
Technical Report

Shrew – A Prototype for Subversion
Analysis

Philipp Bunge
Supervised by: Tudor Gı̂rba

University of Bern, Switzerland
Software Composition Group

February 2007

Abstract

With the growth of the World Wide Web, version control systems have be-
come an essential component in collaborative software development. One
such version control system that has found generous adoption in recent
years is Subversion, a centralized system that was designed explicitly to
match the requirements of the open-source community. Equally, special-
ized web based tools have emerged to browse and inspect version control
systems such as Subversion and have proven themselves to be valuable
instruments for the developers of software projects. As projects become
larger and more complex however, these tools have often reached their lim-
itations on the level of introspecting they can provide. To solve this prob-
lem we present Shrew, an approach to analyze Subversion repositories that
builds upon a specialized meta-model and makes use of the Moose object-
orientated reengineering environment to facilitate information extraction
and that presents its results with a convenient web interface.

1. Introduction

The history of web based version control systems can be traced back to 1996

when Bill Fenner released a script for browsing CVS repositories called CVSweb

1

[CVSweb, 2007]. Since then, CVSweb has come a long way and inspired the

application to be ported to Python which resulted in the well known ViewCVS

project [ViewVC, 2007]. Today, ViewCVS has been extended to support the

Subversion version control system as well and has been renamed to ViewVC.

Further products such as Chora [Chora, 2007], FishEye [FisheEye, 2007] and

Trac [Trac, 2007] have been developed to support version control systems un-

supported by ViewVC or to provide functionality that the system does not cover.

Despite of the existing abundance of such web based tools, few exist that facil-

itate more complex historic analysis that could be used for reverse and reengi-

neering purposes while adhering to a straightforward web based interface.

Shrew is intended as a suggestion how this gap can be filled. For this purpose,

Shrew makes use of the Smalltalk programming language, the reengineering

environment Moose [Ducasse et al., 2000] and of the Seaside web application

framework [Seaside, 2007] to analyze and browse Subversion repositories.

Subversion was chosen as the preferred version control system for Shrew as

it has a wide and growing acceptance in the development community, partic-

ularly in open-source circles. It has a more modern design than and does not

suffer from the inherent flaws of CVS. Finally, Subversion has a less complex

architecture than distributed version control systems such as darcs [darcs,

2007] or Git [git, 2007].

Shrew is designed as a layered architecture as displayed in Figure 1 on the

following page to support reuse of its components. At the bottom is the reposi-
tory access layer, followed by a data analysis layer and finally the presentation
layer. These are discussed in detail in the following sections.

2. Repository Access

Before any analysis can take place, it is essential that we can access the data

stored in a Subversion repository. Subversion provides multiple mechanisms

to access remote repositories of which the most popular uses WebDAV/DeltaV

which is an extension of HTTP. Two other possibilities are svnserve – which

uses a custom protocol – and direct file access if the Subversion server and

client are on the same host and permissions are set accordingly. To make

2

Presentation

Data Analysis

Repository Access

SVN

Figure 1: Shrew layered architecture

matters more complicated, WebDAV data can be tunneled via SSL, svnserve

over SSH and both may provide authentication mechanisms to restrict access.

Essentially, the Subversion client implemented in Shrew should provide all of

these methods so as to support all projects that use Subversion as a version

control system. Furthermore, the initial design of the client attempted to pro-

vide a full-fledged Subversion client as developers are used to using on the

command line with exception that the working copy of a checked out reposi-

tory would not be file based but object based. This means, that a user would

be able to check out a Subversion repository into Smalltalk and manipulate

all files and directories as objects. Once manipulated, running a Subversion
commit on the objects would allow the developer to upload the data back onto

the repository server. The goal was to provide all of the common Subversion

functions such as checkout, update, commit, add, delete, merge, lock and so

forth with the confidence that a code-repository such as VisualWorks’ Store or

other applications could be built on top of them.

