
Quality-Aware Tooling

Yuriy Tymchuk

Quality-Aware Tooling

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Yuriy Tymchuk

von Ukraine

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz
Institut für Informatik

Universität Bern

This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2017 by Yuriy Tymchuk
yuriy.tymch.uk

The contents of this book are licensed under the terms of the Creative
Commons Attribution-ShareAlike 4.0 International license.

You are free:

to Share — copy and redistribute the material in any medium or
format;

to Adapt — remix, transform, and build upon the material for any
purpose, even commercially.

Under the following conditions:

Attribution. You must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do
so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

Share Alike. If you remix, transform, or build upon the material,
you must distribute your contributions under the same license
as the original.

The full license is available at
https://creativecommons.org/licenses/by-sa/4.0/

Attribution–ShareAlike

ISBN: 978-0-244-05081-8
First edition, November 2017

scg.unibe.ch
http://yuriy.tymch.uk
https://creativecommons.org/licenses/by-sa/4.0/

A c k n o w l e d g e m e n t s

While this dissertation is just one small step for mankind, it is one
giant leap for me. I sincerely thank everyone who supported me
on this journey. Although it is nearly impossible to mention every
individual who contributed to my Ph.D. experience, I will do my
best in the following acknowledgments.

* * *
First of all, I want to express my gratitude to Oscar Nierstrasz who
gave me an opportunity to work at the Software Composition Group
in gorgeous Bern and who saved my doctoral studies. I thank him
for his patience and tolerance for my mistakes, proofreading the
papers that had to be ready “for yesterday,” and for the guidance
on my Ph.D. trail. I will always admire the way Oscar managed
to organize the work in our group and keep track of everything
possible. I am going to miss the coffee-break puzzles and the rubber
chicken.

I am grateful to Radu Marinescu for accepting to be on my Ph.D.
committee and for reviewing this dissertation. I thank Paolo Favaro
for accepting to chair the examination.

I was lucky to spend a couple of years surrounded by smart,
fun and friendly members of the Software Composition Group. Big
thanks to Andrei for inspiring me with his work and his thesis,
Jan for discussing exciting ideas (and letting me know that my
Google calendar issue will not be fixed), and Boris for inserting fun
transitions between my context switches. Thank you, Manuel, for
building Randi, supervising Radi, being a great travel companion,
and proofreading this dissertation in a turbo-mode. I am grateful
to Nevena who is always caring when it comes to important mat-
ters, and for mindful discussions especially the ones over a glass of
sangria. I thank Claudio for teaching me how to interact with the
Switzerland, Leonel for various parenting ideas, and Mohammad for
proving that a deadline of 15 minutes is not dead enough. I also

i

thank Andrea for leaving the git server in an adequate state, Pascal
for the fresh ideas that he brought to the group, and Oli for shar-
ing his DIY experience during coffee breaks. I want to express my
gratitude to Haidar for giving me a master class of applying for
apartments in Bern, giving away lots of baby stuff, recommending
me for a new job, and always sharing new swiss life hacks.

I also want to thank David, Kevin, Lars, and Radi for the work
that we did together and their technical assistance.

I thank Iris for helping me to get an apartment, organizing
friendly events, and solving plenty of my problems, many of which
I did not even know about. I thank Bettina for taking care of my
ever-changing contract extensions and for helping me to organize
the defense.

My Ph.D. journey did not start in Bern though. I am grateful to
Michele Lanza for inviting me to the sunny Lugano and supervising
my doctoral research. I will always remember the strict presentation
rehearsals, writing of the best abstracts in the world, and Fantozzi
quotes during the coffee breaks. I want to thank the whole Lugano
team: Andrea for involuntarily appearing in the fun photos that I
took (and for guidance in my research), Luca for teaching me Italian
and learning Ukrainian from me, Roberto for sharing the sense of
beauty in technology, and Tommaso for being a good friend. I want
to especially thank all the Italians with whom I worked for inspiring
me to improve my culinary skills. Who knows how often I am going
to benefit from my Ph.D. diploma, but I can always eat a tasty pasta
or a delicious tiramisu.

I would not have gone this path if Stephane Ducasse did not
invite me to his research group for an internship. I thank him for
always staying in touch, working with other Ukrainian students,
teaching in Ukrainian universities and regularly brainstorming on
the future projects. I also appreciate the help and guidance of Nicolas
Anquetil and Anne Etien.

I thank the people from Smalltalk and Pharo communities with
whom I tightly interacted during the last few years. I am espe-
cially grateful to Tudor Girba, Marcus Denker, Esteban Lorenzano,
Clement Bera, Alexandre Bergel, Gustavo Santos, Dale Henrichs,
Aliaksei Syrel, Max Leske, Guillermo Polito, Stephan Eggermont,
Tim McKinnon and others with whom I programmed, brainstormed,
or simply went out for a beer.

ii

I am grateful to the APPS Faculty of the Ukrainian Catholic
University for keeping a part my consciousness in my homeland.
I thank Yaroslav Prytula for warmly welcoming me every time I
visit Lviv, and for the engaging discussions over an aromatic cup of
coffee. I thank Oleksii Molchanovskyi for giving me an opportunity
to teach in the master program for data scientists and for sharing new
ideas about education. I am grateful to Myroslava Romaniuk who
doubtlessly programmed day and night to release a new version of
Renraku. I thank Oleksandr Zaytsev who appeared out of nowhere,
started to build cool projects, and organized a Ukrainian Smalltalk
Users Group in Lviv.

I am sincerely grateful for all the aid of that my extended family
provided over the course of my Ph.D. studies. Some family members
understood me, and some did not. Some of them agreed with me,
and the others did not. But they believed in me, supported me, and
prayed for me. I am especially grateful to my parents who gave
me a fantastic start in this life and raised me stubborn enough to
survive the Ph.D. experience.

Finally, I want to thank my wife who proofread my papers,
reviewed my slides, challenged my ideas, prepared tasty lunches,
and said “Everything is going to be good” while hugging me at
the end of a long day. I thank you, Natalia, for your unconditional
love that made me move forward and create without limits. This
dissertation could never happen without you.

There is one more person. My daughter joined me during my
doctoral studies and immediately entered most of the activities
of our family. Sophia, I thank you for falling asleep on my chest,
stubbornly proposing edits to this dissertation, and teaching me
more and more every single day. You are not going to remember the
presentations that I rehearsed in front of you when you will learn
to speak, and I have removed all the characters that you typed into
my manuscripts. Nevertheless, you have changed me, and there is
a part of you in this book as well.

Yuriy Tymchuk
November 21, 2017

iii

To Natalia and Sophia who always support my crazy
ideas and continue loving me.

Наталі та Софії, які завжди підтримують мої
шалені ідеї та продовжують мене любити.

v

A b s t r a c t

Programming is a fascinating activity that can yield results capable
of changing people lives by automating daily tasks or even com-
pletely reimagining how we perform certain activities. Such a great
power comes with a handful of challenges, with software main-
tainability being one of them. Maintainability cannot be validated
by executing the program but has to be assessed by analyzing the
codebase. This tedious task can be also automated by the means of
software development. Programs called static analyzers can process
source code and try to detect suspicious patterns. While these pro-
grams were proven to be useful, there is also an evidence that they
are not used in practice.

In this dissertation we discuss the concept of quality-aware tool-
ing — an approach that seeks a promotion of static analysis by
seamlessly integrating it into development tools. We describe our
experience of applying quality-aware tooling on a core distribution
of a development environment. Our main focus is to provide live
quality feedback in the code editor, but we also integrate static anal-
ysis into other tools based on our code quality model. We analyzed
the attitude of the developers towards the integrated static analy-
sis and assessed the impact of the integration on the development
ecosystem.

As a result 90% of software developers find the live feedback
useful, quality rules received an overhaul to better match the con-
temporary development practices, and some developers even exper-
imented with a custom analysis implementations. We discovered
that live feedback helped developers to avoid dangerous mistakes,
saved time, and taught valuable concepts. But most importantly
we changed the developers’ attitude towards static analysis from
viewing it as just another tool to seeing it as an integral part of their
toolset.

vii

C o n t e n t s

1 Introduction 1
1.1 The Assisting Ecosystem 3

1.2 Contributions . 4

1.3 Outline . 7

2 State of the Art 9
2.1 Static Analyzers . 10

2.2 Static Analysis Integration 12

2.3 Static Analysis Usage 14

3 Renraku 19
3.1 The Quality Triad 21

3.2 The Critique . 22

3.2.1 Source Anchors 24

3.2.2 Custom Actions 25

3.2.3 Specializing Critiques 26

3.3 The Rule . 27

3.3.1 Specifying a Rule Interest 30

3.3.2 Specializing Rules 32

3.4 The Target . 33

3.5 Compatibility with SmallLint 33

3.6 Creating Rules . 37

3.7 Creating Tools . 38

3.8 Beyond Standard Analyzers 41

3.8.1 Issue Tracker Integration 41

3.8.2 Test Coverage 41

3.8.3 Exception Properties 43

3.9 Conclusions . 44

4 QualityAssistant. Design & Reception 47
4.1 The Precursor: CriticBrowser 51

4.1.1 CriticBrowser Survey 53

4.2 QualityAssistant Usability Survey 56

ix

4.2.1 Feature Usage 57

4.2.2 Reaction to Rule Changes 59

4.2.3 Survey Summary 61

4.3 False False Positives 61

4.3.1 The False False Positive Concept 62

4.3.2 The True False Positives 64

4.3.3 The False False Positives 65

4.3.4 False Positive Summary 70

4.4 Live Feedback Evaluation 71

4.4.1 Interview Setup 73

4.4.2 Interview Results 76

4.4.3 Usefulness for Novices 91

4.4.4 Threats to Validity 92

4.4.5 Conclusions 93

5 The Impact on the Ecosystem 97

5.1 3D Decomposition of Quality Evolution Anomalies . 98

5.1.1 Problem Description 99

5.1.2 Related Work 101

5.1.3 Visualization Approach 103

5.1.4 Case Study 109

5.1.5 Discussion . 119

5.1.6 Conclusions 123

5.2 QualityAssistant Impact on the Rules 124

5.2.1 Changes to the Rules 124

5.2.2 Conclusions 131

5.3 The Quality Evolution Roundup 132

6 Quality Assistance in Other Tools 135

6.1 Common Pharo Development Tools 136

6.1.1 Message Browser and Inline Critiques 136

6.1.2 CriticBrowser 137

6.1.3 Calypso . 137

6.1.4 Debugger and Stack Critiques 140

6.2 Quality-Driven Code Review 140

6.2.1 The Visual Design Inspector 142

6.2.2 ViDI Demonstration 146

6.2.3 Discussion . 151

6.2.4 Conclusions 153

x

7 Conclusions 155
7.1 Contributions . 155

7.1.1 Live Quality Assistance 155
7.1.2 3D Decomposition 156
7.1.3 Unified Quality Model 157
7.1.4 Visual Design Inspection 158

7.2 Quality-Aware Tooling Recipe 158
7.3 Future Vision . 159

7.3.1 Quality Modeling 159
7.3.2 Human-Critique Interaction 162

7.4 Summary . 164
7.5 Closing Words . 165

Appendices 167

A The “Missing Yourself” Rule 169

B Additional Plugins of QualityAssistant 171

xi

1 I n t r o d u c t i o n

People have always tried to assign some meaning of quality to things
that matter to them and software is not an exception. During the
software crisis of the 1970s Boehm et al. identified two main parts
of quality: usability and maintainability [Boehm et al. 1976]. The for-
mer concerns how software complies to its functional requirements,
whether it is reliable, how efficient it is, etc. The latter reflects how
the software itself is designed, how complex it is to understand, test,
and modify the software. The concept of maintainability highlights
that it is not enough to build a project with a rich functionality, but
the implementation itself plays a crucial part of the quality rating.
Nowadays the ISO 25010 standard of systems and software qual-
ity requirements and evaluation defines eight top-level categories
including maintainability [ISO/IEC 2010].

Functional requirements can be easily validated by quality as-
surance engineers or by automated tests. On the other hand, main-
tainability requires analysis of source code and reasoning about
the implementation to identify possible issues based on the prior
experience of the analyst. The process of reading code to ensure its
quality was first formalized as software inspections by Michael Fa-
gan [Fagan 1976]. Later, the SmartBear* software company revealed
how code reviews can protect projects from $1 billion bugs [Cohen

*http://smartbear.com

1

http://smartbear.com

Chapter 1. Introduction

et al. 2006b]. They also discussed various code review strategies
including the ones supported by dedicated tools, which are becom-
ing more and more popular nowadays. But code review is just a
process which involves people and relies on their knowledge. The
last couple of decades was rich in literature on how to build and
maintain a good design of a software system. For example, Arthur
Riel describes heuristics that should be followed to achieve a good
quality of object-oriented design [Riel 1996]. The “Gang of Four”
summarized the most frequently used design patterns in object-
oriented languages with examples in C++ and Smalltalk [Gamma
et al. 1995]. Kent Beck describes the best coding practices specific
for Smalltalk programming language [Beck 1997]. He also intro-
duces a concept of code smells — signs of bad design practices in
source code [Fowler et al. 1999]. The best programming practices
may be related to a programming language or a paradigm in general,
can be developed and enforced by a company for all the employ-
ees to maintain the same style or even may be based on a certain
domain. Thus it is complicated to ensure maintainability, as one
has to possess a significant knowledge about different best practices
and ensure that a software project adheres to them.

With advances in the software engineering field, the approach
of static analysis (also known as “automated static code analy-
sis”) [Louridas 2006] was employed to develop tools that aid de-
velopers in finding various types of issues and bugs in source code
without executing it [Johnson 1978]. At the moment there are
plenty of tools that check for code style, potential bugs, vulnerabil-
ity issues or just suspicious constructs in source code. Such tools
perform well when validated in a standalone setup. However, when
it comes to the real usage during the development process static
analysis support is often neglected. For example Beller et al. analyze
large corpora of open-source projects and discover that most of them
try to use static analysis, but only few succeed. The authors suggest
that static analysis is really beneficial only if it is integrated into the
development workflow. The same idea is advocated by the authors
of InCode — an Eclipse plugin that reports code smells interactively
to developers as they develop software in their IDE [Ganea et al.
2017]. Moreover, integrated static analysis reports can aid in other
contexts. For example Bacchelli and Bird identified that static analy-

2

1.1. The Assisting Ecosystem

sis could improve the efficiency of a modern code review [Bacchelli
and Bird 2013].

During the last 30 years we saw many diverse analyzers, nu-
merous code quality tools, and various user studies related to static
analysis. As a result there are few facts and beliefs that co-exist
while contradicting one another:

1. Most static analysis tools are standalone;

2. Integrated static analysis tools are more beneficial;

3. There are few IDEs and tools with integrated static analysis;

4. Most of the software evolution/comprehension research fo-
cuses on standalone tools;

5. Evaluations of integrated tools focus on a single scenario and
do not consider the impact of the tools on the developers.

By summarizing all the statements presented above, we identi-
fied the following problem:

Despite the evidence of the usefulness of static analysis in-
tegrated into the development process, most of the existing
development tools are not augmented with quality assistance
features. Most contemporary research avoids development
tools that are augmented with static analysis in favor of stan-
dalone analyzers, which are known to have deficiencies. As a
result it is still unknown what is the impact of static analysis
integrated into a development workflow beyond a few test
subjects or a single company.

1 . 1 T h e A s s i s t i n g E c o s y s t e m

In contrast to the related research which either evaluated a single
tool or assessed performance of multiple similar tools, our goal is to
change a development ecosystem to provide code quality assistance
based on static analysis. Then we want to assess the feasibility of
such changes in the ecosystem; the acceptance of the changes by
the developers; and the impact of the changes on the development
ecosystem and community.

3

Chapter 1. Introduction

As our thesis we formally state that:

Automatic quality assistance is an essential feature of software
development tools that improves the development experience
provided that the assistance engine supports basic adaptation
to the user needs.

In this dissertation we focus on the developer community around
the Pharo ecosystem* as well as on the changes to the ecosystem
itself. We selected Pharo because it comes with a variety of develop-
ment tools; it already had a standalone static analyzer included; the
decision makers behind Pharo’s evolution agreed to integrate static
analysis feedback into the core development tools. We had a unique
opportunity to observe how the developers react to the updated
tools and compare the new development experience with the one
that was present prior to the integration. We discovered that the
live quality feedback was mostly beneficial to all the developers,
changed the way they used to work, and sometimes even taught
them something new. Based on the changes made to the Pharo
codebase we can say that the live feedback increased awareness
about the rules in the system, as some of the existing rules were
replaced by the more important ones. Finally to exemplify how inte-
grated quality assistance can aid on the various stages of a software
development workflow, we integrated static analysis feedback into
other tools used for debugging, inspecting, and reviewing code.

1 . 2 C o n t r i b u t i o n s

1. Live Static Analysis Feedback Acceptance
According to prior research, software developers want to re-
ceive static analysis feedback as soon as possible [Yamashita
and Moonen 2013]. Moreover, the IDE’s code editor is the
perfect place to provide such feedback. Nonetheless only a
small number of development environments provide live qual-
ity feedback, and there exists limited knowledge about the
experience of developers with such tools. We integrated live
quality reports into an IDE and collected user experience. Our
results show that developers find this integration to be very

*http://pharo.org

4

http://pharo.org

1.2. Contributions

useful, developers try to solve the reported issues and learn
about new concepts and constraints. We discuss the findings
in depth in chapter 4. Some of the results were presented
previously at an international seminar [Tymchuk 2015].

2. False False Positive Investigation
All static analyzers suffer from false positive reports. If the
ratio of these reports is high for a certain analyzer, users
are reluctant to use it because the effort needed to identify
false positives may be higher than the benefit of true positive
reports. Naturally, researchers and analysis developers strive
to decrease the false positive ratio which is often based on
the user feedback of a certain analyzer. While working with
the Pharo community we discovered that not all of the false
positive reports provided by users are actually false positives
and may mask real issues outside of the analysis domain.
We discuss the example of false false positives in section 4.3.
The results of this analysis were previously presented at an
international seminar [Tymchuk 2017a].

3. Impact of Quality-Aware Tools
By augmenting an integrated development environment with
static analysis feedback we made an impact on the projects
that are developed using it and on the environment itself. For
example we analyze the changes that happened to the quality
rules themselves. After developers started to see live code
critiques they were motivated to evolve the static analysis
rules to increase their value. We discuss the impact in depth
in section 5.2. The work previously were presented in an
international workshop [Tymchuk et al. 2016a].

4. Quality Anomalies Decomposition
During our experiments we encountered evolution of the qual-
ity rules alongside the software evolution. Moreover, we en-
courage changes to the static analysis rules, as this is the
only way to ensure that they fit the contemporary project
requirements. However, this brings additional challenges. The
historical changes of quality value are caused not only by
the changes in the software system, but also by changes in
the quality rules themselves. This complicates the assessment

5

Chapter 1. Introduction

of a software quality evolution. To deal with this issue we
introduce a visual decomposition approach that reveals the
abnormal quality changes caused by the evolution of rules.
The visualization is described in section 5.1 and was previ-
ously presented at an international conference [Tymchuk et al.
2016c].

5. Quality-Centric Visual Code Review Approach
Based on the study of the challenges in modern code review,
the reviewing tools can greatly benefit from static analysis
assistance. We introduced a code review approach based on
a visual assessment of the system under review. The visual-
ization is augmented with static analysis reports and thus
guides code review focusing the attention of a reviewer on
the parts with poor quality. The approach is described in sec-
tion 6.2. The approach, together with a prototype tool were
previously presented at international conferences [Tymchuk
et al. 2015a;b].

6. Unified Quality Model
Throughout the course of this dissertation we integrated static
analysis into a few tools or implemented new tools from
scratch. To reduce the engineering and maintenance efforts,
we devised a unified static analysis model that reduces the
cost of the quality assistance integration into a new tool. The
model also simplifies integration of new analyzers. To achieve
such flexibility the model is easily extendable, handles the
aggregation of validation reports, and provides a convenient
API for tools that want to obtain the reports and for analyzers
that want to provide them. We describe the design decisions
and application examples in chapter 3. The model was previ-
ously presented at an international workshop [Tymchuk et al.
2017].

Many of our engineering contributions are integrated into
Pharo starting from the 5th version.* Pharo is an MIT-licensed
project with a publicly available repository: https://github.com/
pharo-project/pharo. Some of the projects that we developed are

*http://pharo.org/news/pharo-5.0-released

6

https://github.com/pharo-project/pharo
https://github.com/pharo-project/pharo
http://pharo.org/news/pharo-5.0-released

1.3. Outline

available separately. All of them also have the MIT license and a
public repository:

QualityAssistant: a live static analysis feedback system imple-
mented as a plugin for the main Pharo code editor Nautilus.
Artifact: [Tymchuk 2017c]
Repository: https://github.com/Uko/QualityAssistant

Renraku: a unified static analysis model for Pharo.
Artifact: [Tymchuk 2017d]
Repository: https://github.com/Uko/Renraku

ViDI: a Visual Design Inspector augmented with static analysis
reports designed to perform code reviews.
Repository: https://github.com/Uko/Vidi.

1 . 3 O u t l i n e

This dissertation is structured as follows:

chapter 2 provides an overview of the related work with focus on
the various types of static analyzers, integration of the static
analysis into development tools, and studies on the static
analysis usage.

chapter 3 presents the Renraku static analysis model which was
shaped by the requirements of both algorithms and tools that
arose during our research.

chapter 4 presents QualityAssistant — the static analysis feedback
integrated into a code editor. The chapter also contains eval-
uation and analysis of the acceptance of QualityAssistant by
software developers, and discussion about false positives.

chapter 5 describes the impact of the integration of QualityAs-
sistant into Pharo. The chapter also presents the issues in
historical quality analysis that may occur upon changes to the
quality standard, and discusses how the issues can be visually
resolved.

7

https://github.com/Uko/QualityAssistant
https://github.com/Uko/Renraku
https://github.com/Uko/Vidi

Chapter 1. Introduction

chapter 6 presents other tools that use our code quality model.
Such tools include ViDI — a dedicated code review system
with a built-in visualization; reimplemented Smalltalk critique
browser, debugger, and a code editor.

chapter 7 concludes the thesis and discusses the future vision with
possible directions for future research.

8

2 S t a t e o f t h e A r t

Software engineers use various practices to ensure good quality
of their software. One may use software tests and benchmarks to
automatically verify that a software execution produces the expected
results [Dustin et al. 1999]. On the other hand, not all quality issues
can be detected by testing a program execution, and it is complicated
to exhaustively test all the possible execution cases especially if a
software system depends on user feedback. Another approach to
ensure a reasonable level of software quality is a code review — a
practice where developers review a piece of software to detect bad
practices and prevent bugs before they appear in production [Cohen
et al. 2006b]. Code reviews still require significant amount of human
time to analyze source code, and some of the issue detection can be
automated with static analysis [Louridas 2006] by analyzing source
code with software algorithms.

In this dissertation we focus on the ways to automatically provide
valuable information about software quality to software develop-
ers. Most of the assistance that we can provide automatically falls
into the maintainability sector of software quality [ISO/IEC 2010],
mostly because maintainability issues cannot be easily detected by

9

Chapter 2. State of the Art

simply running a program. Some of our analyzers also recommend

accessibility improvements by analyzing UI-related actions;

interoperability warnings by detecting a usage of system-
specific API;

performance efficiency solutions by pointing out inefficient
implementation;

user error protection highlights by identifying potential bugs;

and much more.

We see three main categories of the research in this domain. The
first category focuses on the detectors of bad practices in the source
code. The second category focuses on the usage of static analysis to
improve other tools, or on dedicated tools based on static analysis.
The third category of related research focusses on the assessment of
the usage for static analysis, its performance and shortcomings.

2 . 1 S t a t i c A n a l y z e r s

Table 2.1 lists some of the popular static code quality analyzers for
various programming languages. Most of them check the abstract
syntax tree of a software system and detect suspicious patterns that
are signs of bad programming practices. Some of the analyzers focus
on a compiled bytecode or a raw source code to be more efficient,
or to detect issues not present in an abstract syntax tree. The Lint
tool was the first of its kind, developed in 1979 to detect suspicious
code in C programs. Many contemporary tools have a Lint suffix in
their name to show the similarity with the original static analysis
tool. Many studies related to static analysis focus on tools for Java,
especially FindBugs. This tool can be considered to be state of the
art in code quality static analysis, as it is up to date widely used by
both researcher and engineering communities [Ayewah et al. 2007;
Ayewah and Pugh 2010]. In this thesis we mostly use SmallLint,
which shares the general principles with the other analyzers and can
check textual source code, an AST, or a compiled bytecode. All the
analyzers mentioned until this point fall into the lightweight category

10

2.1. Static Analyzers

Tool Language Reference

Lint C [Johnson 1978]
PyLint Python www.pylint.org
pyflakes Python pypi.python.org/pypi/pyflakes
Checkstyle Java checkstyle.sourceforge.net
PMD Java pmd.github.io
FindBugs Java [Ayewah and Pugh 2008]
ESLint JavaScript eslint.org
JSHint JavaScript jshint.com
RuboCop Ruby rubocop.readthedocs.io
Reek Ruby github.com/troessner/reek
Tailor Swift tailor.sh
SmallLint Smalltalk [Roberts et al. 1996]

Table 2.1: Popular static analysis code quality tools.

as they focus on the common mistakes of software developers, can
efficiently validate large codebases, and are not guaranteed to detect
all the defects present in the project under validation [Muske and
Serebrenik 2016].

Another category of analyzers focuses on a Code Smell [Fowler
et al. 1999] detection and mainly relies on software metrics, thresh-
olds and fuzzy logic. IPLASMA is a pioneering tool in this category,
which uses a metric-based approach to detect code smells [Mari-
nescu 2004]. Its detection strategies capture deviations from good
design principles, aggregate metrics and compare their values
against absolute and relative thresholds. The DECOR methodol-
ogy defines all the steps needed to specify and detect code design
smells [Moha et al. 2010]. The authors of DECOR also present DE-
TEX, a tool which implements the DECOR approach. Khomh et al.
developed a bayesian approach which calculates the probability
of an entity violating a certain design rule [Khomh et al. 2009].
The research related to Code Smell detection mainly focuses on the
approaches to define bad code detectors either precisely, or by us-
ing statistical approaches. In comparison with lightweight analysis,
these analyzers usually need more time to analyze software and
the detected issues require more time to resolve. We rarely used
analyzers that detect Code Smells in our research, as we investigate

11

https://www.pylint.org
https://pypi.python.org/pypi/pyflakes
http://checkstyle.sourceforge.net
https://pmd.github.io
http://eslint.org
http://jshint.com
http://rubocop.readthedocs.io/
https://github.com/troessner/reek
https://tailor.sh

Chapter 2. State of the Art

various ways to enhance interaction of a developer with static ana-
lyzers, and we could achieve a shorter feedback loop by employing
lightweight analysis discussed previously.

The authors of Usage Contracts discuss the usability of their
rule-defining Domain Specific Language (DSL) by rule develop-
ers [Lozano et al. 2015]. Usage Contracts operate on Smalltalk code
and the rules are defined in a language similar to Smalltalk to re-
duce the learning barrier that the rule developers may experience
when creating a Usage Contracts rule. The authors motivate their
decisions with a previous experience with the SOUL [De Roover
et al. 2011] language: developers were reluctant to define struc-
tural regularities in SOUL as they had to learn a new programming
language. We followed this idea by having rules about Smalltalk
code defined in the Smalltalk programming language. However, to
our knowledge there is no dedicated study on the impact of the DSL
on the productivity of static analysis rule creators.

2 . 2 S t a t i c A n a l y s i s I n t e g r a t i o n

According to various studies static analysis may be especially valu-
able when integrated into the tools that support common developer
tasks. For example peer code review [Rigby and Bird 2013] is widely
practiced nowadays as a part of the software development process
and helps programmers to detect bugs in the early stages, and share
knowledge about a code base. However, according to a recent study
reviewers spend a lot of time to detect trivial issues instead of
focusing on the important ones [Bacchelli and Bird 2013]. These
trivial issues are usually related with the coding guidelines, and
possibly can be detected automatically to save the time of reviewers.
During a code review session, tools like Review Bot [Balachandran
2013] use static analysis reports to improve reviewers experience
by pointing out parts that violate some rules.

The Tricorder project adds quality reports to the code review tool
used by Google [Sadowski et al. 2015]. Reviewers can mark quality
critiques as false positives and provide an optional textual feedback
that will be sent to the quality rule developer. Usage data is collected
and the Tricoder team pursues the goal to maintain the amount
of false positives under 10%. Tricorder relies on 16 static analysis

12

2.2. Static Analysis Integration

tools that can be applied to five programming languages. Besides
having to integrate the output into their code review tool and invent
a strategy to handle false positives, Google engineers had to build a
sophisticated infrastructure to run all the tools on their codebase and
provide a uniform result. Buckers et al. operated on a much smaller
scale by running three static analysis tools on a single Java project
and visualizing the obtained result [Buckers et al. 2017]. While the
main focus of the authors is a tool that visualizes static analyses,
they spend a large amount of time explaining the design decisions
used to run all the analysis together and unify results. Because
of the current design of static analysis tools, developers have to
spend substantial amount of time to run the analysis and aggregate
the reports, while their main goal is to incorporate static analysis
feedback in a tool that they develop. With Renraku we propose a
unified model for static analysis reports, thus a tool developer has
to rely on a single API to work with static analysis.

Static code analysis tools are often embedded into Integrated
Development Environments (IDEs). While using such environment
a developer is informed about the quality issues in the same place
that he uses to develop programs. For example, an Eclipse plugin
inCode detects popular code smells and displays them live to a
developer [Ganea et al. 2017]. The plugin also provides refactoring
assistance to resolve the detected issues. The authors evaluated
inCode by measuring refactoring productivity with and without the
plugin. The evaluations show that the developers who use inCode
can detect and resolve more violations. However, according to the
state of the art, analyzers are rarely used by developers despite the
positive evaluations in research papers. Thus we see the impact of
the static analysis intrusiveness as well bundling as a default part of
an IDE to be relevant and unexplored concerns.

Some IDEs provide live feedback about coding practice violations
as-you-type. For example, the popular Java IDEs Eclipse and Net-
Beans* provide simple validations of the most trivial development
mistakes. IntelliJ IDEA** uses a custom defect detection subsystem
that supports custom validations defined by user. However, there
is no research that assesses the usefulness and impact of the static
analyses that are integrated into these development tools.

*https://netbeans.org
**https://www.jetbrains.com/idea/

13

https://netbeans.org
https://www.jetbrains.com/idea/

Chapter 2. State of the Art

Static analysis can be also used during continuous integration
(CI) [Duvall et al. 2007]: After the integration of a change, the
software system is automatically built and validated with respect
to various criteria. One of the most popular systems used for this
practice is SonarQube [Campbell and Papapetrou 2013]. It defines
seven axes of quality as follows: Architecture and Design, Duplications,
Coding Rules, Comments, Unit tests, Potential bugs and Complexity.
SonarQube lately became accompanied by an IDE plugin with live
feedback called SonarLint.* The live plugin can communicate with
the server counterpart and share settings. SonarSource** — the
company that developed the tools — also started to introduce their
own static analysis model that software developers can use to create
rules for SonarQube and SonarLint. Nevertheless, SonarLint and
all the related features are still in their infancy and it is hard to
speculate on their future evolution.

By leveraging the user interface of development tools some de-
velopers investigated novel approaches to enhance development
experience with static analysis tools. Just-in-time static analysis per-
forms checks only on the part of source code that is being browsed
or edited by a developer [Do et al. 2016]. Our QualityAssistant tool
described in chapter 4 also follows the just-in-time static analysis
approach because it is encouraged by the standard development
tools that we extend. To help developers to solve the quality report
some tools provide quick fixes that can automatically transform a
code in question to eliminate the static analysis warning. Bari et
al. suggest to use slow fixes that provide developer with additional
information and functionality to aid with issue resolutions [Barik
et al. 2016]. Many of our static analysis rules provide quick fixes
and we also experimented with “slow fixes” in the situations when
fixing could not be completely automated.

2 . 3 S t a t i c A n a l y s i s U s a g e

Although static analysis is often perceived as a helpful technology,
it is rarely used in real-world projects. The creators of the Coverity
static analyzer discovered many unexpected problems while trying

*http://www.sonarlint.org
**https://www.sonarsource.com

14

http://www.sonarlint.org
https://www.sonarsource.com

2.3. Static Analysis Usage

to commercialize their tool and bring it to software development
companies [Bessey et al. 2010]. In particular the authors claim that
any inconvenience such as struggling to run the static analyzer, non-
understandable tool output, or even warnings with which developers
disagree have a high chance to demotivate the static analysis users.

Other researchers surveyed 20 developers that used FindBugs,
Lint, CheckStyle, PMD and other similar tools to investigate why soft-
ware developers do not use static analysis tools to find bugs [John-
son et al. 2013]. The authors do not provide an exact answer to
whether software developers use static analysis tools but rather state
that “developers tend to like these tools, but there are certain reasons
that stop them from using the tools”. Johnson et al. quantitatively
measure interviewees’ attitudes towards the five feature groups
of static analysis tools: 1) Tool Output, 2) Supporting Teamwork,
3) User Input and Customizability, 4) Result Understandability, and
5) Developer Workflows. For every group, negative feedback of the
interviewees exceeded positive feedback. They find that the most
impactful reasons for not using static analysis tools are the high
number and a poor organization of false positives, weak support for
teamwork and customizability, and poor understandability of the
tool output. Also the participants of this study expressed a need to
be informed about issues in their code as soon as they appear. This
study summarizes the shortcomings of various static analysis tools
and may miss the good features of a certain tool during the sum-
marization. In our case, instead of focusing on the usage of many
diverse static analysis tools, we augment commonly used software
development tools with static analysis feedback and analyze the
impact on the users.

A study of static analysis usage in open source projects discov-
ered that many of them contain traces of static analyzers in the
form of configuration files, however most of the project developers
do not use static analysis on the regular basis [Beller et al. 2016].
The authors suggest that static analysis is fully beneficial only if it
is integrated into the development workflow, and also they suggest
to perform integration at least on the level of a CI server. While the
CI server integration is already present in the Pharo development
process, we take the integration to a new level by augmenting de-
velopment tools with static analysis reports. As a result not only

15

Chapter 2. State of the Art

developers of a single project benefit from static analysis, but all
users of the IDE.

Another survey was performed on professional software develop-
ers to identify the current status and requirements of static quality
analysis [Yamashita andMoonen 2013]. The authors discovered that
almost one-third of the surveyed developers did not know about the
concept of code smells [Fowler et al. 1999] and anti-patterns [Brown
et al. 1998]. The ones who were familiar with these concepts were
mostly concerned about Large Class, Long Method, and Accidental
Complexity [Brooks 1987]. The authors identified that developers
need a user-friendly, real-time tool with customizable detection
strategies that enable domain-specific detection of quality issues.
Our findings confirm the importance of immediate static analysis
feedback previously requested by the interviewees of this study. The
authors also learned that software developers use technical blogs,
programmer forums, colleagues and industry seminars as their main
sources of information. Based on our findings, static analysis tools
can serve alone as a source of knowledge for software developers.

Often static analysis algorithms are designed to detect Code
Smells such as God Class, Data Class, Refused Bequest, Feature Envy
Method, etc. By narrowing the scope of the code quality criteria to the
generic and high level code smells described by Kent Beck [Fowler
et al. 1999] researchers can easily compare various static analy-
sis approaches or ensure applicability on various object-oriented
programming languages. However, the usefulness of the generic de-
tection strategists is questionable. According to a survey performed
by Palomba et al., software developers do not see a big threat in
every code smell detection, and the severity of a detected smell is
contextual to a software project, or even a part of a project [Palomba
et al. 2014]. On the other hand, researchers showed that project-
specific static analysis rules are more beneficial than the generic
ones. For example violations detected by dedicated rules of a single
project were addressed more often that generic violations [Renggli
et al. 2010b]; domain specific rules can predict bugs more pro-
cisely [Hora et al. 2012]; more and more studies identify domain-
specific rules for object-relational mapping frameworks [Chen et al.
2014], Android applications [Hecht et al. 2015], cascaded style
sheets [Mazinanian et al. 2014], and the Model View Controller
architectural pattern [Aniche et al. 2016]. Thus in the scope of

16

2.3. Static Analysis Usage

this thesis we do not obsess with generally accepted code quality
standards, but rather follow the needs of developers by providing
the rules that suit their domain requirements.

