
Finding and Mitigating Cross-Site
Scripting Attack Vectors

Testing different Web Application Security Scanners

Bachelor Thesis

Rafael Burkhalter
from

Rüegsau BE, Switzerland

Philosophisch-naturwissenschaftliche Fakultät
der Universität Bern

09. April 2021

Dr. Mohammad Ghafari
Prof. Dr. Oscar Nierstrasz

Software Composition Group

ii

Institut für Informatik
University of Bern, Switzerland

Abstract

The purpose of this thesis is to determine the efficacy and usability of
different popular security scanners for web applications. The main focus
lies on testing their ability to find cross-site scripting vulnerabilities, i.e.
vulnerabilities arising when user input isn’t properly sanitized. To analyze
the scanners various criteria are taken into account mainly completeness of
the findings, ease of use and installation effort. In a second part an overview
on how to analyze a scanner’s result and how Cross-Site Scripting attacks
can be mitigated is given.

i

Contents

1 Introduction to Cross-site Scripting 1
1.1 Persistent Cross-site Scripting . 2
1.2 Reflected Cross-site Scripting . 2
1.3 DOM-based Cross-site Scripting . 2
1.4 Impact of Cross-site Scripting . 2

1.4.1 Phishing . 3
1.4.2 Cookie Stealing . 3
1.4.3 Browser Exploitation . 3
1.4.4 Denial of Service Attack . 3
1.4.5 Remote Control on System . 4

1.5 Frequency of XSS occurrences . 4

2 Finding XSS Vulnerabilities manually 5
2.1 List of all Tested Websites . 5
2.2 Mechanism used to find Reflected XSS 6

3 Web Application Security Scanners 8
3.1 Introduction to Automated Scanners 8

3.1.1 Discovery . 9
3.1.2 Fuzzing . 9
3.1.3 Analyzing . 9
3.1.4 Authenticated Scan . 9

3.2 Criterion-Catalogue for judging the Scanners 9
3.2.1 Installation and Dependencies 10
3.2.2 Complexity of the Interface and usage 10
3.2.3 Soundness of the Application 10
3.2.4 Duration of the Analysis . 10
3.2.5 Complexity of interpreting the Results 11
3.2.6 Completeness of the Findings 11

3.3 Setup for the Tests . 11
3.4 Testing procedure . 11

ii

CONTENTS iii

4 Scanner Tests 13
4.1 Vega . 13

4.1.1 Description . 13
4.1.2 Installation and Dependencies 13
4.1.3 Complexity of the Interface and usage 14
4.1.4 Soundness of the Application 15
4.1.5 Duration of the Analysis . 15
4.1.6 Complexity of interpreting the Results 15
4.1.7 Completeness of the Findings 16
4.1.8 Result . 16

4.2 Skipfish . 16
4.2.1 Description . 16
4.2.2 Installation and Dependencies 17
4.2.3 Complexity of the Interface and usage 17
4.2.4 Soundness of the Application 17
4.2.5 Duration of the Analysis . 18
4.2.6 Complexity of interpreting the Results 18
4.2.7 Completeness of the Findings 20
4.2.8 Result . 21

4.3 Grabber . 21
4.3.1 Description . 21
4.3.2 Installation and Dependencies 21
4.3.3 Complexity of the Interface and usage 21
4.3.4 Problems with running the scan 22

4.4 Zed Attack Proxy . 22
4.4.1 Description . 22
4.4.2 Installation and Dependencies 23
4.4.3 Complexity of the Interface and usage 23
4.4.4 Soundness of the Application 24
4.4.5 Duration of the Analysis . 24
4.4.6 Complexity of interpreting the Results 25
4.4.7 Completeness of the Findings 26
4.4.8 Result . 27

4.5 Wapiti . 27
4.5.1 Description . 27
4.5.2 Installation and Dependencies 27
4.5.3 Complexity of the Interface and usage 27
4.5.4 Soundness of the Application 28
4.5.5 Duration of the Analysis . 28
4.5.6 Complexity of interpreting the Results 28

CONTENTS iv

4.5.7 Completeness of the Findings 30
4.5.8 Result . 30

4.6 W3af . 31
4.6.1 Description . 31
4.6.2 Problem with the Installation 31

4.7 Wfuzz . 31
4.7.1 Description . 31
4.7.2 Installation and Dependencies 32
4.7.3 Complexity of the Interface and usage 32
4.7.4 Soundness of the Application 32
4.7.5 Duration of the Analysis . 32
4.7.6 Complexity of interpreting the Results 32
4.7.7 Completeness of the Findings 33
4.7.8 Result . 33

4.8 Grendel-Scan . 34
4.8.1 Description . 34
4.8.2 Problem with the Installation 34

4.9 Arachni . 34
4.9.1 Description . 34
4.9.2 Installation and Dependencies 34
4.9.3 Complexity of the Interface and usage 35
4.9.4 Soundness of the Application 35
4.9.5 Duration of the Analysis . 35
4.9.6 Complexity of interpreting the Results 35
4.9.7 Completeness of the Findings 36
4.9.8 Result . 37

4.10 GoLismero . 37
4.10.1 Description . 37
4.10.2 Installation and Dependencies 37
4.10.3 Complexity of the Interface and usage 37
4.10.4 Problems with running . 37

4.11 Nikto/Wikto . 38
4.11.1 Description . 38
4.11.2 Installation and Dependencies 38
4.11.3 Complexity of the Interface and usage 38
4.11.4 Soundness of the Application 38
4.11.5 Duration of the Analysis . 39
4.11.6 Complexity of interpreting the Results 39
4.11.7 Completeness of the Findings 39
4.11.8 Result . 39

CONTENTS v

4.12 Scanners out of scope . 40
4.13 Comparison . 40

4.13.1 Installation and Usability . 40
4.13.2 Duration and Soundness . 41
4.13.3 Findings and Results . 42
4.13.4 Conclusion . 42

5 Analysis and Mitigation of found Flaws 44
5.1 Analyzing the results of a Web Crawler 44

5.1.1 Analyzing the Request . 44
5.1.2 Analyzing the Response . 45

5.2 Mitigation tactics . 46
5.2.1 Input Validation and Sanitization 46
5.2.2 Output Encoding . 46
5.2.3 Mitigating through CSP . 47

6 Conclusion and Future Work 48

7 Anleitung zu wissenschaftlichen Arbeiten 49

1
Introduction to Cross-site Scripting

To create dynamic web pages the web-browser Netscape Navigator introduced the
scripting language LiveScript (now ECMAScript, commonly known as JavaScript)
which could execute client-side scripts and therefore give developers the possibility to
create more interactive elements on formerly static pages [33]. With the introduction of
JavaScript also came the security flaw now known as Cross-site Scripting (XSS), since
the scripts used by Web pages are marked as such by using the HTML-tags ‘<script>’
and ‘</script>’ a malefactor can insert malicious code into the web page that is shown to
a user. This works by exploiting different input field, for example a search bar, comments
or form fields. If the user supplied input is returned and embedded somewhere on the
page the inserted code can be executed Due to the wide spectrum of functions JavaScript
can perform, this inserted code can have major impacts, from stealing the credentials
of users, who think they’re on a trusted website, to automatically installing malware.
An example is the infamous Samy Worm, the first mayor XSS Worm, which, in 2005,
shut down the popular social network Myspace and infected millions of users profiles
in a matter of hours [40]. Note that XSS attacks are also possible with other scripting
languages such as PHP. This thesis will focus on JavaScript XSS. However, the problems
and mitigation tactics are similar.

To understand XSS, it is important to know what different kinds of XSS exist and
how to differentiate them. There are three main types of XSS attack:

1

CHAPTER 1. INTRODUCTION TO CROSS-SITE SCRIPTING 2

1.1 Persistent Cross-site Scripting
Persistent, or stored, Cross-site Scripting is a very devastating attack, in which data
from user input fields is somehow stored on a website’s server and shown to other users.
Such data comes, for example, from a comment section of a website. If those inputs
aren’t properly sanitized before being sent back to other user’s browsers they might be
vulnerable because an attacker might inject a script into those fields. This script would
then be executed on the computer of every user who would normally see the reflected
input data. One such example is the aforementioned Samy Worm which lived in blog
posts of users and executed a script that published a new copy of this post on the blog of
every user who saw it [36].

1.2 Reflected Cross-site Scripting
Reflected, or non-persistent, Cross-site Scripting is the most common type of XSS.
Unlike in persistent XSS a user on the website cannot get directly infected, rather the
attacker has to send a URL which contains the malicious script in its payload. Only
users who click on this link will see the page, now with the added code. Such attacks are
usually used for phishing, cookie stealing and Account Hijacking, since the user, as well
as the browser think they are communicating with a trusted website. An attacker with a
clever script can dupe the victim into sending them confidential information, by posing
as the normal login page of the website but sending the inserted data back to them self
instead [36].

1.3 DOM-based Cross-site Scripting
DOM-based Cross-site Scripting is possible if a user-controlled source is brought to a sink,
which evaluates and executes the input directly on the client-side, through JavaScript’s
eval() function for example. Most commonly the source for such attacks is, similar to the
reflected XSS, the URL, which an attacker can tweak in such a way that dangerous scripts
are executed on the victim’s computer. The main difference between DOM-based and
reflected XSS is that the vulnerability lies in code that is directly executed in a victim’s
browser, rather than embedded into the HTML-code of a website [26].

1.4 Impact of Cross-site Scripting
The following explanations are, if not stated otherwise, based on Chapters 1 & 3 of the
book CROSS-SITE SCRIPTING by B.B. Gupta and Pooja Chaudhary [41].

CHAPTER 1. INTRODUCTION TO CROSS-SITE SCRIPTING 3

To understand how dangerous an XSS vulnerability really is, it is important to know
what possibilities an attacker has to exploit a detected weakness in a website. The end
goal of each of these attacks is either gaining control over a victim’s system by acquiring
their confidential information or hijacking the victim’s account. Here are five of the most
hazardous security issues that arise from XSS vulnerabilities, either because they are
very prevalent, since they are easy to exploit, or because their effects are severe.

1.4.1 Phishing
Phishing is a common tactic used to get a user’s confidential information. Usually an
attacker sets up an imitation of a trusted website where a user has to fill out some form,
e.g. their login data. The input is then sent to the attacker instead of, as the user thinks,
the website. With a reflected XSS vulnerability a URL can be created, sending the user
to the page with the nefarious form. Since the user is still on the same page, they are
more likely to be trusting and might give up his data more easily [41].

1.4.2 Cookie Stealing
Cookie Stealing is the practice of acquiring the cookies a browser has saved of a certain
website and sending them to the attacker. To get these cookies through XSS an attacker
only has to send the cookies of the website to them self instead of the usual server.
This can be especially dangerous for sites that use cookies for authentication. A skilled
attacker can use the stolen cookies to impersonate the victim [41].

1.4.3 Browser Exploitation
Browser Exploitation is another harmful intrusion into a system’s autonomy. When an
attacker successfully exploits a browser, they can control certain parts of the browser and
might install malware onto it or redirect certain queries to harmful websites. If an XSS
vulnerability is found, it’s quite easy to automatically trigger the download and install
malevolent software via JavaScript [45].

1.4.4 Denial of Service Attack
The goal of Denial of Service (DoS) attacks is to send so many requests to a website’s
server that it cannot keep up and the site can’t function normally anymore. This can
cause great damage, as users cannot use the site’s services anymore. In XSS such an
attack can be executed through a persistent XSS vulnerability, where the attacker puts a
certain request for the server, which will be executed by each user visiting the site. With
an expensive (in terms of computing effort) enough request and enough users visiting the
page, the site could crash [43].

CHAPTER 1. INTRODUCTION TO CROSS-SITE SCRIPTING 4

1.4.5 Remote Control on System
Similar to browser exploitation but much more devastating is if an attacker can somehow
infect not only the browser but even the victim’s whole system. For this to happen the at-
tacker would have to construct a page which would download and install a remote-control
software and afterwards execute it. Usually there are checks and safety mechanisms in
a browser, as well as a computers operating system blocking such attacks’ making this
kind of attack very unlikely to succeed, but with ever advancing malware technology it’s
still a possibility [41].

1.5 Frequency of XSS occurrences
Since XSS is an older type of weakness one would think most websites would be
protected against it. However, the National Vulnerability Database (NVD) that provides
a list of Common Vulnerabilities and Exposures (CVEs) , provided by the National
Institute of Standards and Technology (NIST) of the United States, claims that 13.49%
of all vulnerabilities found in 2019 were XSS based [51].

The OWASP Foundation, which tries to improve security throughout the internet
actually puts Cross-site Scripting as the 7th highest in their Top Ten List of Application
Security Risks [52].

So many occurrences, combined with the devastating effects XSS can have on a
website and its users, it is indispensable to accurately identify those weaknesses.

2
Finding XSS Vulnerabilities manually

To find some websites against which the automated web crawlers could be tested, we first
had to identify pages where XSS vulnerabilities were present. Our search was focused
on reflected XSS weaknesses, as they are quick to check and would usually only leave a
small trace in a server’s Log-file somewhere. Checking for stored XSS would require the
modification of the database or other stored files of each website in some form, which
might be seen as a serious attack attempt where the webmaster of the site most likely
wouldn’t be very forgiving.

2.1 List of all Tested Websites
The websites we tested were of Swiss origin. First, we tested some rather old websites,
which were known to not have been updated for some time. Afterwards, we checked
some of the bigger retail websites and their subsidiaries. The tests included the following
ten websites:

• https://etoa.ch/

Etoa, short for Escape to Andromeda, is an older multiplayer online game where a
user has to create an account to play.

• https://playit.ch/

Playit is a game hosting platform where smaller games can be played for free.

5

https://etoa.ch/
https://playit.ch/

CHAPTER 2. FINDING XSS VULNERABILITIES MANUALLY 6

• https://www.staemme.ch

Stämme is a multiplayer online game, similar to Etoa. It is still today one of the
most popular swiss online games.

• https://www.coop.ch/de/

Coop is one of the biggest retailers in Switzerland.

• https://www.orellfuessli.ch/

Orellfüssli is the biggest book distributor in Switzerland.

• https://www.migros.ch/

Migros is the biggest retailer in Switzerland.

• https://www.interdiscount.ch/de

Interdiscount is a subsidiary of Coop, focusing on the distribution of consumer
electronics

• https://www.sportxx.ch/de

A subsidiary of Migros, which sells mostly sporting goods.

