
Archiving in Small and Medium
Enterprises

Bachelor Thesis

Marcel I. Chavez Panduro
from

Wattenwil BE, Switzerland

Philosophisch-naturwissenschaftliche Fakultät
der Universität Bern

8. Januar 2019

Prof. Dr. Oscar Nierstrasz

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Nowadays every company has to store almost every sheet of paper that is
produced during its day-to-day business. In almost every process one or
multiple documents have to be printed out to ensure correct book keeping.
All these various papers have to be stored for over ten years.

The amount of paper constantly grows over each working day and after
a short period of time, this mass of files takes up a lot of space already and
most of the companies need an extra storageroom for these files. This kind
of archiving could be avoided with the current technical possibilities.

In this bachelor thesis I evaluate a valid approach and try to implement a
simple digital archive. A lot of processes could be optimized especially when
the company is already using an enterprise resource planning system. During
the process of planning and developing I encountered multiple challenges
and tried to describe different approaches for a solution. The result of this
bachelor thesis was a working solution, however with some drawbacks and
unfinished requirements.

i

Contents

1 Introduction 1
1.1 Archive Requirements . 3

2 Concept 4
2.1 WebArchive . 4

2.1.1 OAIS Model . 4
2.1.1.1 Ingest . 7
2.1.1.2 Data Management 8
2.1.1.3 Archival Storage . 8
2.1.1.4 Access . 8
2.1.1.5 Administration . 9
2.1.1.6 Preservation Planning 9

2.1.2 Web Access and Definition . 9
2.2 Database . 11

2.2.1 Database CRUD . 13

3 Implementation 15
3.1 MVC in the Context of the WebArchive 15
3.2 Authentication and Authorization . 16
3.3 Security . 17

3.3.1 Access Points . 18
3.3.2 WORM . 19
3.3.3 File Encryption and Certification 19

3.4 File Validation . 20
3.5 Storing Structure . 22
3.6 User Interface . 22

3.6.1 Search . 22
3.6.2 Authorization . 23
3.6.3 Administration . 24

3.7 Summary . 25

ii

CONTENTS iii

4 Conclusion and future work 27
4.1 Lessons Learned . 27
4.2 In Process . 28
4.3 Enhancements . 28

5 Anleitung zum wissenschaftlichen Arbeiten 29
5.1 Architectures . 30

5.1.1 Monolithic Architecture . 30
5.1.2 Self-Contained System Architecture 30
5.1.3 Microservice Architecture . 30

5.2 Targeted Architecture . 31
5.3 Consequences for the WebArchive . 32

5.3.1 User Interface . 32
5.3.2 Data Set . 33
5.3.3 Business Logic . 33
5.3.4 Technology . 33

1
Introduction

Every company listed in the commercial register is obliged to manage an archive. The
guidelines and requirements for an archive are regulated in different legal texts. In
Switzerland these laws are written down in the following books: Obligationenrecht
(OR), Verordnung über die Führung und Aufbewahrung der Geschäftsbücher (GeBüV),
Datenschutz (DSG), Mehrwertsteuer Gesetz (MWStG), Strafgesetzbuch (StGB), to
mention some of the most important ones. These legal texts target the “classical”
archiving (as in the storage of paper; physical storage) first and foremost and not explicitly
digital archiving. One thing that we can take away from these legal texts is the definition
about what should be stored in an archive: All books that are necessary to prove the
value and represent the debt and accounts receivable of the company have to be stored
for about ten years (for more detailed information about what the company is obliged
to store please consult the mentioned legal texts). Not every document in a company is
valued the same. Some files are more important and still have to be stored in paperform
despite having a working digital archive. In this bachelor thesis I will concentrate on the
day-to-day business. This includes bills, delivery orders, offers and other files which are
produced daily.

Depending on the size and business sector of the company the daily mass of pro-
duced paper is extremely high. The company often has to rent an additional room to
store this data. Considering the state of technology this is a cumbersome process and
sometimes unnecessary. Nowadays companies are already working with an enterprise
resource planning (ERP) system. That would mean that almost all documents are created
and stored in digital form in the environment of the ERP system. Despite the digital
availability the companies are obliged to print out all of the documents, transport them

1

CHAPTER 1. INTRODUCTION 2

to the archive storage room and archive them correctly. The reason for this process is
that most of these companies don’t have a digital archive that is legally accepted. The
company I’m currently working for is aware of this problem. A simple solution for an
archive system already exists but it just works as a file storage and would not withstand
an assessement of the government.

So it is not surprising that the idea for the subject of this bachelor thesis comes from
the company where I work. I have the possibility to develop a prototype of the digital
archive in cooperation with my company. This is a first step to offer our customers a
valid alternative to the “classical” archive. The company where I work already has a lot
of running systems for their different customers and this project should be embedded
in the current environment. The centerpiece of the company is an ERP system with
multiple modules for finances, addresses, materials, material planning and many more.
The wider usage of internet applications drove the company to implement parts of the
ERP in web applications. In the near future customers will be able to use some of the
ERP modules online. In order to achieve this, the applications must have direct access
to the data of the ERP. This implies that the customer already uses the ERP system and
has the necessary licenses. In future it should be possible to deploy one or multiple web
applications independently from the central data management of the ERP system. The
goal is to present a flexible solution on different platforms. The intended result of this
bachelor thesis is to develop a functioning digital archive system, known as WebArchive,
that will be deployed as one of many web applications and cooperate with the existing
ERP system.