17

3 R e n r a k u

While exploring various ways of augmenting a development work-
flow with quality feedback we carefully chose our technology. We se-
lected Pharo [Ducasse et al. 2017] as the main proving ground of our
studies. Pharo is a rapidly evolving descendant of Smalltalk [Gold-
berg and Robson 1983], that was forked in 2008 from Squeak [Black
et al. 2007]. As most of the canonical Smalltalk implementations,
Pharo combines a dynamic object-oriented language and an Inte-
grated Development Environment (IDE). The language comes with
an advanced source code reification support which provides the
basic functionality required for static analysis. The IDE part of Pharo
comes with a sophisticated set of development tools that we could
augment with static analysis results. The board that makes deci-
sions about Pharo evolution was interested in refining the code
quality support provided by the IDE, and agreed to integrate our
artifacts into the IDE. As a result we could evaluate our approaches
on real users, because almost everyone uses the same IDE to de-
velop in Pharo. Finally, we could build our quality system on top of
already existing tools, such as the SmallLint static analyzer, Refac-
toring Browser, Rewrite Engine [Roberts et al. 1996], the SLIME
domain-specific static analysis [Renggli et al. 2010a] and others.
To avoid confusion, the code examples in this dissertation will be
given mostly in Smalltalk, as people familiar with this language will
be able to understand the examples immediately, and the language
itself can be treated as a compact pseudocode which should be
understandable by a broader audience.

19

Chapter 3. Renraku

We have built static analysis support into various tools such
as a code editor, method browser, debugger, design inspector, etc.
Each integration requires a certain implementation effort to run
static analyzers, collect the results and display them in the tool. For
example, the articles about Tricorder [Sadowski et al. 2015] (a pre-
commit quality feedback) and UAV [Buckers et al. 2017] (a unified
static analysis visualizer) dedicate a significant space to discuss
the implementation of static analysis integration. To simplify the
integration process for us and give an edge to the future developers,
we designed a unified model of the static analysis feedback.

On the other hand, prior research has shown that a dedicated
analysis works better than a generic one [Renggli et al. 2010a]. The
integration of custom analyzers is yet another issue. For example
uContracts [Lozano et al. 2015] never made it to production because
it was too expensive to maintain the plugin for the code editor. Some
Pharo developers expressed the need to augment development tools
with other kind of information, such as related issue tracker entries
and test coverage information. As a result we designed our model
to support extensions by other analyzers.

In this chapter we describe Renraku — the code quality model
that we used throughout the course of our research [Tymchuk
2017d]. Renraku was shaped by three years of tool and analysis
development, as well as user feedback. The word “Renraku” comes
from Japanese (連絡) and means communication, connection, coordi-
nation. The main goal of Renraku is to connect quality analyzers with
development tools and make it easy to both provide and consume an
information about the quality of a software entity.

Renraku pursues two main goals to simplify:

1. the reuse of existing analyzers by various tools;

2. the integration of custom analyzers into the existing tools.

Most of the existing static analyzers such as FindBugs, Pylint,
JSHint provide a limited support to define new rules and output
the validation results in the plain text. Renraku is designed to be an
object-oriented framework that expects that all the requirements
such as defining rules, running them and processing the output are
going to follow object-oriented approaches. Thus a developer will
subclass a basic rule class and specialize it upon a new rule creation.

20

3.1. The Quality Triad

The quality reports will be actual objects as well and will have an
extensible way to provide feedback or even define special behavior.

3 . 1 T h e Q u a l i t y T r i a d

Renraku is based on three basic concepts as depicted in Figure 3.1.

Critique

TargetRule

of

has

by

produc
es 11

* *

validates

Figure 3.1: The Quality Triad of Renraku.

A critique is a single report about code quality. It targets a
single code entity and it is based on a single quality rule. A critique
is the main unit that should be used to communicate code quality
information to a user. Critiques can be specialized to provide a
sophisticated explanation, solution suggestions, custom tooling for
problem resolution and much more. A critique does not have to be
negative, it can just be a link between a rule and a target that may
hold diverse information. In this case a system may contain all the
possible links between all the targets and all the rules. Then a link
can be re-evaluated in case the target or the rule were changed. On
the other hand there might be multiple critiques connecting the
same rule and target in case the target violates the rule multiple
times. For example a class may have multiple unused instance
variables and each critique will target a unique instance variable
from the same class.

A rule defines a quality irregularity; it can identify an issue in
a software entity and produce a critique about it. A rule can be
viewed as a function that accepts an entity and returns a critique,
or multiple critiques each describing a unique violation. Although
a rule interacts with a target during the validation process, it does
not store any direct references to the target and thus does not have
any strong dependencies. Rules are also responsible for choosing
a critique that is the most appropriate one for communicating an
issue. For example if a visualization is needed to identify the cause

21

Chapter 3. Renraku

of an issue the rule should use a critique capable of displaying
visualizations.

A target is the actual piece of code that a critique targets. Po-
tentially a target can be criticized by many critiques produced by
various rules. A target should provide an interface to query its qual-
ity i.e., return the critiques produced by available rules about it. The
main reason for this functionality is to simplify the critique query
process for potential tools. For example, when the developer of a
code editor wants to add a quality feedback to his tool, obtaining
the quality information should be as easy as asking the method
or class itself what are its critiques. This does not have to be the
only way to obtain critiques about a target, but the simplicity of
the operation is important for the adoption of quality feedback in
development tools.

While the Renraku triad envisions three main entities and their
purpose, the system that we have built in reality is much more
complicated as can be seen in Figure 3.2. In the rest of this chapter
we are going to discuss the decisions taken and the pitfalls that we
encountered while implementing the Renraku model.

3 . 2 T h e C r i t i q u e

According to the main Renraku vision, a critique should link a
quality rule to a source code target and communicate the issue dis-
covered by the rule. In our implementation we also considered other
kinds of reports not related to quality rules. Source code can have
diverse sources of related data, such as code review discussions,
bug reports, test coverage, or even plain text notes. All the men-
tioned data sources may have the same or even a higher importance
than the static analysis feedback, and not every type of report is
going to have some kind of a rule associated with it. We introduced
Property — a superclass of Critique and other possible external
properties related to a piece of source code. Property defines a
basic interface of a title and an icon that can be used to display it in
a user interface. Then Critique specializes Property by extract-
ing the title from the rule name, selecting the icon based on a rule
severity and additionally provides a description based on the rule’s

22

3.2. The Critique

tit
le
()

ic
on

()Pr
op
er
ty

ac
t(p

ro
pe

rty
,

ta
rg
et
)

de
sc
rip

tio
n

ic
on

ac
tio

n

Pr
op
er
ty
Ac
tio
n

* ac
tio

ns

de
sc
rip

tio
n(
)

ba
n(
)

tin
yH

in
t

Cr
iti
qu
e

ch
ec
ks
Cl
as
s(
)

ch
ec
ks
M
et
ho

d(
)

ch
ec
ks
Pa

ck
ag

e(
)

ch
ec
ks
No

de
()

na
m
e(
)

ra
tio

na
le
()

gr
ou

p(
)

se
ve
rit
y(
)

ch
ec
kT
ar
ge
t(t
ar
ge
t)

Ab
st
ra
ct
Ru
le

in
te
rv
al
()

So
ur
ce
An
ch
or

Ob
je
ct

in
te
rv
al
()

St
rin
gM
at
ch
So
ur
ce
An
ch
or

st
rin

gT
oS

ea
rc
h

in
te
rv
al
()

In
te
rv
al
So
ur
ce
An
ch
or

in
te
rv
al

ch
ec
ks
No

de
()

No
de
Ba
se
dR
ul
e

re
fa
ct
or
yC
ha
ng
e(
)

Tr
an
sf
or
m
at
io
nC
rit
iq
ue

re
fa
ct
or
yC

ha
ng

e(
)

tin
yH

in
t()

se
le
ct
or

cl
as
s

so
ur
ce

M
is
si
ng
M
et
ho
dC
rit
iq
ue

re
fa
ct
or
yC

ha
ng

e(
)

ol
dN

od
e

ne
w
No

de

No
de
Re
pl
ac
e

tit
le
()

de
sc
rip

tio
n(
)

fo
rm

er
M
es
sa
ge

la
te
rM

es
sa
ge

In
vo
ca
tio
nO
rd
er
Cr
iti
qu
e

ch
ec
kT
ar
ge

t(t
ar
ge

t)

No
de
M
at
ch
Ru
le

ch
ec
kT
ar
ge

t(t
ar
ge

t)

No
de
Tr
an
sf
or
m
Ru
le

ch
ec
ks
M
et
ho

d(
)

ch
ec
kT
ar
ge

t(t
ar
ge

t)

Co
lle
ct
io
nC
op
yE
m
pt
yR
ul
e

so
ur
ce
An

ch
or1

en
tit
y1

ru
le

1

F
ig
u
re

3
.2
:
U
M
L
d
ia
g
ra
m

o
f
th
e
m
a
in

R
e
n
ra
k
u
co
m
p
o
n
e
n
ts
.

23

Chapter 3. Renraku

1 relationGraphOnReverse: anObject

2 relationGraph := anObject.

3 self relationGraph build.

4 self buildReverseRoots

Listing 3.1: A method sends a message with a selector that no method in

the system implements.

1 check: aMethod

2

3 aMethod messages do: [:selector |

4 (SystemNavigation allImplementorsOf: selector)

5 ifEmpty: [self critiqueFor: selector]]

Listing 3.2: Rule validating a method for sending messages of

unimplemented methods.

rationale. Currently there are not many properties used in practice
and thus in the context of this chapter we mostly focus on critiques.

3 . 2 . 1 S o u r c e A n c h o r s

While the ideal vision of Renraku suggests that a critique points
directly to a target that violates the rule, in reality our targets are
source code entities that have text as their main representation.
Thus a critique should also specify which code interval violates the
rule. For this reason a critique points to a source anchor, which
knows about the target entity and the source code interval as can
be seen in Figure 3.2.

Consider Listing 3.1 which presents a method extracted from
one of Smalltalk frameworks. The system has no method with the
selector buildReverseRoots and thus it is highly suspicious that
this method sends such a message. There are diverse approaches to
identify which exact message has a selector that is not implemented
by any method. One can traverse all the AST nodes, and check
whether a node is a message send and whether it has a selector
which does not match any method in the system. Then the rule
will have a violating AST node which knows its interval in the

24

3.2. The Critique

source code. This is a good use case for a concrete source anchor
that simply stores the interval itself. However AST traversal is time
consuming and some AST nodes may be in the end optimized and
replaced by a special bytecode. The actual rule implementation
checks only the messages available directly in the bytecode as is
shown in Listing 3.2. As a result the rule only knows which message
violates it, but does not know the message’s positions in the source
code. For such cases there is a source anchor that derives the interval
based on the substring location in the entitiy source code. Needless
to say, the substring approach may be not precise given multiple
occurrences of the same substring.

We discovered that for many critique titles it is enough to just
show the name of the rule that produced the critique without sig-
nificant changes. For the rest of critiques usually it is enough to
add a couple of words to reasonably improve the explanation of a
critique for a particular case that it addresses. For this reason we
introduced a tiny hint property of the critique that is represented
by a short string and appears at the beginning if the title before the
rule’s name. For example, the title of a critique about an unused
variable will look like this:

[count] Instance variable neither read nor written.

In this case count is the variable’s name, and the rest of the title is
the rule’s name. The tiny hint allows a developer to quickly identify
the problematic piece of code while the rule’s title briefly explains
the issue.

3 . 2 . 2 C u s t o m A c t i o n s

Another challenge of a good critique model design arises when rule
developers need a flexible approach to provide a custom behavior to
their client while staying tool-agnostic. For example a common aid
provided by quality violations before Renraku was to transform the
detected issue with rewrite expressions. To support this, the quality-
aware tools had to check if the rule provides rewrite expressions,
and execute them. Then rules of another type were introduced and
they detected dependency violations. For example a common feature
of many rules is to provide an automatic fix suggestion based on a
source code transformation as shown in Figure 3.3.

25

Chapter 3. Renraku

Recently architectural critiques were introduced into Pharo,
and their special feature is to open a dependency browser and
point out the dependency violation. As a result all the tools had
to accommodate the new critique with its new feature. Ideally we
want to give rule developers the freedom to create new kinds of
critiques without having to update all the tools each time. To solve
this problem we introduced a concept of PropertyAction that has
an icon and a description, as well as a “function” that accepts a
property and performs the action. A property can have any number
of actions, and a tool can list the actions to a programmer and
execute them when needed. Figure 3.4 depicts two possible ways
to display actions in the user interface. One of them lists actions
as items in a context menu, another uses buttons with icons and a
description popup. Whenever a menu item is selected or a button is
pressed, the action will be executed.

Figure 3.5 shows the hierarchy of properties with the actions
associated to them. In this case each top-level property introduces
one or more actions. The note property opens a text editor to edit the
note text; the issue tracker entry opens the issue in a web browser,
and the critique can show a detailed description or ban* itself, if
a developer decides that the report is incorrect. The subclasses of
Critique inherit actions from their parent and but extend them
with the ones specific to their domain. The dependency violation
critique can open a dependency browser to provide additional in-
formation about dependencies and suggest a solution. The transfor-
mation critique will start a transformation process by displaying
the changes that are going to take place and asking the user for
approval to execute them.

3 . 2 . 3 S p e c i a l i z i n g C r i t i q u e s

It is up to a rule developer to reuse available critiques to create
new ones. Based on the demand of custom critiques we integrated
some specialized critiques into the base distribution of the Ren-
raku model. First of all we noticed that many critiques need a
possibility to automatically resolve the issue. Thus we introduced
TransformationCritique , which knows a transformation that has

*A critique can be banned to prevent its appearance on the same entity in the future.
Usually this is done to ignore false positives.

26

3.3. The Rule

Figure 3.3: A diff suggesting a fix of a critique.

Figure 3.4: Different user interfaces display actions. On the left the actions

are presented as items of a context menu, on the right — as buttons with

icons.

to be applied and has an action to run the transformation. Then we
added more concrete transformation critiques. For example many
rules detect a missing method, and a dedicated critique can auto-
matically construct it with a method adding transformation, and
communicate which exact method is missing with a tiny hint.

We also noticed that a substantial number of rules detect a
wrong order of messages. For example, when building a graph
developers are expected to specify nodes of the graph before defining
edges, and a rule may check if the nodes: message precedes the
edges message. This is why we created a critique that produces an
informative title based on the messages and the required order.

3 . 3 T h e R u l e

The rule model of Renraku is derived from the existing de-
sign of SmallLint — the static analyzer originally available in
Smalltalk [Roberts et al. 1996]. Renraku rules share the same prop-
erties as SmallLint rules: name, rationale, group, severity. The fun-
damental difference between SmallLint and Renraku is the ease of
use. SmallLint required substantial knowledge about its implemen-
tation to use it. To validate code with SmallLint rules one had to

27

Chapter 3. Renraku

title()
icon()
actions()

target

Property

description()
ban()

tinyHint
rule

Critique

refactoryChange()

TransformationCritique
package

DependencyCritique

noteText

Note
url

IssueTrackerEntry

Open in web browserEdit note

View description

Ban critique

Automatically resolve Open dependency browser

— critique’s action

Figure 3.5: Property hierarchy with the associated actions.

28

3.3. The Rule

1 | booleanResult |

2 rule resetResult.

3 rule checkMethod: aMethod.

4 booleanResult := rule critics includes: aMethod

Listing 3.3: Common way to run a SmallLint rule programmatically. The

boolean result represents existence of a violation.

1 | critiqueCollection |

2 critiqueCollection := rule check: aMethod

Listing 3.4: Checking a method with a Renraku rule. The result is a

collection of critique objects that describe the violations.

use dedicated checkers that had to be reconstructed or reset and
queried every time, or run a rule on a source code entity and then
query the rule for a result as demonstrated in Listing 3.3. Various
rules had to be queried in a different way which resulted in poor
quality reports integrated in tools, as the tool developers did not
have time to understand how the rules should be operated. In our
case, a rule can be treated as a black box that accepts a target and
produces a collection of critiques about that target as demonstrated
in Listing 3.4. Then a tool just has to run the rule and process the
obtained critiques.

To achieve the best flexibility and performance we follow a
streaming approach where a rule accepts a target to check and
a callback function to evaluate for each detected critique. An ex-
ample of the main checking method taken from the rule that de-

1 check: aClass forCritiquesDo: aCritiqueBlock

2 aClass instVarNames do: [:varName |

3 varName first isUppercase ifTrue: [

4 aCriticBlock cull:

5 (self critiqueFor: aClass about: varName)]]

Listing 3.5: The main checking method of a rule that checkes classes and

detects capitalized instance variables.

29

Chapter 3. Renraku

tects capitalized instance variables* is shown in Listing 3.5. The
method receives a class to check, and a block to evaluate with each
detected critique. Then the method iterates over all the variable
names, and in case there is a variable with an initial uppercase
character, the method creates a critique about this and evaluates**

the block with the critique. This way the block will be evaluated
with every critique representing a single variable violating the
capitalization rule. The callback approach has a few advantages
over returning a collection of critiques. When all the rules are ap-
plied to all the methods in Pharo 6 to obtain a single collection
of critiques, the streaming approach provides a slight speedup of
10% because it does not create a new collection for every method-
rule pair. This approach also allows a tool to run operation-heavy
rules in a concurrent process and update the tool UI whenever
a critique is detected. Furthermore, by using callbacks a devel-
oper can stop the rule evaluation on first encountering a critique,
if she is interested only in existence of certain critiques and not
the detailed report. The rule base class additionally provides con-
venience methods check: , check:forCritiquesDo:ifNone: and
check:ifNone: that return a collection of the detected critiques
or accept a block to evaluate if no critiques were detected.

3 . 3 . 1 S p e c i f y i n g a R u l e I n t e r e s t

Another challenge of the rule design is related to distinguishing what
type of targets should be checked by a rule. For example one rule can
be implemented to check methods, but will break while checking
a class. SmallLint solved this by having two empty methods in the
root class checkMethod: and checkClass: and rule runners will
only pass a method to the first method and a class to the second one.
Then the subclasses only override one of the methods depending
on what they want to check. This approach gets more complicated
once we have the four checking methods described previously. Ad-
ditionally, during the evolution of Renraku we had to support rules

*style conventions of Smalltalk define that instance variable names should begin with
a lower-case letter

**value: is the standard Smalltalk method for evaluating a block with one argument.
For additional flexibility we use cull: in our implementation. Contrary to value:

it will also evaluate blocks that do not expect any arguments.

30

3.3. The Rule

for checking packages and rules for checking individual AST nodes.
For this reason we introduced class-side methods* checksMethod ,
checksClass , checksPackage and checksNode . These methods
return false in the base class and should be overridden to return
true for rules that are designed to check one of the entity types. A
rule may check multiple types of entities, for example a rule that
checks if code is correctly packaged may check both methods and
classes if they share the same packaging API. This approach allows
rule-runners to group all the rules by the type of entity that they
are checking and select the appropriate group based on the type of
the entity that has to be checked.

During the evolution of Renraku our approach of declaring an
interest in a target type worked well. However, when designing
the interest declaration we envisioned a more complex scenario,
when we would also have methods like checksMetaClass and
checksMetaClassMethod that would by default return the value of
checksClass and checksMethod respectively. The concrete rules
could override the methods to specify that they want to check only
the meta or non-meta entities**. We discovered that there is only a
small number of rules that distinguish meta and non-meta entities.
For rule developers it is easier to validate the meta class details
during the checking phase of the rule instead of specifying a special
interest with checksMetaClass and checksMetaClassMethod . As
a result we have never implemented special methods for declaring
an interest in meta entities. We also envisioned another strategy
for declaring entity type interest that may perform better. There
could be a single class method which returns an array of types
the rule checks. This will not change much for classes, methods,
and packages, but can simplify the rules for nodes and introduce a
greater flexibility in general. Based on our experience, most of the
node-based rules check for the node type in their first operation. For
example many rules check something about a message or a variable.
Then instead of performing a type check in the rule, developers
could specify the type of an AST node they are interested in.

*In Smalltalk classes are modeled as objects i.e., they have methods too. Class-side
methods work similarly to static methods or other programming languages, but can
be inherited and overridden.

**Since classes are objects too, they are instances of meta classes. Meta classes define
the class-side variables and methods.

31

Chapter 3. Renraku

3 . 3 . 2 S p e c i a l i z i n g R u l e s

To collect all the rules available in the system we use the same
approach used by SmallLint. We simply collect all the subclasses
of the abstract rule class and then select ones that check an appro-
priate target type. Additionally if a certain rule wants to declare
an interest in a target for all its subclasses but should not perform
validation itself, it can override isVisible to return false for its
class and exclude itself from the rules that are used to check code.
By dynamically querying the subclasses we can easily add new rules
to the existing arsenal if they are packaged with frameworks and
libraries that a project uses.

Most of the rules subclass the base rule directly. We also in-
troduced a few custom rules to automate repetitive tasks. One of
them is an invocation order rule used to detect whether a certain
message is preceded of followed by another one. All such rules tra-
verse an AST and analyze the control flow to detect violations. We
generalized the analysis into a common abstract rule and require
the concrete subclasses to define only the message pair and the
intended invocation order. Another large group of dedicated rules
is specialized to check AST nodes. Node-based rules automatically
declare interest in AST nodes and override the helper method for
constructing source anchors to use the source interval provided by
AST nodes. The node-checking rules include a large group of rules
that work based on a pattern matching syntax. To create such a rule,
a developer specifies a source code pattern that should be matched
and a transformation which can be used for auto-fix. SmallLint rules
based on pattern code traverse the complete AST of a method and
rewrite it at the same time, then they store the rewritten version,
that can be used by tools to suggest an auto-fix. The Renraku alter-
native checks a single node and stores the replacement node which
is used to apply changes by an auto-fix critique action. This not only
allows developers to check a single node, but may speed up code
validation by 40%, as an AST does not have to be traversed repeat-
edly for each rule, but can be traversed only once while applying
all the pattern code rules to every node.

32

3.4. The Target

3 . 4 T h e T a r g e t

The target has the fewest responsibilities to fulfill. According to
Renraku any object can be a target. A rule may check a target and
produce a critique about it. Targets play an important role of pro-
viding a simple API to access critiques. For example all source code
related entities implement a critiques method that returns all
critiques about this entity by all the active rules in the system. Such
a method allows a tool developer to quickly obtain all the critiques
about a code entity currently used in a tool. A simplified implemen-
tation of such a method is presented in Listing 3.6. The method is
implemented in Behavior , which is a common superclass for classes
and meta classes thus it knows that it has to check itself with the
rules for classes. The method also includes pragma <eProperty>
because critiques are just one type of property that can exist for this
object. For this reason tools are encouraged to actually use another
dedicated method externalProperties that collects the results
from all the methods annotated with <eProperty> and aggregates
them. The externalProperties method is implemented in the
root of class hierarchy and thus any object can be asked for its
external properties. Then analysis developers may add a method*

with the <eProperty> pragma to a certain class, to make it return
their properties together with the others.

3 . 5 C o m p a t i b i l i t y w i t h S m a l l L i n t

SmallLint was the static analysis system of Smalltalk for many years
before the creation of Renraku. As a result, many rules and tools
follow the SmallLint model. To ensure a good migration from Small-
Lint to Renraku we maintained a healthy level of interoperatibility
between the two models. SmallLint rules can be turned into Renraku
rules with a help of several extension methods in the root class,
while a Renraku rule can be turned into a SmallLint rule with the
help of a wrapper. The main difference between them is in the check-
ing itself and in the richness of a report. As discussed in section 3.3,
a Renraku rule accepts a target to check and returns a collection

*Smalltalk allows developers to add so-called extension methods to classes of other
packages.

33

Chapter 3. Renraku

1 Behavior>>critiques

2 <eProperty>

3 | rules critiques |

4 rules := ReRuleManager uniqueInstance classRules.

5 critiques := OrderedCollection new.

6

7 rules do: [:rule |

8 rule

9 check: self

10 forCritiquesDo: [:crit |

11 critiques add: crit]]

12

13 ^ critiques

Listing 3.6: An implementation of a critiques method.

of critiques about it. A SmallLint rule has an internal environment
where it stores the entities that violate it. When a SmallLint rule
checks a code entity and detects a violation it stores the entity in
the environment. Then the environment has to be queried for the
inclusion of the code entity. Listing 3.7 demonstrates a Renraku
checking method added to an existing SmallLint rule. First of all
the method resets the rule’s environment which removes all the
previously detected violations. Then, depending on whether the
rule checks classes or methods, the corresponding checking message
will be sent with the entity as a parameter. In case a violation is
detected, the resulting environment will not be empty and thus the
method has to produce a critique. To declare an interest in a class
or a method we can rely on the rule implementing the correspond-
ing method (Listing 3.8). The rest of rule properties such as name,
rationale, severity, group have the same API for both SmallLint and
Renraku.

We started the migration by implementing Renraku functionality
of the core SmallLint rule and then transforming the available rules
one by one. The migration is going to take a long time as there are
some external frameworks with SmallLint rules and we have no
way to ensure that they have migrated all their rules. The migration
could be automated to some extent, but each rule is unique and
may store date in different formats, require resets, etc. Thus we

34

3.5. Compatibility with SmallLint

1 check: anEntity forCritiquesDo: aCritiqueBlock

2 self resetResult.

3 self checkClass: anEntity.

4 self checkMethod: anEntity.

5 self result isEmpty ifFalse: [

6 aCriticBlock cull:

7 (self critiqueFor: anEntity)]

Listing 3.7: Renraku checking based on SmallLint functionality.

1 checksMethod

2 ^ self theNonMetaClass

3 includesSelector: #checkMethod:

Listing 3.8: Renraku type interest based on SmallLint implementation.

prefer to have Renraku functionality on top of the existing API and
do a manual rule conversion, as Renraku rules may have a better
implementation.

Compatibility of Renraku with SmallLint is also important be-
cause while someone may decide to convert rules to the Renraku
model, certain tools (as Pharo CI server) may still expect SmallLint
rules. Because SmallLint is expected to preserve a certain state,
we created a wrapper that uses a Renraku rule to do the checking
while pretending to be a generic SmallLint rule. Because Renraku
is explicit about what it checks, the wrapper rule can easily select
an appropriate environment, or check a code entity as shown in
Listing 3.9. The challenge arises when a tool asks the rule’s class for
a uniqueIdentifierName , and the wrapper rule is a single class
which instances act as diverse rules based on the rule that they
wrap. Thus the wrapper rule class cannot rely on Renraku rule
classes to return a correct uniqueIdentifierName . For this reason
upon a new wrapper instance creation we also create an anonymous
subclass that overrides uniqueIdentifierName to return the value
provided by the class of the Renraku rule (Listing 3.10).

35

Chapter 3. Renraku

1 RBRenrakuWrapperLintRule>>checkClass: aClass

2

3 renrakuRule class checksClass

4 ifFalse: [^ self].

5

6 renrakuRule

7 check: aClass

8 forCritiquesDo: [:crit |

9 result addClass: aClass.

10 ^ self]

Listing 3.9: SmallLint wrapper class check implementation.

1 RBRenrakuWrapperLintRule class>>new: aRule

2 | annotatedClass |

3

4 annotatedClass := self newAnonymousSubclass.

5 annotatedClass class compile:

6 'uniqueIdentifierName ^ ',

7 aRule class uniqueIdentifierName

surroundedBySingleQuotes.

8

9 ^ annotatedClass basicNew

10 initialize: aRule;

11 yourself

Listing 3.10: SmallLint wrapper instantiation.

36

3.6. Creating Rules

3 . 6 C r e a t i n g R u l e s

In this section we demonstrate the common workflow to create
Renraku rules. To be realistic we are going to look at an issue
periodically encountered by Pharo developers. Pharo Catalog* is
a tool for browsing and quickly installing various projects into
Pharo from a dedicated repository. To add a project to Pharo cat-
alog it is not enough to commit a configuration Class to a special
repository, but one also must ensure that the configuration has
project specific methods. These methods are catalogDescription ,
catalogContactInfo , catalogKeywords and they provide meta
information about the project to be displayed in the catalog. Some-
times developers forget to define these methods and they cannot
understand why their projects do not appear in the catalog.

We are going to develop a ReCatalogRule which will check if
a catalog project configuration defines the required methods. The
class will subclass the base ReAbstractRule class and override the
checksClass class-side method to return true. Then we should also
comment the class with the rule’s rationale, and override the name ,
severity and group methods to specify important method prop-
erties. For this particular case we will also have a helper method
requiredMethods that returns an array with the selectors of the
required methods. The most important part of the rule is the check-
ing method which is presented in Listing 3.11. On the lines 4 and
6 we check if the class is a configuration and if it is versioned in
the catalog repository to guard ourselves against creating critiques
about non-catalog classes. Then we check if there are the required
methods on the class-side, and for each missing method we create
a critique. At this point the rule has a basic desired functionality.
The critiqueFor: method that we use creates basic critiques by
default, which will report that a class is missing required meth-
ods but will not provide information which method is missing. For
this reason we have a missing method critique that can be created
by implementing a helper method presented in Listing 3.12. Then
this method can be used on line 12 of Listing 3.11 to produce the
critiques that will exactly specify the missing method and offer to
create a stub of it. For more complicated rules a developer may want

*http://catalog.pharo.org

37

http://catalog.pharo.org

Chapter 3. Renraku

1 ReAbstractRule>>check: aClass

2 forCritiquesDo: aCritiqueBlock

3

4 (self testIsConfiguration: aClass)

5 ifFalse: [^ self].

6 (self testIsInCatalogRepo: aClass)

7 ifFalse: [^ self].

8

9 self requiredMethods do: [:selector |

10 (aClass theMetaClass includesSelector: selector)

11 ifFalse: [aCritiqueBlock cull: (

12 self critiqueFor: aClass)]]

Listing 3.11: The catalog rule checking method.

1 ReAbstractRule>>critiqueFor: aClass missing: aSelector

2 ^ ReMissingMethodCritique

3 for: aClass

4 by: self

5 class: aClass theMetaClass

6 selector: aSelector)

7 beShouldBeImplemented

Listing 3.12: Missing method critique creation for the catalog rule.

to create a custom critique which can be implemented iteratively
once the rule already has a working check method.

3 . 7 C r e a t i n g T o o l s

As mentioned before, the convenient API to obtain critiques greatly
simplifies the adoption of static analysis in tools. Designing and
building a user interface is a non-trivial task that requires a substan-
tial amount of time and various software components. To simplify
the explanation we are going to exemplify the usage of critiques by
using them in a software visualization. A standard demonstration of
the Roassal [Bergel 2016] visualization framework often includes a
script for building a polymetric visualization of a class hierarchy

38

3.7. Creating Tools

1 b := RTMondrian new.

2 b shape box

3 height: #numberOfMethods;

4 width: #numberOfVariables.

5

6 b interaction popupView: [:group :el |

7 group add: (RTLabel elementOn: el model name).

8 group addAll: (

9 el model critiques collect: [:crit |

10 crit icon asRTElement]).

11 RTHorizontalLineLayout on: group].

12

13 b nodes: RBProgramNode withAllSubclasses.

14 b edges connectFrom: #superclass.

15 b layout tree.

16

17 b normalizer normalizeColor: [:class |

18 class critiques size.].

Listing 3.13: Roassal script to build a polymetric view for a class

hierarchy.

such is the one in Figure 3.6. The visualization depicts classes as
rectangles with their width mapped to the number of attributes,
height — number of methods and brightness — number of lines
of code. The rectangles are connected with edges that represent
inheritance between classes and are laid out to form the inheritance
tree. Source code for the visualization together with some features
added by us can be seen in Listing 3.13.

We introduced two features into this visualization. First of all,
instead of mapping the color of the rectangles to the number of
lines of code, we mapped it to the number of critiques. To do this
we used a color normalizer on lines 17-18 and specified that the
normalization has to be based on the number of critiques* of each
class. We also updated the popup that appears when a user hovers
over an element. Now additionally to showing the name of the class,

*In this example we use critiques to avoid the complication that comes from the
concept of external properties. In reality most of the tools including QualityAssistant
use externalProperties to include also information of other property engines.

39

Chapter 3. Renraku

Figure 3.6: Roassal class hierarchy visualization enhanced with code cri-

tiques.

the popup also contains icons for critiques and their severity. To
do this we collect all the icons of the critiques and convert them
into Roassal elements, then we add all the resulting elements into
the popup group on the lines 8-10. The resulting visualization can
be seen on the left-hand side of Figure 3.6. By using the number of
critiques to highlight the classes in red, we can easily draw attention
to classes with a high number of critiques. Additionally a user may
hover over a class to see its name, the exact number of critiques
and their severity. The right-hand side of the figure displays an
inspector on the selected object, which is in our case a class that
was clicked in the visualization. This is the default behavior, as
well as the critiques tab that displays the list of detected critiques.
In a tool a developer may implement a similar functionality by
obtaining critiques from the object and rendering their icons and
descriptions, implementing interactions with them, etc. Our main
goal is to show that using the static analysis information in tools can
be easy, obtaining the number of critiques with only two messages.
The tool author can inspect the properties of critiques and use them
to provide even more information with a still low implementation
cost.

40

3.8. Beyond Standard Analyzers

3 . 8 B e y o n d S t a n d a r d A n a l y z e r s

Renraku can support multiple backends that generate reports about
external properties of a software entity. SmallLint — the default
Smalltalk analyzer acted as the main and only Renraku backend
during our research. This is why in the rest of the thesis we are
going to focus on the static analysis critiques. In this section we
describe several prototypes that showcase Renraku’s potential.

3 . 8 . 1 I s s u e T r a c k e r I n t e g r a t i o n

The Pharo development process includes issue tracking with Fog-
Bugs.* To simplify interaction with the issue tracker a Ph.D. student
Juraj Kubelka** developed an engine that analyzed FogBugs entries
and linked them with the Pharo codebase. After the engine was
working well, the author needed a way to display the matched
issues when a developer is working with code. By registering the
issue linking engine to Renraku and producing output that follows
the Property protocol, Kubelka was able to provide the information
about related issues as can be seen in Figure 3.7. The figure depicts
a code editor with a method source code, and information about the
issues related to this method underneath. Each list entry is related
to an issue on FogBugs and briefly describes it in plain text. Then
custom actions provide the user with an ability to view the details
about the issue or open it in the web browser, as well as remove
the issue binding or add a new related issue.

The integration with Renraku was performed in a single day and
this demonstrates the ease with which an unfamiliar person can
get the information from his analyzer into the development tools.
The issue binding engine was never finished due a to a personal
decision of its author.

3 . 8 . 2 T e s t C o v e r a g e

The goal of the SmartTest*** project is to help developers to keep
their code tested. The SmartTest engine creates a relation map

*https://pharo.fogbugz.com/
**http://www.juraj-kubelka.cz
***https://github.com/badetitou/SmartTest

41

https://pharo.fogbugz.com/
http://www.juraj-kubelka.cz
https://github.com/badetitou/SmartTest

Chapter 3. Renraku

Figure 3.7: Issue tracker entries displayed in QualityAssistant.

(a) Suggestion to create a test for an untested method.

(b) Warning about unexecuted tests after a change in source code.

Figure 3.8: SmartTest suggestions.

between source code and tests that are meant to validate it. When a
source code entity is changed the engine may run the related tests
automatically (or prompt a user) to ensure that the change did not
break any of them. When a new code is created, SmartTest would
suggest to create a new test for it. The code-test mapping problem
is complicated because one does not want to run all the existing
tests as this can take a large amount of time. If generated by the
means of static analysis, test-code relations have a high chance of
being not correct, because Pharo is a dynamically typed language.
Performing a dynamic analysis while tests are running will slow
down the execution. Besides having to resolve all the problems of
test-code relations, the author has to implement a live interaction
with developer as they program. With the help of the Renraku
model, SmartTest live feedback was integrated into the Pharo code
editor by a student in two days.

42

3.8. Beyond Standard Analyzers

Figure 3.9: An exception property among critiques.

The top part of Figure 3.8 displays a suggestion to add a test to
an untested method, while the bottom one shows a suggestion to
run tests related to the method after it was changed. The author
decided to add “general information” actions, as well as the actions
depicted with red crosses that turn off SmartTest. The warning
about a missing test has a unique action that creates a test stub.
The property that notifies about unexecuted tests has two unique
actions: run the related tests, and inspect the test-code bindings. The
integration of test coverage information with the help of Renraku
turns our attention to the fact that static analysis warnings and unit
test results belong to the same category: reports about the quality
of a software product.

3 . 8 . 3 E x c e p t i o n P r o p e r t i e s

Renraku allows developers to easily add analyzers or even receive
dedicated static analysis rules with a framework that they use. Thus
there is no guarantee that at some point the code editor will not
start to interrupt you with each click to report that an exception
occurred in one of the analyzers that you loaded. By default we were
catching all the exceptions and simply ignoring them during the
evaluation/aggregation phase in Renraku. Developers who cared
about the exceptions could change a setting and have all the ex-
ceptions passed down the stack and eventually debug or handle
them as if they were never caught by Renraku. By exercising the
flexibility of Renraku Properties we created an Exception Property
that knows about the exception that was caught and the reified
execution stack.

As can be seen on the last line in Figure 3.9 an exception property
appears together with critiques. An exception entry displays the
exception message and provides a debugging action that opens a
debugger on the execution stack preserved in the property. This way
users will not experience interruptions but will be aware that one of

43

Chapter 3. Renraku

the analyzers rises exceptions. Developers can debug an exception
in the post-mortem state to understand what caused it. This crucial
feature took merely an hour to implement and did not require any
changes in the existing tools. At the place where Renraku catches
the exceptions a new exception property is created and added to all
the other properties.