• https://www.manor.ch/

Manor is a chain of general purpose stores.

• https://www.ricardo.ch/

Ricardo is a bidding platform where users can buy and sell items.

2.2 Mechanism used to find Reflected XSS
The first thing on each website we checked was the presence of a full-text search field.
Afterwards, we looked for input fields which would generate a page-modifying response
like login fields or specific search fields. When we found such a field, the first thing
tested was, if the users’ input would be embedded in the HTML of the newly generated
page. If this was the case, we used a few of the designated attack scripts to check if any
flaw exists.

The scripts we used are all found in some form on OWASPs XSS Cheat Sheet. They
all produce, if successful, a popup message containing the Message ‘Rafi’. To accurately
find vulnerabilities it is important to pause all forms of Ad Blockers in the browser, as
they tend to suppress unexpected pop-up windows.

The basic code used is the following:

https://www.staemme.ch
https://www.coop.ch/de/
https://www.orellfuessli.ch/
https://www.migros.ch/
https://www.interdiscount.ch/de
https://www.sportxx.ch/de
https://www.manor.ch/
https://www.ricardo.ch/

CHAPTER 2. FINDING XSS VULNERABILITIES MANUALLY 7

<script>alert(‘Rafi’)</script>

The ‘script’ tag indicates to a browser that the text inside should be interpreted as
client-side JavaScript code. If this code is reflected back into the page’s HTML-code in
an unmodified manner by the website, the browser will execute the code between the
two tags.

With this script we found two separate vulnerable pages. The first is on playit.ch with
an input field called ‘suchbegriff’ in the search bar and the second is Etoa’s help page
(help.etoa.ch) where the flaw appears within a input field called ‘faq’.

This code of course will only be reflected by the most out of date or careless of
websites. Usually there is some form of XSS prevention in place. The easiest of these
defense techniques is straightforward: replacing special characters like angle brackets in
the query before reflecting it back to the page.

The second very rudimentary prevention form is putting the query in a so called safe
space, i.e. a predefined context where when displaying text, the code won’t be parsed as
HTML but will only be seen as an instance of plain text.

The OWASP Cheat Sheet [49] has several suggestions on how to circumvent those
two methods. For the first one there is an easy way by using the encoding of the page. If
the code is sent with the encoding of the special characters instead of the character itself
it might not be detected and when sent back to the browser would still be interpreted
as the special character. For example, in a HTML-encoded text the strings ‘<’ and
‘>’ are the ISO-8859-1 encoding of the angle brackets ‘<’ and ‘>’ respectively [27].
For a website which might filter out those two characters the script could be modified as
follows:

<script> alert(‘Rafi’) </script>

This would allow the code to get through a filter undetected, if this filter doesn’t check
for any characters like ‘&’ or ‘#’. With this code an XSS vulnerability was found on the
main page of Coop in the search bar within an input field called ‘text’.

Other suggested encodings for ‘<’ like 0x3c (UTF-8), < (XML) were tested but
those yielded no additional vulnerable webpages.

Other scripts on the OWASP Cheat Sheet [49] try to escape the safe input fields as
explained in the second prevention form. They usually try to achieve this goal by putting
string escape sequences ahead of the script. Those sequences usually contain one or
more of the characters ’, ”, > or -. Other variants try to close the safe HTML tags as can
be seen in the code:

/*--></title></style></textarea></script><script>alert(‘Rafi’)</script>

It tries to close one or more tags and then start its own script. A weakness was found
with this method in an online bookstore’s search field (orellfuessli.ch). This was patched
before it could be used for any tests.

3
Web Application Security Scanners

To find vulnerabilities more easily, different kinds of Web Application Security Scan-
ners have been introduced to find those attack vectors automatically. For this thesis
we analyzed several of these Scanners. The list of those scanners is comprised of
OWASPs list of vulnerability scanners (https://owasp.org/www-community/
Vulnerability_Scanning_Tools) where all scanners that were listed as open-
source were taken. The list is complemented with those on a blogpost from 2020 by
Pavitra Shandkdhar, a security researcher at the InfoSec Institute specialized in web
penetration testing [56]

3.1 Introduction to Automated Scanners
This introduction is based on the information on the blog “Breaking Down Web Appli-
cation Scanning: Know-How and Know-Why” [59] and information gathered through
reading the documentation of the different scanners tested. A Web Application Security
Scanner is a program that performs dynamic Black Box Testing for different types of
vulnerabilities on a specified site. Those tests are programming language independent
since all websites, in the end, are displayed in a similar manner for browsers to interpret.
A Web Application Security Scanner usually analyses web sites in three steps, which can
also be done concurrently.

8

https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools

CHAPTER 3. WEB APPLICATION SECURITY SCANNERS 9

3.1.1 Discovery
The first step is called the discovery phase. In this step, the part of the scanner called a
spider tries to find as many URL paths as possible within the defined scope. The scope
can be either a single page, a folder, the subdomain or the whole domain.

The spider needs a URL as the starting point for a queue of all pages to check. It then
recursively analyzes the response body it recieves when requesting the next URL in the
queue for new hyper references such as links. If these are within the scope and have not
already been discovered it adds them to the queue. It does this for as long as it has URLs
in the queue.

Sometimes a scanner also has a dictionary of common URL paths or paths it learned
from previous crawls. If present the scanner will check for paths in its dictionary and
add found pages to the queue, before running the normal crawl.

3.1.2 Fuzzing
The second phase is called fuzzing. On each page the Fuzzer tries to inject semi-random
or deliberately sinister code into the request to find a flaw. For this the scanner might
have a list of different payloads it will try to inject into found input fields.

3.1.3 Analyzing
After the Fuzzer transmits a malicious request the scanner analyzes the response to look
for the flaw which it intended to find. If a vulnerability is found it is reported to the user.

For example to find a XSS vulnerability a scanner might inject a payload such as
>’>>””><tag> during the fuzzing phase. Then it checks the response body for the tags
<tag> and </tag>. If they both exist it indicates, that <tag> was parsed as a HTML
tag and therefore it has to be closed before any outer tag is closed.

3.1.4 Authenticated Scan
In some applications a user can also define login data with which the Web Crawler can
perform those aforementioned steps as an authenticated user as well [59].

3.2 Criterion-Catalogue for judging the Scanners
To analyze the different scanners we take several criteria into consideration. They aren’t
all weighted equally in the conclusion, since some are more important than others. For
each criterion a short explanation is given and a judgment of its importance. The list is
sorted by the chronological order the criteria would be tested on a scanner.

CHAPTER 3. WEB APPLICATION SECURITY SCANNERS 10

3.2.1 Installation and Dependencies
The first criterion has to do with the installation of the application. If the installation
process is too complicated, most users won’t bother trying the program. Because well
over 60% of computers run on the Windows 10 operating system [60] it was tried,
whenever possible, to install the applications on this system. If not directly possible a
Windows Subsystem for Linux (WSL) was used.

We judge this criteria by looking at how many steps a user has to manually perform
to install the scanner and how much time the whole process needs.

3.2.2 Complexity of the Interface and usage
Another very important aspect in terms of popularity is a comprehensible interface. The
interface might be a command line or a graphical user interface. If reading several pages
of documentation is required before being able to do even the most basic tasks this will be
off-putting for users. Not being able to check the progress or the state of the application
it might also be a deterrent for using it.

For GUI scanner we check how many steps are necessary before a crawl with our
predefined configurations can be performed. For scanners with a command line interface
we compare how many arguments a user has to remember. Secondly we look at the
documentation provided and see if it is detailed, well-structured and understandable for a
new user.

3.2.3 Soundness of the Application
One of the most important criteria of any application is its soundness. If a regular user
encounters a lot of bugs and crashes or if it uses up too much of a systems resources such
as CPU or RAM, users tend to become frustrated very quickly.

We check how regularly the scanner freezes or crashes. And for all 10 websites, how
often a scan had to be restarted because the scanner had a problem during the scan.

3.2.4 Duration of the Analysis
The time difference between the start of the request to analyze and the finalization of the
end result is also an important part of an analysis. It might become less relevant the more
responsive the scanner is about what it already found and what it still has to do, but even
then a user’s patience is limited.

We try to measure the time elapsed for each scan.

CHAPTER 3. WEB APPLICATION SECURITY SCANNERS 11

3.2.5 Complexity of interpreting the Results
Even the most reliable scanner won’t be used often if the results it produces cannot be
interpreted by the person using it. Therefore it is important that the findings are easily
interpreted and as detailed as needed for an accessible user analysis.

To check how detailed the results are we look at the following aspects:

• a sensible grouping of the vulnerabilities

• the exact page where the vulnerability is found

• the request sent to find the vulnerability

• the proof in the response body where the vulnerability is found

3.2.6 Completeness of the Findings
The most important point of course for any scanner is, that the findings are as com-
plete as possible. If a scanner does not produce reliable results and overlooks crucial
vulnerabilities it is not a good scanner.

We check if the scanner finds all XSS vulnerabilities we discovered through either
manually looking for them or when another scanner found them.

3.3 Setup for the Tests
The first 9 tests were run on a Lenovo Thinkpad with a x64 Intel Core i7-7600 CPU: 2.80
GHZ with 20 GB RAM on a Windows Pro 10 Version 1909 64-bit. When specified the
Windows Subsystem for Linux with Ubuntu Version 16.04 was used. For the tests on
GoLismero, Nikto/Wikto and Ride a Windows 10 virtual machine with 64GB RAM and
64 virtual cores was used.

3.4 Testing procedure
We attempted to download and install each Web Application Security Scanner of the
list. For the installation process the instructions given by the download page were
followed. If the page mentions that the scanner should be installed on a Linux system, we
attempted the process on the WSL. After a successful installation we ran the application
and configured it to only check for XSS vulnerabilities if possible. The next step was
to scan the ten websites where the manual checks had been done. Whenever possible
we limited the depth of a scan 8 nodes starting from the main pages of each website. If
any additional vulnerabilities were found on one of the pages by a scanner we checked

CHAPTER 3. WEB APPLICATION SECURITY SCANNERS 12

manually verify that the vulnerability was not a false positive, meaning a flaw is showing
up in the results which is already mitigated in some way.

4
Scanner Tests

4.1 Vega

4.1.1 Description
Vega by Subgraph is a Java-based application that should therefore be very easy to install
and run since it runs on the JVM and has a high transportability between operating
systems. Vega can, according to their website, run in two modes, either as an automated
scanner, which is the mode it was tested in, or as an intercepting page-factory with which
more specific and lifelike tests can be performed, because in this mode Vega can intercept
and edit requests and responses between the server and browser during a users normal
usage of the website [31].

4.1.2 Installation and Dependencies
As a Java application its only dependency is a JRE which was already installed on our
computer. For the download (https://subgraph.com/vega/download) there
are different options for each operating system it runs on. We installed the tool with
the wizard from the EXE file. The download page does have a quick paragraph about
troubleshooting but we didn’t encounter any problems installing and running Vega. The
Version we used was: 1.0 Build id: devel-130.

13

https://subgraph.com/vega/download

CHAPTER 4. SCANNER TESTS 14

4.1.3 Complexity of the Interface and usage
The user interface is quite simple. On the main window it has the website view showing
all the websites that have been scanned before in alphabetical order. Right underneath is
a panel that shows all scans including how many vulnerabilities were found per scan. On
the right hand side is a big scan info panel which shows details of a selected scan, and
beneath that is the authentication information used by this scan. The application has many
icon buttons which might not be that intuitive, but thanks to a detailed documentation on
the subgraph website it is no problem getting a grip on how to use Vega.

To start a scan, the application has a helpful scan wizard which guides the user
through modifying the scan settings. It’s possible to choose several websites per scan.
The user can choose which attack vectors to test for. To test for XSS only the user can
deselect all attack modules except XSS injection, which will make the scan a lot faster.
A user could also select authentication data or cookies for the website which should be
used if possible, but wasn’t used for this test.

Figure 4.1: Vega’s interface

CHAPTER 4. SCANNER TESTS 15

4.1.4 Soundness of the Application
Unfortunately Vega has one major flaw in its UX: it is pretty slow and sometimes non-
responsive. Quite often a simple click, for example by choosing a target scope of websites
instead of just one to scan, it loads all possible websites which is really time consuming
even when the number of sites stored isn’t that high. There are more then a few buttons
which can be clicked that will freeze the application for several seconds or even minutes.
It also still has some minor bugs such as a lock file exception popping up when starting
Vega.

4.1.5 Duration of the Analysis
If the analysis scope is limited to XSS only it is reasonably fast. As it doesn’t have a
built-in clock which would measure the exact time needed and didn’t specify when the
scan ended, run times had to be approximated. The application doesn’t save the number
of requests made per website, therefore it’s hard to find out how it ranks in this aspect
against others.

4.1.6 Complexity of interpreting the Results
The results are shown as a dropdown list under each website scanned. For each website
is listed how many vulnerabilities have been found. These are then categorized by threat
level in high, medium and low. Here Cross-Site Scripting is always in the high category.
For each found vulnerability, it shows the path to the page it was found on, and when such
a path is clicked on, it reveals the details of which attack vector and HTTP request were
used, i.e. with which payload the attack succeeded. Underneath is a brief description and
possible impacts which such a vulnerability in general can have on a website. This is not
specific information but a general text for each vulnerability type.

CHAPTER 4. SCANNER TESTS 16

Figure 4.2: Results of a scan in the Vega application

4.1.7 Completeness of the Findings
Of the three websites with known flaws it only found the two plain text vulnerabilities
(etoa.ch and playit.ch). It did not find the more complex one on the Coop website. It
did find a second XSS vulnerability on etoa.ch on a GET request. The result shows the
following request: GET /?page=features’%20-->”>’>’”, First is the CRUD keyword of
the method used, here GET. Then as it is a GET request it shows the input field page.

4.1.8 Result
All in all the Vega scanner has a lot of potential. Its UI is clean and easy to use. All
functionalities are together in one application and the documentation is quite detailed.Its
response time for very basic user operations and its failure to find all basic XSS vulnera-
bilities however are troubling.

4.2 Skipfish

4.2.1 Description
Skipfish by Google is a scanner which advertises itself with three key advantages. First it
is written in C with conserving CPU power and memory footprint in mind. Therefore
it is described to have a very high performance. As a second plus skipfish claims to be
very reliable and self-learning. Lastly due to a modifiable dictionary and other subtle
design features it should have fast and well-designed security checks [64].