2.1. Discussion of Possible Implementations

With these considerations being made, there are a total of five solutions to

implementing a client in VisualWorks Smalltalk that were considered: (1) using

Subversion’s SWIG bindings, (2) importing the Subversion API using DLLCC,

3

(3) writing a C wrapper around the API, (4) implementing the protocols natively

and (5) calling the Subversion console client as a separate process.

I present these solutions in the order of the “elegance” of the solution. In prin-

ciple, the items are sorted by an estimate of their maintainability and efficiency

after having put a decent amount of thought into them.

SWIG bindings Subversion is written in C with a strong modular design that

allows developers in C or C++ to simply link to or dynamically load Subversion

libraries into their applications. This has been allowed by Subversion being

designed from the beginning to have a well defined interface – an issue that

has plagued CVS extensively. For languages other than C and C++, Subversion

provides support using the Simplified Wrapper and Interface Generator [SWIG,

2007]. SWIG is an interface compiler that takes an interface definition file and

the C or C++ header files from an application to generate the wrapper code

required to access the underlying code with the higher level language.

Subversion already provides the interface definition file so SWIG would provide

an optimal solution for implementing a client. Unfortunately, SWIG does not

provide a language definition for any Smalltalk dialects natively and a related

project [Upright, 2007] attempting to provide such a definition is still quite

experimental and has not shown any progress in close to a year at the time of

this writing. Writing such a language definition, although not difficult, would

require an amount of time that was not available during the period of the

project.

DLLCC VisualWorks Smalltalk comes with a suite of tools named DLL and
C Connect (DLLCC) that can be used to generate and use interfaces between

Smalltalk and C. DLLCC can automatically parse the header files of a C appli-

cation and construct the necessary bind code in Smalltalk or the developer can

create the binding code manually. Unfortunately, DLLCC was unable to parse

the header files of Subversion correctly and a manual implementation would

have been a tedious process. Additionally, the primitive data types would have

needed to be converted to higher level objects adding more complexity to this

solution.

4

C wrapper A third solution is to write a wrapper around Subversion as a C

library and only exposing the interface as needed by Shrew. We could then

use DLLCC to construct the binding code automatically or even consider a

manual implementation as the header files would be a lot smaller than for the

entire Subversion code base. However, the issue with the data type conversion

persists, rendering this an unfeasible solution as well.

Native protocols Alternatively, one could implement the protocols Subversion

uses to communicate over a network or to the file systems directly in Smalltalk.

However, the protocols are all rather complex and insufficiently documented

which made it difficult to estimate the time required to implement even one

protocol. Furthermore, the protocols are subject to change as Subversion de-

velops, so we could not have guaranteed interoperability in the future and

maintenance would have been difficult.

Console client The last proposal for a client solution would be to call the

Subversion console client, passing any options along the command line and

parsing the text output that is returned. Obviously this comes with an ex-

pensive overhead: every time information is retrieved from a remote location

we start a new process, fulfill a TCP handshake, possibly an SSL handshake,

exchange Subversion data including authentication, tear down the connection

and finally return a string result along the command line. If the result is in

XML format, we will additionally fire up an XML parser to interpret the data.

Needless to say, this last solution is far from elegant, efficient or maintainable

but it permits for the quick prototype implementation that was needed to be

able to continue the development of Shrew.

2.2. A Brief Look at the Client

The implementation of a full-fledged client as discussed above was thwarted

by the use of the console client rather than a different back-end mechanism

and it soon became obvious that such a client was not the ideal structure for

the analysis tools. For this reason, Shrew only implements a partial set of the

5

Subversion client commands and not all exhibit the same behavior as their

console counterpart.

Listing 1 shows an example how the client is used to check out a project.

The revision: part of the message is optional if the user wants to checkout the

newest version.

root := SVN

checkout: ’https://example.org/svn/repos’

revision: (Revision number: 12)

Listing 1: Checking out a repository

Revisions can be specified by a number of messages of Revision. These are

#head, #number: and #date: which correspond to the revision arguments as

specified for the console client. #number: takes an integer value and #date:
takes an instance of Timestamp as argument.

