
Visually Exploring Scientific
Communities

Extending EggShell’s Model and Visualization

Bachelor Thesis

Silas David Berger
from

Hilterfingen BE, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

31. August 2017

Prof. Dr. Oscar Nierstrasz
Leonel Merino

Software Composition Group

ii

Institut für Informatik
University of Bern, Switzerland

Abstract

Researchers within a community gather in scientific conferences periodically.
As a result, the scientific output, reflected in the papers published in confer-
ences, carries valuable knowledge about the underlying community, such as
collaboration groups and the history of the evolution of topics. Researchers
can use this knowledge to identify i) candidates for collaboration for future
projects, ii) active topics of research, and iii) relevant papers in their field
of research. However, to obtain this knowledge, researchers would have to
collect and analyze data such as titles, authors, and keywords that might be
spread across thousands of papers.

The size and the number of relations in such data sets can make the anal-
ysis hard using tabular representations such a spreadsheet. Instead, visualiza-
tions provide users a graphical representation of the attributes and relations
of data on which they can reflect. Through visualizations researchers can
obtain an overview of a scientific community, analyze patterns of evolution,
and identify entities of interesting.

We propose ExtendedEggShell (EES), a unified framework for extract-
ing, modeling and visualizing scientific communities. EES enables users to
visualize the collaboration network of a community based in node-link dia-
grams, and interact with the graphs by posing queries inspired by meaningful
keywords in word clouds.

We evaluate the performance of EES by analyzing the complete set of
366 papers published in the software visualization community (VISSOFT).
We demonstrate the tool via selected usage examples, on which we analyze
1084 papers from the object-oriented, systems, languages and applications
community (OOPSLA). We found that visualizing scientific communities
as bigraphs using node-link diagrams helps users to better understand the
collaboration within these communities.

i

Contents

1 Introduction 1

2 ExtendedEggShell 3
2.1 Framework Pipeline . 3
2.2 Text Extraction . 4
2.3 Semantic Structure Recovery . 5
2.4 Model . 8

2.4.1 Enriched Model . 9
2.5 Cleaning the Model . 10

2.5.1 Blacklist . 12
2.5.2 MultiAuthor . 12
2.5.3 OddName . 13
2.5.4 SpecialChar . 13
2.5.5 SeparateAccent . 13

2.6 Visualization . 14
2.6.1 Node-Link diagrams . 14
2.6.2 Word Cloud . 18

2.7 Modular Design . 18
2.8 Evaluation . 20

2.8.1 Accuracy and Time . 20
2.8.2 Usage Examples . 22

3 Conclusion and Future Work 32

4 Anleitung zu wissenschaftlichen Arbeiten 34
4.1 How to Install ExtendedEggShell . 34

4.1.1 Installing the Additional Tools 35
4.2 Basic Usage . 35

4.2.1 Modeling a Collection of Papers in PDF Format 35
4.2.2 Visualizing a ScientificCommunity model 36

ii

1
Introduction

The collection of papers published in a conference carries valuable knowledge about its
underlying scientific community, such as the network of collaboration. However, this
knowledge can be spread out across thousands of papers. A user who wants to obtain
such a knowledge would have to collect, extract and model data such as paper titles
and authors. The size of the resulting data and its complexity in terms of the number
of relationships make them hard to analyze through tabular representations such as
spreadsheets. Instead, we believe users could benefit from visualization that can provide
them a suitable support for analysis. We wonder:

RQ.1) What factors influence the accuracy of data extraction and modeling of scientific
communities?

RQ.2) How can visualization support the understanding of the dynamics of scientific
communities?

Previous research has proposed an approach to extracting and modeling scientific
communities. EggShell [9] transforms PDF files into plain text, for which it recovers the
semantic structure of papers based on ad-hoc heuristics. Although this strategy can give
good results for papers that use well-known format, it can be time-consuming and error
prone. Furthermore, the adaptions made for a collection of papers may not be applicable
to future collections, requiring to repeat the effort.

CommunityExplorer [7] builds on top of EggShell. CommunityExplorer models
scientific communities as bigraphs of author and paper nodes, and visualizes them using
node-link diagrams.

1

CHAPTER 1. INTRODUCTION 2

We expand on the idea of EggShell and propose ExtendedEggShell (EES) — a new
framework for the visualization of scientific communities. EES relies on 1) third-party
tools to recover the semantic structure 2) heuristics to improve the accuracy of the model,
and 3) visualization of collaboration networks modeled as a bigraph.

As opposed to EggShell, ESS relies on third-party tools for data extraction, which
have proven to produce more accurate data and also expand the data available. ESS not
only extracts paper titles and authors but also author affiliations, and e-mail, section titles
and citations.

Although ESS adopts bigraphs to model collaboration networks similar to Communi-
tyExplorer, in EES we opted to clean the data once modeled and not when it is extracted.
ESS first models the extracted data as-is, then relies on heuristics to improve the accuracy
of the model. Then, visualizing the model users can iteratively expand and improve the
cleaning heuristics to incrementally improve the accuracy of the model.

We evaluate ESS by analyzing the complete set of 366 papers published in the
software visualization community (VISSOFT). We demonstrate the tool on a collection
of 1084 papers from the object-oriented, systems, languages and applications community
(OOPSLA)

2
ExtendedEggShell

We introduce ExtendedEggShell (ESS), a framework for the visualization of scientific
communities. ESS is implemented in Pharo (a modern Smalltalk1). ESS uses the Moose
platform [8] for data analysis and the Roassal engine [1] for visualization. We made ESS
source code publicly available to facilitate reproducibility2. In the following we describe
the design and implementation of the framework pipeline.

2.1 Framework Pipeline
The publication record of scientific communities contains valuable data that can help
researchers to understand how collaboration occurs. Collections of papers (typically
in PDF format) contain data such as paper titles, and author names and affiliations.
Consequently, we designed EES to extract, model and visualize these data from the
scientific community paper collection. Figure 2.1 shows the 5-step pipeline implemented
by the framework. ESS 1 extracts plain text from PDF files, 2 recovers semantic
structures from the plain text, 3 models community entities based on the recovered
semantic structures, 4 cleans the data in the model, and 5 builds visualizations based
on the model.