CHAPTER 4. SCANNER TESTS 17

4.2.2 Installation and Dependencies
Even though it first seemed as if skipfish could be run on the Windows native CLI and
some dependencies were already installed on our computer, we had to move to the WSL
as the system didn’t recognize the skipfish commands used. For WSL however it was
simple to install.

4.2.3 Complexity of the Interface and usage
As skipfish is controlled over the command line it is not as easy for a new user to grasp
all its functionalities. Thankfully the README file and Kali-Tools keyword outline
(https://tools.kali.org/web-applications/skipfish) did explain a
lot of the different parameters which can be set for running the scan. Similar to Vega
we can set authentication data and other HTTP cookies. There are other more subtle
functions like limiting the paths skipfish should crawl, or predefining trusted third-party
domains to limit false positives. It can also check either only one URL and its subsequent
paths or it can be fed a text file with several URLs it then scans in sequence.

A more confusing part of the scan is the dictionary which determines which kind of
URL paths are tested in a brute force manner. This means after skipfish does an orderly
web crawl it checks out all URL paths which are in its dictionary. The dictionary has a list
of common paths, file names and extensions. The scanner also has the ability to modify
this dictionary with all the newly learned path extensions during the web crawl. There
are three basic dictionaries: minimal, medium and complete coverage. The differences
however are rather marginal. They all have between 2172 and 2221 keywords. Here it
depends a lot more which brute-force method is used. It can be either no brute-force,
only lightweight, which means the scanner will only test limited extensions, and normal
dictionary brute force in which it will try most file name/extension pair permutations in
the given dictionary. The minimal dictionary already provided by skipfish was used in
these tests. As without any dictionary it didn’t find any XSS issues. The depth of the
crawl was restricted to further speed up the scan, otherwise the scan on playit.ch at least
would go on for well over 24 hours.

4.2.4 Soundness of the Application
Since skipfish is implemented in C it runs very smoothly and uses only minimal CPU
power and RAM. Larger websites with many pages produced by a page-factory that are
essentially the same, like the game pages provided by playit.ch, dupe the brute force
algorithm to test all permutations on each of these pages, which takes an enormous
amount of time without gaining any new insight.

Some websites couldn’t be scanned, no matter what we did. All tests started normally
and the scanner could retrieve some URLs but then after a few seconds it declared itself to

https://tools.kali.org/web-applications/skipfish

CHAPTER 4. SCANNER TESTS 18

be finished. This could be due to the websites having a security element which prevents
too many requests per second from a single source to prevent Denial of Service attacks.

4.2.5 Duration of the Analysis
The request rate is pretty fast but since it’s not possible to specify the attack vectors for
which the site should be tested, all scans take quite a long time, but due to the verbose
progress screen it can be checked immediately not only if the application is still working,
but also how many requests have already been made, how many it makes per second,
how many nodes still haven’t been crawled and if vulnerabilities have been found. On a
second page it even shows some of the requests that have been made in the last second.
The longer a scan was running the fewer requests per second were made.

4.2.6 Complexity of interpreting the Results
For each scan the application writes its findings into a HTML file in the specified
directory. This file shows the crawled websites and which underlying issues were found.
It then shows some documents it could access and might be interesting like error-logs,
XML files and so on. Afterwards there is an overview over all vulnerabilities ordered
by their severity (High impact, medium, low, warning and info). XSS vulnerabilities
are categorized as medium impact, it first shows the whole URL with which the attack
was successful. With the ‘show trace’ link the request and the response for each of the
vulnerabilities can be examined. It presumes a bit more knowledge than Vega but is still
very easy to read and quite understandable.

CHAPTER 4. SCANNER TESTS 19

Figure 4.3: All results of a skipfish scan

CHAPTER 4. SCANNER TESTS 20

Figure 4.4: The results of a vulnerability expanded to see the details

4.2.7 Completeness of the Findings
While skipfish checks for many vulnerabilities and finds a lot of them, the only ones
that were examined are the XSS vulnerabilities it found. It did find attack vectors on
help.etoa.ch. It also found the same vulnerability on the same search field on six other
pages. It did not find the shortcoming on etoa.ch itself. And while it found a lot of
apparent problems on coop.ch and playit.ch, it did not find any XSS vulnerabilities. For
playit.ch this might be due to the cancellation of the scan after a day.

CHAPTER 4. SCANNER TESTS 21

4.2.8 Result
Even though skipfish might be more complicated to use than Vega it is definitely less
frustrating since it runs smoother but still wouldn’t run without flaws as it seemed to stop
scanning some of the websites prematurely. It also seems to not be designed to find a
lot of XSS issues. For a user who wants to check his website thoroughly for all kinds of
attack forms it is a good start. If someone only wants to check for XSS vulnerabilities it
might be a little too broad.

4.3 Grabber

4.3.1 Description
Grabber is a Python based web application crawler. It is written by Romain Gaucher, a
Software Security expert working for the Software Integrity Group in Paris. The program
is advertised to be highly modular, meaning it is possible to only test for certain kinds
of issues. The attack patterns are written in editable XML files, meaning they can be
modified and extended to better fit the user’s needs [39].

4.3.2 Installation and Dependencies
On the webpage there are three possible ways to download Grabber. The first is to start
it as a regular Python program, the second to start as an EXE and the third is with the
whole unpacked source code. we downloaded the first option as Python 2.7 was already
installed over WSL on our system. Two dependencies had to be installed via Python pip,
but then it could run.

4.3.3 Complexity of the Interface and usage
To configure the starting arguments such as the website to crawl, which attacks to test
and how deep the crawler should go, there are two possibilities: either the user modifies
a config XML file which then will load on runtime, or they can also set them in the
command line right next to the start command. For the attack vectors like XSS themselves
there are also different XML files which hold all codes that are tried in requests. This
makes it very easy to see what attacks are performed, as well as expand those attacks if
necessary. The XML config was used initially but then the direct way over command
line was also tried. The scan was set to only check for XSS vulnerabilities.

CHAPTER 4. SCANNER TESTS 22

4.3.4 Problems with running the scan
No scan finished successfully even trying several different websites. Some like etoa.ch
it couldn’t find, saying it wasn’t able to retrieve the URL. For others it started the scan
but then had an error when trying to retrieve a given URL, saying it contains illegal
characters. Of course it cannot be ruled out, that some mistake was made in the setup.
We only modified the start-configurations file, which was given in its base form. Neither
the depth (tested between 0 and 16 nodes) nor the website seemed to make a difference.
We didn’t alter the XSS configuration file as the fault which threw the exception couldn’t
be identified in there. After some time trying to tweak the configurations and websites
to crawl in a way that would work we decided to give up and move on since there most
likely is a bug in the tool.

As this version couldn’t finish a scan successfully we also tried the EXE but it didn’t
seem to work either.

Grabber didn’t write any results in its result folder, but the suspected reason is, that
the program first crawls the whole website and then scans each found page individually.
Since it already stopped during the crawl process there weren’t any results produced yet.

Even though the concept of Grabber is pretty great with different XML files as
configurations, it wasn’t able to run as intended. Therefore it can’t be judged if it does
hold up to the other applications on this list. The documentation also leaves a lot to be
desired, probably because the application is mostly intended to be used by its programmer,
rather than the general public.

4.4 Zed Attack Proxy

4.4.1 Description
The Zed Attack Proxy or ZAP is a web scanner provided by OWASP itself. It boasts itself
as the ‘world’s most widely used web app scanner’. The basic concept is very similar to
the Vega proxy scanner where it can intercept requests and responses, and modify them. It
is also written in Java, and has a comprehensive user interface. Its main advantage is that
the application is modularly built, which means a lot of functionality can be added through
add-ons which are developed by the OWASP community. Another main advantage is the
extensive documentation page on http://www.zaproxy.org/docs which has
introduction videos and a very detailed manual.

ZAP has three main ways to test a website’s security. The first is the automated scan
which was tested. The second way is a manual explorer with which a user can browse a
website manually, and ZAP intercepts and analyses all requests and responses, similar
to Vega. The third way is a so called ‘Heads Up Display (HUD)’. It tries to overlay
security information directly in the browser which could be used when a user tests other
functionalities as a simultaneous security test [29].

http://www.zaproxy.org/docs

CHAPTER 4. SCANNER TESTS 23

4.4.2 Installation and Dependencies
The only dependency listed is a JRE 8 or higher. Since our system already had JRE 10
installed only the EXE file had to be downloaded and installed via the installation wizard.
The version we tested was ZAP version 2.10.0. It started without any problems after the
installation.

4.4.3 Complexity of the Interface and usage
The user interface has a similar concept as Vega but is more customizable. It has a menu
bar with many different buttons and drop-down menus. There are also three panes. The
first on the left hand side is the context pane which shows all the pages crawled. The
second, on the right, is the scanning pane which handles the scans. There a user can
choose between the automated and manual scan. It’s also the pane in which a user can
modify requests and responses before they get to the server or browser respectively. The
third pane is in the lower half of the window. Through sub-menus it shows and controls
different aspects of the scans and their progress. Here options for a new crawl or active
scan can be set and all found vulnerabilities are shown via the ‘Alerts’ menu.

At first the whole interface seems a bit overwhelming with many different icon-
buttons and sub-menus. To understand ZAP quite a bit of documentation must be read.
Clicking through different dialogs and menus and reading their provided help pages
assists so the functionalities are understood. It doesn’t help that almost half of the
icon-buttons in the main menu-bar are layout related, a matter not really that important
for such a prominent placement. The application also has quite a few option dialogs for
different scans. Those helped to easily modify the crawl and scan to restrict them so they
would search mostly for XSS. ZAP is a bit different than the other applications so far as
it does a spider crawl with link discovery first in which the sites would only be checked
passively. This means it analyses all requests and responses sent to and from the web
application but does not change any of them. Since the passive scan does not include any
XSS scanning all tests were shut off that would be made there. This does not impact how
fast the crawler scans the web application since the two tasks run on different threads.
For each crawl an active scan can be performed which will try to attack the pages listed
in the crawl with the attack vectors predefined in a scan policy. To focus only on Cross
Site Scripting a new such scan policy was created. For each vector the user can choose a
threshold that defines the reporting of potential vulnerabilities from high to low, with low
threshold meaning every vulnerability found will be reported which also means more
false positive ones, and the ‘Strength’ over four different levels, low, medium, high and
insane where the highest level does the most requests in an attempt to break the system
[29]. The XSS attack forms are actually divided in reflected, DOM-based and persistent.
In the scan policy used all of them are defined with a low threshold and insane attack
to ensure none of the previously discovered targets would get left out. All other attacks

CHAPTER 4. SCANNER TESTS 24

were shut off for a better performance.

Figure 4.5: Start screen of the ZAP application

4.4.4 Soundness of the Application
ZAP usually runs smoothly, especially for smaller scopes. It does however have some
issues when doing a wide range scan on the websites with more pages. There the crawler
did first get slower and then froze completely. At this point the application didn’t respond
to any further inputs and had to be shut off by force. Since it then couldn’t save the
session state properly the crawl had to be restarted with a smaller scope.

One additional minor bug that was spotted with DOM based attacks is detailed in the
Speed of the Analysis, but as the application itself states, this function is still in Beta and
therefore is expected to have some flaws.

4.4.5 Duration of the Analysis
The scans were quite fast. ZAP discovered several thousand URLs per minute during the
discovery phase. It did however get significantly slower the longer it ran.

The active scan, where ZAP analyses webpages and tries to inject them with different
code snippets, had very different run times for the websites. It only mattered marginally
how many requests the scanner made. Far more time was needed for scanning the
HTTP-Responses. One major flaw the application has is with DOM-based XSS scanning.

CHAPTER 4. SCANNER TESTS 25

For the first scan (on etoa.ch) the active scan took about 2 minutes for 1513 requests
for persistent and reflected XSS attacks. It then somehow took 35 minutes for 12’000
requests in DOM based XSS attacks. This might be because DOM based scanning is still
in Beta phase and might still have some flaws. Luckily those requests could be skipped
and the scanner ran through the rest without any problems.

After this scan the ‘Strength’ of DOM based attacks was reduced to ‘Low’ in an
attempt to reduce the amount of requests in this category.

When running the active scan on th Coop website over all discovered URLs, it didn’t
work because it made so many requests that the program froze again. So the scope was
reduced to only check the search sub-path of the website (coop.ch/de/search)
which then worked. The scanner made 410 requests and took 1 hour and 54 minutes,
but again almost all of this time was for the DOM based attacks (1hour and 40 minutes)
which didn’t even make a request. So after the third scan where it also took the most
time by a wide margin we shut off the scan for DOM-based attacks for further scans.
Afterward the scans were a lot faster when they ran through without the scanner freezing.

4.4.6 Complexity of interpreting the Results
The results are found in the ‘Alerts’-tab. Here for each type of vulnerability a bullet point
is listed where, if expanded, all requests which triggered a successful attack are shown.
When clicking on one of the requests the request and response can be seen, where the
response is split into its header and the body that would be presented. The achieved
change in the HTML code which represents the attack is highlighted so a user can easily
spot it. In the lower half of the window a more detailed description of the vulnerability
including the Evidence found in the response, a brief description of and even possible
solutions can be seen.

coop.ch/de/search

CHAPTER 4. SCANNER TESTS 26

Figure 4.6: Details of a found vulnerability

4.4.7 Completeness of the Findings
For etoa.ch it found 16 reflected XSS vulnerabilities. All on the help page. It apparently
didn’t find the one on the main page that Vega found even though it did discover this
URL in the crawl.

For Coop it actually did find a problem with the search input field, but only with the
input ‘ ”;alert(1);” ’. If only this string is put into the search field it would not execute
the code since the script tags are missing. So a less cautious developer might see it as a
false alarm.

In playit.ch it did find the reflected XSS for the search input. It also shows 260 DOM
based flaws all stem from the same code in a games window. On the page’s HTML a
script can be found which uses JavaScript’s frowned upon eval() function but seems to
accept only certain inputs. It might also have come from the ‘suchbegriff’ input field of
the search as it seems to be used by an innerHTML() function. Since the DOM based
alerts don’t provide evidence or even the response, it’s hard to tell, if this really is what
caused the alarm. It also did sound the alarm for orellfuessli.ch where it thought it found
a flaw in a registration form. The flaw couldn’t be reproduced, so it seems to be a false
positive.