The SVN class as used above is not actually the client implementation but

acts as a wrapper. It overrides #doesNotUnderstand: on the class side to dele-

gate messages to the concrete implementation of the Subversion client. Which

client this is, is specified in SVN class>>#defaultClient.

Since the client is incomplete, most users will not be interested in the client as

such, but will only use it in the context of the data analysis as will be presented

in the next session. The data analysis layer relies solely on a handful of the

client functions such as info, list and log. Furthermore, it uses a caching

wrapper around the default (console based) client to avoid retrieving the same

information from the server more than once. This implementation is called

CachedConsoleClient and its implementation is rather straightforward.

3. Data Analsis

Oncee the data from a Subversion repository can be accessed within Smalltalk,

the next step is to analyze this data. This is the responsibility of the model as

discussed below.

6

3.1. Model import

Shrew’s meta-model is tightly integrated with Moose [Ducasse et al., 2000], a

language independent reengineering environment developed at the university

of Bern, Switzerland. To analyze a Subversion repository, Moose provides a

menu entry “Import from Subversion repository into new model” that prompts

the user for the URL of the repository to analyze and then imports the data.

Behind the scenes, Moose delegates the responsibility of creating the meta-

model to ProjectBuilder which defines four public methods: buildProject:from:to:,
updateProject:to:, buildProject: and updateProject:. The latter two are conve-

nience methods which build all possible revisions or update to the newest

revision respectively. The ability to provide a range of revisions allows the user

to analyze only a subset of an entire Subversion repository.

The build methods expect a string or a URL pointing to the repository location

and return an instance of ProjectHistory that is the base of the meta-model (see

Figure 2 on the following page). To later update the project to a newer revision,

the instance is simply passed to updateProject:.

The functionality behind ProjectBuilder is complex and will not be discussed

here. The responsibility is separated within small methods however, which

allow for easy maintainability.

3.2. Meta-model Design

The design of the meta-model builds on top of Hismo [Gı̂rba, 2005], an ap-

proach that models history as a first class entity. A history is an ordered set of

versions where history and version are generic concepts that can be applied to

a file or a directory for example. This scheme is shown in Figure 2 on the next

page.

Every file and every directory will have a multitude of versions throughout the

development of a software project. Collectively, the versions constitute the

history of the respective file or directory.

Simultaneously, the entire Subversion repository has a history which is made

7

1 1..*

1 1..*

1 1..*

1 1

1 1

1

1.*

*

*
11

*

*

11

1
*

Author

ProjectVersionProjectHistory

DirectorySnapshotDirectoryVersionDirectoryHistory

FileSnapshotFileVersionFileHistory

Figure 2: meta-model UML

up by the versions of the repository. These entities are named ProjectHistory
and ProjectVersion respectively. In Subversion, a new version is created every

time a user commits to the repository. The revision number is incremented

and a possible commit message is attached to that version, rather than to the

modified files and directories.

Now that we have entities for concepts such as a FileHistory and a ProjectVer-
sion we can map relationships between them. As mentioned above, Histories

consist of their respective Versions but there is also navigation between ver-

sions and between histories. Whenever a user commits to a repository, he or

she commits changes to files and directories that are part of this repository.

This means that a number of file and directory versions are correlated with a

specific project version. Parallel to this, the history of a repository will consist

of a number of file and directory histories.

One entity in Figure 2 is Author. Each Author encapsulates information about

a user that has at least once committed to the repository. An Author can be

understood as consisting both of a history and of a version simultaneously as

a user of Subversion repository does not have attributes that change over time

and is therefore modeled as a single entity.

Finally, the entities FileSnapshot and DirectorySnapshot simply encapsulate the

content of the respective file or directory and are used to delegate this responsi-

8

bility from the file and directory versions. A snapshot is associated with exactly

one version.

