus and task of the reengineer.

- In presence of an extensible metamodel, the navigation schema should take into account the fact
that new entities and relationships can be added and should be navigable as well.

Moose Explorer proposes a uniform way to represent model information (see Figure 5.3). All entities,
relationships and newly added entities can be browsed in the same way. From top to bottom, the first pane
represents a current set of selected entities. Here we see all the classes of the current model. The bottom left
pane represents all the possible ways to access other entities from the currently selected one, e.g., in Figure
5.3 the attributes of the class Object. The resulting entities are displayed in the right bottom pane. ‘Diving’
into the resulting entities puts them as the current selection in the top pane again, which allows for further
navigation through the model.

FAMIX does not support navigation very well. The information is organised according to the chunk for-
mat structure, because of the incremental loading and information exchange properties of this structure (see

Figure 5.3 Moose Explorer

Metrics and other analysis support 57
section 3.9 and section 4.6 for details). Consequently, FAMIX only defines containment relationships from
a contained entity to its containing entity. Full navigation support, however, requires that all relations can be
navigated in both directions. In Moose extra information is generated to enable the navigation of relation-
ships in both directions. On top of that Moose Explorer defines navigable relationships that are not expli-
citly defined in FAMIX. These are mostly derived relationships such as the methods inherited by a class.

5.4 Metrics and other analysis support
Moose includes a metrics engine for the computation and storage of metric measurements. It supports so
called Design Metrics, i.e., metrics which are extracted from the source entities themselves [LK94]. These
metrics are used to assess the size and in some cases the quality and complexity of software. The current im-
plementation of the metrics engine includes language-independent as well as language-specific metrics.
The language-independent metrics are computed based on the core FAMIX metamodel. Examples are the
number of methods or the number of attributes of class. Language-specific metrics are covered by the
FAMIX language extensions. Examples for language-specific metrics are the number of method categories
of a class in Smalltalk or the number of private attributes of a class in C++ or Java. FAMIX does not support
metrics that need information about method bodies, e.g., the Method Complexity metric, which requires in-
formation about nested expressions [LK94].

Moose provides several other information revealers. Examples are the annotation of entities with in-
ferred type information or the computation of the possible targets polymorphic invocations.

5.5 Grouping
Moose supports grouping of any model element. Groups can be described by intention, i.e., by describing
the group in the form of a query, and by extension, i.e., by enumerating the elements the group contains. Fur-
thermore, groups can be nested, i.e., a group is a model element itself. The following Smalltalk code shows
a simple example of how all classes in a model can be grouped into groups representing the Smalltalk cate-
gories they belong to. For all classes in the current model, the category name is extracted from the class’s
source anchor and the class is added to a group that has the same name as the category name.

MSEModel currentModel allClassesDo:
[:aMooseClass |
| group categoryName|
categoryName := MSEUtilities extractCategoryName: aMooseClass sourceAnchor.
group := MSEModel currentModel enumeratedGroupWithName: categoryName.
group add: aMooseClass]

Note that this code does not manipulate Smalltalk classes directly, but Moose representations of these
classes. This representation abstracts from the implementation language. However, the example illustrates
that, while the core metamodel is language independent, language-dependent information can be used. The
category concept from our example only exists in Smalltalk.

FAMIX does not support grouping explicitly, i.e., there is no concept in FAMIX to capture and exchange
user-defined groups of model elements. The reference schema underlying FAMIX, however, supports
grouping by providing unique identification for any element in a model. Grouping over multiple models is
currently only supported if unique identifiers are used that are unique over multiple models. The unique
name of entities is only unique within models of one single system. See section 4.5 for details.

58 The Moose Reengineering Environment
5.6 Moose Refactoring Engine

The Moose Refactoring Engine is the part of Moose that takes care of behaviour preserving code transfor-
mations. It provides support for the fifteen low-level refactorings that are described in chapter 6. The engine
uses the Moose repository to retrieve the information required to analyse what code needs to be changed and
to check the preconditions. Only the final physical code transformations are performed directly on the
source code. They cannot be applied on the language-independent model level, because the FAMIX meta-
model, and thus Moose’s repository, does not contain enough information to reproduce source code. For
these physical code transformations the refactoring engine uses so-called code transformation front-ends.
They only perform low-level code changes such as changing a single invocation in a certain method body.
In its current implementation two languages are supported, namely Smalltalk and Java. The Smalltalk front-
end uses the Refactoring Browser [RBJ97] to change Smalltalk code. The Java front-end currently uses a
text-based approach based on regular expressions, which suffices to support all refactorings, but requires
that the source code adheres to certain layout rules.

The Moose Refactoring Engine is described in more detail in chapter 7. In its function as in-depth vali-
dation of FAMIX in the area of supporting language-independent refactoring, it requires a detailed descrip-
tion of its inner workings and the experiments that have been performed with it, which goes beyond the
purpose of this section.

5.7 Information Exchange and Tool Integration

Interoperability between reengineering tools is supported in two ways. First, there is the possibility to ex-
change information in text files using industry standard exchange formats. Second, tools written in Visual-
Works Smalltalk can interoperate with the Moose repository, its services and each other at runtime.

5.7.1 Information Exchange with CDIF and XMI

To exchange FAMIX-based information between different tools, Moose provides two textual formats. One
is CDIF [Com94], an industrial standard for transferring models created with different tools. The main rea-
sons for adopting CDIF are, that it is an industry standard and has a standard plain text encoding which tack-
les the requirements of convenient querying and human readability. Next to that the CDIF framework
supports the extensibility we need to define our model and plug-ins. As shown in Figure 5.1 we use CDIF to
import FAMIX-based information about systems written in Java, C++ and other languages. The informa-
tion is produced by external parsers such as SNiFF+ [Tak96] [TD99]. Next to parsers we also have integra-
tions with external environments such as the Nokia Reengineering Environment [DD99].

Recently, we have adopted XMI (XML Metadata Interchange [OMG98]) as a second storage and ex-
change format [Sch01] [Fre00]. XMI is an OMG standard for exchanging models based on the MOF (Meta-
Object Facility [OMG00]) and uses XML (Extensible Markup Language [BPSM98]) as the underlying
technology to save this information. The main reason to support a second standard is that CDIF did not suc-
ceed in becoming a widely used standard. XMI seems to stand a better chance, especially because it is based
on XML, which is likely to become the de facto standard for transferring information between applications
and allows the use of XML-based technologies such as XSL. Secondly, XMI is based on the MOF, which is
likely to become the de facto standard to describe metamodels and offers excellent integration to MOF-
based metamodels such as UML.

Information Exchange and Tool Integration 59
A third format we plan to support is the Graph eXchange Language (GXL) [HWS00]. GXL is a colla-
borative effort from several academic and industrial research institutes to come up with an exchange format
and a set of metamodels for information exchange for reengineering tools. We actively participate in the dis-
cussions and FAMIX is one of the input models that is looked at as a basis for the GXL standard program
entity level metamodel.

5.7.2 Tool Integration Framework and Tools

Moose serves as a foundation for other tools. It acts as the central repository and provides services such as
metric computation and refactorings to the reengineering tools built on top of Moose. To enable tools to in-
teract with each other, Moose provides a tool registration and lookup mechanism. At this point in time the
following tools have been developed:

• CodeCrawler supports reverse engineering through the combination of metrics and visualization
[Lan99] [DDL99] (see Figure 5.4). Through simple visualisations which make extensive use of me-
trics, it enables the user to gain insights in large systems in a short time. CodeCrawler works best
when a new system is approached for the first time and a quick insights are needed to get information
on how to proceed. CodeCrawler has been successfully tested on several industrial case studies.

• Gaudi [RD99] combines dynamic with static information (see Figure 5.5). It supports an iterative
approach by creating views, which can be incrementally refined by extending and refining logical
queries on a repository. Moose is used as a source of static information about the target software

Figure 5.4 CodeCrawler

60 The Moose Reengineering Environment
system. The dynamic information is generated independently from Moose. In any case, FAMIX
does not currently cover dynamic information.

• Supremo [KN01] uses the Moose repository and the duplication detection tool Duploc [DRD99] to
put duplication in context. Figure 5.6 shows an example: the dark nodes in the class inheritance tree
represent the distribution of a recurring code sequence. The language independence of both Moose
and Duploc allows the approach to function for multiple languages.

Except for providing the foundation for our own tools, Moose also interfaces with external tools. Exam-
ples are the Nokia Reengineering Environment [DD99] and (Q)Soul [Wuy01].

Runtime tool integration

Some of the above tools, namely Moose Explorer, Moose Finder and CodeCrawler, use Moose’s tool inte-
gration framework to find each other in order to use each others services. For instance, Moose Finder query
results can be viewed and further navigated using the Moose Explorer. The interaction is ad hoc in the sense
that the different tools need to know how to interact with each specific other tool. A set of standardised com-
mon interfaces for common services could improve the pluggability of the tools.

5.8 Industrial Case Studies

The ability of Moose to support reengineering of object-oriented software in a language-independent way
has been validated by applying the environment and its tools on several industrial case studies1. The ap-
proach with these case studies was that a team of reengineers was set to work on the industrial applications
in a “let’s see what they can tell us about our system” way. There was no training of the system developers

Figure 5.5 Gaudi

Discussion 61
with our tools. The common point about those experiences was that the subject systems were of considera-
ble size and that there was a narrow time constraint to obtain results. The case studies consist of:

1. A very large legacy system written in C++. The size of the system was 1.2 million lines of code
in more than 2300 classes. We had four days to obtain results.

2. A medium-sized system written in both C++ and Java. The system consisted of about 120,000
lines of code in about 400 classes. The time frame was again four days.

3. A large system written in Smalltalk. The system consisted of about 600,000 lines of code in more
than 2500 classes. This time we had less than three days to obtain results.

The fact that all the industrial case studies where under extreme time pressure lead us to mainly get an
understanding of the system and produce overviews [DDL99]. We were also able to point out potential de-
sign problems and on the smallest case study we even had the time to propose a possible redesign of the sys-
tem. Taking the time constraints into account, we obtained very satisfying results. Most of the time, the
(often initially sceptical) developers were surprised to learn some unknown aspects of their system. On the
other hand, they typically knew already about many of the problems we found.

5.9 Discussion

This section discusses our experiences building Moose as well as the case studies we have carried out with
it and the tools we have built on top of it. First we present some general observations we collected during the

1. Some of the case studies have been carried out together with FAMOOS project partners [DD99] and their
tools. Most notably these are Duploc [DRD99], Goose [Ciu99], Audit-RE and the Nokia Reengineering Envi-
ronment [DD99].

Figure 5.6 Supremo

62 The Moose Reengineering Environment
case studies. After that we discuss to which extent Moose fulfils the requirements we have set in the begin-
ning of this chapter.

5.9.1 Observations

The case studies have given us the following insights:

Code Browsing. In addition to the views provided by our tools, code browsing was needed to get a better
understanding of specific parts of the applications. The case studies show that combining metrics, graphical
analysis and code browsing is a successful approach to get to a satisfying understanding of a system quickly.

Tool Adaptability. The tools needed to be adapted to deal with unexpected requirements of specific case
studies. For instance, custom visualisations were created. Another example is complex invocation depen-
dency information that is part of middleware layers such as CORBA. This is implemented in a set of classes
from which the stubs and skeletons are normally generated. The interesting information are not these mid-
dleware classes, but the fact that the application calls some object via some communication means. We
needed to abstract from the details of this communication.

Moose and its tools could be easily adapted, this partly due to the extensibility of FAMIX, which enables
the easy capture of additional information. However, the tools were adapted in a static way, i.e., stopping
the analysis process, changing the application, refill the repository and go on. A mechanism to dynamically
add abstractions would allow the reengineer to record domain-specific information during the actual reverse
engineering process.

Language Independence. Out tools did not need to be adapted to deal with systems implemented in diffe-
rent implementation languages. It shows the strength of Moose repository and the FAMIX metamodel with
its language-independent core and carefully designed language mappings.

Incremental Loading and Partial Information. Although we have heavily used the information exchange
capabilities of Moose, its incremental loading capabilities have not been used so far. We have only ex-
changed complete models. Incremental loading might get more important if tools integrate their activities
more closely and need to update a common repository rather than exchange complete models, or when parts
of systems are loaded only on demand for scalability reasons. The ability to deal with partial information,
which is also a requirement for incremental loading, was crucial, however, because we did not have access
to the source code of libraries used by the target applications.

Scalability. An important factor for a reengineering environment to function in an industrial context is that
it can deal with large systems. The case studies show that Moose is able to do just that. We did not have prob-
lems regarding the number of elements we loaded into the in-memory code repository. In the industrial con-
text we reached 300’000 elements, with the most limiting factor the small amount of RAM (128 MB) of the
desktop computer Moose was running on. In another experiment on a workgroup server with 2GB of RAM,
we loaded multiple models comprising of a total number of entities of around 700’000. As a comparison,
the Java Swing 1.3.0 libraries modelled on the highest level of detail (i.e., classes, methods, attributes, for-
mal parameters and their invocations and accesses) count only for about 48’000 elements.

The following considerations need to be taken into account when speaking about memory problems.
First, the amount of available memory on the used computer system is, of course, an important factor. Se-
condly, we have never tried to heavily optimise our environment neither for access speed nor for memory
consumption. Therefore, there is room for improvement, would it be needed in the future. Furthermore, we

Discussion 63
have designed the code repository to support a possible database mapping easily, so that scalability can be
improved by using a database instead of having all information in-memory. A last aspect is that tools that
make use of the repository need memory of their own as well. For instance, CodeCrawler creates a lot of ad-
ditional objects (representing nodes and edges) for the purpose of visualisation. But, as shown by the case
studies, so far this proved to pose no problem.

5.9.2 The requirements revisited

In section 5.1, we have listed the main requirements for a reengineering environment. After presenting
Moose, we now discuss how Moose evaluates in the context of those requirements.

1. Support for reengineering tasks. Moose supports all major reengineering tasks, which is pri-
marily shown by the services it provides and the tools that are built on top of it. Furthermore, the
industrial reengineering experiences show their successful application.

2. Extensible. The extensibility of Moose is inherent to the extensibility of FAMIX (see section
4.3). Its design enables extensions for language-specific features, for tool-specific information
and annotations of model elements. Several of the Moose tools use these functionalities. For ex-
ample, the metrics service extends the metamodel with a Measurement entity. Other analysis
tools store their analysis results as annotations to the model elements.

3. Exploratory. Moose is an object-oriented framework and offers as such a great deal of possible
interactions with the represented entities. It supports several ways to handle, manipulate and nav-
igate entities contained in a model, as we have described in the previous sections.

4. Scalable. The industrial case studies presented at the beginning of this section have proven that
Moose can deal with large systems in a satisfactory way: we have been able to parse and load
large systems in a short time. Since we keep all entities in memory we have fast access times to
the model itself. So far we have not encountered memory problems: the largest group of systems
we loaded contained more than 700’000 entities and could still be completely held in memory
without any notable performance penalties.

5. Information Exchange and Tool Integration. Integration with external tools has been repea-
tedly done without major problems. Information can be exchanged with other tool platforms
using text-based standards such as CDIF and XMI. FAMIX clearly defines what information
needs to be stored and its chunk structure supports human readability and incremental loading.
Information has been exchanged with several external parsers and reengineering environments.

For runtime integration, Moose provides a small tool integration framework for tools to register
themselves and find other tools. As presented in section 5.7.2, several Smalltalk-based tools use
the tool integration framework to combine each others services. However, more elaborate inter-
operability requires standardised interfaces for provided and required services.

6. Support for multiple object-oriented languages. The industrial case studies show that Moose
has been successfully applied to systems implemented in different object-oriented languages.
The repository of Moose with its language-independent core allows the different reengineering
tools to be applied without any change to the different systems.

64 The Moose Reengineering Environment
5.10 Conclusion

In this chapter we have presented the Moose Reengineering Environment. Its facilities for storing, querying
and navigating information, its extensibility and the set of services it provides, make it a solid foundation
for reengineering tools. This is shown by Moose-based tools such as Supremo, Gaudi and CodeCrawler.

In this thesis Moose, the tools and the case studies have the main function to validate that FAMIX suc-
cessfully supports multiple cooperating reengineering tools. In this context we can make the following ob-
servations. Firstly, Moose’s built-in services and the Moose-based tools show that FAMIX successfully
supports a whole range of reverse engineering tasks. They also validate the language independence of
FAMIX: the Moose-based tools have been applied without adaptation on systems in different implementa-
tion languages. Furthermore, as the above discussion of the tool environment requirements shows, FAMIX
supports information exchange and extensibility well and the amount of information generated for FAMIX-
based models so far does not exceed the scalability needs of the tools.

The case studies show the limitations of FAMIX as well. Currently it does not support grouping and full
multiple model support in FAMIX. These are both features we have already implemented and used in
Moose. Other FAMIX features, such as the ability to incrementally load information, are available but not
heavily used. Furthermore, the way information is structured in FAMIX does not favour information navi-
gation. This is, however, a conscious design decision based on trade-offs between navigability on one side
and support for information exchange, incremental loading and minimisation of redundant information on
the other side.

Additionally to the validation of FAMIX, this chapter presents a set general set of requirements for reen-
gineering environments. We have analysed Moose according to these requirements. Furthermore, we de-
scribe the lessons we have learned while building Moose and while performing the case studies.
Summarizing the in-depth discussion of section 5.9, we can make the following observations:

• Multiple tools are needed to get useful results. Understanding a system quickly requires the ability
to create different viewpoints and the application of multiple problem detection techniques. Good
old code browsing is an important part of this process.

• Scalability is crucial to deal with the typical (large) size of legacy systems. Not only must a tool be
able to handle the vast amounts of information, but it must be responsive as well.

• Tools need to be extensible and adaptable to deal with the specific requirements of reengineering
projects.

• Language-independence has proven itself useful and worthwhile. The same tools have been used on
Java, C++ and Smalltalk without adaptation.

Note that most of the tools and also the case studies cover reverse engineering activities only. System re-
structuring, in particular refactoring, is the focus of the next two chapters. They present an analysis of fifteen
refactorings for Smalltalk and Java in the context of language independence. The analysis is based on the
FAMIX metamodel. The analysis firstly shows that language-independent refactoring is feasible. At the
same time it provides an in-depth validation of the language-independence of FAMIX.

CHAPTER 6

Language-Independent Refactoring

In recent years refactorings — behaviour preserving code transformations — have become a key topic in
the context of reengineering object-oriented applications [SGMZ98] [TB99] or new development process
models such as eXtreme Programming [Bec99]. Tools to support refactorings have been built such as the
Refactoring Browser [RBJ97]. Refactoring semantics have been the topic of PhD theses for specific lan-
guages such as Smalltalk [Rob99], Java [Wer99] or C++ [Opd92]. However, an analysis of the proposed so-
lutions is missing to understand the exact semantics of certain refactorings. Indeed depending on the tool
used and the language, even with closely related languages like Smalltalk and Java, the semantics of certain
refactorings are different.

In this chapter we analyse fifteen refactorings for the languages Java and Smalltalk. Based on FAMIX,
the language-independent metamodel presented in chapter 4, we capture as many commonalities as possi-
ble. As such the work in this chapter is a validation of FAMIX: it shows the ability of FAMIX to support re-
factoring on a language-independent level. This involves complex semantical analysis and demands
sufficient, complete and 100% correct information, because the result of a transformation should not result
in a faulty software system. This is unlike the requirement for a typical reverse engineering task such as vis-
ualisation, which is normally not strongly affected if information is slightly incomplete or incorrect
[MNGL98] [Bis92].

Additionally to the validation of FAMIX — and different from the approaches of the various authors and
tool builders mentioned above — we discuss and compare the definition and required analysis of the sepa-
rate refactorings rather than just presenting our solution. Where applicable, comparisons are made with the
work presented in the PhD theses mentioned above as well as the Refactoring Browser1.

The presented refactorings, listed in appendix A together with their pre- and postconditions, are what
Opdyke [Opd92] calls low-level refactorings, i.e., primitive program transformations for adding, removing

1. We compare our work with the latest released version of the Refactoring Browser for VisualWorks at the
time of writing, namely version 3.5.1 (August 2001).

66 Language-Independent Refactoring
and renaming entities and moving entities within their inheritance hierarchies. These low-level transforma-
tions can be combined to perform more complex transformations, called high-level refactorings, for in-
stance to introduce design patterns [OCN99] [FBB+99]. The high-level refactorings are outside the scope
of this thesis. They are typically a combination of low-level refactorings and therefore have not much to do
with language issues that are handled on the lower level.

The presented analysis focuses on two issues, the first being tool automation. Tool automation has the
strict requirement that the refactoring operation is behaviour preserving in the sense that input-output be-
haviour is the same before and after the refactoring. This is different from approaches such as Fowler’s re-
factoring catalog [FBB+99] which focuses on manual refactoring. Fowler discusses every refactoring in an
informal manner. Descriptions are imprecise and many special cases are left out. For manual refactoring this
is not really a problem as there is always the developer who monitors the process and adapts it to his/her own
needs. However, a tool does not have that luxury. It should perform a refactoring quickly and securely, ta-
king away the need to test after every small change. It therefore cannot leave out any special case and/or
should be conservative in complex cases.

The second focus is multiple language support [TDDN00]. The chapter discusses the refactorings for
Smalltalk and Java, two relatively clean object-oriented programming languages. They are close enough to
make a common refactoring definition useful and feasible, but they are different enough to make the com-
parison interesting from a research point of view.

The rest of the chapter is organised as follows. Before we present the fifteen refactorings themselves, we
discuss the language subsets considered in the analysis as well as some general issues about the language
mappings and information availability relevant for refactoring (section 6.1). Section 6.2 introduces the
common template we use to describe the refactorings. Section 6.3 presents the actual refactorings, and sec-
tion 6.4 presents how we have validated the presented analysis and in section 6.5 we discuss our findings.

6.1 Language subsets and mappings
In general the refactoring analysis is restricted to the information available in FAMIX. However, even if in-
formation is available in FAMIX, we do not always cover it in our analysis. Furthermore, the analysis must
take language semantics into account that go beyond the plain information representation of FAMIX. In the
following subsections we discuss the language subsets that are covered by the refactoring analysis, as well
as the language mappings and level of detail issues that are relevant for the refactoring analysis.

For more information on the language extensions: section 4.4 extensively discusses them and their exact
definitions can be found in the appendix C for Smalltalk and appendix D for Java.

6.1.1 Language subsets

In general we take all information that is available in FAMIX into account in our refactoring analysis. We
list here the exceptions and the major omissions in FAMIX for both Java and Smalltalk.

Java. FAMIX does not cover inner classes and therefore they are not covered in the refactoring analysis ei-
ther. We also do not support static and instance initialisers, inner classes and reflective use of the language.
Furthermore, we do not take into account if attributes, methods and classes are final. The refactoring analy-
sis takes casts and hiding of attributes into account.

Language subsets and mappings 67
Smalltalk. Smalltalk has many different dialects. In this thesis we concentrate on the common core. This
means a single inheritance language without namespaces, with classes that are also global variables, with
attributes that are only visible within the defining inheritance hierarchy and cannot hide each other. We have
taken VisualWorks version 3.0 [Par98] as our reference implementation. Several times the analysis tells that
a refactoring precondition is trivially preserved for Smalltalk, although it might not be for a specific dialect.
Examples of language features not covered by the analysis in this chapter are the namespaces of Visual-
Works 5i, or hiding variables in Enfin Smalltalk. Note that these language features are probably easily co-
vered, because the appropriate elements are available in FAMIX (e.g., Package for namespaces) and the ap-
propriate analysis is already existent, because it is required for Java. We do not cover pool variables and, like
for Java, we do not cover reflective use of the language.

6.1.2 Language mappings
In this subsection we list some language mappings and information availability issues of FAMIX that are
relevant for our refactoring analysis, namely typing information, abstractness, and the ability to semantical
equivalence of methods.

Static vs dynamic typing. Section 4.4 discusses how FAMIX deals with type information of static and
dynamically typed languages. In the context of refactoring three issues need attention:

• Type related analysis. In several refactorings there exists analysis for dealing with typed informa-
tion. For Smalltalk much of that analysis is unnecessary. For instance, a query for all attributes with
a certain type will return an empty set and this is known beforehand. This does not make the refac-
toring language-dependent. It just means that analysis is done that is unnecessary for Smalltalk: pre-
conditions will not be violated and it will not result in any changes in the Smalltalk sources.

• Due to the lack of static type information in Smalltalk, invocations to a certain method name can be
to any method with that name in the current system. A variable can reference an object of any type
that understands the method that is invoked on that variable. In Java the static type information helps
reducing that information to a single inheritance hierarchy and to the set of methods that have the
same order of types of the parameters. In our metamodel an Invocation records the candidate me-
thods, i.e., the methods that are possibly invoked, which abstracts from the issue whether static or
dynamic information has been available to gather this information.

In the description of the refactorings the question ‘is this method invoked?’ means ‘is there an in-
vocation that has this method in its set of candidates?’.

• Default types. Several creational refactorings (Add Method, Add Attribute and Add Parameter) need
to provide type information for Java. The solution we have chosen is to assign default types (Object
for new attributes and parameters, void for method return types). Another solution would be to ask
the user for a type and ignore this information in the Smalltalk case.

Roberts [Rob99] includes an extensive discussion about how dynamic analysis and dynamic refactoring
could solve the lack of static type information in dynamically typed languages. In this thesis we have limited
ourselves to statically available information.

Abstractness. Abstractness of classes and methods for the different languages and the interpretation in
FAMIX is discussed in section 4.4. The main difference between Java and Smalltalk is that abstractness is
explicit in Java and implicit in Smalltalk. In this chapter we assume that implicitly abstract classes in Small-

68 Language-Independent Refactoring
talk are not instantiated, eventhough they can be instantiated and do not raise an error as long as their ab-
stract methods are not invoked.

Abstractness of classes is important information for refactoring, because it gives information if the class
can possibly be instantiated. If it cannot, you know that a method can not be invoked on an instance of that
class and can therefore be pushed down to a subclass. If a class is not abstract, you can still know if it is not
instantiated, namely if it is not referenced. The Refactoring Browser [RBJ97], for instance, tests if a class is
referenced. Similarly, Compost [Uni96], a Java analysis tool, checks if a class is never instantiated, i.e., no
constructor of the class is invoked. This is more precise than the Smalltalk test, because the explicit con-
structor concept in Java allows for a construction detection where in Smalltalk all references to a class make
it possibly non-abstract.

Semantical equivalence. For refactorings that deal with overriding methods or multiple similar me-
thods, it is interesting to be able to determine if two pieces of code are semantically equivalent. For instance,
if a method overrides a semantically equivalent method, it can be removed without changing the behaviour
of the system. Semantical equivalence, however, is hard to determine. Code needs to be transformed into
some common representation and considerable dataflow analysis is required. FAMIX does not contain the
detailed information needed for this analysis and consequently we cannot determine semantical equiva-
lence. In contrast, the Refactoring Browser [Rob99] has access to full parse tree information. It detects a few
cases of semantical equivalence by checking if two parse trees are equal with possibly different parameter
and local variable names.

6.2 The Refactoring Template

Before discussing the Pull Up Method and Push Down Method refactoring in the following two sections,
we present the template we use to describe and discuss the two refactorings:

• Name: The name identifies the intent and target entities involved in the refactoring.

• A short description including a figure describes our definition of the refactoring and the key prob-
lems involved.

• Preconditions: This part lists the preconditions that need to be checked to be able to safely apply
the refactoring. The list starts with the preconditions that are independent of the language, followed
by the language-specific preconditions for Java and Smalltalk.

• Precondition analysis: This section describes for every precondition why it is necessary and, if ap-
plicable, why we did not select an alternative solution.

• Related work: Different approaches of other authors are analysed.

• Discussion: Finally we discuss the language-independence and the different alternatives.

6.3 The refactorings in detail

This section lists fifteen low-level refactorings using the template presented in the previous section. The
analysis of every refactoring is based on the assumption that a complete and correct model of the system that
is the target of the refactoring, is available. A further assumption is that the this system compiles and runs
correctly. Similar to Roberts [Rob99], we define correctness as that a program passes a test suite that covers
its full specification.

Add Class (classname, package, superclasses, subclasses) 69
ADD CLASS (CLASSNAME, PACKAGE, SUPERCLASSES,
SUBCLASSES)

Inserts a new class with name classname in package package where superclasses are
the superclasses of the new class and subclasses are subclasses of all superclasses that
have to become subclasses of the new class.