CHAPTER 4. SCANNER TESTS 27

4.4.8 Result
With its user interface and detailed documentation a new user can fairly quickly learn
most of the basic commands. ZAP did find the more intricate vulnerabilities tested for
and is the most reliable. Another convincing feature is the detailed report it generates for
each flaw found, highlighting the problem, reporting how confident it is that the problem
isn’t a false alarm, and even showing solutions.

A positive aspect is the modifiability of the spider and the active scan. Not only can
they be run separately, but also the active scan can be restricted to a subgroup of URLs
found. The scan policy, which is persistent, makes it easy to only scan for certain kinds
of flaws.

The biggest problem with ZAP is its performance. It freezes during bigger scans and
crawls, so it’s almost impossible to test websites as a whole. Also the shutdown process
sometimes takes minutes to end the server and database.

4.5 Wapiti

4.5.1 Description
Wapiti is another general web application security scanner. The Python based application
was developed by Nicolas Surribas and a group called ICT Romulus. It can scan for
several different kinds of attack forms and runs over the command line. The scan first
crawls all URLs, and only after finishing the discovery process tries different attack
vectors on them. Through this single threaded scan it preserves resources but the tradeoff
is a slower scan in general [28].

4.5.2 Installation and Dependencies
Even though the website states that there should be an EXE file for Windows users on the
filesharing platform, we couln’t find it anywhere. So we downloaded the regular folder
with the source code. The WSL had to be upgraded to Ubuntu 20.04 and an additional
Python version (Version 3) had to be downloaded. The whole installation took us a few
hours until finally Wapiti could execute. In the end we could successfully launch Wapiti
version 3.0.3.

4.5.3 Complexity of the Interface and usage
As a command line application it is again harder to realize all of Wapitis functions. It does
have a short README file which gives a very brief overview of all the functionalities.
It’s short and a user has to have some experience with automated scanners to understand
it. The individual arguments with which to launch the scan are listed on a separate

CHAPTER 4. SCANNER TESTS 28

page (https://wapiti.sourceforge.io/wapiti.1.html). With a bit of
trial and error the program with all predefined conditions could run.

4.5.4 Soundness of the Application
Wapiti did use a bit more of the CPU than other CLI application, but otherwise it ran
smoothly. No unexpected behavior was detected at any moment.

4.5.5 Duration of the Analysis
Speed is definitely Wapiti’s biggest problem, especially during the crawl. The first scans
had to be manually stopped because they took longer then 20 hours. Luckily it is possible
to skip further URL exploration and start with the attacks. After scanning the first four
pages (etoa.ch, coop.ch, orellfuessli.ch and interdiscount.ch) where three of them had to
be manually stopped during discovery, we restricted the depth of the search from 8 to 4
nodes. The other websites also took quite a long time except for the website of Migros,
which wouldn’t run properly no matter how much we tweaked the starting arguments.

4.5.6 Complexity of interpreting the Results
The results can be given in many different formats. The easiest to read would be the
HTML. It has a summary over all vulnerabilities and how many it found per category.
Underneath are the individual vulnerabilities. Each with a brief description which
parameter allowed the attack, the specific HTTP request and the cURL command. At the
bottom of all XSS vulnerabilities it lists a general text as a possible solution to fixing
these problems through input validation.

https://wapiti.sourceforge.io/wapiti.1.html

CHAPTER 4. SCANNER TESTS 29

Figure 4.7: Summary of all vulnerabilities found in a scan

CHAPTER 4. SCANNER TESTS 30

Figure 4.8: Details of two vulnerabilities showing a description and the request made

4.5.7 Completeness of the Findings
Wapiti did find both problems in etoa.ch. It actually found and reported the flaw on the
help site over 600 times.

It didn’t find any XSS vulnerabilities on the website of Coop during the scan which
was manually stopped, a new scan was started specifically on the ’search’ page with a
depth of 2 nodes which ran to completion but it didn’t sound any alarm then either.

For playit.ch the application found the vulnerability even with the shorter scan.

4.5.8 Result
Wapiti is a nice tool to test small scopes as it might be automatically integrated since it
can give results in formats like XML and TXT files. It did not find the more intricate

CHAPTER 4. SCANNER TESTS 31

vulnerability which is disappointing. While it might be good for smaller scopes it is
certainly not suitable if a user wants to quickly check bigger websites with many input
fields as the number of requests per second is limited and the amount of different requests
per input field discovered is even with only the XSS module quite big as seen by coop.ch.

4.6 W3af

4.6.1 Description
W3af is an open source Python Web Application Security Software. The main developer
is Andres Riancho a security expert from Argentina. It’s a general purpose scanner with
a CLI as well as a graphical user interface [54].

4.6.2 Problem with the Installation
The program itself can be very easily cloned as a Git repository. It then should, when
running either the GUI version or the console version, give a list of unmet dependencies
which have to be downloaded. After trying to install those dependencies on Python
3.8.5 a dependency called ‘ConfigParser’ was needed which Python pip didn’t seem
to know. After a quick Google search it was clear that this module wasn’t supported
with Python 3 (https://github.com/boltgolt/howdy/issues/458). So
we reinstalled Python 2. After running the w3af gui code a list of unmet depen-
dencies which had to be installed was shown. As Ubuntu 20.04 has dropped all
support for Python 2, we had to manually install and download Python pip 2 with
these instructions: https://stackoverflow.com/questions/61981156/
unable-to-locate-package-python-pip-ubuntu-20-04. After a few
hours of tweaking and installing additional add-ons for Python 2 all unmet dependencies
could be installed. It then still got an error for the dependencies ‘GTK’ and ‘PyGTK’.
Even though both were installed over the APT it still got the same error. After realizing
those two were only needed for the GUI version we only tested the console version
of W3af which also didn’t work as it didn’t find the module ‘netlib’. At this point no
feasible solution could be produced as W3af didn’t seem to work for the newer Ubuntu
system without full support for Python 2.

4.7 Wfuzz

4.7.1 Description
Wfuzz is a framework written in Python. The major difference between Wfuzz and the
other applications on this list, is that Wfuzz is merely a fuzzer and therefore does not

https://github.com/boltgolt/howdy/issues/458
https://stackoverflow.com/questions/61981156/ unable-to-locate-package-python-pip-ubuntu-20-04
https://stackoverflow.com/questions/61981156/ unable-to-locate-package-python-pip-ubuntu-20-04

CHAPTER 4. SCANNER TESTS 32

crawl any pages but only injects payloads into one input and then analyses the results.
Wfuzz is developed by Xavi Mendez, an IT Security Consultant [50].

4.7.2 Installation and Dependencies
We installed Wfuzz on WSL as it only had installation options for Ubuntu or Docker. The
installation could smoothly be accomplished via Python pip. It automatically downloaded
and installed all dependencies.

4.7.3 Complexity of the Interface and usage
As a CLI Wfuzz is pretty straightforward. The application needs a wordlist of the
payloads it should check and the exact URL to inject it into. As it didn’t have a spider no
depth of the scan had to be configured but for a successful fuzzing the exact parameter
to analyze had to be defined by putting the keyword FUZZ behind its value in the URL
request.

4.7.4 Soundness of the Application
With the little fix the scanner itself was pretty stable. However when the result was
specified as an HTML file it would first open a lot of alerts and then redirect the browser
to a page called ‘http://cookiestealer/cgi-bin/cookie.cgi?’ as those were the attacks the
Wfuzz tried on the webpage and so listed in an unsecure HTML tag. So the output file
format had to be changed to another type as it otherwise would directly reroute to this
fake page.

4.7.5 Duration of the Analysis
The speed of Wfuzz is not really comparable with the other scanners as Wfuzz doesn’t
have a crawl function and only tests a few input fields. As Wfuzz isn’t a scanner but only
a fuzzer so not all websites were checked. The scans all took less than ten seconds.

4.7.6 Complexity of interpreting the Results
We tried two different output formats after HTML. The first was a CSV file which was
very confusing. The second was a JSON file, which, even after formatting, wasn’t quite
clear. Both showed all requests which were made with their Id, the response code they
got, how long the resulting response was, the request which was made and a number if
they were successful.

CHAPTER 4. SCANNER TESTS 33

Figure 4.9: Results of a scan presented as a CSV file

4.7.7 Completeness of the Findings
Even though Wfuzz did find flaws in both etoa.ch and playit.ch it also found 39 vulnera-
bilities in coop.ch, but after checking them manually none of them could be verified. It
might be, that the result file shows all requests the fuzzer made but then none of the flaws
were found as they all had the same number indicating if the request was successful.

4.7.8 Result
We only ran the application on the four vulnerabilities that were already known, as the
fuzzer had to have a specific input. Even though the application runs smoothly and fairly
quickly, the results are most confusing and we couldn’t understand them at all. It also
doesn’t help, that no documentation on how to interpret the results was available.

CHAPTER 4. SCANNER TESTS 34

4.8 Grendel-Scan

4.8.1 Description
Grendel Scan is another Java based scanner. The developer David Byrne does not provide
any documentation outside of the source code.

4.8.2 Problem with the Installation
First we tried to install the file provided on sourceforge (https://sourceforge.
net/projects/grendel/files/) but when unpacking it, the ZIP folder only con-
tained a bunch of JAR libraries. Even when directly trying to convert it to a EXE file with
the online tool Ezyzip (https://www.ezyzip.com/convert-tar-gz-to-exe.
html) no executable program could be obtained. So the source code was cloned and
opened it with the IDE, Intellij IDEA 2018.3.5, but even then there were several issues.
Not all dependencies could be satisfied as some packages like ‘com.grendelscan.fuzzing’
were missing but marked as imports in other files. In the issues list on sourceforge
(https://sourceforge.net/p/grendel/bugs/) both problems, that the file
couldn’t be executed and that the project wouldn’t build, were marked as open issues. So
Grendel-scan seems to be unable to perform any scans.

4.9 Arachni

4.9.1 Description
Arachni is another general web application security scanner written in Ruby. It’s devel-
oped by Tasos Lasok, a web security expert form Bulgaria. Arachni has three different
ways to use it. It can either be used via CLI, or over a Web user interface. It can also
be imported as a Ruby framework for projects to be directly used for integration testing
[47].

4.9.2 Installation and Dependencies
The helpful download page gives a user several options, depending on the operating
system. The website itself suggests using the Linux version for best experience, so we
downloaded this version and unpacked it via WSL. As Ruby version 2.7 was already
installed no further add-ons had to be installed. With the download the Web UI as well
as the CLI were both included.

https://sourceforge.net/projects/grendel/files/
https://sourceforge.net/projects/grendel/files/
https://www.ezyzip.com/convert-tar-gz-to-exe.html
https://www.ezyzip.com/convert-tar-gz-to-exe.html
https://sourceforge.net/p/grendel/bugs/

CHAPTER 4. SCANNER TESTS 35

4.9.3 Complexity of the Interface and usage
Trying the Web UI first as it seemed promising. It had an authentication wall and even
though user credentials for two default users were given somehow the login wouldn’t
work with either of them. So we checked the ‘seeds.rb’ file if those two were actually
initialized and then a check if a database was present, which it was under the file
‘production.sqlite3’. As there didn’t seem to be an easy solution and the command
line option with mostly the same functionalities was still available we did not further
investigate into what the exact problem was. So we used the CLI version of Arachni
on the WSL. After a successful scan the results have to be further processed through
Arachnis reporter, which then creates a file in a defined format. Again the HTML format
was used.

4.9.4 Soundness of the Application
The CLI application runs smoothly and appears to not have any major problems. The Web
UI version seems to have some issues with authentication. Also it somehow wouldn’t
scan the website of Coop. Other than that it appears to be a pretty stable scanner.

4.9.5 Duration of the Analysis
The speed of the analysis depended widely on the website. Especially since Arachni
made a lot more requests and scanned less pages then other scanners. For the most part it
is a rather slow scanner.

4.9.6 Complexity of interpreting the Results
The reports made by the reporter are very beautiful. They have several pages. The first is
a summary with all the flaws found in form of different graphs, where a bar graph shows
how many of which issues where found and three separate pie graphs show their severity,
what type of HTML-element it was and if it was a trusted or untrusted element. It then
has on a second page all the different vulnerabilities. For each it has first a paragraph in
which the general issue is explained. Underneath is the list of all found vulnerabilities.
They are listed with the HTML-tag type, the name of the input parameter, what kind of
HTML method it was and the general page. For each flaw it has a button where further
information such as the injected seed, the proof from the response body and the exact
request URL are shown. It also has a text for a possible solution, for XSS it is about
input sanitization but also includes encoded inputs like ‘<’ for ‘<’.

CHAPTER 4. SCANNER TESTS 36

Figure 4.10: Summary of all vulnerabilities found by Arachni in a scan

Figure 4.11: Detailed description of a single found vulnerability

4.9.7 Completeness of the Findings
For etoa.ch it found both flaws on the input parameters ‘page’ and ‘faq’.

Also for playit.ch it did find the flaw for the input field ‘suchbegriff’ as a reflected, as
well as a DOM based issue.

For coop.ch it didn’t find anything, even when directly scanning the search page.

CHAPTER 4. SCANNER TESTS 37

Arachni did find a problem with Manor’s full text search input field ’q’, but after
trying the seed Arachni provided as well as others from Chapter 2 no proof could be
found that the attack input would slip out of a safe field.

4.9.8 Result
Arachni is an easy to use and reliable security scanner. It did not find the flaw on coop.ch,
but as the result page of the report explicitly states this form of flaw, i.e. the encoding
of angle brackets, the problem was more likely with the crawl rather than the vector
injection. From all scanners this one has the most detailed results. It does a lot of requests
per input field which is very time consuming, so it might not be well-suited for broader
searches, but on the other hand it’s very rigorous. The developer stopped maintaining the
application in 2020, so it might be out of date pretty quick [48].

4.10 GoLismero

4.10.1 Description
GoLismero is also a Python based scanner by the security tool creator Daniel Garcia.
Like most Python scanners it works through a CLI. The interesting part about GoLismero
is it aims to unify different smaller web application security tools into one. Those tools
can be enabled or disabled for each scan as the user likes [38].

4.10.2 Installation and Dependencies
The installation was quite easy. For the WSL there is a complete description in the
documentation on the Github repository, which after following it, should have taken care
of all required dependencies. It even explains how to install Python.