3.3. History Properties

An advantage of structuring the meta-model as presented above is that it facil-

itates the measurement of historic properties. Using measurements in historic

analysis is of particular use as we can quantify the changes within the history

without having to take a detailed look at each version.

Some examples of measurements are the age of a history – that is the number

of versions it contains – or the deviation of a property P over time. Such a

property P could be the number of lines of a file or the number of modified files

in a commit, i.e. in a project version.

A more complex example of a measurement is the concept of “code ownership”

by Mauricio Seeberger [Seeberger, 2006]. He suggests that a trivial approach

would be to retrieve all versions of a file and applying a diff algorithm to deter-

mining which lines were last changed by which author and thus determining

the percentile code ownership of each author for that particular file. Seeberger

correctly points out that this solution is not feasible for large histories or large

files and suggests an approximative approach. He uses CVS logs that contain

the number of lines a particular author modified during each commit and he

assumes that the changes are evenly distributed over a file. He then defines

the code ownership for an author α of a file version fn as follows, where sfn is

the size of file f in version n, αfn is the author that committed the change and

lfn is the number of lines he or she added.

ownα
f0

:=

{
1, α = αf0

0, else

ownα
fn

:= ownα
fn−1

·
sfn − lfn

sfn

+

{
lfn
sfn

, α = αfn

0, else

Although a very efficient way of measuring code ownership, the implementation

9

of this method fails in she current version of Shrew because Subversion does

not provide information about the number of line changes in its log. If, as we

had previously discussed, the implementation of the client did not rely on the

console client but called the Subversion API directly, this information could be

easily obtained and such a measurement would be feasible.

As of the moment, Shrew is therefore limited in its measurement possibilities

due to the restrictions imposed by the client implementation.

3.4. Further Research

In comparison to version control systems such as CVS, Subversion has the

great advantage that it tracks information about files and directories such as

copies, moves and deletes. This means that if a file is moved or renamed, it

remains part of the same history. Subversion therefore does not implement

separate functionality for tagging and branching as one is accustomed from

CVS. Instead, a user simply copies the directory tree to a new location. If it

remains unchanged it can be interpreted as a tag and if a lot of development

work occurs on it later, the copy was probably intended to be a branch from

the original.

Now the meta-model as implemented and described in section 3.2 does not

currently allow for such copies and moves to be modeled properly. Instead, if

a file is copied or renamed a new history is created and no information about

the relationship to the old history is stored.

This calls for an extension of our current meta-model which should not, how-

ever, break the current meta-model. Rather, the current meta-model should

be able to coexist as a degraded interpretation of this extended meta-model.

Our proposed solution is to implement relationships between the existing his-

tory entities. This idea is displayed in Figure 3 on the next page. In the

diagram, the small squares represent the versions and the surrounding rect-

angles the history of a file. Shaded squares indicate that the file was modified

in that version. The numbers at the bottom correspond to the revision of the

repository and therefore to a particular project version.

10

1 2 3 4 5 6 7 8 9 10 11

A‘

A

B

Figure 3: Rename allowing meta-model

The diagram displays three files A, B and A′. File A′ was created in revision 7

and is a copy of file A as it was during revision 4. As file A′ remains unchanged

we can interpret that it was meant as a tag of file A during revision 4. File B

was deleted in revision 6 and later resurrected in revision 8.

Now the edges displayed in the diagram are the proposed extension to the

meta-model. They represent what we call a history relationship and encapsu-

late a reference to the version copied and the first version of the new history.

Histories are extended that they have an optional reference to such a history

relationship.

Using these history relationships now permits to model moves and copies as

discussed above. Optionally, all histories connected by history relationships

could be collected within a co-history entity for analysis.

4. Presentation

The uppermost layer of Shrew is the presentation layer. It has the responsibil-

ity of using the data as provided by the data analysis layer and displaying it in

a manner that is accessible to the end user.

In Shrew, the presentation layer is twofold. First of all, the Moose reengineering

11

Figure 4: Shrew web frontend

environment provides easy access to all information within the meta-model.