Typically this is a simple refactoring, because the new class is not referenced yet, so no relationships need
to be updated and only name clashes need to be checked. However, abstractness of classes and multiple in-
heritance need to be taken into account.

Preconditions

Language-independent preconditions

1. no class may exist with new name in the same scope.

2. no global variable may exist with new name in the same scope.

3. all subclasses must be subclasses of all superclasses or no subclasses are specified.

Language-dependent preconditions

4. classname must be a valid name.

Smalltalk-specific preconditions

5. superclasses (and therefore subclasses) must not be metaclasses.

Precondition analysis

1. no class may exist with new name in the same scope.

Classes within the same scope cannot have the same name.

B

C D F
N

Figure 6.1 Add Class refactoring with classname N, superclasses A and B and subclasses
C and D

A B

C D

F

A

before after

70 Language-Independent Refactoring
2. no global variable may exist with new name in the same scope.

In Smalltalk it is not allowed for classes and global variables to have the same name. Actually, classes are
global variables in Smalltalk. For Java the absence of global variables makes this precondition trivially ful-
filled.

3. all subclasses must be subclasses of all superclasses or no subclasses are specified.

This precondition is necessary to support multiple inheritance. If fulfilled, inserting a class in the middle
(like N in Figure 6.1) will have no impact on the outside behaviour, because the new class does not add, over-
write or hide any behaviour and the existing classes (C and D in Figure 6.1) still inherit from the same set of
classes. Smalltalk’s single inheritance is trivially supported by this scheme and also the Java interface con-
cept.

4. classname must be a valid name.

The name of the new class should adhere to the naming rules of the implementation language.

5. superclasses (and therefore subclasses) must not be metaclasses.

Smalltalk has explicit metaclasses, which are modelled in FAMIX as classes. Every class has an accompa-
nying metaclass and it is not allowed to create a metaclass independent of a class and thus to add a class in
a metaclass hierarchy.

Related work
For this refactoring the main difference with the language specific approaches by Werner [Wer99], Roberts
[Rob99] and Opdyke [Opd92] is that they only support single inheritance. For Smalltalk this just follows
the language, for Java and C++ this is done for reasons of simplicity. Our approach goes a step further in sup-
porting multiple inheritance and so Java interfaces.

Discussion
The preconditions are mainly language-independent. The first language-specific precondition (precondi-
tion 4 about the name of the new class) could be abstracted from if a useful common set of naming restric-
tions can be defined over the languages. The second language-specific precondition (precondition 5 about
the Smalltalk metaclasses) is an example of where the mapping of metaclasses to classes results in an extra
precondition rather than that it provides transparency of concepts.

There are some important issues for this refactoring that are not covered by the preconditions.

• When the new class inherits abstract methods without implementing them, it must be declared ab-
stract. This does not need to be dealt with on the Smalltalk source code level, because abstractness
of classes in Smalltalk is implicit (see section 4.4.2).

• In Java, depending on if the superclasses of the new class are interfaces or classes the new class
needs to be a Java interface or a Java class.

• A new class in Java typically needs a new file to be created as well. This is transparently taken care
of by the Java front-end.

Note that this refactoring is not defined to work for Java inner classes as well and that we currently do not
cope with constructor chaining in Java.

Remove Class (class) 71
REMOVE CLASS (CLASS)

Removes class from a system.

This refactoring removes an unreferenced class together with its unreferenced methods and attributes. After
the refactoring all subclasses of class inherit from all superclasses of class. This ensures that all subclasses
still inherit the same features as before the refactoring.

Preconditions

Language-independent preconditions
1. class must not have attributes or its attributes are only referenced from within class.
2. class must not have methods or its methods are only referenced from within class.
3. class must not be referenced.
4. class must not implement abstract methods from its superclass hierarchy or must not have non-

abstract subclasses.

Smalltalk-specific preconditions
5. class must not be a metaclass.
6. the metaclass of class must not have referenced methods or classes.

Precondition analysis
1. class must not have attributes or its attributes are only referenced from within class.

If class has referenced (instance or class) attributes, removing the class breaks the system. References to at-
tributes of class are allowed, if it is only class itself that references them, because removing the class re-
moves the references with it.

2. class must not have methods or its methods are only referenced from within class.

If class has referenced (instance or class) methods, removing the class breaks the system.This includes re-
ferences to implicit methods such as Java default constructors. Not referenced means more precisely that
methods are not possibly referenced, because due to polymorphism it might not be statically determinable
which method will be called at runtime. In terms of FAMIX this means that a method does not have candi-

B

C D F

N

Figure 6.2 Remove class N

AB

C D

F

A

before after

72 Language-Independent Refactoring
date invocations (see section 6.1.2). Like in precondition 1, references to methods of class are allowed, if it
is only class itself that references them, because removing the class removes the references with it.

3. class must not be referenced.

Obviously when a referenced class is removed it will break the system. A class can be referenced in the fol-
lowing ways:

• as type of a variable or parameter
• as returntype of a method
• as part of an array type or returntype. In FAMIX the declaredClass attribute of typed elements con-

tains the class reference extracted from the type declaration. See section 4.4.1 for details.
• as part of array instantiations
• as a cast
• when class methods are invoked or class attributes are accessed on class. This is the only reference

in this list that exists in Smalltalk, as Smalltalk is dynamically typed and does not have casts and
primitive arrays.

4. class must not implement abstract methods from its superclass hierarchy or must not have subclasses.

If class implements an inherited abstract method and non-abstract subclasses are inheriting this method
without overriding it, in Java compilation is broken after the refactoring. For Smalltalk the target system will
work after the refactoring because the method is not referenced (according to precondition 2) but the resul-
ting unimplemented abstract method is bad style and a possible cause for errors in the future. More complex
analysis could be performed to check if all non-abstract subclasses implement or inherit an other implemen-
tation than a method in class, but we have not done this for reasons of simplicity.

5. class must not be a metaclass.

In Smalltalk every class has an accompanying metaclass and it is not allowed to create or remove a meta-
class independent of a class and thus to remove a class in a metaclass hierarchy.

6. the metaclass of class must not have referenced methods or attributes.

Like instance and class methods and attributes of class any instance methods and attributes of the metaclass
of class cannot be referenced. Removing class (and thus its metaclass) would break the system.

Related work
Roberts [Rob99] (Smalltalk) has as preconditions that the class is not referenced and that it is either empty
or does not have subclasses. Inherited abstract methods are not further analysed, but in Smalltalk this will
not break the system. Opdyke [Opd92] (C++) calls this refactoring delete_unreferenced_class and only al-
lows the removal of non-referenced classes without subclasses. Werner [Wer99] (Java) analyses, similar to
our approach, the references of methods and attributes from the class to be removed. His graph-based model
actually allows to easily check any kind of reference to a class. Like Roberts and Opdyke he does not deal
with abstract inherited methods, which can render the target system incompilable. Different from the other
approaches he analyses if the class is only used as a pass through for superclass features and changes casts
accordingly to be able to remove the class anyway.

All three of the above approaches only support single inheritance. For Smalltalk this just follows the lan-
guage, for Java and C++ this is done for reasons of simplicity.

Remove Class (class) 73
Discussion
The analysis for this refactoring is more complex for Java than for Smalltalk, because due to static typing
together with the concepts of explicit casting and primitive arrays, many more possibilities exist to refe-
rence a class. On the other hand, like in the other class refactorings the mapping of Smalltalk metaclasses to
FAMIX classes results in extra checks to be made rather than useful transparency.

Different from the other approaches presented in the related work, our approach supports both multiple
inheritance and the analysis of references of methods and attributes of the class to be removed. This increa-
ses the complexity of the analysis, but provides for a wider applicability of the refactoring as well.

Currently FAMIX can detect all class references listed in the analysis of precondition 3, except for in-
stantiations of primitive arrays. Although arrays are not explicitly modelled in FAMIX, a variable with a
primitive array as type or a method with a primitive array as return type can be detected via the declared(Re-
turn)Type attributes (see section 4.4.1). Array instantiations, however, also contain a reference to the class
name and are not currently modelled in FAMIX. FAMIX does not currently support nested classes either.
This refactoring probably deals with nested classes without problem, but tests need to be performed to con-
firm that.

In Java every (non-nested) class is stored in a separate file with the same name as the class and the exten-
sion ‘.java’. In such a case removing a class means therefore the removal of the corresponding file as well.
This is transparently taken care of by the Java code transformation front-end.

74 Language-Independent Refactoring
RENAME CLASS (CLASS, NEW NAME)

Renames the class class and all references to this class to new name.

Renaming a class does not have complex preconditions. Basically if the new name is valid and not used al-
ready within the same scope the refactoring can be applied. For this refactoring the differences between the
supported languages are more in what needs to be updated. The following class references may occur:

• types of variables (Java)
• return types of behavioural entities (Java)
• inheritance definitions (Java and Smalltalk)
• class method invocations (Java and Smalltalk)
• class variable accesses (Java)
• constructor names (Java)
• explicit casts (Java)
• primitive array types (Java)
• primitive array instantiations (Java)
• import statements (Java)

Clearly Java has more kinds of references to be updated. This is partly because the static typing and partly
because of simplicity of Smalltalk which does not have specific language constructs for primitive arrays and
constructors.

Preconditions

Language-independent preconditions
1. no class may exist with new name in the same scope.
2. no global variable may exist with new name in the same scope.
3. classes that refer to class must not already contain or inherit a variable with new name.

Language-dependent preconditions
4. new name must be a valid class name.

Smalltalk-specific preconditions
5. class must not be a metaclass.

AX

Figure 6.3 Rename Class refactoring renaming A to N including updating the references

A a = new A();

A x() {

((A)b).m();

}

m()

B

NX
m()

B
m() m()

before after

N a = new N();

N x() {

((N)b).m();

}

Rename Class (class, new name) 75
Precondition analysis
1. no class may exist with new name in the same scope.

Classes within the same scope cannot have the same name.

2. no global variable may exist with new name in the same scope.

In Smalltalk it is not allowed for classes and global variables to have the same name. Actually, classes are
global variables in Smalltalk. For Java the absence of global variables makes this precondition trivially ful-
filled.

3. classes that refer to class must not already contain or inherit a variable with new name.

The contained or inherited variable would hide the renamed class, which is a problem if the class is refe-
renced in the scope of that variable. In Java it is allowed for variables and types to have the same name within
the same scope. For instance,

String String;
public String String() {
return String;

}

is valid Java code. However, applying the renaming will result in less understandable code. Therefore en-
force this precondition for both languages (with the additional advantage of keeping it language indepen-
dent).

4. new name must be a valid class name.

The new name should adhere to the naming rules of the implementation language.

5. class must not be a metaclass.

In Smalltalk it is not allowed to rename a metaclass independently of its accompanying class.

Related work
Both Opdyke [Opd92] (C++) and Werner [Wer99] (Java) only check if there are no existing classes with the
new name already. They also do not take namespaces, respectively packages and thus not scope into ac-
count. Roberts [Rob99] describes for Smalltalk the preconditions that an existing class or global variable
does not have the name already (see precondition 1 and 2). He does not mention precondition 3 although the
Refactoring Browser [RBJ97] implements this check.

Discussion
Most preconditions are language independent. The FAMIX unique naming scheme allows for easy
checking of similar names in the same scope transparently of the underlying implementation language.
About the two language specific preconditions. Precondition 4 will always depend on the naming rules of
the specific implementation language. A common subset of those rules could be defined to abstract this
precondition from the languages as well, but currently this is not the case in FAMIX. And like the other class
refactorings metaclass definitions can not be changed independent of their accompanying classes (precon-
dition 5).

76 Language-Independent Refactoring
ADD METHOD (NAME, CLASS)

Adds the method with name in class. The new method has an empty body.

A simple refactoring. No references need to be updated as the new method did not exist before. The only
check needed to be made is if a method with name does not already exist in class or its superclass hierarchy.
The refactoring adds a method in class with no parameters, an empty body, public visibility and a default
return type void for Java and no returntype for Smalltalk.

Preconditions

Language-independent preconditions
1. no (inherited) method with signature derived from name may exist in class.

Language-dependent preconditions
2. name must be a valid method name.

Precondition analysis
1. no (inherited) method with signature derived from name may exist in class.

Otherwise this method would be overridden (and the original thus hidden) or replaced.

2. name must be a valid method name.

Obviously should the new name adhere to the naming rules of the implementation language.

Related work
The Add Method refactoring for Java in [Wer99] (which is called Add Operation there) has, additionally to
name and class, a set of parameter types and a return type as parameters. Opdyke [Opd92] and Roberts
[Rob99] allow overriding if the overridden method is not referenced in class or its subclasses or when the
new method is semantically equivalent with the overridden method. The new method can have a body al-
ready. The semantical equivalence is hard to check in practice. See section 6.1.2 for in-depth discussion.

Discussion
Apart from the ever existing valid name precondition (precondition 2), this refactoring only contains one
language-independent precondition (precondition 1).

Different from Werner [Wer99] we do not have parameter definitions as part of the new method defini-
tions. This for reasons of simplicity. This might be a problem when a user wants to add a new method with

Figure 6.4 Add Method refactoring adding a method named m in class A

A A

before after

m()

Add Method (name, class) 77
some parameter and use Add Method and Add Parameter to achieve this. The method without parameter
that is added using Add Method might be rejected because of an existing method with the same signature,
but the combined refactoring would be perfectly valid.

It could be argued to loosen precondition 1 to allow for new methods that overload existing methods. The
name and return type should be the same, the set of types of the parameters and/or their order should be dif-
ferent. A similar name can be unintentional though which would result in less understandable code, because
a same name communicates a strong relationship. A compromise solution would be to prompt the user for
a choice. In any case, Smalltalk does not allow overloading and therefore we have chosen not to allow this
for reasons of language-independence.

Similarly precondition 1 does not allow for methods to override existing methods. To allow this, exten-
sive analysis would be needed to be done to see if the now overridden method was never called in or through
class or its subclasses. This to ensure behaviour preservation. Again, also because overriding might be un-
intentional, we do not allow overriding for reasons of simplicity.

Note that it is not checked if a method with name already exists in subclasses of class. This is not neces-
sary to ensure behaviour preservation. However, if the name equivalence is unintentional, in a later stage un-
intended behaviour might be observed in subclasses due to overriding of the added method.

78 Language-Independent Refactoring
REMOVE METHOD (METHOD)

Removes method from its containing class.

A method can be removed it is not possibly referenced.

Preconditions

Language-independent preconditions
1. method must not have candidate invocations unless method itself is the only candidate invoker.
2. if method is abstract it must not have static references.

Precondition analysis
1. method must not have candidate invocations unless method itself is the only candidate invoker.

A method cannot be removed if it is referenced, i.e., if there is a non-empty set of statically determinable
candidate invocations of method. Due to polymorphism it is not always possible to determine which method
will be the actual method invoked at runtime, hence the name ‘candidate’ invocations.

2. if method is abstract it must not have static references.

An abstract method cannot have candidate invocations. But in statically typed languages it can be explicitly
referenced anyway, in which case the method cannot be removed. In Smalltalk this precondition always re-
turns true.

Related work

Roberts [Rob99] does not allow any invocations in the system to methods with the same name as method.
This reflects the situation in Smalltalk where polymorphism is not tight to a single inheritance hierarchy.
Beyond our approach Roberts allows method to be removed anyway if a semantically equivalent superclass
method exists that will be called instead after the refactoring. As already denoted in Add Method, semanti-
cal equivalence is very hard to determine in practice, which is discussed in more detail in section 6.1.2.

Werner [Wer99] does not allow any existing candidate invocations.

Opdyke [Opd92] describes a multiple method version of the Remove Method refactoring
(delete_member_functions). This gives the possibility to delete a referenced methods if the reference is
from another method in the set to be removed. He also allows removal if there is a ‘redundant’ method in-
herited from the superclass. Redundant meaning that the method have the same signature and body, which
is the most basic case of semantical equivalence.

Figure 6.5 Remove Method refactoring removing a method named m from class A

AA
m()

before after

Remove Method (method) 79
Discussion
This refactoring only contains two preconditions, which are both language-independent. This is mostly due
to the way candidate invocations are treated in FAMIX. They are stored transparently from the fact how they
are computed. The precondition therefore is not depending on the fact that in Smalltalk the set of candidate
invocations is typically much larger than in Java, because the dynamic typing and polymorphism that goes
beyond a single inheritance hierarchy. The possibly invoked methods by an invocation in Smalltalk are nor-
mally all methods in the system with the invoked name, where in Java the static type information restricts
the possibly invoked methods to one inheritance hierarchy.

The second precondition deals with static references to abstract methods. In Smalltalk it is not possible,
so the precondition is always fulfilled for that language. Note that abstractness is implicit in Smalltalk and
it is indeed possible to invoke an abstract method, resulting in a runtime error. However, we presume well
running systems and thus no abstract methods invoked at runtime.

80 Language-Independent Refactoring
RENAME METHOD (METHOD, NEW NAME)

Renames method and all method definitions with the same signature in the same hier-
archy. All invocations to all changed methods are changed to refer to the new name.

A method can only be renamed in a behaviour-preserving way if all overriding methods and overridden
methods (and all their overriding and overridden methods) are renamed as well. Furthermore, all invoca-
tions to all changed methods need to be renamed accordingly.

Preconditions

Language-independent preconditions

1. all superclasses of the class containing method as well as the subclass hierarchies of the highest
superclasses that define a method with the same signature as method, must not already contain a
method with a signature implied by new name and the parameters of method.

2. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

Language-dependent preconditions

3. new name must be a valid method name.

Java-specific preconditions

4. when method is a constructor, the refactoring cannot be applied unless in the context of a Rename
Class refactoring.

BX

Figure 6.6 Rename Method refactoring renaming blnc in class B to balance

B b = new B();

b.blnc();

blnce()

A
blnce()

D
blnce()

C
blnce()

BX
balance()

A
balance()

D
balance()

C
balance()

B b = new B();

b.balance();

before after

E
blnce()

E
balance()

O O

Rename Method (method, new name) 81
Precondition analysis
1. all superclasses of the class containing method as well as the subclass hierarchies of the highest su-

perclasses that define a method with the same signature as method, must not already contain a method
with a signature implied by new name and the parameters of method.

Firstly, the signature of the renamed methods cannot be the same as an existing method in all superclasses
of the class containing method (O, A and E in Figure 6.6), because renamed methods would override exis-
ting methods. Secondly, a similar signature is also not possible in the full subclass hierarchies of the classes
highest in the superclass hierarchies that define a method with the same signature as method (i.e., A and E
in Figure 6.6 and all their subclasses). This covers overriding of existing methods, possible replacement or
double definitions of methods in classes that define method or a polymorphic equivalent method, or over-
riding of renamed methods by an existing subclass method. Double definitions are not allowed, and method
overriding that did not exist before potentially changes behaviour, because the scope of the newly overrid-
den methods would change.

2. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

In Smalltalk it is possible that invocations invoke methods with the same signature in different inheritance
hierarchies. These invocations cannot be changed to reference the new name, because they possibly invoke
a method in another inheritance hierarchy that has the old name. In Java this precondition is trivially pre-
served, because its static type information and limited polymorphism restrict the candidate invoked me-
thods to the targeted group of methods within the same inheritance hierarchy.

3. new name must be a valid method name.

The new name must adhere to the naming rules of the implementation language.

4. when method is a constructor, the refactoring can not be applied unless in the context of a Rename
Class refactoring.

Java constructors have the same name as their containing class. Changing that name independently of
changing the class name is not allowed.

Related work

The different approaches we had a look at have all a different definition of this refactoring. Opdyke [Opd92]
(C++) renames method and equivalent methods in the subclasses. Werner [Wer99] (Java) only renames
method. Fowler [FBB+99] (also Java) changes all methods with the same signature within an inheritance
hierarchy, which is like our approach with the difference that he does not discuss Java interfaces. Roberts
[Rob99] renames all methods with the same signature in a set of classes which must contain all classes that
are polymorphically equivalent with respect to these methods. For Smalltalk, Roberts’ target language, this
set can contain classes from different inheritance hierarchies. Like our definition of precondition 2, Ro-
berts’ precondition is generic enough to cover both Smalltalk and Java. He does not specify however what
the rules are to determine what polymorphically equivalent classes are.

Unlike our precondition 1, Opdyke [Opd92] and Werner [Wer99] allow for methods to be renamed to an
already existing name from an inherited method when either this other method is not referenced from the

82 Language-Independent Refactoring
class containing method and its subclasses, or, only by Opdyke, if the methods are semantically equivalent.
All of the above approaches only cover single inheritance.

Discussion
It is interesting to see that the approaches presented in the Related Work as well as ours have all a different
interpretation of this refactoring.

We have chosen ours, because it changes all polymorphically equivalent methods detectable from me-
thod that are explicitly intended to be polymorphically equivalent. These are the methods with the same sig-
nature within the same inheritance hierarchy. In Smalltalk there can be more polymorphically equivalent
methods outside of the same inheritance hierarchy, but this equivalence can be, and often is, unintentional.
That is why we filter these cases out in precondition 2. The fact that the candidate methods of a certain in-
vocation already take the difference between Java and Smalltalk in polymorphism into account, keeps it a
language-independent refactoring. It is similar to Roberts’ definition, which is also language-independent,
only he changes all polymorphically equivalent methods instead of changing only when these methods are
within the same inheritance hierarchy.

Another possibility is a stronger involvement of the user to restrict changes to method names and invo-
cations to a certain hierarchy or package or other kind of part of a system. The Refactoring Browser [RBJ97]
offers limited user interaction by asking to proceed or not in cases where the polymorphically equivalent
methods are not within one inheritance hierarchy only. However, the focus in our research has been on au-
tomation, so this path has not been explored any further.

Pull Up Method (method, superclass) 83
PULL UP METHOD (METHOD, SUPERCLASS)

Pulls up method to one of its superclasses (superclass).

Pulling up a method is one of the more complex refactorings, because the set of possible violations of be-
haviour preservation is large. The main difficulty is the possible occurrences of methods with the same sig-
nature in the same inheritance hierarchy. The effect of the pull-up on the visibility of these methods and the
possible (kinds of) invocations of them (self/this calls, super calls, scoped invocations from within and out-
side of the hierarchy) results in a great number of checks to be made.

Preconditions

Language-independent preconditions
1. method must not be private.
2. method should not directly access attributes from its defining class.
3. method should not directly invoke methods from its defining class unless all those invocations

have self/this as receiver and are either to methods that are also defined or inherited in the super-
class or to itself.

4. superclass may not contain or inherit a non-abstract method with the same signature as method.
5. method cannot have super references to superclass.

Java-specific preconditions
6. method must not be a constructor.
7. non-abstract method cannot be pulled up to an interface.

Smalltalk-specific preconditions
8. method should not access methods from its metaclass.

Precondition analysis
1. method must not be private.

If a private method is pulled up, it is not visible anymore in its original class. Possible invocations from with-
in this class will break.

C

Figure 6.7 Pull Up Method refactoring pulling method C.m() up to superclass B

m()

B

D

A

C

B

D

A
m()

before after

84 Language-Independent Refactoring
2. method should not directly access attributes from its defining class.

If method refers to attributes of its defining class, once it is pulled up, it will either reference a variable that
is undefined in the superclass or if a variable with the same name exists in the superclass reference this other
variable which is possibly breaks behaviour preservation.

3. method should not directly invoke methods from its defining class unless all those invocations have
self/this as receiver and are either to methods that are also defined or inherited in the superclass or
to itself.

A method cannot be pulled up if it refers to methods in its original class, because these methods cannot be
referred to once the method is pulled up into superclass (see case (a) in Figure 6.8).

Only if superclass defines or inherits a method with the same signature, method will not refer to a method
that is undefined in its new location, and at runtime it will be dynamically bound to the same method as be-
fore. In this case method can be pulled up without problems. In the example of Figure 6.8 this means that
case (a) is allowed if class B contains a method x as well. A special case is if method invokes itself. In that
case it can also be pulled up, because once pulled up it is still bound to itself (case (b) in Figure 6.8). Note
that these exceptions must be valid for all invocations from method to local methods.

Any references from method to methods of the defining class could be allowed if the invocation is per-
formed on a different instance. This is not determinable with the level of information available in FAMIX
and thus do we not analyse this case (case (c) in Figure 6.8). We only analyse the cases where the receiver
of the invocation is self in Smalltalk or this in Java1. Even if we would have access to full parse tree in-
formation, considerable dataflow analysis would be needed.

1. We consider both this.m() and m() in Java as an invocation of m() on this, as the latter is only a short-
hand for the former.

Figure 6.8 C.m() invokes methods of its defining class. In case (a) m() cannot be pulled up,
because it would reference a subclass method afterwards. In case (b) m() references itself on
the same instance (=this) and can be pulled up without problems. In case (c) m() invokes x()

on a variable v which possibly references the same instance.

B

C
m()

...
this.x();
...

before after

x()

...
this.m();
...

(a)

(b)

...
v = getV();
v.x();
...

(c)

B

C

m()

...
this.x()
...

x()

...
this.m();
...

(a)

(b)

...
v = getV();
v.x();
...

(c)

!

?

Pull Up Method (method, superclass) 85
4. superclass may not contain or inherit a non-abstract method with the same signature as method.

For this precondition we need to look at two cases. The first possibility is that superclass itself contains a
method with the same signature (e.g., in Figure 6.7, if B would already contain a method m()). Pulling up
C.m() would replace the existing method. This is allowed if B.m() is abstract, because then it is surely never
invoked at runtime. If B.m() is not abstract, it could be replaced if it is never invoked, but this can only be
determined for certain cases, or if B.m() is semantically equivalent to C.m(). This is, however, generally
hard to determine in practice and cannot be determined with our metamodel, because it does not contain
AST-level information (see also section 6.1.2). Therefore we do not allow non-abstract methods to be re-
placed.

The second possibility is that a method with the same signature as method is inherited by superclass.
Pulling up method would hide inherited implementations to other subclasses of superclass. If the inherited
method is abstract this is not a problem, because it is known not to be the method invoked at runtime. If it is
concrete, behaviour changes if the newly hidden method was invoked from the other subclasses. In the
example in Figure 6.9, D.x() calls X.m() before the refactoring and B.m() after the refactoring.

The hidden method (X.m()) can be semantically equivalent to method (C.m()), but we cannot determine
that with the available information. Another possibility is that the hidden method is not invoked in or
through superclass or its subclasses (i.e., X.m() is not invoked on instances of B and D in the example).
However, this is impossible to statically determine for Smalltalk unless methods with signature m() only
exist in this hierarchy and are only invoked from within the hierarchy using self or super. We do not check
for this special case for reasons of simplicity.

5. method cannot have super references to superclass.

Super references in method would, after pulling the method up, point to a different (set of) class(es). This
possibly changes behaviour or the possibility to compile the target system. Figure 6.10 shows an example
where m() refers to B.x() with a super reference. If m() would be pulled up to B, this reference is broken. It
either references a method x() in a superclass of B, which possibly results in a change of behaviour, or it re-
ferences no method at all, resulting in a compilation or runtime error.

For Java a super reference always points to the superclass and never to an interface it implements (see the
mapping from Java interfaces to FAMIX classes in section 4.4.2). In Smalltalk super always points to the
only one superclass. In Smalltalk only methods, not attributes, can be accessed with super.

Figure 6.9 B.m() hides X.m() from some subclasses that use it (D)

B

D

A

C
m()

...
this.m();
...

X
m()

x()

B

D

A

C

X
m()

x()

m()

...
this.m();
...

before after

86 Language-Independent Refactoring
There are several possibilities to relax this precondition, but we did not implement them for reasons of
simplicity:

• if the super invocation invokes a method or accesses an attribute even higher up in the hierarchy of
superclass (i.e., in a superclass of B in Figure 6.10). If that is the case for all super references the
method could be pulled up anyway. In our metamodel this information is available for methods, not
for attributes.

• the super references could possibly be replaced with self references and so point to the same class
after the refactoring, preserving behaviour. However, because super is statically bound and self dy-
namically to the current instance, this can only work is subclasses do not define a method with the
same signature.

6. method must not be a constructor.

A Java constructor is bound to its class, even by its name which is always the same as its defining class.
Therefore it can not be moved out of its class in any way.

7. non-abstract method cannot be pulled up to an interface.

A Java interface can only contain abstract method declarations. Therefore, any method that is pulled up to
an interface must be abstract already.

8. method should not access methods from its metaclass.