3 . 9 C o n c l u s i o n s

In this chapter we presented Renraku — an extensible static anal-
ysis model designed to conveniently connect automated software
analysis and development tools. The implementation of Renraku
was shaped by the requirements that we encountered during our
studies. There are prototypes built to demonstrate the flexibility of
the framework in combination with various tools. The tools that
use Renraku are described in chapter 6. There are also prototypes
demonstrating non-rule-based critiques (also known as external
properties) and their compatibility with the existing tools. Finally,
the live static analysis feedback based on Renraku and provided by
QualityAssistant was used by ca. 500 developers during three years.

For the analysis developers Renraku provides an easy way to
plug in their analyzer into the system. The main requirement that the
developers have to satisfy is to provide the results of their analysis
in the form of external properties defined by Renraku. The analysis
developers are free to define the title and the icon of their properties
as well as multiple actions — the entities with a description, an icon
and a function that will be performed upon the action’s activation.
By default the external properties will use a source anchor that
points to an entity targeted by an external property (such as a class
or a method), but the developers can also use custom source anchors
to point to a specific code interval.

Renraku provides a dedicated class hierarchies of rules and
critiques for the SmallLint-style static analysis. A developer can
easily create a rule by defining the basic properties such as the
name, the rationale, and which type of entities can be validated
by the rule. The developer should also implement a basic checking
algorithm that accepts an entity to validate, checks it and evaluates
the callback with a default trivial critique. Afterwards a developer

44

3.9. Conclusions

may update the algorithm to produce more sophisticated critiques
that have better ways to explain the detected issues and provide
actions to resolve them. Renraku also comes with specialized rules
that simplify common tasks such as a code rewriting based on
patterns, or a validation of an invocation sequence.

For the tool developers Renraku provides a simple interface to
obtain external properties about an entity based on the currently
registered analyzers. The tool developer can also use the API based
on callbacks to progressively obtain properties as the analyzers re-
port them and not wait for the complete batch. The tool developers
do not need to possess a detailed knowledge about the analyzers,
but should rather make use of the high-level API to display the in-
formation and provide interaction with properties and their actions.
This is how the domain-specific implementation is shifted from the
tool developers to the analysis developers.

We believe that Renraku still has a long way to go and many
challenges to face. While the concept of a single static analysis model
worked for several diverse prototypes, it may include shortcomings
that can be revealed only when tested by a reasonable number of
real users. At the moment Pharo developers just start to express
interest in Renraku and use it for simple tasks. We expect that
in the near future Renraku will be applied to more complicated
scenarios that will reveal its shortcomings and may motivate further
evolution. However, these questions are outside of the scope of this
dissertation.

45

4 Q u a l i t y A s s i s t a n t .

D e s i g n & R e c e p t i o n

Designing a good tool is a complicated task, and tools that detect
software defects are not an exception. Furthermore, even useful
tools are often not used by software developers [Johnson et al.
2013]. Researchers who study the usage of static analysis, suggest
to have the analysis tools integrated into a development workflow,
and even provide evidence that developers wish to have a live
code quality feedback [Yamashita and Moonen 2013]. The default
Pharo distribution already included a standalone static analysis
tool which was not commonly used. Thus we took inspiration from
inCode [Ganea et al. 2017] and the live code quality feedback of
IntelliJ IDEA, and decided to augment the main code editor of Pharo
with a live and intrusive static analysis feedback. Our goal is not
only to provide Pharo developers with useful information, but also
to understand how they react to the new intrusive feature, and what
is the impact of the intrusive reports, especially considering the
previous availability of the on-demand static analyzer in Pharo.

The project started as a standalone plugin called QualityAssistant
in the spring of 2015. Half a year after that QualityAssistant was
integrated into the development version of Pharo 5, which was
released to the public in the spring of 2016. We are going to mostly
focus on QualityAssistant after it was integrated into Pharo. We
do not think of QualityAssistant as a plugin, but rather view it as
a strategy for maintaining live static analysis validation and as a

47

Chapter 4. QualityAssistant. Design & Reception

simplistic extension of the IDE’s User Interface (UI) to display the
reports. Together with the main QualityAssistant functionality we
shipped plugins for the Inspector and Spotter tools. These plugins
never attracted a reasonable amount of users because of the nature
of the tools, but they may still find their use cases in the future. We
describe the plugins in more details in Appendix B.

For the static analysis algorithms QualityAssistant uses SmallLint
rules [Roberts et al. 1996]. As a result, quality rules are implemented
in plain Smalltalk code and can be packaged and distributed as any
other project. A subset of SmallLint rules is also used by the Pharo
development CI server and the complete rule base is employed by
CriticBrowser (section 4.1) — the on-demand static analysis tool
that is shipped with Pharo for many years. The rule base consists
of about 135 rules grouped into 12 categories. Some of the larger
categories are related to bugs, optimizations, style or design flaws,
while the smaller categories contain rules related to a specific project
or API evolution. Each rule can have one of three severity levels:
information, warning and error. In general the rules are comparable
to those of FindBugs, CheckStyle or PMD — the tools often used in
related research. Despite the focus on SmallLint rules in this chapter,
QualityAssistant can display other external properties because it
operates on the Renraku model which we explained in chapter 3.
In fact, QualityAssistant is the main user of Renraku, and played an
important role in the migration of SmallLint rules to the Renraku
model. In this dissertation we still refer to them as “SmallLint rules”
to emphasize that these are conceptually the same rules that came
from the previous Smalltalks and were used in Pharo before the
arrival of QualityAssistant.

The user interface of QualityAssistant resides in the main code
editor of the Pharo IDE. The editor is based on the Smalltalk system
browser design and so displays code about only one class or method
at a time [Goldberg and Robson 1983, Chapter 17]. Figure 4.1
displays the code area section of Pharo’s code editor. At the bottom
of the code editor, QualityAssistant displays a small list of quality
violations that are present in the active entity such as package, class,
method, etc. The violations are recomputed each time an entity is
selected, saved or even updated by the means outside of the editor.
This way QualityAssistant ensures that a user sees the most up to
date information about the critiques.

48

Figure 4.1: Code area of Pharo’s code editor with QualityAssistant in the

lower part.

Each list entry refers to one issue detected by a quality rule.
Clicking on an entry highlights the relevant part in code. A list
entry starts with an icon that symbolizes the severity of the issue
based on the corresponding property of the SmallLint rule. The
severity icon is followed by a short description of an issue that may
be prefixed by a tiny text hint surrounded by square brackets. For
example the critique of isMenu: in the last line in Figure 4.1 hints
which message is not implemented. The short description is followed
by actions that can be defined by the critiques themselves. Three
common actions for all the rules are: view rationale, ban critique,
and apply auto-fix. When viewing the rationale of a rule a developer
is presented with a longer and more detailed description of the
quality violation. By banning a critique, developers can avoid the
critiques of the same rule from appearing again in the scope of
the method where a critique is banned, or its class or its package.
Finally, some rules provide a possibility to automatically resolve
the issue. The auto-fix can be any code transformation implemented
as a composite refactory change [Roberts 1999]. Before an auto-fix
is applied, the developer is presented with the proposed changes in
the form of a unified diff as shown in Figure 4.2.

For each critique a user can press thumbs up or thumbs down
buttons situated on the right side of the list. By doing this she can
send us a feedback of whether the critique was helpful to her or
not. Optionally a textual description can be also provided with the
feedback. By collecting this data we are able to quickly identify

49

Chapter 4. QualityAssistant. Design & Reception

Figure 4.2: A dialog proposing changes that can fix a critique.

issues in the quality rules and detect which rules are not welcomed
by the developers.

One of the main goals of the QualityAssistant assessment is to
understand how live static analysis feedback compares to an on-
demand tool. Thus QualityAssistant mainly runs the same rules
that were present in the system and used by CriticBrowser (the
on-demand tool), but displays them immediately while a developer
works with a piece of software.

We believe that the concept of QualityAssistant is not bound to
Pharo and may be replicated for other languages and IDEs. However,
there are certain features of Pharo that simplified the implemen-
tation of QualityAssistant. Based on our experience we identified
three major problems that one may encounter while integrating a
live static analysis feedback into a development environment.

Scoping. Live feedback has to be related only to the small
scope developer is working on e.g., a single method. When
applied to a larger scope, the computation will take more time
and a developer will have to process more information that is
not related to what she is doing. In the Pharo code editor a
developer can browse only a single class or method definition
at a time and we used the currently browsed entity as the
scope of our live analysis.

Responsiveness. Static analysis takes time to compute. As
mentioned before reducing the scope significantly reduces
the duration of computation, but this often is not enough to
provide a live experience. Consider performing asynchronous
computation with update callbacks for detected violations. In

50

4.1. The Precursor: CriticBrowser

Pharo each class and method is recompiled upon modification,
thus the complete system is always compiled. As a result we
could always query the bytecode of any method in case a rule
required that data.

Feedback Loop. After the integration of QualityAssistant into
Pharo, developers started to encounter bugs in the static anal-
ysis rules that were present in the system for several years.
While developers could simply ignore the rule by not applying
it in the prior on-demand tool or not using the tool at all, we
had to assist in bug fixing a few weeks after the QualityAssis-
tant integration. The well established communication in the
Pharo community allowed the developers to easily reach us
and inform about the issues that they encountered.

Some of the scoping and responsiveness solutions were described
previously by related research for the Android framework [Do et al.
2016]. The authors applied their static analysis on the piece of
code currently focused in the scroll pane of the code editor, and
dynamically displayed the detected violations, while the analyzer
was running in the background.

In this chapter we assess QualityAssistant from the human per-
spective. In section 4.1 we provide the detailed information about
CriticBrowser — the standalone static analysis tool originally avail-
able in Pharo long before the QualityAssistant integration. In sec-
tion 4.2 we present the first survey about the QualityAssistant useful-
ness conducted a fewmonths after its integration into a development
version of Pharo. section 4.3 discusses the challenges and pitfalls of
a correct false positive reports identification. Finally, in section 4.4
we analyze in details the positive acceptance of QualityAssistant
based on interviews conducted with software developers.

4 . 1 T h e P r e c u r s o r : C r i t i c B r o w s e r

Originally the SmallLint static analyzer was a part of the Refactoring
Browser [Roberts et al. 1996] that was eventually integrated into
VisualWorks Smalltalk [ParcPlace98 1998]. In 2002 the Refactoring

51

Chapter 4. QualityAssistant. Design & Reception

Browser together with SmallLint was ported to an open source*

Smalltalk implementation called Squeak [Black et al. 2007]. Pharo
was forked from Squeak in 2008 and inherited SmallLint together
with Refactoring Browser. In 2012 Pharo 2.0 was released with a
dedicated SmallLint UI called CriticBrowser. Although we often say
that we compare QualityAssistant with CriticBrowser, in reality we
investigate the impact caused by the integration of a live intrusive
quality feedback into an IDE that had an on-demand static analyzer
built in and available to developers for many years.

It is worth mentioning that the developers of CriticBrowser
confused the word critique (an instance of criticism) with critic (a
person who criticizes). Thus the name of the tool is CriticBrowser
and all the occurrences of critiques were called critics. During our
work on QualityAssistant we mostly replaced the usage of critic with
critique, but kept the title of the tool unchanged.

CriticBrowser is a graphical tool that allows a developer to select
a subset of SmallLint quality rules that will be used to analyze a
selected list of software packages. The result of this analysis is pre-
sented in a window on Figure 4.3. The top half of the CriticBrowser
window consists of a tree list of quality rules on the left and the list
of violating entities on the right. The bottom half of the window is
dedicated to the source code of a selected entity of the rationale of
a selected rule. A small row of buttons in the middle allows a devel-
oper to change the rules and packages that CriticBrowser operates
on, mark a critique as a false positive (technically known as banning),
apply the auto-fix if a critique is produced by a transformation rule,
or browse a criticized code entity in a coding browser.

In the quality rules pane the rules are grouped into categories
and presented as a tree list. When a rule is selected, all the critiques
produced by these rules are displayed in the critiques pane. At the
same time the rule’s rationale is displayed in the source code pane.

The critiques pane contains a list of classes and methods that
violate the selected rule. Selecting one of them will show its source
code, and allow a developer to ban the critique from appearing in
the future. Certain rules allow automated resolution of the critique
by source code rewriting.

*Originally Squeak was released under a Squeak license, then relicensed to Apple
Public Source License, then Apache License, and now it is licensed with MIT.

52

4.1. The Precursor: CriticBrowser

1 2

3

Figure 4.3: CriticBrowser panes: 1 quality rules; 2 a rule’s critiques;

3 criticized source code.

The source code pane displays the source code of a selected
entity and highlights a section detected by the quality rule. A de-
veloper can modify the code in place and save it. For the rules that
allow an automatic resolution, the code area displays a unified diff
of proposed changes.

4 . 1 . 1 C r i t i c B r o w s e r S u r v e y

To understand how Pharo developers work with static analysis we
conducted a survey while CriticBrowser was the only static analysis
tool available in Pharo. In total 46 developers participated in the
survey. We asked them to identify their programming experience in
years both exclusively for Pharo and for Smalltalk in general. The
survey participants could also provide the source of their experience
as academia or industry (not exclusively). The summary of the
participant experience is shown in Figure 4.4. Most of the participant
experience in Pharo is normally distributed on a range from zero
to seven years. Also the participants have a diverse experience in
Smalltalk development, with a large group of them developing in
Smalltalk for more than ten years. The number of participants from

53

Chapter 4. QualityAssistant. Design & Reception

0%

20%

40%

< 1 1–3 4–6 7–10 10+

Smalltalk Pharo

(a) Experience in years.

N/A
12%

Academia 62%

Industry 31%

(b) Experience source.

Figure 4.4: Development experience of CriticBrowser survey participants.

academia is almost twice as high as the number of participants from
industry.

In this survey we wanted to obtain the answers for the following
questions:

RQ1 How often do developers use CriticBrowser?

RQ2 How often do developers automatically resolve critiques?

RQ3 How often do developers mark a critique as a false positive
because the critique is not important?

RQ4 How often do developers mark a critique as a false positive
because they do not have time to resolve it at the moment?

First of all, we asked the developers whether they know about
the CriticBrowser tool. Nine percent of the participants specified that
they do not know about the existence of the tool. Then we asked
the remaining participants how often they use CriticBrowser based
on a 5-point Likert [Oppenheim 2000] scale: 1. daily, 2. weekly,
3. monthly, 4. yearly, or 5. never. The obtained responses, including
the participants who are not familiar with CriticBrowser are shown
in Figure 4.5. Only a quarter of the survey participants use Crit-
icBrowser on a daily basis. Another quarter uses it weekly. Usually
software systems evolve rapidly and change every day. For example,
the development cycle of Pharo 5 lasted for 13 months during which
about 680 incremental patches were made. On average there were
around 12 patches released each week and each patch contains a
solution to at least one issue tracker entry, but usually there are two

54

4.1. The Precursor: CriticBrowser

0% 25% 50% 75% 100%

DailyWeeklyMonthlyYearlyNeverD/K

Figure 4.5: CriticBrowser usage. D/K — Did not know about CriticBrowser.

0%

13%

25%

38%

50%

auto-fix ban as not important ban to resolve later

Didn't know Never Rarely Sometimes Often Always

Figure 4.6: Usage of CriticBrowser features.

or three of them. Needless to say, if a developer runs static analysis
on such a system only once a week, he has to process all the critiques
brought by 12 patches which were ignored during the week and
could cause program failures. Half of the survey participants use
CriticBrowser rarer than on the weekly basis, do not use it at all,
or even do not know about it. In our opinion, this indicates that
CriticBrowser is not really used by most developers.

To answer the rest of the research questions, we asked the de-
velopers whether they know about the auto-fix and critique ban
features. Then we asked how often they use the feature (in cer-
tain context in case of banning) on a 5-point Likert scale: 1. never,
2. rarely, 3. sometimes, 4. often, or 5. always. The responses are
shown as a bar chart in Figure 4.6. The usage frequencies are situated
on the X axis grouped by feature and the percentage of responses
is represented on the Y axis. About 15% of the participants that
know about CriticBrowser are not aware about its auto-fix capabili-
ties and 25% are not aware about the banning feature. Those who
know about auto-fixes are normally distributed. When it comes to
critique banning, about 25% of developers ban critiques when they
do not seem to be important. Banning of the critiques because of
the lack of time to resolve them is not a common practice among
the participants of our survey.

55

Chapter 4. QualityAssistant. Design & Reception

0%

20%

40%

< 1 1–3 4–6 7–10 10+

Smalltalk Pharo

(a) Experience in years.

N/A
4% Academia 75% Industry 21%

(b) Experience source.

Figure 4.7: Development experience of QualityAssistant survey participants.

4 . 2 Q u a l i t y A s s i s t a n t U s a b i l i t y S u r v e y

Almost two months after QualityAssistant was integrated into the
development version of Pharo, we conducted a survey to understand
how developers are using it. The survey had similar structure to
the CriticBrowser survey described in subsection 4.1.1. This time
29 developers participated in the survey. Five participants did not
know about QualityAssistant, which is most likely because they
did not use the latest development version of Pharo at that time.
As we want to evaluate the usefulness of QualityAssistant in the
rest of the survey we consider only the responses of the 24 de-
velopers who are familiar with the live feedback in Pharo. Their
development experience summary is shown in Figure 4.7. In this
survey most of the participants have from one to three years of
development experience both in Pharo and Smalltalk. Also there are
almost no participants with less than one year of experience. The
participants from academia make up three quarters of the whole
surveyed sample.

In the CriticBrowser survey we asked developers how often they
use the CriticBrowser. QualityAssistant is integrated in the devel-
opment main coding browser and developers involuntarily use it
all the time when they develop. Thus we found it more appropriate
to assess whether developers find QualityAssistant useful or dis-
tracting. We asked the survey participants to grade the main coding
browser live quality feedback on a 7-point Likert scale: 1. very use-
ful, 2. useful, 3. sometimes useful, 4. not influential, 5. sometimes
disturbing, 6. disturbing, or 7. very disturbing. The responses of the

56

4.2. QualityAssistant Usability Survey

UsefulSOMETIMES

Sometimes Distracting

VERY

Neutral

0% 25% 50% 75% 100%

Figure 4.8: Usefulness of QualityAssistant in the code editor.

survey participants are summarized in Figure 4.8. Such a result is
surprisingly positive, as the developers’ IDE changed in an intrusive
way, and around 90% of our respondents find it useful to some
extent. Moreover, 50% of the developers find it very useful.

4 . 2 . 1 F e a t u r e U s a g e

To understand in better detail how developers are using Quali-
tyAssistant we identified 6 major features of the coding browser
extension:

1. Display the description of a rule;

2. Highlight the part of the code that a critique refers to;

3. View the diff of a proposed automated critique resolution;

4. Apply an automated critique resolution;

5. Ban a critique for the entity it refers to;

6. Ban a critique for a broader scope.

Initially we asked participants whether they are familiar with each
feature. In case they were familiar we asked them to specify how
often they were using a feature out of 5-point Likert scale: 1. always,
2. often, 3. sometimes, 4. rarely, or 5. never. If the participants did
not know about a feature we asked them whether they plan to use
it. As can be seen in Figure 4.9, many participants do not know
about QualityAssistant’s features. For the features 1–4 all the “not
knowing” developers expressed an unanimous enthusiasm to try
out the features in the future.

Detailed description dialog is the best known feature and most
of the developers are casually using it while none of them specified

57

Chapter 4. QualityAssistant. Design & Reception

the never and always options. We find this to be natural, because
once developers see a critique from a new rule they want to learn
the rationale behind it, but they do not read the rationale over and
over again every time they see the same critique.

Almost 40% of the participants did not know that they can
highlight the faulty code interval by clicking on a list entry. Those
who knew about the feature were using it regularly. At the time of
the survey highlighting was the only way to see which interval in
the source code violates a rule.* Thus we saw the high number of
participants not knowing about this feature as a serious issue.

When it comes to the auto-fix functionality the feedback re-
garding developers not knowing about the features is confusing. To
apply an auto-fix one has to go through the diff dialog, but more
developers stated that they do not know about the diff dialog in
comparison to the ones that do not know about the auto-fix feature.
We suppose that some survey participants were confused about the
diff preview question because they consider the diff dialog to be
an inseparable part of the auto-fixing feature and assumed that
they do not know about another special diff view. Originally we
distinguished diff viewing and auto-fix application to understand if
developers view an auto-fix suggestion but do not apply it. Based
on the obtained responses we can say that the usage distribution is
similar for the two features which means that most of the auto-fix
suggestions are commonly accepted. It is worth noticing that the
auto-fix usage has the same distribution in the CriticBrowser survey
which suggests that the liveness of the quality feedback does not
affect the developer preferences on applying automated critique
resolutions.

Finally, when it comes to the banning features, not only did
many developers not know about them, but also these are the only
features that some developers do not plan to use. Out of the “not
knowing” developers around 15% and 40% did not plan to use the
banning and the scoped banning features respectively. The restraint
towards banning was already visible during the CriticBrowser sur-
vey. In case of a simple ban in QualityAssistant the majority of
developers rarely use it in contrast to the CriticBrowser results
where the majority does not use the banning feature at all. We be-

*Renraku’s tiny hints and inlined code editor critiques were added later.

58

4.2. QualityAssistant Usability Survey

0%

20%

40%

60%

description highlight diff auto-fix simple ban ban in scope

Didn’t know Never Rarely Sometimes Often Always

Figure 4.9: Usage of QualityAssistant features.

lieve that this is caused by the intrusiveness of QualityAssistant. In
the case of CriticBrowser developers could choose just not to use it.
We supposed that the possibility to ban critiques on a broader scope
will be well-received, but according to the survey results developers
do not care about it. We suppose that this is caused by the poor
scoping possibilities of this feature at the time when we performed
the survey. At the release time, QualityAssistant could ban method
critiques on a class level to ensure that the critique is not going to
appear on any method of the class any more. Most developers did
not have use cases to perform such actions in the two month that
they worked with QualityAssistant. Some time after the survey we
received requests to extend the scope of banning to packages and
the whole Smalltalk image.

4 . 2 . 2 R e a c t i o n t o R u l e C h a n g e s

The integration of QualityAssistant into the development version of
Pharo motivated a couple of changes in the Pharo rule base prior
to the survey. First of all the “Probably missing yourself” rule which
we describe in details in Appendix A was completely removed. The
rule checked whether a certain method is called in the end of a
method cascade, because in some cases the absence of the method
could manifest in a bug. In reality however, this rule was gener-
ating many false positive critiques and was distracting developers
more than aiding them. With the introduction of QualityAssistant
developers started to see the false positives more often and thus
the rule was removed. At the same time, one of the core developers
acknowledged the power of the live critiques and added a new rule
that informed developers about the recent API changes. The rule

59

Chapter 4. QualityAssistant. Design & Reception

Addition

Removal

0% 25% 50% 75% 100%

Negative Slightly Negative Neutral Slightly Positive Positive

Figure 4.10: Reaction to the changes in rules. Top: addition of the “use

ifNotEmpty: method instead of ifNotEmptyDo:” rule; Bottom: removal of

the “missing yourself” rule.

suggested developers to use ifNotEmpty: and ifNotNil: meth-
ods instead of ifNotEmptyDo: and ifNotNilDo: respectively. The
methods ifNotEmptyDo: and ifNotNilDo: should not be used by
developers, but are not deprecated because many core projects still
rely them and the deprecation messages would cause inconvenience.

The changes of the rule base indicate that the live feedback of
QualityAssistant catalyzes the adaptation of the rules to the devel-
oper needs by constantly showing critiques of currently available
rules. However, we did not know whether the majority of the devel-
opers supports the changes. To answer this question we asked the
survey participants to rate both addition of the new rule and removal
of the old one on the 5-point Likert scale: 1. positive, 2. slightly pos-
itive, 3. neutral, 4. slightly negative, or 5. negative. As can be seen
in Figure 4.10, developers are mostly positive about the changes
made to the SmallLint rules. The number of neutral impressions was
also considerably high, but this can be caused by the developers not
having enough time to experience the change before we conducted
the survey. Three quarters of the participants found the addition
of the new rule to be positive, while the rest were neutral about
it. When it comes to a removal of the rule, only half of developers
found it positive, and almost 10% found it negative. Maybe the
negative tint is caused by the human nature that makes it hard to let
things go, but this case was especially surprising to us. As mentioned
before, the removed rule was detecting a very high number of false
positives and we expected more positive reaction to its removal.
By investigating this and other use cases we discovered that some
of the false positive reports detected by developers are false false
positives and we address them in more detail in section 4.3.

60

4.3. False False Positives

4 . 2 . 3 S u r v e y S u m m a r y

The first QualityAssistant survey was an important milestone in our
journey towards quality-aware tooling. We assessed whether the
quality feedback that we integrated into development tools is useful
for developers. The static analysis integration into the Nautilus
coding browser was perceived as useful to some extent by 90% of
the survey participants. This gave us confidence to continue evolving
the live feedback in QualityAssistant and opened new questions
such as why the acceptance is so positive. On the other hand, the
Inspector and Spotter extensions were not as popular, which is not
surprising as developers do not use these tools to write code. After
seeing the interview results we decided not to invest much time into
the Inspector and Spotter extensions unless we could completely
rethink how they should be used.

We discovered that many developers still do not know about
most of the QualityAssistant features. We decided to focus espe-
cially on the highlighting feature, because there is evidence of its
usefulness but almost 40% of developers do not know about the
feature. The auto-fix and banning features did not seem to have a
big difference from the usage in CriticBrowser. We understood that
we need to pay more attention to the scoped banning feature, as it
was not used as much as we expected it to be.

Finally we had our first glimpse on the changes to the rules
caused be the QualityAssistant integration. The developers found
the changes to be mostly positive which motivated us to analyze all
the changes that happened to rules in Pharo 5. Additionally, we saw
that some developers were skeptical about a rule removal which we
expected to be absolutely positive. Thus we decided to investigate
in more detail what developers think about the critiques produced
by various rules and how does this align with false positives.

4 . 3 F a l s e F a l s e P o s i t i v e s

Integration of QualityAssistant into the main Pharo code editor made
developers more aware about quality rules available in Pharo, as
they began to see critiques about their code involuntarily. Needless
to say, none of the developers wanted to be distracted by a critique
which was faultily identified. As a result we experienced multiple

61

Chapter 4. QualityAssistant. Design & Reception

rule fixes, rants about false positives, and rule removal proposals or
even rule removals motivated by a high number of false positives. In
this section we share our experience of dealing with false positives
and false false positives (FFPs), as some of the false positive reports
identified by the developers turned out to be true.

4 . 3 . 1 T h e F a l s e F a l s e P o s i t i v e C o n c e p t

Static analysis tools may produce incorrect detections (false posi-
tives), which negatively impact the overall usability of these tools.
Usually this happens because of the lack of information present in
the source code. In case of a high false positive ratio, a developer
who inspects static analysis results may spend significant amount of
time trying to address the incorrect detections. Thus, a high num-
ber of false positives can decrease the overall usefulness of a static
analysis tool.

As false positives are a critical issue for static analysis users, there
is constantly an effort to mitigate them. Bessey et al. suggest to keep
the ratio of false positives under 20-30% tomake a tool acceptable by
users [Bessey et al. 2010]. Google went even further and built their
static analysis environment in a way that it automatically suppresses
every rule that has more than 10% of false positive reports based on
the user feedback [Sadowski et al. 2015]. However, the definition
for false positives in static analysis quite often diverges from the
common sense. According to the Merriam-Webster dictionary* a
false positive is “a result that shows something is present when it really is
not”. On the other hand, some users of static analysis classify reports
as false positives if they do not understand the rationale behind the
reports, or simply do not think that the reports are important for
them [Bessey et al. 2010]. No one can forbid people to express their
opinion that true positives are false, and such cases should not be
ignored. But we believe that the community around static analysis
should not confuse the false positives identified by users with the
real ones. First of all this will distort the false positive ratio and
secondly this will mask real issues, such as poor understandability
of a report. The reality is quite the opposite, for example researchers
from Google state that for their study “developers will decide what
a false positive is” [Sadowski et al. 2015]. In other words: when a

*https://www.merriam-webster.com/dictionary/false%20positive

62

https://www.merriam-webster.com/dictionary/false%20positive

4.3. False False Positives

person sick with tuberculosis says that his tuberculosis test is false
positive, this neither cures the tuberculosis, nor does it make the
test incorrect. But if a software developer identifies a static analysis
report as a false positive, then the anti-patterns in her code are not
anti-patterns any more, and the false positive ratio of the detection
rule suddenly increases.

We believe that the poor acceptance of static analysis reports
is partially caused by the naming used in such tools. For example
a developer starts to use a tool called FindBugs, and she expects
that (as the name suggests) the tool will find bugs. Then the tool
detects a bad practice, for example that a class has no comment. But
the project still works despite the detection. The developer makes
a conclusion that this is not a bug and thus the report has to be
a false positive. Originally static analysis was deployed as a part
of the development process with a strictly specified workflow that
consisted of running static analysis on the whole system, triaging the
reports to identify false positives, and resolution of the true positive
results. This workflow was described by Flash Sheridan a few years
ago while discussing the benefits and challenges of static analysis
deployment in software companies [Sheridan 2012]. Sheridan also
mentions FFPs — correct violations falsely discarded by novice
programmers which may cause a loss of important information.
From this perspective, incorrectly identified false positives appear
as a threat for companies who use static analysis, while at the same
time they are responsible for the incorrect identification.

When we consider such tools as QualityAssistant, they work
more as assistants (or pair programmers) pointing out suspicions
things in source code, but not forcing you to change them. One
of QualityAssistant’s rules detects whether there is a temporary
variable that is declared, but never read nor written. The rule can-
not produce false results, as all the information about temporary
variables is available in method definitions. We believe that in a
similar manner a pair programmer would point out the fact that a
temporary variable is declared but never used. We are also aware
of developers who do not like to see the information about unused
variables. For example, a developer may want to suppress informa-
tion about unused variables in a piece of code under development,
because she has not written statements that use newly defined vari-
ables yet. Although a developer can identify the reports described

63

Chapter 4. QualityAssistant. Design & Reception

in this example as false positives, the static analysis community has
to focus on the problem with the tool output or its timing, and not
with false positives. The rule that detects unused variables cannot
be improved in any way, because it already detects them with the
maximum precision. However, we believe that the development
tool can be updated to present the information in a different time
period or in another way which will be more acceptable by the
developer. In this section we exemplify various FFPs and describe
how they are caused by tool deficiencies, misunderstanding, or an
ignorance towards certain groups of developers.

4 . 3 . 2 T h e T r u e F a l s e P o s i t i v e s

First of all, we want to specify what we treat as the true false
positives. As a false positive of a critique we identify a rule violation
report that does not conform to the rationale of the rule. For example
there was a new rule introduced into Pharo which suggested to assert
test results with

self assert: value equals: expected

instead of

self assert: (value = expected)

The former expression provides a more descriptive output. However,
the assert: method is defined on the top level of the class hierarchy
and it is a common practice to make assertions in your code to
express contracts (i.e., preconditions, invariants and postconditions).
For example one can have the following assertion in an algorithm:

self assert: (aCollection size = 1)

The rule also detected assertions outside of the test classes and such
critiques were false positives as the assert:equals: method is
defined only for tests and cannot be applied outside of the testing
framework. This false positive is caused by a bug in the detection
rule. The rule can easily check if the assertion is performed in a test
class and eliminate previously discussed false positives.

Another more classic example of a true false positive is caused
by a lack of information. One useful newly introduced rule detects

64

4.3. False False Positives

issues related to the use of the Roassal [Bergel 2016] framework.
When building a graph with this framework you are expected to
specify nodes of the graph before defining edges. Thus the rule
checks if an edges message is preceded by a nodes: message.
However Pharo is dynamically typed and the rule has no way to
make sure that the receiver of the checked messages is a graph
builder. This ambiguity will result in false positives as soon as there
is another interface with nodes: and edges methods. This issue
cannot be solved easily, but there are strategies that the rule may
follow, to reduce the false positive ratio. For example the detection
algorithm can use type inference [Palsberg and Schwartzbach 1991]
or dynamic analysis [Ball 1999] to obtain the type of the messages
receiver. Alternatively the rule can detect only the cases where a
instance of the graph builder is created and immediately initialized.
This will greatly lower the recall of this rule because it will miss
all the cases where the graph builder is passed as an argument to
a method or returned by another object. On the other hand, such
a change will increase the precision, as the rule will be sure about
the type.

In both cases false positives were caused by the issues in the
algorithm. They can be simple bugs or more complicated limitations
of the environment where the algorithm is executed. In case of the
true false positives it is the responsibility of the rule designer to act
in that situation.

4 . 3 . 3 T h e F a l s e F a l s e P o s i t i v e s

While analyzing developers’ preferences about quality rules, we dis-
covered that there are rules that are not favored by some developers
although they detect exactly what they intend to. Some of these
rules are general best practices like a warning about a declared but
unused variable, uncommented class, or a debugging statement left
in source code. All these critiques are indeed bad practices which
should not be present in the final version of an application and will
not be integrated in the Pharo code base. However, some developers
do not want to be bothered with such critiques while they develop,
and would rather focus on them when they are about to commit
the final version. This suggests that such rules should be applied
in a pre-commit phase and not continuously while a developer is

65

Chapter 4. QualityAssistant. Design & Reception

1 background ifNil: [^ true].

2

3 (background isColor and: [

4 background isTranslucentButNotTransparent])

5 ifTrue: [^ true].

6

7 (border isColor and: [

8 border isTranslucentButNotTransparent])

9 ifTrue: [^ true].

10

11 ^ false

Listing 4.1: The “quick return” approach.

programming. This reasoning can be done only if we acknowledge
that there is an issue which is not a false positive, because it cannot
be solved by updating the rule, but can only be solved by rethinking
the static analysis tooling.

One more complicated rule was checking if there are multiple
if-statements that returned a boolean literal from a method and
suggested to replace them with a compound conditional expression.
For example in Listing 4.1 the conditional expressions on the first
nine lines check if some conditions are met and then return true

from the method. In case the execution does not trigger the condi-
tional expressions, the rest of the method is executed i.e., false is
returned.

The rule suggests to use the implementation demonstrated in
Listing 4.2. This way all the conditions are incorporated into a
single compound boolean expression. According to one of the de-
velopers this is a bad rule as it is less readable. A more detailed
mailing list discussion revealed that most developers also find the
implementation in Listing 4.1 easier to comprehend than the one
in Listing 4.2. Moreover, no one from the Pharo community knows
who implemented the rule, and many developers suggest to remove
it completely. The rule cannot be improved in any way, as this is
not a false positive, although it does not help developers. Blind
removal of the rule based on the developer requests will eliminate
its useless critiques, but will not answer the question of why the
rule was created. We believe that in this case the community has to

66

4.3. False False Positives

1 ^ background isNil or: [

2

3 (background isColor and: [

4 background isTranslucentButNotTransparent]) or: [

5

6 border isColor and: [

7 border isTranslucentButNotTransparent]]]

Listing 4.2: The compound boolean logic.

1 (denominator = 0)

2 ifTrue: [Float infinity]

3 ifFalse: [numerator / denominator]

Listing 4.3: Smalltalk conditional expression.

discuss the design guidelines and maybe replace the rule with an
antipodal one that will detect constructs similar to Listing 4.2 and
suggest to implement them as in Listing 4.1.

Another FFP use case comes from an analysis of QualityAs-
sistant’s impact. The integration of QualityAssistant into Pharo
triggered certain changes to the static analysis rules themselves. De-
velopers started to see critiques more often and this motivated them
to fix incorrect rules or remove the ones that they found absolutely
useless. When analyzing the rules that were removed from the Pharo
ecosystem, we discovered a rule which was accused of having too
many false positives. A more detailed investigation revealed that the
critiques reported as false positives are not clearly false. In Smalltalk
branching of a control flow is implemented in a functional style
with the help of lexical closures. Listing 4.3 contains an example of
a conditional expression. The expression denominator = 0 will be
evaluated to a boolean object, and depending on the object itself
either the true block* or the false block will be evaluated.

The rule detected whether the conditional messages have a
block as their argument. This rule is especially useful for novices,
as they can forget to wrap their conditional expression in square

*Block is the Smalltalk term for a closure expression. A block definition is surrounded
by square brackets.

67

Chapter 4. QualityAssistant. Design & Reception

1 size = 1 ifTrue: ':' ifFalse: 's:'

Listing 4.4: Conditional expression without blocks.

brackets, or confuse them with parentheses that create an ordi-
nary expression instead of a block. In most of the cases the overall
expression will still work, because any other object evaluated as
a block will return itself. However this is not recommended, as
the expressions will be instantly evaluated which will slow down
execution, may change the state of the program or even result in
an exceptional situation. For example if the snippet in Listing 4.3
did not have square brackets, both expressions Float infinity

and numerator / denominator will evaluate on each execution,
including the one where denominator is zero, which will cause
a zero division exception. On the other hand, in certain cases de-
velopers prefer to omit blocks if they contain only a single literal
as demonstrated in Listing 4.4. Further analysis showed that the
reports about false positives came from experienced developers
who are familiar with the implementation of the conditional ex-
pression and do not want to see warnings when they omit blocks.
The precision of the rule could be improved to ignore the cases
where literals are used as the arguments of conditional expressions.
Nevertheless, we argue that the rule in its current state brings more
value than the burden caused by the false positive critiques. First
of all, novices can learn about the design of the conditional expres-
sions and fix their code as soon as they forget to wrap parameters
of the conditional expression with blocks. On the other hand it is
not hard for experienced developers to simply ignore the critiques
if they omit blocks because such hacks are not common. Further-
more, originally in Smalltalk other objects were not polymorphic
with the evaluation protocol of the block class, which means that a
conditional expression without blocks will not run in all Smalltalk
dialects. In other words, this case is similar to the Java/C++ code
conventions that suggest to always use brackets around the contents
of if-statements [King et al. 1999].