The structure can be navigated and various visual analysis can be performed

with tools such as Mondrian [Meyer, 2006].

Shrew provides a web based interface that is built on top of the Seaside ap-

plication framework [Seaside, 2007] which is considered the main interface to

Shrew. A screenshot of this interface in action can be seen in figure 4.

Shrews web interface currently supports four different types of views:

Project details shows information on the entire project, that is the ProjectHis-
tory it is associated with. This can include such information as the most

active authors, the last recent changes and the age of the project.

Changelog shows detailed information on a particular version of the project.

12

It provides navigation to the author that committed the change, to the

files modified displays the commit message if the author specified any.

Author details displays measurements and information on the history entity

Author. This currently includes the number of versions by the author and

a list of recent changes. It could be extended to include a ranking of the

ownership of the files in the newest version and a possibly collaboration

metrics with other authors.

Browsing allows the user of the web interface to navigate through the files

and folders of a particular version in a tree like manner. It also provides

navigation to reach a previous or later version of a particular file and is

able to display file contents and other detailed information.

With these views, Shrew allows the user to navigate efficiently through the his-

tory entities of the meta-model but retains an approach that resembles strongly

that of systems such as ViewVC and others.

5. Conclusion

Shrew has proven itself successful at providing a new approach to version

control system analysis. Nonetheless, there are three areas which hinder the

current implementation of Shrew to become successful in productive use:

1. The Subversion client is more than inefficient at the moment. Every time

the client retrieves information from a repository, a system process is ini-

tialized that connects to the remote location and retrieves the datum from

the server. The connection is then torn down and the process stopped,

requiring the client to repeat this process and causing quite an expensive

overhead.

The author of this thesis strongly suggests that a new implementation

would make use of the SWIG interface as provided by Subversion and

discussed in section 2.1. This would require writing a language definition

for SWIG but the final result would be more maintainable, more versatile

13

and less prone to changes in the Subversion protocol as say an implemen-

tation of the client using the WebDAV protocol. Furthermore, the SWIG

language definition could be used for creating entirely different interfaces

to other C or C++ based applications.

2. The data analysis currently does not make use of all the information avail-

able from a Subversion repository. In particular, the meta-model does not

understand file moves and copies and start a new history whenever a file

or a directory is renamed.

3. The visualization layer only provides limited information. This is probably

the smallest issue and quickly fixed. The only reason the web interface is

at a basic level at the moment is because the requirements where not fully

apparent. As soon as the users of Shrew request more features, these can

be easily added.

All in all, these momentary limitations are encouraging to continue the work

on Shrew where convincing enough to keep the word “prototype” in the title of

this text.

A. SeasideSCGComponents

As a byproduct of the development efforts of the Shrew web front-end a col-

lection of generic Seaside components was created that allow for quick page

construction with reusable elements.

These elements can be separated into two distinct groups: views and panes.

Views define the page layout of a website and come in one, two or three column

versions. They provide some convenience methods for displaying various infor-

mation such as a location (bread-crumb trail) and a title. Intended to be used

with these views are the panes that provide a generic page component. Panes

come with a title and a content. Specialized types of panes display tabular data

as the content or images.

Developers wishing to implement their own panes can write a new class that

inherits from Seaside.AbstractPane and override #renderContentOn:. The method

14

takes one argument which is the WARenderCanvas that Seaside uses to render

the HTML components.

If the pane only needs to display simple content, it may be more convenient to

use the predefined class Seaside.SimplePane as shown in listing 2.

exampleSimplePane

ˆ SimplePane new

title: ’Example SimplePane’;

contents: [:html |
html paragraph with: [

html strong: ’This is an example SimplePane!

’.

html text: ’It really is, really simple.’

].

]

Listing 2: SimplePane example

In the above listing, a block with one argument is passed to contents: which be-

haves in an equal manner as overriding renderContentsOn: as described above.

Alternatively, contents: also accepts a Seaside WAComponent or anything else

that Seaside can directly render such as a String.