Similar to precondition 2, but for the metaclass methods of Smalltalk classes.1

Related work
Opdyke [Opd92] and Roberts [Rob99] do not describe this refactoring.

Smalltalk

The Refactoring Browser [RBJ97] implements this refactoring. It has an interesting approach. If pulling the
method up would result in replacing or hiding a method of the superclass hierarchy, i.e., a violation of our
precondition 4, it gives the user the possibility to copy that method down to the other subclasses of super-
class. The possible situations are depicted in Figure 6.11. The refactoring is applicable in more cases than

1. Currently this is not determinable in FAMIX as class method invocations have the form ‘self class myMe-
taclassMethod’ => the method ‘class’ is invoked on self, the method ‘myMetaclassMethod’ is recorded to be
invoked on ‘some’ expression.

Figure 6.10 C.m() has a super reference to a method of B

B

D

A
x()

C
m()

...
super.x();
...

before

Pull Up Method (method, superclass) 87
our approach and is especially useful when the special case method is in the superclass instead of the general
one. However, if a method is copied down from superclasses of superclass, duplicated code scattered over
the inheritance hierarchy is the result (case (b) in Figure 6.11).

Another useful feature of the Refactoring Browser is that it removes all duplicate methods from the sub-
classes of superclass. If such duplicated methods exist, typically a user starts to push up method to get rid of
duplicated functionality in the first place, and without the tool support he would have to do manually. In
FAMIX we do not have enough information available to determine if the subclass methods with the same
signature are duplicated or not, and as such cannot provide similar functionality.

Furthermore, the Refactoring Browser performs the following checks:

• It allows replacing methods in the superclass or overriding of methods higher up in the hierarchy if
the methods have the same parsetree (with possibly different local variable and parameter names).
In that case they are verifiably semantically equivalent (see also section 6.1.2).

• It analyses super sends of method by checking if superclass defines the invoked method, in which
case the refactoring cannot be applied, or if the invoked method is defined higher up in the hierarchy,

Figure 6.11 C.m() is pushed up to B. The Refactoring Browser copies down any method m that
would be replaced (B.m1() in (a)) or hidden (X.m1() in (b)) from other subclasses of B (D in this

figure).

B

DC
m2()

...
this.m();
...

X
m1()

x()

B

DC

X
m1()

x()

m2()

...
this.m();
...

m1()

B

DC
m2()

...
this.m();

...

m1()

x()

B

DC
x()

m2()

...
this.m();
...

m1()

(a) replacement

(b) hiding

before after

before after

88 Language-Independent Refactoring
in which case method can be pulled up without any problem. This is equivalent to our precondition
5 described above.

• It checks if super invocations of other subclasses of superclass will invoke the pushed up method
instead of the originally invoked method. If so, the refactoring is rejected. Self invocations are not
checked, because that is not necessary as the possibly replaced or overridden methods are either se-
mantically equivalent or copied to the subclasses.

We see that the Refactoring Browser does a thorough analysis of possible replacement and overriding of
methods. It does not, however, completely analyse invocations performed by method as we discussed in pre-
condition 2 of this refactoring. It allows the push up of a method that invokes methods in its originally con-
taining class as depicted in case (a) of Figure 6.8. Behaviour will not break in Smalltalk, because method
was only invoked on its originally containing class or its subclasses. However, unless a method with the
same signature is defined higher up in the inheritance hierarchy, the moved code references methods in its
subclass, which is bad style. In Java it would not even compile. We do not allow it for both these reasons.

Java

Werner [Wer99] includes a thorough investigation of invocations performed by method. He does not deeply
investigate possible replacement and overriding of (inherited) methods of superclass. He just does not allow
it, which is the same approach we have taken. He does not analyse super invocations as we do in precondi-
tion 5 and consequently breaks behaviour in the cases we describe there.

An interesting reference to mention with regard to precondition 6 about Java constructors, is Fowler’s
Pull Up Constructor Body refactoring1. This refactoring is about pulling up part of constructor body to the
superclass constructor and calling the superclass constructor from the subclass one (see Figure 6.12). How-

ever, this is more a variant of the Extract Method refactoring than of the Pull Up Method refactoring. And
for both the Extract Method Refactoring and the Pull Up Constructor Body refactoring information about
the actual method bodies is needed that we do not have available in our metamodel.

1. The Extract Method refactoring takes a code fragment of a method and turns it into its own method
[FBB+99].

Figure 6.12 Pull Up Constructor Body as defined by Fowler [FBB+99]

B

C
C(String,int)

C(name, id) {
this.name = name;

this.id = id;
}

before after
B

C
C(String,int)

C(name, id) {
super(name);
this.id = id;

}

B(String)

B(name) {
this.name = name;

}

Pull Up Method (method, superclass) 89
Discussion
Most of the preconditions are language independent. Some checks need to be performed for the special ca-
ses of constructors (precondition 6), interfaces (precondition 7) and metaclasses (precondition 8). We see
here that the semantical differences of the mapped entities (e.g., Java interface to FAMIX class) to their
standard interpretation (e.g., Java class to FAMIX class) result in extra language-dependent checks. How-
ever, exactly the same mappings are useful in the language-independent preconditions. For instance, al-
though an explicit check for the case of metaclasses needs to be made in precondition 8, preconditions 2, 4
and 5 are equally valid for Smalltalk classes and metaclasses.

Class-scope methods

The preconditions are also sufficient for the case of class-scope methods. In Smalltalk those are instance
methods of the metaclass and all rules and transformations for instance methods can be applied. In Java sta-
tic methods cannot have the same name as instance methods. Possible violations by the refactoring are
therefore covered by precondition 4, because this precondition does not differentiate between instance and
class-scope methods. Thereby static methods are not allowed to hide instance methods with the same sig-
nature anyway [GJSB00]. All other preconditions equally hold for both static and instance methods in Java.
Even precondition 7 as abstract methods cannot be static [GJSB00]. The language-specific precondition 8
that deals with metaclass members could be removed if these metaclass members would be interpreted as
class-scope members of the class rather than instance members of the metaclass. However, other problems
with the mapping of Smalltalk to FAMIX — for instance the possibility for class and instance methods hav-
ing the same name — would have to be solved (see also section 4.4.2).

Related work

From the related work we see that the major Smalltalk and Java approaches both have their own foci and
omissions. Especially the copying down of replaced or newly overridden methods in the Refactoring
Browser is interesting. The Pull Up Method refactoring we present does not involve a downcopy of any ori-
ginal superclass method. Partly because it does not appear in other approaches, especially in Fowler’s refac-
torings catalog [FBB+99], and thus is against common perception of what the refactoring is supposed to do.
Secondly, in cases like situation (b) in Figure 6.11, copying down results in duplicated code, effectively
worsening code quality. In our solution, as a result from not copying down, we cannot ignore any invoca-
tions to methods that are possibly replaced or overridden. The advantage of the Refactoring Browser ap-
proach is that self invocations to methods that are copied down do not need to be checked and the refactoring
is therefore applicable in a wider number of cases.

Multiple inheritance

Multiple inheritance is not explicitly dealt with in the preconditions. This is not necessary, because the only
multiple inherited related issue that can crop up, namely the unhiding of a method with the same signature
inherited from another superclass than superclass, does not pose a problem for the supported languages Java
and Smalltalk. Consider the example depicted in Figure 6.13. In Smalltalk this cannot occur as it does not
have multiple inheritance. In Java this situation can occur with the three following cases:

• B is a Java class and A is a Java interface. In that case there is no problem. The program still com-
piles and functions as before. The resulting design might be considered bad, because the interface

90 Language-Independent Refactoring
defines a method that the implementing class inherits from somewhere else. But this is up to the de-
veloper to consider on a case-to-case basis.

• A is a class and B is an interface. This imposes the additional requirement on C.m() that it is abstract,
which is covered by precondition 7. In this case there is no problem either.

• Both A and B are interfaces. Again the additional requirement that C.m() is abstract applies. And
again there is no problem with compilation or behaviour preservation after the refactoring.

Support for C++ however would require reconsideration, because for that language the scenario of
Figure 6.13 poses the problem that the call this.m() from X.x() would be ambiguous in the ‘after’ situation.
The system would not compile anymore. Solutions would be to not allow the refactoring in that case
resulting either in an additional language-dependent precondition or a language-independent precondition
which would be too restrictive for Java. A second solution would be to explicitly scope all invocations such
as the one in X.x() to explicitly invoke B.m().

Figure 6.13 Pulling up C.m() to B unhides A.m() from C and its subclasses

BA

C
m()

...
this.m();
...

X
x()

before after

m()

BA

C

m()

...
this.m();
...

X
x()

m()

Push Down Method (method) 91
PUSH DOWN METHOD (METHOD)

Pushes down method to all direct subclasses that do not contain a method with the same
signature.

Similarly to Pull Up Method, the lack of type information in Smalltalk makes it hard to determine if method
(B.m() in Figure 6.14) is called on (instances of) its defining class (B in Figure 6.14). The same problem
arises when trying to determine which subclass branches of B possibly invoke m(). Because of this, the re-
factoring is specified to push down methods to all subclasses rather than a single subclass. In Java, due to
the static typing, we have sufficient information available to push down to a single subclass. This would,
however, result in separate definitions of this refactoring for different languages.

Preconditions

Language-independent preconditions

1. method must not be invoked in or through its defining class unless it only invokes itself on self/
this.

2. At least one direct subclass of the defining class of method may not already contain a method
with the same signature as method.

3. self/this accesses to attributes that are also defined in one or more of the direct subclasses, may
not exist in method.

4. self/this invocations and accesses to private members of the containing class may not exist in
method.

5. no super invocations of method may exist in the direct subclasses of the defining class.

6. super invocations to methods that are also defined in the defining class may not exist in method,
except if the invoked method has the same signature as method itself.

7. super accesses to attributes that are also defined in the defining class may not exist in method.

8. subclasses cannot inherit non-abstract methods with the same signature as method from other su-
perclass branches.

Java-specific preconditions

9. method must not be a constructor.

C

Figure 6.14 Push Down Method refactoring pushing method B.m() down to C and D

B

D

A

C

B

D

A

m1()

m1()

m1()

before after

E
m2()

E
m2()

92 Language-Independent Refactoring
Precondition analysis
1. method must not be invoked in or through its defining class unless it only invokes itself on self/this.

If method is invoked on its defining class, pushing down can have two results. One possibility is that the pro-
gram is broken, because method will not be found anymore by the invocation either at compile-time in Java
or runtime in Smalltalk. The other possibility is that another method with the same signature is defined
somewhere in the superclasses of the defining class (e.g., in superclasses of B in the example in Figure 6.14).
In this case behaviour preservation is not guaranteed. In the special case that method only invokes itself, it
can be pushed down, because the self/this invocation will be moved with the method1.

In Smalltalk if the receiving class (i.e., the statically determinable type of the receiving variable) of an
invocation is not known (i.e., if the receiver is not self, super or a class), the method can be pushed down if
the containing class is abstract or not referenced. In such a case the containing class is known not to be in-
stantiated and method is thus never invoked on an instance of the containing class. In Java the static type of
the receiving variable is always known.

Cast accesses of Java are covered by this precondition as well. E.g., ((B)a).m() in Java is interpreted
as being an invocation of m() on B.

2. At least one direct subclass of the defining class of method may not already contain a method with the
same signature as method.

If all subclasses already define a method with the same signature as method, there is no subclass left where
method can be pushed down to. Application of the refactoring would result in removing method without let-
ting an equivalent method appear in a subclass. Because this code disappearance is possibly unwanted and
unexpected, we do not apply the refactoring in such as case.

3. self/this accesses to attributes that are also defined in one or more of the direct subclasses, may not
exist in method.

Otherwise another attribute will be accessed after the refactoring. The precondition is trivially fulfilled for
Smalltalk as it allows only one attribute with the same name in the same inheritance hierarchy.

4. self/this invocations and accesses to private members of the containing class may not exist in method.

Private members cannot be referenced from outside their containing class and are statically linked. Pushing
method down would invalidate these references: either a compile error occurs or another method is refe-
renced, which breaks behaviour preservation. The precondition is trivially preserved for Smalltalk, which
only has public methods.

5. no super invocations of method may exist in the direct subclasses of the defining class.

If this precondition is violated, after pushing method down any super references from subclass methods
would not point to method anymore, but either to another method in the superclass hierarchy of the original
defining class or to no method at all if no such superclass method exists. Figure 6.15 shows an example.

In Smalltalk only methods can be accessed with super, in Java both methods and attributes.

1. We consider both this.m() and m() in Java as an invocation of m() on this, as the latter is only a short-
hand for the former.

Push Down Method (method) 93
This precondition could possibly be relaxed by replacing the super references with self references and so
point to the same method after the refactoring. However, this is only possible if no subclasses define me-
thods with the same signature as method. Because self is dynamically bound to the instance, it would invoke
the subclass method on instances of the subclass rather than the method that was statically referenced by su-
per.

6. super invocations to methods that are also defined in the defining class, may not exist in method, ex-
cept if the invoked method has the same signature as method itself.

If method (B.m() in the example in Figure 6.16) invokes methods (like X.x() in the example) via the super
keyword and there are also definitions of these methods in the defining class itself (B.x() in the example),
these other definitions would be called instead afterwards. This possibly changes behaviour. If the method
invoked via super has the same signature as method itself (which is actually the most common case), then
there is no problem because method will be removed from its defining class and the invoked method will
therefore be the same one.

7. super accesses to attributes that are also defined in the defining class, may not exist in method.

Idem as precondition 6 but for attributes instead of methods. The precondition is trivially fulfilled for Small-
talk as it allows only one attribute with the same name in the same inheritance hierarchy.

Figure 6.15 The super reference in C.x() points to B.m() before and to X.m() after the refactor-

B

D

A
m()

C
x()

...
super.m();
...

before

B

D

A

C
x()

...
super.m();
...

after

m()

XX
m() m()

m()

Figure 6.16 The super reference in m() points to X.x() before and to B.x() after the refactoring

B

D

A
m()

C

x()

...
super.x ();
...

before

B

D

A

C

...
super.x();
...

after

m()

XX
x() x()

m()

x()

94 Language-Independent Refactoring
8. subclasses cannot inherit non-abstract methods with the same signature as method from other super-
class branches.

This precondition is a general one for multiple inheritance systems. Figure 6.17 shows an example. In
Smalltalk this situation cannot occur as it has single inheritance. For Java the following cases need to be con-
sidered:

• B is a Java class and A is (consequently) a Java interface and A.m() is abstract. In this case there is
no problem, because the implementing method in C stays the same.

• A and B are Java interfaces. A.m() and B.m() is consequently abstract and C is an interface or an
abstract class (as it does not implement m()). Therefore pushing down is not a problem, because no
implementations are hidden.

• B is a Java interface and A is a Java class. Pushing it down will hide A.m(). Unless A.m() is abstract,
this cannot be allowed, hence this precondition.

9. method must not be a constructor.

A Java constructor is bound to its class, even by its name which is always the same as its defining class.
Therefore it can not be moved out of its class in any way.

Related work

Opdyke [Opd92] and Roberts [Rob99] do not describe this refactoring.

Smalltalk

The Refactoring Browser [RBJ97] implements this refactoring. It allows the pushing down of a method if
the defining class is abstract (as defined for Smalltalk in section 4.4.2). In such a case the method is known
to not be invoked on an instance of the defining class. However, invocations from within the class itself as
discussed in precondition 1 are not considered. If the method is originally invoked from a method in its de-
fining class, in its final position in a subclass it will be invoked from a superclass method. In a Smalltalk this
is not a problem due to the dynamic typing and the fact that the defining (abstract) class is never instantiated
anyway. But unless a method with the same signature is inherited the result is bad style code. And in Java,
not relevant for the Refactoring Browser but relevant for our work, a compilation error will occur. Therefore
we do not allow this.

The Refactoring Browser also checks if there are any super references to method in the direct subclasses,
which is equivalent to our precondition 5. It does not check, however, method calls from the target method.
This is no problem for self calls, because after the refactoring they will call the same methods as they did

C

Figure 6.17 Pushing down B.m() causes A.m() to be overridden in C

B

D

A

C

B

D

A

m()

m()

m()

before after

m() m()

Push Down Method (method) 95
before (as self is always dynamically bound to the current instance), but it breaks behaviour in the case of
super references, because they are statically bound and therefore refer to a different class after the refacto-
ring (see our precondition 6).

The other preconditions we describe are trivially preserved for the Smalltalk language.

The Refactoring Browser automatically expands the scope of pool dictionaries to retain visibility for the
moved methods.

Java

Werner [Wer99] describes this refactoring as moving a method to one of its subclasses instead of all of them
(as Fowler does [FBB+99]). He includes a thorough investigation of invocations by method, but does not
check invocations to method as we do in precondition 1 and super invocations by method as we do in pre-
condition 6. Werner also does not check for constructors (our precondition 9). These omissions can lead to
a change in behaviour of the target system.

An interesting precondition he describes is that method is not allowed to invoke any method on the same
instance (i.e., using this or implicitly) that is overridden in the subclass. This situation is depicted in Figure
6.18. However, m() cannot be called on instances of B (through precondition 1). Consequently it can only
be called on instances of C. In both cases, before and after the refactoring, this.x() will call C.x(), be-
cause lookup with this always starts at the current instance. Therefore, it is an unnecessary precondition.

Another choice Werner makes is, instead of not allowing the refactoring if accessed attributes exist that
are accessed by method (as in our precondition 3), to replace the self/this references by explicit casts. See
Figure 6.19 for an example. We do not do this, because it is a language-dependent solution and widely con-
sidered a bad coding style.

Figure 6.18 Both before and after m() will call C.x() on instances of C

B
m()

C
x()

...
this.x();
...

before

C
x()

after

m()

x()

B

x()
...
this.x();
...

Figure 6.19 Solving attribute accesses by inserting casts

B

m()

C
x

...
this.x;
...

before after

x

...
((B)this).x;
...

B

m()

C
x

x

96 Language-Independent Refactoring
Discussion
For this refactoring a clear choice has been made to use a certain definition of it to be able to serve multiple
languages. We have chosen to push down to all subclasses, because it can both be supported by Java and
Smalltalk. This is also the way the Refactoring Browser implements this refactoring. However, as reflected
by both Fowler’s [FBB+99] and Werner’s [Wer99] descriptions this is not what Java developers might want
or expect from this refactoring. It might also not be the preferred way for visual tools that support this refac-
toring by dragging methods to a subclass.

This refactoring also does not deal explicitly with the pool dictionaries in Smalltalk. If a method has ac-
cess to pool dictionaries and it is moved to another class, it still needs to have access to the same pool dic-
tionaries. We let the Smalltalk code transformer take care of that transparently.

Add Parameter (name, method) 97
ADD PARAMETER (NAME, METHOD)

Adds parameter with name name to method. All invocations to the method get an added
argument with a default value.

This refactoring is a variant of the Rename Method refactoring. In both refactorings the signature of
method changes. Analysis of methods and invocations that need to be changed is therefore the same in both
cases. A difference with the Rename Method refactoring is that this refactoring can be applied to Java con-
structors without any problem, because, although the signature of method changes, the name of method does
not.

In Smalltalk adding (or removing) a parameter requires the name of the method to be changed. Every pa-
rameter in the method name must be preceded by a part of the method name followed by a colon. Example:

create: anObject with: aValue

When adding a parameter, a method without any parameter needs at least a colon to be added, a method that
already has parameters needs some text ending with a colon to be added. Some examples:

create becomes create: anObject,

create: anObject becomes create: anObject with: anObject

Preconditions

Language-independent preconditions
1. method must not already have a parameter with name.
2. method must not already have a local variable with name.
3. containing class must not have an attribute with name.
4. no classes or global variables with name may exist in the system.
5. all superclasses of the class containing method as well as the subclass hierarchies of the highest

superclasses that define a method with the same signature as method, must not already contain a
method with a signature implied by adding a parameter with name to method.

6. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

Figure 6.20 Add Parameter refactoring adding o to m in class B

BX
m(Object o)

A
m(Object o)

D
m(Object o)

C
m(Object o)

B b = new B();

b.m(null);

BX
m()

A
m()

D
m()

C
m()

B b = new B();

b.m();

before after
E

m()

E
m(Object o)

98 Language-Independent Refactoring
Language-dependent preconditions
7. name must be a valid parameter name.

Smalltalk-specific preconditions
8. no methods with same original signature as method may exist outside the inheritance hierarchy

of method.

Precondition analysis
1. method must not already have a parameter with name.

Otherwise name clashes will occur.

2. method must not already have a local variable with name.

Otherwise name clashes will occur.

3. containing class must not have an attribute with name.

For Smalltalk a violation of this precondition will result in a compile error independent of the fact if the ori-
ginal attribute is accessed in method or not. The language just does not allow it. In Java, a parameter can have
the same name as an attribute. The original attribute will be hidden in method. If the original attribute is not
accessed in method behaviour will be preserved. If the original attribute is accessed, the system will compile
if the new parameter has the same actual interface as the attribute with the same name, but behaviour is not
preserved.

We do not allow this situation for both languages, eventhough in some cases for Java this precondition is
not a problem. Obviously this conveniently keeps the precondition the same for both languages. For the few
cases it is allowed for Java we argue that the resulting code is confusing, because two entities have the same
name in a partly overlapping scope. Code quality decreases by allowing it.

4. no classes or global variables with name may exist in the system.

In Smalltalk a global variable or class with a certain name is hidden by a parameter with the same name1. A
second point similar to precondition 3: hiding is confusing and the resulting code is worse than if another
name is chosen. Therefore, we do not allow the hiding of global variables. Java does not have global varia-
bles so that part of the precondition is trivially conserved. The case of classes with similar names as varia-
bles is allowed in Java and does not hide the class from the scope of the variable with the same name. The
following is valid Java code:

public void aMethod(int String) {
String x = new String();
x = "Sander";
System.out.println("int String = " + String);
System.out.println("String x = " + x);

}

Again confusing code is the result, so we do not allow this.

1. Although the Smalltalk compiler (at least in VisualWorks 3.0) warns the user about the hiding.

Add Parameter (name, method) 99
5. all superclasses of the class containing method as well as the subclass hierarchies of the highest su-
perclasses that define a method with the same signature as method, must not already contain a method
with a signature implied by adding a parameter with name to method.

This precondition is similar to precondition 1 of Rename Method, because both adding a parameter and re-
naming a method result in a change in the signature of the method and thus may result in a name clash with
existing methods. See the analysis of precondition 1 of Rename Method on page 81 for details.

6. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

This is similar to precondition 2 of Rename Method. In Smalltalk it is possible that invocations (possibly)
invoke methods with the same signature in different inheritance hierarchies. These invocations cannot be
adapted to reference a changed method, because they possibly invoke a method in another inheritance hier-
archy that has not been changed. In Java this precondition is trivially preserved, because its static type in-
formation and limited polymorphism restrict the candidate invoked methods to the targeted group of
methods within the same inheritance hierarchy.

7. name must be a valid parameter name.

The new name should adhere to the naming rules of the implementation language.

Related work
Opdyke [Opd92], Roberts [Rob99] and Werner [Wer99] do not describe this refactoring. However, the Re-
factoring Browser [RBJ97] implements this refactoring for Smalltalk. It uses a default name for the new pa-
rameter (anObject or anObject<nr> if the name ‘anObject’ already exists in the scope of the method). It
does, therefore, not need to check the clashes with existing local and global variables and attributes. Diffe-
rent from us, it allows the user to enter an initialization expression which is inserted in every invocation of
method and a thorough analysis of validity of this expression is performed. We just insert an default empty
value (null or nil depending on the language).

Discussion
Clearly most of the preconditions have to do with possible name clashes. A parameter has method scope and
if any existing variable exists that has the same name and the same or a wider scope (and therefore is acces-
sible within the containing method), the new parameter will hide this variable and any use of this variable in
method will break.

All except one of the preconditions are language-independent, partly because they are just language-in-
dependent and partly because there are some restrictions that would not be necessary for one of the suppor-
ted languages (like in precondition 4). These restrictions, however, contribute to keeping the quality of the
final code higher by enforcing good practices. Some users, however, may not like the fact that they are re-
stricted and cannot make the decision themselves.

A language dependent issue not reflected in the preconditions, is the method name change required in
Smalltalk. The implementation of precondition 4 depends on the signature after the parameter addition and
thus on a changed name in the case of Smalltalk. Similarly, the Smalltalk code transformer uses a changed
name when it applies the actual code changes. In our implementation we add some default text to the method

100 Language-Independent Refactoring
name to be a.ble to add the parameter. A nicer, but for this research irrelevant, approach is taken in the Re-
factoring Browser [RBJ97]. It gives the user the possibility to change the name of the method and the order
of the parameters.

Remove Parameter (parameter) 101
REMOVE PARAMETER (PARAMETER)

Removes parameter from its method. Corresponding arguments are removed from all
invocations.

This refactoring is a variant of the Rename Method refactoring. In both refactorings the signature of method
changes. Analysis of methods and invocations that need to be changed therefore is the same in both cases.
A difference with the Rename Method refactoring is that this refactoring can be applied to Java constructors
without any problem, because, although the signature of method changes, the name of method does not.

In Smalltalk, similar to the Add Parameter refactoring, removing a parameter requires a name change of
the method. We change the name of the method by removing only the colon if the first parameter is being
removed, or the text with colon directly preceeding the parameter being removed. Some examples:

invokes: aClass becomes invokes

invokes: aClass with: anArgument becomes invokeswith: anArgument

invokes: aClass with: anArgument becomes invokes: aClass

Preconditions

Language-independent preconditions

1. parameter must not be referenced in the containing method or equivalent parameters in any over-
riding or overridden method.

2. all superclasses of the class containing the method parameter belongs to, as well as the subclass
hierarchies of the highest superclasses that define a method with the same signature that method,
must not already contain a method with a signature implied by removing parameter from its
method.

3. the candidate invocations to the group of methods that need to be renamed, do not have candi-
dates that are methods outside of this group.

Figure 6.21 Remove Parameter refactoring removing o from m in class B

BX
m(Object o)

A
m(Object o)

D
m(Object o)

C
m(Object o)

B b = new B();

b.m(aValue);

BX
m()

A
m()

D
m()

C
m()

B b = new B();

b.m();

before after
E

m(Object o)

E
m()

102 Language-Independent Refactoring
Precondition analysis
1. parameter must not be referenced in the containing method or equivalent parameters in any overrid-

ing or overridden method.

If one of parameters is used in the bodies of the containing methods the refactoring would break the system.

2. all superclasses of the class containing the method parameter belongs to, as well as the subclass hi-
erarchies of the highest superclasses that define a method with the same signature that method, must
not already contain a method with a signature implied by removing parameter from its method.

This precondition is similar to precondition 1 of Rename Method, because both removing a parameter and
renaming a method result in a change in the signature of the method and thus may result in a name clash with
existing methods. See the analysis of precondition 1 of Rename Method on page 81 for details.

3. the candidate invocations to the group of methods that need to be renamed, do not have candidates
that are methods outside of this group.

This is similar to precondition 2 of Rename Method and precondition 6 of Add Parameter. In Smalltalk it is
possible that invocations (possibly) invoke methods with the same signature in different inheritance hierar-
chies. These invocations cannot be adapted to reference a changed method, because they possibly invoke a
method in another inheritance hierarchy that has not been changed. In Java this precondition is trivially pre-
served, because its static type information and limited polymorphism restrict the candidate invoked me-
thods to the targeted group of methods within the same inheritance hierarchy.

Related work
Opdyke [Opd92], Roberts [Rob99] and Werner [Wer99] do not describe this refactoring. However, the Re-
factoring Browser [RBJ97] implements this refactoring for Smalltalk. It essentially implements the same
preconditions as we describe here.

Discussion
Basically issues worth mentioning for this refactoring are issues that have been discussed extensively for
other refactorings already. The element to be removed, i.e., parameter here, cannot be removed if it is still
referenced, the resulting method signature may not clash with existing methods within the inheritance hier-
archy and then there is the issue of being able to link invocations to a certain method implementation in pre-
condition 3. Similar to precondition 4 in the Add Parameter refactoring, the implementation of precondition
2 is language dependent in the sense that removing a parameter requires a method name change in Smalltalk
and not in Java.

Add Attribute (name, class) 103
ADD ATTRIBUTE (NAME, CLASS)

Adds the attribute with name in class.

A simple refactoring. No references need to be updated as the attribute did not exist before. The only check
needed to be made is if an attribute with name does not already exist in the class hierarchy of class. For Java
we insert the default type Object, for Smalltalk we do not need to provide any type information.