4.10.3 Complexity of the Interface and usage
The documentation of GoLismero is quite brief and so in the beginning it isn’t immedi-
ately clear how to run a scan, but after a bit of trying the scan could be configured to only
include the crawl of a website and then the XSS attacks through a tool called XSSer.

4.10.4 Problems with running
We tried the code on several different websites but would always get the same error.
As soon as the application started running the XSSer, it had a problem with loading
different Python modules, even though they were previously installed on the machine and

CHAPTER 4. SCANNER TESTS 38

worked with different applications. Apparently the problem as described here (https:
//github.com/golismero/golismero/issues/54) is that, similar to W3af,
GoLismerohasn’tyetbeenportedtoPython3,butsomeofitsmodules,likeXSSer,do
work with Python 3 so there is a split in the dependencies which produces this error, so
until GoLismero is updated it cannot be used.

4.11 Nikto/Wikto

4.11.1 Description
Nikto is a multipurpose web server assessment tool written in Perl and developed by
Chris Sullo. Its main goal is, according to their website, to find server and software mis-
configurations, insecure files and outdated servers and programs. So it is not specifically
programmed to find XSS vulnerabilities [58]. Wikto is as the authors explain Nikto for
Windows with some extra features. It’s written in C“# and aims to simplify the Nikto
installation for Windows users [63].

4.11.2 Installation and Dependencies
The first thing we tried was to install Wikto. As it proclaims to be an extension of Nikto,
it should have all of the same functionalities, but after trying to install it there were some
problems which couldn’t be fixed and so Wikto couldn’t be installed. So only Nikto was
installed and tested. This was fairly easy over the WSL as Perl was already installed on
the system.

4.11.3 Complexity of the Interface and usage
Nikto isn’t primarily used to test websites remotely. Its main goal is to test servers locally.
And therefore the documentation isn’t structured in a way to instantiate such a remote
injection scan, but after carefully reading the documentation, the starting arguments
could be configured to only test for injection attack forms. What Nikto doesn’t offer is
a way to crawl through the whole website, so it is similar to Wfuzz in this regard, but
instead of having to define one specific injection point it would test the whole page.

4.11.4 Soundness of the Application
Nikto ran smoothly and did not produce any unexpected error messages.

https://github.com/golismero/golismero/issues/54
https://github.com/golismero/golismero/issues/54

CHAPTER 4. SCANNER TESTS 39

4.11.5 Duration of the Analysis
The pages were scanned pretty quickly. Usually a scan took less then 2 minutes, but as it
only tested single pages it’s not really comparable to the other scanners.

4.11.6 Complexity of interpreting the Results
The findings are listed in a HTML file. The file contains a brief summary with how many
requests were made, the time it took and what CLI input was given. Then it lists all
vulnerabilities found with the URL, the HTTP method and a quick description of the
flaw. To find the results of a certain type the user has to read through all the descriptions
as the findings aren’t categorized or in any form ordered.

Figure 4.12: Results of a scan made by Nikto

4.11.7 Completeness of the Findings
The scans did find lots of misconfigurations on the websites but not a single XSS
vulnerability was found. Even when checking the exact pages of the known flaws Nikto
wouldn’t report them.

4.11.8 Result
Nikto didn’t find any of the flaws. Since it isn’t the main focus of the application it might
not be that surprising but as it clearly states, that XSS vulnerabilities can be found it at
least should find the basic plain text ones on etoa.ch and playit.ch.

CHAPTER 4. SCANNER TESTS 40

4.12 Scanners out of scope
Only the scanners above were tested. The following are also open-source scanners from
OWASP and Pavitar Shankdhars lists but were all excluded for different reasons as
provided:

• SQLMap since it is specifically for SQL Injection vulnerabilities and therefore
cannot test for XSS.

• Watcher because it is an extension of an application called Fiddler which has
different versions.

• X5S is, similar to Watcher, a plugin for Fiddler.

• WebScarab is an older project, also developed by OWASP and some sources say
ZAP is its official successor.

• purpleteam is also a project developed by OWASP. It is used as an API to
continuously check a locally stored web application and not to test the site through
a browser.

• Sec-helpers is a bundle of very basic security validators which can be used by
developers to test if a domains protocol standards meet current recommendations.
It has no functionality which would do the same for XSS attacks [17].

• Ride (REST JSON Payload fuzzer) is an extension to Adobes Ride, a Java REST
API automation framework. It is not really an application but a framework that
can be integrated into a project.

4.13 Comparison
Finally we want to compare the different scanners with the criteria as we defined them
in section 3.2 to see which of the scanners are better suited to test the XSS security of
websites.

4.13.1 Installation and Usability
First we compare the scanners on how easily they can be installed and on their usability.
As for the installation part we take a look at how many manual steps a user has to make
until the application is installed. A step is defined as either one line of code in a command
line or a single click with the mouse. We also try to measure the time it took us to install

CHAPTER 4. SCANNER TESTS 41

the software. Here we also take into account the time needed to troubleshoot when a
problem appeared and the time needed to download data.

For the usability we look at how many steps a user has to take until the scan starts
with the needed configurations or, if we have a CLI, how many arguments we have to
put so the scan works with as we intend to. We also look at the documentation, first how
detailed it is. For this we give one of the following four marks: ++, +, -, –. A higher mark
means the documentation describes the software’s function in more detail. The same
marks are given for the structure of the documentation. Here the highest mark means the
documentation is well-structured and can be easily searched.

Comparison Installation and Usability
Scanner Installation Usability Documentation

GUI Steps Time Steps to scan Detailed Structured
ZAP 7 12min 3(11)* ++ ++
Vega 6 4min 4 + +
CLI Steps Time Arguments Detailed Structured

Skipfish 36 1.5h 5 - +
Arachni 8 7min 5 ++ -
Wapiti 50+ 4.5h** 7 – –
Wfuzz 1 2min 7 + ++
Nikto 1 5min 4 - –

*For the first scan with those configurations
**Including upgrading WSL

4.13.2 Duration and Soundness
To compare the duration we tried to measure the time each of the ten scans took and then
averaged it.

For the robustness we look at how often a scanner freezes or crashes during the scan
of Coop’s website as a reference. And for the second criteria we count how often we
have to restart or cancel a scan because it had a problem, didn’t scan a site properly or
seemed to be stuck. Here we count several failures of the same scanner on the same
website as one.

CHAPTER 4. SCANNER TESTS 42

Comparison Duration and Soundness
Scanner Duration Soundness

GUI Average scan Crashes Failed scans
ZAP 5h 12min 1 6
Vega 12h 30min 5 0
CLI

Skipfish 3h 39min 0 4
Arachni 11h 57min 0 4
Wapiti 9h 0 6

Wfuzz* 1min 0 0
Nikto* 1min 0 0

*Only scan a very small amount of a website

4.13.3 Findings and Results
To judge the completeness of the results try to find out which of the vulnerabilities each
scanner finds. Most scanners cannot detect the encoded vulnerabilities like the one found
in Coop’s website but only the plain texted ones.

For the results the first criteria is if the found flaws are grouped in a sensible way,
which if they are grouped in categories that make sense, e.g. all XSS flaws together.
The other criteria are if we can find out on which webpage the flaw is located, if we see
the seed, i.e. the request made by the scanner to detect the flaw, and finally if the result
shows the proof it found in the response body.

Comparison Findings and Results
Scanner Findings Results

GUI Completeness Grouped Page Request Proof
ZAP All flaws Yes Yes Yes Yes
Vega Plain text Yes Yes Yes No
CLI

Skipfish Plain text Yes Yes Yes No
Arachni Plain text Yes Yes Yes Yes
Wapiti Plain text Yes Yes Yes Yes
Wfuzz Plain text No Yes Yes No
Nikto Plain text No Yes No No

4.13.4 Conclusion
While not all Scanners are as easily comparable and might not have been made with
the same intended use, some might have the goal to test whole websites while others

CHAPTER 4. SCANNER TESTS 43

are programmed to work best for integration testing where new pages can be checked
automatically, there definitely are some superior to others. For example if someone
prefers a Graphical User Interface or just would like to be able to persist and reuse
certain test specifications, ZAP is definitely better suited than Vega even though they
both follow the same concept. If a user wants to quickly check the whole website for
several vulnerabilities Skipfish might be preferred but if only a small section should be
tested for a certain flaw then Arachni or Wapiti might be better suited.

Overview Scanners
Scanner Findings Installation Usability Robustness Duration

GUI
ZAP complete easy very good medium fast
Vega only unencoded easy good bad medium

Grendel Scan Couldn’t get it to run
CLI

Skipfish only unencoded easy medium good very fast
Arachni only unencoded easy good medium slow
Wapiti only unencoded hard medium medium slow
Wfuzz unclear easy good good incomparable
Nikto none easy good good incomparable
W3af Couldn’t get it to run

Grabber Couldn’t get it to run
GoLismero Couldn’t get it to run

5
Analysis and Mitigation of found Flaws

After a Web Crawler reports Cross Site Scripting vulnerabilities on a website it is
important to first analyze the supposed flaw and then, if it is deemed a security relevant
vulnerability, mitigate it.

5.1 Analyzing the results of a Web Crawler
Each Web Crawler has a different way to present its findings but all of them show at least
the request and usually the response they got from the webserver.

5.1.1 Analyzing the Request
First the request must be checked. HTTP-requests contain some general data like browser
used, cookies, and other more technical details. Important for analyzing it are only the
method used and the URL path.

The method is important because it shows us if an attack might be persistent if the
method is for example ‘PUT’ or ‘POST’. If the attack is reflected or DOM based, then
it’s usually a ‘GET’ request.

In the URL path the page of the website which is impacted can be found. It also
shows if the problem stems from a specific input-field and if so which code broke it.

As an example here is the request from an alarm reported by skipfish:
GET /help/content/wiki?page=faq&faq=270-->”>’>’”<sfi000921v703569>

44

CHAPTER 5. ANALYSIS AND MITIGATION OF FOUND FLAWS 45

First it is a GET HTTP-Request so it’s definitely not persistent. A quick look into the
page’s HTML-code shows that the vulnerability is reflected because it is not dynamically
generated in any form.

The problematic field here is a field called ‘faq’ that broke with the input “270--
>”>’>’”<sfi000921v703569>”. Here the method used by skipfish can be observed. It
first put escape sequence characters in an attempt to get out of the safe zone and then set
a new tag, here called ‘sfi000921v703569’. Afterwards it will check the response body if
it finds this tag somewhere.

5.1.2 Analyzing the Response
In the response can be seen where the supposed flaw is returned. This helps to check
if this really is a vulnerability or if it’s a false positive, as it might be, when the tag
is still in a secure zone where code wouldn’t be parsed. It could also be that other
checks prevent a malicious attack. The easiest way is to actually just replace the fake tag
‘<sfi000921v703569>’ with the code used in manual testing <script>alert(‘Rafi’)</script>.
If then a pop-up dialog opens it’s certain that the page is flawed. If the dialog doesn’t
pop-up the code can be tweaked as explained in Chapter 2, or the HTML can be ana-
lyzed to see if different inputs in form of HTML tags create unexpected behavior of the
webpage.

For suspected DOM based XSS it is important to find out if the value of an input
field is used in a XSS function which uses this input to form the page. Some of these
functions are for example:

• innerHTML()

• outerHTML()

• document.write()

• document.writeln()

The problem with those functions is they all return their input in an unsafe way,
which means if a user can write HTML tags in those functions and the input is reflected
back to the page those tags are parsed and interpreted as such [24].

Another bad function is the eval() function. This function takes a string and interprets
it as a JavaScript function [30]. If a user can put his own code in there it might have a
terrible outcome.

CHAPTER 5. ANALYSIS AND MITIGATION OF FOUND FLAWS 46

5.2 Mitigation tactics
There are several different kinds of mitigation tactics. The vast majority of them can be
categorized into one of three categories:

• Input sanitization

• Output Encoding

• Mitigating through CSP

It usually isn’t enough to just use methods of one of these categories, but if correctly
used together they can be a powerful defense against most, if not all XSS attacks [25].

5.2.1 Input Validation and Sanitization
Input validation is very important. Before using input of any user, it is validated to
see if it is in an expected form and does not contain any code or data which could
compromise the system. There are two possible ways to validate the value of an input.
With whitelisting, so only certain values for the input are allowed and an error is returned
if the input isn’t one of the expected ones. This works especially well for fields with only
a limited number of possible values. For example if a field is looking for a city, a check
can be performed where first the input has to be a safe protocol like HTTP or HTTP and
then test if it corresponds with a city from an existing database. If the protocol has an
unexpected type like ‘javascript’ or ‘data’ or the searched city can’t be found the input
isn’t returned.

The second but much less secure possibility is to blacklist certain protocols or
keywords. This list must be very extensive and updated frequently. Otherwise with new
technologies the safety of blacklisting dwindles [21].

5.2.2 Output Encoding
Before returning user input back to the site it is important to properly encode or filter
special characters or keywords in a way that a browser doesn’t execute any unintended
code. This works really well if all special characters like <, >, \, /, &, ”, ’, (,), #, %, ;
, +, - can be filtered out. If some of these special characters cannot possibly be filtered
because they are indispensable it gets a lot more complex and insecure since different
encodings have to be taken into account. For example < or \u003c for <, and keywords
like ‘script’, javascript’ and many more. Even if only a few of those are missing the
security of the system can be compromised [46].

There are some open source libraries which do those kind of sanitization automati-
cally, for example OWASP does maintain a Java and JavaScript library called Enterprise

CHAPTER 5. ANALYSIS AND MITIGATION OF FOUND FLAWS 47

Security API (ESAPI) which has an Encoder interface that can encode a String for
HTML or for JavaScript which makes the returned value safe to use. However, ESAPI’s
maintenance seems to be slowing, which means the safety it provides might decline in
the future [61].

5.2.3 Mitigating through CSP
Content Security Policy (CSP) is a protocol that serves as a safety net, which has to
be implemented in HTTP headers. With CSP a developer can define which domains
are trusted. Only scripts from those domains will be executed. Others, including inline
scripts can be disallowed. For ultimate protection a developer can even opt out of all
client side script execution. CSP is defined by a website provider but the execution of the
policies lies in the browsers. Therefore, not all browsers might be able to check the full
extent of a CSP. CSP is fully backwards compatible which means no matter the browser
the website is still accessible. If a browser detects a violation of the CSP it blocks the
HTTP-Request and, if defined, reports it.