Another especially irritating rule that developers did not like was
detecting “cascading messages” that did not end with the yourself

message. We explain in details the rule and its caveats in Appendix A.

68

4.3. False False Positives

This rule is a good suggestion for novices who are not aware about
the pitfalls of Smalltalk cascades, but it can be absolutely annoying
for experienced developers who want a different last message on
purpose. While this rule is most often mentioned when developers
list false positives or bad rules it cannot be clearly labeled with a neg-
ative tag. One of the interviewed developers admitted that maybe
the rule is not that bad after all because when he rewrites his code
to avoid such critiques, the code becomes more understandable.

The use case with the “missing yourself” rule shows one more
situation where a rule that was removed could help novices to learn
how the programming language works. Additionally, there is some
evidence that the rule may suggest a better coding style. While
we cannot claim the importance of the rule with respect to design
guidelines, we can definitely conclude that instead of discussing
the readability aspect that this rule promotes, the rule was simply
deleted due to a false positives claim.

The final use case that we want to discuss is related to a warning
against bad practices. Some developers do not like the rule that
detects the usage of a reflective API, such as checking the type of
an object. Similarly to the previous cases this rule may explain that
there are other more appropriate ways to solve general problems
without the support of reflectivity, but if the developer knows what
she is doing, the rule is identified as distracting. On the other hand,
senior developers think that the rule is always useful as it suggests
not to use the reflective API during a programming session, and
highlights questionable pieces of code during a code review. Once
again this rule can be a candidate for removal due to a reasonable
number of false positive claims from certain developers, but there
are is also a evidence of the rule being useful for another group of
developers. This means that either the rule should be applied on a
personal basis or there should be a better communication to explain
the importance of the rule.

The critiques mentioned in this section perform poorly to some
extent. The main issues with these use cases are not caused by false
positives but rather by vague design guidelines or poor tool design.
In certain cases false positives are also present and the static analysis
rules can be updated to eliminate some of the incorrect detections,
or to provide a more detailed feedback. Nonetheless, to resolve the

69

Chapter 4. QualityAssistant. Design & Reception

main issue a static analysis developer has to approach it from the
non-false positive perspective.

4 . 3 . 4 F a l s e P o s i t i v e S u m m a r y

False positive reports are one of the main issues of static analysis
tools. However, sometimes even correct static analysis detections
are classified as false positives. This not only skews the statistics
of static analysis rules, but also masks the real problems. In this
section we provide examples where a static analysis report is not
useful, but it is also not a false positive. Together with the examples
we show the real issues that should be investigated. Static analysis
community risks to miss such issues when labeling everything as a
false positive when a developer does not like it.

The FFPs described in this section fall into 3 categories:

Bad timing or tool deficiency: rules in this category usually have
100% precision but some developers do not want to see their
reports at the certain moment of time. Most likely these rules
can benefit from integration in other tools that are used dur-
ing a different development timeframe. Improving the user
interface of the current tool may also improve the acceptance
of the reports. A wide range of rules can suffer from the timing
issues, they can be completely not related to functionality like
the “missing class comment rule” or can target issues that
affect the execution like “debugging code left in methods”.

Rules for novices: usually blamed by experienced developers who
already know about the caveats that the rules are warning
about. These rules may be useful for everyone, but are essen-
tial for newcomers who may not know language or project
paradigms. Rules for novices usually check for calls to certain
classes or for specific code constructs that are often a sign of
badly designed code.

Lack of consensus: some rules suggest certain style guides that
not all developers agree with. Frequently this happens when
developers do not understand the rationale behind the rule.
Rules in this category are mostly related to style or to certain
patterns in the source code.

70

4.4. Live Feedback Evaluation

The line between the false and the true false positives is very thin.
For every true false positive one can add a “Possibly” prefix to the
repot description and turn it into a FFP. This way the critique stating
“Possibly you should use assert:equals: instead of assert: and
=” will never be false. But instead of playing with words we want
to emphasize that there are issues with static analysis not related
to false positives, and they have to be acknowledged separately.
We suggest to identify false positives as the issues where critiques
cannot be easily identified because of certain limitations. We also
believe that there are cases where a rule suffers from both false
positives and issues of a different kind.

At the moment there is much evidence that false positives have
a negative impact on the acceptance of static analysis tools. It is
complicated to improve a false positive ratio, as usually it is caused
by lack of information in the source code. On the other hand we
showed that some of the reported false positives are not really false
detections, but rather issues of the understandability of quality rules,
static analysis tool design, or inconsistency in guidelines. These
issues can be easier to tackle and thus static analysis developers
may improve the acceptance of their tools, by addressing the non-
false positive issues first.

4 . 4 L i v e F e e d b a c k E v a l u a t i o n

Usage of static analysis is controversial: while it can help to main-
tain software, it is not commonly used. Besides being common
knowledge, the static analysis usage trends are backed by inter-
views with developers [Johnson et al. 2013] and software repository
mining [Beller et al. 2016]. On the other hand, we witnessed an
increased usage of static analysis in Pharo after the integration of
QualityAssistant. As there was already an on-demand static ana-
lyzer, we suspect that the liveness of QualityAssistant played the
key role in such a positive acceptance. This hypothesis nicely har-
monizes with software developers’ opinion established by related
research [Yamashita and Moonen 2013].

According to the first survey about QualityAssistant that we
described in section 4.2, 90% of Pharo developers find it useful
to some extent. The design of QualityAssistant forces developers

71

Chapter 4. QualityAssistant. Design & Reception

to constantly use it, because it intrusively provides static analysis
feedback and it is integrated into the main development browser.
In contrast, the on-demand static analyzer CriticBrowser that was
shipped with Pharo for many years, was rarely used by the develop-
ers. According to the CriticBrowser usage survey that we discussed
in section 4.1, only a quarter of Pharo developers used the analyzer
at least once a day, and another quarter used it on a weekly basis.
Based on these results we can say that QualityAssistant was a crucial
step to make Pharo developers use static analysis, and we believe
that our experience can be valuable to boost static analysis usage
in other development ecosystems. However, the usage information
that we obtained from the two surveys cannot be used to explain
why there is such a good acceptance ratio towards QualityAssistant.

After QualityAssistant existed for half a year in a development
Pharo image and from a couple months to half of a year in a released
Pharo version, we conducted a series of interviews. We interviewed
14 early adopters of a new version of the Pharo IDE that comes
with integrated QualityAssistant to understand how they use the
live feedback and what are the pros and cons of QualityAssistant
and the quality rules that it uses. We also tried to assess the impact
that QualityAssistant had on the developers since it was introduced
into their workflows. The interviewees identified integration and
immediate feedback to be very important for them, which supports
the claims of prior research. Additionally, we discovered that devel-
opers like the static analysis feedback because it keeps them alert,
saves them from expensive errors, motivates them to write better
code, and creates synergies with the other practices to preserve soft-
ware maintainability. There are already enough capable algorithms
in the static analysis domain that provide useful information, but
our findings show that the feedback has to be live and integrated
into IDEs to improve developer experience. We also discovered that
in our setup, static analysis plays an educational role, as novice
developers can learn about the patterns and idioms of the program-
ming language of used frameworks. Furthermore our static analysis
architecture allows framework developers to ship custom static
analysis rules with their projects taking the documentation feature
to the next level and helping their users to quickly learn about the
framework policies.

72

4.4. Live Feedback Evaluation

On the negative side interviewees identified three main prob-
lems: vague explanations of critiques, false positives, and deficien-
cies in the user interface. Because of vague explanations developers
lose time while trying to understand the exact problem that a cri-
tique tries to address. The feedback about the design of the user
interface of QualityAssistant is controversial because, while some
developers find it inefficient, others provided scenarios where the
design helps them to quickly identify important reports or false
positives. Some of the interviewees identified insignificant static
analysis rules. Based on their feedback we can summarize that the
significance of a rule is a subjective property. We discovered that
some developers may prefer to see feedback of certain rules in a
different timeframe, for example at commit time as opposed to live
feedback. This suggests that instead of focusing on a single time-
frame to report all the static analysis detections, we need diverse
tools throughout the development process that can provide the same
kind of analysis, and that allow static analysis users to decide when
exactly they want to see the reports.

In this section we explain our interview setup and reflect on
the obtained responses. Our finding are unique in a way that we
collected the user experience of the programmers whose main de-
velopment tool got augmented with live code quality feedback. Our
insights can be important for the communities willing to integrate
automatic static analysis into their workflows.

4 . 4 . 1 I n t e r v i e w S e t u p

Our main goal is to identify how live static analysis feedback in-
fluences the productivity of software developers as opposed to
on-demand analyzers. This is a challenging task, as one could run a
controlled experiment where two groups of developers use live and
on-demand tools to ensure the quality of a project that they have
to develop. However, even if the on-demand tool does a better job,
there is a high chance that in reality software developers will not
use it. We decided to go another way by integrating a live static
analysis feedback into a code editor that developers use to ensure
that they see code critiques while programming. We followed a
sequential exploratory design [Creswell and Vicki 2006] and started
with a quantitative survey on the usefulness of various features of

73

Chapter 4. QualityAssistant. Design & Reception

QualityAssistant. After obtaining about 90% of a positive feedback
about QualityAssistant, we performed a qualitative investigation to
explain previous quantitative findings. We designed an interview
with open-ended questions, to explore what exactly developers like
or dislike about QualityAssistant and the quality rules that it uses,
and to assess the impact of the tool on its users.

S e l e c t i o n o f P a r t i c i p a n t s

We interviewed developers who used QualityAssistant for at least
a few months during their common development tasks. Most of
the interviewees were participants of the Pharo Days conference*

as this is an event that attracts experienced Pharo users. We also
interviewed a few Ph.D. students who are using Pharo in their
research.

E s t a b l i s h i n g t h e B a c k g r o u n d

To better understand the interview results and understand how
comparable they are with the related research, we assessed the
overall programming experience of the participants as well as their
knowledge about the concept of code smells and related tools by
asking them to provide the following information:

1. their current occupation;

2. number of years of programming experience;

3. programming languages that they used for industrial or aca-
demic projects;

4. number of years of programming experience in Pharo;

5. their criteria for good code and knowledge of code smells;

6. experience with static analysis tools.

*https://medium.com/concerning-pharo/pharo-days-2016-c52fe4d7caf

74

https://medium.com/concerning-pharo/pharo-days-2016-c52fe4d7caf

4.4. Live Feedback Evaluation

E v a l u a t i n g Q u a l i t y A s s i s t a n t

To assess QualityAssistant we relied on the experience that our
interviewees had during their casual work with Pharo 5, as it comes
with QualityAssistant preinstalled. We identified three main topics
that we wanted to evaluate and based the research questions on
them.

• RQ1 — what are the positive and negative features of Quality-
Assistant? During the previous survey we identified that 90%
of developers like QualityAssistant to some extent, but we
wanted to hear which features they find especially useful and
useless in their daily job.

• RQ2 — what are the good and bad quality rules? After the
QualityAssistant integration we helped to implement a few
domain specific rules and saw a removal of some other rules.
We wanted to see which rules do developers like and dislike
to understand if we are moving in the right direction.

• RQ3 — what is the impact of QualityAssistant on the users?
Before the interview we already knew that the vast majority
of the QualityAssistant users like it, and that the live feedback
motivated certain changes in the quality rule base of Pharo.
Additionally, we wanted to understand if QualityAssistant had
any impact on the individuals, because we expected that the
developers who constantly see the code quality reports will
improve their coding skills over time.

To obtain the answers to the listed questions we performed
interviews in the form of a discussion where we asked the inter-
viewees how they use QualityAssistant, what do they think about
it, etc. Then we asked additional questions to help the interview
participants reveal the details of their opinion. For example if an
interviewee identified false positives as an issue, we asked her to
elaborate which rules produced the false critiques. We avoided ask-
ing direct questions. For example, there was a case when we asked
a developer what does she think about QualityAssistant and the
developer answered that the tool is very helpful and she tries to
resolve most of the reported critiques. After such an answer we did

75

Chapter 4. QualityAssistant. Design & Reception

Researcher 36%
Sen. Engineer

14%Engineer 50%

Figure 4.11: Occupation of the interview participants.

not have to ask about the impact of QualityAssistant on the inter-
viewee any more. We asked exact questions only when developers
did not mention anything relevant by themselves and usually the
responses in such cases did not bring anything new.

4 . 4 . 2 I n t e r v i e w R e s u l t s

In this section, we discuss the lessons learned from the interview
responses and summarize them into a few concepts. We also in-
clude the responses of developers that did not follow the interview
structure but give us valuable insights.

D e v e l o p e r s ’ B a c k g r o u n d

We recorded 14 interviews of an average length of 14 minutes.
The majority of the interviewees with 64% are engineers, while the
remaining 36% are researchers as shown in Figure 4.11. We consider
14% of the interview participants to be “senior” engineers as besides
doing engineering tasks they are also consulting or supervising other
engineers.

The overall software development experience of the interview
participants is summarized in Figure 4.12. We asked the intervie-
wees to estimate their industrial experience or in case of academics
(and PhD students) we also included time that they spent on pro-
gramming during their doctoral and postdoctoral studies. Many
of the interview participants claimed to have been “programming
since high school” but we tried to consider only the post-university
experience. A high proportion of 36% of participants have more
than twenty years of programming experience and 21% — more
than ten years of experience. Only 14% of the interviewees have pro-
grammed for less than five years. We believe that the high number
of experienced developers is beneficial for the interview, as they
may provide more reliable feedback.

76

4.4. Live Feedback Evaluation

0% 20% 40% 60% 80% 100%

<5 5–10 10–20 20+

Figure 4.12: Software development experience of interview participants in

years.

0% 20% 40% 60% 80% 100%

<3 3–6 6+

Figure 4.13: Experience of the interviewees with Pharo development envi-

ronment in years.

At the time the interviews took place Pharo had existed for six
years. We explicitly asked the interviewees for their experience
in Pharo, as this environment underwent significant changes over
the last years and we wanted to understand how QualityAssistant
fits into their workflow. As shown on Figure 4.13, only 14% of
the participants have used Pharo for less than three years, 21%
used Pharo for more than six years meaning that they are either
core developers who worked on it from the beginning or especially
interested individuals. The remaining 65% are fairly experienced
developers who developed in Pharo from three to six years.

Figure 4.14 summarizes the most used programming languages
among the interview participants. Java is the most popular language
with 79% of interview participants being experienced in it. Python
and C++ share the second place while being used by 27% of the
interviewees and 21% also have experience of programming in
C, Javascript and Lisp. Many of the participants mentioned that at
the time when they started to work as a programmer “it was not
important in which language they developed”.

Figure 4.15 summarizes the most common aspects of good code
according to the opinion of the interviewees. The criteria are not
mutually exclusive because we wanted to record their exact opin-
ions. More than two thirds of the interview participants stated that
good code is easy to read and easy to understand. We believe that
these statements are so popular because developers spend signifi-

77

Chapter 4. QualityAssistant. Design & Reception

Java
Python
C++
C

JavaScript
Lisp

79%29%21%

Figure 4.14: Top six programming languages used by the interviewees for

software development.

cant amount of time on reading code [Singer et al. 1997]. Some of
the developers went into more detail and said that good code can be
understood just by reading it without delving into the implementa-
tion details. We assume that both criteria refer to the same general
feature: being able to understand what a piece of code is doing with
as little effort as possible. Another common broad definition stated
that good code respects well-known paradigms of a programming
language, frameworks or even a single project.

Understandable
Readable

Respects paradigm
Good names

No extra complexity
Documented

Modular
71%50%29%21%14%

Figure 4.15: Top aspects of good code according to the interviewees.

More precisely developers identified that good code is modular
and uses good names. In conjunction they mentioned that good code
uses good abstractions. Another important feature of good code is
the absence of any additional complexity besides the essential one.
Some developers believe that the availability of good documenta-
tion is another prerequisite of good code. The interviewees also

78

4.4. Live Feedback Evaluation

mentioned properties such as: extensible, concise, well-tested, con-
tinuously integrated, maintainable, and clean. Some participants
stated that the definition of good code is context-dependent. For
example efficient bit-shifting operations may be hard to understand
by reading the code itself, but could be well-documented. In fact the
responses of the interviewees highly correlate with the maintain-
ability aspect of the ISO software quality standard [ISO/IEC 2010].
Software maintainability is composed of analyzability, modifiability,
testability, reusability, and modularity. Not only did the intervie-
wees mention exactly some of those maintainability subcategories,
but also other criteria like good names and paradigm adherence are
prerequisites for maintainability.

All interview participants knew about code smells, and except
for one person, everybody had used some kind of static analysis
tools to detect code quality issues. Such a high percentage of de-
velopers knowing about code smells is uncommon when compared
to related research [Yamashita and Moonen 2013], and may result
from the high number of experienced engineers that participated
in our interview, or from the code quality culture present in Pharo
and Smalltalk in general. About half of the interviewees used Crit-
icBrowser — the static analysis tool that we discussed in section 4.1.
There was no other particular tool that was used by a significant
number of participants. However they mentioned using Java tools
like Checkstyle and PMD, lint tools like PyLint and JSLint, IDEs
with quality reports like IntelliJ, PHPStorm, Eclipse, CodeBlocks and
SonarCube on an integration server.

Q u a l i t y A s s i s t a n t F e e d b a c k

This subsection discusses the responses of the interviewees and high-
lights important lessons related to RQ1 (what are the positive and
negative features of QualityAssistant?). All but one of the interview
participants provided some kind of positive feedback summarized
in Figure 4.16.

More than half of interviewees mentioned that live feedback
of QualityAssistant is highly beneficial. While speaking about this
feature they also mentioned that having an integrated tool that
without a special setup runs automatically is crucial. As mentioned
before, the live feedback in Pharo uses exactly the same quality

79

Chapter 4. QualityAssistant. Design & Reception

Live feedback
Keeps you alert
CI companion
Encouraging

Guides reviews
57%36%14%

Figure 4.16: Top positive feedback topics.

rules that are employed by standalone tools and CI. Although the
CI process of Pharo itself uses a subset of rules dedicated to critical
errors and style conventions to speed up the validation and avoid the
noise caused by informative rules. One of the developers noticed that
QualityAssistant operates on a small scope: the method or class that
a developer is currently working on. This speeds up the feedback and
shortens the time between changes made to code and detection of
an issue. For example, the developer mentioned that running static
analysis on the complete project he is working on takes about 10
minutes, while QualityAssistant can provide an immediate feedback
about the code you are currently working on. Similarly about a
quarter of the developers noted that QualityAssistant can be used
as a sidekick of a CI server. They said that sometimes you need to
wait a significant amount of time while a CI server is validating
the project, just to find out that you have made a mistake which
you have to resolve before submitting the patch again. On the
other hand QualityAssistant performs analysis immediately as a
developer browses or changes code. Thanks to the live feedback,
mistakes can be detected in an early stage and instantly resolved,
thus significantly cutting down the waiting time in comparison with
a CI server. Our findings greatly support the need of integration of
static analysis into the development workflow previously suggested
by other studies [Beller et al. 2016; Sadowski et al. 2015]. And
while related research has claimed that static analysis should be
integrated at least on the level of CI validation [Beller et al. 2016],
we argue that integration into development tools further increases
the benefits. This supports the prior interviews where developers
expressed the need to see the static analysis feedback as soon as

80

4.4. Live Feedback Evaluation

possible [Yamashita and Moonen 2013]. Additionally, previous
research did not consider static analysis as a part of an ecosystem,
while in our case some developers found QualityAssistant to be
useful in combination with the CI Server.

Lesson 1. Integration and out-of-the-box functionality of
static analysis is highly important for a good acceptance,
while live feedback makes it more user friendly.

Lesson 2. Static analysis should not be concentrated in a
single tool. CI server can ensure global rule adherence
while live editor feedback provides a quick guidance.

More than one third of the participants noticed that Quality-
Assistant keeps them alert and has saved them a few times when
they made a mistake, which is hard to spot immediately, but may
cause unexpected behavior in the future. These people estimated
that while traditional debugging could take them up to 15 minutes,
QualityAssistant pointed out the issue immediately. Some develop-
ers stated that QualityAssistant makes them think more about the
code and in this way encourages them to make their code better.
This applies to the warnings about missing documentation, usage of
low-level and reflective APIs and usage of side effects. Two devel-
opers mentioned that sometimes critiques of QualityAssistant are
annoying but in a good way, because the developers are encour-
aged to improve their code and make it more understandable for
the others, which is beneficial in long term. The senior developers
who are part of Pharo patch review process said that QualityAssis-
tant guides code reviews by highlighting questionable pieces of code
and detecting general issues while allowing them to focus on more
important questions. The problem of reviewers focusing on the easy
parts and missing real issues was previously identified by Bacchelli
and Bird [Bacchelli and Bird 2013]. Now we can confirm that static
analysis aids code reviewers in their work. Moreover, sometimes
developers simply inspect code while searching for something, and
see certain critiques that can be instantly resolved as the developer
is already focused on that piece of code.

81

Chapter 4. QualityAssistant. Design & Reception

Lesson 3. Developers like the live feedback because it
motivates them to write better code and keeps them alert
about the possible mistakes or highlights suspicious parts
of code during a review.

There were few common points regarding the negative feed-
back. These issues are presented in Figure 4.17. According to the
interviewees false positives were one of the most important prob-
lems. On the other hand false positives were never perceived as the
most severe issue. The interview participants acknowledged that
false positives are an essential part of static analysis and that an
obvious solution is to remove the responsible rules, but then you
also lose some important critiques. They also acknowledged that
false positives are very distracting in a standalone setup, where
you need to review hundreds of reports many of which are false
positives. However in the live feedback setup they had to focus
only on a few reports and false positives did not cause significant
problems. Previously, a static analysis team at Facebook discovered
that reports related to a patch under code review are better received
by the developers, as they recently worked in the context of the
submitted patch [Calcagno et al. 2015]. Based on the experience of
our developers live feedback benefits even more from the developer
context.

Lesson 4. Standalone tools usually generate all the reports
about a project at once and this complicates identifica-
tion of false positives. Live feedback eases this burden
by scoping the reports to a current context.

False positives
Unclear Explanation

User Experience
Insignificant rules

29%21%

Figure 4.17: Top negative feedback topics.

82

4.4. Live Feedback Evaluation

Another common issue was related to insignificant rules. Some
developers stated that they are not interested in critiques of the
rules that detect uncommented classes or the usage of reflection-
related APIs. While this category of issues is often merged with
false positives, we analyze it separately, according to the definitions
discussed in section 4.3. We noticed that the attitude towards false
positives and insignificant rules greatly depends on the experience of
interviewees and their current position. More experienced developers
who manage teams or review contributions to a project are in favor
of spending extra time and paying attention to static analysis reports
while the participants with fewer years of programming experience
and especially Ph.D. students working on their personal projects
tend to claim that their project is well-implemented and they do
not care about some rules.

Lesson 5. Experienced developers tend to like static anal-
ysis more than novice developers who are usually too
self-confident to accept criticism.

Some developers identified unclear explanation of the critiques
as the most severe problem. The problem itself has two parts: the
explanation of the critique and localization of the issue in the code.
The former happens when the rationale behind a quality rule is
not clear and developers cannot understand why their code is bad.
The latter issue happens when the critique does not provide enough
information to understand what exactly triggered the rule and how
to fix it. For example an interviewee mentioned a rule designed
to detect deprecated method invocations. However, critiques of
that rule were reporting a complete method that was invoking a
deprecated functionality thus forcing the developer to check all
invocations in the reported method to identify which one of them
calls a deprecated functionality. In this case a feedback loop de-
signed similarly to that of Tricorder [Sadowski et al. 2015] can
be beneficial as it allows users to quickly notify the static analysis
developers if they do not understand a critique.

83

Chapter 4. QualityAssistant. Design & Reception

Lesson 6. Critiques may fail either to explain why a de-
tection is a violation, or to specify which piece of code
is violating the rule. This causes big problems for de-
velopers. A feedback loop from static analysis users to
developers of rules is very helpful in such cases.

Finally, almost one third of developers complained about user
experience. The interviewees did not like the implementation used
for banning critiques. The implementation reuses the strategy of
SmallLint where the source code is modified with certain annota-
tions. The developers do not like that something introduces changes
into their source code just because they ban the critiques that do
not want to see again. However, this issue naturally exists in the
SmallLint engine and thus we do not discuss it in this chapter. On
the other hand some developers found QualityAssistant’s user inter-
face inefficient. One of them did not like that QualityAssistant takes
up some space from the code editor. On the other hand, another de-
veloper didn’t like the fact that they can only see up to three quality
critiques at a time. The initially presented critiques may not be as
important while the following ones hidden at the bottom in the list
may report important issues. Additional study is needed to assess
the strengths and weaknesses of the current live feedback design
because while some interviewees did not like it, we believe that the
current design may prove to be beneficial. In the sub-subsection
“Successful Scenario” on page 89 we provide a scenario where the
current design supports quick comprehension of critiques.

R u l e U s e f u l n e s s

Despite the high ratio of positive feedback, most of the interview
participants struggled to identify the rules that are useful for them.
One third of them agreed that good rules are related to a specific
context, such as a certain project. One developer went into detail
and told us that the rules of Glamorous Toolkit* were extremely
useful for him. Glamorous Toolkit is a project developed externally
but integrated and shipped with Pharo. It has its own domain-
specific language (DSL) for scripting user interfaces. It also provides

*http://gtoolkit.org

84

http://gtoolkit.org

4.4. Live Feedback Evaluation

1 aLink := aLinkOrObject asLink

2 self isEmpty ifTrue: [lastLink := aLink].

Listing 4.5: Missing statement separation.

SmallLint rules that check the DSL and suggest transformations to
enable lazy initialization and so improve the UI performance. By
providing its own rules the project educates unfamiliar developers
about the best way to use the UI framework.

One developer stated that style rules are useful at the beginning,
and they help to familiarize developers with the concepts of Pharo,
but now he mostly focuses on the rules that point out possible bugs.
Another developer mentioned that some style rules helped him to
avoid accidental mistakes where the source code was syntactically
correct, but in fact did not follow the intention of the developer and
at the same time resulted in constructs that are not recommended
and were detected by quality rules. Consider the example code
snippet in Listing 4.5. Two lines were intended to represent two
statements, but the period character that serves as the statement
delimiter in Smalltalk is omitted from the end of the first line. This
results in a single statement where the result of an expression is
assigned to the aLink variable. Furthermore the expression consists
of a message chain asLink self isEmpty ifTrue: sent to the
aLinkOrObject variable. The exception will occur when the result
of aLinkOrObject asLink will receive the self message, as it
does not implement the self method. However, there is a rule that
checks for messages with the self selector and warns that they
look suspicious.

Finally even the most negative interview participant who
claimed not to pay attention to QualityAssistant at all admitted
that there are useful rules that detect invocations of non-existent
methods, or unused variables.

The summary of the most common rules identified as “bad” is
shown in Figure 4.18. We identified three groups of ineffective rules
and each of them was mentioned by about a quarter of the interview
participants. One of the bad rule categories consists of rules that are
based on metrics such as classes with too many methods, methods
with too many lines of code, etc. Developers reported that most of

85

Chapter 4. QualityAssistant. Design & Reception

these issues require significant effort to resolve and usually do not
make sense in the setup of QualityAssistant, where you want to
have issues that just appear and can be quickly resolved.

Metrics-based
Bad Timing

Known idioms
29%21%

Figure 4.18: Negative aspects of rules according to the interviewees.

Another bad category is the group of good rules with bad timing.
The rules in this category do make sense, but some developers do
not want to see the defected violations as soon as they appear. For
example ideally your code should not contain debugging statements
or unused variables, but if you are in a debugging process some
developers do not want to be continuously bothered by the “de-
bugging code rule”. We hypothesize, that for such developers the
notification about the critiques should be delayed to the moment
when the criticized code is not being modified any more. On the
other hand some of the developers said that they like those rules
and that they treat them as a todo list: you have created a variable,
now you have a task to use it. Metric rules are a subcategory of
the rules with bad timing, but they were explicitly identified by
developers and thus we assigned them to a unique group. Previous
research strongly emphasizes the question of when is the best time
to provide static analysis feedback. Beller et al. suggest to do it at
least on a CI server [Beller et al. 2016], Sadowski et al. claim that
a pre-commit period is the perfect time to show the static analysis
feedback [Sadowski et al. 2015], and according to the interviews of
Yamashita and Moonen — developers want static analysis reports
as soon as possible [Yamashita and Moonen 2013]. Based on the
collected data we argue that instead of focusing on a single tool with
a perfect time to display results, we need many tools that work on
different levels and then we should try to understand which rules
should be used by which tool. Moreover, as the timing requirements
of the critiques can depend on each individual, we suggest to use a
single quality model that is shared by all tools. This way a developer

86

4.4. Live Feedback Evaluation

will be able to assign different roles to a preferred time span. For
example live feedback such as that offered by QualityAssistant can
provide the most crucial reports immediately, while another tool
like Tricorder can provide a clean-up feedback (like suggestions
to remove a debugging code) before a commit is performed, and
a CI server like SonarQube [Campbell and Papapetrou 2013] can
include metric-based rules to identify a part of the code that requires
additional inspection for the next refactoring session.

Lesson 7. There is no perfect time to display a quality
violation to a developer. This time depends both on the
kind of violation and on the personal preferences of a de-
veloper. We need more configurable options to provide
static analysis feedback throughout the development
cycle.

The third group refers to known Pharo idioms and mostly mimics
the rules that we used as the examples of false false positives in
section 4.3. They include the missing yourself rule and the rule
warning about the usage of the reflective API. While discussing
this rules some interviewees acknowledged that the critiques in
question actually suggest good programming practices, but most of
the participants were simply annoyed by these critiques.

Some interview participants did not specify concrete rules, but
rather built their answer around the Foreign function interface (FFI)
project. The Pharo FFI framework is built in such a way that users
have to violate some rules in order to use it. These are mostly
explanatory and style rules that are violated by FFI’s DSL. This use
case once again reveals the need for mechanics that can disable
some rules only for a certain scope: users of FFI calls in the current
case.

Lesson 8. Rules should be scope to a context of a program.
Additionally, an external module should be able to si-
lence a more generic rule for the code in the module’s
context.

We did not find an exact answer to RQ2 (what are the good and
bad quality rules?). But we discovered new challenges such as how

87

Chapter 4. QualityAssistant. Design & Reception

to display critiques in different tools at different times or how to
restrict rules from certain contexts. The only concrete answer for
RQ2 is the benefit from the domain-specific rules that come from
other projects.

Q u a l i t y A s s i s t a n t ’ s I m p a c t o n I n d i v i d u a l s

All the stories that developers told us while reasoning about the
benefits of QualityAssistant contribute to RQ3 (what is the impact
of QualityAssistant on the users?). For example, when a developer
tells us that QualityAssistant saved him 15 minutes of debugging
time, or a student tells us that critiques motivated her to write
documentation, we see this as a positive impact that QualityAssistant
had on individuals. Half of the interview participants believe that
their programming habits changed because of QualityAssistant.
Some of them simply enjoy immediately fixing issues reported by
QualityAssistant. Other developers use it to guide their code review.
But most of the interviewees impacted by QualityAssistant reported
learning something new from the tool. Senior developers mostly
learned about common style guidelines and approaches to make
your code portable across different Smalltalk dialects. On the other
hand novice developers were motivated to document their code
and learned about optimization techniques and some Pharo-specific
paradigms.

While some developers changed their habits to quickly react to
issues as soon as they are detected, the main discovery in our opinion
are the teaching possibilities of the static analysis tool. Developers
actually learn from static analysis despite their experience. For
example one teacher shared with us that many of his students tend
to compare the equality of a boolean expression to true and such
a tool could educate them that this is a bad and unneeded practice.
On the other hand experienced developers who are new to Pharo
learn that instead of using

expression1 & expression2

they can use

expression1 and: [expression2]

88

4.4. Live Feedback Evaluation

so the second expression will be evaluated lazily in case the first one
returns true. Even experienced Pharo developers can learn about
API changes to Pharo itself or some other frameworks that are used
in their project. One example for this are the rules of Glamorous
Toolkit that suggest how to use the DSL more efficiently. Another
example is the API change of the SUnit testing framework that
provides a more understandable output if one uses:

self assert: actualValue equals: expectedValue

instead of:

self assert: (actualValue = expectedValue)

The classic approach is to read the documentation or the change
log. However, documentation tends to be outdated and as a result
“source code is more trusted than documentation” [Roehm et al.
2012]. Additionally the approach to learn from documentation
expects that a developer has to consume a complete set of knowledge
needed for a project and be able to use it at any given time. On the
other hand a static analyzer can pinpoint just a related subset of
knowledge needed in a certain situation.

Lesson 9. Live static analysis also serves as a documen-
tation that is available in the exact context when you
need it.

S u c c e s s f u l S c e n a r i o

Both the initial survey and the current interviews showed that most
developers find that QualityAssistant playing the role of an artificial
pair programmer more helpful than distracting. Now we present
additional findings that explain how QualityAssistant is used by
developers and why they are satisfied to such a high degree.

Two of the experienced interview participants shared their vision
of how the developers use QualityAssistant. One of them said:

“Sometimes QualityAssistant warns you against using certain
meta-programming features, but you have to use them anyway,
however the warnings are still useful because it makes you
think again about why you did this and warns about possible
issues in that context.”

89

Chapter 4. QualityAssistant. Design & Reception

Another person said:

“We (experts) are so used to jump over things while trying to
understand code, that one or two lines of the critiques do not
impose much more distraction.”

The later interviewee also expressed a hypothesis that QualityAs-
sistant can be distracting for novice programmers, as they are not
used to quickly skimming over a large amount of information.

We hypothesize that the interface of QualityAssistant greatly
contributes to the ability of quickly understanding a critique or
discarding it. Critiques are presented as entries in a list and can
be read without any additional interface manipulations. Also tiny
textual hints at the beginning of the critique description can help a
developer to localize the issue without additional actions. Finally we
believe that the fact that a developer is presented only with critiques
about the code that he is working on, reduces the information
pressure. In fact the studied approach is similar to JIT static analysis
by Do et al. [Do et al. 2016], but we are also leveraging the UI
of the Smalltalk Browser when a developer is presented with only
one code entity (like a method or a class) at a time. We have
informally asked some developers if they would like to have critiques
represented as inline highlights of a source code instead of a list
at the bottom and they said that currently they like the possibility
to quickly read the descriptions, or ignore the critiques altogether
by simply not looking at the bottom bar. According to previous
studies, static analysis tools for Java detect on average 40 issues for
every thousand lines of code [Heckman and Williams 2008] while
an average Java or C++ method has ten lines of code [Lanza and
Marinescu 2006]. This means that while working on a method a
developer would encounter on average 0.4 critiques. We believe
that while a developer is focused on a certain context, he does not
require much time to look at one more line of text and deciding
whether to act on it or ignore it.

Lesson 10. Static analysis feedback is easier to deal with
if it is related to the context a developer is working on
and she can skim through it without having to interact
too much with the UI.

90

4.4. Live Feedback Evaluation

D r a w b a c k s o f S c o p e d F e e d b a c k

While almost none of our interviewees mentioned the issues of
scoped feedback, we want to share our own experience. There are
certain issues that may appear outside of the scope that is being
changed. For example if a developer removes the last reference to
an instance variable, class or another resource there is no way to
warn them that the resource is not used anymore as it resides in
another scope. In other words, CriticBrowser is not a competitor
of QualityAssistant and each of them performs better in a certain
context. Of course one can implement a more complex analysis that
checks how changes in the current context would affect the rest
of the system, but this requires additional computation time and
special means to display reports. This issue is not critical for scoped
feedback, but should be taken into account.

4 . 4 . 3 U s e f u l n e s s f o r N o v i c e s

During this interview, two contradictory thoughts emerged. One of
them suggests that QualityAssistant may overwhelm novice devel-
opers with different critiques, while the other one says that novices
are actually learning from this tool. To shed light on this question
we surveyed the master students of a Software Modeling and Analy-
sis course to identify whether QualityAssistant was useful to them.
For most of the students this was their first encounter with Pharo,
thus we find the selected group of participants to well represent
the novice developers category. To avoid bias, we did not offer any
reward for the survey participation and we allowed students to stay
anonymous. Seven students participated in the survey and only one
student knew Pharo for half a year before the course. Five of the
students had an average of 1.8 ± 1(M ± SD) years of industrial
development experience. We asked students to evaluate the use-
fulness of QualityAssistant on a 7-point Likert scale: 1. very useful,
2. useful, 3. sometimes useful, 4. not influential, 5. sometimes disturbing,
6. disturbing, or 7. very disturbing.