Preconditions

Language-independent preconditions
1. the inheritance hierarchy of the containing class must not already contain an attribute with name.

2. no global variable with name may exist.

3. no class with name may exist.

Language-dependent preconditions
4. name must be a valid attribute name.

Precondition analysis
1. the inheritance hierarchy of the containing class must not already contain an attribute with name.

There are three ways an existing attribute that already has name can occur in the inheritance hierarchy of
class. Firstly, in class itself. Adding an attribute with name would result in two attributes with the same
name, which is not allowed. Secondly, in a superclass. The new attribute would hide the existing attribute
from the subclasses, changing behaviour if the superclass attribute is accessed in or through those sub-
classes. Thirdly, an attribute with name might already exist in a subclass. The new attribute would be hidden
from the such a subclass.

In Java the second and third case are allowed and accesses to hidden attributes can be resolved through
the use of explicit scoping. However, this requires extensive analysis of the accesses. Furthermore, compa-
tibility of the precondition with Smalltalk is broken, because in Smalltalk two attributes with the same name
in the same inheritance hierarchy are not allowed.

2. no global variable with name may exist.

The new attribute would hide the global variable from the containing class and its subclasses, changing be-
haviour if that global variable is referenced in those classes. Java does not have global variables and thus this
precondition is for Java trivially preserved.

Figure 6.22 Add Attribute refactoring adding an attribute named x in class A

A A
x

before after

104 Language-Independent Refactoring
3. no class with name may exist.

In Smalltalk the class would be hidden in the classes where the new attribute is visible, because in Smalltalk
every class is also a global variable. In Java classes and variables can have the same name. They do not hide
each other. The following is valid Java code:

public class X {
int X;
public X newInstance() { return new X(); }

}

However, because the resulting code in such a situation is not considered good style and to keep the pre-
condition language independent, we enforce this precondition for Java as well.

4. name must be a valid attribute name.

name should adhere to the naming rules of the implementation language.

Related work
Roberts [Rob99] describes the same set of preconditions for this refactoring, which is to be expected be-
cause all presented preconditions are hard preconditions for Smalltalk. For Java and C++ different decisions
can be made. Werner [Wer99], for instance, allows attributes with the same name in the hierarchy of class
and resolves existing access clashes with explicit scoping. Opdyke [Opd92] has as only precondition that
there is ‘no name collision with an existing member or global variable’ which includes inherited member
variables. He does not analyse subclass attributes and existing classes, but he does not have to in C++. As
discussed above we do not allow both classes and subclass attributes with the same name for reasons of good
coding style and compatibility of the approach with both Smalltalk and Java.

Discussion
Apart from the valid name precondition (precondition 4), which is always present when a new named entity
is added, this refactoring only contains language-independent preconditions.

Remove Attribute (attribute) 105
REMOVE ATTRIBUTE (ATTRIBUTE)

Removes attribute from its containing class.

If not accessed by any method the attribute can be removed from its containing class.

Preconditions

Language-independent preconditions
1. attribute must not be accessed.

Precondition analysis
1. attribute must not be accessed.

If attribute is accessed, either from methods in its containing class or subclasses of this class (in Java and
Smalltalk), or from any other method outside the inheritance hierarchy (only in Java), removing it breaks
compilation or changes behaviour.

If accesses to attribute exist, it is a possibility to analyse attributes that would be unhidden by the removal
of attribute. Accesses to attribute would access the superclass attribute instead. However, the only case in
which behaviour does not change is if the superclass attribute is not used for other purposes. Figure 6.24
shows an example where both superclass attribute (A.i) and the attribute to be removed (B.i) are used in pa-
rallel. Removing B.i would result in a change in behaviour. We do not analyse unhidden attributes.

Related work
Opdyke [Opd92] (for C++) and Roberts [Rob99] (for Smalltalk) describe the same precondition. Roberts is
slightly more restrictive in the sense that in his version the attribute is not to be accessed within the inheri-
tance hierarchy, which is an obvious restriction as in Smalltalk an attribute can only be accessed within the
inheritance hierarchy. With hierarchy Roberts means the subclasses, superclasses and the containing class

Figure 6.23 Remove Attribute refactoring removing the attribute x from class A

A A

x

before after

Figure 6.24 The code returns 7 before and 8 after the removal of B.i

A

X

int i

B

B b = new B();

b.i = 3;

((A)b).i = 4;

return b.i + ((A)b).i;

before

int i

A

X

int i

B

B b = new B();

b.i = 3;

((A)b).i = 4;

return b.i + ((A)b).i;

after

106 Language-Independent Refactoring
itself. The superclasses need not really to be checked because an attribute cannot be accessed from a super-
class, but Smalltalk allows only one attribute with a certain name in a hierarchy so it does not really matter.

Werner [Wer99] allows the removal of an attribute even if it is accessed if the removal unhides an at-
tribute with the same type of a superclass that was not used in the subclass hierarchy before (through cas-
ting). The unhidden attribute would take over the role of the removed attribute thereby preserving behav-
iour. However, a simple scenario shows that this is not always the case (see Figure 6.24). Also parallel use
of the hiding attributes outside of the containing inheritance hierarchy needs to be analysed.

Discussion
This refactoring is simple and completely language-independent. Only one — language-independent —
precondition exists. The approach of Werner discussed above is firstly not sufficient to ensure behaviour
preservation and secondly FAMIX does not provide any dataflow information to be able to (attempt to) ana-
lyse a version of that approach that would take accesses external to the inheritance hierarchy into account.
We also feel that the complexity does not outweight the advantage of being able to apply the refactoring in
the special case of non-clashing parallel use of hiding attributes.

Note that removing B.i in Figure 6.24 is not a problem if B.i is not accessed (which is expressed in the
only precondition) or if C.i is not accessed and has the same type as B.i (which is a case we do not cover).

Rename Attribute (attribute, new name) 107
RENAME ATTRIBUTE (ATTRIBUTE, NEW NAME)

Renames attribute to new name. All accesses of attribute are changed to refer to the new
name.

An attribute can be renamed to a new name if there is not yet an attribute with the same name in the same
scope already. The accesses to attribute need to be updated to refer to the new name.

Preconditions

Language-independent preconditions
1. the inheritance hierarchy of the containing class must not already contain an attribute with new

name.
2. no global variable with new name may exist.
3. no class with new name may exist.
4. methods of the containing class and its subclasses that access attribute must not contain a local

variable with new name already.

Language-dependent preconditions
5. new name must be a valid attribute name.

Precondition analysis
1. the inheritance hierarchy of the containing class must not already contain an attribute with new name.

This precondition is identical to precondition 1 of Add Attribute. The refactoring would either result in two
attributes with the same name in the same class, or the new attribute would hide existing attributes or be hid-
den by it. See Add Attribute for details.

2. no global variable with new name may exist.

This precondition is identical to precondition 2 of Add Attribute. The renamed attribute would hide the glo-
bal variable. See Add Attribute for details.

3. no class with new name may exist.

This precondition is identical to precondition 2 of Add Attribute. In Smalltalk the renamed attribute would
hide the class. To keep the precondition language independent and because the result would be bad style
code, we also enforce this precondition for Java. See Add Attribute for details.

Figure 6.25 Rename Attribute refactoring renaming A.x to A.y

A A

x

before after

yX

A a = new A();

a.x = 10;

X

A a = new A();

a.y = 10;

108 Language-Independent Refactoring
4. methods of the containing class and its subclasses that access attribute must not contain a local var-
iable with new name already.

A local method variable with the same name as an attribute in the same scope hides this attribute from (part
of) the method scope. This is not a problem as long as attribute is not accessed in this method. If it is, rena-
ming would give it the same name as the local variable, turning the access of the attribute into an access of
the local variable and changing behaviour.

5. new name must be a valid attribute name.

new name should adhere to the naming rules of the implementation language.

Related work
Opdyke [Opd92] (for C++) describes the refactoring in general terms. Any variable (if global or an attribute
or a local variable or a parameter) can be renamed including an update of the references to it, as long as there
are no name clashes in the scope of the renamed attribute. Consequently he does not allow local method va-
riables to hide the renamed attribute, even if the attribute is not referenced in this method. We do allow hid-
ing if the method does not reference attribute (see precondition 4).

Roberts [Rob99] (for Smalltalk) checks the same as we do except for the local variables, which might
lead to a behaviours change (see precondition 4). The Refactoring Browser [RBJ97], however, does check
for local variables.

Werner [Wer99] allows hiding of existing attributes with new name. Name clashes are resolved with ex-
plicit scoping of the attributes involved. We do not allow this (see precondition 1). Hiding and explicit sco-
ping decreases code quality and is not a viable solution for Smalltalk. Furthermore, Werner, like Roberts,
does not take local variables into account.

Discussion
The same discussion as for the Add Attribute applies with a small addition. The Rename Attribute refacto-
ring has one additional precondition (namely precondition 4), because it needs to deal with possible name
clashes of existing accesses to the attribute. Similarly Rename Attribute needs to update the attribute acces-
ses on top of renaming the attribute, where Add Attribute only needs to add the attribute.

Pull Up Attribute (attribute, superclass) 109
PULL UP ATTRIBUTE (ATTRIBUTE, SUPERCLASS)

Pulls up attribute to one of its superclasses (superclass) removing all attributes with the
same name and type from all subclasses of superclass.

Not only is the attribute pulled up, but all attributes with the same name and type in other subclasses of su-
perclass are pulled up as well and merged into one declaration. The visibility of the attribute in its final lo-
cation is at least protected to keep it visible in its previous location, and public if one or more of the pulled
up attributes was public before the refactoring. To resolve visibility differences between the different at-
tributes that are pulled up the widest visibility needs to be chosen. All original accesses to the attributes still
work because they have either the original access to the attribute or an even wider one.

Preconditions

Language-independent preconditions
1. superclass must not contain an attribute with the same name as attribute.

2. any attribute in the subclasses of superclass with the same name as attribute must have the same
type as attribute. These attributes must not hide each other.

3. pulling up attribute may not hide in superclass another attribute with the same name.

4. pulling up attribute may not unhide any attribute with the same name from other superclass
branches of the containing class.

Precondition analysis
1. superclass must not contain an attribute with the same name as attribute.

Otherwise the superclass attribute would be replaced (which is equivalent to removing attribute). As at-
tribute and the superclass attribute can be used in parallel as discussed in the motivation of precondition 1
of Remove Attribute on page 105, this cannot be allowed unless either attribute or the superclass attribute
is not accessed within the system, which we do not check for. The precondition is trivially preserved for
Smalltalk as no two attributes with the same name are allowed in an inheritance path.

C
x

B

D

A

C

B

D

A
x

Figure 6.26 Pull Up Attribute refactoring pulling attribute C.x up to superclass B

E
x

E

before after

110 Language-Independent Refactoring
2. any attribute in the subclasses of superclass with the same name as attribute must have the same type
as attribute. These attributes must not hide each other.

The attributes with the same name that are pulled up into a common attribute in superclass need to have the
same type, because in Java the resulting system will not compile otherwise1. In Smalltalk the precondition
is trivially preserved as Smalltalk is dynamically typed. Even if the attribute holds attributes with complete-
ly different types at runtime, the system will still function as before, because independent of the types the
same objects are used at the same places before and after the refactoring.

Hiding of those attributes is not allowed for the same reasons as in the previous precondition.

3. pulling up attribute may not hide in superclass another attribute with the same name.

This situation could change behaviour, because any references in the subclasses to the now hidden attribute
would reference the pulled up attribute instead (e.g., the reference to X.x in D.m() in Figure 6.27). In Java
this can be resolved by explicitly scoping to the now hidden attribute, i.e., by changing the code in D.m()
from this.x to ((X)this).x. We do not do this, because the resulting code is more complex than the
original. Another solution would be to give the user a choice.

1. The precondition can be relaxed by allowing attributes to have substitutable types and giving the pulled up
attribute the general type. We do not analyse this possibility.

Figure 6.27 B.x hides X.x from subclasses that use it (D)

B

D

A

C
x

...
this.x;
...

X
x

m()

B

D

A

C

X
x

m()

x

...
this.x;
...

before after

Pull Up Attribute (attribute, superclass) 111
4. pulling up attribute may not unhide any attribute with the same name from other superclass branches
of the containing class.

Any original access to attribute would become ambiguous otherwise. Figure 6.28 shows an example. The
presented situation can only occur in Java as Smalltalk only has single inheritance. Explicitly casting the ac-
cesses of C.x to access B.x after the refactoring is not possible in Java. This is not contradictory to the state-
ment in the analysis of precondition 3. Casting successfully circumvents hiding variables, but does not
resolve ambiguous inherited attributes. In C++ explicitly scoping the variable is possible [Str97].

Related work
Werner’s definition of this refactoring [Wer99] pulls the attribute up even if it hides an attribute with the
same name higher up in the inheritance hierarchy (as depicted in the example in Figure 6.27). Any access to
that attribute in or through B is explicitly scoped to use the same attribute after the refactoring. The fact that
other attributes might hide the pulled up attribute is not analysed, but can be safely ignored in Java.

Roberts [Rob99] describes the Pull Up Attribute refactoring from the point of view of the superclass
(which is actually the most consistent view given the name of the refactoring). He only checks if there is a
direct subclass defining the attribute that is intended to be pulled up. If yes, this attribute is pulled up and all
other attributes with the same name in other subclass branches of the superclass are removed as well. Be-
cause his work is focused on Smalltalk he does not need check the type of the attributes (because the at-
tributes do not have a static type) and replacing and hiding (because only one attribute in an inheritance
chain is allowed in Smalltalk).

Opdyke [Opd92] describes this refactoring under the name ‘move_member_variable_to_ superclass’.
The only difference with our approach is that Opdyke does not analyse hiding and the possibility of parallel
use of hidden and hiding attributes.

Discussion
The chosen definition of this refactoring fits both languages. The choice to remove all attributes in the sub-
class branches of superclass is needed for Smalltalk, which does not allow multiple attributes with the same
name in a inheritance chain. For Java it would not be necessary but the resulting code would possibly con-
tain hidden attributes, which is bad coding style.

All preconditions are Java-specific but trivially preserved for Smalltalk. They deal with type informa-
tion, hiding and scoped accesses and visibility of attributes. Which are Java specific features. Smalltalk at-
tributes are (implicitly) protected meaning they are not visible outside of their inheritance hierarchy. Also

C
x

BA

C

BA
x

Figure 6.28 The access to C.x before is ambiguous after the refactoring

before after

x x

...
C c = new C();
C.x = 10;
...

X

...
C c = new C();
C.x = 10;
...

X

112 Language-Independent Refactoring
only one attribute with a particular name may exist in an inheritance chain, which takes away all the diffi-
culties that appear in Java due to hiding and scoping. Furthermore, the attributes are dynamically typed and
are all interpreted to have the most general type Object.

Push Down Attribute (attribute) 113
PUSH DOWN ATTRIBUTE (ATTRIBUTE)

Push attribute down to its subclasses.

This refactoring pushes attribute down to all its subclasses.

Preconditions

Language-independent preconditions
1. attribute must not be accessed in or through its containing class.

2. the direct subclasses of the containing class must not contain an attribute with the same name as
attribute.

Precondition analysis
1. attribute must not be accessed in or through its containing class.

By pushing down the attribute the scope of this attribute is narrowed by taking the containing class away
from the scope. However, if there is any access in this class it will break afterwards, because attribute is not
available in that scope anymore. In Smalltalk this precondition is easier preserved, because attributes can
only be accessed from the class it is defined in or its subclasses. In Java, although often regarded as bad prac-
tice, it is possible to access an attribute from outside the class. The receivingClass attribute of the Access
records the class on which an attribute is accessed, because they might have been used in parallel with at-
tribute using scoping.

2. the direct subclasses of the containing class must not contain an attribute with the same name as at-
tribute.

This is trivially preserved for Smalltalk, because there will never be an attribute with the same name in the
subclasses since the language does not allow it. In Java it is possible and these subclass attributes cannot just
be overwritten, because both attributes may be used in parallel to store different values (see also the analysis
of precondition 1 of the Remove Attribute refactoring).

C

B

D

A

C

B

D

A
x

Figure 6.29 Push Down Attribute refactoring pulling attribute B.x down to its subclasses

E

x

E

x

before after

114 Language-Independent Refactoring
Related work
We see different definitions of this refactoring. Opdyke [Opd92] and Roberts [Rob99] use the same defini-
tion we use, namely pushing attribute down to all subclasses. Werner [Wer99] pushes down to only one
user-definable subclass. Fowler [FBB+99] and the implementation of the Refactoring Browser [RBJ97]
push down to all subclass branches where the attribute is used.

Opdyke checks accesses to attributes in its containing class (i.e., our precondition 1) and does not allow
attribute to be private. Although it can be argued not to push down private attributes, because there is a dif-
ference in reducing the scope of an attribute (which is what happens when a non-private attribute is pushed
down) and moving an attribute from one scope to the other (which is what happens when a private attribute
is pushed down), there is no real harm in pushing down a private attribute as it is not referenced anyway ac-
cording to precondition 1. Opdyke does not check for subclass attributes with the same name and no multi-
ple inheritance issues.

Roberts [Rob99] only checks if attribute is not referenced in class. This is sufficient for attributes in
Smalltalk as they can only be referenced from its containing class and its subclasses, only one attribute with
a certain name may exist in inheritance chain and Smalltalk does not have multiple inheritance.

Werner [Wer99] pushes down to a one distinct subclass. He checks if that subclass contains an attribute
with the same name already. He does not check accesses on the original containing class, which might
render the refactoring behaviour breaking (see precondition 1).

Discussion
The refactoring is defined to push the attribute down to all subclasses rather than to only one subclass or the
subclasses in which hierarchies the attribute is used (see also the Related Work section above). It makes the
analysis slightly easier, because no checks are needed to find out in or though which subclasses the attribute
is accessed.

As we model refactorings in a multiple-inheritance environment it is necessary to have a look at possible
consequences of hiding other attributes by pushing down attribute. Figure 6.30 shows a scenario. A.x would
be hidden by C.x after the refactoring possibly breaking accesses to A.x from C or its subclasses. However,
the ‘before’ situation cannot occur. Smalltalk has single inheritance, in Java any access is ambiguous and
cannot be explicitly scoped. In C++ the accesses are ambiguous.

C

B

D

A

C

B

D

A
x

Figure 6.30 Pushing down B.x to C hides A.x from (subclasses of) C

xx

before after

x x

E E

Validation 115
6.4 Validation
Validation of this kind of work is a difficult point. Without a formal definition of the target languages, every
statement will be based on some assumptions somehow. Basically the question that needs answering is, if
the presented preconditions are correct, necessary and sufficient. Firstly, the discussions of the refactorings
in section 6.3 clearly aim at providing confidence in the correctness and necessity of the preconditions. The
sufficiency cannot be proven as such, as we cannot go further than carefully check the affected program ele-
ments in the original scope of the target methods before the refactoring and the possibly final scope after the
refactoring.

Secondly we have compared our findings with existing work in the field [Opd92] [RBJ97] [Rob99]
[Wer99], as shown in the related work sections of the refactorings. We have found several holes in these oth-
er approaches in the process.

Thirdly, we have verified the work by doing experiments. We have built a prototype, the Moose Refac-
toring Engine, that supports the fifteen refactorings described in this chapter. It is part of the Moose Reen-
gineering Environment, a tool environment for reengineering object-oriented systems, which is discussed
in more detail in chapter 5. We have used the refactoring engine in two ways. One is a non-trivial sequence
of refactorings on two similar toy banking system, one implemented in Smalltalk and one in Java. Secondly
we have applied the refactorings on the code of our Moose environment in Smalltalk and on the JUnit frame-
work in Java. These experiments, including a detailed description of the engine itself, are presented in chap-
ter 7.

6.5 Discussion
The refactorings are to the greater extent language-independent. It is hard to sensibly quantify the language
independence, but the following numbers give an impression.

The 15 refactorings define 67 preconditions, from which 51 are language independent (~ 76%), 5 are
Smalltalk dependent, 4 are Java dependent and the remaining 7 define the language-dependent precondition
that a entity name should conform to the rules of the implementation language of the target system. The 11
Smalltalk- and Java-specific preconditions can be classified as follows:

A class is not a Smalltalk metaclass 3

Instance methods of Smalltalk metaclass rather than class methods 2

Method is not a Java constructor 3

Superclass is not a Java interface 1

Mostly the language-dependent checks that need to be performed are simple checks that certain opera-
tions are not possible for certain specific entities. Examples are that the class refactorings (Add Class, Re-
move Class and Rename Class) cannot be applied to Smalltalk metaclasses. And some of the method
refactorings (Rename Method, Pull Up Method and Push Down Method) cannot be applied to Java con-
structors. However, Remove Method as well as the parameter refactorings (Add Parameter and Remove Pa-
rameter) can be applied to constructors without any problem. And preconditions for other refactorings
transparently take constructors (as just another method) and their invocations into account. For instance, in
the Push Down Attribute refactoring it is checked if no method (i.e., all methods including constructors) in
its defining class accesses the attribute.

116 Language-Independent Refactoring
A few preconditions are really specific for the semantics of the language-specific construct. An example
is precondition 7 of Pull Up Method, which states that a non-abstract method cannot be pulled up into an
interface. However, this is the only precondition that is interface specific. In all other cases the interface as
class can be treated as any other class, including the multiple inheritance. For the actual code transforma-
tions the fact if a FAMIX class represents an Java interface or a Java class, needs to be taken into account
more often, because it influences the syntax of the resulting code. An example is the use of theimplements
keyword in the case of Java interfaces and the extends keyword for Java classes.

The following additional observations can be made:

Language independence brings useful reusability. Major parts of the refactorings are described
and analysed on a language-independent level. Similar concepts in the different languages are treated in a
uniform way, resulting in reuse of analysis and reducing the language specifics to only the changes in the
source code. However, in some cases the advantages of reuse come at a cost:

• Increased complexity of algorithms. To deal with multiple languages the underlying model needs to
be general enough to cover the supported languages. For instance, the model supports multiple in-
heritance, which involves more complexity than would be needed, for instance, for single inheri-
tance in Smalltalk alone.

• Mapping back to the actual code. The actual code transformations are, naturally, language specific.
Therefore, in some cases the concepts that are generalized at the language-independent level (e.g.,
Java constructors are methods, Java interfaces are classes) need to be mapped back to their lan-
guage-specific kind, because at the code level they need to be dealt with differently than their ‘nor-
mal’ counterparts. For example, on the code level invocations of Java constructors are different from
invocations to ‘normal’ methods. This implies that the language-specific information about how an
entity has been mapped needs to be stored, because it is necessary information when mapping back.

• Language-independent defaults. To keep some refactorings as language independent as possible,
some defaults are used. Typical examples are types: some refactorings use the most general type,
i.e., Object for both Smalltalk and Java. This works well for both languages, although it is clear that
support for defining or changing types would be desirable for statically typed languages such as
Java.

• Definitions of refactorings are tuned for compatibility over multiple languages. There is (only) one
refactoring in the presented set, namely Push Down Method, which is defined the way it is, because
of one of the implementation languages. It pushes down to all subclasses, although it could have
been defined otherwise if in Smalltalk there would be enough information to push down to only one
subclass. See Push Down Method on page 91 for more details.

• Checks are not necessary for all supported languages. Depending on the implementation language
some of the presented language-independent checks would not need to be carried out. An example
is the analysis for attributes hiding each other, which cannot happen
in Smalltalk. Optimisations in the responsiveness of a refactoring tool could be realised by, in the
case of the above example, not checking the language-independent Java-specific preconditions for
Smalltalk. However, as one of the goals of this research is to maximise reusability and language in-
dependence we did not pursue this path.

Not all language differences can be abstracted from. i.e., most refactorings cannot be complete-
ly described at a language-independent level. We see the following kinds of issues:

Discussion 117
• Standard issues that are apparent in all languages, but need a language-specific interpretation, like
if a name of a class is a valid class name for that language.

• Issues that are caused by the mapping from the language to FAMIX. For example, the metamodel
does not know the concept of metaclasses or interfaces. Rules that apply to these specific concepts
need to be checked nonetheless and are inherently language specific.

• The most problematic issues are in the core differences between the languages. The fact that Small-
talk is dynamically and Java statically typed, means that there is less information available at com-
pile-time. Especially for dependency analysis through invocations and accesses, the type informa-
tion tells much more precisely which method is invoked or which attribute is accessed. In dynami-
cally typed languages a certain method invocation can be any method with that signature, no matter
what class it is defined in. Therefore, some refactorings can only be applied for dynamically typed
languages when more severe restrictions are taken into account. An example is the Rename Method
refactoring which can only be applied when there is no method with the same signature as the me-
thod to be renamed outside of the targeted inheritance hierarchy. Note that the type information for
dynamically typed languages can be refined through additional analysis (for instance, using type in-
ference techniques) [Rob99], but this is outside the scope of this thesis.

All in all we can say that the presented model is adequate to represent refactorings for multiple object-
oriented languages. The program entity level of information is sufficient for refactorings that do not need
detailed information about method bodies. Some language-dependent details, however, must be coped
with.

Influence of metamodel design decisions. Many design decisions for the model —to apply a lan-
guage-independent naming scheme including scoping and the different mappings to allow to treat similar
constructs in different languages in a similar way— result in language independence and reuse of analysis
code. However, especially with the mappings, it is always a trade-off between reuse and complexity. Instead
of mapping similar constructs to one representation, the two constructs can be both modelled explicitly.
Naturally this decreases problems with differences between the constructs, but it also makes the model less
general and opportunities for reuse could be missed. Another possibility is to not model a construct at all.
This typically allows to get rid of language specifics, but also makes the model less useful.

In the context of refactoring the chosen mappings, most notably those of Java constructors to methods
and Java interfaces and Smalltalk metaclasses, have worked out well. We especially found both Java map-
pings to easily fit and allow to exploit the similarities with other constructs. For the metaclass mapping the
advantages are less clear. Method and Attribute refactorings can be applied to (members of) metaclasses
without any problems, but the class refactorings are not applicable at all. An alternative would be to not
model metaclasses explicitly and model metaclass methods and attributes as class (in Java static) methods
and attributes of the class the metaclass is representing. We have chosen not to do this, because, as said,
some refactorings do work with this scheme and the alternative mapping results in problems with name
clashes between class methods and instance methods and problems with the equal treatment of instance le-
vel class attributes and class level instance attributes which are different concepts in Smalltalk.

One of the modelling decisions that has worked out particularly well is the way candidate invocations are
modelled. As can also be read in section 4.4.1 every invocation lists the possibly invoked methods. In Small-
talk this list can be considerably larger than in Java, because in Smalltalk there is no static type information
is available to restrict an invocation to a certain class or hierarchy of classes. However, the list of candidates

118 Language-Independent Refactoring
of an invocation abstracts from the differences in static and dynamic typing in the analysis of possible tar-
gets of invocations and so hides one of the main differences between Java and Smalltalk at the conceptual
level of defining refactorings in terms of FAMIX. An example is precondition 2 of the Rename Method re-
factoring.

Support for other languages. A word about supporting other languages than the ones discussed in this
chapter. The FAMIX model is already set up to support more languages than Smalltalk and Java. Explicit
mappings are defined for both C++ [Bar99] and Ada [Neb99] and our FAMIX-based toolset has been ac-
tively used to analyse systems in these languages. Furthermore, a project is underway to build a C++ refac-
toring tool based on the FAMIX metamodel [Bor01]. Therefore, we are confident we can use our model and
extend our tool to support these and other languages without too many problems. All standard object-ori-
ented features are supported, most notably in comparison with other approaches multiple inheritance and a
combination of static and dynamic typing. Of course, for every newly supported language the model and the
definition of the refactoring need to be carefully checked to see if the semantics of already modelled features
is different and if this difference demands a change in the model and/or a change in the refactoring defini-
tion, for instance in the form of adapted preconditions or an added language-dependent precondition.

CHAPTER 7

The Moose Refactoring Engine

The Moose Refactoring Engine is the part of Moose that provides code transformation support. It imple-
ments the fifteen refactorings described in chapter 6. Consequently, the analysis performed by the refacto-
ring engine, i.e., checking the preconditions and determining what pieces of code need to be changed, is
completely based on the Moose repository, and thus on the information available according to the FAMIX
metamodel and its language extensions. The Moose Refactoring Engine currently supports Smalltalk and
Java refactorings.