To configure the Content-Security-Policy in a header there are several different
arguments which can be defined. Especially important for XSS security is the keyword
script-src <source>. If this argument is given only scripts from the defined <source>
are executed. Note that the source can either be a ‘self’ or a URL like ‘http://url.ch’ or
‘http://*.url.ch’, here the * stands for a wildcard, which means it matches all subdomains
of the website. The source can also be protocols like HTTP (http:) or HTTP (https:). It
is also possible, but not recommended, to define data types Binary Large Object (Blob)
or mediastreams. With the argument ‘none’ no scripts are allowed. It is also possible
to weaken the security if necessary, for example the argument ‘unsafe-eval’ allows the
eval() function to be executed, ‘unsafe-inline’ allows inline elements like the <script>
tag. These should only be used if absolutely necessary [8].

If script-src is not defined CSP falls back onto the default-src keyword. Each unde-
fined argument will always fall back onto this one, so it is vital to carefully choose the
sites which here should be allowed [22].

Google did develop a CSP Evaluator which helps developers to evaluate the strength
of their CSP against XSS attacks [23].

With a well defined CSP a website can get an additional layer of security but it cannot
be the only one as some browsers like Internet Explorer only marginally support CSP,
other users might not be up to date with their current browser and therefore don’t support
all keywords [8].

6
Conclusion and Future Work

Several Web Application Security Scanners were tested for their efficacy in detecting
XSS flaws. During these tests we gained further knowledge into the inner workings of
these kinds of scanners. As those scanners were only tested for their ability to detect
Cross-Site Scripting vulnerabilities there is still a lot to be tested. Most other attack
vectors which these Scanners could detect were left out, as well as more advanced
commercially available scanners like those detailed on OWASPs website (https:
//owasp.org/www-community/Vulnerability_Scanning_Tools). Mit-
igation tactics weren’t discussed in great detail and neither were any of the libraries
mentioned checked for efficacy nor were the different tactics demonstrated on the web-
sites tested.

48

https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools

7
Anleitung zu wissenschaftlichen Arbeiten

In this chapter we will explain in greater detail how those Web Application Security
Scanners which successfully ran on the Windows Subsystem for Linux were installed.
The exact command with which the scans were run with will also be provided.

Skipfish

Download and Installation
From the download page (https://code.google.com/archive/p/skipfish/
downloads) we downloaded the most recent version (skipfish 2-10b). It is a TAR
archive compressed to a TGZ file. After extracting the files the README was exten-
sive and very helpful. It instructed us to install the libdin library which we did but
then got another problem with a dependency called ‘openssl/ssl.h’. After some trial
and error we found a solution on the tecadmin website (https://tecadmin.net/
install-openssl-on-windows/) which after a little bit of tweaking worked. It
was definitely more time consuming to install than Vega but not impossible. However
after trying to run it with the given example code in the documentation, we recognized
that it was made for Linux systems. The C-file ‘skipfish’ was attempted to be run with
Windows commands but to no avail. In the end we decided to switch to the WSL. The
extracted packages could be installed after installing two dependencies called libpcre3-
dev and libidn11-dev over APT. Then the application could be installed via the Makefile
and ran without any problems.

49

https://code.google.com/archive/p/skipfish/downloads
https://code.google.com/archive/p/skipfish/downloads
https://tecadmin.net/install-openssl-on-windows/
https://tecadmin.net/install-openssl-on-windows/

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

Code used to run the application
For the test the following starting parameters were used in each test:

skipfish -o directory -S minimal.wl -W- -L -d 8 https://website.ch

-o directory: specifies ‘directory’ as the new path which it should write its findings
to -S minimal.wl: The minimal dictionary already provided by skipfish was used. -
W-: specifies to not write newly learned paths anywhere -L: forbids the application to
auto-learn new keywords d 8: tells the application to not crawl further than 8 links deep

Wapiti

Download and Installation
The source code was downloaded from here https://sourceforge.net/projects/
wapiti/files/wapiti/wapiti-3.0.3/. To run it the Python version had to
be upgraded to 3.5. Then it was tried to run the setup file as described which should
download and install all dependencies, but apparently it had a missing module named
‘setuptools’ in its imports which had to be installed first. After that the setup ran. It did
prompt this warning:

‘WARNING: The C extension could not be compiled, speedups are not enabled.
Plain-Python build succeeded.’ After finding out this comes from a different miss-

ing module called ‘python-dev’ the setup ran into another problem: with a missing
dependency called ‘MarkupSafe’ and finally after installing that Wapiti was able to run.
Running it threw another error: ‘SyntaxError: invalid syntax’. After some research
a possible solution was found here https://github.com/flairNLP/flair/
issues/1469. The author had solved a similar problem by upgrading their Ubuntu
system. The same was done for the WSL, but as an upgrade to version 18.04 wasn’t
successful WSL had to be reinstalled with version 20.04.

Code used to run the application
For our purposes the following starting argument were used:

wapiti -u http://website --scope folder -m xss -f html -v 2 -d 8

-u http://website: defines the URL that should be scanned
--scope folder: defines the scope. A user can define the scope as big as they want.

They could also choose to attack all linked websites as well. Folder was chosen, which
means it scans all URLs beneath the one defined as the start URL, as the other scanners
usually would scan all URLs underneath the base too.

https://sourceforge.net/projects/wapiti/files/wapiti/wapiti-3.0.3/
https://sourceforge.net/projects/wapiti/files/wapiti/wapiti-3.0.3/
https://github.com/flairNLP/flair/issues/1469
https://github.com/flairNLP/flair/issues/1469

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

-m xss: defines the modules used, this option only scans for XSS
-f html: gives the output format. The HTML output was deemed to be the best, it

does also have options for XML and txt files but both seem less readable than the HTML.
-v 2: is the verbosity during the scan. It has 3 levels (0-2) where 0 gives no infor-

mation, 1 gives an update if an error occurred and 2 shows all HTTP-Requests which
are made. 2 was chosen since otherwise it would be unknown if the scanner was still
running.

-d 8: restricts the depth of the search to 8 nodes, otherwise it would default to 40.

Wfuzz

Download and Installation
The installation via Python pip was only one command:

pip install wfuzz

Code used to run the application
The following arguments were used:

wfuzz -o html -w wordlist/Injections/XSS.txt -u https://website/.../parameter=FUZZ -v

-o html: defines the results file type
-w wordlist/. . . : defines the list of the payloads which should be used.
-u https://...: defines the URL to the webpage. The FUZZ at the end will be replaced

by the different payloads during the scan.
-v: defines that the scan should be verbose
As the attack vectors are saved as a TXT file, it’s easy to check and modify them.
None of the analysis could finish as they all stopped with the error “Fatal exception:

Pycurl error 3:”. Thankfully on the issues list of wfuzzes Github the developer gave a so-
lution (https://github.com/xmendez/wfuzz/issues/138) by just amend-
ing ‘-Z’ to the arguments.

Arachni

Download and Installation
From the download page (https://www.arachni-scanner.com/download/)
the Linux x86 64bit version was downloaded as a tar.gz file. it was unpacked via WSLs in-
built tar extractor and then the following two commands were run, as stated on the installa-

https://github.com/xmendez/wfuzz/issues/138
https://www.arachni-scanner.com/download/

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

tion wiki (https://github.com/Arachni/arachni/wiki/Installation)
to get all dependencies and install arachni:

sudo apt-get install build-essential curl libcurl3 libcurl4-openssl-dev ruby ruby-dev
gem install arachni

Code used to run the application
The Github wiki page under:
github.com/Arachni/arachni/wiki/Command-line-user-interface
has an extensive list of all usable starting arguments. Through the documentation the
following command input was decided on:

arachni https://website --output-verbose
--scope-directory-depth-limit 8 --checks xss* --report-save-path website

As the arguments are written out they are pretty much self-explanatory. Depth was
restricted to 8 nodes as in previous scan. The ‘--checks:xss*’ argument means the scanner
only checks for Cross-Site Scripting vulnerabilities. The save path saves the report as an
AFR file. Which can then be converted to a html file with the ‘arachni reporter’ through
the command:

arachni reporter website.afr –reporter=html:outfile=website.html.zip

GoLismero

Download and Installation
With the following code the Github repository was cloned and the applications depen-
dencies installed:

sudo git clone https://github.com/golismero/golismero.git
cd golismero

sudo pip install -r requirements.txt
sudo pip install -r requirements unix.txt

Code used to run the application
After installation the following code was used to run GoLismero:

golismero scan https://website.ch/ -o - -o website.html -e dns* -e spider* -e xsser*

https://github.com/Arachni/arachni/wiki/Installation
github.com/Arachni/arachni/wiki/Command-line-user-interface

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

Scan: specifies the URL of the site -o - -o website.html: defines the output format of
the report the first empty one means the report will be printed on the Command Line
Interface, the second will produce an HTML report. -e: enables the specified tool, here
dns* and spider* are tools needed to crawl the website. Then XSSer is a XSS fuzzer
which would check different XSS specific payloads.

Nikto/Wikto

Download and Installation
Trying to install Wikto

The first thing that was done was downloading the) ZIP folder from the official release
page (https://github.com/sensepost/wikto/releases/tag/2.1.0.0)
then extract it and install the file. The installation wizard gave an error where it suggests
to install a version of Microsofts .NET as it is needed, but even after installing this
version and linking it in the PATH it still wouldn’t recognize it. The problem most likely
stems from this requirement, as the Wikto release is from 2008 and therefore might not
be compatible with newer Windows operating systems or the current version of .NET.
Instead only Nikto was installed and tested.

Installation of Nikto

To install Nikto only the github repository had to be cloned:

git clone https://github.com/sullo/nikto

As Perl was already installed Nikto could run without any issues.

Code used to run the application
To run Nikto the following arguments were used:

perl nikto.pl -h https://website -T 4 -output website.html

-h: defines the website or server that should be tested -T 4: The T stands for tuning, it
defines a certain group of attack forms which should be performed. Here 4 is the group
Injection. It does not only include XSS but also Script and HTML injections. -output:
defines the name under which the report should be saved and with the ending also the
format.

 https://github.com/sensepost/wikto/releases/tag/2.1.0.0

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 54

Performance of the different Scanners
The raw data on how each scanner performed on the particular websites. Different
methodologies for measuring the performance of each scanner were tried. Not all of
these could be determined for each scanner.

• Duration of Scan The time the application had for the whole scan, which includes
the crawl as well as the active scan for vulnerabilities.

• URLs discovered How many URLs the scanner discovered during the crawl.

• Attack Requests How many different HTTP-Requests were made during the
process

• Remarks When the scanners settings deviated from the ones mentioned in chapter
3.4 or if a scan was stopped manually after running it for at least 15 hours it would
be remarked here.

Vega
As Vega doesn’t provide any information about how long a scan was, how many URLs
were discovered or requests were made, the length of the scan could only be approximated
by comparing the start time of a scan with the time when it was finished. However as the
computer couldn’t be attended the whole day some results might be off a bit.

Scan Performance
Website Duration of Scan URLs discovered Attack Requests Remarks

Etoa ∼3h ? ? -
Playit ∼22h ? ? -
Coop ∼18h ? ? -

Orellfüssli ∼18h ? ? -
Migros ∼7h ? ? -

Interdiscount ∼9h ? ? -
Sportxx ∼13h ? ? -
Ricardo ∼16h ? ? -

Staemme ∼1h ? ? -
Manor ∼18h ? ? -

Skipfish
Skipfish shows how long a analysis took and how many requests were made. It doesn’t
specify how many pages were scanned with these requests. As Skipfish is the only

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

application where the kind of attack vectors it should use can’t be specified, the requests
are not all XSS attacks but rather all kinds of different attack forms.

Some of the websites seemed to have a protection against that many requests in such
a short amount of time and would block Skipfish’s requests after a few seconds, which
indicated to Skipfish, that it has finished the scan and wouldn’t run any more.

Scan Performance
Website Duration of Scan URLs discovered Attack Requests Remarks

Etoa 1h 20min ? URLs 1’792’078 Requests -
Playit 25h ? URLs 4’914’425 Requests cancelled manually
Coop 5h 26min ? URLs 2’566’272 Requests -

Orellfüssli 3min ? URLs 13’063 Requests -
Migros 5s ? URLs 68 Requests -

Interdiscount 0.33min ? URLs 510 Requests -
Sportxx 0.66min ? URLs 71 Requests -
Ricardo 1s ? URLs 51 Requests -

Staemme 0.66min ? URLs 2’989 Requests -
Manor 4h 40min ? URLs 476’986 Requests -

Zed Attack Proxy
The DOM-based XSS scans in ZAP had to be shut off as they seemed to go on for an
unreasonably long time. Some crawls also had to be stopped manually as ZAP froze
with higher amounts of URLs. For some websites during the active scan it froze where
the application sometimes wouldn’t recover and had to be shut down. For Coop, as
the active scan would freeze during the scan of the whole page, only the search page
www.coop.ch/de/search was scanned.

Scan Performance
Website Duration of Scan URLs discovered Attack Requests Remarks

Etoa 38.5min 3101 URLs 1513 Requests -
Playit 1h 44min 5725 URLs 13’179 Requests -
Coop 4h 51min 16’142 URLs 410 Requests only on search

Orellfüssli 3h 5min 23’991 URLs 74’495 Requests no DOM
Migros 24h 55min 16’908 URLs 23’750 Requests no DOM, scan froze

Interdiscount 15h 32min 86’604 URLs 44’191 Requests no DOM
Sportxx 35min 21’932 URLs 327 Requests no DOM
Ricardo 5 min 20’023 URLs 2363 Requests no DOM, stopped crawl

Staemme 0.5 min 442 URLs 215 Requests no DOM
Manor 36.5 min 131’146 URLs 12’097 Requests no DOM

www.coop.ch/de/search

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 56

Wapiti
Even though Wapiti doesn’t provide a timer or timestamps for the requests as others
do, the time was measured by simply subtracting the time the scan was started from the
timestamp when the report was created.

It did not specify how many HTTP-Requests were made and the number could not
be retrieved from the WSL terminal for most of the scans as it didn’t show more than
1000 lines. When a crawl wasn’t finished after 15 hours or the active scan after 10 hours
they were stopped manually. The scans were restricted to 4 nodes as most scans weren’t
finished with the discovery phase after 15 hours.