The first two steps focus on extracting data from the PDF files. These data include
author names, affiliations, e-mail addresses; and also paper titles, section titles, and

1http://pharo.org
2http://smalltalkhub.com/#!/ SilasBerger/ExtendedEggShell

3

http://pharo.org/
http://smalltalkhub.com/#!/~SilasBerger/ExtendedEggShell

CHAPTER 2. EXTENDEDEGGSHELL 4

Figure 2.1: steps of the framework pipeline

paragraphs. In step 3, ESS models these data. We observe that the data extraction shows
numerous difficulties. For example, a common error with the extracted name of authors
is including in the name also the author’s affiliation. In step 4, ESS uses heuristics to
resolve these problems in the model. In step 5, we visualize the model.

In the remainder of this chapter, we examine the implementation details of the
framework pipeline. We implemented EES using Pharo as a unified environment for
the framework. Being a live programming environment, it supports inspection and
modification of of the state of objects at any point during runtime. This allows users
to modify and improve the model without having to restart the program execution after
changing its code.

2.2 Text Extraction
We decided to extract the text from PDF files using Apache PDFBox3 — an open
source Java library for PDF manipulation. We designed ESS to provide users a unified
environment for modeling, analyzing, and visualizing scientific communities. In con-
sequence, we wanted to use PDFBox from the ESS implementation in Pharo. We used
PipeableOSProcess4 to link ESS and PDFBox using the command line.

Listing 1 shows an example of the text extraction result from one paper [6]. Notice
that even though for a human reader to identify the semantics of the structure of the paper
from the extracted plain text can be straightforward, for a machine it imposes a great
obstacle.

Finding Refactorings via Change Metrics
Serge Demeyer
LORE - University of Antwerp
Universiteitsplein 1
B-2610 WILRIJK (Belgium)
sdemey@uia.ua.ac.be
http://win-www.uia.ac.be/u/sdemey/ÃƒÂ©
Stphane Ducasse

3https://pdfbox.apache.org
4http://pharo.gemtalksystems.com/book/PharoTools/OSProcess/

https://pdfbox.apache.org/
http://pharo.gemtalksystems.com/book/PharoTools/OSProcess/

CHAPTER 2. EXTENDEDEGGSHELL 5

SCG - University of BerneÃƒÂ¼
Neubrckstrasse 10
CH-3012 BERNE (Switzerland)
ducasse@iam.unibe.ch
http://www.iam.unibe.ch/˜ducasse/
Oscar Nierstrasz
SCG - University of BerneÃƒÂ¼
Neubrckstrasse 10
CH-3012 BERNE (Switzerland)
oscar@iam.unibe.ch
http://www.iam.unibe.ch/˜oscar/
ABSTRACT
Reverse engineering is the process of uncovering the design and
the design rationale from a functioning software system. Reverse

Listing 1: extracted plain text from the example paper [6] PDF file

2.3 Semantic Structure Recovery

Figure 2.2: semantic structure of a paper

CHAPTER 2. EXTENDEDEGGSHELL 6

ESS recovers the semantic structure using the extracted plain text as input. Figure 2.2
shows the structure of a paper: a title, b author names, c affiliations, d e-mail, e
section titles, and f paragraphs.

ESS relies on ParsCit [5] —an open source tool for semantic document structure
recovery. ParsCit relies on machine learning algorithms to extract data such as paper
titles and authors names from papers in plain text format. It offers a command line
interface, which takes the text file as input and produces as output information of the
semantic structure of a paper in XML format. Uniformly, we link ParsCit to ESS using
ParsCit’s command line tools through PipeableOSProcess.

ParsCit includes three algorithms: SectLabel, ParsHed, ParsCit (shown in Listings 2,
3, and 4 respectively) that target various aspects of the semantic structure of papers.

SectLabel focuses on recovering elements such as paper title, section titles, para-
graphs, and author names.

<algorithm name="SectLabel" version="110505">
<title confidence="0.758802">

Finding Refactorings via Change Metrics
</title>
<author confidence="0.715038">

Serge Demeyer
</author>
<affiliation confidence="0.654289">

LORE - University of Antwerp
</affiliation>
<figure confidence="0.900427125">

...
</figure>
<sectionHeader confidence="0.813482" genericHeader="abstract">

ABSTRACT
</sectionHeader>
<bodyText confidence="0.9983555">

Reverse engineering is the process of...
</bodyText>
...

</algorithm>

Listing 2: example result of the SectLabel algorithm

The confidence attribute is a normalized metric which indicates the certainty to which
the respective element was recovered correctly. A confidence of one means that an
element was recovered correctly with absolute certainty.

In our experience using the tool, we observed that SectLabel even though it performed
well for extracting section titles and paragraphs, it did not perform well for elements
such as paper titles, and author names, affiliations and e-mail. In only a few cases the
algorithm was able to extract all these elements without any errors. We observe this issue

CHAPTER 2. EXTENDEDEGGSHELL 7

in Listing 2, in which two co-authors of the paper (i.e., Stéphane Ducasse and Oscar
Nierstrasz) are missing.

ParsHed focuses on recovering paper title, and author names, affiliations, and e-mail.
Listing 3 shows an extract of the ParsHed node of the example paper [6].
<algorithm name="ParsHed" version="110505">

<title confidence="0.999597">
Finding Refactorings via Change Metrics

</title>
<author confidence="0.99976">

Serge Demeyer
</author>
...
<author confidence="0.643633">

Stéphane Ducasse
</author>
...
<author confidence="0.760562">

Oscar Nierstrasz
</author>
<affiliation confidence="0.91192">

SCG - University of Berne
</affiliation>
<address confidence="0.9574545">

Neubrückstrasse 10 CH-3012 BERNE (Switzerland)
</address>
<email confidence="0.987768">

oscar@iam.unibe.ch
</email>
<web confidence="0.998921">

http://www.iam.unibe.ch/˜oscar/
</web>
<abstract confidence="0.999847411764706">

Reverse engineering is the process of ...
</abstract>
...

</algorithm>

Listing 3: example result of the ParsHed algorithm

We think that ParsHed performs better than SectLabel at extracting titles and authors.
In the case of the example paper [6], all three authors of the paper are recovered correctly,
including additional data, such as affiliation, e-mail and web address.

ParsCit is an algorithm to recover the list of citations from a paper. Each citation
contains a paper title, the author names, and the publication date. Listing 4 shows the
ParsCit node for the example paper [6].
<algorithm name="ParsCit" version="110505">

<citationList>

CHAPTER 2. EXTENDEDEGGSHELL 8

<citation valid="true">
<authors>

<author>Robert S Arnold</author>
</authors>
<title>Software Reengineering</title>
<date>1992</date>
...