The Moose Reengineering Environment, described in chapter 5, validates the FAMIX metamodel for its
adequacy to support multiple cooperating reverse engineering tools. This chapter focuses on validating the
refactoring theory presented in chapter 6. As such it also provides in-depth validation of the language-inde-
pendence of FAMIX. Refactoring requires complex semantical analysis with information that is sufficient-
ly precise, complete and correct. Otherwise a transformation cannot not be safely applied. This must be seen
in contrast to the analysis tasks that can often work with partial or slightly imprecise information
[MNGL98] [Bis92]. Furthermore, the refactorings change the (inherently language-specific) source code
and therefore require the metamodel to supply sufficient information about the language mappings.

The practical goal of the refactoring engine is to integrate refactoring support in Moose. In this way re-
verse engineering and reengineering can seamlessly work together to, on the one hand, support system ana-
lysis and on the other hand to propose solutions for problems found in terms of (semi-)automated code
transformations.

We start with a description of the architecture in section 7.1. Afterwards we describe the experiments we
have done with the engine in section 7.2. We finish with a discussion (section 7.3).

7.1 Architecture

The architecture of the Moose Refactoring Engine is depicted in Figure 7.1. The different parts are (see also
the numbers in the figure):

120 Architecture
Parsing and importing of the target system (1). First a system is parsed by either an external par-
ser (SNiFF+ [Tak96] for Java) or an internal parser for Smalltalk, and imported into the repository. This is
standard functionality of Moose and is not specific for refactoring.

Refactoring analysis (2). The analysis part implements the analysis that is presented in section 6.3. It
gathers its data from the Moose repository with which it checks the preconditions of the refactoring. It also
collects the relevant model elements that represent the source code that needs to be transformed. If all pre-
conditions are fulfilled, the engine uses the gathered information to trigger the actual code transformers, the
code transformation front-ends we discuss hereafter.

Figure 7.1 Architecture of the Moose Refactoring Engine

SNiFF+ parser

Moose Repository
Sm

al
lta

lk

Ja
va

Refactoring analysis

Smalltalk
Front-end

Java
Front-end

Common Front-end Interface

Refactoring
Browser

CDIF Importer Smalltalk parser

VisualWorks Smalltalk intern

Moose Refactoring Engine

Moose

1

2

3

The Moose Refactoring Engine 121
The Code Transformation Front-ends (3). The code transformation front-ends perform the final
low-level code transformations. They work directly on the source code, hence they are language specific.
They cannot work on the level of the model, because it does not contain enough information to regenerate
source code. Instead they use the source anchor information in the model to determine where a specific
transformation must take place.

The front-end implementation classes have a common interface for all supported languages. This makes
it easy to exchange and add front-ends. Figure 7.2 shows an example. The MethodTransformer interface,
used by the Pull Up Method, Push Down Method, Add Method and Remove Method refactorings, contains
three methods that must be implemented by all transformation front-ends. Implementing classes only need
to take care of a local implementation of the action, e.g., removeMethod: only physically removes a meth-
od. It does not check any preconditions or update any references.

In some of the front-end classes methods exist in the public interface that do not have an implementation
for some of the supported languages. As an example Figure 7.3 shows the required interface for Rename
Class front-end classes. The Java front-end implements all methods. In the Smalltalk front-end only three
methods have a meaningful implementation, namely changeClassName, changeSuperClassRefe-
renceOf: and changeClassMethodInvocation:Of:. The other four methods have empty implemen-
tations and are there only for interface compatibility reasons. These methods deal with changing type de-
clarations — which Smalltalk does not have — and accesses to class attributes using the classname to re-
ference the containing class1 — which cannot occur in Smalltalk. However, the Rename Class refactoring
invokes all methods of the RenameClassTransformer, because it is independent of the targeted language.

1. Like A.b in Java to access the static variable b of class A

MethodTransformer
addMethodWithName:in:
cloneMethod:in:
removeMethod:

Figure 7.2 Front-end interface for the method refactorings

PushDownMethodRefactoring

method:

PullUpMethodRefactoring

method:superclass:

AddMethodRefactoring

name:class:

RemoveMethodRefactoring

method:

JavaMethodTransformer
addMethodWithName:in:
cloneMethod:in:
removeMethod:

SmalltalkMethodTransformer
addMethodWithName:in:
cloneMethod:in:
removeMethod:

<<interface>>

RenameClassTransformer
changeClassName
changeSuperClassReferenceOf:
changeClassMethodInvocation:Of:

Figure 7.3 Front-end interface for the Rename Class refactoring

changeClassAttributeAccessOf:
changeTypeOfVariable:
changeTypeOfParameter:
changeReturnTypeOfMethod:

empty implementations in
the Smalltalk front-end

122 Validation
The Smalltalk front-end uses the parts of the Refactoring Browser [RBJ97] for low-level code transfor-
mations to change Smalltalk code. The Java front-end currently uses a text-based approach based on regular
expressions. It supports all our refactorings as long as the source code adheres to certain layout rules. We
plan to move to an abstract syntax tree based approach in the future, because it better abstracts from these
layout details and better fits the more complex code transformations. However, for the purpose of validating
the refactoring analysis of chapter 6 the current implementation suffices.

7.2 Validation
We have validated the prototype in two ways. One is the application of a non-trivial sequence of refactorings
on a toy banking system, one time implemented in Smalltalk and one time in Java. Secondly, we have ap-
plied all refactorings on real world code, namely on our Moose environment in Smalltalk and on the JUnit
testing framework in Java [JUn]. We discuss these experiments now in detail.

7.2.1 A non-trivial refactoring sequence on a toy banking system

The case study consists of the application of a sequence of refactorings to two small pieces of similar Small-
talk and Java code. Both implementations have a testsuite included that thoroughly tests the application.
This allows us to apply exactly the same transformation sequence on both Smalltalk and Java and test be-
haviour preservation and language independence. The sequence includes all fifteen refactorings of the re-
factoring engine.

The code implements a toy banking system with a Bank, Customers and Accounts (see Figure 7.4 (1)).
The refactorings are applied to gradually add transaction support to the Customer and Account class. After
every refactoring in the sequence, a testsuite is run to test if the adapted software still functions as expected.
This testsuite is adapted by the refactorings as well, as it contains references to the classes and methods of
the application.

Figure 7.4 shows the scenario in a nutshell. The transactional support that is added, comprises the adap-
tation of the Account and the Customer class with locking functionality for a two-phase commit protocol.

Customer

getCustomerNr()

getBalance()
Bank

seeBalance

setBalance(amount)
getAccountNr()

Account

getBalance(id)
setBalance(amount,id)
getAccountNr(id)

Lockable

lock(id)
isLocked()
commit(id)
abort(id)

1 2

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

Bank
seeBalance

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

Bank
seeBalance

 (accountNr,
customer)

transfer(amount,
from,to,
customer)

getBalance(id)
setBalance(amount,id)
getAccountNr(id)
lock(id)
isLocked()
commit(id)
abort(id)

transactionId
workingBalance

transactionId

3

workingBalance

accountNr
balance

Account
accountNr
balance

Account

customerNr
Customer

getCustomerNr()

customerNr

Figure 7.4 Refactoring scenario introducing transactional support to a toy banking system

Customer

getCustomerNr(id)

customerNr

accountNr
balance

The Moose Refactoring Engine 123
The functionality is added in two steps. In the first step the Account class gets transactional support (from 1
to 2). In the second step (from 2 to 3) the generic part of the transactional support is lifted into a newly added
common superclass of Account and Customer, so that a customer can be locked as part of a transaction as
well.

We now list sequence of refactorings in detail starting with the transformation from 1 to 2:

1. Add Attribute: transactionId and workingBalance to Account
2. Add Method: lock(), isLocked(), commit() and abort() to Account
3. Add Parameter: id to getBalance(), setBalance(amount) and getAccountNr(),

lock(), commit() and abort().

Method bodies need to be added to the new methods lock(), isLocked(), commit() and abort()
and the method bodies of getBalance, setBalance and getAccountNr need to be adapted. This is not
covered by the refactorings and is therefore done by hand. We also add code to Bank to create transaction
ids, but we do not describe the details here. Furthermore, we adapt the tests to cover the added transactional
behaviour. This finishes the first step. The step from 2 to 3 involves the following refactorings:

4. Add Class: Lockable with subclasses Account and Customer
5. Pull Up Attribute: transactionId to Lockable
6. Pull Up Method: isLocked(id) to Lockable

To pull up lock(id), commit(id) and abort(id) the method bodies of these methods need to be
adapted to separate the account specific functionality (such as setting the workingBalance) from the ge-
neric transactional functionality. For instance, from the commit method the account specific functionality,
namely committing the working balance to the balance, is extracted in a separate method called commit-
WorkingState (see Figure 7.5).This separation can be realised using an Extract Method refactoring
[FBB+99], but this refactoring requires information that is not available in FAMIX. Consequently, it is not
covered by our engine.In this experiment we extract the method by hand.

The next action is to create abstract template methods in the superclass for the extracted methods such as
commitWorkingState. This allows us to pull up the transactional methods.

7. Add Method: lockWorkingState, commitWorkingState and abortWorkingState to
Lockable and make them abstract by hand.

8. Pull Up Method: lock(id), commit(id) and abort(id) to Lockable

And finally we change the getCustomerId method to use the now inherited transactional support:

9. Add Parameter: id to getCustomer(id) and adapt its body by hand.

The scenario does not inherently include the renaming refactorings. We just add them to cover the com-
plete set of chapter 6:

10. Rename Class: Customer to Client
11. Rename Method: Lockable.isLocked() to locked()

12. Rename Attribute: Account.accountNr to accountNumber

All refactorings that are not covered yet, are covered by reversing the scenario from 3 to 1 to bring the
Bank application back to its original, non-transactional state. Renamed entities are given their original
name again. Pushed up attributes and methods are pushed down and added parameters, methods, attributes
and the Lockable class are removed. Where necessary method bodies are again adapted by hand.

124 Validation
We have applied the above scenario successfully on implementations in Java and Smalltalk. FAMIX sup-
ports fifteen of the sixteen refactorings needed to perform the scenario. Only the Extract Method refactoring
is not supported, because FAMIX does not contain sufficiently detailed information about method bodies.
Obviously, the parts of the scenario that change the behaviour of the bank application, for instance, chan-
ging the getBalance method to check calling provides the right transaction identifier, are not covered by
the engine as well.

7.2.2 Experiments on Moose and JUnit

We have applied all fifteen refactorings on the Moose reengineering environment in Smalltalk (see also
chapter 7) and the JUnit testing framework in Java [JUn]. The goal is to show that the refactorings are also
applicable to applications that solve real world problems, rather than having been engineered for the pur-
pose of testing the refactoring engine. Criteria for these case studies are that the software comes with a com-
prehensive testsuite that can be run before and after the refactorings to test behaviour preservation, and that
the source code is available to us. Moose and JUnit fulfil these requirements. Moose is a middle sized system
(~350 classes, ~2200 methods), JUnit is small (78 classes (inner classes not counted), ~700 methods)1. We
have applied all refactorings of the refactoring engine and, similarly to the experiment in section 7.2.1, we
have tested behaviour preservation by running the available testsuites. In several cases refactorings were
rightfully rejected, because their preconditions were not fulfilled.

The experiments show no more than that separate refactorings can be successfully applied on larger un-
prepared software systems. The only way to do a more comprehensive real world test, is to use the refactor-

1. These numbers take the test code into account.

Figure 7.5 Separating Account specific from generic transactional code

commit: id

self require: [self isLocked: id] usingException: #lockFailureSignal.

balance := workingBalance.

workingBalance := nil.

transactionIdentifier := nil.

commit: id

self require: [self isLocked: id] usingException: #lockFailureSignal.

self commitWorkingState

transactionIdentifier := nil.

commitWorkingState

balance := workingBalance.

workingBalance := nil.

The Moose Refactoring Engine 125
ing engine in day-to-day software development, so that it is verified in many different situations. However,
the refactoring engine is a research prototype and as such not ready for developers to use in their daily work.

7.3 Discussion
The goal of the Refactoring Engine is to provide an in-depth validation of the analysis presented in chapter
6. It is a thorough test for the fitness of the FAMIX metamodel as a language-independent metamodel for
reengineering object-oriented software.

The sequence of refactorings in the toy banking example shows that is possible to express and execute a
sequence of refactorings that covers all supported refactorings for the languages Java and Smalltalk. Al-
though the example is engineered, we feel the example presents a non-trivial sequence of refactorings,
which realistically mimics usages of refactorings in real world development. Secondly, we have tested the
refactorings successfully on two real world systems. The experiments show that the information FAMIX
provides is sufficient for checking the preconditions and determining what code must be transformed.

To assess the Moose Refactoring Engine from the tool point of view, we discuss it in the context of a se-
ries of success criteria that Don Roberts describes in his thesis [Rob99]. Roberts poses the following tech-
nical criteria:

• Program Database. “A refactoring tools needs a programming database to be able to search for var-
ious program elements across a program” [Rob99]. With Moose and its repository this requirement
is obviously fulfilled. However, for instance, Smalltalk environments have their own code database,
which is continuously updated with the latest changes to the code, i.e., the repository and the code
are causally connected [Mae87]. Currently our code transformation front-ends do not update the
model in the Moose repository in parallel to code changes. The changed code needs to be reparsed
and effectively a new, updated, model is created. This is something we want to change, because it
clearly hampers the usability of the tool. However, a reparse eases the ability to test if a refactoring
has been applied correctly, because the gathered information completely independent of the refac-
toring implementation. This was especially convenient in the early stages of development of our
prototype.

• Abstract Syntax Trees (ASTs). Refactorings require access to method bodies, mainly to update
references to code elements that have been changed. This normally requires ASTs. Our Smalltalk
front-end uses ASTs by means of the Refactoring Browser. In contrast, our Java front-end currently
uses a text-based approach based on regular expressions, because it was easy and quick to set up.
Although this approach is more powerful than we initially expected and supports all code transfor-
mation we need to apply, it requires code layout rules to be taken into account. We plan to move to
an abstract syntax tree based approach in the future, because it better abstracts from these layout de-
tails and better fits the more complex code transformations.
Furthermore, we do not support refactorings that require detailed information below the method le-
vel, such as Extract Method, because FAMIX does not provide this level of information. Although
it could be added to the metamodel, it is unlikely to happen in the near future, because it is not a
focus of our environment. More detailed information makes it harder to support multiple languages
(see also section 3.3).

• Accuracy. A refactoring tools must “reasonably preserve the behaviour of programs” [Rob99]. As
discussed in chapter 6, we define behaviour preserving as that input-output behaviour is the same
before and after the refactoring. We do not consider real-time constraints or code that uses reflective

126 Discussion
features of a language. The accuracy of the tool depends on the accuracy of the analysis the tool is
based upon. The accuracy of the analysis is discussed in section 6.4, its experimental validation in
section 7.2.

Roberts also discusses three practical criteria, namely speed, an undo mechanism and a tight integration
with the environment. The Moose Refactoring Engine is research tool and as such is not aimed at providing
industrial-strength speed and usability to developers. We shortly discuss the practical criteria anyway, for
completeness and to give an impression of the current status of the engine.

• Speed. For a tool used in the daily work of a developer, the automatic refactoring must execute the
refactoring faster than the developer can do it by hand. The Moose Refactoring Engine is not opti-
mised for speed in daily use. The execution of the refactoring is not particularly slow, but issues
mentioned before such as reparsing the model instead of updating it in parallel with the code trans-
formation, increase the time consumption and make it currently unfit to use as a tool in daily work.

• Undo. A multiple undo mechanism increases the support for an exploratory approach as to which
refactorings to apply to increase a piece of code. The Moose Refactoring Engine does not have undo
support.

• Integration with Environment. The Refactoring Engine is part of Moose. It can be called by any
tool that knows how to use it. However, the engine still really is an engine. It is not, like the Refac-
toring Browser, integrated with code browsers. This is future work. Beyond browser integration we
would like to integrate more strongly with analysis tools. Integrated tools would not only detect
problems, for instance in the design of a system, but also propose a sequence of refactorings to re-
solve such a problem.

Finally, the Moose Refactoring Engine can be judged on its ability to support other languages than the
currently supported Java and Smalltalk. Assuming FAMIX and Moose support the newly targeted language
already, two issues need to be considered. First, for every refactoring the analysis of chapter 6 must be
checked to see if it needs adaptation due to semantics specific to the new language. This is discussed in sec-
tion 6.5 in more detail. Secondly, a code transformation front-end must be developed. The architecture of
the Moose Refactoring Engine supports easy additions of such front-ends, but, as the front-ends deal with
low-level code transformations, implementation can be complex, mostly depending on the complexity of
the syntax of the new language and the available tool support for parsing and code generation.

CHAPTER 8

Conclusion and Future Work

Designing a metamodel that successfully supports a reengineering environment requires explicit know-
ledge not only about the relevance of the metamodel contents for reengineering, but also about infrastruc-
tural aspects such as scalability, interoperability and extensibility.

This thesis provides a better understanding of these issues by making explicit a set of possible design
choices including their trade-offs, firstly, with a design space for infrastructural aspects of reengineering
metamodels in general, and secondly, in the particular case of large object oriented systems, with a meta-
model that supports reverse engineering and refactoring in a language-independent way.

The metamodel that underlies the repository of a reengineering environment, determines to a large ex-
tent how well such an environment supports multiple cooperating reengineering tools. However, for only a
few of the existing environments the metamodel design choices are explicitly discussed, and these discus-
sions mostly focus on the support for one particular reengineering task. Indeed, no general comprehensive
overview exists that describes possible metamodel design decisions, their trade-offs and interdependencies.
Consequently, developers who build tools for reengineering need to gather this knowledge over and over
again. This thesis solves a part of this problem in the following ways:

• It makes explicit the infrastructural aspects of reengineering metamodels, i.e., the design aspects
that deal with how information is organised and stored. We capture these aspects, the available de-
sign choices, their trade-offs and interdependencies in a so-called design space.

• It makes explicit how to model multiple object-oriented languages for the purpose of reengineering.
Not only does it show the contents of one metamodel (FAMIX), it also makes explicit what choices
this metamodel incorporates to handle multiple object-oriented languages in a common way. In par-
ticular:

- it makes explicit the aspects of object-oriented systems that are relevant to reengineering.

- it shows how the use of a language-independent core together with mappings of multiple object-
oriented languages to this core, provides an effective common coverage of these languages. The
mappings explicitly define how a certain model of a software system in a specific implementation
language must be interpreted and also capture relevant language-specific information.

128
- it shows how a metamodel can effectively deal with language differences such as static versus
dynamic typing and single versus multiple inheritance versus Java interfaces.

Our approach has the following limitations:

• FAMIX does not model detailed information about method bodies. Consequently, we do not support
sophisticated control flow analysis. We have chosen not to pursue that path, because we regard the
considerable effort to abstract from the many subtle differences on such a detailed level not
weighting up against the advantages of language independence. We consider language-specific tools
with full AST information such as Datrix for C++ [BC00], as more appropriate for cases that require
this detailed level of information. Furthermore, the additional amount of information would have
seriously affected the scalability of our approach.

• Language independence increases complexity for certain analysis operations that would be simpler
for a particular language. An example is the refactoring analysis that takes type information and
multiple inheritance into account, which are both unnecessary for Smalltalk.

We have validated the ability of FAMIX to support multiple cooperating reverse engineering tools by
building a reengineering environment (Moose) with a repository based on FAMIX. Several services and
tools have been built using this environment and we have used it to perform several case studies on large in-
dustrial software systems. The case studies show that FAMIX indeed supports a whole range of reverse en-
gineering tasks, that it effectively abstracts from the supported implementation languages and that its
information level scales well for large systems.

For a more in-depth validation of FAMIX as a metamodel for reengineering, we have analysed its ability
to support refactorings on a language-independent level for Smalltalk and Java. Information requirements
for refactoring are tighter than those for most reverse engineering tasks. Refactoring requires sufficient,
complete and precise information to be able to ensure that the transformations can be applied correctly. This
is in contrast to most reverse engineering tasks, which are typically not strongly affected if information is
slightly incomplete or incorrect [MNGL98] [Bis92]. In particular our refactoring analysis shows the fol-
lowing:

• The analysis a refactoring requires to perform — to determine what low-level code transformations
it needs to apply and to check if these can be applied safely — can be expressed for the greater part
in a language-independent way.

• The metamodel must provide information about the language-specific interpretation of metamodel
elements. This firstly enables the execution of the language-specific part of the analysis. Secondly,
it enables the code transformation engine to apply the correct changes on the (language-specific)
code level. Our work provides this language-specific information through well-defined language ex-
tensions to the core metamodel.

• While some of the design decisions of FAMIX work out particularly well (e.g., the way polymorphic
calls are modelled), some are less convenient (e.g., the decision to model metaclasses as classes).

• The language-specific transformation front-ends define the basic code transformations that need to
be implemented for each supported language separately.

The refactoring analysis has the following limitations:

• Refactorings that need control flow information cannot be easily abstracted to multiple languages,
because they need access to detailed information about method bodies that is not available in

Conclusion and Future Work 129
FAMIX. Consequently, our approach does not cover refactorings such as Extract Method and Inline
Method [FBB+99].

• Similarly, the FAMIX metamodel does not contain sufficient information to regenerate the complete
source code from a model. Consequently, the actual code transformations must be applied directly
on the source code rather than on a model and are therefore language dependent.

The refactoring analysis is firstly validated by a thorough comparison with other, language-specific def-
initions of the same refactorings. Secondly, we have implemented the refactorings in the Moose Refactoring
Engine and applied them on several case studies.

Future Work

First of all, we are still refining FAMIX based on requirements of new reengineering tasks we want to sup-
port and the experience we get while building the tools that support these tasks. This includes the addition
of language features currently not supported such as nested classes and the support for more languages be-
yond the four (C++, Smalltalk, Java and Ada) we currently support. The addition of more detailed informa-
tion below the method body level, such as conditional statements, may seem an obvious extension as well,
but, as said above, it is not likely we will pursue this path. Another possibility is to extend FAMIX with mul-
tiple model support. Moose already supports multiple models, which is used for evolution analysis [LDS01]
[Ste01], but it has not yet been formalized in the metamodel.

Apart from refining the metamodel itself we are also looking at explicit metametamodel support. The
goals are to be able to generate generic tools such as model browsers and exchange format savers as well as
the integration with other metamodels such as UML [OMG99]. An explicit metametamodel also allows us
to better explore the dynamic adaptation and extension of metamodels.

A means to get a wider audience for the knowledge about modelling object-oriented software that
FAMIX represents, is the standardisation of such a metamodel. We are currently involved in the constitution
of the Graph eXchange Language (GXL) [HWS00]. GXL is a collaborative effort from several academic
and industrial research institutes to come up with an exchange format and a set of metamodels for informa-
tion exchange between reengineering tools. We actively participate in the discussions to come to a standard-
ized program entity level metamodel with FAMIX being one of the main input metamodels.

In the context of language-independent refactoring, support for more languages is an obvious direction
to take. For every new language, not only the contents of FAMIX, but especially the refactoring analysis
needs careful checking, because it depends more on the actual semantics of the language than on the mere
representation of facts that FAMIX provides. Some work has already been done to define C++ refactorings
based on FAMIX [Bor01].

Beyond FAMIX and the refactoring analysis, the addition of refactorings to Moose opens a whole new
class of possibilities, namely the combination of problem detection and analysis with refactorings. We want
to explore to which extent tools can propose a developer solutions to detected problems and perform trans-
formations based on that analysis. An example is the adherence of a software system to a certain architec-
ture. Instead of only signalling mismatches between an expected architecture and the actual architecture, an
analysis tool can propose a set of refactorings that resolves the mismatch. For instance, it could move a
method from its containing class to a class in another layer of the architecture. Similarly, we are exploring
the domain of component mining. We want to support the identification of potential components, as well as
the transformation of legacy software to component-based frameworks.

130
A final direction we would like to mention, is the integration of reengineering techniques in forward en-
gineering tools. The emergence of round-trip engineering tools is a step in that direction. They provide
seamless integration between design diagrams and source code, between modelling and implementation
[Ree96] [JBR99]. However, round-trip engineering does not need to be restricted to the integration of mod-
els and code alone. Reverse engineering and refactoring techniques enable a much more sophisticated
round-trip engineering cycle. In addition to model extraction, developers can apply problem detection anal-
ysis and create different views on the software to increase their understanding. Furthermore, built-in refac-
torings allow the developer to quickly and safely adapt software. Many of the technologies already exist, but
we see a lot of potential in a tighter integration.

APPENDIX A

Table of Refactorings

This appendix shows an overview of the pre- and postconditions of the refactorings presented in chapter 6.

Refactoring precondition postcondition

Add Class (classname,
package, superclasses,
subclasses)

• no class may exist with new name in the
same scope.

• no global variable may exist with new
name in the same scope.

• all subclasses must be subclasses of all
superclasses or no subclasses are specified

• [dependent] classname must be a valid
name.

• [Smalltalk] superclasses (and therefore
subclasses) must not be metaclasses.

• new class is added into the hierarchy
with superclasses as superclasses and
subclasses as subclasses.

• new class has name classname.
• subclasses inherit from new class and

not any more from superclasses.

Remove Class (class)

• class must not have attributes or its
attributes must not be referenced.

• class must not have methods or its me-
thods must not be referenced.

• class must not be referenced.
• class must not implement abstract meth-

ods from its superclass hierarchy or must
not have non-abstract subclasses.

• [Smalltalk] class must not be a metaclass
• [Smalltalk] the metaclass of class must not

have referenced methods or classes.

• class is removed (including non-refe-
renced attributes and methods).

• superclasses of class are now super-
classes of its subclasses.

• [Smalltalk] corresponding metaclass is
deleted as well.

132
Rename Class (class, new
name)

• no class may exist with new name in the
same scope.

• no global variable may exist with new
name in the same scope.

• classes that refer to class must not already
contain or inherited a variable with new
name.

• [dependent] new name must be a valid
class name.

• [Smalltalk] class must not be a metaclass.

• class has new name.
• all references (types, class method

calls, superclass references) are
updated with the new name.

• [Java] constructors are updated with
the new name.

• [Java] casts to class have been updated
• [Smalltalk] the corresponding meta-

class of class has been renamed as
well.

Add Method (name, class)

• no (inherited) method with signature
derived from name may exist in class.

• [dependent] name must be a valid method
name.

• class has a method called name with
an empty body or is abstract if class
represents a Java interface.

Remove Method (method)

• method must not have candidate invoca-
tions unless method itself is the only can-
didate invoker.

• if method is abstract it must not have static
references.

• method is removed from its containing
class.

Rename Method (method,
new name)

• all superclasses of the class containing
method as well as the subclass hierarchies
of the highest superclasses that define a
method with the same signature a method,
must not already contain a method with a
signature implied by new name and the
parameters of method.

• the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

• [dependent] new name must be a valid
method name.

• [Java] when method is a constructor, the
refactoring cannot be applied unless in the
context of a Rename Class refactoring.

• method has new name.
• relevant methods in the inheritance

hierarchy have new name.
• invocations of changed method are

updated to new name.

Refactoring precondition postcondition

Table of Refactorings 133
Pull Up Method (method,
superclass)

• method must not be private.
• method should not directly access

attributes from its defining class.
• method should not directly invoke me-

thods from its defining class unless all
those invocations have self/this as receiver
and are either to methods that are also
defined or inherited in the superclass or to
itself.

• superclass may not contain or inherit a
non-abstract method with the same signa-
ture as method.

• method cannot have super references to
superclass.

• [Java] method must not be a constructor.
• [Java] non-abstract method cannot be.

pulled up to an interface.
• [Smalltalk] method should not access

methods from its metaclass.

• method defined in superclass.
• method not defined in original contai-

ning class.

Push Down Method
(method)

• method must not be invoked in or through
its defining class unless it only invokes
itself on self/this.

• At least one direct subclass of the defining
class of method may not already contain a
method with the same signature as
method.

• self/this accesses to attributes that are also
defined in one or more of the direct sub-
classes, may not exist in method.

• self/this invocations and accesses to pri-
vate members of the containing class may
not exist in method.

• no super invocations of method may exist
in the direct subclasses of the defining
class.

• super invocations to methods that are also
defined in the defining class may not exist
in method, except if the invoked method
has the same signature as method itself.

• super accesses to attributes that are also
defined in the defining class may not exist
in method.

• subclasses cannot inherit non-abstract
methods with the same signature as
method from other superclass branches.

• [Java] method must not be a constructor.

• method not defined in original contai-
ning class.

• method defined in subclasses of the
containing class.