The responses are presented in Figure 4.19. It is worth noticing
that all the students claimed that QualityAssistant was useful for
them, which refutes the assumption that novices are overwhelmed
and confused by live static analysis feedback. In the freeform feed-

91

Chapter 4. QualityAssistant. Design & Reception

back the students specified that QualityAssistant taught them about
the functionality that they did not know before as well as some
programming concepts of Pharo. On the negative side a student
reported the user interface to be user-unfriendly, and found some
critique explanations hard to understand. Two of the students spec-
ified that they also found other live static analyzers to be useful in
their previous experience with the IntelliJ IDEA and ReSharper.

Java
Python
C++
C

JavaScript
Lisp

79%

Useful Very UsefulSometimes Useful

60%30% 100%0%

Figure 4.19: Usefulness of QualityAssistant from students perspective.

4 . 4 . 4 T h r e a t s t o V a l i d i t y

I n t e r n a l V a l i d i t y

The semi-structured interviews were performed by the developer of
QualityAssistant. The interviewer did his best not to lead or influ-
ence the interviewees. Additionally, QualityAssistant is integrated
into Pharo, which should motivate the participants to provide true
information and not simply make the interviewer happy. However,
we cannot exclude the existence of biased answers. To minimize
the effects of this threat we tried to focus more on the stories that
interviewees were telling about their experience with QualityAs-
sistant rather than qualitative feedback where they tried to assess
whether something is good or bad.

While all the participants work with Pharo, some of them use
either an older version of Pharo or even a completely different
language for their main job. This may introduce some bias, as these
participants may not be using Pharo with QualityAssistant as their
main development tool in their daily work.

E x t e r n a l V a l i d i t y

While Pharo is similar to other object-oriented languages such as
Java, Python or Objective-C, there are certain differences, particu-
larly related to its support of live programming, that may not be

92

4.4. Live Feedback Evaluation

generalizable. Similarly, QualityAssistant does not have many con-
ceptual differences in comparison with other similar tools. However,
we expect that there may be bias on the “community level”. For
example the Pharo and Smalltalk community in general expects
a dedicated IDE that will assist in debugging, refactoring, etc. On
the other hand, there are communities that would rather take a
simplistic but extensible editor like EMACS [Stallman 1981] and
add other tools on their own. We believe that our interviewees
had significantly high programming experience, and worked with
different technologies through their career to provide reasonable
feedback.

All our participants were aware of the concept of code smells.
This differs from the population considered by other research [Ya-
mashita and Moonen 2013; Bessey et al. 2010], which means that
our findings should not be directly compared with others.

The interface of QualityAssistant is simplistic and did not un-
dergo any significant design activities. Moreover, while the function-
ality of QualityAssistant is similar to other quality tools no two tools
are created equal. This may introduce some bias when generalizing
our finding to the other available tools. Additional study is required
to assess how different quality tool interfaces perform against each
other.

The result of our study should not be generalized to all kinds of
static analysis. The quality rules that were used by QualityAssistant
are comparable to those of FindBugs, PyLint, and JSHint — the
tools used in similar studies. And while we claim that live feedback
brings the context closer to a reported critique and helps developers
to deal with false positives this does not mean that any kind of
analysis will be useful in our setup. For example there are certain
categories of rules with a high rate of false positives that are hard
to validate making the rules rarely usable. Providing the feedback
of such rules immediately should speed up the critique analysis, but
this may still not be enough to make the rules usable.

4 . 4 . 5 C o n c l u s i o n s

In this section we present an experience report about a live static
analysis feedback integrated into an IDE based on 14 interviews
with industrial and academic participants. Our results show that

93

Chapter 4. QualityAssistant. Design & Reception

live feedback is highly beneficial, as it brings up possible issues at
the time when a programmer is looking at code and thus reduces the
time needed to get into the context of a critique. This result supports
the claim that was previously made based on the wishes expressed by
developers in another study. We also confirm that integration plays
an important role. And while other research suggests to integrate
static analysis on the level of CI validation, we claim that even
more benefit can be achieved by integrating static analysis into a
development environment. Additionally, we discovered that live
feedback in an IDE can complement a pre-integration check on CI.

Live static analysis reports worked well in our case and can be
easily achieved by taking existing rules, and displaying critiques in
a code editor. Nevertheless we discovered that not all developers
like to be immediately bothered with all available critiques. Based
on our use cases we believe that there should be multiple reporting
tools available throughout the development process that can use
a unified static analysis model. This way a developer will be able
to decide in which timeframe she wants to see the critiques of a
certain rule.

We also discovered that many developers learn from static anal-
ysis feedback. Novices learn basic programming guidelines and
patterns of the programming language while more experienced de-
velopers learn about optimization tricks and portability guidelines.
As some static analysis rules may come from other projects such
as frameworks and libraries, the developers can learn different fea-
tures of the projects including the changes that happened to APIs.
However, for this approach to work the developer of a framework
has to be sure that its users will see the critiques. This additionally
motivates integration of static analysis into IDEs.

We conducted our study on Pharo, which has an experienced
but small community. We are also fortunate that the Pharo Board
integrated QualityAssistant into an IDE used by real developers
for their business needs, as this allowed us to run the experiment.
Nevertheless we believe that other programmers also deserve de-
velopment environments with a live static analysis feedback. We
hope that our study will motivate IDE vendors to implement such
integration, especially as there are already many useful open-source
static analysis rules for different languages.

94

4.4. Live Feedback Evaluation

We confirmed that integration is an important prerequisite for
static analysis. Sadly, there are still many studies that focus on
standalone tools and render them as not welcome or not efficient,
although they may perform much better when integrated. We are
looking forward to studies on advanced static analysis aspects such
as usage of machine learning to provide a personalized feedback,
or approaches on dealing with time and scope constraints.

95

5 T h e I m p a c t o n t h e

E c o s y s t e m

We integrated QualityAssistant— the live intrusive code quality
feedback into the core Pharo distribution. Based on the data col-
lected from the Pharo developers’ impressions and experience, we
can say that QualityAssistant is a crucial feature needed by the de-
velopers for a long time. While the user satisfaction is an important
goal of any product, we believe that human judgment is subjec-
tive and should be accompanied by another source of assessment
to form conclusions. In this chapter we analyze the impact that
QualityAssistant had on the Pharo ecosystem itself.

First of all we encountered a problem while analyzing the quality
evolution of the complete codebase during Pharo 5 development.
The quality rules were changed many times during the development
of the new version of Pharo. As a result the quality evolution was
based on a measure that was continuously changing. To overcome
this issue we devised a three dimensional visualization that decom-
poses quality variations caused by changes in code from those caused
by changes in rules. We present the visual approach in section 5.1.
Afterwards, in section 5.2 we analyze the changes that happened to
the rules to understand how QualityAssistant influenced them.

97

Chapter 5. The Impact on the Ecosystem

5 . 1 3 D D e c o m p o s i t i o n o f Q u a l i t y E v o l u t i o n

A n o m a l i e s

In chapter 4 we described how QualityAssistant was integrated into
Pharo, was positively accepted by the developers, and according
to the interview helped some developers to avoid annoying bugs
or even taught them a thing or two. Afterwards we decided to
investigate how the quality evolution of the Pharo project changed
after QualityAssistant was integrated. By quality evolution we mean
the changes in the number of critiques about the source code of
Pharo by the rules present in the system. At the beginning of our
analysis, we did not consider the fact that the rules can also change
to better capture the expectations towards the project. The rule
evolution complicates the analysis because instead of analyzing
only the evolution of the project’s quality, one also has to account
for the changes to the project’s requirements. For example, consider
a version n that contains 5 critiques from a rule that was removed
(together with its critiques) in the version n+ 1. The removal of 5
critiques in the new version was not caused by improvements in
the code but rather by changes in the quality measure: the rules.

While not realizing the fact of rule evolution we tried to identify
which changes happened to the critiques through the development
history of Pharo 5. We encountered versions where the number of
changed critiques was as high as 5% of the total number of methods
in the software system. We manually examined these anomalies
and detected that in one of them a rule was fixed to include the
violations that it was previously ignoring. Another anomaly was
caused by unloading of a big module.

We could not relate the observed anomalies to a single cause,
which restricted us from using already available visual and statisti-
cal methods. To understand the nature of our data set we created
a visualization that uses the changes between quality values as
building blocks and lays them out in three dimensions: software
components, quality rules and software versions. The visualization
relies on the sparse nature of the data, and pre-attentive clustering
possibilities of human brain to quickly detect the anomalies. This
approach allowed us to see a high level overview of our data set, dis-
tinguish the anomalies caused by rule changes from the ones caused

98

5.1. 3D Decomposition of Quality Evolution Anomalies

40K

30K

20K

10K

 0

Critiques

Versions

Figure 5.1: Critiques histogram.

by software changes and finally clean the data of the anomalies.
Moreover with our approach we identified a dozen anomalies that
reveal bad practices or wrong design decisions and can be valuable
for the decision makers behind the Pharo development.

The dataset that we analyzed with the 3D decomposition ap-
proach was published and is available online [Tymchuk et al.
2016b]. To demonstrate our visualization in action, we recorded a
video, which is available via the following link:
https://youtu.be/GJ8BONoaF0Q.

5 . 1 . 1 P r o b l e m D e s c r i p t i o n

The development cycle of Pharo 5 lasted for one year during which
680 incremental updates (also known as versions or patches) took
place. During this period, Pharo developers had CriticBrowser —
an on-demand static analysis tool with 124 rules at their disposal.
A subset of these rules was used by a CI server to validate newly
proposed patches. In the middle of the Pharo 5 development cycle,
QualityAssistant was integrated and developers started to see live
critiques by the SmallLint rules in their code editor.

Running SmallLint on all versions in this development cycle
produces around 19.5 million violations. Figure 5.1 shows the total
number of critiques per each version. Many of the critiques are
related to essential complexity [Brooks 1995] and never change.
The number of critiques that were added or removed from version

99

https://youtu.be/GJ8BONoaF0Q

Chapter 5. The Impact on the Ecosystem

to version is around 64.5 thousands. Inspection of the plot quickly
reveals many versions where the number of critiques changed by
as many as 5 000 or 15% from the version’s total. We refer to these
changes as anomalies because according to our investigation they
are clear outliers and are unlikely to have been caused by a common
refactoring or feature implementation.

During the manual investigation of a few anomalies we analyzed
the data from the versioning system to understand which source
code changes caused the anomalies. Additionally we analyzed the
issue tracker entries linked to the software patches to understand
what was the reason behind the changes. We discovered that in
some cases developers were fixing a faulty rule, cleaning code of
certain critiques, or simply applying a refactoring. Here we provide
an example of the anomalies that we selectively inspected:

1. An increase of 5 000 critiques, all of which were reported
by a single rule responsible for detecting unused methods.
Previously the rule was broken. After a fix it reported all 5’000
unused methods. The anomaly does not represent a change in
quality: the methods were present previously, but not reported.
The anomaly itself can be interesting for stakeholders to learn
about improvements happening to the quality support system
and their impact.

2. A decrease of 1 000 critiques caused by a removal of a big
module that was implementing low-level functionality. The
anomaly represents a change in quality, as the removal of a
module simplifies maintenance of the whole project. On the
other hand the change is mostly related to essential complex-
ity and is not useful when included on the same level with
common changes.

3. Another decrease of 2 500 critiques was caused by developers
troubleshooting reports caused by a single rule. The anomaly
is caused by intentional changes in the source code and raises
a question: “when and why were these critiques introduced
and why were they not addressed earlier?”

4. 2’500 critiques were added for multiple reasons: (a) one rule
was fixed, as previously it was including false-positive results;

100

5.1. 3D Decomposition of Quality Evolution Anomalies

(b) a new rule was added; (c) a new version of a package
management module was integrated. Multiple types of changes
that could significantly affect the number of critiques made it
very hard to reason about the anomaly.

Additionally, around 90% of all rules were changed to some
degree. Not all the changes affected the functionality. They could
be related to the changes of a description, group, severity, or could
be caused by a refactoring of the critique detection algorithm.

Detecting the anomalies from the chart in Figure 5.1 may seem
easy, but not all the critiques of an affected version are related to an
anomaly, and we want to keep the “innocent” critiques for further
analysis. Moreover one version can have multiple anomalies of
different types that should be handled separately. We acknowledge
that some statistical methods may help to identify the anomalies,
but at the moment we are not aware of the “anatomy” of anomalies,
thus we want to obtain an overview with the help of visualization.

After analyzing the selected anomalies and other aspects of the
data set we compiled the requirements for analyzing the impact
of the quality analysis tools. Critique evolution consists of two
types of changes: gradual and extreme. The former are the result
of common code evolution that slightly impacts the critiques on
each commit. We can analyze gradual changes by using graphical
and statistical methods and draw conclusions based on the trend of
changes. However, the latter consist of anomalies. It is complicated
to provide an evolutionary summary for them as extreme changes
are diverse and not frequent. The previous inspections revealed that
the anomalies are caused by critiques that represent a single rule
in one version, or are related to a single package in one version.
We believe that a report about extreme changes should consist of
summaries that describe each individual anomaly. Additionally we
need a possibility to analyze the data on a time scale and correlate
an anomaly with similar ones that have occurred in other versions.

5 . 1 . 2 R e l a t e d W o r k

Our visualization approach is driven by the characteristics of our
data set. In our first attempt we used a simple bar chart (as demon-
strated on Figure 5.1). Thus, to understand the behavior of each

101

Chapter 5. The Impact on the Ecosystem

package and each group of rules we had to create separate charts.
We could detect versions, and packages revealing high changes in
the number of rules. However, we could not identify the reason
behind the anomaly, as in the chart both package changes and rule
changes are projected onto a single dimension.

The ChronoTwigger [Ens et al. 2014] visualization supports the
analysis of two co-changing properties. However, it is constrained
to properties in the same dimension, and in our case we needed to
analyze the evolution of critiques based on two evolving parameters:
packages and rules.

The Evolution Matrix [Lanza and Ducasse 2002] technique, uses
polymetric views to visualize the evolution of software packages
over the time. We visualized the number of critiques and number
of rules from where the critiques originated as the metrics on the
rectangles’ extents. We found that the Evolution matrix provided
a good overview of the relation between packages and versions.
Although this gave us a better understanding about the places with
significantly higher number of critiques from diverse rules, we could
not investigate the reason behind the anomalies.

To assess the benefit of visualizing package-rule relations, we
created an incidence matrix. In it, one axis represented packages
while another one represented rules. The only metric that we applied
to matrix cells was the number of changed critiques represented as
an amount of blue coloring. We produced several samples for data
coming from different versions. They revealed patterns that helped
us to identify abnormal changes of critiques. Figure 5.2 shows part
of the visualization of version 241, where critiques have changed in
many packages, but for only one rule.

2-dimensional matrices were already used to visually solve di-
verse time-related problems. The Small MultiPiles [Bach et al. 2015]
approach clusters similar matrices from the history into piles and
presents them as small multiples. Brandes and Nick use glyphs based
on gestaltlines [Brandes et al. 2013] to represent an evolution be-
tween relations in an incidence matrix [Brandes and Nick 2011].
Finally AniMatrix [Rufiange and Melançon 2014] uses animated
matrix cells to convey the evolutionary information. While these
approaches looked promising we found them difficult to use with
our dataset because matrix cells were as small as 2.5mm or 10px in
width and height when the matrix was fully expanded on a 27 inch

102

5.1. 3D Decomposition of Quality Evolution Anomalies

Figure 5.2: An incidence matrix to visualize change of critiques.

display. Additionally our main concern was to detect anomalies in
the project’s evolution instead of sequential patterns. We believed
that seeing the correlation between packages, rules and versions in
one image will solve this problem. Thus, we explored a visualization
that uses a 3-dimensional metaphor.

We reviewed Sv3D [Marcus et al. 2003] which uses a 3D rep-
resentation. In it, data is depicted by cylinders that are positioned
using three numerical attributes of data. One extra attribute is
mapped to the height of cylinders. Finally, cylinders are colored
to encode a categorical attribute. Although we found it useful to
provide an overview, it did not help us to identify anomalies since
occlusion among cylinders hindered our ability to identify anomalies
in the data.

Matrix Cubes [Bach et al. 2014] is a visualization technique
based on a space-time cube metaphor of stacked adjacency matri-
ces in chronological order. Since we have to analyze the relation
between objects of different kind, we adopted this technique and
expand it to use incidence matrices.

5 . 1 . 3 V i s u a l i z a t i o n A p p r o a c h

Our visualization is developed in Pharo itself using a 3D version of
Roassal [Bergel 2016] — an agile visualization engine. While we
believe that our approach is applicable in many different contexts,
we decided to script the exact visualization that we need instead of
building a highly customizable application. This is why our main

103

Chapter 5. The Impact on the Ecosystem

Packages

Rules

Versions3

1

4

5

2

Figure 5.3: Visualization Example. Aligned changes of rules 1 and pack-

ages 2 . Crosshair penetrates spheres that represent changes in a rule 3

and a package 4 . A popup 5 appears with detail when hovering over

an element.

focus is on the explanation of the general approach and discussion
of the details that may work differently for other cases.

Our data set can be indexed with triples of the form: package
name, rule name; version number. We want to study a metric called
the critique delta: an integer value that represents the number of
critiques that have changed in a package based on a rule in a version.
A critique delta of version v is calculated by subtracting the number
of critiques in version v − 1 from the number of critiques in version
v.

As we wanted to build a visualization based on three independent
values, we decided to use a 3-dimensional space and encode the
critique delta values with the help of color intensity. An example of
the visualization is presented in Figure 5.3.

Critique deltas are represented as cubes in a 3D matrix. Versions
are natural numbers, and we sort them in an ascending order to
represent data in a historical way. Also we sort packages and rules

104

5.1. 3D Decomposition of Quality Evolution Anomalies

in an alphabetical order. First of all they are represented in this
order in many tools that are used inside an IDE that makes this
ordering a common way to comprehend them. Secondly, multiple
packages form implicit groups by beginning with common prefixes.
Alphabetic ordering keeps implicit package groups together and
enhances comprehension as it is common for these groups to co-
evolve at the same time.

Hovering over cubes displays a popup (5 in Figure 5.3) with
information about the cube and a crosshair that allows a user to
identify which entities are at the same level as the one being hovered
over.

We believe our visualization technique is general enough to
tackle problems of other domains. Therefore, we classify it using
the five dimensions proposed by Maletic et al. [Maletic et al. 2002].
The task tackled by our visualization is identification of anomalies
and cleaning of data; the audience consists of software analysts who
need to make sense of quality evolution; the target is a data set
containing a set of critique rules for each package of a range of
revisions; the representation used can be classified as a geometrically-
transformed projection according to Keim’s taxonomy [Keim and
Kriegel 1996]); the medium used to display the visualization is a
high-resolution monitor with at least 2560 x 1440 pixels.

We designed our visualization according to the visualization
mantra introduced by Shneidermann [Shneiderman 1996]. First,
users obtain an overview to identify places of interest. Once they find
one, they zoom in to have details, they can also filter surrounding
data to maximize the focus on the objects of interest, and finally
they can obtain details-on-demand of the critiques delta of a package
within a version.

C o l o r i n g

We use color coding to determine if the critiques delta is positive
or negative. Red represents an increased number of critiques, while
blue means that the number of critiques has decreased in that ver-
sion. Translucency of cubes is determined based on the absolute
value of the critique delta: the cube with the biggest absolute cri-
tiques delta value will be opaque, while the one with no changes
will be transparent. The other cubes will have their translucency

105

Chapter 5. The Impact on the Ecosystem

proportional to the maximum of absolute values of the critiques
deltas. This ensures that the larger changes will have more visual
impact in comparison with the smaller ones.

We considered two approaches for calculating translucency: one
of them calculates a separate maximum for each version, while
another one uses a single maximum based on all the critique deltas.
The former approach ensures that in case there is one significantly
larger change in the whole history, it will not make all the other
cubes barely visible. However we also find it important to base the
alpha value on the whole history to get a better idea if at some time
there were bigger changes. We determined that an alpha that is
2/3 based on local maximum and 1/3 based on global maximum
works well in our case. We cannot generalize this decision, but
rather suggest to calculate alpha based on both local and global
maximums.

C h a n g e s . 2 D M e t a I n f o r m a t i o n

As can be seen on Figure 5.3, our visualization also contains cyan
and yellow spheres. They are situated in 2-dimensional planes and
contain additional information about packages and rules for each
version. Cyan spheres reside in a rule-version plane and each of them
represents changes made to the rule in the version. Yellow spheres
are related to the changes in packages and reside in package-version
plane. To better explain the location of the spheres, we provide an
illustration in Figure 5.4. We use a different shape: spheres, as they
represent completely different data from cubes. We also color them
with distinct colors that are different from the critiques delta color
codes.

The cyan plane is located on the side of the matrix. It is in front
of the matrix if you are looking from the position where the versions
increase from left to right. We find this to be a common position for
inspecting the matrix, as in western culture people expect time to
travel to the right. We place the spheres in front of the visualization
as changes in rules are not frequent and most of the time we want
to correlate exceptional changes of critiques with the changes of
rules.

Packages have significantly more changes in comparison with
rules, in fact each version is an update of some packages. We found

106

5.1. 3D Decomposition of Quality Evolution Anomalies

v

r

p

Figure 5.4: Meta planes illustration.

that the change metadata can obstruct the rest of visualization. This
is why the yellow plane is located at the bottom of the matrix, as
it is common to look at 3D visualizations from above the horizon
level.

The crosshair extends slightly beyond the change planes making
it easy to see if a sphere is on the same line with a square. Hovering
over spheres also displays the crosshair in the same way it works
with cubes. This allows a user to easily see what cubes are related
to a change, what other changes happened in the same version, or
in which versions the same rule (package) was changed.

The change spheres can be used in two ways. One of them is to
easily see if there was a change in the rules or packages for some
set of squares. For example in Figure 5.3 a cursor is hovered over
a cube that is on one line with the other ones and the crosshair is
penetrating a cyan sphere 3 revealing that the rule of the hovered
cube has changed in this version. Secondly one can start by looking
at the patterns in changes 1 2 and inspect the impact that they
made based on the visualization.

V i s u a l F e a t u r e s

The visualization provides many different pieces of information, as
we have a cube position based on 3 coordinates, color, translucency
and 2 extra planes that have a sphere position based on 2 coordinates.
It may seem that this amount of data pollutes the visualization and
makes it hard to understand. For this reason we identify 2 sequential
questions that a user of our visualization wants to answer.

1. What are the irregularities in the system’s evolution?

107

Chapter 5. The Impact on the Ecosystem

2. Why did this irregularity occur?

To answer the first question a user can use the camera move-
ment and identify clusters of cubes. We based our approach on the
proximity principle: a pre-attentive feature that allows us to cluster
closely-situated visual elements in a fraction of a second [Ware
2004]. The principle works in 2D space so that the 3D visualization
is eventually projected on a plane. We took into account many
aspects, such as the sparse nature of the critique deltas and translu-
cency of smaller deltas, to avoid occlusion, because it can cause
false clusters to appear on a 2D projection. The cube clusters form
lines, as seen in Figure 5.7. At this phase spheres do not obstruct
the visualization; the color of cubes is not as important as whether
the cubes are there or not, and whether the proximity is preserved
during the camera movement.

After a user has identified the pattern of cubes and locked on it,
the second question should be answered. In this case the rest of the
visualization comes into play and helps a user to understand what
is the version, which rules have changed in this version, were the
critiques added or removed, etc.

I n t e r a c t i o n

The visualization supports orbiting of the camera around the 3D
matrix with a mouse. Also a keyboard can be used to move hori-
zontally or vertically the point at which the camera is looking (the
same one used as the center of orbital movement). By hovering
with a mouse over visual elements user can see a popup (5 in
Figure 5.3) with an information about the version, rule and package
of the element. Also a crosshair appears on the hovered element
and spans the whole matrix including planes with spheres. This
allows a user to easily identify which elements are on the same line.
For example on Figure 5.3 the crosshair’s line is passing through
many red cubes and a cyan sphere. This demonstrates that all the
critique changes are on the same line, and are reported by a rule
that has changed in this version 3 . Another line of the crosshair is
penetrating a yellow sphere, which means that the package related
to the hovered cube has changed in this version 4 .

While we rely on the natural clustering, we also provide slicing
functionality that allows a user to hide the unneeded parts of the

108

5.1. 3D Decomposition of Quality Evolution Anomalies

visualization to avoid being distracted by them. These options are
accessible from the context menu of any cube. One kind of slicing
removes all cubes that are more than two steps away from the
selected one. This can be done based on all three dimensions: by
versions, rules or packages. As a result only a slice with a thickness
of 5 cubes is visible as shown on Figure 5.9. The other kind of slicing
simply generates a 2-dimensional incidence matrix visualization
(Figure 5.10). This slicing approach eliminates the distortion caused
by perspective, but also lacks information about the neighbor slices.

We encode a large amount of data into the visualization, but
some information like a textual change log summarizing the patch
cannot be conveyed by colors or layouts. For this purpose we provide
a dialog window with a textual description of the patch release notes
together with links to the discussions on an issue tracker.

Finally we envision our visualization as a tool for identifying
and removing anomalies. For this purpose we provide an option to
log an anomaly which can be:

• rule anomaly: all critiques with a certain rule and version;

• package anomaly: all critiques with a certain package and
version;

• version anomaly: all critiques with a certain version.

After being logged the cubes related to the anomaly will be removed
from the visualization to simplify the detection of other anomalies.
This action can be accessed either from a cube’s context menu, of
from the dialog window with a patch summary.

5 . 1 . 4 C a s e S t u d y

Figure 5.5 displays our visualization applied on the full Pharo data
set described in subsection 5.1.1. In this section we will do a step-
by-step walkthrough for decomposing the evolution, and provide
the obtained results.

D e c o m p o s i n g t h e D a t a S e t

To find anomalies in the system’s evolution we orbited around
the visualization and looked for patterns that stood out. All the

109

Chapter 5. The Impact on the Ecosystem

F
ig
u
re

5
.5
:
A
co
m
p
le
te
v
is
u
a
li
za
ti
o
n
o
f
P
h
a
ro

cr
it
iq
u
e
s
o
v
e
r
th
e
h
is
to
ry

o
f
6
8
0
in
cr
e
m
e
n
ta
l
p
a
tc
h
e
s.

110

5.1. 3D Decomposition of Quality Evolution Anomalies

F
ig
u
re

5
.6
:
T
h
e
co
m
p
le
te
v
is
u
a
li
za
ti
o
n
o
f
P
h
a
ro

cr
it
iq
u
e
s
a
ft
e
r
th
e
cl
e
a
n
in
g
o
f
a
n
o
m
a
li
e
s.

111

Chapter 5. The Impact on the Ecosystem

(a) Beams (side view): critiques of a

same rule changed for many packages.

(b) Pillars (top view): critiques of many

rules changed for a same package.

Figure 5.7: Common critique anoma-

lies.

1

2

Figure 5.8: Core rule refactoring.

1 tip of the crosshair not pene-

trating a cyan sphere. 2 follow-

up anomaly.

112

5.1. 3D Decomposition of Quality Evolution Anomalies

patterns that we identified by this approach had a line made out
of cubes as their base component. The cubes that make these lines
represent critiques from the same version. There are two types of
this lines: beams – the critiques are related to a single rule and form
a horizontal line (Figure 5.7a) and pillars – the vertical counterpart
where the critiques are about a single package (Figure 5.7b).

A few patterns especially attracted our attention. The critiques
in this case form a wall of cubes by spanning both multiple rules
and packages (Figure 5.9). All anomalies of this kind were related
to critical issues in the system that were immediately fixed. This is
why all the walls came in pairs of opposite colors separated by at
most one version. For these anomalies slicing the visualization to
present only a subset of cubes in a range of 5 versions was useful
to remove all the noise around and investigate the pair of walls
alone. The two dimensional representation shown on Figure 5.10
helped us to isolate one plane even more and remove the perspective
distortion. We viewed the patch comments for each version and
analyzed changes made. After this we saved the version numbers
together with comments about the reason of each anomaly. In the
end we hid the walls to remove unneeded obstructions.

The second kind of special pattern that drew our attention ap-
peared in cyan spheres and was related to rule changes. There were
two versions where changes occurred in almost every rule, which
is most likely a sign of refactoring, as many similar components
of a working system have changed simultaneously. One of them
did not have any beams, and the other one is shown on Figure 5.8.
The visualization contains 4 beams. The crosshair on one of them
does not penetrate any sphere from the cyan pillar 1 . This allows
us to easily see that the beam is not aligned with the pillar which
means that they are from different versions. The only red beam 2

is also not in the version with rule refactoring, but it follows a blue
beam and also has a cyan sphere on its end. The next hypothesis
can be formed by simply looking at the visualization: “There was a
refactoring globally performed on all the rules, because of which
two rules were broken and one of them was fixed in the following
patch.” By looking at the patch summary we confirmed that our
hypothesis was correct except for the detail that one of the rules was
not broken but rather fixed during the refactoring session. This also

113

Chapter 5. The Impact on the Ecosystem

Figure 5.9: “Wall”: Critiques of a significant amount of rules changed for

many packages.

Figure 5.10: 2D representation of one version.

114

5.1. 3D Decomposition of Quality Evolution Anomalies

explains why it did not receive any more attention in comparison
with other rule that was immediately fixed.

After dealing with walls and rule refactoring we started to pro-
cess other beams, as they were more prominent in comparison with
pillars. The standard workflow went as follows:

1. visually locate: we visually explored our visualization and
focused on the lines that can be seen at Figure 5.7a. We used
camera movement to change the angle of view and viewpoint
to ensure that the cubes are not forming a line only in one
projection.

2. analyze relations: we used a crosshair as demonstrated in
Figure 5.8 to better understand how are the other elements
situated relatively to the beam. We also used slicing to focus
only on the critiques of a few versions (Figure 5.9), or on the
critiques of a single rule by using 2-dimensional slice similar
to the one in Figure 5.10. The slicing functionality was used
to identify if there were other beams in the same version or
in the whole history but related to the same rule.

3. understand the cause: at this point we mainly relied on the
patch summaries, issue tracker messages and source code diffs
to understand the reason of changes and the cause of the
anomaly.

4. log and hide: we annotated the anomaly with the explanation
about the changes that caused it. Finally we hid the anomaly
to avoid distractions during further explorations.

After dealing with beams we moved to pillars. We quickly no-
ticed that most of them are related to the changes that were intro-
duced in the package that they represented. It is debatable whether
there is a benefit of logging and removing such kind of anomalies
from the data set. They are related to one of the main questions
of software’s quality analysis: “how does this change impact the
software quality?” However, we decided to log these anomalies any-
way, as we wanted to investigate if there are other causes and also
by removing or hiding them we could reveal other less prominent
anomalies. The strategy for processing pillars was the same one as
for processing beams. We naturally finished our analysis when we

115

Chapter 5. The Impact on the Ecosystem

Type Subtype Number

Complete versions 6

Rules (32)
added or removed 8
fixed or broken 17
other (non-related to rule changes) 7

Packages (45)
added or removed 42
modified 3

Table 5.1: Number of recorded anomalies by type.

were not able to detect anomalies any more. Figure 5.6 depicts the
final state of the main visualization without the anomalies that we
identified during the cleaning process.

O b t a i n e d R e s u l t s

The quantitative results of the decomposition that we performed
are presented in Table 5.1. The minority of anomalies affected
both many rules and packages of a version. This is natural, as such
anomalies are related to severe issues in the system. In our case there
were six such cases that formed three pairs, as each defective patch
was instantly fixed or reverted. Only one such pair was related to
changes in the quality validation system. It was very hard to identify
the cause of all such anomalies, and this involved reading patch
summaries, bug tracker issues and even code that was changed.

For most of the logged anomalies critiques of many rules affected
a single package. Out of a total of 45 anomalies, 42 were related to
the packages being added or removed. This could in fact be easily
detected automatically. The remaining three anomalies were caused
also by package-related changes, where a significant amount of
code was changed in one patch.

The third type of anomaly – critiques about a single package
that originated from many rules, had 32 occurrences. Eight of them
were related to an addition or a removal of the rule. This subtype of
anomaly could be detected automatically. 17 anomalies were related
to the rules being fixed or broken. And the smallest subtype with
only seven cases is related to the anomalies that are not related to

116

5.1. 3D Decomposition of Quality Evolution Anomalies

the rule changes. Some of them were results of a planned eradication
of the critiques of a certain rule. The others were related to the
specific changes of the source code that had an impact only on a
single rule.

Despite eliminating all the visual anomalies, we missed a few
cases where a single cube had a large delta of critiques. For example
the average delta is around ten critiques and two cubes had a
delta of more than 2000 critiques. These cases are very rare and
very hard to detect, as in the 3D matrix they are represented by
a lonely completely opaque cube that is not very different from
its surroundings. On the other hand these anomalies can be easily
detected by sorting all deltas by their absolute value and inspecting
the largest ones.

The most important findings were concluded from the anomalies
related to the critiques of a whole version, critiques related to rules
that were not caused by the rule changes and critiques of a single
rule that affected only a single package in a version. These findings
show weak points in the system, and the integration approach.
Rule-related anomalies caused by the rule changes allowed us to
understand how requirements to the code quality were changing
over time.

A n a t o m y o f t h e A n o m a l i e s

Most of the package-related anomalies were caused by addition
or removal of the packages themselves. These changes were caused
by replacing old submodules by new alternatives, integration of
new features or removal of the unused ones. The smaller amount
of anomalies caused by dramatic package changes happened in the
packages that belong to external submodules. They are versioned
separately from the main project and the integrated versions contain
more changes.

Rule-related anomalies have a more diverse nature. Poor value
of the critiques reported by rules was the main reason for their
removal. The rules that were added captured the design decisions
of different parts of the project. Some of them were related to a
method invocation order, others provided suggestions about the
usage of core API migrations, or about the methods that have to be
defined under certain circumstances. Rule fixes either were focused

117

Chapter 5. The Impact on the Ecosystem

on capturing the violations that were missed or excluding false
positives from the results. Also few rules had their scope reduced to
avoid the overlap of critiques. The regressions in rule functionality
happened because of two reasons: either a mistake was made during
a refactoring or the precision of a rule was sacrificed in favor of
performance. After analyzing the data set and rule anomalies in
particular we can suggest stakeholders a test that can warn about
these kinds of changes in rules prior to integration.

Some rule-related anomalies were caused by changes in the code.
For example one of them reported many invocations of undefined
methods. This was caused by the changes to the API of an icon
factory. Another case involved the deprecation of a widely used
API, which caused many deprecation warning critiques. A third
case involved the addition of support classes that reported a high
number of “unused class” critiques. The last two cases were negated
by counter-anomalies where issues introduced previously were fixed.
We suggest the stakeholders to review the quality validation in their
integration process, because according to our findings the critiques
that can be easily solved with a simple automatic refactoring were
ignored and the criticized code was integrated.

Wall anomalies are the most interesting type. We identified
three pairs of them and only one was related to the changes in
the quality validation framework. It occurred when the server-
side validation system was broken, and the changes made were
intended to fix the issue. As a result integrated changes broke the
validation system completely and were instantly reverted. Other
two anomalies were caused by integration of a changes with invalid
source code. Beside breaking the quality validation the changes also
caused issues with source code recompilation and were fixed in the
following versions. We encourage stakeholders to investigate the
integration process, as two changes that broke the validation were
nevertheless integrated. We also advise to add a test of source code
integrity to detect similar issues more easily.

Finally, our case study contained two single-cube anomalies
that were related to a single issue. The rule violated by these
anomaly is checking whether a class contains methods identical to
the ones defined in traits [Schärli et al. 2002] that the class is using.
The first anomaly was caused by a package rename refactoring
during which all trait methods were copied into the classes of that

118

5.1. 3D Decomposition of Quality Evolution Anomalies

package. The second anomaly appeared 170 versions later when the
duplicated methods were removed. The issue was identified because
developers noticed the related critiques. However we advise the
stakeholders to investigate why these changes were integrated in
the first place, and solve the duplication bug of rename package
refactoring.

5 . 1 . 5 D i s c u s s i o n

In this section we reflect on our use case experience and discuss
both positive and negative aspects of the visualization.

The visualization represents anomalies as natural clusters of
data that are easily detectable by visual exploration. The orbital
camera movement was essential to identifying whether the detected
pattern is not an accidental alignment of the elements in the current
projection. For the same reason we suggest to use the same size for
all the cubes, as different sizes will complicate the perception of
dimensional positioning. The sparse nature of the data is also very
important for the visualization. Because the changes to the critiques
should not be frequent and large, most cubes are highly translucent
or completely transparent and do not obstruct the view of the ones
positioned behind them.

The movement interactions were not very user-friendly and
could benefit from improvements. For example visual elements
could be selectable, after which they will serve as a center of the or-
bital movement. Also the effort spent on getting closer to a desired
element to inspect it can be enhanced by using semantic zoom-
ing [Woodruff et al. 1998]. As the visualization presents data in
an immersive 3-dimensional environment and mainly relies on pre-
attentive processing possibilities of a human brain we believe that
it can be interesting for researchers who explore visualizations in
virtual reality [Merino et al. 2017].