Scan Performance
Website Duration of Scan URLs discovered Attack Requests Remarks

Etoa 35min ? ? -
Playit 10min 1112 URLs ? depth 4 nodes
Coop 26h ? ? stopped crawl and scan

Orellfüssli 15h 15min ? ? stopped crawl
Migros 2min 5 URLs 30 Requests didn’t run properly

Interdiscount 5h 54min ? ? depth 4 nodes
Sportxx 5h 2min ? ? depth 4 nodes
Ricardo 13h 2min ? ? depth 4 nodes

Staemme 0.5min 19 URLs 19 Requests depth 4 nodes
Manor 24h 2min ? ? depth 4 nodes, stopped crawl

Arachni
At the end of Arachnis scan it shows a statistic with how many websites it scanned, how
many requests were made and so on. These numbers were taken there. The number of
URLs isn’t those discovered but the ones scanned, which had to be discovered as well.
Many scans had to be stopped manually. Luckily it is possible to still generate a report
when a scan has to be cancelled.

When a scan of coop was attempted it only scanned one or two URLs. It wouldn’t go
deeper no matter the starting arguments, even without a depth restriction and with the ar-
gument ‘—scope-include-subdomains’, or the starting URL, ‘’/’, ‘/de’, ‘/fr’, ‘/de/search’.
It is unsure why it wouldn’t go deeper as it always responded as if the scan was successful.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 57

Scan Performance
Website Duration of Scan URLs scanned Attack Requests Remarks

Etoa 11h 20min 6127 URLs 2’460’365 Requests -
Playit 2h 46min 483 URLs 357’880 Requests -
Coop 0.5 min 2 URLs 0 Requests Didn’t scan properly

Orellfüssli 22h 7min 12’223 URLs 4’633’838 Requests stopped manually
Migros 20h 54min 78 URLs 252’517 Requests stopped manually

Interdiscount 4h 51min 586 URLs 91’631 Requests -
Sportxx 6h 52min 508 URLs 310’155 Requests -
Ricardo 9h 36min 1304 URLs 458’652 Requests -

Staemme 16h 50min 1905 URLs 167’387 Requests -
Manor 24h 17min 856 URLs 889’649 Requests stopped manually

Nikto
The report of each scan shows the time elapsed and the number of requests that were
made. However since Nikto doesn’t use a spider to discover further URLs it only scanned
one URL, the main page. For the websites with a vulnerability where it isn’t on the main
page a second scan on the flawed page was made as well.

Scan Performance
Website Duration of Scan URLs scanned Attack Requests Remarks

Etoa 121s 2 URLs 2033 Requests scans on main and help page
Playit 57s 1 URLs 1002 Requests -
Coop 49s 1 URLs 879 Requests -

Orellfüssli 47s 1 URLs 879 Requests -
Migros 119s 78 URLs 879 Requests -

Interdiscount 40s 1 URLs 879 Requests -
Sportxx 62s 1 URLs 880 Requests -
Ricardo 8s 1 URLs 151 Requests -

Staemme 61s 1 URLs 879 Requests -
Manor 31s 1 URLs 879 Requests -

Glossary

Account Hijacking Attack form in which a user’s account credentials are stolen and
the affected account is accessed [41]. 2

Ad Blocker Plug in for a browser used to suppress advertisement on websites. 6

add-on Software that provides additional functionality to an appliaction. 22, 31, 34

API Application Programming Interface, interface where other applications can access
its functionality [18]. 47

APT Advanced Package Tool, a package management system used by UNIX operating
systems like Linux and Ubuntu [3]. 31, 49

attack vector Method used to penetrate or exploit a vulnerability on an application [41].
14, 15, 18, 20, 21, 23, 27, 48, 51

Beta Beta phase is the evaluation phase of a software development process where the
general public can access a software product and test its usability. 24, 25

Binary Large Object (Blob) A collection of binary data which can store any type of
file or media [7]. 47

Black Box Testing Testing an application without looking at its source code but only
on how it responds to certain inputs. 8

browser Application which allows a user to access the web. 1–4, 6–8, 13, 22, 23, 32,
44, 46, 47

CLI Command Line Interface in which a user can provide arguments to execute different
commands and control applications. 17, 31, 34, 37, 41, 61

cookie Website specific data stored in a user’s browser which is sent with a request to
provide information about the user to the website’s server [15]. 3, 14, 17, 44

58

Glossary 59

CPU (Central Processing Unit) Integral part of the hardware in a computer responsible
for executing instructions [34]. 10, 16, 17, 28

crawl Recursively Accessing different URLs through examining response bodies of
webpages. 9, 17, 21–23, 26, 28, 32, 37, 50

CRUD Refers to the four main functions of a data storage system Create, Read, Update
and Delete. 16

cURL Tool to automatically transfer data and protocols to a web server [57]. 28

CVE Common Vulnerabilities and Exposure, a public list of known security vulnerabili-
ties [4]. 4

Docker Platform to isolate application environments into containers [5]. 32

DOM Document Object Model, API in which a document is represented as a tree
structure [26]. 24–26, 36, 44, 45

eval() JavaScript function which evaluates the String Argument as a JavaScript function
[30]. 2, 26, 45, 47

EXE file extension of executable Windows applications. 13, 21–23, 27, 34

Ezyzip Online tool which can compress and extract different files [35]. 34

Github Cloud based Website in which developers can store and share source code. 37,
51, 52

GUI Graphical User Interface, Interface of an application where a user can point and
click on icons or text to modify its state. 31

HTML HyperText Markup Language, the basic language in which web pages are
written. 1, 2, 6, 7, 9, 18, 25, 26, 28, 32, 35, 45, 47, 51

HTTP Hypertext Transfer Protocol, protocol in which internet communication is gener-
ally sent [6]. 15, 17, 28, 44, 46, 47

HTTP-Request Request sent, usually from a browser, to a web server [6]. 45, 47, 51,
54, 56

HTTP-Response Response to a request consisting of a header with general information
and a body which contains the HTML code for the browser to interpret [6]. 24

Glossary 60

IDE Integrated Development Environment, Application which supports developers
through different functions like code completion, highlighting and debugging [32].
34, 60

innerHTML() JavaScript function, takes a string as an argument which then is put into
the document that called the function [11]. 26, 45

integration testing Type of testing where newly developed parts of a system are checked
to see if they meet the systems standards in aspects like functionality or security.
34

Intellij IDEA Java IDE developed by JetBrains. 34

Internet Explorer Browser developed by Microsoft, maintenance was discontinued in
2020 [62]. 47

JAR Java archive consisting of Java classes, which can be used to import into other Java
projects. 34

Java Object oriented programming language developed by Sun Microsystems. 13, 22,
34, 46

JRE Java Runtime Environment, the application which is used to run the JVM. 13, 23

JVM Java Virtual Machine is the virtual machine used for Java code. 13

Linux Openly available Unix based Operation System [19]. 10, 11, 34, 49, 51

log-file Automatically generated file of an application which stores all defined activities
of the application. 5

malware artifical word shortened from malicious software, can be any kind of harmful
program. [37]. 1, 3, 4

mediastream interface representing media content such as video or audio [13]. 47

NIST National Institute of Standards and Technology is part of the U.S. Department of
Commerce responsible for innovation and industrial competitiveness [51]. 4

NVD National Vulnerability Database, provides a list of common vulnerabilities and
tries to further security and compliance in web technology [14]. 4

operating system A computer’s underlying software, responsible for managing the
hardware and its resources [19]. 10, 13, 34

Glossary 61

outerHTML() JavaScript function, gets the serialized HTML fragment of a defined
element [12]. 45

OWASP The Open Web Application Security Project, is a non-profit organization with
the goal to further web application security [52]. 4, 6–8, 22, 40, 46, 48

page-factory A design pattern in which the general web page stays as is, only a few
defined elements are replaced. 13, 17

proxy A server set up between a user-webserver communication which can modify
requests and responses. 22

Python General purpose programming language, developed as a scripting language by
Guido van Rossum [53]. 21, 27, 31, 37, 38, 50

Python pip Pythons package management tool to install and modify Python libraries
[55]. 21, 31, 32, 51

Ruby Object Oriented Programming Language developed by Yukihiro Matsumoto [1].
34

Samy Worm Persistent and self replicating XSS attack developed by Samy Kamkar
which shut down the Internet Platform MySpace [40]. 1

server Computer Hardware which shares its resources through the web. 2, 3, 5, 13, 23,
27, 44

spider Tool for automatically discovering new URL paths from a page.. 9, 23, 27, 32

terminal See CLI. 56

Ubuntu Operating System based on the Linux core [20]. 11, 27, 31, 32, 50

UI (User Interface), interface of a software which its user interacts with. 16, 34, 35

URL Uniform Resource Locator, is an address in the web containing a unique domain
name and a payload [2]. 2, 3, 9, 17, 18, 22, 25–27, 32, 35, 44, 47, 50, 51, 56

UTF-8 Unicode Transformation Format 8 is a widely used character encoding scheme
[16]. 7

UX Stands for the User Experience of a certain application. 15

virtual machine Software interpreting code into an executable program. 60

Glossary 62

webmaster The person responsible for a websites features, performance and stability. 5

wizard An installation wizard is a software providing a GUI for guidance through a
software installation. 13, 14, 23

write() JavaScript function, writing a string into the document that called it [9]. 45

writeln() JavaScript function, similar to write() but it adds a new line command at the
end [10]. 45

WSL Windows Subsystem for Linux, optional addon of Windows which allows a user
to run Linux applications on a Windows system [44]. 10, 11, 17, 21, 27, 32, 34,
35, 37, 49–51, 56

XML Extensible Markup Language, defines the format of certain objects [42]. 7, 18,
21, 22, 30, 51

Bibliography

[1] About Ruby. URL: https://www.ruby-lang.org/en/about/.

[2] The anatomy of a full path URL. URL: https://zvelo.com/
anatomy-of-full-path-url-hostname-protocol-path-more/.

[3] APT. URL: https://wiki.ubuntuusers.de/APT/.

[4] CVE: Mainpage. URL: https://cve.mitre.org/.

[5] Docker overview. URL: https://docs.docker.com/get-started/
overview/.

[6] HTTP request methods – what are HTTP requests? URL: https://rapidapi.
com/blog/api-glossary/http-request-methods/.

[7] Mozilla: Blob. URL: https://developer.mozilla.org/de/docs/
Web/API/Blob.

[8] Mozilla: Content security policy (CSP). URL: https://developer.
mozilla.org/en-US/docs/Web/HTTP/CSP.

[9] Mozilla: Document.write. URL: https://developer.mozilla.org/
en-US/docs/Web/API/Document/write.

[10] Mozilla: Document.writeln. URL: https://developer.mozilla.org/
en-US/docs/Web/API/Element/writeln.

[11] Mozilla: Element.innerHTML. URL: https://developer.mozilla.org/
en-US/docs/Web/API/Element/innerHTML.

[12] Mozilla: Element.outerHTML. URL: https://developer.mozilla.org/
en-US/docs/Web/API/Element/outerHTML.

[13] Mozilla: Mediastream. URL: https://developer.mozilla.org/de/
docs/Web/API/Mediastream.

63

https://www.ruby-lang.org/en/about/
https://zvelo.com/anatomy-of-full-path-url-hostname-protocol-path-more/
https://zvelo.com/anatomy-of-full-path-url-hostname-protocol-path-more/
https://wiki.ubuntuusers.de/APT/
https://cve.mitre.org/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://rapidapi.com/blog/api-glossary/http-request-methods/
https://rapidapi.com/blog/api-glossary/http-request-methods/
https://developer.mozilla.org/de/docs/Web/API/Blob
https://developer.mozilla.org/de/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://developer.mozilla.org/en-US/docs/Web/API/Element/writeln
https://developer.mozilla.org/en-US/docs/Web/API/Element/writeln
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML
https://developer.mozilla.org/de/docs/Web/API/Mediastream
https://developer.mozilla.org/de/docs/Web/API/Mediastream

BIBLIOGRAPHY 64

[14] NVD: General information. URL: https://nvd.nist.gov/general.

[15] PcMag: cookie. URL: https://www.pcmag.com/encyclopedia/
term/cookie.

[16] PcMag: UTF-8. URL: https://www.pcmag.com/encyclopedia/
term/utf-8.

[17] sec-helpers 0.3.2, download page. URL: https://pypi.org/project/
sec-helpers/.

[18] What is an API? URL: https://www.redhat.com/en/topics/api/
what-are-application-programming-interfaces.

[19] What is Linux? URL: https://www.redhat.com/en/topics/linux/
what-is-linux.

[20] What is Ubuntu? URL: https://help.ubuntu.com/lts/
installation-guide/s390x/ch01s01.html.

[21] Cross site scripting prevention cheat sheet, November 2020. URL:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_
Site_Scripting_Prevention_Cheat_Sheet.html.

[22] CSP: default-src, December 2020. URL: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Content-Security-Policy/default-src.

[23] CSP evaluator, January 2020. URL: https://github.com/google/
csp-evaluator.

[24] DOM based prevention cheat sheet, 2020. URL: https://
cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_
Prevention_Cheat_Sheet.html.

[25] How to prevent XSS, 2020. URL: https://portswigger.net/
web-security/cross-site-scripting/preventing.

[26] PortSwigger, DOM-based XSS, October 2020. URL: https://portswigger.
net/web-security/cross-site-scripting/dom-based.

[27] W3, the HTML coded character set, 2020. URL: https://www.w3.org/
MarkUp/html-spec/html-spec_13.html.

[28] WAPITI, 2020. URL: http://www.ict-romulus.eu/web/wapiti/
home.

https://nvd.nist.gov/general
https://www.pcmag.com/encyclopedia/term/cookie
https://www.pcmag.com/encyclopedia/term/cookie
https://www.pcmag.com/encyclopedia/term/utf-8
https://www.pcmag.com/encyclopedia/term/utf-8
https://pypi.org/project/sec-helpers/
https://pypi.org/project/sec-helpers/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/linux/what-is-linux
https://www.redhat.com/en/topics/linux/what-is-linux
https://help.ubuntu.com/lts/installation-guide/s390x/ch01s01.html
https://help.ubuntu.com/lts/installation-guide/s390x/ch01s01.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://github.com/google/csp-evaluator
https://github.com/google/csp-evaluator
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://portswigger.net/web-security/cross-site-scripting/preventing
https://portswigger.net/web-security/cross-site-scripting/preventing
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://www.w3.org/MarkUp/html-spec/html-spec_13.html
https://www.w3.org/MarkUp/html-spec/html-spec_13.html
http://www.ict-romulus.eu/web/wapiti/home
http://www.ict-romulus.eu/web/wapiti/home

BIBLIOGRAPHY 65

[29] Zap proxy mainpage, 2020. URL: https://www.zaproxy.org/.