</citation>
...

</citationList>
</algorithm>

Listing 4: example result of the ParsCit algorithm

2.4 Model
ESS models the extracted entities in a way such that they reflect the main elements of
the scientific community. We designed the model having in mind that it will be the base
to create visualizations and to pose queries that will help users to analyze the scientific
community.

Figure 2.3 shows a class diagram of the model design. In it, the scientific community
is represented as a collection of papers and authors. The two collections provide methods
to query the model. A Paper contains the paper title, authors, publication year, its
paragraphs, a collection of its section titles, and a collection its of cited papers. An
Author object contains the author’s name, affiliation and e-mail address. Both Paper

and Author inherit from AbstractCommunityItem that holds the state of three variables:
communityItemId, isColleted, and additionalInfo. The variable isCollected is
a boolean that identifies when a paper is part of a source collection – a collection of
papers in PDF format. Hence, we distinguish Paper objects that originate from a paper
in the source collection to the papers created from citations, which we call absent papers.
Similarly, isCollected identifies authors who contributed to at least one paper in the
source collection. The additionalInfo dictionary variable is used to store collection
specific properties of a paper or author. For example, to store data of the source of
funding of papers.

We extend the meaning of the words paper and author to include instance of the
Paper class and the Author class respectively.

By default, the ModelLoader (the class responsible for loading the model) creates a
new ScientificCommunity model upon initialization. However, in many cases users
may want to extend an existing model. This can for example be useful for the col-
lection of papers of a conference, which is extended each year the conference is held.
Instead of reloading the model every time the collection is extended, users should be
able to extend an existing model. They can achieve this by setting the ModelLoader’s

CHAPTER 2. EXTENDEDEGGSHELL 9

Figure 2.3: class diagram of the Scientific Community model

ScientificCommunity property to the existing model they wish to extend, before start-
ing the modeling process.

2.4.1 Enriched Model
Although none of ParsCit’s algorithms extract the publication year of a paper, we notice
that sometimes the year is encoded in paper files or directories. Listing 5 shows an
example of the file structure of the collection of papers from the various editions of
the Object-Oriented Programming, Systems, Languages and Applications conference
(OOPSLA):
OOPSLACollection
|__oopsla1986
| |___p1-moon.pdf
| |___p9-schaffert.pdf
| |___...
|__oospla1987
|__...
|__oospla2015

Listing 5: folder structure encoding the papers’ publication year

CHAPTER 2. EXTENDEDEGGSHELL 10

We therefore enrich the model of this collection by including the publication year of
each paper. Listing 6 shows the script that extracts the year from the folder’s name and
uses it to set the paper’s publication year property during modeling:

1 sc := ScientificCommunity new.
2 collectedPapers := PapersCollection new.
3 1986 to: 2015 do: [:year |
4 | folder newPapers |
5 folder := rootFolder / ('oopsla', year asString).
6 ModelLoader new
7 scientificCommunity: sc;
8 modelPDFs: folder.
9 newPapers := sc papers difference: collectedPapers.

10 newPapers do: [:newPaper | newPaper year: year].
11 collectedPapers addAll: newPapers].

Listing 6: modeling publication year information encoded in folder structure

The rootFolder variable holds a FileReference to the OOPSLACollection folder
(see structure outline above in Listing 5). For each year of a conference edition (line
3), the algorithm obtains the list of PDF paper files (line 5), and populates a model by
creating author and paper objects. Then, it calculates newly added papers with respect to
a previous paper collection (line 9). Finally, the algorithm writes the publication year to
paper objects to update the paper collection (lines 10 and 11).

2.5 Cleaning the Model
Oftentimes the output data resulting from step 2 of the pipeline (i.e., semantic structure
recovery, Section 2.3) contains errors, such as misspellings of an author name or paper
title. Typically, they relate to author names and paper titles include additional wrong
words or characters. We found 1) additional non-alphanumeric characters in author
names and paper titles; 2) words in author names that are not part of the name. For
example, for an author such as ”Oscar Nierstrasz” we found his name followed by his
affiliation ”Oscar Nierstrasz SCG University of Bern”; and 3) multiple author names
extracted as a single author name, such as ”Oscar Nierstrasz Stéphane Ducasse”. Other
times, we found errors that relate to the use of accents that are extracted as two separate
characters: a non-accented letter and its accent.

Figure 2.4 shows the results of looking for all authors whose names contain ”Oscar
Nierstrasz” in a model5 that has not yet been cleaned. The figure shows examples of
the discussed errors, such as multiple author being extracted names as a single name.

5This model corresponds to a collection of 100 randomly selected papers from the SCG PDF archives
http://scg.unibe.ch/archive/papers

http://scg.unibe.ch/archive/papers

CHAPTER 2. EXTENDEDEGGSHELL 11

Figure 2.4: authors whose names contain ”Oscar Nierstrasz”, before cleaning the model

Although these errors could be removed in step 2 (i.e., semantic structure recovery), we
decided to clean the data already modeled as first-class objects.

We observe that cleaning the model is an iterative process. Although we start by
removing a set of type of name errors, when we visualize the data (at the end of the
process) we might detect new errors. We then would want to return to this step and
expand the number of cleaning heuristics. We therefore introduce the EES’ model
cleaning system, which relies on heuristics to clean the model from errors.

Figure 2.5: class diagram of the model cleaning system in EES

Figure 2.5 shows a class diagram of the extensible design of the cleaning step.
AbstractCleanupHeuristic is an abstract class that holds a reference to a model (i.e.,

CHAPTER 2. EXTENDEDEGGSHELL 12

ScientificCommunity). A number of particular heuristics that fix errors in extracted
names and titles are implemented as an extension to this class. Each extended class
has to override the run method to implement its logic. Heuristics that tackle errors
in author names extend AbstractAuthorCleanupHeuristic and the one that tackle
paper title errors extends AbstractPaperCleanupHeuristic. The execution of these
heuristics is managed by the CleanupHeuristicsRunner, referred to as the runner.
CleanupHeuristicsRunner class holds a reference to a model and to a list of heuristics
(i.e., subclasses of AbstractCleanupHeuristic).