Slicing was another important feature. It allowed us to isolate
an interesting piece of information from the rest of the visualization
that was obstructing the view. We found out that 3-dimensional
slicing (Figure 5.9) was the most useful when applied to the version
axis. This allowed us to see the changes in the adjacent versions
and often we were able to detect cases where some changes were
rolled back, or continued on other entities. The same kind of slicing

119

Chapter 5. The Impact on the Ecosystem

was useful for the packages axis, however this is related to the
nature of our data set. As mentioned previously the packages form
implicit groups that have same base name and different suffixes.
These groups usually change together, so having a 5 block deep
slice allowed us to capture up to 5 co-changing packages. This was
not always practical as sometimes more than 5 packages formed a
group. This suggests that we need to have support for variable slice
depth. 3-dimensional slicing was not applicable to rules, as every
rule evolves independently of the others. The main goal of slicing
the rule axis is to see if there were similar anomalies for the rules
throughout the whole history. If the slice contains more than 1 rule,
the anomalies from other rules will also appear in the slice and make
the analysis more complex. Thus 2-dimensional slicing (Figure 5.10)
worked the best for the rule axis. Similarly 2-dimensional slicing was
useful in every case where a single relation between two properties
(rule, package or version) had to be examined. Also the possibility
of creating a multiple slices can be useful when inspecting similar
changes separated by a large period of time.

While obtaining the information about an inspected patch,
the main summary and issue tracker discussions were not always
enough. Sometimes we had to analyze which classes and methods
were changed in the particular patch. Additionally it may be useful
to have support for calculating the difference between non-adjacent
versions, this can help in detecting rollbacks. We detected a few
anomalies that were related to each other in our case study. This
requires not only a possibility of multiple slices or selection, but
also some features to record this relation between anomalies.

A unique feature of our visualization was the metadata rep-
resentation by spheres. We found the information about the rule
changes extremely useful. It allowed us to easily identify if there
were changes made to the rule related to a visual element, and see
if it was also changed in the nearby version. Similarly we could
see if the other rules changed in the same version. In some cases
changes to the rules were driving our exploration because we were
able to detect patterns of cyan spheres.

On the other hand, information about the package changes was
not very useful. Because of the nature of our data set changes to
the package are frequent, and yellow spheres obstruct the view if
placed on top. We placed them at the bottom and then it was hard

120

5.1. 3D Decomposition of Quality Evolution Anomalies

Packages
Ve
rs
io
ns

(a) Co-changing packages. (b) Spheres at the bottom of pillars.

Figure 5.11: Package change metadata.

to see how they are related to the data. There were some situa-
tions where yellow spheres clearly revealed groups of packages that
changed together (Figure 5.11a). Also during the pillar inspection
yellow spheres at the bottom of pillars were clearly identifying that
the critiques are related to a historical group of package changes
(Figure 5.11b).

The difference between the usability of cyan and yellow spheres
can be explained by the nature of our problem. The yellow spheres
represent the changes of packages. These changes are the the build-
ing blocks of software evolution. They are frequent and we consider
their existence to be natural. Rules also evolve, but at a much slower
pace and they do not clutter the view. Our main focus is to identify
the changes in rules, because they are not as common to us as the

121

Chapter 5. The Impact on the Ecosystem

changes in packages. These relations can be different in another use
case that will focus on something other than changes in rules and
packages. This is why we encourage the users of our approach to
experiment with positioning the meta information planes on the
different sides of the visualization.

We already mentioned in subsubsection 5.1.4 that many of the
anomalies were related to the addition or removal of rules and
packages. Before decomposing the visualization into the anomalies
we were not expecting such a high percentage of them to be caused
by addition or removal. Now we can recommend the users of our
approach to automatically detect and remove the anomalies from
the visualization based on this criterion. Also we suspect that some
of the other anomalies can be detected by a statistical approach, or
at least be shortlisted statistically. We have not investigated this
idea, but without building the visualization we did not know what
our data looks like and what the statistical approaches should look
for.

We presented a scenario where quality critiques were influenced
by the changes of both quality rules and source code. We believe that
this visualization can be applicable to many problems where one
value depends on the other two co-evolving values. The immediate
related problems that can be tackled by the approach concern failing
tests and changes in the performance.

Many visualizations suffer from scalability issues, as the visual
elements become too small and the encoded metrics cannot be
read. In contrast, our approach relies on the significant amount of
data that allows a user to detect anomalies that span the whole
visualization. We expect that at some point the number of visual
elements will decrease the performance of visualization, but this can
be mitigated with a sliding time window approach [Zimmermann
and Weißgerber 2004]. Also at some point the lines that form
anomalies may become too thin to identify them. In this case we
suggest to group the entities into blocks that unite the entities with
some feature but evolve independently of each other. For example
in our case packages can be grouped by their base name, while rules
can be grouped by their category.

122

5.1. 3D Decomposition of Quality Evolution Anomalies

5 . 1 . 6 C o n c l u s i o n s

We have presented an approach for visualizing the evolution of
a value that depends on two co-evolution properties. The main
goal of the approach is to detect, identify and log the anomalies
that prevent the evolutionary analysis of dependent values. The
visualization is constructed in 3-dimensional space and relies on
the sparse nature of analyzed data. It enables quick detection of
the anomalies with the help of pre-attentive cluster recognition
and provides multiple visual features that enable a user to obtain
more detailed information. While many visualizations try to provide
meaningful information in each visual element, our approach can be
referred to as an anti-matrix, because the data provided by the matrix
serves secondary purposes while we focus on detection of structures
in the 3D space that indicate anomalies. This makes our approach
resistant to large dataset sizes e.g., we don’t analyze individual cells
of a 200x100 matrix, but detect walls, pillars and beams that can
consist of different number of elements.

We evaluated our approach by analyzing quality evolution of
a real project measuring 520 thousand lines of code. The quality
was affected by both changes in the source code and changes in
the rules that define quality concerns. We were able to successfully
identify most of the anomalies, while the remaining ones can be
easily detected by using statistical approaches. We analyzed 85
anomalies and categorized them into different types. Some of the
types turned out to be easily detectable automatically while the
summary about the others can help to deal with the anomalies in
similar problems.

We described all the possible scenarios that can be followed
with our visualization, but one can also benefit by using it for a
single task such as: 1. obtaining a general overview of the system to
understand the status of anomalies; 2. extracting anomalies caused
by only one of the co-evolving parameters; 3. completely cleaning
the system of anomalies. Also our approach can be combined with
others to perform a more advanced analysis.

123

Chapter 5. The Impact on the Ecosystem

5 . 2 Q u a l i t y A s s i s t a n t I m p a c t o n t h e R u l e s

While using the visualization from section 5.1 we discovered 25
changes to the quality rules of Pharo that changed behavior of the
rules. It is also worth mentioning that in the development cycle of
Pharo 5, over 60 quality rule-related bug reports, feature requests
and enhancement suggestions were opened which is twice as many
as the average in previous years. These values quantify the impact
that QualityAssistant had on the Pharo ecosystem, but do not tell
anything about the changes in detail. As the rule modifications were
initiated by Pharo developers, we believe that the in-depth analysis
of the changes can help us to better understand the needs of the
developers and categorize the rules from different perspective.

In this section we summarize the changes introduced to the
rules after QualityAssistant was integrated into the Pharo IDE and
demonstrate how promotion of a quality analysis tool together with
a feedback loop can help in shaping the quality rules themselves. We
also analyze 3 rules that were removed from the system and 15 new
rules integrated into Pharo or related projects. The relationships
between them show that developers prefer rules that are easy to
understand and capture important violations to those that express
general programming practices.

5 . 2 . 1 C h a n g e s t o t h e R u l e s

According to our investigations the changes to the rules after Quali-
tyAssistant was integrated can be naturally divided into three cate-
gories: bug fixes and usability improvements, removal of the rules
or a part of their functionality, and creation of new rules. In this
section we describe the most interesting use cases in each category.

B u g F i x e s a n d U s a b i l i t y I m p r o v e m e n t s

QualityAssistant greatly increased the number of critiques that Pharo
developers encounter during programming sessions. This provoked
complaints and bug reports about the critiques that provide false
information. For example, one rule checked whether the category
of a method is the same as the category of the overridden method
from a superclass. However it also detected cases where a method

124

5.2. QualityAssistant Impact on the Rules

has a category while the overridden method is uncategorized. In
other words the rule suggested to remove the criticized method
from its category to match the status of the overridden method,
which is nonsense and contradicts another rule that checks whether
all methods are categorized.

Some bugs had more severe consequences. For example a rule
named “Modifies collection while iterating over it” modified abstract
syntax trees during source code validation. This is completely un-
expected and unacceptable behavior as the validation process de-
stroyed parts of the system, much like a virus. The bug was detected
only after the integration of QualityAssistant. Some developers no-
ticed a strange behavior of the methods that were inspected while
the live static analysis was active. As the bug was in a SmallLint rule
— it also potentially affected all methods validated by CriticBrowser.
The bug was not detected before although the rule is not new. This
suggests that CriticBrowser was sporadically used despite a quarter
of developers claiming to use it on a daily basis according to the
survey in subsection 4.1.1.

Another group of rule changes is related to usability improve-
ments. Most of them are caused by the inability of a rule to ex-
plain a violation. For example the rule for detecting usage of a
“soon-to-be deprecated API” detected a method, but did not specify
which part exactly violates the rule. Another rule suggests replacing
detect:ifNone: with anySatisfy: , but also reports a critique if
contains: is used. This happens because at some point the rule’s
functionality was updated, but its description was left unchanged.
While many usability problems were caused by poorly developed
rules, there were some issues related to a completely wrong design
of a rule. For example, one rule detected whether an abstract class
has references. While a developer gets a feedback about the class,
the exact piece of code that references it is unknown. This issue
was resolved by shifting validation from detecting abstract classes
that are referenced to detecting methods that reference an abstract
class and highlighting the source code where the abstract class is
accessed.

In some cases we went even further than just enhancing the
explanations of critiques. For example one rule detected a class that
has all subclasses with the same-signature methods, but does not
itself define an abstract method with that signature. The rule did not

125

Chapter 5. The Impact on the Ecosystem

specify which method is missing in the class. Not only did we add
the method name to the critique explanation, but also we created
an action that automatically creates the required abstract method.
Automated resolutions of critiques contribute to the usability of the
rules by making them clearly actionable, as well as offering better
explanations.

In total over the course of development of Pharo 5 around 20
integration requests were related to improvements in functionality
or usability of quality rules. All the changed rules were present in
Pharo prior to the QualityAssistant integration and no one of the
developers mentioned their deficiencies. This is why we claim that
live static analysis reports together with a well-organized feedback
loop are essential to keep quality rules in a good shape.

R u l e R e m o v a l s

During the evolution of Pharo 5, three quality rules were completely
removed. All of them had the same properties, namely they brought
attention to common beginner mistakes, but were annoying to
experienced developers. Additionally we allowed developers to
react to the critiques by sending positive or negative feedback. The
critiques of all these rules received a large amount of negative
feedback. Next we provide the description of each use case.

The most hated rule checked whether a yourself message is
present at the end of a message cascade. We describe the rule in
more detail in Appendix A. The rule is very important if a person
does not know how a cascade works, because one may expect to
obtain the receiver of a cascade as a result while a cascade actually
returns the result of the last message. If a developer is aware of
this, there is little benefit in being reminded that there is a cascade
without a yourself message at the end. There are many cases
where this message is not necessary. Moreover, one may want to
actually obtain the result of the last message in the cascade instead
of the receiver. In this case yourself has to be omitted on purpose.

The second rule detected whether the messages like ifTrue:

have a block as their argument. This is another useful rule for
beginners that annoys experienced developers. None of the users of
Pharo 5 found it useful, and the rule reported critiques only about
special cases that worked well without blocks. For example:

126

5.2. QualityAssistant Impact on the Rules

size = 1 ifTrue: ':' ifFalse: 's:'

is a perfectly valid piece of code that is easier to read compared to
the version with blocks, and executes faster as there is no need to
unwind block contents.

The last rule detected methods that reference an abstract class.
This rule was previously modified and so is also described in the
previous subsection. In essence the rule raises the programmer’s
awareness of possible instantiations of an abstract class which can
lead to a potential invocation of an abstract method. However this
also includes the usage of utility methods on the class-side. Moreover
abstract classes often provide factory methods [Gamma et al. 1995]
that return their subclasses. For example UIManager default will
return an instance of a concrete UIManager subclass that is the
default for the current setup. It is also not possible to only focus on
the new messages that are sent to the abstract classes, for example
String new creates an instance of a concrete ByteString class
which is a subclass of an abstract String class.

In all cases the probability of a critique being an actual issue was
much lower than the negative impact that the issue would cause if
it was present. However all the rules from this subsection had an
educational emphasis which means that they may be useful for a
teaching configuration of the system.

R u l e A d d i t i o n

As developers became more aware of the critiques in their code, new
rules were introduced to inform developers about the violations.
Most of the rules were requested by the Pharo community or the
developers of different frameworks and we ourselves implemented
many of them. Originally all the rules were packaged together with
the SmallLint engine. We tried to put each new rule in the same
package that contains the code related to that rule. For example if a
rule describes how a testing framework should be used, we package
it with that framework: this way if someone uses the framework he
or she will also get critiques from the dedicated rules.

Only a few rules were placed in the SmallLint package. Two
of them are rules related to Pharo core functionality. One of them
suggests to use ifNil: and ifEmpty: instead of ifNilDo: and

127

Chapter 5. The Impact on the Ecosystem

ifEmptyDo: as they will be deprecated soon. Another one sug-
gests to replace Smalltalk at: with Smalltalk globals at: ,
because of changes in the core API. The other group of rules cap-
tures new architectural constraints of SmallLint rule classes and so
was packaged in the SmallLint package.

All the other rules are packaged together with their re-
lated projects. For example a rule that warns about a usage of
special BoxedFloat64 and SmallFloat64 classes was shipped
with the Kernel package. Another rule that suggests to use
assert: a equals: b instead of assert: a = b was added to
the SUnit package. First of all this enhances modularity of the system:
one can simply unload the SUnit package and load another testing
framework. In this case the SUnit-specific rules will be uninstalled
together with the package. Additionally this packaging strategy
encourages the maintainers of the package to also maintain the
rules that are related to their code.

Rules were introduced to three projects that are being developed
in parallel with Pharo and have their own repositories. Two of these
projects, Rubric and Roassal [Bergel 2016], required rules to check
the order of method invocations. Both projects make use of builder
pattern [Gamma et al. 1995] where the order in which the builder
methods are invoked impacts the final result. For this purpose a
special type of rule was introduced that allowed developers to easily
specify the required order.

Rules for the third project, Glamorous Toolkit*, were different by
their nature. One of the rules detects classes that have extension
methods coming from the toolkit but do not define special methods
that are used to show examples about these classes. Other rules
relate to performance issues that could arise during the definition
of the extensions. In particular computation of the values can be
delayed by passing expressions wrapped in blocks and allowing a
builder to lazily evaluate the block as late as possible.

When we conducted interviews with QualityAssistant users in
section 4.4 the developers mentioned that some rules from external
frameworks like Glamorous Toolkit, were particularly useful because
they acted as a just-in-time documentation. As we discovered in this
section, these rules addition was motivated by QualityAssistant.

*http://gtoolkit.org

128

http://gtoolkit.org

5.2. QualityAssistant Impact on the Rules

The 15 new rules can be grouped into five distinct categories
based on their nature, impact of their critiques, and ways to resolve
them.

Migration rules describe a transformation from one API to another
and can automatically rewrite code. For example usage of
ifNil: instead of ifNilDo: . If violations of these rules are
ignored, in the future the code may fail because of the removal
of the old API.

Private access rules warn about usage of functionalities that are
not meant for public access. For example SmallFloat64 is
a system-specific class that is present to ensure good perfor-
mance of floating point calculations on 64-bit systems, but it
should not be used directly in the code. Violations of these
rules can be ignored only under very special circumstances,
such as deliberate low-level programming, but this may lead
to unexpected errors, non-portable code, or even issues in the
future as a private functionality evolves more frequently.

Invocation order rules detect if the order of message sends makes
sense. For example if the edges: message is sent to a graph
builder before the nodes: method is used to specify nodes,
the edges will not be initialized. If critiques of these rules are
ignored the desired result will not be obtained.

Class structure rules capture design guidelines that should be fol-
lowed while subclassing or extending classes. They check
whether certain methods are overridden, or that particular
methods are present if certain conditions are met. The rule
that checks if the hash method is overridden together with
the “=” method belongs to this category. If left unchanged
the violations will either result in an unexpected functional-
ity, or cause a rejection of integration as the project’s design
guidelines are not followed.

Lazy evaluation rules in our case were represented by a single
pair of rules in Glamorous Toolkit. They detect expressions
that could be evaluated lazily to exploit the design of Glam-
orous Toolkit. Violations of these rules will result in poor

129

Chapter 5. The Impact on the Ecosystem

performance and will complicate exception handling, if left
unchanged.

All of the added rules target exact violations such as a wrong
API usage, violation of design conventions or inefficient code. The
violations are related to the project where the rules belong rather
than some general OOP practices. Moreover, most of the violations
will certainly result in defects and so cannot be ignored.

Another important aspect worth mentioning is the implementa-
tion of the rules based on their type. Migration rules can be easily
expressed with the refactoring browser [Roberts et al. 1997] rewrite
engine. For example use of the old SUnit API can be easily detected
with the expression:

self should: [``@object]

and changed to the new API with:

self assert: ``@object

Private access rules can simply detect access to entities with
a certain annotations, which is implemented in many languages
through access modifiers. To specify invocation order a special DSL
like usage contracts [Lozano et al. 2015] can be used. Class structure
can be easily checked by directly manipulating class objects i.e.,
by obtaining a list of methods defined in a class, and validating
whether they adhere to certain requirements. To support lazy eval-
uation rules we worked with raw AST nodes: we identified builder
message nodes that should receive blocks as arguments and verified
whether the argument nodes are literals or blocks. If the arguments
are represented by other kinds of expression nodes we generate a
critique. We believe that there is no single approach or DSL to define
quality rules but rather many different ones that target a certain
type of violation and provide a different level of actionability.

S t r u c t u r a l C h a n g e s

The introduction of QualityAssistant triggered some minor struc-
tural changes in SmallLint rules. Some duplicated functionality
was removed from certain rules. For example one rule checked
whether = 0 is used instead of isZero and =nil is used instead

130

5.2. QualityAssistant Impact on the Rules

of isNil . But another rule also included the latter case and addi-
tionally checked if ∼= nil is used instead of notNil . Duplication
became easy to detect by shifting the critiques from the rule-centric
view in the CriticBrowser to an entity-centric view in the Quality-
Assistant. For example, previously a developer was using a browser
that displayed violations per each rule making it complicated to
notice among many critiques that the same violation is reported
by two rules. On the other hand, if a developer browses a method
that contains = nil , critiques from both rules inform that isNil
should be used instead, making the duplication evident.

Some rules were split into multiple ones to allow for better
filtering or due to performance decisions. For example, a rule that
checks whether a sent message is not implemented was split into
two: a fast one that checks whether a message sent to self or super is
not implemented in the hierarchy, and a slow one detecting whether
a method with the selector of a message is implemented anywhere
in the system. This way the slow rule may be excluded from the
live feedback of QualityAssistant to avoid lengthy delays during
development process, while the fast rule will still detect a subset of
critiques.

5 . 2 . 2 C o n c l u s i o n s

We have introduced a set of intrusive plugins called QualityAssis-
tant into the IDE used by Pharo developers. The plugins educated
developers about the the existence of quality rules and issues in
their code. At the same time QualityAssistant started a feedback
loop that triggered many changes to SmallLint rules.

The analysis of the changes made after integration of Quality-
Assistant shows that many important bugs in rules were detected
and fixed. Unproductive or annoying rules were removed, while
new helpful rules were added. The analysis of the added and re-
moved rules helps us to identify the features that are important for
developers in the rules, namely:

1. clear explanation of a critique that exposes the source of
violation;

2. suggestion of a solution or automated resolution of an issue;

131

Chapter 5. The Impact on the Ecosystem

3. high impact of the critique i.e., critiques that detect guaran-
teed bugs are valued more than the ones that warn about
hypothetical problems.

Moreover the new rules introduced into the system capture domain-
specific properties of the projects that they represent. This suggests
two distinct types of rules:

Internal rules are specific to a team, company or community and
focus more on the general questions. These rules may define
style, focus on common metrics like number of methods in
a class or describe an architecture of a project. Their value
comes from capturing agreements that are already present
in the community. To change them one has to negotiate the
change of the principles in the community.

External rules come together with a library or framework and act
as documentation. This type of rule supports migration to a
new version of API and detects improper or inefficient usage
of a library. The value of these rules comes from automatically
providing crucial information about possible bugs and their
solutions as early as possible. Maintainers of projects should
be in charge of changing the related rules similarly to how
documentation is changed.

5 . 3 T h e Q u a l i t y E v o l u t i o n R o u n d u p

At the beginning of this chapter we set a goal to analyze the quality
evolution of Pharo 5 and explore whether the integration of Quality-
Assistant caused any changes. As a side effect we created a novel 3D
visualization to decompose the quality fluctuations that happened
due to the changes in the rules. Then, as another side effect we
obtained the rules changes that caused anomalies in the quality
evolution. By analyzing the changes that happened to the rules, we
could understand the requirements of the developers, and improve
the architecture of rules to cope better with the future tasks.

After cleaning the critiques dataset from the anomalies we could
not find traces of any impact caused by the QualityAssistant inte-
gration on the trend of the Pharo’s quality evolution. By analyzing

132

5.3. The Quality Evolution Roundup

the situation more carefully we realized that this result has a mean-
ingful explanation. The versions that we used to form our data set
are “incremental updates” that are validated by a CI server and
peer reviewed by Pharo developers including someone of the small
core development team. From this perspective QualityAssistant does
not ensure the good quality of code, but rather reduces the time
that developers need to submit a good quality patch, and reduces
the time needed to perform a review. In fact, the novice develop-
ers whom we interviewed in section 4.4 confirmed that by using
QualityAssistant they learn about best code quality practices, while
the core Pharo developers said that QualityAssistant draws their
attention to suspicious pieces of code and guides their code reviews.

Needless to say, we cannot assess QualityAssistant based on the
quality evolution mined from the Pharo 5 incremental updates. On
the other hand, during the analysis we discovered the rule changes
that can be also seen as a validation of QualityAssistant, because its
integration motivated developers to add new helpful rules or im-
prove the existing ones. Based on this finding we want to emphasize
the importance of the adaptability of the static analysis framework.
From a certain version of Pharo, the developers received a powerful
tool QualityAssistant that kept them continuously informed about
the quality of their code. However, the information that the tool
provided was not always correct and this reduced the usefulness of
the tool. Thankfully, the developers were able to modify the analysis
system to suit their practices better and eliminate the incorrect data.
There is a good chance that the developers would have abandoned
the tool if they could not modify it.

133

6 Q u a l i t y A s s i s t a n c e

i n O t h e r T o o l s

Most of this dissertation is focused on QualityAssistant— a small
list of static analysis critiques situated under the main code editor
of Pharo. We used QualityAssistant as our primary test vehicle
because it is integrated in the Nautilus code browser — the tool
that Pharo developers use the most to read and write code. As a
result we ensured as much interaction of software developers with
static analysis as possible. However, programmers also use other
tools specialized for various software development contexts. In this
chapter we show the feasibility of static analysis integration for
other tools. We exemplify how static analysis feedback can benefit
from run-time information, relaxed time constraints, and various UI
features of software development tools. In section 6.1 we describe
the updates to the tools already available in Pharo. In section 6.2 we
present a visual approach to design inspection that is facilitated by
static analysis data and is designed to solve the problems of modern
code review.

All the tools presented in this chapter use static analysis informa-
tion provided by the Renraku model that we described in chapter 3.
The model provides a convenient way to obtain critiques about a
code entity and thus frees the tool developer from the burden of
setting up a static analyzer and running it. The critiques are modeled
as full-fledged objects that encapsulate all the details about the issue
that they represent. They also provide actions that help to better
understand and resolve the violation. As a result the main concerns
of a tool developer are filtering of the available critiques (based on

135

Chapter 6. Quality Assistance in Other Tools

Figure 6.1: Critiques highlighted in the source code.

the selected entity or rule) and the representation of them as user
interface elements. Finally, the extensibility of Renraku played an
important role in prototyping custom analysis. This chapter serves
as a validation for Renraku.

6 . 1 C o m m o n P h a r o D e v e l o p m e n t T o o l s

6 . 1 . 1 M e s s a g e B r o w s e r a n d I n l i n e C r i t i q u e s

Based on the QualityAssistant survey from section 4.2 we identified
that many developers do not know about the possibility to highlight
a piece of code that violates a certain rule. Without this feature
it can be complicated for a developer to determine the source of
a critique. Additionally, some developers that we interviewed (in
section 4.4) disliked the design of QualityAssistant because it uses
too much of a precious space of their code editor. To mitigate these
deficiencies we decided to experiment with an inline design that
is commonly used in other IDEs. As shown in Figure 6.1 critiques
are presented to a developer by highlighting the respective source
code intervals and placing an interactive icon on the window’s side
bar. The icon can be used to view the description of the critique
and perform actions.

This feature was first integrated into Message Browser — a tool
used to browse methods that either implement a selector, send a
message with that selector, or satisfy some other kind of query. Then
the inline critiques were moved to the Nautilus code browser as an
alternative option for the default QualityAssistant list at the bottom
of the window. Some developers prefer the original QualityAssistant
UI because they can easily see the names of critiques without having

136

6.1. Common Pharo Development Tools

to hover over the sidebar, or they can passively ignore the critique
list all together. On the other hand there are developers who prefer
to have inline critiques, and switched to this option as soon as it
became available. It is natural for humans to have their own opinion
and preferences, but we want to explicitly highlight the fact that in
both cases the developers are happy with the live feedback.

6 . 1 . 2 C r i t i c B r o w s e r

Originally CriticBrowser was based on the old SmallLint implemen-
tation and the move to Renraku brought a few benefits. Figure 6.2
shows the CritiqueBrowser suggesting a fix to a missing method
critique. SmallLint could not suggest such fixes before, because
it could only transform methods and was not able to perform a
more complicated refactoring like a method addition. Thus in the
original CritiqueBrowser a user would see only a message “Method
defined in all subclasses, but not in superclass” and the definition of
the class where the method is missing without any suggestion which
exact method is missing. This example demonstrates how advanced
critiques improve all the tools that use Renraku. Additionally, the
implementation of CriticBrowser was simplified. In the original im-
plementation, the tool had to possess an extensive knowledge about
various kinds of rules. If a critique belonged to an architectural rule,
CriticBrowser would provide a way to open a dependency analyzer;
for a transformation rule — perform the rewrite. Once CriticBrowser
was moved to Renraku, it relied on property actions and thus all
the domain knowledge remained in the critiques themselves.

6 . 1 . 3 C a l y p s o

In Pharo 7 the Nautilus code browser is expected to be replaced
by a new one called Calypso.* This is a very crucial event for Qual-
ityAssistant for survivability reasons. A few years ago the Usage
Contracts project [Lozano et al. 2015] brought a live static analysis
plugin into the contemporary code browser in Pharo. Later the code
browser was replaced by Nautilus, and as the developers of Usage
Contracts did not have time to re-implement the plugin, the live

*https://github.com/dionisiydk/Calypso

137

https://github.com/dionisiydk/Calypso

Chapter 6. Quality Assistance in Other Tools

Figure 6.2: Critique browser suggests a solution to a critique.

feedback was lost. In our case, the developer of Calypso personally
added the live quality feedback into the code browser.

The majority of Smalltalk code browsers have a notion of a
method protocols — groups that do not impact functionality and
are used to categorize methods. Calypso brings a concept of dynamic
protocols that, instead of just relying on a method category, can
dynamically group accessors, inherited methods, methods that come
from a trait, etc. The author of Calypso created a dynamic group
for Renraku critiques. The list of protocols with the critiques group
can be seen in Figure 6.3 in the third column from the left. The
subgroups are taken from the rule groups, and allow developers to
easily browse all the methods that have for example optimization
critiques about them.

The integration of static analysis into Calypso also exemplifies
the idea that the original tool developers should be the ones who
integrate static analysis into development tools. Renraku enables
this by providing a convenient way to obtain the static analysis
information without having to learn how an analyzer works. Addi-
tionally, Renraku acts as a interface on top of multiple analyzers
and thus a developer does not have to decide which analysis to
integrate and maintain.

138

6.1. Common Pharo Development Tools

Figure 6.3: The Calypso browser with a critique method group.

Figure 6.4: The Pharo debugger augmented with static analysis information.

139

Chapter 6. Quality Assistance in Other Tools

6 . 1 . 4 D e b u g g e r a n d S t a c k C r i t i q u e s

Probably the second most widely used tool to write code in Pharo
is the debugger. It is a common practice to run some code, get
an exception, open a debugger, edit the code in the debugger, and
continue execution. After the success of QualityAssistant some devel-
opers asked us to augment the Pharo debugger with static analysis
feedback. We used the inline critiques approach that we mention
previously, to integrate the static analysis feedback into the debug-
ger’s code editor. While inline critiques are not special in the context
of a debugger, we realized that there is much more information
available during a debugging session. For example we could obtain
critiques for all the methods from the top of the execution stack and
try to suggest the source of the bug based on hot spots. Additionally,
the information about the variable types that is present in a debug-
ger and can be used to perform a more detailed analysis. Figure 6.4
depicts a debugger opened on the “instances of X are not indexable”
exception. This exception occurred because a non-collection object
was passed as a parameter to a concatenation method while the
method expects an indexable object. On a higher level a developer
just tried to concatenate a string with a number, but the reason for
the exception is hidden below multiple layers of the string concate-
nation implementation. This is a common mistake, which can be
easily solved by converting a number to a string. At the bottom
left of the debugger window we added a list of critiques identified
by the execution stack analysis. The single list entry reports the
concatenation of a string with a number, shows the exact location
of the issue in an area on the right, and can even automatically
refactor the code to perform the number to string transformation.

The stack critiques are not yet available to Pharo developers,
and we are still investigating which kind of mistakes can be detected
this way and what is the best way to communicate these critiques
to the developer.

6 . 2 Q u a l i t y - D r i v e n C o d e R e v i e w

Besides augmenting Pharo development tools with static analysis
reports, we analyzed the issues of modern code review techniques
and to which extent they are addressed by the available code review

140

6.2. Quality-Driven Code Review

tools. Then we created a completely new tool, empowered by static
analysis, to demonstrate our approach of visual design inspection.

The most common form of code review is peer review — a semi-
structured approach that can be more easily adopted (and adapted)
for the specific needs of development teams [Cohen et al. 2006a].
During peer review, the changes to source code are reviewed by a
small number of developers just before being integrated.

Modern code review is supported by dedicated tools. Popular
examples include Gerrit and Rietveld by Google, Code Flow by
Microsoft, Phabricator by Facebook, Crucible by Atlassian, etc.Most
tools provide a set of common core features, such as a diff view of
the changes to be reviewed, the ability to comment parts of code,
discuss changes, and mark a code patch as reviewed.

Ideally, a code review is an efficient way to improve code qual-
ity, detect critical bugs, and share code ownership [Rigby and Bird
2013]. This effectiveness motivated a study of developer expecta-
tions and encountered difficulties during a code review [Bacchelli
and Bird 2013]. The authors found that the main reason to per-
form a code review is to find defects in code and to improve the
code written by others. The main difficulty of reviewing code is
in understanding the reason of a change that one has to review.
As a side effect of this problem, reviewers start to focus on the
easier to detect code style problems, in essence going for the low
hanging fruits. A natural consequence of this is that reviewers are
not able to effectively tackle software defects, and the ultimate goal
of improving code quality is hindered.

We conducted a critical analysis of the state of the art of code
review tools and analyzed the features that they provide [Tymchuk
et al. 2015a]. Then we compared the most common features of the
available tools with the shortcomings identified by related research.

We propose an approach called Visual Design Inspection (ViDI)
which uses visualization techniques to drive the quality assessment
of the reviewed system, exploiting data obtained through static code
analysis. ViDI enables intuitive and easy defect fixing, personalized
annotations, and review session recording. To demonstrate and
assess the approach we implemented a running prototype as an
open source MIT-licensed tool with the same name.* We provide

*https://github.com/Uko/Vidi

141

https://github.com/Uko/Vidi

Chapter 6. Quality Assistance in Other Tools

detailed showcase scenarios that illustrate the benefits and potential
of ViDI and our vision. The showcase scenarios also clarify and
exemplify the actual shortcomings that need further investigation
and research.

6 . 2 . 1 T h e V i s u a l D e s i g n I n s p e c t o r

P h i l o s o p h y a n d C o r e C o n c e p t s

As we saw in the previous section, most review tools focus on a
specific context, the one of pieces of code (patches) that need to
be reviewed before being allowed into the release version of the
system code base. We argue that this is a specific scenario of a
wider context, namely the one of continuous assessment of the
quality of a software system. We believe there is the need for an
approach where quality concerns are not reported only for patches,
but become an integral part of the development process. In the
ideal case such a quality control would be performed in real-time,
but for the time being we opt for a session-based approach, where
developers verify the quality of parts of a system (either old parts,
or newly contributed parts, such as patches) in dedicated quality
assessment sessions. ViDI is thus rooted in the concept of a review
session, which can focus on a package or a set of packages. During
the review session, all changes made by reviewer are recorded and
can be accessed in the future. The system to be reviewed is presented
in a dedicated visual environment augmented with automatically
generated quality reports. The environment is self-contained: The
reviewer can navigate, inspect and change the system from inside
ViDI: ViDI supports both system understanding and improvement in
an integrated environment. As a system can be changed during the
review session, ViDI automatically re-evaluates the quality assess-
ment, to keep the reviewer updated about the current state of the
system. Sessions can be stopped, and the session-related data can be
archived for further usage. Furthermore, the session can be visually
inspected at any time to understand the impact of the review, in
terms of the amount of changes and how the system under review
improved from the perspective of code and design quality.

142

6.2. Quality-Driven Code Review

Figure 6.5: ViDI main window, composed of 1 quality rules pane; 2 sys-

tem overview pane; 3 critiques of the selected entity; 4 source code of

selected entity.

U s e r I n t e r f a c e

The main window of ViDI is depicted on Figure 6.5. It consists
of three horizontal panes, which respectively provide i) a list of
categorized quality rules violations (critiques), ii) an overview of
the system, and iii) detailed information about a selected entity.

Critiques List. This pane provides an organized overview of the
occurrences of critiques in the system. The list of critiques provides
two columns containing the name of the rule and the number of
critiques occurrences in the current system. Rules are hierarchically
organized into predefined categories. Each rule and category can
be deselected with a checkbox next to it. This removes the critiques
related to this rule (or category) from the other panes of the tool.
By default, all categories are selected.

The System overview consists of a city-based code visualiza-
tion [Wettel 2010]. We depict classes as bases on which their meth-
ods are stacked forming together a visual representation of a build-
ing. A status bar provides a short summary about the system, con-
taining information about the classes and methods under review,
those which have critiques, and the total number of critiques on the
system. The system overview pane supports immediate understand-
ing of the quality of the system under review, relating its structure
and organization with how critiques are distributed over it. In this

143

Chapter 6. Quality Assistance in Other Tools

view, method and class colors also depend on the amount of cri-
tiques. The element with the most critiques is colored in bright red.
This color gradually changes to gray as number of related critiques
decreases. Elements with no critiques are colored in gray. The view
considers only the critiques and categories selected in the critiques
list. Hovering over the elements of the city displays a popup with
the name of the element and the number of critiques, if present.
Clicking on an element selects it: When an element is selected, it is
colored in cyan and can be inspected in the rightmost pane of ViDI.

The Selection Pane is dedicated to inspection and modification
of an entity (i.e., package, class or method) selected in the system
overview. The name of the selected entity is displayed on top of the
pane, while the rest of the pane is split in two parts. In the top half,
the pane contains the list of all visible critiques about this element.
Selecting one of the critiques highlights the problematic parts in
the source code, which is displayed in the bottom part of the pane.
The reviewer can make changes in the source code and save them.
When an element is changed, the critiques are re-evaluated.

ViDI employs Renraku actions to provide automatic fixes. This
option can be triggered from the context menu of a critique. For
example, Figure 6.6 shows how by clicking “Perform transformation”
in the context menu ViDI will automatically fix the problematic
part of the method.

Figure 6.6: Automatically fixing a critique.

Another option offered by the context menu is the inspection
of the details of a critique that illustrate its rationale and further
details. Finally, another option is to add a note, the purpose of
which is for the reviewer to leave a comment related to the specific
critique, propose a solution, or details on its rationale. Figure 6.7
shows a specific example of this scenario.

144

6.2. Quality-Driven Code Review

Figure 6.7: Adding a note in ViDI.