Refactoring precondition postcondition

134
Add Parameter (name,
method)

• method must not already have a parameter
with name.

• method must not already have a local vari-
able with name.

• containing class must not have an attribute
with name.

• no classes or global variables with name
may exist in the system.

• all superclasses of the class containing
method as well as the subclass hierarchies
of the highest superclasses that define a
method with the same signature as
method, must not already contain a
method with a signature implied by adding
a parameter with name to method.

• the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

• [dependent] name must be a valid parame-
ter name.

• method and all relevant methods in the
inheritance hierarchy have an extra
parameter with name.

• invocations of method are updated to
invoke it with an extra parameter with
a default value.

Remove Parameter
(parameter)

• parameter must not be referenced in the
containing method or equivalent parame-
ters in any overriding or overridden
method.

• all superclasses of the class containing the
method parameter belongs to, as well as
the subclass hierarchies of the highest
superclasses that define a method with the
same signature that method, must not
already contain a method with a signature
implied by removing parameter from its
method.

• the candidate invocations to the group of
methods that need to be renamed, do not
have candidates that are methods outside
of this group.

• method and all relevant methods in the
inheritance hierarchy have parameter
removed.

• invocations of method are updated to
invoke it without parameter.

Add Attribute (name, class)

• the inheritance hierarchy of the containing
class must not already contain an attribute
with name.

• no global variable with name may exist.
• no class with name may exist.
• [dependent] name must be a valid attribute

name.

• class has attribute named name.

Remove Attribute (attribute) • attribute must not be accessed.
• attribute is removed from its contai-

ning class.

Refactoring precondition postcondition

Table of Refactorings 135
Rename Attribute (attribute,
new name)

• the inheritance hierarchy of the containing
class must not already contain an attribute
with new name.

• no global variable with new name may
exist.

• no class with new name may exist.
• methods of the containing class and its

subclasses that access attribute must not
contain a local variable with new name
already.

• [dependent] name must be a valid attribute
name.

• attribute has name new name.
• all accesses to attribute are to use the

new name.

Pull Up Attribute (attribute,
superclass)

• superclass must not contain an attribute
with the same name as attribute.

• any attribute in the subclasses of super-
class with the same name as attribute must
have the same type as attribute. These
attributes must not hide each other.

• pulling up attribute may not hide in super-
class another attribute with the same
name.

• pulling up attribute may not unhide any
attribute with the same name from other
superclass branches of the containing
class.

• superclass contains attribute.
• all attributes in the subclasses of

superclass with the same name and
type as attribute have been removed.

Push Down Attribute
(attribute)

• attribute must not be accessed in or
through its containing class.

• the direct subclasses of the containing
class must not contain an attribute with the
same name as attribute.

• attribute is removed from its contain-
ing class.

• all subclasses that need it (i.e. that
have a reference to the attribute some-
where in its hierarchy) define an
attribute with the same name and type
as attribute.

Refactoring precondition postcondition

136

APPENDIX B

The FAMIX 2.1 specification

This appendix describes the FAMIX metamodel version 2.1. It starts with an overview of the metamodel be-
fore describing the metamodel in detail.

2.1 Overview
Figure B.1 shows an overview of the core FAMIX metamodel. Section 2.2 describes all the shown elements
in detail. In this section we introduce some information that is necessary for the rest of the metamodel de-
finition, such as some basic data types, unique naming conventions and extraction levels.

2.1.1 Basic Data Types

Besides the usual primitive data types (String, Integer, Boolean, …) we have a number of extra data types
in our metamodel that are considered ‘basic’. These are Name, Qualifier and Index:

Name vs. Qualifier

A Name is a string that bears semantics inside the metamodel, while a Qualifier is a string that gets its
semantics from outside the metamodel. A String does not bear any semantics. For instance, a
uniqueName may be used to refer to another object, hence bears semantics inside the metamodel. How-
ever, asourceAnchorwill store some information that must be interpreted by applications outside the me-
tamodel, hence is a qualifier. Finally, a comment line is a string, since it does not bear any semantics under-
standable by a computer. In CDIF these types are simply represented by Strings, or TextValues if they are
multi-valued (see section 2.3.1 for a description of multi-valued strings in CDIF).

Index

An Index represents a position in some sequence. Indices always have a base of 1. In CDIF this type is rep-
resented by an integer.

138 Overview
Figure B.1 The complete hierarchy of the FAMIX model

The FAMIX 2.1 specification 139
2.1.2 Unique Naming Conventions

The naming conventions used in the FAMIX metamodel is as much as possible compliant with UML
[OMG99]. This means that the following rules apply:

1. Scoping via packages. Global entities, such as classes, functions, global variables and packages
themselves receive a unique name by concatenating with the containing package name using “::”
as a separator. They will typically look like “package::subpackage::classname”.

2. Naming of variables. Variables, such as attributes, local variables, etc. receive a unique name
by concatenating with the containing entity using a “.” as a separator. They will typically look
like “package::subpackage::classname.attributename”,
“package::subpackage::classname.method().localvariablename”.

3. Naming of methods and functions. Methods and functions distinguish themselves from varia-
bles because they have an parameter list. Therefore, they are named by concatenating their scope
and their signature. For functions we follow the convention of package scoping, thus separate the
scope and the signature via a “::”. For methods we follow the convention of variable naming, thus
separate the scope and the signature via a “.”.
The signature of a method and a function contains the name of the method or function, followed
by its parameter list surrounded by parentheses. The return type is not part of the signature. They
will typically look like
“package::subpackage::functionname(para1,para2)”,
“package::subpackage::classname.methodname(para1,para2)”
To achieve a normal form for signatures, parameter lists should not contain unnecessary spaces.
Thus
“functionname(para1,para2)”
instead of
“functionname(para1, para2)”.
However, sometimes languages include keywords in their parameter list, and then spaces can not
be avoided. For instance, the C++ const parameters will be represented like
“functionname(const para1,const para2)”.

2.1.3 Level of Extraction

The core metamodel contains entities that not all parsers may provide. Next to that, some tools do not always
need all of this information (e.g., a metrics tool might not need Invocation and Access, because many me-
trics can already be gathered from Class and Method alone). To allow focused models, we introduce the le-
vel of extraction.

Basically, the level of extraction is an integer, representing how much of the core metamodel is avai-
lable in a model. The higher the number, the more information is available. The levels are set up in such a
way that no information is available on a level that needs information from higher levels (for instance, Ac-
cess is not usable if there are no Attribute's available). Next to that, it is possible that on the higher levels
parts of the information are not necessary for a certain task, or simply not computable by a certain tool.
Therefore it is allowed to only provide parts of the information (designated by the “+/-”). Table B.1 gives an
overview of the levels of extraction.

140 Definition of FAMIX
2.2 Definition of FAMIX
This part describes the various classes that together specify the FAMIX metamodel. The following subsec-
tions describe the different elements with their attributes, and give examples in the CDIF transfer format.
Mandatory attributes must always be present. Optional attributes may be omitted. Some optional attributes
have a default value.

2.2.1 The abstract part: Object, Entity and Association

The classes Object, Assocation, Entity and Property capture the commonalities in the design of FAMIX.
Furthermore, they provide the hooks to extend the core metamodel with new elements and, through the
Property element, with the ability to annotate any Object in a model. This are the different classes in detail:

Level 1 Class, InheritanceDefinition, BehaviouralEntity (Method, Function)

+/- Package

Level 1 is the minimal information that parsers should be able to provide and corresponds
with what is usually understood as the interface of a class.

Level 2 Level 1 +/- Attribute
+/- Package

Level 3 Level 2 +/- Access
+/- Invocation

Level 4 Level 3 +/- Argument
+/- FormalParameter
+/- LocalVariable
+/- ImplicitVariable

Table B.1: Levels of Extraction

Object

uid (): Name
sourceAnchor (): Qualifier
commentsAt(pos Integer) : String

Property

name (): Qualifier
value () : String

Entity

name(): Name
uniqueName (): Name

Association

Figure B.2 The basic classes Object, Entity and Association

The FAMIX 2.1 specification 141
Object is an abstract class without a superclass. The attributes of Object are:

• uid: Name; mandatory

Denotes an identifier that is unique for every element in a model. FAMIX does not impose a schema
or format. It is recommended to use Universal Unique Identifiers (UUIDs) [OG97], which is a
standard way of constructing identifiers that are unique over space and time. The resources to store
and compute UUIDs, however, might clash with scalability needs (see also section 3.10).

• sourceAnchor: Qualifier; optional

Identifies the location in the source where the information is extracted. The exact format of the qual-
ifier is dependent on the source of the information. Usually, it will be an anchor in a source file, in
which case the following format should be used

file "<filespec>" start <start_index> end <end_index>

where <filespec> is a string holding the name of the source-file in an operating system dependent
format (preferably a filename relative to some project directory). Note that filenames may contain
spaces and double quotation marks. A double quotation mark in a filename should be escaped with
a \". <start_index> and <end_index> are indices starting at 1 and holding the beginning re-
spectively ending character position in the source file. Extra position indices or whole source an-
chors may be added to handle anchors in files that may need to be displayed with external editors.
For instance, the line and column of the character (startline, startcol, endline, endcol). Or
the negative offset counting from the end of the file instead of from the beginning (negstart, ne-
gend). In CDIF a basic source anchor looks as follows (delimited with a ‘|’, see section 2.3.1 for a
description of multi-valued strings in CDIF):
(sourceAnchor #[file "factory.h" start 260 end 653|]#)

• comments: 0..N String; optional

Entities and associations may own a number of comments, where developers and tools store textual
information about the object. In CDIF we represent this with a CDIF TextValue, where the blocks
are delimited by a ‘|’ (see section 2.3.1 for a description of multi-valued strings in CDIF):
(comments #[commentLines|]#,#[commentLines|]#,...)

Entities and associations may own a number of properties where extensions of the core metamodel may be
stored. Property has the following attributes:

• name: Qualifier; mandatory

Is a string that identifies a Property within an Object. Thus, the name should be unique for all pro-
perties of a single Object.

Object

uid (): Name
sourceAnchor (): Qualifier
commentsAt (pos Integer): String

Property

name (): Qualifier
value (): String
belongsToUid (): Name

142 Definition of FAMIX
• value: String; mandatory

Contains the value of the property. The meaning of the value is not defined within this metamodel.
• belongsToUid: Name; mandatory

Contains the uid that identifies the Object this Property is a property of.

CDIF example showing a class Widget with a Property containing the value 5 for the number-of-meth-
ods metric. They are related by the belongsToUid attribute.

(Class ENT001
(name "Widget")
(uid "c842bf06-d202-0000-0282-5c410d0000")
....

)

(Property PR005
(name "metric_NOM")
(value #[5]#)
(belongsToUid "c842bf06-d202-0000-0282-5c410d00000")

)

To enable a global referencing scheme based on names, the key classes in the metamodel should respect the
minimal interface of Entity. Entity is an abstract class inheriting from Object. Besides inherited attributes,
it has the following attributes:

• name: Qualifier; mandatory

Is a string that provides some human readable reference to an entity.
• uniqueName: Name; mandatory

Is a string that is computed based on the name of the entity. Each class of entities must define its
specific formula. The uniqueName serves as an external reference to that entity and must be unique
for all entities in a model.

Association is an empty common superclass for all associations in the metamodel. Assocation is an abstract
class inheriting from Object. It defines no new attributes itself.

Entity

name (): Qualifier
uniqueName (): Name

Association

The FAMIX 2.1 specification 143
2.2.2 Model

Figure B.3 Model

A Model represents information about the particular system being modelled. Extractors must ensure that
there is only instance of a Model in a model. Information exchange standards often provide means to ex-
change similar information in special sections of the exchange stream. However, having an explicit Model
element in FAMIX allows us to transfer this information independent of the chosen exchange format.

Model is a concrete class inheriting from Object. Besides inherited attributes, it has the following at-
tributes:

• exporterName: String; mandatory

Represents the name of the tool that generated the information.

• exporterVersion: String; mandatory

Represents the version of the tool that generated the information.

• exporterDate: String; mandatory

Represents the date the information was generated.

• exporterTime: String; mandatory

Represents the time of the day the information was generated.

• publisherName: String; mandatory

Represents the name of the person that generated the information. Provide an empty string if this
information is not known.

• parsedSystemName: String; optional

Represents the name of the system where the information was extracted from.

• extractionLevel: String; mandatory

Represents the level of extraction used when generating the information (see Table on page 139).

• sourceLanguage: String; mandatory

Identifies the implementation language of the parsed source code, for instance ‘C++’, ‘Ada’, ‘Java’,
or ‘Smalltalk’.

• sourceDialect: String; optional

Identifies the dialect of the implementation language of the parsed source code. The exact contents
of the string is a language-dependent issue, e.g., ‘Borland’ or ‘ANSI’ for C++.

Model

exporterName (): String
exporterVersion (): String
exporterDate (): String
exporterTime (): String
publisherName (): String
parsedSystemName (): String
extractionLevel (): String
sourceLanguage (): String
sourceDialect (): String

144 Definition of FAMIX
CDIF example of a Model instance for a WidgetLibrary system implemented in Java:

(Model FM0
(exporterName "sniff2famix")
(exporterVersion "2.0")
(exporterDate "1999/10/19")
(exporterTime "00.00.01")
(publisherName "Sander Tichelaar")
(parsedSystemName "WidgetLibrary")
(extractionLevel "3")
(sourceLanguage "Java")
(sourceDialect -NULL-)

)

2.2.3 Package

Figure B.4 Package

A Package represents a named sub-unit of a source code model, for example namespaces in C++, and
packages in Java. What exactly constitutes such a sub-unit is a language-dependent issue. Packages and
other entities can only belong to zero or one Package, and their name must be unique within their containing
Package.

Package is a concrete class inheriting from Entity. Besides inherited attributes, it has the following at-
tributes:

• belongsToPackage: name; optional

Is the unique name of the package containing this package. A null value represents the fact that there
is no containing package.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (belongsToPackage(package)) then
 uniqueName (package) = name (package)
else
 uniqueName (package) = belongsToPackage (package) + "::" + name (package)

CDIF example of a package gui:

(Package FM1
(name "gui")
(belongsToPackage -NULL-)
(uniqueName "gui")

)

Package

belongsToPackage (): Name

The FAMIX 2.1 specification 145
2.2.4 Class

Figure B.5 Class

A Class represents the definition of a class in source code. What exactly constitutes such a definition is a lan-
guage-dependent issue.

Class is a concrete class inheriting from Entity. Besides inherited attributes, it has the following at-
tributes:

• isAbstract: Boolean; optional

Is a predicate telling whether the class is declared abstract. Abstract classes are important in object-
oriented modelling, but how they are recognised in source code is a language-dependent issue.

• belongsToPackage: Name; optional

Is the unique name of the package defining the scope of the class. A null belongsToPackage is
allowed, it means that the class has global scope. The belongsToPackage concatenated with the
name of the class must provide a unique name for that class within a model.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (belongsToPackage (class)) then
 uniqueName (class) = name (class)
else
 uniqueName (class) = belongsToPackage (class) + "::" + name (class)

CDIF example of a non-abstract class Widget in package gui (note the difference between name and
uniqueName):

(Class FM1
(name "Widget")
(uniqueName "gui::Widget")
(isAbstract -FALSE-)
(sourceAnchor #[file "factory.h" start 260 end 653|]#)

)

Class

isAbstract (): Boolean
belongsToPackage (): Name

146 Definition of FAMIX
2.2.5 BehaviouralEntity Hierarchy

The entities that define behaviour in our metamodel are all subclasses of BehaviouralEntity.

2.2.6 BehaviouralEntity

Figure B.7 BehaviouralEntity

A BehaviouralEntity represents the definition in source code of a behavioural abstraction, i.e., an abstrac-
tion that denotes an action rather than a part of the state. Subclasses of this class represent different mecha-
nisms for defining such an entity.

BehaviouralEntity is an abstract class inheriting from Entity. Besides inherited attributes, it has the fol-
lowing attributes:

• accessControlQualifier: Qualifier; optional

Is a string with a language-dependent interpretation that defines who is allowed to invoke it (for in-
stance, ‘public’, ‘private’).

• signature: Qualifier; mandatory

Is a string that allows to uniquely distinguish a behavioural entity. This is necessary, because object-
oriented languages exist that allow to overload methods, so that the same method name may be
associated with different parameter lists, each with its own method body (e.g., C++, Java). The way
a signature string is composed is language-dependent, but it should at least include the name of the
method. The UML [OMG99] compliant notation will be used, which will typically look like (see
also section 2.1.2 “Unique Naming Conventions” on page 139)
“package::subpackage::classname.methodname(parameters)” .

• isPureAccessor: Boolean; optional

Is a predicate telling whether the behavioural entity is a pure accessor. There are two kinds of ac-
cessors, a reader accessor and a writer accessor. A pure reader accessor is an entity with a single
receiver parameter, only returning the value of an attribute of the class the method is defined on. A

BehaviouralEntity

accessControlQualifier (): Qualifier
signature (): Qualifier
isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

BehaviouralEntity

MethodFunction

Figure B.6 The BehaviouralEntity hierarchy

The FAMIX 2.1 specification 147
pure writer accessor is a method with one receiver parameter and one value parameter, only storing
the value inside the attribute of a class. How accessor methods are recognised in source code is a
language-dependent issue.

• declaredReturnType: Qualifier; optional

Is a qualifier that refers to the declared type of the returned object. Typically this will be a class, a
pointer or a primitive type (e.g., int in Java). declaredReturnType is null if the return type is
not known or the empty string (i.e., “”) if the BehavourialEntity does not have a return type1.

Note that the declaredReturnType does not have meaning in a model (although it obviously has
meaning in the context of the specific implementation language). We need a language-dependent
interpretation to link a type name to a class name, because in most object-oriented languages, types
are not always equivalent to classes. How the declared return type can be recognised in source code
and how the return type matches to a class or another type are language-dependent issues. The de-
clared return class is stored in the declaredReturnClass attribute (see below for the definition
of declaredReturnClass and see section 4.4.1 for an in-depth discussion).

• declaredReturnClass: Name; optional

Indicates the unique name of the class that is implicit in the declaredReturnType, with the goal
of capturing the dependency to the corresponding Class instance in a model. The declaredRe-

turnClass always contains the name of a class, or null if it is unknown if there is an implicit class
in the declaredReturnType, and the empty string (i.e., “”) if it is known that there is no implicit
class in the declaredReturnType. What exactly is the relationship between declaredReturn-

Class and declaredReturnType is a language-dependent issue.

2.2.7 Method

Figure B.8 Method

A Method represents the definition in source code of an aspect of the behaviour of a class. What exactly con-
stitutes such a definition is a language-dependent issue.

Method is a concrete class inheriting from BehaviouralEntity. Besides inherited attributes, it has the fol-
lowing attributes:

• belongsToClass: Name; mandatory

Is a name referring to the class owning the method. It uses the uniqueName of the class as a refe-
rence.

1. In C++ the fact that a function does not have a return type is denoted by the keyword void. We do not use
void in FAMIX to denote ‘no type’, because this causes problems for languages where it is possible to define
a class called “void”, like for instance Smalltalk and Ada. Note that this is consistent with UML 1.3
[OMG99].

Method

belongsToClass (): Name
hasClassScope (): Boolean
isAbstract (): Boolean
isConstructor (): Boolean

148 Definition of FAMIX
• hasClassScope: Boolean; optional

Is a predicate telling whether the method has class scope (i.e., invoked on the class) or instance
scope (i.e., invoked on an instance of that class). For example, static methods in C++ and Java have
their hasClassScope attribute set to true.

• isAbstract: Boolean; optional

Is a predicate telling whether the method is declared abstract, i.e., when non-abstract subclasses are
forced to provide an implementation for this method. Abstract methods are important in object-ori-
ented modeling, but how they are recognised in source code is a language-dependent issue.

• isConstructor: Boolean; optional

Is a predicate telling whether the method is a constructor. A constructor is a method that creates an
(initialised) instance of the class it is defined on. Thus a method that creates an instance of another
class is not considered a constructor. How constructor methods are recognised in source code is a
language-dependent issue.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

uniqueName (method) = belongsToClass (method) + "." + signature (method)

CDIF example (constructor for a classWidget. This method has no return type and therefore also no ‘return
class’, hence both attributes are empty):

(Method FM2
(name "Widget")
(belongsToClass "gui::Widget")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControlQualifier "public")
(hasClassScope -FALSE-)
(signature "Widget()")
(isAbstract -FALSE-)
(declaredReturnType "")
(declaredReturnClass "")
(uniqueName "gui::Widget.Widget()")

)

2.2.8 Function

Figure B.9 Function

A Function represents the definition in source code of an aspect of global behaviour. What exactly consti-
tutes such a definition is a language-dependent issue.

Function

belongsToPackage (): Name

The FAMIX 2.1 specification 149
Function is a concrete class inheriting from BehaviouralEntity. Besides inherited attributes, it has the fol-
lowing attributes:

• belongsToPackage: Name; optional

Is the unique name of the package defining the scope of the function. A null belongsToPackage
is allowed, meaning that the function has global scope. The belongsToPackage concatenated with
the name of the function must provide a unique name for that class within a model.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (belongsToPackage (function)) then
 uniqueName (function) = name (function)
else
 uniqueName (function) = belongsToPackage (function) + "::" + name (function)

CDIF example (of a global function testFactorywithout arguments and return type in subpackage test
of package widgetfactory):

(Function FM2
(name "testFactory")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControlQualifier "public")
(signature "testFactory()")
(belongsToPackage "widgetfactory::test")
(declaredReturnType "")
(declaredReturnClass "")
(uniqueName "widgetfactory::test::testFactory()")

)

2.2.9 StructuralEntity Hierarchy

All possible variable definitions are subclasses of the class StructuralEntity. StructuralEntity itself partici-
pates in the Access association.

Figure B.10 The StructuralEntity hierarchy

150 Definition of FAMIX
2.2.10 StructuralEntity

Figure B.11 StructuralEntity

A StructuralEntity represents the definition in source code of a structural entity, i.e., it denotes an aspect of
the state of a system. The different kinds of structural entities mainly differ in lifetime: some have the same
lifetime as the entity they belong to, e.g., an attribute and a class, some have a lifetime that is the same as the
whole system, e.g., a global variable. Subclasses of this class represent different mechanisms for defining
such an entity.

StructuralEntity is an abstract class inheriting from Entity. Besides inherited attributes, it has the following
attributes:

• declaredType: Qualifier; optional

Is a qualifier that refers to the declared type of the structural entity. Typically this will be a class, a
pointer or a primitive type (e.g., int in Java). declaredType is null if the return type is not known
or the empty string (i.e., “”) if the BehavourialEntity does not have a return type1.
Note that the declaredType does not have meaning in a model (although it obviously has meaning
in the context of the specific implementation language). We need a language-dependent interpreta-
tion to link a type name to a class name, because in most object-oriented languages, types are not
always equivalent to classes. How the declared type can be recognised in source code and how the
return type matches to a class or another type are language-dependent issues. The declared class is
stored in the declaredClass attribute (see below for the definition of declaredClass and see
section 4.4.1 for an in-depth discussion).

• declaredClass: Name; optional

Indicates the unique name of the class that is implicit in the declaredType, with the goal of cap-
turing the dependency to the corresponding Class instance in a model.The declaredClass con-
tains the name of a class, or null if it is unknown if there is an implicit class in the declaredType,
and the empty string (i.e., “”) if it is known that there is no implicit class in the declaredType.
What exactly is the relationship between declaredClass and declaredType is a language-de-
pendent issue.

2.2.11 Attribute

Figure B.12 Attribute

StructuralEntity

declaredType (): Qualifier
declaredClass (): Name

1. In C++ the fact that a function does not have a return type is denoted by the keyword void. We do not use
void in FAMIX to denote ‘no type’, because this causes problems for languages where it is possible to define
a class called “void”, like for instance Smalltalk and Ada. Note that this is consistent with UML 1.3
[OMG99].

Attribute

belongsToClass (): Name
accessControlQualifier (): Qualifier
hasClassScope (): Boolean

The FAMIX 2.1 specification 151
An Attribute represents the definition in source code of an aspect of the state of a class. What exactly con-
stitutes such a definition is a language-dependent issue.

Attribute is a concrete class inheriting from StructuralEntity. Besides inherited attributes, it has the fol-
lowing attributes:

• belongsToClass: Name; mandatory

Is a name referring to the class owning the attribute. It uses the uniqueName of the class as a refe
rence.

• accessControlQualifier: Qualifier; optional

Is a string with a language-dependent interpretation that defines who is allowed to access it (for in-
stance, ‘public’, ‘private’).

• hasClassScope: Boolean; optional

Is a predicate telling whether the attribute has class scope (i.e., a shared memory location for all in-
stances of the class) or instance scope (i.e., separate memory location for each instance of the class).
For example, static attributes in C++ and Java have a hasClassScope attribute set to true.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

uniqueName (attribute) = belongsToClass (attribute) + "." + name (attribute)

CDIF example of a private attribute wTop in class Widget:

(Attribute FM22
(name "wTop")
(belongsToClass "gui::Widget")
(sourceAnchor #[file "factory.h" start 281 end 284|]#)
(declaredType "int")
(declaredClass "")
(accessControlQualifier "private")
(uniqueName "gui::Widget.wTop")

)

2.2.12 GlobalVariable

Figure B.13 GlobalVariable

A GlobalVariable represents the definition in source code of a variable with a lifetime equal to the lifetime
of a running system, and which is globally accessible. What exactly constitutes such a definition is a lan-
guage-dependent issue.

GlobalVariable is a concrete class inheriting from StructuralEntity. Besides inherited attributes, it has the
following attributes:

• belongsToPackage: Name; optional

Is the unique name of the package defining the scope of the variable. A null belongsToPackage
is allowed, it means that the variable has global scope. The belongsToPackage concatenated with
the name of the variable must provide a unique name for that class within a model.

GlobalVariable

belongsToPackage (): Name

152 Definition of FAMIX
Formula for uniqueName (the second branch of the if statement is necessary because a global variable can
have package scope) (see also section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (belongsToPackage (globalVariable)) then
 uniqueName (globalVariable) = name (globalVariable)
else
 uniqueName (globalVariable) = belongsToPackage (globalVariable)
 + "::" + name (globalVariable)

CDIF example of a global variable called ‘TRUE’ with type ‘int’:

(GlobalVariable FM23
(name "TRUE")
(sourceAnchor #[file "factory.h" start 287 end 291|]#)
(declaredType "int")
(declaredClass "")
(accessControlQualifier "public")
(uniqueName "TRUE")

)

2.2.13 ImplicitVariable

Figure B.14 ImplicitVariable

An ImplicitVariable represents the definition in source code of context dependent reference to a memory lo-
cation (i.e.,this andsuper in C++ and Java,self andsuper in Smalltalk). What exactly constitutes such
a definition is a language-dependent issue.

ImplicitVariable is a concrete class inheriting from StructuralEntity. Besides inherited attributes, it has
the following attributes:

• belongsToContext: Qualifier; optional

Is a string with a language-dependent interpretation, that defines a possible scope of the variable. A
null belongsToContext is allowed, it means that the variable has global scope. The belongsTo-
Context concatenated with the name of the variable must provide a unique name for that variable
within a model.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

if isNull (belongsToContext (implicitVariable)) then
 uniqueName (implicitVariable) = name (implicitVariable)
else
 uniqueName (implicitVariable) = belongsToContext (implicitVariable)

+ "." + name (implicitVariable)

Example of an implicit variable super:

MotifWidget.print () {
super.print();
System.out.print("Motif");

}

ImplicitVariable

belongsToContext (): Qualifier

The FAMIX 2.1 specification 153
In CDIF this gives the following result:

(ImplictVariable FM77
(name "super")
(declaredType "gui::Widget")
(declaredClass "gui::Widget")
(belongsToContext "gui::MotifWidget")
(uniqueName "gui::MotifWidget.super")

)

2.2.14 LocalVariable

Figure B.15 LocalVariable

A LocalVariable represents the definition in source code of a variable defined locally to a behavioural entity.
What exactly constitutes such a definition is a language-dependent issue.

LocalVariable is a concrete class inheriting from StructuralEntity. Besides inherited attributes, it has the
following attributes:

• belongsToBehaviour: Name; mandatory

Is a name referring to the BehaviouralEntity owning the variable. It uses the uniqueName of this
entity as a reference.

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

uniqueName (localVar) = belongsToBehaviour (localVar) + "." + name (localVar)

Example of a local variable position_:

Class ScrollBar {
computePosition(int x,int y,int width,int height) {
int position_;
. . .