Users can add heuristics classes using the runner’s addHeuristic: method. The run-
ner will only run the explicitly added heuristics, in the sequence they were added. Users
need to be able to choose which heuristics to run, because not all heuristics may perform
well on every model. Once users have added all desired heuristics, they call the runner’s
run method, which iterates through its collection of heuristics. For each heuristic, it will
i) instantiate the class, ii) pass it the reference to the targeted ScientificCommunity

model, and iii) call the instance’s run() method. In the following we examine the
heuristics that we implemented (shown in Figure 2.5).

2.5.1 Blacklist
We found some frequently occurring names containing words that come from authors’
affiliations, such as University, Institute, Informatics. We therefore defined a blacklist
of words that are unlikely to belong in a name. The Blacklist class not only removes
the words in the blacklist but also the words in between two blacklisted word. We
implemented it in this way since we did not find a case where proper name parts were
located between blacklisted words.

2.5.2 MultiAuthor
We often observed that papers written by multiple authors (e.g., Erwann Wernli and
Oscar Nierstrasz) are extracted as a single author (e.g., Erwann Wernli Oscar Nierstrasz).
Algorithm 1 shows how this heuristic attempts to clean the model from such errors.

Note that, in certain cases, this heuristic might behave in an unexpected manner. For
example, if a paper has an author named Joe Ortega Zisman Jon Doe, and the model
contains another author named Joe Ortega. The heuristic will detect Joe Ortega as an
additional author of that paper, which is correct, assuming that Joe Ortega and Joe Ortega
Zisman are variations of the same name. It will however reduce the name Joe Ortega
Zisman Jon Doe to Zisman Jon Doe, instead of Jon Doe. In Chapter 2.8.1 we show
that, in our evaluation dataset, the heuristic had a positive impact on model accuracy
nevertheless.

CHAPTER 2. EXTENDEDEGGSHELL 13

Algorithm 1 pseudo-code algorithm of the MultiAuthor heuristic
1: procedure MULTIAUTHOR

2: for each author ∈ Model.authors do
3: containedAuthors← new Collection
4: for each candidate ∈ Model.authors do
5: if author.name contains substring candidate.name then
6: remove substring candidate.name from author.name
7: add candidate to containedAuthors
8: add containedAuthors to papers by author

2.5.3 OddName
The main intent of this heuristic is to address i) casing issues, ii) incorrectly extracted
characters, and iii) names consisting of only a single word, in both author names and
paper titles. For each author name and paper title this heuristic removes all characters
above Unicode code point 8188. We found that this is a good threshold to filter out most
incorrectly extracted characters automatically, without removing correctly extracted ones.
We also found that some incorrectly extracted characters fall below that threshold and
often even fall into the range of common alphanumeric characters. However, we observe
that they usually appear as sequences of characters, rather than just a single one. An
example of such an often observed case is Â©. Although we could exclude the © symbol,
we observe that some occurrences of Â are correct. In the future, we plan to use regular
expressions that can better match the multiple cases. The algorithm also 1) removes all
words containing numbers, 2) normalizes words leaving only the initial letter in capital,
and 3) removes names consisting of only a single word.

2.5.4 SpecialChar
This heuristic looks for accented versions of vowels (lower and upper case). For example,
the following is the class of equivalent characters (char class) for E, È, É, Ê, Ë, and e, è, é,
ê, ë. That is, given two author names n1, n2 as equal within char class, if and only if they
have the same length n and ∀i ∈ [1, n] ⊂ N : n1[i] ∈ C ∧ n2[i] ∈ C, where C is a char
class. Hence, we would for example consider Stephane Ducasse and Stéphane Ducasse
as equal within char class. Algorithm 2 shows how this heuristic groups together authors
whose names are equal within char class.

2.5.5 SeparateAccent
We sometimes found errors that relate to the use of accents that are extracted as two
separate characters: a non-accented letter and its accent. This heuristic defines a dictio-

CHAPTER 2. EXTENDEDEGGSHELL 14

Algorithm 2 pseudo-code algorithm of the SpecialChar heuristic
1: procedure SPECIALCHAR

2: charClassIdMap← map char classes to integer numbers
3: for each author ∈ Model.authors do
4: hash← empty string
5: for each char ∈ author.name do
6: hash← hash + (charClassIdMap at char class of char) + ”.”
7: sort author into char class bucket of hash
8: for each bucket ∈ char class buckets do
9: replace all authors in bucket by any representative

nary that translates such cases to the respective single accented character. The heuristic
iterates through all author names and fixes such errors, using this dictionary.

2.6 Visualization
The last step of the pipeline is to generate visualizations that users can utilize to augment
their understanding of the scientific community data. Through visualizations, users can
gain an overview of the scientific community and identify entities of interest. We propose
two visualization approaches, one based on node-link diagrams and a complementary
one based on word clouds.

2.6.1 Node-Link diagrams
We opted for visualizing the bigraph model of papers and authors using the node-link
technique. We configure the technique so that rectangles depict paper nodes and circles
depict author nodes (shown in Figure 2.6). The size of an author node encodes the
number of papers to which the author has contributed. Author nodes have a label on
top to display their family name. The default color of author nodes is dark gray, while
paper nodes are black. The bigraph is laid out using a force-based layout6. We selected
this layout because it groups parts of the graph with more edges closer together, making
it easier to spot groups of collaborators. During development, we experimented using
different colors for paper nodes and author nodes. We also tested multiple ratios for
rectangular paper nodes. We found that a width-to-height ratio of 2:1 resulted in easier
distinction between paper and author nodes. The visualization can include not only
papers and authors, but also absent authors. Absent papers (and their absent authors)
are the result of a paper being cited by another paper, but for which there is not a PDF

6charge: -80, strength: 1

CHAPTER 2. EXTENDEDEGGSHELL 15

file in ESS. We observed that in all our models, absent entities accounted for the vast
majority of all nodes. We think that they might improve the visualization for the analysis
of collaboration. However, we face the problem that most absent entities are incorrectly
extracted or cleaned, which leads to a huge number of nodes and a great deal of cluttering.
The graph does therefore not include absent entities by default.

Figure 2.6: extract of an SCGraph – squares depict papers, circles depict authors

In the following we describe the characteristics of our visualization by adopting
Shneiderman’s popular classification [10]. Once users trigger the visualization of the
model built from a collection of papers. They take the following steps:

1) Gain an overview: we consider an important characteristic of our visualization its
ability to display the community as a whole. Thus, users can gain an overview over
the community.

2) Zoom: Users can zoom-in to focus on interesting elements of the graph, and zoom-out
to analyze how those elements connect with the the rest of the graph. Users trigger
the zoom feature by using the keyboard and mouse.