[30] eval() documentation, January 2021. URL: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/eval.

[31] David Mirza Ahmad, Bruce Leidl, and David McKinney. About
Vega, 2014. URL: https://subgraph.com/vega/documentation/
about-vega/index.en.html.

[32] Kenneth Leroy Busbee. Integrated development environment. URL:
https://press.rebus.community/programmingfundamentals/
chapter/integrated-development-environment/.

[33] Steve Champeon. JavaScript: How did we get here?, July 2016. URL:
https://web.archive.org/web/20160719020828/http:
//archive.oreilly.com/pub/a/javascript/2001/04/06/
js_history.html.

[34] Donald Rosato Dominick Rosato. Central processing unit. URL:
https://www.sciencedirect.com/topics/engineering/
central-processing-unit.

[35] Andrew Dyster. ezyzip: Mainpage. URL: https://www.ezyzip.com/.

[36] Ahmed Mohamed Elhady. Complete cross-site scripting walkthrough, September
2020. URL: www.infosec4all.tk.

[37] Josh Fruhlinger. Malware explained: How to prevent, detect and recover
from it. URL: https://www.csoonline.com/article/3295877/
what-is-malware-viruses-worms-trojans-and-beyond.html.

[38] Daniel Garcia. GoLismero, Github page. URL: https://github.com/
golismero/golismero.

[39] Romain Gaucher. Grabber, 2006. URL: http://rgaucher.info/beta/
grabber/.

[40] Jeremiah Grossman, Robert Hansen, Petko D. Petkov, and Anton Rager. XSS
Attacks; Cross Site Scripting Exploits and Defense. Amorette Pedersen, 2007.

[41] B. B. Gupta and Pooja Chaudhary. CROSS-SITE SCRIPTING ATTACKS; Classifi-
cation, Attack and Countermeasuments. CRC Press, 2020.

https://www.zaproxy.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://subgraph.com/vega/documentation/about-vega/index.en.html
https://subgraph.com/vega/documentation/about-vega/index.en.html
https://press.rebus.community/programmingfundamentals/chapter/integrated-development-environment/
https://press.rebus.community/programmingfundamentals/chapter/integrated-development-environment/
https://web.archive.org/web/20160719020828/http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
https://web.archive.org/web/20160719020828/http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
https://web.archive.org/web/20160719020828/http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
https://www.sciencedirect.com/topics/engineering/central-processing-unit
https://www.sciencedirect.com/topics/engineering/central-processing-unit
https://www.ezyzip.com/
www.infosec4all.tk
https://www.csoonline.com/article/3295877/what-is-malware-viruses-worms-trojans-and-beyond.html
https://www.csoonline.com/article/3295877/what-is-malware-viruses-worms-trojans-and-beyond.html
https://github.com/golismero/golismero
https://github.com/golismero/golismero
http://rgaucher.info/beta/grabber/
http://rgaucher.info/beta/grabber/

BIBLIOGRAPHY 66

[42] David Hemmendinger. Britannica: XML. URL: https://www.britannica.
com/technology/XML.

[43] Álvaro Dı́az Hernández. DDoS attacks through XSS, March 2015. URL: https:
//www.incibe-cert.es/en/blog/ddos-attacks-through-xss.

[44] Computer Hope. WSL. URL: https://www.computerhope.com/
jargon/w/wsl.htm.

[45] Yiftach Keshet. Cynet, browser exploits – legitimate web surfing turned
death trap, January 2020. URL: https://www.cynet.com/blog/
browser-exploits-legitimate-web-surfing-turned-death-trap/.

[46] Tasos Laskos. Result page of Arachni scan, June 2014.

[47] Tasos Laskos. Arachni, readme, 2017. URL: https://rubydoc.info/
github/Arachni/arachni#contributing.

[48] Tasos Laskos. Arachni is no longer maintained, January
2020. URL: https://www.arachni-scanner.com/blog/
arachni-is-no-longer-maintained/.

[49] Jim Manico and Robert RSnake Hansen. OWASP, XSS filter evasion cheat-
sheet, September 2020. URL: https://owasp.org/www-community/
xss-filter-evasion-cheatsheet.

[50] Xavi Mendez. Github Wfuzz mainpage. URL: https://github.com/
xmendez/wfuzz.

[51] CWE over Time NIST. National Vulnerability Database, 2020.
URL: https://nvd.nist.gov/general/visualizations/
vulnerability-visualizations/cwe-over-time.

[52] Project Top Ten OWASP. OWASP, 2017. URL: https://owasp.org/
www-project-top-ten/.

[53] Sohom Pramanick. History of Python. URL: https://www.geeksforgeeks.
org/history-of-python/.

[54] Andres Riancho. W3af main page, 2013. URL: http://w3af.org/.

[55] Isaac Rodriguez. What is Pip? a guide for new pythonistas. URL: https:
//realpython.com/what-is-pip/.

https://www.britannica.com/technology/XML
https://www.britannica.com/technology/XML
https://www.incibe-cert.es/en/blog/ddos-attacks-through-xss
https://www.incibe-cert.es/en/blog/ddos-attacks-through-xss
https://www.computerhope.com/jargon/w/wsl.htm
https://www.computerhope.com/jargon/w/wsl.htm
https://www.cynet.com/blog/browser-exploits-legitimate-web-surfing-turned-death-trap/
https://www.cynet.com/blog/browser-exploits-legitimate-web-surfing-turned-death-trap/
https://rubydoc.info/github/Arachni/arachni#contributing
https://rubydoc.info/github/Arachni/arachni#contributing
https://www.arachni-scanner.com/blog/arachni-is-no-longer-maintained/
https://www.arachni-scanner.com/blog/arachni-is-no-longer-maintained/
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.geeksforgeeks.org/history-of-python/
https://www.geeksforgeeks.org/history-of-python/
http://w3af.org/
https://realpython.com/what-is-pip/
https://realpython.com/what-is-pip/

BIBLIOGRAPHY 67

[56] Pavitra Shankdhar. infosecinstitute, 14 popular web ap-
plication vulnerability scanners, July 2020. URL:
https://resources.infosecinstitute.com/topic/
14-popular-web-application-vulnerability-scanners.

[57] Yogesh Singh. curl command in Linux with exam-
ples. URL: https://www.geeksforgeeks.org/
curl-command-in-linux-with-examples/.

[58] Chris Sullo. Nikto introduction. URL: https://cirt.net/nikto2-docs/
introduction.html.

[59] Kanishk Tagade. Breaking down web application scanning: Know-how
and know-why, July 2020. URL: https://blog.eccouncil.org/
breaking-down-web-application-scanning-how-why/.

[60] F. Tenzer. Marktanteile der führenden Betriebssysteme weltweit
im Oktober 2020, November 2020. URL: https://de.
statista.com/statistik/daten/studie/828610/umfrage/
marktanteile-der-fuehrenden-betriebssystemversionen-weltweit/.

[61] Kevin W. Wall. OWASP Enterprise Security API
(ESAPI), July 2020. URL: https://owasp.org/
www-project-enterprise-security-api/.

[62] Tom Warren. Microsoft will bid farewell to Internet Explorer and legacy Edge
in 2021. URL: https://www.theverge.com/2020/8/17/21372487/
microsoft-internet-explorer-11-support-end-365-legacy-edge.

[63] Dominic Whits. Wikto Github page. URL: https://github.com/
sensepost/wikto.

[64] Michal Zalewski, Niels Heinen, and Sebastian Roschke. Google Code Archive,
SkipfishDoc, 2012. URL: https://code.google.com/archive/p/
skipfish/wikis/SkipfishDoc.wiki.

https://resources.infosecinstitute.com/topic/14-popular-web-application-vulnerability-scanners
https://resources.infosecinstitute.com/topic/14-popular-web-application-vulnerability-scanners
https://www.geeksforgeeks.org/curl-command-in-linux-with-examples/
https://www.geeksforgeeks.org/curl-command-in-linux-with-examples/
https://cirt.net/nikto2-docs/introduction.html
https://cirt.net/nikto2-docs/introduction.html
https://blog.eccouncil.org/breaking-down-web-application-scanning-how-why/
https://blog.eccouncil.org/breaking-down-web-application-scanning-how-why/
https://de.statista.com/statistik/daten/studie/828610/umfrage/marktanteile-der-fuehrenden-betriebssystemversionen-weltweit/
https://de.statista.com/statistik/daten/studie/828610/umfrage/marktanteile-der-fuehrenden-betriebssystemversionen-weltweit/
https://de.statista.com/statistik/daten/studie/828610/umfrage/marktanteile-der-fuehrenden-betriebssystemversionen-weltweit/
https://owasp.org/www-project-enterprise-security-api/
https://owasp.org/www-project-enterprise-security-api/
https://www.theverge.com/2020/8/17/21372487/microsoft-internet-explorer-11-support-end-365-legacy-edge
https://www.theverge.com/2020/8/17/21372487/microsoft-internet-explorer-11-support-end-365-legacy-edge
https://github.com/sensepost/wikto
https://github.com/sensepost/wikto
https://code.google.com/archive/p/skipfish/wikis/SkipfishDoc.wiki
https://code.google.com/archive/p/skipfish/wikis/SkipfishDoc.wiki

	1 Introduction to Cross-site Scripting
	1.1 Persistent Cross-site Scripting
	1.2 Reflected Cross-site Scripting
	1.3 DOM-based Cross-site Scripting
	1.4 Impact of Cross-site Scripting
	1.4.1 Phishing
	1.4.2 Cookie Stealing
	1.4.3 Browser Exploitation
	1.4.4 Denial of Service Attack
	1.4.5 Remote Control on System

	1.5 Frequency of XSS occurrences

	2 Finding XSS Vulnerabilities manually
	2.1 List of all Tested Websites
	2.2 Mechanism used to find Reflected XSS

	3 Web Application Security Scanners
	3.1 Introduction to Automated Scanners
	3.1.1 Discovery
	3.1.2 Fuzzing
	3.1.3 Analyzing
	3.1.4 Authenticated Scan

	3.2 Criterion-Catalogue for judging the Scanners
	3.2.1 Installation and Dependencies
	3.2.2 Complexity of the Interface and usage
	3.2.3 Soundness of the Application
	3.2.4 Duration of the Analysis
	3.2.5 Complexity of interpreting the Results
	3.2.6 Completeness of the Findings

	3.3 Setup for the Tests
	3.4 Testing procedure

	4 Scanner Tests
	4.1 Vega
	4.1.1 Description
	4.1.2 Installation and Dependencies
	4.1.3 Complexity of the Interface and usage
	4.1.4 Soundness of the Application
	4.1.5 Duration of the Analysis
	4.1.6 Complexity of interpreting the Results
	4.1.7 Completeness of the Findings
	4.1.8 Result

	4.2 Skipfish
	4.2.1 Description
	4.2.2 Installation and Dependencies
	4.2.3 Complexity of the Interface and usage
	4.2.4 Soundness of the Application
	4.2.5 Duration of the Analysis
	4.2.6 Complexity of interpreting the Results
	4.2.7 Completeness of the Findings
	4.2.8 Result

	4.3 Grabber
	4.3.1 Description
	4.3.2 Installation and Dependencies
	4.3.3 Complexity of the Interface and usage
	4.3.4 Problems with running the scan

	4.4 Zed Attack Proxy
	4.4.1 Description
	4.4.2 Installation and Dependencies
	4.4.3 Complexity of the Interface and usage
	4.4.4 Soundness of the Application
	4.4.5 Duration of the Analysis
	4.4.6 Complexity of interpreting the Results
	4.4.7 Completeness of the Findings
	4.4.8 Result

	4.5 Wapiti
	4.5.1 Description
	4.5.2 Installation and Dependencies
	4.5.3 Complexity of the Interface and usage
	4.5.4 Soundness of the Application
	4.5.5 Duration of the Analysis
	4.5.6 Complexity of interpreting the Results
	4.5.7 Completeness of the Findings
	4.5.8 Result

	4.6 W3af
	4.6.1 Description
	4.6.2 Problem with the Installation

	4.7 Wfuzz
	4.7.1 Description
	4.7.2 Installation and Dependencies
	4.7.3 Complexity of the Interface and usage
	4.7.4 Soundness of the Application
	4.7.5 Duration of the Analysis
	4.7.6 Complexity of interpreting the Results
	4.7.7 Completeness of the Findings
	4.7.8 Result

	4.8 Grendel-Scan
	4.8.1 Description
	4.8.2 Problem with the Installation

	4.9 Arachni
	4.9.1 Description
	4.9.2 Installation and Dependencies
	4.9.3 Complexity of the Interface and usage
	4.9.4 Soundness of the Application
	4.9.5 Duration of the Analysis
	4.9.6 Complexity of interpreting the Results
	4.9.7 Completeness of the Findings
	4.9.8 Result

	4.10 GoLismero
	4.10.1 Description
	4.10.2 Installation and Dependencies
	4.10.3 Complexity of the Interface and usage
	4.10.4 Problems with running

	4.11 Nikto/Wikto
	4.11.1 Description
	4.11.2 Installation and Dependencies
	4.11.3 Complexity of the Interface and usage
	4.11.4 Soundness of the Application
	4.11.5 Duration of the Analysis
	4.11.6 Complexity of interpreting the Results
	4.11.7 Completeness of the Findings
	4.11.8 Result

	4.12 Scanners out of scope
	4.13 Comparison
	4.13.1 Installation and Usability
	4.13.2 Duration and Soundness
	4.13.3 Findings and Results
	4.13.4 Conclusion

	5 Analysis and Mitigation of found Flaws
	5.1 Analyzing the results of a Web Crawler
	5.1.1 Analyzing the Request
	5.1.2 Analyzing the Response

	5.2 Mitigation tactics
	5.2.1 Input Validation and Sanitization
	5.2.2 Output Encoding
	5.2.3 Mitigating through CSP

	6 Conclusion and Future Work
	7 Anleitung zu wissenschaftlichen Arbeiten