After a note is added, it is displayed in the list of critiques: Such
a note is essentially a custom critique by the reviewer. Notes have
the same role and importance as critiques: They are stored alongside
entity critiques and they are equally considered fundamental for
the purpose of evaluating the quality of a system. The purpose is
to elevate reviewer comments to the same level of automatically
generated critiques.

At the end of a session, or at any moment, the reviewer can
reflect on the session itself and understand the effects of the review
on the system. We designed and implemented two complementary
views: the critiques evolution view (Figure 6.8a), and the changes
impact view (Figure 6.8b).

The Critiques evolution view displays how the amount of cri-
tiques changes in time during a review. Figure 6.8a shows an ex-
ample where the graph is monotonically decreasing, with minor
exceptions (around 17:36). With this view, the reviewer can visual-
ize the fact that the session decreased a significant number of issues
in the reviewed code, from 119 initial critiques to 26 critiques, in a
timespan of around 35 minutes. The visualization also displays the
impact of each change, displayed as dark semitransparent circles,
whose radii correspond to the change impact.

The Change impact view shows a histogram of changes made
during the session to reason on the number of changed code that
corresponds to the number of resolved critiques. The x axis contains
the sequence of changes in the code, the y axis shows the change
impact, a simple metric of how the change impacted the reviewed
code. As a preliminary metric we chose the number of changed
characters in the source code. We plan to study alternatives that

145

Chapter 6. Quality Assistance in Other Tools

(a) Critiques evolution during a review session.

(b) Impact of changes made during a review session.

Figure 6.8: Reviewing a Review Session.

would take into account the nature of each change to code, like
refactoring choices. In both views, hovering over an entity shows
a popup with information about the change, while clicking on it
opens a dedicated diff view of a change.

6 . 2 . 2 V i D I D e m o n s t r a t i o n

In this subsection we walk through two review sessions to demon-
strate ViDI: The former is about ViDI on ViDI itself, and the latter
is on DFlow* [Minelli et al. 2014], a profiler for developer’s actions
in the IDE).

*http://dflow.inf.usi.ch

146

http://dflow.inf.usi.ch

6.2. Quality-Driven Code Review

V i D I o n V i D I

We developed ViDI following the principle of dogfooding [Harri-
son 2006], that is, by using ViDI on ViDI itself to continuously
validate its capabilities. Once we reached a working prototype sta-
tus, we started reviewing and developing ViDI with the support
of ViDI itself. This allowed us to refine concepts and ideas, but it
also helped us to upkeep the quality of ViDI’s code, which is what
we focus on here. At the moment, ViDI contains 23 classes with
201 methods and extends 14 classes with 33 methods. Figure 6.8a
and Figure 6.8b, that we discussed previously, show one of the
many review sessions of ViDI. That session involved mainly method
categorization. Such critiques are Smalltalk specific: In Smalltalk,
methods can be categorized, meaning that a developer can assign
it a category representing the class of purpose of the method. ViDI
helped to solve these critiques, and others that were automatically
fixable, many times during its own development. This ability is
effective to focus on more important design issues, alleviating the
burden of checking a long report originated by a static analysis tool.
Moreover, by assigning an impact to changes, we could also more
effectively review the more important changes we performed on
ViDI. Figure 6.8b shows how most of the changes are in fact minor,
automatically resolvable, issues of low impact. The changes with
higher impact focus on three different moments of the session, in
the beginning and in the end of a session, when the developer solved
a number of style-related critiques involving the use of conditionals,
and other functional critiques that required refactoring of methods.
Unfortunately, a couple of rules solved at the end of the session
suggested invalid changes to the code, and led to malfunctions of
ViDI that were corrected in subsequent reviewing sessions. This
suggests that SmallLint, the static code analysis technique that we
currently use, has some shortcomings; in the long term, we plan
to address them specifically, but at the current point, we assume
that the critiques we obtain can be generally trusted. Finally, the
developer noticed some missing features from ViDI while reviewing
a specific piece of code. In particular, he added two accessors to get
the start and end time of a session. Even if the modification was
not motivated by solving a critique, this is an interesting use case
of ViDI that we plan to better support, for example by asking the

147

Chapter 6. Quality Assistance in Other Tools

reviewer a motivation for the change when it is not clear which
was the issue he was trying to solve.

Figure 6.9: Vidi quality status.

The current quality state of ViDI can be seen in Figure 6.9;
it still contains few critiques that we could not resolve. As we
are working with Pharo, a dynamically typed language with no
type inference [Palsberg and Schwartzbach 1991], many rules are
based on limited imprecise heuristics. This leads to misleading false
positives. For example, since ViDI uses reflection, we found rules
that identified bad style in references to abstract classes, which
however is fine when using reflection methods.

This suggests either refinement of SmallLint critiques or, more
likely, improvements of ViDI to manage exceptions and the person-
alization and localization of rules.

Another class of rules that we needed to ignore are rules that
are general and conceptually fuzzy, like rules detecting overlong
methods. For example, some specific API usages (e.g., for visualiza-
tion) tend to generate methods which contain many parameters to
be set through method calls. This domain-specific API usage gener-
ates relatively long methods, which in turn generate critiques by
SmallLint. However, such critiques are false positives because such
long methods are due to domain-specific usages, and not because

148

6.2. Quality-Driven Code Review

(a) All critiques visible. (b) Unclassified and inconsistently classi-

fied methods critiques hidden.

Figure 6.10: Initial state of the review sessions.

of method complexity. Again, this suggests the need for a specific
management of exceptions.

V i D I o n D F l o w

DFlow consists of 8 packages, 176 classes and 1,987 methods. We
reviewed a single package which consists of 23 classes and 119
methods. The package uses meta programming [Bouraqadi et al.
1998] to instrument and augment the Pharo IDE with additional
functionalities. The quality of such a package is essential, as it can
break the IDE and cause issues to development itself.

The starting point of the session is depicted in Figure 6.10a.
The system overview pane shows a relatively distributed number of
critiques. The two categories with the largest number of critiques
are “Unclassified methods” and “Inconsistent method classification”.
Critiques point out that a method has no category, or that the
category of the method is different from the one of the method that it
overrides. As these violations are related to documentation, and they
do not lead to real bugs, we can decide to omit them by deselecting
the checkboxes next to related rules. The resulting view gives us a
clearer image to focus to more serious issues (Figure 6.10b). Another
way to assess the quality of the system is to deselect all rules and
then select just one or a few them. This allows to focus on specific
kinds of issues that may be more important to a project.

149

Chapter 6. Quality Assistance in Other Tools

Figure 6.11: Commenting on complex issue.

After filtering unimportant rules, a reviewer can automatically
resolve issues related to code style and optimization. This leaves
more complex issues that neither can be dismissed because they
are important, nor can they be fixed automatically. For example
there is a method violating two rules: the method is too long and it
directly accesses a class method structure, which is specific to the
current implementation of Pharo.

Suppose the reviewer is not the author of the method. The fact
that critiques cannot be automatically fixed leaves the reviewer
in front of a choice: He could either manually fix the method or
leave a note for future inspection. In the latter case, the reviewer
can ask the author to split the method and remove direct access
to the internal class as shown in Figure 6.11. The note is left as
a full-fledged critique in the system that can be inspected when
reviewing the system. Notes are stored in ViDI and can be manually
exported and imported by a reviewer.

Figure 6.12 shows the critique evolution of the session, which
was rather dramatic: the number of critiques went from 105 to 11
in just ten minutes. At the beginning, critiques almost instantly
dropped under the mark of 58 critiques. This was caused by the
automated resolution of categorization issues. Then, after 20:29
mark style and optimization issues were fixed which generated

150

6.2. Quality-Driven Code Review

Figure 6.12: Critiques evolution on a DFlow review session.

changes in the code, and so this part contains dark circles with
larger diameters. These fixes also correspond to a steep drop in the
number of critiques, because resolution was automated. The next
change appears after 20:32:29.

By hovering over the circle, the reviewer can see a
popup which informs that this change was a modification
of a method called signaturesForDebugActions in a class
DFProfilerDebugAction . A diff of this change can be seen by
clicking on the circle. This was a non-trivial issue that could not
be automatically fixed, as the reviewer was understanding how he
should resolve the issue. There is also a longer period without any
change after the resolution in signaturesForDebugActions . This
is because the reviewer was trying to understand how to resolve the
second issue and writing a note to the author. At the end there is a
part where the critiques line descends. These changes corresponded
to the reviewer manually categorizing methods. Finally, close to
the end, another steep drop can be seen. This happened because the
reviewer categorized methods on the top of a class hierarchy and
overriding methods at the bottom were categorized automatically.

6 . 2 . 3 D i s c u s s i o n

As we illustrated in subsection 6.2.2, ViDI can be used not only
to visually inspect the design of a software system, but also to
effectively solve critiques, ranging from simple style checks to more

151

Chapter 6. Quality Assistance in Other Tools

complex issues. The case studies we analyzed pointed out both
benefits and important shortcomings of ViDI that we now analyze
to take a critical stance against our tool.

Critique Representation and Detection. We found relevant
shortcomings in the way SmallLint critiques are represented and
detected. There is significant research to be done in detecting high-
level design issues, for example by integrating mechanisms based
on object-oriented metrics [Lanza and Marinescu 2006]. Another
shortcoming we found involves false positives, like the ones related
to long methods. While some rules require improvement in their
representation, others may require a new representation of rules
themselves. All SmallLint critiques return a boolean result about
the evaluated code entity, that is, they either violate the rule or not.
This is too rough: Ideally, rules should have a severity grade [Lungu
2009], to identify the entities where rules are violatedmore seriously
and to focus on them first.

Fixing Critiques. In the current state, some critiques can be
solved automatically, while others require manual fixing by the
developer. Requiring a manual fix does not mean that we should
not provide at least semi-automatic support for resolution, especially
for critiques that would require specific refactoring methods. For
example, proposed changes can be presented to the reviewer before
being applied, and can be personalized to adapt them to meet the
reviewer intention.

Notes and Review support. ViDI gives a basic support to leave
notes on code entities, which are treated as full-fledged critiques.
This idea can be expanded in many directions, for example to sup-
port more complex comments [Brühlmann 2008; Hao et al. 2013]
that are common on other code review tools, or to provide dedicated
mechanisms to handle exceptions and personalizations.

Diff support.We provide basic support for code diff. ViDI should
be improved by considering related approaches outside the area of
code reviewing. For example, the approach of supporting integration
of source code changes provided by Torch [Gómez et al. 2010] could
inspire solutions for ViDI on code contributions, and not on the
analysis of entire systems.

152

6.2. Quality-Driven Code Review

6 . 2 . 4 C o n c l u s i o n s

We presented ViDI, an approach that envisions quality inspection
as the core concern of code review. We focused on this particular
concern after a detailed analysis of the state of the art of code review
approaches, which is another contribution of this dissertation. ViDI
supports design inspection by providing a dedicated user interface
that enables an immediate understanding of the overall quality of a
system. It leverages automatic static analysis to identify so-called
critiques in the code, and it enables their inspection and fixing,
either manually or automatically. Moreover, we designed ViDI to
record reviewing sessions that can be inspected (and reviewed) at
any time, highlighting how the system has been improved during the
session, and enabling a quick evaluation of the impact of changes
performed by the reviewer. We performed a preliminary assessment
of ViDI by providing two case studies, involving the review of ViDI
on ViDI itself and on DFlow — an advanced IDE profiler.

From the engineering point of view ViDI is significantly more
complicated than the tools that we presented before. Most of those
tools were either displaying all the critiques about a single entity
(as in QualityAssistant) or all the critiques produced by a single rule
(as in CriticBrowser). On the other hand ViDI had to summarize
critique information based on a single rule, a rule group or an entity,
dynamically toggle visibility of the critiques and provide a detailed
and actionable information per software entity. Renraku played an
important role during the development of ViDI and served as the
core meta model. Renraku provided rich critiques and ViDI just had
to filter them and display in the UI elements according to the setup
made by a user. Additionally, Renraku critiques already maintained
references to the related rules and targets making it easy to track
what should be re-validated after source code changes take place.
Finally, ViDI relied on the extensibility of Renraku to add user notes
as an addition to the critiques.

153

7 C o n c l u s i o n s

In this thesis we presented our vision of quality-aware tools. We
based our quality criteria on static analysis algorithms. To combat
the fact that software developers do not use static analysis tools,
we integrated the quality analysis into the development tools that
programmers use in their daily routine. We studied the acceptance of
the quality feedback integration, its impact on software developers,
and feasibility of such tools in general. As a result, we ended up with
many satisfied developers, a few tools that developers are actively
using, a couple of prototypes that yielded important experience, and
finally a unified code quality model. In this chapter we summarize
our main contributions and chart a road map for the future research
in quality-aware tooling.

7 . 1 C o n t r i b u t i o n s

7 . 1 . 1 L i v e Q u a l i t y A s s i s t a n c e

We augmented the main Pharo code editor with live static analysis
feedback known as QualityAssistant. The live feedback co-exists
with an on-demand batch-mode static analyzer CriticBrowser which
is not systematically used according to our survey. To assess Qual-
ityAssistant we performed an initial usability survey a couple of
weeks after its integration and a series of interviews almost one

155

Chapter 7. Conclusions

year later. Both the survey and the interviews showed that most of
the developers find live feedback of QualityAssistant to be useful.

The closer examination of the interview responses showed that
the intrusiveness of QualityAssistant is one of its most important
features because the developers see critiques as they program and
can quickly resolve the reported issues. At the same time, the narrow
scope of QualityAssistant’s critiques is related to the development
context of the developer and simplifies comprehension of the re-
ported issue. Improved critique understanding in turn helps to fight
false-positive reports that are not an exception to the static anal-
ysis of QualityAssistant. We discovered that developers can learn
about best development practices and API guidelines from static
analyzers. Domain specific rules provided by third party libraries
were especially useful for our interviewers, as these rules helped
developers to better understand how a library should be used and
how to avoid trivial mistakes.

Besides human assessment of QualityAssistant we also analyzed
changes that happened to the quality rules after the static analysis
integration. While there were many rule-related bugs fixes, some of
the rules were completely removed and new ones were added. We
discovered that the removed rules had a high false-positive ratio and
thus annoyed most of the developers in the live-feedback setup. On
the other hand, Pharo developers added new rules to communicate
API changes, design contracts, and optimization suggestions with
the help of QualityAssistant’s intrusive feedback.

Currently QualityAssistant is integrated into the main Pharo
distribution and provides two opportunities. First of all, other re-
searchers can introduce their own analysis and benefit from the
existing live feedback infrastructure while evaluating their approach.
Secondly, the main developer of QualityAssistant is also the author
of this dissertation who is not going to maintain the live feedback
framework anymore. Thus the future evolution, stagnation, or dete-
rioration of QualityAssistant can act as yet another evaluation of
how important is the live quality feedback for the Pharo community.

7 . 1 . 2 3 D D e c o m p o s i t i o n

We encountered a challenge while analyzing the evolution of code
critiques in the development versions of Pharo 5. Changes in cri-

156

7.1. Contributions

tiques for each patch were influenced not only by the changes in
source code, but also by the changes of quality rules. To investigate
the problem, we visualized the critiques in a three-dimensional
space, where axes were represented by the incremental versions
(time), quality rules, and source code packages. Such visualization
allowed us to easily identify anomalies caused by changes in rules,
changes in code, and failures of the validation system. Critiques re-
lated to the anomalies formed distinct shapes that resembled walls,
pillars, and beams in a building. We believe that this approach is
applicable to other datasets, where one value depends on two other
independently evolving variables.

7 . 1 . 3 U n i f i e d Q u a l i t y M o d e l

We devised a single static analysis model that can be reused in
various analyzers and development tools. The Renraku model is
based on three key concept: a rule that can validate code, a critique
which is reported by a rule, and a target of the criticism. Renraku
follows two goals: to simplify integration of available analyzers into
new tools, and to simplify addition of new analyzers to the existing
tools. Thus the approach targets two groups of people: analysis
developers and tool developers.

We used Renraku to augment eight development tools with static
analysis feedback. These tools operated in various contexts such as
code editing, code inspection, debugging, and code review. The UIs
of the tools allowed various levels of customizability, from mini-
malistic inlining in a message browser to custom debugger plugins
or even a dedicated visualization in ViDI. In all the cases we found
that a short text and a small icon is enough to communicate basic
information about a critique with a user, while more sophisticated
interaction can be achieved through custom actions. Each action
can have short description and an icon as well, and an arbitrary
code that will execute upon activation. The references to rules and
targets allowed the tool developers to group critiques in the tools
that operated on large scopes of code and required sophisticated
categorization.

While working on quality rules we identified a few actions that
were common for many critiques. These actions are viewing the
rationale, banning the critique, and suggesting a solution to the detected

157

Chapter 7. Conclusions

problem. In a few special cases rule developers added their own
actions that open special tools such as a dependency browser.

Two developer implemented their own custom analyzers on top
of Renraku. One analyzer reports issue tracker entries related to a
source code target while the other one assists a developer to achieve
a good test coverage and automatically validates whether all test
pass for a source code entity. The developers of both analyzers had
little to no knowledge of how to develop extensions for the code
editor, but as they only had to work with the quality model. As a
result they managed to accomplish integration of each analyzer in
about 10 hours which is a relatively short time for such task.

7 . 1 . 4 V i s u a l D e s i g n I n s p e c t i o n

Apart from augmenting the existing development tools with quality
feedback, we studied the shortcomings of the modern code review,
devised a quality-driven Visual Design Inspection approach, and
built a prototype tool to demonstrate it. The approach consist of

identification of problematic parts of a software system based
on a visualization enhanced by static analysis reports;

inspection of the faulty software and the related reports, reso-
lution or documentation of the issue;

review of the session in terms of the changes to the source
code and variations in the quality.

We demonstrated how the ViDI approach can be applied to improve
quality of the ViDI tool and another software project.

7 . 2 Q u a l i t y - A w a r e T o o l i n g R e c i p e

Based on our experience of augmenting software development tools
with static analysis feedback, we would suggest the following recipe
for those who want to increase the quality awareness of software
developers:

1. Integrate static analysis into the most commonly used development
tools. If you are an IDE developer, or if all the developers in

158

7.3. Future Vision

your community use the same tool, live feedback can give
you an edge in sharing the quality guidelines. However, if the
developers use various IDEs it can be easier to focus on a tool
where the development effort converges in one place such as a
CI server. Do not stop at a single tool, as each of them targets
software development from a different angle.

2. Ensure the consistency of the quality guidelines. It would be
inappropriate if a developer had to follow one set of rules
while developing software and another upon the integration.
Of course, certain rules can be less appropriate in the context of
certain tools, but the core guidelines have to be shared across
all the tools. A single quality model used by both analyzing
and development tools can simplify the implementation if
the analysis is performed by multiple analyzers and has to be
displayed in multiple development tools.

3. Enable community tailoring of quality rules. It is common to
introduce quality assistance with generic rules, but they will
not fit all the possible projects and workflows. After some time
the users of quality assistance will want to modify or remove
some rules, and add the ones that are specific to their use cases.
Unless it is very easy for a casual developer to modify the
rule base (which, to our knowledge, is currently an unsolved
problem), you should assist your users to change the rules.

4. Favor discussion and consensus over majority voting. Not all the
proposals regarding the changes that should be made to the
rules will be unanimous. It is better to discuss the conflicting
opinions, as often they indicate misunderstanding of some
design principles and may negatively impact the development
experience of certain groups of developers.

7 . 3 F u t u r e V i s i o n

7 . 3 . 1 Q u a l i t y M o d e l i n g

Questions from this category target the features of Renraku and
tackle the conceptual issues of external properties.

159

Chapter 7. Conclusions

A d v a n c e d R o u t i n g i n R e n r a k u

At the moment Renraku acts as a layer between tools and analyzers
that allows tools to easily obtain external properties about any target
generated by available analyzers. The analyzers can be easily added
of removed, but the obtained external properties come from all the
analyzers currently loaded into the system. During the interview in
section 4.4 we learned that developers may prefer to see the critiques
of certain rules in a specific tools instead of everywhere where
is it possible. We believe that this is more important in terms of
analyzers. Thus Renraku has to implement more of a “routing” logic.
We envision a functionality that delivers (or routes) the external
properties from an analyzer A to the tool T, where T explicitly
subscribed to the information that originates from A.

Another issue to keep in mind is that at the moment Renraku does
not provide any optimization against re-computation. For example
if five browsers are opened on the same method and it is updated,
all the browsers will ask for new critiques, and these are going to
be re-computed five times. So far this did not cause big problems
for us, but the re-computation issue will become more and more
prominent in the future when more tools and analyzers will rely
on Renraku. Maybe this should be solved with caching, or maybe
there is another approach based on subscriptions, scheduling and
notifications that can be explored as a part of the routing model.
For example, Renraku could react an update in source code, check
if there are any subscribed tools that are currently active on the
changed piece of code, run the required analyzers once and notify
the tools about the result of the analysis.

M o r e A n a l y z e r s i n R e n r a k u

At the moment most of Renraku’s use cases are based on a sin-
gle analyzer: SmallLint static analysis rules. Lately, other kind of
analyzers have started to appear such as the issue tracker linker,
or the backend that ensures that code is thoroughly tested. These
analyzers, however, are still in their infancy, and we expect that,
as they mature, there are going to be some requirements that Ren-
raku cannot fulfill. For example the increased number of analyzers
will increase the average number of the reported properties which
will complicate the comprehension of the reports. It is important to

160

7.3. Future Vision

study the requirements of analyzers and evolve Renraku accordingly
because in the context of quality-aware tooling, static analysis is
not the only source of information about the software quality.

M o r e P r o p e r t y - B a s e d T o o l s

One of the Renraku’s key ideas is the concept of an external property:
an actionable object which encodes a piece of knowledge about
a code entity. Besides various critiques, there can be completely
different types of properties, such as an issue tracker entry. At the
moment most of these uncommon properties were demonstrated in
the context of QualityAssistant which has a simplistic user interface.
Although the more sophisticated tools such as CriticBrowser and
ViDI rely on the Renraku model, they operate strictly on static
analysis critiques. As quality-aware tools should be aware about the
various aspects of quality, one has to investigate to which extent
tools can rely on multiple sources and what are the shortcomings.

In theory, CriticBrowser is a tool for browsing automatically
collected external properties about source code. At the moment
the properties are static analysis critiques, hence the name: Crit-
icBrowser. In case these properties are bindings to an issue tracker
the tool would turn into an issue tracker browser or a local issue
tracker client. We expect that in practice it is more complicated
to build a client for an issue tracker, and the possibilities and lim-
itations of such a tool should be researched in more detail in the
future.

O b j e c t c r i t i q u e s

In subsection 6.1.4 we demonstrated how one can benefit from the
critiques of objects other than source code entities. In the example
we analyzed an execution stack to identify a commonly known
mistake and suggest an automated solution for it. This motivates
a new powerful assistance framework especially for dynamically
typed languages. When we perform our analysis on a static source
code we lack a lot of information about the variable types, but if
we are in the middle of a debugging session, all the information
from that execution point is available to us and to our tools. Besides
analyzing the execution stack, a debugger could validate available

161

Chapter 7. Conclusions

objects against their domain rules to potentially detect a malformed
object that will help to localize a bug. At the moment we do not
know whether there are enough use cases that follow the described
scenario and whether object-based rules will not require more time
and resources in comparison with static typing.

7 . 3 . 2 H u m a n - C r i t i q u e I n t e r a c t i o n

In this subsection we focus on the questions that revolve around
the interaction of a developer with code violations. Most of the
questions listed here arose during the analysis of QualityAssistant.

C r i t i q u e s o n v a r i o u s l e v e l s

In section 4.4 we learned that there is no single best place to report
quality violations to a developer. A solution to this would be to have
multiple tools based on the same quality model (such as Renraku),
and have a possibility to easily define which tools should use a
certain rule. This solution requires a user study to identify how
developers would use this setup. Based on our experience we would
suggest to have quality feedback in at least three development
stages: 1) live feedback in a code editor; 2) pre-commit validation
of the new changes; 3) pre-integration validation on a CI server.

Q u a l i t y A s s i s t a n t U s a g e

In this dissertation we evaluated QualityAssistant from the user
perspective by conducting surveys and interviews, as well as from
the software ecosystem perspective by analyzing changes caused by
the QualityAssistant integration. Based on the evaluation results we
can say that the live quality feedback is important and beneficial
for software developers. The next logical question to address is
“how do developers use QualityAssistant?” The live quality feedback
overlaps with the main activity of a software developer, and thus
fine tuning of the feedback system can have a reasonable impact
in the development experience. As a starting point, we recorded
developer interactions with QualityAssistant and published them
online [Tymchuk 2017b]. The data was used to motivate a related
research in software refactoring, but the analysis of QualityAssistant
usage in fine detail remains future work.

162

7.3. Future Vision

R u l e C r e a t i o n

Related research made a strong emphasis on the importance of
domain specific rules. We have confirmed this in section 4.4 as
some of the interviewed developers identified that they learned
important concepts of frameworks that they used from custom rules
provided by the frameworks. Additionally, in chapter 5 we analyzed
the rules that were updated to meet the latest requirements of Pharo
developers.

At the same moment, most of the rules are created by dedicated
developers or very curious individuals. In our case, the rules were
created by us, by Pharo developers, who were previously imple-
menting quality rules, and by a few developers who asked us to
teach them how to develop rules. We believe that the status of static
code analysis would radically change when after having an idea
about a new rule an average developer would personally implement
it. This is a broad question and we see a little interest towards it
because the current research of static analysis focuses on the cor-
rectness, execution speed, and feasibility of quality rules while the
developer-friendliness is rarely taken into account.

O t h e r E c o s y s t e m s

All our work was based on Pharo, which gave us significant benefits
such as the reflective capabilities of the programming language
and a single IDE used by all the developers. We are interested to
learn if the results of our experiments can be replicated on other
languages and IDEs. We do not see a technical issue why it should
not be possible, especially when there are tools such as IntelliJ
IDEA which comes with a live static analysis. We suppose that there
could be “cultural” issues, because programmers who use certain
technologies may have different visions on how programming is
done. Finally to replicate our change in the development ecosystem,
one has to maintain a certain user base. An interesting candidate for
this would be a company like Microsoft, which provides a complete
development stack with the C# programming language, the Visual
Studio IDE, and the Team Foundation Server with CI capabilities.
Another interesting candidate is the SonarSource company who
became popular with their CI for code quality validation called
SonarQube [Campbell and Papapetrou 2013]. Now they start to

163

Chapter 7. Conclusions

provide live feedback with the new SonarLint tool. Obviously, the
idea of SonarSource is to have the same validation happening both
live and on the CI server. The only question is whether they will
promote a single platform to implement quality rules and port the
existing ones, or they will focus on their own small set of rules. So
far the company has followed the latter strategy.

7 . 4 S u m m a r y

Static analysis is a mystical concept that has been proven to be useful
and not used at the same time. We boldly stated that static analysis
has to be an integral part of software development tools and to
prove our point, we augmented tools from the Pharo development
ecosystem with static analysis reports. As a result we obtained
plenty of positive feedback both from surveys that we organized and
informal discussions with developers. More importantly however,
we changed the status quo of static analysis in Pharo. Nowadays
Pharo developers casually discuss static analysis rules, wonder why
there is no quality assistance in a certain tool that they use, and
ensure that the new tools come with static analysis support.

We created a unified quality model as a side-effect of augmenting
Pharo development tools with static analysis. The model is used to
separate the concerns of code analyzers that produce critiques from
the tools that display critiques in their UI. As it became possible to
add custom analyzers, developers started to experiment with their
own analysis that went beyond standard code pattern checkers. In a
way developers showed that software quality can be also validated
by unit tests, its deficiencies are reported on issue trackers, and
there is no reason not to have this information in the development
tools.

From the research point of view this dissertation brought a confir-
mation of an importance of static analysis, identified strengths and
weaknesses of a live quality feedback, highlighted the importance of
clear reasoning about false positives, pioneered a 3D decomposition
of a quality evolution, discussed the approach to simplify static
analysis integration into various tools, and suggested an approach
to combat the deficiencies of the modern code review tools. From
the engineering point of view during the course of this thesis we

164

7.5. Closing Words

updated a few development tools with static analysis feedback and
implemented a model of code quality. Our contributions are used by
Pharo developers in their daily work. From the ideological point of
view we brought the concept of quality-aware tooling to the Pharo
community and there is a chance that this concept will continue
evolving as developers try to solve their problems with it.

7 . 5 C l o s i n g W o r d s

Software quality is shaped by many aspects. Most of them can-
not be easily assessed by simply reading, compiling and executing
source code. Various practices and tools emerged over the last years
aiming to ensure a good quality of software. However, they are
rarely used in practice and thus quality of many software projects
is compromised.

In this dissertation we demonstrated that the same tools that are
used to create software can assist developers to maintain a good
quality by employing the power of static analysis. Based on our ex-
perience, live quality feedback combined with customizability of the
underlying analysis is a crucial part of software quality assurance.

165

A p p e n d i c e s

167

A T h e “ M i s s i n g Y o u r s e l f ”

R u l e

One of the most infamous rules available in Pharo was named: “Prob-
ably missing ‘; yourself’ ”. The rule detected cascading messages (also
known as cascades) that did not end with the yourself message
although their return value was used in the code. Cascades are
a concept specific to Smalltalk and a real example of a message
cascade taken from Pharo source code is presented in Listing A.1.
On the first line an instance of ToolDockingBarMorph is created.
The rest of the lines separated by semicolons contain message sends
to the same object (the newly created instance). This construct is
very useful for initializing newly created objects with desired values
and not having to retype the variable name each time in front of
a message. However, the result of the whole cascade expression is
equal to the value returned by the last message in the cascade (in
our case yourself). This means that if adoptMenuModel: would
be the last message and would return an adopted model the whole
expression would return it, while the desired result is the instance of

1 ^ ToolDockingBarMorph new

2 hResizing: #shrinkWrap;

3 vResizing: #spaceFill;

4 adoptMenuModel: aModel;

5 yourself

Listing A.1: Smalltalk cascade example.

169

Appendix A. The “Missing Yourself” Rule

ToolDockingBarMorph . To avoid this kind of problem, the “missing
yourself” rule suggests to end cascades with the yourself message
as shown in the example. This message simply returns the receiver
i.e., the the instance of ToolDockingBarMorph in our example. This
rule can provide useful suggestions for novices who are not aware
about the pitfalls of Smalltalk cascades, and it can be absolutely
annoying for experienced developers who want a different last
message on purpose.

Developers who use the Roassal visualization framework [Bergel
2016], often use the last message of a cascade to create elements of
a shape or to apply a normalizer or a builder to their elements. The
code in Listing A.2 illustrates one of such cases. On the first line
an instance of the RTBox shape is created. On lines 2-4 the shape
is initialized with required properties. Finally, on the fifth line the
message elementsOn: will be sent to the shape instance which
will return a collection of elements created based on the parameter
passed with the message. While this is a completely valid code, the
rule would complain, because the cascade’s result is assigned to the
elements variable, and the cascade does not end with yourself .
For many developers this warning is annoying because their code
works completely fine, nevertheless a minority of developers believe
that the rule’s suggestion is correct. The code from Listing A.2 can
be refactored as shown in Listing A.3. This way it is clearer where
the shape is created, and when it is used to build elements.

1 elements := RTBox new

2 color: Color lightRed;

3 width: [:cls | cls numberOfVariables * 8];

4 height: #numberOfMethods;

5 elementsOn: RTShape withAllSubclasses.

Listing A.2: Roassal elements creation with the last cascade message.

1 shape := RTBox new

2 color: Color lightRed;

3 width: [:cls | cls numberOfVariables * 8];

4 height: #numberOfMethods;

5 yourself.

6 elements := shape elementsOn: RTShape withAllSubclasses.

Listing A.3: Roassal elements creation that does not violate the “missing

yourself” rule.

170

B A d d i t i o n a l P l u g i n s

o f Q u a l i t y A s s i s t a n t

QualityAssistant is a live static analysis feedback plugin integrated
into the main code editor of the Pharo IDE. We discussed it in
chapter 4 together with the related evaluations. However, since
its release QualityAssistant also provides plugins for the Inspector
and Spotter tools [Chiş 2016]. For a long time already the plugins
are disabled by default. Originally the plugins were created as the
first demonstration of the Renraku model and evaluated together
with the main code editor plugin. We believe that the Inspector and
Spotter plugins may prove useful in the future

Inspector is a tool that allows developers to inspect objects in
Pharo. Objects may have various representations, and a user can
select an object from a presentation and inspect it. This enables
continuous inspection of objects which is useful during software de-
velopment. In Pharo everything is an object, including methods and
classes. This allowed us to create a special inspector presentation
for method and class objects which displays critiques about them.
Moreover developers can select and inspect a critique to obtain
more information about it. Figure B.1 depicts an inspector open
on a method. The critiques presentation (on the left) lists existing
violations. Each violation can be followed up by clicking on it and
inspecting it in the next pane (on the right) which shows the prob-
lematic source code, explanation of the issue, and custom extensions
provided by the inspected critique.

171

Appendix B. Additional Plugins of QualityAssistant

Figure B.1: Code critiques embedded into Pharo Inspector.

Figure B.2: Code critiques embedded into Pharo Spotter.

Pharo Spotter is a unified search interface that spans many
scopes. One can use Spotter to search for tools, or to search for a
class, dive into a class to see its components (e.g., methods) and
perform a search among these components. Because Spotter allows
developers to create various extensions, QualityAssistant adds cri-
tiques as components of a class or method. This way if a developer
dives into a method or a class, he sees related critiques and can
search through them as shown in Figure B.2.

During the survey described in section 4.2 we also asked the
participants to evaluate the Inspector and Spotter extensions that
were integrated together with QualityAssistant on a 5-point Likert
scale from useful to distracting. The results of this assessment are
shown in Figure B.3. A bit more than a third of the developers did

172

Inspector

Spotter

0% 25% 50% 75% 100%

Didn’t know Disturbing Not influential Sometimes Useful Useful

Figure B.3: Usefulness of the other QualityAssistant plugins.

not know about the existence of the Inspector extension, and half of
the developers did not know about the Spotter one. We believe that
this is caused by the rare usage of Inspector and Spotter to analyze
source code entities such as methods. Out of those participants who
know about extensions, only half found them useful to some extent.

The Spotter and Inspector plugins were originally packaged with
QualityAssistant to show the flexibility of Renraku model that can
be used by various tools. The plugins never became popular among
developers and ended up being disabled by default. We believe that
the plugins may draw more attention in the future, if developers
will use Renraku to perform analysis on objects other than classes
and methods. At the moment the inspector plugin is useful for
developers who design sophisticated custom critiques as they can
easily obtain a critique and investigate it in the greater detail. For
example while developing the stack critiques that were discussed
in subsection 6.1.4, the developer could inspect a stack and explore
the critiques that his analyzer produced. Until now there were no
use cases where the Spotter plugin was proven to be useful.