3) Filter: Users define which sub-collections of papers, authors, absent papers and absent
authors are included in the graph.

CHAPTER 2. EXTENDEDEGGSHELL 16

4) Show details on demand: Users hover over a paper node in the graph to display its
title. Uniformly, they hover over an author node to display their name. Users can
also select an element in the graph to inspect its properties, such as a paper’s title and
paragraphs, and an author’s name, affiliation and e-mail.

5) Relate: Edges connect authors and papers. Users can hover over an author to highlight
their immediate and transitive connections. Users can explore how authors connect to
others by analyzing the highlighted edges reachable from that node. We decided to
map the distance to the node to the color intensity of the edge. We believe this might
help users to identify authors that have a close relationship but might be far apart in
the graph. Users can also analyze the relationship among attributes by encoding them
into the intensity of the color of nodes, for instance, to analyze how recent are papers.

6) Keep a history: When highlighting elements in the graph, an SCGraphHighlighting

object is created. Users can interact with it to remove, change and apply the highlight-
ing.

7) Extract: Users define which sub-collections of papers, authors, absent papers and
absent authors are included in the graph.

Analyzing collaboration networks is complex due a large number of nodes and edges.
Hence, users would benefit from expressive and flexible API to filter data from the model
during visualization. ESS therefore lets users highlight the results of queries to the model.
We decided to use a predefined color palette of seven qualitative colors, so users do not
have to spend time deciding what color to assign to the results of a query. Figure 2.7
shows a graph with the results of a query highlighted. The system automatically assigns
a color from the predefined palette. A legend appears on the right-hand side of the graph,
explaining the color coding. Figure 2.8 shows the result of executing a second query
in the same graph. The color automatically assigned to the new query is added to the
legend. The left-hand part of Figure 2.9 shows the highlighting of the results of a more
complex query.

Users can encode a numerical property in the intensity of a highlighting color, as
shown in the right-hand side of Figure 2.9.

CHAPTER 2. EXTENDEDEGGSHELL 17

Figure 2.7: Highlighting a set of query results. 39 elements are highlighted, as indicated
by the number in parentheses, in the legend on the right-hand-side.

Figure 2.8: Multiple sets of query results can be highlighted at the same time. Only two
elements match this second query.

CHAPTER 2. EXTENDEDEGGSHELL 18

Figure 2.9: Left-hand side: highlighting all authors who have published papers about both
Smalltalk and Java. Right-hand side: in the same graph, encoding into color intensity the
number of occurrences of the word Smalltalk, in all papers about Smalltalk

2.6.2 Word Cloud
Often when users need to formulate queries to match papers that relate to a certain topic,
they struggle to identify keywords. We cope with this problem by designing a companion
visualization based on a word cloud. The word cloud is useful to quickly assess the most
commonly used words in the content of a set of papers. ESS builds the word cloud by
collecting the full text of the whole set of papers. In the word cloud each word from the
papers is laid together, and the size of a word corresponds to its frequency in the set of
papers. The more frequently a word occurs, the larger it is displayed. Figure 2.18 shows
an example built from papers that contain the word refactoring in their title.

2.7 Modular Design
We observed that steps 1 and 2 of the ESS pipeline (text extraction and semantic structure
recovery described in Section 2.2 and 2.3 respectively) represent the source of most issues.
Therefore, we designed these steps in a modular fashion, so they can evolve over time by
allowing users to replace them by other tools. Although the current implementation of
EES uses PDFBox for text extraction and ParsCit for semantic structure recovery, users
could substitute these tools to obtain the benefits of other tools. Figure 2.11 shows the
modular design. The only constraint for a text extraction tool is to generate plain text
from PDF files. On the other hand, a candidate to replace the semantic structure recovery
tool has to extract at least the paper title and author names from a plain text input. In such

CHAPTER 2. EXTENDEDEGGSHELL 19

Figure 2.10: word cloud from papers whose title contains the word refactoring

a case, a user would need to convert the XML results of the semantic structure recovery
tool into the ESS schema. For our convenience we adopted ParsCit’ schema. Listing 7
shows the required standard schema for the minimal data a semantic structure recovery
tool has to provide (i.e., paper title and author names). The schema requires at least a
paper title (line 4) and one author name (line 5). Further author names (lines 6-8) are
optional.

1 <algorithms>
2 <algorithm name="ParsHed">
3 <variant>
4 <title>Paper Title</title>
5 <author>First Author Name</author>

CHAPTER 2. EXTENDEDEGGSHELL 20

6 <author>...</author>
7 ...
8 <author>...</author>
9 </variant>

10 </algorithm>
11 </algorithms>

Listing 7: required standard XML schema for data extraction results

We propose the XSLT language [4] to transform the results from a particular schema
to ESS schema. Next, the user would define a new tool chain by adding a new method
to PDFXMLImporter, which defines i) the use of a text extraction tool and a semantic
structure recovery tool, ii) their interaction, and iii) the conversion of the semantic
structure recovery result to the standard XML schema.

Figure 2.11: modular design of the data extraction

2.8 Evaluation
We evaluate the tool by measuring the accuracy of the model and the time performance.
For this, we use the complete set of 366 papers published in the software visualization
community (VISSOFT7). We demonstrate the tool via selected usage examples on a
collection of 1084 papers from the object-oriented, systems, languages and applications
community (OOPSLA), published between 1986 and 2013.

2.8.1 Accuracy and Time
We compare the model loaded with EES to the ground truth reference model. The data
in the reference model does not include accented characters. We therefore removed
accents before comparing paper titles or author names from both sources. For example,
we considered the names Stéphane Ducasse and Stephane Ducasse to be equal. We also
ignored whitespace and case. We considered a paper’s title to be recovered correctly, if it
was equal to the title of its reference model counterpart. Similarly, we considered that an
author of a paper in the reference model was correctly recovered if its counterpart in the
model loaded with EES contains an author with the same name.

7http://www.vissoft.info/

http://www.vissoft.info/

CHAPTER 2. EXTENDEDEGGSHELL 21

Table 2.1 shows a summary with the results. Notice that we did not include the
SpecialChar heuristic in the Table, since the reference model does not include accented
characters. When ignoring accents, this heuristic does not have an impact on the accuracy
of the model. We observe that OddName brings the largest increase in author precision,
suggesting that that most common error is incorrectly extracted characters. We find that
Blacklist only results in a minor improvement. A possible reason is that this list was
tailored training models during development. In the roughly 22% of authors that are still
incorrectly modeled after applying all heuristics, we find multiple names with words that
could belong on the blacklist. Although MultiAuthor contributes to the author accuracy,
we also still find cases where multiple authors were extracted as a single one. We further
observe several author names that are extracted incompletely.