}
}

In CDIF:

(LocalVariable FM76
(name "position_")
(sourceAnchor #[file "factory.h" start 85 end 89|]#)
(declaredType "int")
(declaredClass "")
(belongsToBehaviour "ScrollBar.computePosition(int,int,int,int)")
(uniqueName "gui::ScrollBar.computePosition(int,int,int,int).position_")

)

LocalVariable

belongsToBehaviour (): Name

154 Definition of FAMIX
2.2.15 FormalParameter

Figure B.16 FormalParameter

A FormalParameter represents the definition in source code of a formal parameter, i.e., the declaration of
what a behavioural entity expects as an argument. What exactly constitutes such a definition is a language-
dependent issue.

FormalParameter is a concrete class inheriting from StructuralEntity. Besides inherited attributes, it has
the following attributes:

• belongsToBehaviour: Name; mandatory

Is a name referring to the BehaviouralEntity owning the variable. It uses the uniqueName of this
entity as a reference.

• position: Index; mandatory

Indicates the position of the parameter in the list of parameters. Language extensions should specify
what the position of a parameter is and this should be consistent the position attribute of Argu-
ment (see page 158).

Formula for uniqueName (see also section 2.1.2 “Unique Naming Conventions” on page 139):

uniqueName (formalPar) = belongsToBehaviour (formalPar) + "." + name (formalPar)

Example (w is the formal parameter):

Window::addWidget(Widget& w) { };

In CDIF:

(FormalParameter FM41
(name "w")
(declaredType "gui::Widget&")
(declaredClass "gui::Widget")
(belongsToBehaviour "gui::Window.addWidget(Widget&)")
(position 1)
(uniqueName "gui::Window.addWidget(Widget&).w")

)

2.2.16 InheritanceDefinition

Figure B.17 InheritanceDefinition

FormalParameter

belongsToBehaviour (): Name
position (): Index

InheritanceDefinition

subclass (): Name
superclass (): Name
accessControlQualifier (): Qualifier
index (): Index

The FAMIX 2.1 specification 155
An InheritanceDefinition represents the definition in source code of an inheritance association between two
classes. One class then plays the role of the superclass, the other plays the role of the subclass. What exactly
constitutes such a definition is a language-dependent issue.

InheritanceDefinition is a concrete class inheriting from Association. Besides inherited attributes, it has
the following attributes:

• subclass: Name; mandatory

Is a unique name referring to the class that inherits. It uses the uniqueName of the class as a refe-
rence.

• superclass: Name; mandatory

Is a unique name referring to the class that is inherited from. It uses the uniqueName of the class as
a reference.

• accessControlQualifier: Qualifier; optional

Is a string with a language-dependent interpretation, that defines how subclasses access their super-
classes (for instance, ‘public’, ‘private’).

• index: Index; optional

In languages with multiple inheritance, this is the position of the superclass in the list of superclasses
of one subclass. The information is of interest for object-oriented languages with multiple inheri-
tance that resolve name collisions via the order of the superclasses (e.g., CLOS). For most languages
the index does not have any semantics and the attribute will have a null value.

CDIF example of an inheritance relationship between Scrollbar and its superclass Widget:

(InheritanceDefinition FM27
(subclass "gui::ScrollBar")
(superclass "gui::Widget")
(accessControlQualifier "public")
(index 1)

)

2.2.17 Access

Figure B.18 Access

An Access represents the definition in source code of a BehaviouralEntity accessing a StructuralEntity. De-
pending on the level of extraction (see Table on page 139), that StructuralEntity may be an attribute, a local
variable, an argument, a global variable…. What exactly constitutes such a definition is a language-depend-
ent issue. However, when the same structural entity is accessed more than once in a method body, then pars-
ers should generate a separate access-association for each occurrence.

Access

accesses (): Name
accessedIn (): Name
isAccessLValue (): Boolean
hasArgument (): Name

156 Definition of FAMIX
Access is a concrete class inheriting from Association. Besides inherited attributes, it has the following
attributes:

• accesses: Name; mandatory

Is a unique name referring to the variable being accessed. It uses the uniqueName of the variable
as a reference.

• accessedIn: Name; mandatory

Is a unique name referring to the method doing the access. It uses the uniqueName of the method
as a reference.

• isAccessLValue: Boolean; optional

Is a predicate telling whether the value was accessed as Lvalue, i.e., a location value or a value on
the left side of an assignment. When the predicate is true, the memory location denoted by the va-
riable might change its value; false means that the contents of the memory location is read; null
means that it is unknown.
Note that LValue is the inverse of RValue.

• hasArguments: 0 .. N Name; optional

An Access can have arguments. Typically this will be one, namely the receiving, argument. For in-
stance, in the case of x.a, x is the receiving argument of the access of a. The hasArgument at-
tribute denotes the uid of the argument.

Example of the method print() accessing wTop (both defined in class Widget):

virtual print () { cout << "top of widget " << wTop; };

In CDIF:

(Access FM18
(accesses "gui::Widget.wTop")
(accessedIn "gui::Widget.print()")
(isAccessLValue -FALSE-)

)

2.2.18 Invocation

Figure B.19 Invocation

An Invocation represents the definition in source code of a BehaviouralEntity invoking another Behaviou-
ralEntity. What exactly constitutes such a definition is a language-dependent issue. However, when the
same behavioural entity is invoked more than once in a method body, then parsers should generate a separate
invocation-association for each occurrence.

It is important to note that due to polymorphism, there exists at parse time a one-to-many relationship be-
tween the invocation and the actual entity invoked: a method, for instance, might be defined on a certain
class, but at runtime actually invoked on an instance of a subclass of this class. This explains the presence
of the base attribute and the candidates aggregation.

Invocation

invokedBy (): Name
invokes (): Qualifier
base (): Name
candidatesAt (pos Integer): Name

The FAMIX 2.1 specification 157
Invocation is a concrete class inheriting from Association. Besides inherited attributes, it has the
following attributes:

• invokedBy: Name; mandatory

Is a unique name referring to the BehaviouralEntity doing the invocation. It uses the uniqueName
of the entity as a reference.

• invokes: Qualifier; mandatory

Is a qualifier holding the signature of the BehaviouralEntity invoked. Due to polymorphism, the sig-
nature of the invoked BehaviouralEntity is not enough to assess which BehaviouralEntity is actually
invoked. Further analysis based on the arguments is necessary. Concatenated with the base at-
tribute this attribute constitutes the unique name of a behavioural entity.

• base: Name; optional

Is the unique name of the entity where the invoked entity is defined on. Null means unknown and
an empty string means the attribute has no base (the invoked entity may be a global function). To-
gether with the invokes attribute, this attribute constitutes the unique name of a behavioural entity.

• candidates: 0 .. N Name; optional

Is a multi-valued attribute holding a number of names of BehaviouralEntities. Each name refers to
a BehaviouralEntity that may be the actual one invoked at run-time. See section 2.3.1 for a descrip-
tion of multi-valued strings in CDIF.

• hasArguments: 0 .. N Name; optional

An Invocation has arguments. The hasArgument attribute denotes the uids of the arguments.

CDIF example. The method Widget.print() is invoked according to the source code. The actual method
invoked at runtime, however, could be the print() method of one of the subclasses MotifWidget or
SwingWidget:

(Invocation FM35
(invokedBy "gui::ScrollBar.print()")
(invokes "print()")
(base "gui::Widget")
(candidates#[gui::Widget.print()|]#,

#[motif::MotifWidget.print()|]#,
#[javax::swing::SwingWidget.print()|]#)

)

158 Definition of FAMIX
2.2.19 Argument Hierarchy

An Argument represents the passing of an argument when invoking a BehaviouralEntity or accessing a
StructuralEntity. What exactly constitutes such a definition is a language-dependent issue.

Argument is an abstract class inheriting from Object. Besides inherited attributes, Argument has the fol-
lowing attributes:

• position: Index; mandatory

The position of the argument in the list of arguments. Language extensions should specify what the
position of a argument is and this should be consistent with the position attribute of FormalPa-
rameter (see section 2.2.15 on page 154).

• isReceiver: Boolean; mandatory

Is a predicate telling whether this argument plays the role of the receiver in the containing invoca-
tion. Knowing which argument plays the role of the receiver may help resolving polymorphic invo-
cations.

2.2.20 ExpressionArgument

An ExpressionArgument models an argument that is a complex expression. This expression is not modelled
in further detail (at least in the context of arguments; any access that is part of the expression should be mod-
elled anyway). ExpressionArgument is a concrete subclass of Argument. It does not define any new at-
tributes itself.

2.2.21 AccessArgument

An AccessArgument models an argument that is a reference to a StructuralEntity.

ExpressionArgument

AccessArgument

hasAccess (): Name

Argument

position (): Index
isReceiver (): Boolean

Invocation

AccessArgumentExpressionArgument

Figure B.20 Argument Hierarchy

Access

hasAccess

hasArguments

Access hasArguments

The FAMIX 2.1 specification 159
AccessArgument is a concrete subclass of Argument. Besides inherited attributes, it has the following
attributes:

• hasAccess: Name; mandatory

Denotes the unique identifier (uid) of the Access instance that models the access of by the argument
of a StructuralEntity.

Example of a method print()with two method invocations and their arguments. Note that the first call
has one argument (namely super) and the second call has two (namely System.out and "Motif"):

MotifWidget.print () {
super.print(a+3);

}

In CDIF:

#| FM90 expresses the access of the super implicit variable |#

(Access FM90
(uid "c842bf06-d202-0000-0282-5c410d00000")
(accesses "gui::MotifWidget.super")
(accessedIn "gui::MotifWidget.print()")

)

#| FM91 expresses the passing of super as an argument to print |#

(AccessArgument FM91
(uid "c842bf06-d202-0000-0282-5c410d00001")
(position 1)
(isReceiver -TRUE-)
(hasAccess "c842bf06-d202-0000-0282-5c410d00000")

)

#| FM92 expresses existence of the a+3 expression |#

(ExpressionArgument FM92
(uid "c842bf06-d202-0000-0282-5c410d00002")
(position 2)
(isReceiver -FALSE-)

)

#| FM101 expresses the invocation of print with argument super.
 Note that gui::Widget is the only candidate of the invocation. |#

(Invocation FM101
(uid "c842bf06-d202-0000-0282-5c410d00002")
(invokedBy "gui::MotifWidget.print()")
(invokes "print()")
(base "gui::Widget")
(candidates #[gui::Widget|]#)
(hasArguments #["c842bf06-d202-0000-0282-5c410d00001"|]#)

)

160 Miscellaneous
2.3 Miscellaneous
This section contains some miscellaneous topics.

2.3.1 CDIF Multi-valued String Attributes
CDIF is one of the standard exchange formats we use to transfer FAMIX-based models. In this appendix it
is mainly used as a means to give examples for the different elements of the metamodel. One of the problems
CDIF poses is that is does not provide multi-valued string attributes. We need those to deal with many-to-1
relationships (e.g., the candidates attribute of Invocation). Indeed, using the chunk format we encode re-
lationships through unique names stored in attributes. However, using a string attribute to encode a relation-
ship only allows for 1-to-many relationships.

CDIF provides IntegerList and PointList in its set of basic data types, thus — in principle — CDIF per-
mits the use of multi-valued attributes. Unfortunately, there is no basic data type that copes with multi-va-
lued strings. Yet, the CDIF TextValue data type comes near, thus in some rare occasions we interpret Text-
Value as a multi-valued text attribute.

In the original CDIF standard, a TextValue denotes a set of characters which is divided into blocks with
a maximum of 1024 characters. The beginning of each block is marked by “#[” while the end is marked by
“]#”. The actual value of the text is the concatenation of the blocks. To represent a multi-valued string at-
tribute with a TextValue, we interpret each block in a TextValue as a separate string. Also, we require that
each one of those strings must append a special delimiter character (which is “|”) to its end so that the orig-
inal multi-valued strings can be retrieved from the concatenated blocks. In the (unlikely) situation that a “|”
appears in a string value it should be escaped with “\|”. Thus we get

(Invocation FM35
(invokedBy "ScrollBar.print()")
(invokes "print()")
(candidates#[Widget.print()|]#,

#[MotifWidget.print()|]#,
#[SwingWidget.print()|]#)

)

instead of (using CDIF relationships):

(Invocation FM35
(invokedBy "ScrollBar.print()")
(invokes "print()")

)

(Candidate FM45
(value "Widget.print()")

)

(Candidate FM46
(value "MotifWidget.print()")

)

(Candidate FM47
(value "SwingWidget.print()")

)
(Invocation.HasCandidate.Candidate FM87 FM35 FM45)

APPENDIX C

Smalltalk Extension to FAMIX

This appendix describes the Smalltalk extension to FAMIX. Before discussing the specific interpretations
and extensions, it gives a short overview of how FAMIX can be extended.

3.1 Extending FAMIX
The basic FAMIX model is modified in three different ways to handle Smalltalk sources:

• New classes are added to the common exchange model to model entities and associations unique to
Smalltalk. These classes are marked as new entities respectively associations.

• New attributes are added to existing classes of the basic FAMIX model. In this case the class is
marked “extended” and only the new and modified (see below) attributes are listed in the definition
of the modified class.

• The definition of attributes of existing classes are modified or are made more specific. In this case
the corresponding class is marked “interpreted” and the interpreted attributes are listed in the defi-
nition of the modified class. To discriminate new from interpreted attributes, new attributes are ex-
plicitly tagged as being new and interpreted attributes are listed without any type information since
that information hasn't changed anyway.

3.2 Modified classes

3.2.1 Model (interpreted)
Model

sourceLanguage
sourceDialect

162 Modified classes
The new or modified attributes are:

• sourceLanguage

For Smalltalk models this attribute always contains the string “Smalltalk”.
• sourceDialect

The Smalltalk language has different dialects, with different versions. If known, this version can be
stored in this attribute. Regarding FAMIX, certain Smalltalk dialects such as VisualWorks 5i or
Quasar Smalltalk have the notion of namespaces.

3.2.2 Package (interpreted)

Smalltalk namespaces (only available in certain dialects) are mapped to FAMIX Packages. Namespaces in
Smalltalk have the following properties:

• Namespaces can contain classes and namespaces. Both classes and packages can belong to only one
package.

• Namespaces names should be unique within their encapsulating package.

These properties are in sync with the expected properties in the core FAMIX definition.

3.2.3 Class (interpreted and extended)

Both Smalltalk classes and metaclasses are modelled using the FAMIX Class concept. In Smalltalk every
class has a metaclass associated with it. The metaclass does not have its own name, so we create the name
from the sole metaclass instance concatenated with “_class”.

The new or modified attributes are:

• isAbstract

In Smalltalk a class is abstract if at least one of its methods is declared abstract or if it inherits ab-
stract methods and does not provide an implementation for them.

• categories

A class has a list of categories to which methods can be associated.
• isMetaclass: Boolean; required

Returns true if the class represents a Smalltalk metaclass.
• metaclass: Name; required

if isMetaclass is false, metaclass returns the unique name of a associated metaclass, null otherwise.
Although in Smalltalk asking the class of a metaclass or the metaclass of a metaclass is possible, we
cut the recursion at the level of the class. Otherwise the whole reflective kernel of Smalltalk would
have to be represented.

Package

Class

isAbstract
categories #new
isMetaclass #new
metaclass # new

Smalltalk Extension to FAMIX 163
3.2.4 BehaviouralEntity (interpreted and extended)

In Smalltalk returntypes of methods are not explicit. Therefore, declaredReturnClass and declared-
ReturnType contain the most general type available, namely Object. As in Smalltalk there are only classes
and no primitive types or pointers, declaredReturnType and declaredReturnClass always denote a
class.

The new attribute is:

• inferredReturnClasses 0..N Name; optional

Contains possible inferred returned types of the BehavioralEntity.

3.2.5 Method (interpreted and extended)

Each definition of a method in source code constitutes this entity.

The new or modified attributes are:

• accessControlQualifier

In Smalltalk, all methods are public.
• signature

The signature follows the FAMIX conventions (see section 2.1.2). For instance, m: anInt is stored
as: m:(Object).

• isPureAccessor

A pure read accessor in Smalltalk normally looks like (accessing a variable name):
name

^name

A pure write accessor normally looks like:
name: aString

name := aString

• hasClassScope

In Smalltalk, class methods are instance methods of a metaclass. As metaclasses are represented in
FAMIX as classes and thus distinguished from the class with which they are associated, hasClass-
Scope can only be false.

BehaviouralEntity

declaredReturnClass
declaredReturnType
inferredReturnClasses #new

Method

accessControlQualifier
signature
isPureAccessor
hasClassScope
isAbstract
isConstructor
isPrimitive (): Boolean #new
belongsToCategory (): String #new

164 Modified classes
• isAbstract

A method is abstract, if it invokes the method subclassResponsibility. Consequently, an ab-
stract method in Smalltalk has an implementation (contrary to languages such as Java). An example:

name
self subclassResponsibility

• isConstructor

In Smalltalk there is no special constructor concept. Every class method that returns an instance of
that class is normally considered a constructor. However, there are no special rules. It is just another
method. Therefore, isConstructor is false by default and may be set to true if further analysis is per-
formed.

• isPrimitive: Boolean; optional

Is a predicate telling if the method is a primitive or not.
• belongsToCategory: String; optional.

In Smalltalk, a method is defined into a category, a name for a group of methods.

3.2.6 StructuralEntity (interpreted and Extended)

In Smalltalk types of variables are not explicit. Any object of any type can be stored in a variable. Therefore,
declaredType and declaredClass contain the most general type available, namely Object. As in
Smalltalk there are only classes and no primitive types or pointers, the declaredType and declared-

Class always denote the same FAMIX class.

The new attribute is:

• inferredClasses 0..N Name; optional

Contains possible inferred returned types of the StructuralEntity.

3.2.7 Attribute (interpreted)

The new or modified attributes are:

• hasClassScope

An attribute in Smalltalk has class scope if it is defined as ClassVariable, e.g., shared by all the in-
stances of a class and its subclasses. Metaclass instance variables are stored as instance variables of
the metaclass (which is modelled as just another class) and hence do not have class scope.

• accessControlQualifier

In Smalltalk all attributes are protected, i.e., only accessible within the class that defines the attribute
and its subclasses.

StructuralEntity

declaredType
declaredClass
inferredClasses #new

Attribute

hasClassScope
accessControlQualifier

Smalltalk Extension to FAMIX 165
3.2.8 GlobalVariable (interpreted)

Smalltalk global variables are mapped to the GlobalVariable concept with the exception of classes. These
are modelled as Classes, although a Smalltalk class is also a global variable.

3.2.9 ImplicitVariable (interpreted)

Implicit variables in Smalltalk are self, super and thisContext in certain Smalltalk dialects (such as
VisualWorks, Squeak and Dolphin). self is an implicit instance variable which refers the current object a
method is executing in. super refers to the superclass of the current class defining the method in which su-
per is used. thisContext is a variable that represents the execution stack. Implicit variables will only ap-
pear in a model when they are explicitly referred to.

3.2.10 LocalVariable (interpreted)

Smalltalk local method variables are mapped to the LocalVariable concept. Variables that are local to a
subscope of a method body (f.i., a block definition) are also considered LocalVariables. This leads the
problem of multiple entities with the same unique name if multiple subscopes define local variables with the
same name. For instance, the following code results in two LocalVariables with the unique name
myClass.myMethod.each.

myClass>>myMethod
collection do: [:each | each doSomethingNice].
collection do: [:each | each doSomethingBad]

A possible solution is the explicit representation of blocks.

3.2.11 FormalParameter (interpreted)

In Smalltalk, formal parameters are read-only. For instance,

name: aString
aString := ‘’

is not allowed.

GlobalVariable

ImplicitVariable

LocalVariable

FormalParameter

166 Miscellaneous
3.2.12 InheritanceDefinition (interpreted)

In Smalltalk classes always inherit from a single class (except the root class Object which does not inherit
from any class). Class and metaclass inheritance hierarchies are parallel. So a metaclass always inherits the
metaclass of the superclass of its associated instance (which is a class).

The new or modified attributes are:

• accessControlQualifier

The access control in Smalltalk is always ‘public’. It means that all public methods and protected
attributes are inherited by the subclass and keep their declared visibility.

• index

The index is always ‘null’ as Smalltalk has single inheritance, so an index has no meaning.

3.2.13 Invocation (interpreted)

The new or modified attributes are:

• base

Due to the lack of static type information, in Smalltalk the class of the receiver (and the base through
that class) can only be statically determined when a method is sent to the self or super implicit
variables (note that this does not take the runtime aspect into account, but the static definition of
methods).

• receivingClass

Similar to base, the receiving class can only be statically determined when the receiver is self, super
or a class.

• candidates

For invocations the candidates attribute holds any method with the same signature as invokes. Note
that if the base or receiving class are known the candidates can be restricted to the hierarchy of
base.

3.3 Miscellaneous

Smalltalk does not have functions, thus those entities will never appear in a FAMIX model of a Smalltalk
system.

InheritanceDefinition

accessControlQualifier
index

Invocation

base
receivingClass
candidatesAt

Smalltalk Extension to FAMIX 167
3.4 Pending Issues
Issues not yet covered in this extension are:

• In Smalltalk classes are also global variables. Normally any references to classes are covered
through method of the class that are invoked or attributes that are accesses. However, FAMIX does
not record the dependencies when a class is used only as a global variable (i.e., without a message
send). Some examples:
x := Object

^Object

self m: Object

Object := OrderedCollection

If a class would be modelled as a kind of StructuralEntity (like any other variable) then the above
cases would be modelled as accesses to this StructuralEntity. However, this requires a change in the
FAMIX core.

• Pool dictionaries and pool variables are currently not covered. Possibilities to model these concepts
are
- to create two new StructuralEntity’s called PoolDictionary (as a subclass of GlobalVariable) and

PoolVariable. Additionally, to capture which classes use which pool variables, a relation be-
tween Classes and PoolDictionaries is must be created.

- to model a pool dictionary as a class with only class-scope attributes (the pool variables). Access
to pool variables would be an Access to the class attribute. Note that in Smalltalk it is not possible
to access normal attributes from outside the hierarchy they are defined in.

• Currently it is not determinable in FAMIX that an invocation of the form ‘self class myMetaclass-
Method’ is an invocation of a metaclass method. It is interpreted as follows: the method ‘class’ is
invoked on self, the method ‘myMetaclassMethod’ is recorded to be invoked on ‘some’ expression.
It might be desirable to interpret this special differently for the purpose of recording class method
accesses.

• Depending on the dialect, other grouping concepts such as ‘parcels’ and ‘applications’ exist. We
currently do not cover these.

• We do not cover block closures. As these are submethod-level concepts, it is not likely that we will
cover them in the near future.

168 Pending Issues

APPENDIX D

Java Extension to FAMIX

This appendix describes the Java extension to FAMIX. Before discussing the specific interpretations and
extensions, it gives a short overview of how FAMIX can be extended.

4.1 Extending FAMIX
The basic FAMIX model is modified in three different ways to handle Java sources:

• New classes are added to the common exchange model to model entities and associations unique to
Java. These classes are marked as new entities respectively associations.

• New attributes are added to existing classes of the basic FAMIX model. In this case the class is
marked “extended” and only the new and modified (see below) attributes are listed in the definition
of the modified class.

• The definition of attributes of existing classes are modified or are made more specific. In this case
the corresponding class is marked “interpreted” and the interpreted attributes are listed in the defi-
nition of the modified class. To discriminate new from interpreted attributes, new attributes are ex-
plicitly tagged as being new and interpreted attributes are listed without any type information since
that information hasn't changed anyway.

4.2 Modified classes

4.2.1 Model (interpreted)
Model

sourceLanguage
sourceDialect

170 Modified classes
The new or modified attributes are:

• sourceLanguage

For Java models this attribute always contains the string “Java”.

• sourceDialect

The Java language does not have dialects, but it has versions. If known, this version can be stored
in this attribute. The possibly interesting issues for FAMIX on the language-feature- and-syntax le-
vel (as opposed to added libraries) between the different versions are:

1.0.x -> 1.1.x: - Addition of inner classes (including anonymous ones)
- Final method parameters and local variables

1.1.x -> 1.2.x: - Addition of a new keyword (strictfp)

4.2.2 Package (interpreted)

A Package maps in Java to the Java package construct. Packages in Java have the following properties:

• packages contain classes and packages. Both classes and packages can belong to only one package.
• package names should be unique within their encapsulating package.

These properties are in sync with the expected properties in the core FAMIX definition.

Normally packages in Java map directly to the directory structure of source code, i.e. the source code for
a certain class in a certain package appears in a directory with the same name as the package. Nested
packages appear as subdirectories of the directory with the source code of the encapsulating package.

4.2.3 Class (interpreted and extended)

Both classes and interfaces in Java are mapped to the FAMIX entity Class. Interfaces differ from classes in
that they can only define abstract methods and final static variables. Interfaces cannot inherit from classes
(for a full discussion, see “InheritanceDefinition (interpreted)” on page 174).

The new or modified attributes are:

• isInterface: Boolean; optional

Is a predicate telling if the entity is an interface as opposed to a normal class.

• isPublic: Boolean; optional

Is a predicate telling if the class is defined public or not. Public (as opposed to default) visibility
means the class is visible outside its containing package.

Package

Class

isInterface (): Boolean # new
isPublic (): Boolean # new
isFinal (): Boolean # new
isAbstract
belongsToPackage

Java Extension to FAMIX 171
• isFinal: Boolean; optional

Is a predicate telling if the class is defined final or not. Final classes cannot be subclassed (and sub-
sequently its methods cannot be overridden). Interfaces cannot be final.

• isAbstract

In Java a class is abstract if the class is declared abstract. This is obligatory if one or more of its
methods are abstract. Even if the class does not contain any abstract methods, it can be declared ab-
stract, implying that the class is not allowed to be instantiated. Interfaces are always abstract, but
don’t have to be declared as such (although you may if you want to).

• belongsToPackage

The package to which a class belongs is defined by the package statement at the beginning of a Java
source file that also contains the class definition.

4.2.4 BehaviouralEntity (interpreted and extended)

The following attributes are interpreted as follows:

• declaredReturnType

In Java this attribute can contain any primitive types, array types or classes (and interfaces).
• declaredReturnClass

This attribute contains the unique name of the FAMIX class entity (which is a Java class or inter-
face) if the declaredReturnType denotes such an entity.

4.2.5 Method (interpreted and extended)

Each definition of a method in source code constitutes this entity.

The new or modified attributes are:

• isFinal: Boolean; optional

Is a predicate telling if the method is defined final or not. Final methods cannot be overridden.
• isSynchronized: Boolean; optional

Is a predicate telling if the method is defined synchronized or not. Only one of the synchronized
methods of an instance of a class can be accessed at once at runtime.

BehaviouralEntity

declaredReturnClass
declaredReturnType

Method

isFinal (): Boolean # new
isSynchronized (): Boolean # new
isNative (): Boolean # new
accessControlQualifier
signature
isPureAccessor
hasClassScope
isAbstract
isConstructor

172 Modified classes
• isNative: Boolean; optional

Is a predicate telling if the method is defined native or not. Native methods are implemented in an
external language (for instance, C++) and therefore do not have an implementation in the Java side
of the code.

• accessControlQualifier

The allowed access specifiers for methods are: public, protected, private. An empty specifier means
default visibility, which denotes that the method is visible for all classes within the same package.

• signature

In Java is a method is uniquely distinguished by its name and the number, the types and the position
of its formal parameters. Therefore, the signature string takes the form methodname(T1, ...,Tn)
where T1..n are the types of the formal parameters of the method (see also the FAMIX naming con-
ventions in section 2.1.2). Note that parameters can be declared final, but that this finalness is not
part of the method signature. A subclass can override a method and add or drop any final parameter
modifiers you wish. You can also add or drop final modifiers in a method’s parameters without
causing any harm to existing compiled code that uses that method [GJSB00].

• isPureAccessor

A pure reader accessor in Java normally looks like (accessing a variable name):

String getName {
return name;

}

A pure writer accessor normally looks like:

void setName(String name) {
this.name = name;

}

• hasClassScope

A method in Java has class scope if it is defined static.

• isAbstract

A method is abstract, if it is declared abstract with the abstract keyword. An abstract method in Java
doesn’t have an implementation.

• isConstructor

A constructor in Java has the form of a method with no declared return type and a name identical to
the name of the class it belongs to.