173

B i b l i o g r a p h y

[Aniche et al. 2016] M. Aniche, G. Bavota, C. Treude,
A. V.Deursen, M. A.Gerosa: A Validated Set of Smells in Model-
View-Controller Architectures. In 2016 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), October
2016, S. 233–243

[Ayewah and Pugh 2008] Nathaniel Ayewah, William Pugh:
A Report on a Survey and Study of Static Analysis Users. In
Proceedings of the 2008 Workshop on Defects in Large Software
Systems. New York, NY, USA : ACM, 2008 (DEFECTS ’08), S. 1–
5. – URL http://doi.acm.org/10.1145/1390817.1390819. –
ISBN 978-1-60558-051-7

[Ayewah and Pugh 2010] Nathaniel Ayewah, William Pugh:
The Google FindBugs Fixit. In Proceedings of the 19th International
Symposium on Software Testing and Analysis. New York, NY, USA :
ACM, 2010 (ISSTA ’10), S. 241–252. – URL http://doi.acm.

org/10.1145/1831708.1831738. – ISBN 978-1-60558-823-0

[Ayewah et al. 2007] Nathaniel Ayewah, William Pugh,
J. D.Morgenthaler, John Penix, YuQian Zhou: Using Find-
Bugs on Production Software. In Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion. New York, NY, USA : ACM, 2007 (OOP-
SLA ’07), S. 805–806. – URL http://doi.acm.org/10.1145/

1297846.1297897. – ISBN 978-1-59593-865-7

[Bacchelli and Bird 2013] Alberto Bacchelli, Christian Bird:
Expectations, Outcomes, and Challenges of Modern Code Review.
In Proceedings of the 2013 International Conference on Software
Engineering. Piscataway, NJ, USA : IEEE Press, 2013 (ICSE
’13), S. 712–721. – URL http://dl.acm.org/citation.cfm?

id=2486788.2486882. – ISBN 978-1-4673-3076-3

[Bach et al. 2015] B. Bach, N. Henry-Riche, T. Dwyer, T. Mad-
hyastha, J-D. Fekete, T. Grabowski: Small MultiPiles: Piling

175

http://doi.acm.org/10.1145/1390817.1390819
http://doi.acm.org/10.1145/1831708.1831738
http://doi.acm.org/10.1145/1831708.1831738
http://doi.acm.org/10.1145/1297846.1297897
http://doi.acm.org/10.1145/1297846.1297897
http://dl.acm.org/citation.cfm?id=2486788.2486882
http://dl.acm.org/citation.cfm?id=2486788.2486882

Bibliography

Time to Explore Temporal Patterns in Dynamic Networks. In
Computer Graphics Forum 34 (2015), Nr. 3, S. 31–40. – URL
http://dx.doi.org/10.1111/cgf.12615. – ISSN 1467-8659

[Bach et al. 2014] Benjamin Bach, Emmanuel Pietriga, Jean-
Daniel Fekete: Visualizing Dynamic Networks with Matrix Cubes.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. New York, NY, USA : ACM, 2014 (CHI ’14), S. 877–
886. – URL http://doi.acm.org/10.1145/2556288.2557010.
– ISBN 978-1-4503-2473-1

[Balachandran 2013] Vipin Balachandran: Reducing human
effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In ICSE’13: Pro-
ceedings of 35th International Conference on Software Engineering,
May 2013, S. 931–940. – ISSN 0270-5257

[Ball 1999] Thomas Ball: The Concept of Dynamic Analysis.
In Proceedings of the European Software Engineering Conference
and ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSC’99). Heidelberg : Springer Verlag,
sep 1999 (LNCS 1687), S. 216–234

[Barik et al. 2016] T. Barik, Y. Song, B. Johnson, E. Murphy-
Hill: From Quick Fixes to Slow Fixes: Reimagining Static Analysis
Resolutions to Enable Design Space Exploration. In 32nd IEEE
International Conference on Software Maintenance and Evolution
(ICSME 2016), October 2016, S. 211–221

[Beck 1997] Kent Beck: Smalltalk Best Practice Patterns.
Prentice-Hall, 1997. – URL http://stephane.ducasse.free.

fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%

20Best%20Practice%20Patterns%20Kent%20Beck.pdf

[Beller et al. 2016] M. Beller, R. Bholanath, S. McIntosh, A.
Zaidman: Analyzing the State of Static Analysis: A Large-Scale
Evaluation in Open Source Software. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER) Bd. 1, March 2016, S. 470–481

176

http://dx.doi.org/10.1111/cgf.12615
http://doi.acm.org/10.1145/2556288.2557010
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf

[Bergel 2016] A. Bergel: Agile Visualization. LULU Press, 2016.
– URL https://books.google.ch/books?id=lEk7vgAACAAJ. –
ISBN 9781365314094

[Bessey et al. 2010] Al Bessey, Ken Block, Ben Chelf, Andy
Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya
Kamsky, Scott McPeak, Dawson Engler: A few billion lines of
code later: using static analysis to find bugs in the real world. In
Commun. ACM 53 (2010), February, Nr. 2, S. 66–75. – URL http:
//doi.acm.org/10.1145/1646353.1646374. – ISSN 0001-0782

[Black et al. 2007] Andrew Black, Stéphane Ducasse, Oscar
Nierstrasz, Damien Pollet, Damien Cassou, Marcus Denker:
Squeak by Example. Square Bracket Associates, 2007. – URL
http://SqueakByExample.org/index.html. – http://squeak-
byexample.org. – ISBN 978-3-9523341-0-2

[Boehm et al. 1976] B. W.Boehm, J. R.Brown, M. Lipow: Quan-
titative Evaluation of Software Quality. In Proceedings of 2nd
International Conference on Software Engineering, IEEE Computer
Society Press, 1976, S. 592 – 605

[Bouraqadi et al. 1998] Noury Bouraqadi, Thomas Ledoux,
Fred Rivard: Safe Metaclass Programming. In Proceedings OOP-
SLA ’98, 1998, S. 84–96

[Brandes and Nick 2011] U. Brandes, B. Nick: Asymmetric
Relations in Longitudinal Social Networks. In IEEE Transactions
on Visualization and Computer Graphics 17 (2011), December,
Nr. 12, S. 2283–2290

[Brandes et al. 2013] Ulrik Brandes, Bobo Nick, Brigitte Rock-
stroh, Astrid Steffen: Gestaltlines. In Computer Graphics Forum
32 (2013), Nr. 3pt2, S. 171–180. – URL http://dx.doi.org/10.
1111/cgf.12104

[Brooks 1987] Frederick P.Brooks: No Silver Bullet. In IEEE
Computer 20 (1987), April, Nr. 4, S. 10–19

[Brooks 1995] Frederik P.Brooks: The Mythical Man-Month. 2nd.
Reading, Mass. : Addison Wesley Longman, 1995

177

https://books.google.ch/books?id=lEk7vgAACAAJ
http://doi.acm.org/10.1145/1646353.1646374
http://doi.acm.org/10.1145/1646353.1646374
http://SqueakByExample.org/index.html
http://dx.doi.org/10.1111/cgf.12104
http://dx.doi.org/10.1111/cgf.12104

Bibliography

[Brown et al. 1998] William J.Brown, Raphael C.Malveau,
Hays W.McCormick, Thomas J.Mowbray: AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley
Press, 1998. – ISBN 0-471-19713-0

[Brühlmann 2008] Andrea Brühlmann: Enriching Reverse En-
gineering with Annotations, University of Bern, Master’s thesis,
April 2008. – URL http://scg.unibe.ch/archive/masters/

Brue08a.pdf

[Buckers et al. 2017] Tim Buckers, Clinton Cao, Michiel Does-
burg, Boning Gong, Sunwei Wang, Moritz Beller, Andy Zaid-
man: UAV: Warnings from Multiple Automated Static Analysis
Tools at a Glance. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2017,
S. 472–476

[Calcagno et al. 2015] Cristiano Calcagno, Dino Distefano,
Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick,
Dulma Rodriguez: Moving Fast with Software Verification. S. 3–11.
In NFM’15: Proceedings of the 7th NASA Formal Methods Interna-
tional Symposium, Springer International Publishing, April 2015.
– URL http://dx.doi.org/10.1007/978-3-319-17524-9_1. –
ISBN 978-3-319-17524-9

[Campbell and Papapetrou 2013] G. A.Campbell, Patrok-
los P.Papapetrou: SonarQube in Action. 1st. Greenwich, CT,
USA : Manning Publications Co., 2013. – ISBN 1617290955,
9781617290954

[Chen et al. 2014] Tse-Hsun Chen, Weiyi Shang, Zhen M.Jiang,
Ahmed E.Hassan, Mohamed Nasser, Parminder Flora: Detect-
ing Performance Anti-patterns for Applications Developed Using
Object-relational Mapping. In Proceedings of the 36th International
Conference on Software Engineering. New York, NY, USA : ACM,
2014 (ICSE 2014), S. 1001–1012. – URL http://doi.acm.org/

10.1145/2568225.2568259. – ISBN 978-1-4503-2756-5

[Chiş 2016] Andrei Chiş: Moldable Tools, University of Bern, PhD
thesis, September 2016. – URL http://scg.unibe.ch/archive/
phd/chis-phd.pdf

178

http://scg.unibe.ch/archive/masters/Brue08a.pdf
http://scg.unibe.ch/archive/masters/Brue08a.pdf
http://dx.doi.org/10.1007/978-3-319-17524-9_1
http://doi.acm.org/10.1145/2568225.2568259
http://doi.acm.org/10.1145/2568225.2568259
http://scg.unibe.ch/archive/phd/chis-phd.pdf
http://scg.unibe.ch/archive/phd/chis-phd.pdf

[Cohen et al. 2006a] Jason Cohen, Eric Brown, Brandon
DuRette, Steven Teleki: Best kept secrets of peer code review.
Smart Bear, 2006

[Cohen et al. 2006b] Tal Cohen, Joseph (.Gil, Itay Maman: JTL:
the Java tools language. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
languages, systems, and applications. New York, NY, USA : ACM
Press, 2006, S. 89–108. – ISBN 1-59593-348-4

[Creswell and Vicki 2006] John W.Creswell, Vicki: Design-
ing and Conducting Mixed Methods Research. 1. Sage Publica-
tions, Inc, August 2006. – URL http://www.worldcat.org/

isbn/1412927927. – ISBN 9781412927925

[De Roover et al. 2011] Coen De Roover, Carlos Noguera, Andy
Kellens, Vivane Jonckers: The SOUL Tool Suite for Querying
Programs in Symbiosis with Eclipse. In Proceedings of the 9th
International Conference on Principles and Practice of Programming
in Java. New York, NY, USA : ACM, 2011 (PPPJ ’11), S. 71–80. –
URL http://doi.acm.org/10.1145/2093157.2093168. – ISBN
978-1-4503-0935-6

[Do et al. 2016] Lisa Nguyen Q.Do, Karim Ali, Benjamin Livshits,
Eric Bodden, Justin Smith, Emerson Murphy-Hill, IEM Fraun-
hofer: Just-in-Time Static Analysis / University of Alberta.
August 2016. – Forschungsbericht

[Ducasse et al. 2017] Stéphane Ducasse, Dmitri Zagidulin,
Nicolai Hess, Dimitris Chloupis: Pharo by Example 5.0. Square
Bracket Associates, 2017. – URL http://files.pharo.org/

books/updated-pharo-by-example/. – ISBN 978-1-365-65459-
6

[Dustin et al. 1999] Elfriede Dustin, Jeff Rashka, John Paul:
Automated Software Testing: Introduction, Management, and Perfor-
mance. Boston, MA, USA : Addison-Wesley Longman Publishing
Co., Inc., 1999. – ISBN 0-201-43287-0

[Duvall et al. 2007] Paul Duvall, Stephen M.Matyas, Andrew
Glover: Continuous Integration: Improving Software Quality and

179

http://www.worldcat.org/isbn/1412927927
http://www.worldcat.org/isbn/1412927927
http://doi.acm.org/10.1145/2093157.2093168
http://files.pharo.org/books/updated-pharo-by-example/
http://files.pharo.org/books/updated-pharo-by-example/

Bibliography

Reducing Risk (The Addison-Wesley Signature Series). Addison-
Wesley Professional, 2007. – ISBN 0321336380

[Ens et al. 2014] B. Ens, D. Rea, R. Shpaner, H. Hemmati,
J. E.Young, P. Irani: ChronoTwigger: A Visual Analytics Tool
for Understanding Source and Test Co-evolution. In Proceedings
of the VISSOFT ’14 Second IEEE Working Conference on Software
Visualization, September 2014, S. 117–126

[Fagan 1976] Mike Fagan: Design and code inspections to reduce
errors in program development. In IBM Journal of Research and
Development 15 (1976), Nr. 3, S. 182

[Fowler et al. 1999] Martin Fowler, Kent Beck, John Brant,
William Opdyke, Don Roberts: Refactoring: Improving the Design
of Existing Code. Addison Wesley, 1999

[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph John-
son, John Vlissides: Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Mass. : Addison Wesley Professional,
1995. – ISBN 978-0201633610

[Ganea et al. 2017] George Ganea, Ioana Verebi, Radu
Marinescu: Continuous quality assessment with inCode.
In Science of Computer Programming 134 (2017), S. 19–36.
– URL http://www.sciencedirect.com/science/article/

pii/S0167642315000520. – Zugriffsdatum: 2017-08-09. – ISSN
0167-6423

[Goldberg and Robson 1983] Adele Goldberg, David Robson:
Smalltalk 80: the Language and its Implementation. Reading, Mass. :
Addison Wesley, May 1983. – URL http://stephane.ducasse.

free.fr/FreeBooks/BlueBook/Bluebook.pdf. – ISBN 0-201-
13688-0

[Gómez et al. 2010] Verónica U.Gómez, Stéphane Ducasse, Theo
D’Hondt: Visually Supporting Source Code Changes Integration:
The Torch Dashboard. In WCRE’10: Proceedings of the 17th Inter-
national Working Conference on Reverse Engineering. Beverly, MA,
USA : IEEE Computer Society, October 2010, S. 55–64. – ISSN
1095-1350

180

http://www.sciencedirect.com/science/article/pii/S0167642315000520
http://www.sciencedirect.com/science/article/pii/S0167642315000520
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

[Hao et al. 2013] Yiyang Hao, Ge Li, Lili Mou, Lu Zhang, Zhi
Jin: MCT: A Tool for Commenting Programs by Multimedia
Comments. In Proceedings of the 2013 International Conference
on Software Engineering. Piscataway, NJ, USA : IEEE Press, 2013
(ICSE ’13), S. 1339–1342. – URL http://dl.acm.org/citation.
cfm?id=2486788.2487000. – ISBN 978-1-4673-3076-3

[Harrison 2006] W. Harrison: Eating Your Own Dog Food. In
IEEE Software 23 (2006), May, Nr. 3, S. 5–7. – ISSN 0740-7459

[Hecht et al. 2015] G. Hecht, R. Rouvoy, N. Moha, L. Duchien:
Detecting Antipatterns in Android Apps. In 2015 2nd ACM In-
ternational Conference on Mobile Software Engineering and Systems,
May 2015, S. 148–149

[Heckman andWilliams 2008] Sarah Heckman, LaurieWilliams:
On Establishing a Benchmark for Evaluating Static Analysis Alert
Prioritization and Classification Techniques. In Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. New York, NY, USA : ACM, 2008
(ESEM ’08), S. 41–50. – URL http://doi.acm.org/10.1145/

1414004.1414013. – ISBN 978-1-59593-971-5

[Hora et al. 2012] A. Hora, N. Anquetil, S. Ducasse, S. Allier:
Domain specific warnings: Are they any better? In 2012 28th
IEEE International Conference on Software Maintenance (ICSM),
September 2012, S. 441–450. – ISSN 1063-6773

[ISO/IEC 2010] ISO/IEC: ISO/IEC 25010 — Systems and soft-
ware engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models. 2010

[Johnson et al. 2013] Brittany Johnson, Yoonki Song, Emer-
son Murphy-Hill, Robert Bowdidge: Why Don’t Software De-
velopers Use Static Analysis Tools to Find Bugs? In Proceed-
ings of the 2013 International Conference on Software Engineer-
ing, IEEE Press, 2013 (ICSE ’13), S. 672–681. – URL http:

//dl.acm.org/citation.cfm?id=2486788.2486877. – ISBN
978-1-4673-3076-3

181

http://dl.acm.org/citation.cfm?id=2486788.2487000
http://dl.acm.org/citation.cfm?id=2486788.2487000
http://doi.acm.org/10.1145/1414004.1414013
http://doi.acm.org/10.1145/1414004.1414013
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877

Bibliography

[Johnson 1978] S.C. Johnson: Lint, a C Program Checker. In
UNIX programmer’s manual. AT&T Bell Laboratories, 1978, S. 78–
1273

[Keim and Kriegel 1996] Daniel A.Keim, H-P Kriegel: Visual-
ization techniques for mining large databases: A comparison. In
Knowledge and Data Engineering, IEEE Transactions on 8 (1996),
Nr. 6, S. 923–938

[Khomh et al. 2009] Foutse Khomh, Massimiliano Di Penta,
Yann-Gael Gueheneuc: An Exploratory Study of the Impact of
Code Smells on Software Change-proneness. In Proceedings of the
2009 16th Working Conference on Reverse Engineering. Washington,
DC, USA : IEEE Computer Society, 2009 (WCRE ’09), S. 75–84.
– URL http://dx.doi.org/10.1109/WCRE.2009.28. – ISBN
978-0-7695-3867-9

[King et al. 1999] Peter King, Patrick Naughton, Mike De-
Money, Jonni Kanerva, Kathy Walrath, Scott Hommel: Java
Code Conventions. Sun Microsystems Inc, 1999

[Lanza and Ducasse 2002] Michele Lanza, Stéphane Ducasse:
Understanding Software Evolution Using a Combination of Soft-
ware Visualization and Software Metrics. In Proceedings of Lan-
gages et Modèles à Objets (LMO’02). Paris : Lavoisier, 2002,
S. 135–149. – URL http://scg.unibe.ch/archive/papers/

Lanz02aEvolutionMatrix.pdf

[Lanza and Marinescu 2006] Michele Lanza, Radu Marinescu:
Object-Oriented Metrics in Practice. Springer-Verlag, 2006. – URL
http://www.springer.com/de/book/9783540244295. – ISBN
3-540-24429-8

[Louridas 2006] Panagiotis Louridas: Static Code Analysis.
In IEEE Softw. 23 (2006), July, Nr. 4, S. 58–61. – URL http:

//dx.doi.org/10.1109/MS.2006.114. – ISSN 0740-7459

[Lozano et al. 2015] Angela Lozano, Kim Mens, Andy
Kellens: Usage contracts: Offering immediate feedback
on violations of structural source-code regularities. In Sci-
ence of Computer Programming 105 (2015), S. 73 – 91.

182

http://dx.doi.org/10.1109/WCRE.2009.28
http://scg.unibe.ch/archive/papers/Lanz02aEvolutionMatrix.pdf
http://scg.unibe.ch/archive/papers/Lanz02aEvolutionMatrix.pdf
http://www.springer.com/de/book/9783540244295
http://dx.doi.org/10.1109/MS.2006.114
http://dx.doi.org/10.1109/MS.2006.114

– URL http://www.sciencedirect.com/science/article/

pii/S016764231500012X. – ISSN 0167-6423

[Lungu 2009] Mircea Lungu: Reverse Engineering Software Ecosys-
tems, University of Lugano, Dissertation, November 2009. – URL
http://scg.unibe.ch/archive/papers/Lung09b.pdf

[Maletic et al. 2002] Jonathan I.Maletic, Andrian Marcus,
Michael Collard: A Task Oriented View of Software Visualiza-
tion. In Proceedings of the 1st Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT 2002), IEEE, June 2002,
S. 32–40

[Marcus et al. 2003] Andrian Marcus, Louis Feng,
Jonathan I.Maletic: 3D Representations for Software Vi-
sualization. In Proceedings of the ACM Symposium on Software
Visualization, IEEE, 2003, S. 27–ff

[Marinescu 2004] Radu Marinescu: Detection Strategies:
Metrics-Based Rules for Detecting Design Flaws. In 20th IEEE
International Conference on Software Maintenance (ICSM’04). Los
Alamitos CA : IEEE Computer Society Press, 2004, S. 350–359

[Mazinanian et al. 2014] Davood Mazinanian, Nikolaos Tsan-
talis, Ali Mesbah: Discovering Refactoring Opportunities in
Cascading Style Sheets. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
New York, NY, USA : ACM, 2014 (FSE 2014), S. 496–506. –
URL http://doi.acm.org/10.1145/2635868.2635879. – ISBN
978-1-4503-3056-5

[Merino et al. 2017] Leonel Merino, Mohammad Ghafari, Craig
Anslow, Oscar Nierstrasz: CityVR: Gameful Software Visualiza-
tion. In ICSME’17: Proceedings of the 33rd IEEE International Confer-
ence on Software Maintenance and Evolution (TD Track), IEEE, 2017.
– URL http://scg.unibe.ch/archive/papers/Meri17c.pdf.
– To appear

[Minelli et al. 2014] R. Minelli, L. Baracchi, A. Mocci, M.
Lanza: Visual Storytelling of Development Sessions. In 2014 IEEE
International Conference on Software Maintenance and Evolution,
September 2014, S. 416–420. – ISSN 1063-6773

183

http://www.sciencedirect.com/science/article/pii/S016764231500012X
http://www.sciencedirect.com/science/article/pii/S016764231500012X
http://scg.unibe.ch/archive/papers/Lung09b.pdf
http://doi.acm.org/10.1145/2635868.2635879
http://scg.unibe.ch/archive/papers/Meri17c.pdf

Bibliography

[Moha et al. 2010] N. Moha, Y. G.Gueheneuc, L. Duchien,
A. F. L.Meur: DECOR: A Method for the Specification and Detec-
tion of Code and Design Smells. In IEEE Transactions on Software
Engineering 36 (2010), January, Nr. 1, S. 20–36. – ISSN 0098-5589

[Muske and Serebrenik 2016] Tukaram Muske, Alexander Sere-
brenik: Survey of Approaches for Handling Static Analysis
Alarms. In 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), October 2016,
S. 157–166

[Oppenheim 2000] Abraham N.Oppenheim: Questionnaire design,
interviewing and attitude measurement. Bloomsbury Publishing,
2000. – ISBN 9780826451767

[Palomba et al. 2014] F. Palomba, G. Bavota, M. D.Penta,
R. Oliveto, A. D.Lucia: Do They Really Smell Bad? A Study
on Developers’ Perception of Bad Code Smells. In 2014 IEEE
International Conference on Software Maintenance and Evolution,
September 2014, S. 101–110. – ISSN 1063-6773

[Palsberg and Schwartzbach 1991] Jens Palsberg,
Michael I.Schwartzbach: Object-Oriented Type Inference. In
Proceedings OOPSLA ’91, ACM SIGPLAN Notices Bd. 26, URL http:
//www.cs.purdue.edu/homes/palsberg/publications.html,
November 1991, S. 146–161

[ParcPlace98 1998] VisualWorks 3.0 Application Developer’s Guide.
1998. – ParcPlace Division

[Renggli et al. 2010a] Lukas Renggli, Stéphane Ducasse, Tudor
Gîrba, Oscar Nierstrasz: Domain-Specific Program Checking. In
Proceedings of the 48th International Conference on Objects, Models,
Components and Patterns (TOOLS’10) Bd. 6141, Springer-Verlag,
2010, S. 213–232. – URL http://scg.unibe.ch/archive/

papers/Reng10bDomainSpecificProgramChecking.pdf

[Renggli et al. 2010b] Lukas Renggli, Tudor Gîrba, Oscar Nier-
strasz: Embedding Languages Without Breaking Tools. In
ECOOP’10: Proceedings of the 24th European Conference on Object-
Oriented Programming Bd. 6183. Maribor, Slovenia : Springer-
Verlag, 2010, S. 380–404. – URL http://scg.unibe.ch/

184

http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://scg.unibe.ch/archive/papers/Reng10bDomainSpecificProgramChecking.pdf
http://scg.unibe.ch/archive/papers/Reng10bDomainSpecificProgramChecking.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

archive/papers/Reng10aEmbeddingLanguages.pdf. – ISBN
978-3-642-14106-5

[Riel 1996] Arthur Riel: Object-Oriented Design Heuristics. Boston
MA : Addison Wesley, 1996. – 400 S

[Rigby and Bird 2013] Peter C.Rigby, Christian Bird: Convergent
Contemporary Software Peer Review Practices. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering.
New York, NY, USA : ACM, 2013 (ESEC/FSE 2013), S. 202–212. –
URL http://doi.acm.org/10.1145/2491411.2491444. – ISBN
978-1-4503-2237-9

[Roberts et al. 1997] Don Roberts, John Brant,
Ralph E.Johnson: A Refactoring Tool for Smalltalk. In
Theory and Practice of Object Systems (TAPOS) 3 (1997), Nr. 4,
S. 253–263

[Roberts et al. 1996] Don Roberts, John Brant,
Ralph E.Johnson, Bill Opdyke: An Automated Refactor-
ing Tool. In Proceedings of ICAST ’96, Chicago, IL, April
1996

[Roberts 1999] Donald B.Roberts: Practical Analysis
for Refactoring, University of Illinois, Dissertation, 1999.
– URL http://historical.ncstrl.org/tr/pdf/uiuc_cs/

UIUCDCS-R-99-2092.pdf

[Roehm et al. 2012] Tobias Roehm, Rebecca Tiarks, Rainer
Koschke, Walid Maalej: How do professional developers com-
prehend software? In Proceedings of the 2012 International Confer-
ence on Software Engineering. Piscataway, NJ, USA : IEEE Press,
2012 (ICSE 2012), S. 255–265. – ISBN 978-1-4673-1067-3

[Rufiange and Melançon 2014] S. Rufiange, G. Melançon:
AniMatrix: A Matrix-Based Visualization of Software Evolution.
In Software Visualization (VISSOFT), 2014 Second IEEE Working
Conference on, September 2014, S. 137–146

[Sadowski et al. 2015] Caitlin Sadowski, Jeffrey van Gogh,
Ciera Jaspan, Emma Söderberg, Collin Winter: Tricorder:
Building a Program Analysis Ecosystem. In Proceedings of the

185

http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://doi.acm.org/10.1145/2491411.2491444
http://historical.ncstrl.org/tr/pdf/uiuc_cs/UIUCDCS-R-99-2092.pdf
http://historical.ncstrl.org/tr/pdf/uiuc_cs/UIUCDCS-R-99-2092.pdf

Bibliography

37th International Conference on Software Engineering - Volume
1. Piscataway, NJ, USA : IEEE Press, 2015 (ICSE ’15), S. 598–
608. – URL http://dl.acm.org/citation.cfm?id=2818754.

2818828. – ISBN 978-1-4799-1934-5

[Schärli et al. 2002] Nathanael Schärli, Stéphane Ducasse,
Oscar Nierstrasz, Andrew P.Black: Traits: Composable Units of
Behavior / Institut für Informatik. Universität Bern, Switzerland,
November 2002 (IAM-02-005). – Technical Report. – URL http:

//scg.unibe.ch/archive/papers/Scha02bTraits.pdf. Also
available as Technical Report CSE-02-014, OGI School of Science
& Engineering, Beaverton, Oregon, USA

[Sheridan 2012] Flash Sheridan: Deploying Static Analysis. In
Dr. Dobb’s Journal (2012), August, S. 8–14. – URL http://www.

rahul.net/flash/Deploying_Static_Analysis.pdf. – ISSN
1066-8888

[Shneiderman 1996] Ben Shneiderman: The Eyes Have It: A
Task by Data Type Taxonomy for Information Visualizations. In
IEEE Visual Languages. College Park, Maryland 20742, U.S.A.,
1996, S. 336–343

[Singer et al. 1997] Janice Singer, Timothy Lethbridge, Nor-
man Vinson, Nicolas Anquetil: An examination of software
engineering work practices. In Proceedings of the 1997 con-
ference of the Centre for Advanced Studies on Collaborative re-
search, IBM Press, 1997 (CASCON ’97), S. 21–. – URL http:

//dl.acm.org/citation.cfm?id=782010.782031

[Stallman 1981] Richard M.Stallman: EMACS the Extensible,
Customizable Self-documenting Display Editor. In ACM SIGOA
Newsletter 2 (1981), April, Nr. 1-2, S. 147–156. – URL http:

//doi.acm.org/10.1145/1159890.806466. – ISSN 0737-819X

[Tymchuk 2015] Yuriy Tymchuk: What if Clippy Would Criticize
Your Code? In BENEVOL’15: Proceedings of the 14th edition of
the Belgian-Netherlands software evoLution seminar, URL http://

yuriy.tymch.uk/papers/benevol15.pdf, December 2015

186

http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://scg.unibe.ch/archive/papers/Scha02bTraits.pdf
http://scg.unibe.ch/archive/papers/Scha02bTraits.pdf
http://www.rahul.net/flash/Deploying_Static_Analysis.pdf
http://www.rahul.net/flash/Deploying_Static_Analysis.pdf
http://dl.acm.org/citation.cfm?id=782010.782031
http://dl.acm.org/citation.cfm?id=782010.782031
http://doi.acm.org/10.1145/1159890.806466
http://doi.acm.org/10.1145/1159890.806466
http://yuriy.tymch.uk/papers/benevol15.pdf
http://yuriy.tymch.uk/papers/benevol15.pdf

[Tymchuk 2017a] Yuriy Tymchuk: The False False Positives of
Static Analysis. In SATToSE’17: Pre-Proceedings of the 10th Inter-
national Seminar Series on Advanced Techniques & Tools for Soft-
ware Evolution, URL http://scg.unibe.ch/archive/papers/

Tymc17c.pdf, June 2017

[Tymchuk 2017b] Yuriy Tymchuk: QualityAssistant Interac-
tions. August 2017. – URL https://doi.org/10.5281/zenodo.

846690

[Tymchuk 2017c] Yuriy Tymchuk: QualityAssistant v3.3.1. June
2017. – URL https://doi.org/10.5281/zenodo.809410

[Tymchuk 2017d] Yuriy Tymchuk: Renraku v0.15.2. May 2017.
– URL https://doi.org/10.5281/zenodo.800676

[Tymchuk et al. 2016a] Yuriy Tymchuk, Mohammad Ghafari,
Oscar Nierstrasz: When QualityAssistant Meets Pharo: Enforced
Code Critiques Motivate More Valuable Rules. In IWST ’16: Pro-
ceedings of International Workshop on Smalltalk Technologies, URL
http://scg.unibe.ch/archive/papers/Tymc16b.pdf, 2016,
S. 5:1–5:6

[Tymchuk et al. 2017] Yuriy Tymchuk, Mohammad Ghafari,
Oscar Nierstrasz: Renraku — the One Static Analysis Model to
Rule Them All. In IWST’17: Proceedings of International Workshop
on Smalltalk Technologies, URL http://scg.unibe.ch/archive/
papers/Tymc17d.pdf, 2017

[Tymchuk et al. 2016b] Yuriy Tymchuk, Leonel Merino, Mo-
hammad Ghafari, Oscar Nierstrasz: [Artifact] Walls, Pillars
and Beams: A 3D Decomposition of Quality Anomalies. June 2016.
– URL https://doi.org/10.5281/zenodo.56111

[Tymchuk et al. 2016c] Yuriy Tymchuk, Leonel Merino, Moham-
mad Ghafari, Oscar Nierstrasz: Walls, Pillars and Beams: A
3D Decomposition of Quality Anomalies. In VISSOFT’16: Proceed-
ings of the 4th IEEE Working Conference on Software Visualization,
IEEE, 2016, S. 126–135. – URL http://scg.unibe.ch/archive/
papers/Tymc16a.pdf

187

http://scg.unibe.ch/archive/papers/Tymc17c.pdf
http://scg.unibe.ch/archive/papers/Tymc17c.pdf
https://doi.org/10.5281/zenodo.846690
https://doi.org/10.5281/zenodo.846690
https://doi.org/10.5281/zenodo.809410
https://doi.org/10.5281/zenodo.800676
http://scg.unibe.ch/archive/papers/Tymc16b.pdf
http://scg.unibe.ch/archive/papers/Tymc17d.pdf
http://scg.unibe.ch/archive/papers/Tymc17d.pdf
https://doi.org/10.5281/zenodo.56111
http://scg.unibe.ch/archive/papers/Tymc16a.pdf
http://scg.unibe.ch/archive/papers/Tymc16a.pdf

Bibliography

[Tymchuk et al. 2015a] Yuriy Tymchuk, Andrea Mocci, Michele
Lanza: Code Review: Veni, ViDI, Vici. In SANER’15: Proceedings
of the 22rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, IEEE, March 2015, S. 151–160. –
URL http://yuriy.tymch.uk/papers/saner15.pdf

[Tymchuk et al. 2015b] Yuriy Tymchuk, Andrea Mocci, Michele
Lanza: ViDI: The Visual Design Inspector. In ICSE’15: Proceedings
of the 37th International Conference on Software Engineering, Tool
Demonstration Bd. 2, IEEE, May 2015, S. 653–656. – URL http:

//yuriy.tymch.uk/papers/icse15.pdf

[Ware 2004] Colin Ware: Information Visualisation. Sansome
Street, San Fransico : Elsevier, 2004. – ISBN 1-55860-819-2

[Wettel 2010] Richard Wettel: Software Systems as Cities, Uni-
versity of Lugano, Switzerland, Dissertation, September 2010

[Woodruff et al. 1998] Allison Woodruff, James Landay,
Michael Stonebraker: Goal-directed zoom. In CHI 98 conference
summary on Human factors in computing systems. New York, NY,
USA : ACM, 1998 (CHI ’98), S. 305–306. – ISBN 1-58113-028-7

[Yamashita and Moonen 2013] Aiko Yamashita, Leon Moonen:
Do developers care about code smells? An exploratory survey. In
WCRE’13 (2013), S. 242–251. – ISBN 9781479929313

[Zimmermann and Weißgerber 2004] Thomas Zimmermann,
Peter Weißgerber: Preprocessing CVS Data for Fine-Grained
Analysis. In Proceedings 1st International Workshop on Mining Soft-
ware Repositories (MSR 2004). Los Alamitos CA : IEEE Computer
Society Press, 2004, S. 2–6

188

http://yuriy.tymch.uk/papers/saner15.pdf
http://yuriy.tymch.uk/papers/icse15.pdf
http://yuriy.tymch.uk/papers/icse15.pdf

Programming is a fascinating activity that can yield results
capable of changing people lives by automating daily tasks
or even completely reimagining how we perform certain
activities. Such a great power comes with a handful of
challenges, with software maintainability being one of
them. Maintainability cannot be validated by executing the
program but has to be assessed by analyzing the codebase.
This tedious task can be also automated by the means of
software development. Programs called static analyzers can
process source code and try to detect suspicious patterns.
While these programs were proven to be useful, there is
also an evidence that they are not used in practice.

In this dissertation we discuss the concept of quality-aware
tooling — an approach that seeks a promotion of static
analysis by seamlessly integrating it into development tools.
We describe our experience of applying quality-aware
tooling on a core distribution of a development
environment. Our main focus is to provide live quality
feedback in the code editor, but we also integrate static
analysis into other tools based on our code quality model.
We analyzed the attitude of the developers towards the
integrated static analysis and assessed the impact of the
integration on the development ecosystem.

As a result 90% of software developers find the live
feedback useful, quality rules received an overhaul to better
match the contemporary development practices, and some
developers even experimented with a custom analysis
implementations. We discovered that live feedback helped
developers to avoid dangerous mistakes, saved time, and
taught valuable concepts. But most importantly we
changed the developers' attitude towards static analysis
from viewing it as just another tool to seeing it as an
integral part of their toolset.

0508187802449

ISBN 978-0-244-05081-8
90000

Yuriy Tymchuk was born in
Lviv, Ukraine on August 11,
1991. He is a citizen of Ukraine.

2017+
Data Scientist at Swisscom AG,
Bern, Switzerland

2016–2017
PhD student and assistant at
Software Composition Group,
Bern, Switzerland

2015+
Lecturer at the APPS faculty of
Ukrainan Catholic University,
Lviv, Ukraine

2013–2015
PhD student and assistant at
the REVEAL group, Lugano,
Switzerland

2013
Software engineer at
Innocode AS, Lviv, Ukraine

2012–2013
Software engineer at Interlogic,
Lviv, Ukraine

2009–2012
Network Administrator at
UARNet AS, Lviv, Ukraine

2008–2013
Student at the Ivan Franko
National University of Lviv,
Ukraine

	1 Introduction
	1.1 The Assisting Ecosystem
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Static Analyzers
	2.2 Static Analysis Integration
	2.3 Static Analysis Usage

	3 Renraku
	3.1 The Quality Triad
	3.2 The Critique
	3.2.1 Source Anchors
	3.2.2 Custom Actions
	3.2.3 Specializing Critiques

	3.3 The Rule
	3.3.1 Specifying a Rule Interest
	3.3.2 Specializing Rules

	3.4 The Target
	3.5 Compatibility with SmallLint
	3.6 Creating Rules
	3.7 Creating Tools
	3.8 Beyond Standard Analyzers
	3.8.1 Issue Tracker Integration
	3.8.2 Test Coverage
	3.8.3 Exception Properties

	3.9 Conclusions

	4 QualityAssistant. Design & Reception
	4.1 The Precursor: CriticBrowser
	4.1.1 CriticBrowser Survey

	4.2 QualityAssistant Usability Survey
	4.2.1 Feature Usage
	4.2.2 Reaction to Rule Changes
	4.2.3 Survey Summary

	4.3 False False Positives
	4.3.1 The False False Positive Concept
	4.3.2 The True False Positives
	4.3.3 The False False Positives
	4.3.4 False Positive Summary

	4.4 Live Feedback Evaluation
	4.4.1 Interview Setup
	4.4.2 Interview Results
	4.4.3 Usefulness for Novices
	4.4.4 Threats to Validity
	4.4.5 Conclusions

	5 The Impact on the Ecosystem
	5.1 3D Decomposition of Quality Evolution Anomalies
	5.1.1 Problem Description
	5.1.2 Related Work
	5.1.3 Visualization Approach
	5.1.4 Case Study
	5.1.5 Discussion
	5.1.6 Conclusions

	5.2 QualityAssistant Impact on the Rules
	5.2.1 Changes to the Rules
	5.2.2 Conclusions

	5.3 The Quality Evolution Roundup

	6 Quality Assistance in Other Tools
	6.1 Common Pharo Development Tools
	6.1.1 Message Browser and Inline Critiques
	6.1.2 CriticBrowser
	6.1.3 Calypso
	6.1.4 Debugger and Stack Critiques

	6.2 Quality-Driven Code Review
	6.2.1 The Visual Design Inspector
	6.2.2 ViDI Demonstration
	6.2.3 Discussion
	6.2.4 Conclusions

	7 Conclusions
	7.1 Contributions
	7.1.1 Live Quality Assistance
	7.1.2 3D Decomposition
	7.1.3 Unified Quality Model
	7.1.4 Visual Design Inspection

	7.2 Quality-Aware Tooling Recipe
	7.3 Future Vision
	7.3.1 Quality Modeling
	7.3.2 Human-Critique Interaction

	7.4 Summary
	7.5 Closing Words

	Appendices
	A The ``Missing Yourself'' Rule
	B Additional Plugins of QualityAssistant