Heuristic Author Accuracy Title Accuracy
[none] 64.2% 74.6%
OddName 74.6% 76.5%
Blacklist 75% -
MultiAuthor 76.4% -
SeparateAccent 77.8% -

Table 2.1: model accuracy impacts of the cleaning heuristics

We analyzed the time for each step of the pipeline, using the 366 papers of the
VISSOFT collection. We ran the analysis in a MacBook Air (2015) with a 1.6 GHz Intel
Core i5 CPU and 8 GB RAM. Table 2.2 shows the results of the analysis. We observe
that text extraction and semantic structure recovery take particularly long. It is therefore
advisable for users to save the data extraction results as XML files, if they want to model
the same collection again in the future. Table 2.3 breaks the time consumption of the
model cleaning step down to the used model cleaning heuristics.

Step No. Pipeline Step Time (seconds)
1 Text Extraction 604
2 Semantic Structure Recovery 3736
3 Modeling 21
4 Model Cleaning 12
5 Visualization (SCGraph, no absent elements) 30
5 Visualization (SCGraph, including absent elements) 595
5 Visualization (SCWordCloud8) 36

Table 2.2: time consumption of each pipeline step

CHAPTER 2. EXTENDEDEGGSHELL 22

Heuristic Time (seconds)
OddName (paper titles) 1.4
OddName (author names) 7
BlackList 0.3
MultiAuthor 0.6
SpecialChar 2.4
SeparateAccent 0.01

Table 2.3: model cleaning time consumption broken down to the separate heuristics

We revisit our research question RQ.1): What factors influence the accuracy of
data extraction and modeling of scientific communities? We observe that

incorrectly extracted characters is the factor that influences the accuracy of
paper titles and author names the most. Some of these are incorrectly extracted

special characters, others come from marks used to associate authors names
with their affiliation. Further errors result from multiple authors being extracted
as a single one. While the MultiAuthor heuristic is able to clean some of these
errors, others remain in the model. We also find that oftentimes author names
contain words that do not belong in a name. This problem can be addressed by
defining a blacklist. However, such a blacklist must be tailored to a collection

of papers to produce accurate results.

2.8.2 Usage Examples
Example 1: Candidates for Collaboration for Future Projects We work through a
fictitious scenario where author Oscar Nierstrasz attempts to find possible future co-
authors. Listing 8 shows how the user can clean and visualize the OOPSLA collection,
which was loaded as shown in Listing 6. This collection is organized in sub-folders for
each year, which follow the naming convention oopsla[year].

1 CleanupHeuristicsRunner new addDefaultHeuristics runOn: sc.
2 graph := SCGraph new
3 on: sc;
4 title: 'OOPSLA collection SC graph';
5 load.

Listing 8: cleaning and visualizing the OOPSLA collection

Oscar Nierstrasz first looks at the entire graph. He uses the search function to search
for the node representing him in the graph, shown in Figure 2.12. The search function
subsequently zooms in on that part of the community, shown in Figure 2.13. To find

CHAPTER 2. EXTENDEDEGGSHELL 23

Figure 2.12: searching the graph for Oscar Nierstrasz

possible future co-authors, he starts by highlighting relevant papers in his field: object-
oriented programming. Consequently, he queries the model for all papers containing the
words programming, object-oriented, or software Figure 2.14 shows the results of the
query. Highlighted nodes that represent papers that matched the query are in green. He
observes that almost all papers matched this query and that the query needs to be refined.

Figure 2.14: too general query, most nodes are highlighted

CHAPTER 2. EXTENDEDEGGSHELL 24

Figure 2.13: close-up on a group of collaborators

Since refactoring is one of Oscar’s research interests, he poses a new query, to
highlight all papers whose title contains the word refactoring. Figure 2.15 shows the
result of this query in Oscar’s closer community.

He subsequently zooms out, to analyze other highlighted nodes. He identifies a
different part of the community where a number of papers are highlighted, shown in
Figure 2.16. Because numerous authors in this community have published about
refactoring, Oscar decides that this community might include potential candidates for
future collaboration. However, he wants to be sure that these authors have published
about refactoring recently. He changes the highlighting of the query results to encode
the publication year in the color intensity. The stronger the color, the more recently a
paper was published. Figure 2.17 shows the results of this configuration. By selecting a
highlighted paper he can analyze when the paper was published.

CHAPTER 2. EXTENDEDEGGSHELL 25

Figure 2.15: one paper matches the query

Figure 2.17: matching papers appear stronger, the more recently they were published

CHAPTER 2. EXTENDEDEGGSHELL 26

Figure 2.16: a larger group of authors working on refactoring

He selects Anders Møller and Asger Feldthaus as candidates for future collaboration
because both have published papers about refactoring recently and have collaborated in
numerous publications in the OOPSLA community.
Example 2: Active Topics of Research

Oscar assesses what are the main topics of research of these suggested two authors.
He queries the model for all papers that belong to these two authors and builds a word
cloud from the content of these papers, shown in Figure 2.18. Since these papers are
about refactoring, this is the most commonly used word. Other prominent words include
javascript, renaming and related.
Example 3: Collaboration and Research Topics in Java vs. Smalltalk

We first compare the collaboration among authors of papers that focus on the Java
language versus the ones that used Smalltalk dialects: Pharo [2] and Squeak [3]. And
then we investigate how active these research topics are.

We query the model for all papers whose title contains Java, and for those whose
title contains Smalltalk, Pharo, or Squeak. To assess how recent these papers are, we
split each of these results into two sub-collections: papers published before the year
2010 and papers published in 2010 or after. We first look at the legend of the resulting
graph, shown in Figure 2.19, to understand the color coding. We then study the resulting
graph and observe that there are large groups which heavily focused on Java. Figure
Figure 2.19 shows such a group. The Figure also shows that this group is still active after
the year 2010.

We do the same for authors who used Smalltalk. However, we only find small
separate groups of authors. This search shows scalability of the visualization (shown
in Figure 2.20). Notice that the different colors of highlighted nodes become harder to

CHAPTER 2. EXTENDEDEGGSHELL 27

Figure 2.18: word cloud for all papers by a group of possible future co-authors

distinguish on a low zoom level.