4.2.6 StructuralEntity (interpreted and Extended)

The following attributes are interpreted as follows:

• declaredType

In Java this attribute can contain any primitive types, array types or classes (and interfaces).

StructuralEntity

declaredType
declaredClass

Java Extension to FAMIX 173
• declaredClass

This attribute contains the unique name of the FAMIX class entity (which is a Java class or inter-
face) if the declaredType denotes such an entity.

4.2.7 Attribute (interpreted)

The new or modified attributes are:

• isFinal: Boolean; optional

Is a predicate telling if the attribute is defined final or not. Final attributes are set only once and can-
not be changed afterwards.

• isTransient: Boolean; optional

Is a predicate telling if the (non-static) attribute is defined transient or not. Transient indicates that
an attribute is not part of an object’s persistent state and thus needs not to be serialized with the ob-
ject.

• isVolatile: Boolean; optional

Is a predicate telling if the attribute is defined volatile or not. Volatile specifies that an attribute is
used by synchronized threads and that the compiler should not attempt to perform optimisations
with it.

• hasClassScope

An attribute in Java has class scope if it is defined static.

• accessControlQualifier

The allowed access specifiers are: public, protected, private. An empty specifier means default vi-
sibility, which denotes that the attribute is visible for all classes within the same package.

4.2.8 ImplicitVariable (interpreted)

Implicit variables in Java are this, super and class. this is an implicit instance variable which refers
the current object a method is executing in. super refers to the superclass of the current object. class is
not an implicit variable in the strict sense of the word (as it is also a keyword in Java). An expression like
String.class evaluates to a reference to the String class object. This works for all types, including the
primitive types. It is close enough, however, to an implicit static variable to be modelled as an implicit va-
riable. Implicit variables will only appear in a transfer when they are explicitly referenced by other entities.

Attribute

isFinal (): Boolean # new
isTransient (): Boolean # new
isVolatile (): Boolean # new
hasClassScope
accessControlQualifier

ImplicitVariable

174 Modified classes
4.2.9 LocalVariable (interpreted)

The new or modified attributes are:

• isFinal: Boolean; optional

Is a predicate telling if the attribute is defined final or not. Final local variables are set only once and
cannot be changed afterwards.

4.2.10 FormalParameter (interpreted)

The new or modified attributes are:

• isFinal: Boolean; optional

Is a predicate telling if the attribute is defined final or not. Final parameters cannot be changed with-
in the body of the method it is a parameter of. Note that the finalness of a parameter is not part of
the method signature — it is simply a detail of the implementation. A subclass can override a meth-
od and add or drop any final parameter modifiers you wish. You can also add or drop final modifiers
in a method’s parameters without causing any harm to existing compiled code that uses that method.

4.2.11 InheritanceDefinition (interpreted)

In Java classes always inherit from a single class (except the root class Object that does not inherit from any
class). A class can implement multiple interfaces, which simulates some kind of multiple inheritance, but as
interfaces do not have any implementation, resolving which method needs to be executed, is not a problem.
Interfaces can inherit from multiple interfaces. In FAMIX classes and interfaces are treated similarly, as
shown by the fact that they are both represented as classes, therefore both class inheritance and interface im-
plementation is represented by an InheritanceDefinition in FAMIX.

The new or modified attributes are:

• accessControlQualifier

The access control in Java is always ‘public’. It means that all public and protected attributes and
methods are inherited by the subclass and keep their declared visibility.

• index

The index is always ‘null’ as Java has single inheritance and therefore name collisions cannot ap-
pear. Java classes can implement multiple interfaces, but as interfaces do not implement any beha-
viour name collisions do not cause any problems. Interfaces can contain constants, but a class cannot
implement multiple interfaces that contain constants with the same name with possibly different
values.

LocalVariable

isFinal (): Boolean # new

FormalParameter

isFinal (): Boolean # new

InheritanceDefinition

accessControlQualifier
index

Java Extension to FAMIX 175
4.2.12 Invocation (interpreted)

The new or modified attributes are:

• base

In Java this attribute contains the statically determinable class of the expression receiving the invo-
cation. For example:
MyClass r = new MyClass();

…

r.m();

Then r is the receiver and therefore MyClass the receiving class. If the receiving class also contains
a method with the invoked signature, it is the base. Otherwise the class defining the inherited meth-
od with that signature it the base.

• receivingClass

See the definition of base.
• candidates

For invocations the candidates attribute holds either all methods overriding the method base::in-
vokes, or if base is a Java interface it holds all methods with the same signature in the class hierar-
chies that implement that interface.

4.3 New classes

4.3.1 TypeCast

TypeCast is a subclass of Assocation. It models Java type cast (e.g., (MyClass)variable). Type casts are
interesting for reengineering as they often point to problems in the design of a system. There will be an in-
stance of this class for every type cast occurring in the source code, even if the cast is between the same
types, because we are interested in all the places where casts occur.

The attributes of TypeCast are:

• belongsToBehaviour: Name; mandatory

Refers to the BehaviouralEntity the cast appears in.
• fromType: Name; optional

Refers to the unique name of the type the cast expression has. This is the declared type of variable
in the above example.

• toType: Name; optional

Refers to the unique name of the type the expression is cast to (MyClass in the above example).

Invocation

base
receivingClass
candidatesAt

TypeCast

belongsToBehaviour (): Name
fromType (): Name
toType (): Name

176 Miscellaneous
4.4 Miscellaneous
Java does not have functions or global variables, thus those entities will never appear in a FAMIX model of
a Java system. Next to that, arrays and primitive types are not handled explicitly in this FAMIX extension
either.

Then there is a minor issue about file visibility. Normally a class with default visibility is visible within
its package. However, when such a class is defined in the same file of another class and the name of the file
is the same as the name of the other with the ‘.java’ extension and theses classes are not defined in the default
package, then the class is not visible outside the file, even to classes in the same package that are defined in
other files. This issue is not dealt with in this Java language plug-in, because it’s a minor issue and in model
transfers we assume a compilable system anyway.

4.5 Pending Issues
Issues not yet covered in this plug-in are:

• Nested classes, inner classes, anonymous classes. A solution for this needs to be synchronized with
other language plugins (most notably C++).

• Implicit methods. In Java there are certain methods defined implicitly. These are the default con-
structors and the methods this(..), super(..) (with or without parameters), which are some kind of ali-
ases to constructors of either the current class or its superclass. If introduced in the FAMIX exten-
sion, these implicit methods should only appear in a transfer when they are explicitly referenced by
other entities. Implicit methods can be introduced as Methods with a boolean isImplicit attribute set
to true. Another possibility is to create a new entity called ImplicitMethod (similar to ImplicitVari-
able). However, this causes problems on the language independent level, as entities and associations
on the language independent level (such as in Invocations) may reference this language specific en-
tity. For that to work, ImplicitMethod should be defined on the FAMIX core level rather than the
Java extension level.

• Static and instance initialisers. A possibility is to model these as a special kind of method.

Bibliography

[AT98] M. N. Armstrong and C. Trudeau. Evaluating architectural extractors. In Proceedings of
WCRE’98, pages 30–39. IEEE Computer Society, 1998.

[Bar99] Holger Bär. FAMIX C++ language plug-in 1.0. Technical report, University of Berne, Sep-
tember 1999.

[BBC+99] Philip A. Bernstein, Thomas Bergsträsser, Jason Carlson, Shankar Pal, Paul Sanders, and
David Shutt. Microsoft Repository Version 2 and the Open Information Model. Informa-
tion Systems, 24(2):71–98, 1999.

[BC00] Bell Canada. DATRIX abstract semantic graph reference manual (version 1.4). Technical
report, Bell Canada, May 2000.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

[Bis92] Walter R. Bischofberger. Sniff: A pragmatic approach to a c++ programming environment.
In C++ Conference, pages 67–82, 1992.

[BLFIM98] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. Uniform Resource Identifiers
(URI): Generic syntax. Technical report, RFC 2396, August 1998. http://www.ietf.org/rfc/
rfc2396.txt.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J. Mow-
bray. Antipatterns, 1998.

[Boe88] Barry W. Boehm. A spiral model of software development and enhancement. IEEE Com-
puter, 21(5):61–72, 1988.

[Bor01] Michael Borchardt. A feasibility study for a C++ refactoring engine. Master’s thesis, Uni-
versity of Antwerp, August 2001.

[BPSM98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0 - w3c recommendation 10-february-1998. Technical Report REC-xml-
19980210, World Wide Web Consortium, February 1998.

[Cas91] Eduardo Casais. Managing Evolution in Object Oriented Environments: An Algorithmic
Approach. Ph.D. thesis, Centre Universitaire d’Informatique, University of Geneva, May
1991.

178
[Cas92] Eduardo Casais. An incremental class reorganization approach. In O. Lehrmann Madsen,
editor, Proceedings ECOOP’92, LNCS 615, pages 114–132, Utrecht, The Netherlands,
June 1992. Springer-Verlag.

[Cas98] Eduardo Casais. Re-engineering object-oriented legacy systems. Journal of Object-Ori-
ented Programming, 10(8):45–52, January 1998.

[CC90] Elliot J. Chikofsky and James H. Cross, II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, pages 13–17, January 1990.

[CEK+00] Jörg Czeranski, Thomas Eisenbarth, Holger M. Kienle, Rainer Koschke, Erhard Plödere-
der, Daniel Simon, Yan Zhang, Jean-François Girard, and Martin Würthner. Data exchange
in Bauhaus. In Proceedings WCRE’00. IEEE Computer Society Press, November 2000.

[CGK98] Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. A C++ data model sup-
porting reachability analysis and dead code detection. IEEE Transactions on Software En-
gineering, 24(9):682–693, September 1998.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-oriented reengineering.
In Proceedings of TOOLS 30 (USA), pages 18–32, 1999.

[Com94] CDIF Technical Committee. CDIF framework for modeling and extensibility. Technical
Report EIA/IS-107, Electronic Industries Association, January 1994. See http://
www.cdif.org/.

[DD99] Stéphane Ducasse and Serge Demeyer, editors. The FAMOOS Object-Oriented Reengi-
neering Handbook. University of Berne, October 1999. See http://www.iam.unibe.ch/~fa-
moos/handbook.

[DDHL96] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with over-
loading. In Proceedings of OOPSLA’96, pages 251–267, 1996.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engineering plat-
form combining metrics and program visualization. In Francoise Balmas, Mike Blaha, and
Spencer Rugaber, editors, Proceedings WCRE’99 (6th Working Conference on Reverse
Engineering). IEEE, October 1999.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why unified is not universal.
UML shortcomings for coping with round-trip engineering. In Bernhard Rumpe, editor,
Proceedings UML’99 (The Second International Conference on The Unified Modeling
Language), LNCS 1723, Kaiserslautern, Germany, October 1999. Springer-Verlag.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an extensible language-
independent environment for reengineering object-oriented systems. In Proceedings of the
Second International Symposium on Constructing Software Engineering Tools (CoSET
2000), June 2000.

[DMO00] Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink) version
1.0 - w3c proposed recommendation 20 december 2000. Technical Report PR-xlink-
20001220, World Wide Web Consortium, December 2000.

179
[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent ap-
proach for detecting duplicated code. In Hongji Yang and Lee White, editors, Proceedings
ICSM’99 (International Conference on Software Maintenance), pages 109–118. IEEE,
September 1999.

[Fav01] Jean-Marie Favre. Gsee: a generic software exploration environment. In Proceedings of the
9th International Workshop on Program Comprehension, pages 233–244. IEEE, May
2001.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[FHK+97] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S.
Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[FR98] Richard Fanta and Vaclav Rajlich. Reengineering object-oriented code. In Proceedings of
the International Conference on Software Maintenance, 1998.

[Fre00] Michael Freidig. XMI for FAMIX. Informatikprojekt, University of Berne, June 2000.

[FY00] Brian Foote and Joseph W. Yoder. Big ball of mud. In N. Harrison, B. Foote, and H. Roh-
nert, editors, Pattern Languages of Program Design, volume4, pages 654–692. Addison-
Wesley, 2000.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

[HEH+96] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Database reverse engi-
neering: From requirements to CARE tools. Automated Software Engineering, 3(1-2),
June 1996.

[Hol98] Richard C. Holt. An introduction to TA: The Tuple-Attribute language. Technical report,
University of Waterloo, November 1998.

[HWS00] Richard C. Holt, Andreas Winter, and Andy Schürr. GXL: Towards a standard exchange
format. In Proceedings WCRE’00, November 2000.

[HYR96] D. R. Harris, A. S. Yeh, and H. B. Reubenstein. Extracting architectural features from
source code. Automated Software Engineering, 3(1-2):109–139, 1996.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

[jFa] jFactor. http://www.instantiations.com/jfactor/.

[JGR99] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing software release histories: The
use of color and third dimension. In ICSM’99 Proceedings (International Conference on
Software Maintenance). IEEE Computer Society, 1999.

[JO93] Ralph E. Johnson and William F. Opdyke. Refactoring and aggregation. In Object Technol-
ogies for Advanced Software, First JSSST International Symposium, volume 742 of Lec-
ture Notes in Computer Science, pages 264–278. Springer-Verlag, November 1993.

180
[jRe] JRefactory. http://jrefactory.sourceforge.net/.

[JUn] JUnit. http://www.junit.org.

[Kaz96] R. Kazman. Tool support for architecture analysis and design, 1996. Proceedings of Work-
shop (ISAW-2) joint Sigsoft.

[KN01] Georges Golomingi Koni-N’sapu. A scenario based approach for refactoring duplicated
code in object oriented systems. Diploma thesis, University of Berne, June 2001.

[Kos00] Rainer Koschke. Atomic Architectural Component Recovery for Program Understanding
and Evolution. PhD thesis, Universität Stuttgart, 2000.

[KSRP99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-based
reverse engineering of design components. In Proceedings of ICSE’99, May 1999.

[Lan99] Michele Lanza. Combining metrics and graphs for object oriented reverse engineering. Di-
ploma thesis, University of Bern, October 1999.

[LB85] M. M. Lehman and L. Belady. Program Evolution - Processes of Software Change. London
Academic Press, 1985.

[LDS01] Michele Lanza, Stéphane Ducasse, and Lukas Steiger. Understanding software evolution
using a flexible query engine. In Proceedings of the Workshop on Formal Foundations of
Software Evolution, 2001.

[Leh96] M. M. Lehman. Laws of software evolution revisited. In European Workshop on Software
Process Technology, pages 108–124, 1996.

[Let98] Timothy C. Lethbridge. Requirements and proposal for a Software Information Exchange
Format (SIEF) standard. Technical report, University of Ottawa, November 1998. http://
www.site.uottawa.ca/~tcl/papers/sief/standardProposal-v1.html.

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical Guide. Pren-
tice-Hall, 1994.

[LLB+98] Bruno Laguë, Charles Leduc, André Le Bon, Ettore Merlo, and Michel Dagenais. An ana-
lysis framework for understanding layered software architectures. In Proceedings
IWPC’98, 1998.

[LS99] Panagiotis K. Linos and Stephen R. Schach. Comprehending multilanguage and multipar-
adigm software. In Proceedings of the short papers of ICSM’99, pages 25–28, August
1999.

[MADSM01] C. Best, M.-A. D. Storey and J. Michaud. Shrimp views: An interactive and customizable
environment for software exploration. In Proceedings of International Workshop on Pro-
gram Comprehension (IWPC 2001), 2001.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. In Proceedings
OOPSLA’87, ACM SIGPLAN Notices, pages 147–155, December 1987. Published as Pro-
ceedings OOPSLA’87, ACM SIGPLAN Notices, volume 22, number 12.

[MN97] Gail C. Murphy and David Notkin. Reengineering with reflexion models: A case study.
IEEE Computer, 8:29–36, 1997.

181
[MNGL98] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An emperical study
of static call graph extractors. ACM Transactions on Software Engineering and Methodo-
logy, 7(2):158–191, April 1998.

[Moo96] Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. In
Proceedings of OOPSLA’96 Conference, pages 235–250. ACM Press, 1996.

[Mul86] H. A. Müller. Rigi - A Model for Software System Construction, Integration, and Evalua-
tion based on Module Interface Specifications. PhD thesis, Rice University, 1986.

[MWD99] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying software architec-
tures using virtual software classifications. In Proceedings of TOOLS-Europe 99, pages
33–45, June 1999.

[Neb99] Robb Nebbe. FAMIX Ada language plug-in 2.2. Technical report, University of Berne,
August 1999.

[OCN99] Mel Ó Cinnéide and Paddy Nixon. A methodology for the automated introduction of de-
sign patterns. In Proceedings ICSM’99. IEEE Computer Society Press, August 1999.

[OG97] Open Group. DCE 1.1: Remote procedure call. Technical Report C706, Open Group, Au-
gust 1997.

[OJ93] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring. In
Proceedings of the 1993 ACM Conference on Computer Science, pages 66–73. ACM
Press, 1993.

[OMG97] Object Management Group. Meta object facility (MOF) specification. Technical Report
ad/97-08-14, Object Management Group, September 1997.

[OMG98] Object Management Group. XML Metadata Interchange (XMI). Technical Report ad/98-
10-05, Object Management Group, February 1998.

[OMG99] Object Management Group. Unified Modeling Language (version 1.3). Technical report,
Object Management Group, June 1999.

[OMG00] Object Management Group. Meta Object Facility (MOF) specification (version 1.3). Tech-
nical report, Object Management Group, March 2000.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois, 1992.

[Par98] ParcPlace. VisualWorks 3.0, 1998. User Guide, Cookbook, Reference Manual.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk. Theory
and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-oriented ap-
plications from static and dynamic information. In Hongji Yang and Lee White, editors,
Proceedings ICSM’99 (International Conference on Software Maintenance), pages 13–
22. IEEE, September 1999.

[Ree96] Trygve Reenskaug. Working with Objects: The OOram Software Engineering Method.
Manning Publications, 1996.

182
[Rob99] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of Il-
linois, 1999.

[RSK00] Sébastien Robitaille, Reinhard Schauer, and Rudolf K. Keller. Bridging program compre-
hension tools by design navigation. In Proceedings of the International Conference on
Software Maintenance (ICSM 2000), 2000.

[Sch01] Andreas Schlapbach. Generix XMI support for the MOOSE reengineering environment.
Informatikprojekt, University of Bern, June 2001.

[SDSK00] Guy Saint-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a model interchange
format. the SPOOL case study. In Proceedings of the Thirty-Third Annual Hawaii Interna-
tional Conference on System Sciences, 2000.

[SGMZ98] Benedikt Schulz, Thomas Genssler, Berthold Mohr, and Walter Zimmer. On the computer
aided introduction of design patterns into object-oriented systems. In Proceedings of the
TOOLS 27 Conference (Asia 1998). IEEE Computer Society Press, 1998.

[SMHP+97] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, iLogix, IBM, ObjecTime, Platinum Tech-
nology, Ptech, Taskon, Reich Technologies, and Softeam. Object Constraint Language
Specification (version 1.1). Rational Software Corporation, September 1997.

[Som96] Ian Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.

[SS00] Susan Elliott Sim and Margaret-Anne D. Storey. A structured demonstration of program
comprehension tools. In Proceedings of WCRE 2000, pages 184–193, 2000.

[Ste01] Lukas Steiger. Recovering the evolution of object oriented software systems using a flexi-
ble query engine. Diploma thesis, University of Bern, June 2001.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third edition,
1997.

[Tak96] TakeFive Software GmbH. SNiFF+, 1996.

[TB99a] Lance Tokuda and Don Batory. Automating three modes of evolution for object-oriented
software architecture. In Proceedings COOTS’99, May 1999.

[TB99b] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings. In Pro-
ceedings of Automated Software Engineering, 1999.

[TD99] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to Rational Rose – interoperability us-
ing a common exchange model. In SNiFF+ User’s Conference, January 1999. Also ap-
peared in the "Proceedings of the ESEC/FSE’99 Workshop on Object-Oriented Re-
engineering (WOOR’99)" – Technical Report of the Technical University of Vienna
(TUV-1841-99-13).

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-model
for language-independent refactoring. In Proceedings ISPSE 2000. IEEE, 2000.

[Tic99] Sander Tichelaar. FAMIX Java language plug-in 1.0. Technical report, University of
Berne, September 1999.

183
[Tur81] W. Turski. Software stability. In Proceedings for the 6th ACM Conference on Systems Ar-
chitecture, 1981.

[Uni96] University of Karlsruhe. COMPOST, 1996. http://i44www.info.uni-karlsruhe.de/
compost.

[URE] Unisys Universal Repository (UREP). http://www.unisys.com/marketplace/urep/.

[Wer99] Michael M. Werner. Facilitating Schema Evolution With Automatic Program Transforma-
tion. PhD thesis, Northeastern University, July 1999.

[WH92] Norman Wilde and Ross Huitt. Maintenance support for object-oriented programs. IEEE
Transactions on Software Engineering, SE-18(12):1038–1044, December 1992.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of Ob-
ject-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.

[WWWC99] World Wide Web Consortium. Resource Description Framework (RDF) model and syntax
specification. Technical report, World Wide Web Consortium, February 1999.

[YHC97] A. S. Yeh, D. R. Harris, and M. P. Chase. Manipulating recovered software architecture
views. In Proceedings of ICSE’97, 1997.

184

Curriculum Vitae

Personal Information

Name: Sander Tichelaar

Date of Birth: 07-03-1972

Place of Birth: Bergambacht, The Netherlands

Nationality: Dutch

Education

1997-2001 PhD student in the Software Composition Group, University of Berne,
Switzerland. During this time I have been mainly working on a European Esprit project
(FAMOOS) on reengineering object-oriented systems.

1990-1997 Rijksuniversiteit Groningen (University of Groningen, The Netherlands),
Master's degree in Computer Science, May 1997,
Master’s thesis title: “A Coordination Component Framework for Open Distributed Sys-
tems”.

1984-1990 Christelijk Gymnasium Utrecht (Grammar School in Utrecht, The Netherlands).

186

	Modeling Object-Oriented Software for Reverse Engineering and Refactoring
	Modeling Object-Oriented Software for Reverse Engineering and Refactoring
	CHAPTER 1 Introduction
	1.1 Modelling software to support reengineering tools
	1.2 Contributions
	1.3 Roadmap

	CHAPTER 2 State-of-the-Art in Reengineering Metamodels and Tools
	2.1 Definitions in Reengineering
	2.2 Object-Oriented Reengineering
	2.3 Reengineering Tools and Environments
	2.3.1 Actual Reengineering Environments
	2.3.2 Metamodels for Reengineering

	2.4 Refactoring and Code Reorganisation
	2.5 Discussion
	2.6 Conclusion

	CHAPTER 3 A Design Space for Reengineering Tool Infrastructures
	3.1 Introducing the design space
	3.1.1 Scenario
	3.1.2 Infrastructural issues summarised
	3.1.6 Design Space in a Nutshell

	3.2 Language/Paradigm Axis
	3.3 Level of Detail Axis
	3.4 Multiple Models Axis
	3.5 Grouping Axis
	3.6 Extensibility Axis
	3.6.1 Adding new entities to a metamodel
	3.6.2 Adding attributes to existing entities.
	3.6.3 Annotating entities
	3.6.4 Metametamodel extensibility limits

	3.7 Incremental Loading Axis
	3.8 Storage Medium Axis
	3.9 Exchange Format Structure Axis
	3.9.1 Nested, chunk and flat formats
	3.9.2 Discussion

	3.10 Entity Reference Axis
	3.10.1 Unique identifiers
	3.10.2 Unique naming scheme
	3.10.3 Analysis

	3.11 Metametamodeling Axis
	3.12 Conclusion

	CHAPTER 4 FAMIX, a Language-Independent Metamodel for Modeling Object-Oriented Software
	4.1 Requirements
	4.2 Overview of the FAMIX core
	4.3 Extensibility
	4.4 Multiple language support
	4.4.1 General multi-language design decisions
	4.4.2 Language mappings and extensions

	4.5 Reference Schema
	4.6 Support for information Exchange
	4.7 Metametamodeling
	4.8 Why not UML?
	4.9 Conclusion

	CHAPTER 5 The Moose Reengineering Environment
	5.1 Requirements for a Reengineering Environment
	5.2 Architecture
	5.3 Querying and Navigation
	5.3.1 Programming Queries
	5.3.2 Querying and navigating using the Moose Explorer

	5.4 Metrics and other analysis support
	5.5 Grouping
	5.6 Moose Refactoring Engine
	5.7 Information Exchange and Tool Integration
	5.7.1 Information Exchange with CDIF and XMI
	5.7.2 Tool Integration Framework and Tools

	5.8 Industrial Case Studies
	5.9 Discussion
	5.9.1 Observations
	5.9.2 The requirements revisited

	5.10 Conclusion

	CHAPTER 6 Language-Independent Refactoring
	6.1 Language subsets and mappings
	6.1.1 Language subsets
	6.1.2 Language mappings

	6.2 The Refactoring Template
	6.3 The refactorings in detail
	Add Class (classname, package, superclasses, subclasses)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Class (class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Class (class, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Method (name, class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Method (method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Method (method, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Pull Up Method (method, superclass)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Push Down Method (method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Parameter (name, method)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Parameter (parameter)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Add Attribute (name, class)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Remove Attribute (attribute)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Rename Attribute (attribute, new name)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Pull Up Attribute (attribute, superclass)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	Push Down Attribute (attribute)

	Preconditions
	Precondition analysis
	Related work
	Discussion
	6.4 Validation
	6.5 Discussion

	CHAPTER 7 The Moose Refactoring Engine
	7.1 Architecture
	7.2 Validation
	7.2.1 A non-trivial refactoring sequence on a toy banking system
	7.2.2 Experiments on Moose and JUnit

	7.3 Discussion

	CHAPTER 8 Conclusion and Future Work
	APPENDIX A Table of Refactorings
	APPENDIX B The FAMIX 2.1 specification
	2.1 Overview
	2.1.1 Basic Data Types
	2.1.2 Unique Naming Conventions
	2.1.3 Level of Extraction

	2.2 Definition of FAMIX
	2.2.1 The abstract part: Object, Entity and Association
	2.2.2 Model
	2.2.3 Package
	2.2.4 Class
	2.2.5 BehaviouralEntity Hierarchy
	2.2.6 BehaviouralEntity
	2.2.7 Method
	2.2.8 Function
	2.2.9 StructuralEntity Hierarchy
	2.2.10 StructuralEntity
	2.2.11 Attribute
	2.2.12 GlobalVariable
	2.2.13 ImplicitVariable
	2.2.14 LocalVariable
	2.2.15 FormalParameter
	2.2.16 InheritanceDefinition
	2.2.17 Access
	2.2.18 Invocation
	2.2.19 Argument Hierarchy
	2.2.20 ExpressionArgument
	2.2.21 AccessArgument

	2.3 Miscellaneous
	2.3.1 CDIF Multi-valued String Attributes

	APPENDIX C Smalltalk Extension to FAMIX
	3.1 Extending FAMIX
	3.2 Modified classes
	3.2.1 Model (interpreted)
	3.2.2 Package (interpreted)
	3.2.3 Class (interpreted and extended)
	3.2.4 BehaviouralEntity (interpreted and extended)
	3.2.5 Method (interpreted and extended)
	3.2.6 StructuralEntity (interpreted and Extended)
	3.2.7 Attribute (interpreted)
	3.2.8 GlobalVariable (interpreted)
	3.2.9 ImplicitVariable (interpreted)
	3.2.10 LocalVariable (interpreted)
	3.2.11 FormalParameter (interpreted)
	3.2.12 InheritanceDefinition (interpreted)
	3.2.13 Invocation (interpreted)

	3.3 Miscellaneous
	3.4 Pending Issues

	APPENDIX D Java Extension to FAMIX
	4.1 Extending FAMIX
	4.2 Modified classes
	4.2.1 Model (interpreted)
	4.2.2 Package (interpreted)
	4.2.3 Class (interpreted and extended)
	4.2.4 BehaviouralEntity (interpreted and extended)
	4.2.5 Method (interpreted and extended)
	4.2.6 StructuralEntity (interpreted and Extended)
	4.2.7 Attribute (interpreted)
	4.2.8 ImplicitVariable (interpreted)
	4.2.9 LocalVariable (interpreted)
	4.2.10 FormalParameter (interpreted)
	4.2.11 InheritanceDefinition (interpreted)
	4.2.12 Invocation (interpreted)

	4.3 New classes
	4.3.1 TypeCast

	4.4 Miscellaneous
	4.5 Pending Issues
	Curriculum Vitae Personal Information
	Education