A more complex predefined pane is the TabularPane. It provides a convenient

interface for displaying tabular data. A simple example is shown in listing 3.

exampleTabularPane

ˆ TabularPane new

parent: self;

title: ’Numbers’;

rows: #(1 2 3 4 5 6);

columns: (OrderedCollection new

add: (TableColumn new valueBlock: #yourself;

title: ’original’; clickBlock: [:number |
self inform: ’You clicked on ’, number

printString , ’!’]);

add: (TableColumn new valueBlock: #factorial;

title: ’factorial’);

add: (TableColumn new valueBlock: [:number |

15

number even ifTrue: [’even’] ifFalse: [’

odd’]]; title: ’even/odd’);

yourself

);

yourself

Listing 3: TabularPane example

The important methods in this example are rows: and columns:. The first takes

an ordered collection of the data that is supposed to be displayed. In the above

example we are going to display a table with some integers and some informa-

tion about them. The second method columns: takes an ordered collection of

TableColumn instances which define what information is displayed and the be-

havior of the table columns. The column title is defined with title:, the value for

each row is calculated using valueBlock: which can either be a symbol which

will be performed as a message on each row or a block with one argument.

Furthermore, clickBlock: receives a block that causes the value for that row to

be displayed as a link and calls the block when it is clicked.

There are two more methods that are not used in the example above. sortBlock:
overrides the default sorting mechanism for the particular column and format-
Block: alters the way the value is displayed. The interested reader should take

a look at how these are initialized in TableColum>>#initialize to understand

how to use them.

References

[Chora, 2007] Chora repository viewer, 2007. http://www.horde.org/chora/.

[CVSweb, 2007] CVSweb, a web interface for CVS repositories with

which you can browse a file hierarchy on your browser to view

each file’s revision history in a very handy manner., 2007.

http://www.freebsd.org/projects/cvsweb.html.

[darcs, 2007] darcs, a free, open source source code management system.,

2007. http://darcs.net/.

16

[Ducasse et al., 2000] Stéphane Ducasse, Michele Lanza, and Sander

Tichelaar. Moose: an Extensible Language-Independent Environment for

Reengineering Object-Oriented Systems. In Proceedings of CoSET ’00 (2nd
International Symposium on Constructing Software Engineering Tools), June

2000.

[FisheEye, 2007] FishEye, analyze, search, share and monitor CVS and Sub-

version repositories, 2007. http://www.cenqua.com/fisheye/.

[Gı̂rba, 2005] Tudor Gı̂rba. Modeling History to Understand Software Evolution.

PhD thesis, University of Berne, Berne, November 2005.

[git, 2007] Git, fast version control system, 2007. http://git.or.cz/.

[Meyer, 2006] Michael Meyer. Scripting interactive visualizations. Master’s

thesis, University of Bern, November 2006.

[Seaside, 2007] Seaside, developing sophisticated web applications in

Smalltalk, 2007. http://www.seaside.st.

[Seeberger, 2006] Mauricio Seeberger. How developers drive software evolu-

tion. Master’s thesis, University of Bern, January 2006.

[SWIG, 2007] SWIG, a software development tool that connects programs writ-

ten in C and C++ with a variety of high-level programming languages., 2007.

http://www.swig.org/.

[Trac, 2007] Trac, an enhanced wiki and issue tracking system for software

development projects., 2007. http://trac.edgewall.org/.

[Upright, 2007] Ian Upright. SWIG language bindings for smalltalk, 2007.

http://commonsmalltalk.wikispaces.com/SWIG.

[ViewVC, 2007] ViewVC, web-based version control repository browsing, 2007.

http://www.viewvc.org/.

17

	Introduction
	Repository Access
	Discussion of Possible Implementations
	A Brief Look at the Client

	Data Analsis
	Model import
	Meta-model Design
	History Properties
	Further Research

	Presentation
	Conclusion
	SeasideSCGComponents
	References