CHAPTER 2. EXTENDEDEGGSHELL 28

Figure 2.19: a community of authors publishing about Java

Figure 2.20: limited scalability: large communities require low zoom levels to gain an
overview

We notice from the legend (shown in Figure 2.19) that no papers on Smalltalk are
published after 2010. We want to find out whether these authors have stopped publishing
or have changed their focus of research. However, we observe that the rather small
community of Smalltalk authors is difficult to analyze in the large graph. Hence, we
decide to create an additional, smaller graph, that only displays the Smalltalk authors and
their papers. We query the model for a) all authors who have published papers whose

CHAPTER 2. EXTENDEDEGGSHELL 29

title contains the words Smalltalk, Pharo or Squeak; and b) all papers contributed to by
these authors. Listing 9 shows how we instrument EES to visualize such filtered groups.

smalltalkPapers :=
scientificCommunity

papers
atTitleSubstrings: #('pharo' 'smalltalk' 'squeak').

smalltalkAuthors := (smalltalkPapers flatCollect: #authors) asSet.
papersByStAuthors :=

(smalltalkAuthors flatCollect: [:each |
scientificCommunity papers atAuthor: each]) asSet.

stGraph := SCGraph new
on: scientificCommunity;
title: 'Smalltalk Authors Graph';
includeAuthorElements: [:e | smalltalkAuthors includes: e];
includePaperElements: [:e | papersByStAuthors includes: e];
load.

nonStPapers := papersByStAuthors difference: smalltalkPapers
hlFactory := GraphHighlightingFactory new graph: stGraph.
hLFactory

highlight: smalltalkPapers
callIt: 'Papers about Pharo/Smalltalk'.

hLFactory
highlight: (nonStPapers select: [:e | e year < 2010])
callIt: 'Other papers, before 2010'.

hLFactory
highlight: (nonStPapers select: [:e | e year >= 2010])
callIt: 'Other papers, after 2010'.

Listing 9: visualizing the isolated community of Smalltak authors

Figure 2.21 shows the graph of the isolated community of Smalltalk authors and their
papers. We observe that there are only a few authors who have published several papers
of Smalltalk. Most authors have either published only a single paper, or published most
of their papers on other topics and incidentally have a paper that mentions Smalltalk.
We now build a word cloud based on the paper titles to analyze the topics covered by
such papers that do not relate to Smalltalk. The result is shown in Figure 2.22. The most
frequently used word in the titles of these papers is objectoriented. Other prominent
words include design, panel, environment, and inheritance.

CHAPTER 2. EXTENDEDEGGSHELL 30

Figure 2.21: graph of the isolated community of Smalltalk authors

Figure 2.22: most frequently used words in the titles of papers not about Smalltalk

CHAPTER 2. EXTENDEDEGGSHELL 31

Figure 2.21 also confirms what we suspected from analyzing the large graph: most
Smalltalk authors are not connected in large communities, but spread out across small,
unconnected groups. The figure also shows that there is only a single author who has
published after 2010. The other authors have not changed their field of research, but have
not published at all since then.

We then analyze what other topics the Smalltalk authors cover by creating a word
cloud with the most frequently used words in their papers which are not related to
Smalltalk. Figure 2.22 shows the result. Since Smalltalk is an object-oriented language,
the most prominent keywords are object-oriented and design.

We revisit our research question RQ.2): How can visualization support the
understanding of the dynamics of scientific communities? We found that

visualizing scientific communities as bigraphs using node-link diagrams helps
users to better understand the collaboration within these communities. Users

can gain an overview of the whole community, as well as analyze smaller
sub-communities. However, the scalability of this visualization is limited. We
also found that the word cloud lets users quickly determine the most frequently

used words in a set of papers. In combination, both visualizations can for
example help users to find possible future co-authors and determine active

fields of research.

3
Conclusion and Future Work

EggShell proposed a workbench for defining pipelines that model scientific communities
from collections of papers in PDF format. We built on top of this idea, and defined our
own modelling pipeline. Thereby, we relied on the two third-party tools to extract meta-
data from PDF files. Further, we adapted EggShell’s data model of scientific communities
and extended it by data such as a paper’s paragraphs, citations, and publication year,
as well as an author’s affiliation and e-mail. We also added methods to the model that
facilitate complex queries.

Since both PDFBox and ParseCit make errors, we faced the challenge of misspelled
paper titles and ambiguous author names. We developed a model cleaning system, which
relies heuristics to tackle such problems. With our data extraction pipeline, combined
with these heuristics, we were able to correctly recover 76.5% of all paper titles. On
average, 77.8% of a paper’s authors were recovered correctly. We designed the model
cleaning system in a way that allows users to defined which heuristics should be applied
to a model, and to add additional cleaning algorithms to further improve a model.

We visualized the model using the node-link diagram technique. We found that this
visualization helps users understand collaboration in a community, and gain knowledge
on active fields of research.

For future work we see multiple possibilities to improve both the model and its
underlying collection of papers. One particular opportunity to improve the model is
matching normalized author names with non-normalized ones, if there is reasonable
confidence that they both refer to the same person. Further, it could be possible for
ExtendedEggShell to crawl web locations for missing papers, namely referenced papers
that are not yet in the respective model’s underlying corpus of PDF files. Apart from

32

CHAPTER 3. CONCLUSION AND FUTURE WORK 33

improving the model, it would also be useful to automate certain exploration processes.
We see large automation potential in the search for related papers for a paper, and for
possible future co-authors for an author.

We also see large potential in citations. When appropriately visualized, they might
help users find relevant papers, and gain further knowledge on the dynamics of collabora-
tion in a community.

4
Anleitung zu wissenschaftlichen Arbeiten

4.1 How to Install ExtendedEggShell
In this section we describe how to install ExtendedEggShell (EES). The source code of
EES is available on SmalltalkHub1. Additional resources, such as the required third party
tools, can be found on GitHub2. Note that EES was developed and tested only on OSX
operating systems. This installation guide is therefore only targeted towards Mac users.

1) Download Moose 6.0 from the Moose website3.

2) verify that the installation path does not contain white-spaces

3) Open the Moose image.

4) Within Moose open a Playground and execute the following code:

Gofer new
package: 'ConfigurationOfExtendedEggShell';
url: 'http://smalltalkhub.com/mc/SilasBerger/ExtendedEggShell/main'
username: '' password: '';
update.

(ConfigurationOfExtendedEggShell project version: '0.1') load

This will download and install ExtendedEggShell in the Moose image.
1http://smalltalkhub.com/#!/ SilasBerger/ExtendedEggShell
2https://github.com/SilasBerger/ExtendedEggShell-tools
3http://www.moosetechnology.org/#install

34

http://smalltalkhub.com/#!/~SilasBerger/ExtendedEggShell
https://github.com/SilasBerger/ExtendedEggShell-tools
http://www.moosetechnology.org/#install

CHAPTER 4. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 35

4.1.1 Installing the Additional Tools
Users first need to download the contents of the ExtendedEggShell-tools4 repository on
GitHub and put the contained tools folder next to the ExtendedEggShell image. They
also need to make sure to have Ruby, Perl and Java installed. In the following, all lines
with a leading $ sign need to be executed in the Terminal.
Users then need to install the cpanm utility:

$ cpan App::cpanminus

Then, they install the required Perl libraries as follows:

$ sudo cpanm Class::Struct
$ sudo cpanm Getopt::Long
$ sudo cpanm Getopt::Std
$ sudo cpanm File::Basename
$ sudo cpanm File::Spec
$ sudo cpanm FindBin
$ sudo cpanm HTML::Entities
$ sudo cpanm IO::File
$ sudo cpanm POSIX
$ sudo cpanm XML::Parser
$ sudo cpanm XML::Twig
$ sudo cpanm XML::Writer
$ sudo cpanm XML::Writer::String

Then, users navigate to the previously downloaded tools folder, then further to /mac/par-
secit/crfpp, and issue the following commands, to install CRF++:

$ rm -Rf CRF++-0.51
$ tar -xvzf crf++-0.51.tar.gz
$ cd CRF++-0.51
$./configure
$ make
$ cp crf_learn crf_test ..
$ cd .libs
$ cp -Rf * ../../.libs

4.2 Basic Usage

4.2.1 Modeling a Collection of Papers in PDF Format
To download a set of example papers, users can execute the following line:

FileDownloader downloadExamplePDFs

4https://github.com/SilasBerger/ExtendedEggShell-tools

https://github.com/SilasBerger/ExtendedEggShell-tools

CHAPTER 4. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 36

This creates a folder called examplePDFs in the current working directory (i.e., the
location of the current Moose image), where the example papers are subsequently
downloaded to.

To model a collection of papers in PDF format, users can run the following code:

scientificCommunity := ModelLoader new modelPDFs: folderReference

The folderFileReference needs to hold a FileReference to the folder containing the
PDF files collection. The reference to the aforementioned examplePDFs folder can be
obtained as follows:

folderFileReference := FileSystem workingDirectory / 'examplePDFs'

Users should then perform the model cleaning step to reduce the number of errors in the
model. They can run the default cleaning heuristics as follows:

CleanupHeuristicsRunner new
addDefaultHeuristics
runOn: scientificCommunity

4.2.2 Visualizing a ScientificCommunity model
Users create an graph for a ScientificCommunity model as follows.

graph := SCGraph new
on: scientificCommunity;
title: 'Title of the Graph';
load.

The scientificCommunity holds a reference to such a model. To highlight query results
in the graph, users need to create a highlighting factory:

hlFactory := GraphHighlightingFactory new graph: graph.

They can subsequently highlight query results as follows:

queryResults := scientificCommunity
papers
atTitleSubstring: 'refactoring'.

exampleHL := hlFactory
highlight: queryResults
callIt: 'Example Highlighting'.

To create a word cloud, a word cloud factory is needed. This factory can then be used to
create word clouds from collections of papers:

wordCloudView := SCWordCloudView new.
wordCloudView buildCloudFor: aCollectionOfPapers.

Bibliography

[1] Vanessa Peña Araya, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and
Jannik Laval. Agile visualization with Roassal. In Deep Into Pharo, pages 209–239.
Square Bracket Associates, September 2013.

[2] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cas-
sou, and Marcus Denker. Pharo by Example. Square Bracket Associates, 2009.

[3] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, and Damien Pollet. Squeak
by Example. Square Bracket Publishing, 2007.

[4] James Clark et al. Xsl transformations (xslt). World Wide Web Consortium (W3C).
URL http://www. w3. org/TR/xslt, page 103, 1999.

[5] Isaac G Councill, C Lee Giles, and Min-Yen Kan. Parscit: an open-source crf
reference string parsing package. In LREC, volume 2008, 2008.

[6] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings
via change metrics. In Proceedings of 15th International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’00),
pages 166–178, New York NY, 2000. ACM Press. Also in ACM SIGPLAN Notices
35 (10).

[7] Leonel Merino, Dominik Seliner, Mohammad Ghafari, and Oscar Nierstrasz. Com-
munityExplorer: A framework for visualizing collaboration networks. In Proceed-
ings of International Workshop on Smalltalk Technologies (IWST 2016), pages
2:1–2:9, 2016.

[8] Oscar Nierstrasz. Agile software assessment with Moose. SIGSOFT Softw. Eng.
Notes, 37(3):1–5, May 2012.

[9] Dominik Seliner. EggShell — a workbench for modeling scientific communities.
Bachelor’s thesis, University of Bern, August 2016.

37

BIBLIOGRAPHY 38

[10] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on,
pages 336–343. IEEE, 1996.

	1 Introduction
	2 ExtendedEggShell
	2.1 Framework Pipeline
	2.2 Text Extraction
	2.3 Semantic Structure Recovery
	2.4 Model
	2.4.1 Enriched Model

	2.5 Cleaning the Model
	2.5.1 Blacklist
	2.5.2 MultiAuthor
	2.5.3 OddName
	2.5.4 SpecialChar
	2.5.5 SeparateAccent

	2.6 Visualization
	2.6.1 Node-Link diagrams
	2.6.2 Word Cloud

	2.7 Modular Design
	2.8 Evaluation
	2.8.1 Accuracy and Time
	2.8.2 Usage Examples

	3 Conclusion and Future Work
	4 Anleitung zu wissenschaftlichen Arbeiten
	4.1 How to Install ExtendedEggShell
	4.1.1 Installing the Additional Tools

	4.2 Basic Usage
	4.2.1 Modeling a Collection of Papers in PDF Format
	4.2.2 Visualizing a ScientificCommunity model