This bachelor thesis is a prototype for a digital archive in the environment of an
ERP system and allowed me to conduct some research in the subject of archiving. I will
present a possible approach to develop a valid and useful digital archive. It will address
the arising challenges and suggest possible technologies or solutions to overcome these
problems. In the scope of this bachelor thesis I will always refer to the implementation
of the digital archive as WebArchive.

In the course of this bachelor thesis I will often refer to an ERP system by which I
mean the ERP system that is developed by the company I’m working at. Otherwise I will
clearly indicate when I’m referring to a different ERP system or to the term ERP itself.

Because the Bachelor thesis is written in cooperation with the company where I work,
I’m not able to present the code or snippets of code in this documentation.

CHAPTER 1. INTRODUCTION 3

1.1 Archive Requirements
The digital archive would bring a lot of value to companies but it also brings a lot of
challenges. It requires a complex system that ensures the integrity of the files during
all stages of archiving (upload, download and storage). The system should also be
able to process various user requests. All automated functionalities and each user
access should be supervised to ensure a correct procedure. The government itself has
some requirements about how to implement an archive system. Unfortunately these
requirements are specified in a completely theoretical manner. This leads to a lot of
interpretation for the developer in the actual implementation of a digital archive system.
Following this I will present the specifications of the government of Switzerland1. I
considered which part of the system is targeted with each requirement and have listed
them below.

Integrity The archive system has to ensure the data integrity over the whole duration of
storage. It should not be possible to alter or delete files or part of the data without
the application or the administrator knowing. This targets the security aspects of
the system and also the process of uploading, storing and downloading of the data.

Understandability The document should be understandable for a long period of time.
This requires from the digital archive that additional metadata for the purpose of
understandability has to be extracted. The most basic information would be to
extract the format of the file. This way the user receives a document with the
format ending and can therefore open the document with a suitable program (e.g.
PDF can be opened with any PDF reader).

Originality The structure and the overall appearance of a file does not change during
the time of storage. The data that has been uploaded looks the same after a later
download regardless of the time passed and amount of accessing.

Authenticity The author and the origin of the document is available and coupled with
the data. Clean authentication processes are necessary and for traceability, each
request has to be registered and stored. Each interaction with the application should
be logged.

Accessability The stored documents have to be accessible all the time or at least at
short notice. The system or administrator should be able to provide the necessary
data (single access, packet of multiple files or the entirety of files). Even in the
instance that a file is damaged it should be possible to reproduce the file (e.g. from
a backup).

1www.egovernment.ch/de/dokumentation/rechtliche-fragen/elektronische-archivierung accessed 2018-
12-14

https://www.egovernment.ch/de/dokumentation/rechtliche-fragen/elektronische-archivierung/

2
Concept

In the first stage of the bachelor thesis the goal was to create a concept. In a theoretical
manner I wanted to plan and outline the architecture of the WebArchive. This required
a lot of reading and gathering of information. From the begining I decided to split the
concept into two different parts. In section 2.1 the general structure and organisation
of the web application WebArchive is discussed. Section 2.2 is about the setup of the
database.

2.1 WebArchive
During my research, I encountered the OAIS (Open Archival Information System). The
OAIS is a defined ISO-Standard 14721 since 2003 and has been extended to version
2 in 2012. The concept and architecture used in this bachelor thesis is largely derived
from the Magenta Book from June 2012 [1]. The OAIS is a reference model for digital
archiving and especially targets long-term archiving. It offers no concrete implementation
or technology for developers but provides concepts and approaches for the architecture
of an archive system. For a more detailed knowledge and understanding I refer to the
actual book (see bibliography [1]).

2.1.1 OAIS Model
The OAIS model provides a framework for understanding, terminology and concept of a
long-term archive system. It offers an abstract view on how to organize and theoretically

4

CHAPTER 2. CONCEPT 5

Figure 2.1: OAIS model (based on the Magenta Book [1] p. 4-1, figure 4-1: OAIS
Functional Entities)

build / implement an archive system. It especially targets archiving for the long term. This
bachelor thesis focuses more on short-term archiving and therfore some parts of the OAIS
model have been disregarded because they would have been too time consuming and
wouldn’t bring immediate value. That doesn’t mean that these subjects will be forgotten
and never appear in a final version. I have to point out that in this bachelor thesis I built
version 1.0 with only the most important functionalities. Further development will be
needed to improve the functionality of the WebArchive.

First the Magenta Book [1] defines all used terminologies for understanding. Some
of these terms will be used in this document. The most important ones are listed and
shortly explained afterwards in own words based on the definitions from the Magenta
Book (p. 1-8, section 1.7.2 [1]). Other less frequently used terms will be explained as
needed.

Submission Information Package (SIP) Set of data that is submitted by a Producer to
construct or update one or several AIPs.

Archival Information Package (AIP) The AIP consists of the information that is the

CHAPTER 2. CONCEPT 6

target of archiving and the Preservation Description Information (this will be
elaborated in more detail in section 2.2)

Dissemination Information Package (DIP) The DIP is the package that is returned
upon a successful consumer request. It consists of the information of one or more
AIPs.

Descriptive Information Information that is provided mainly from the producer but
also contains information from the file itself. This set of data helps to find, order
and / or retrieve data. Generally speaking this is the data that is finally stored to
the database.

Content Information Part of any Information Package (AIP, SIP, DIP, Descriptive Infor-
mation) that contains the target of preservation and the Representation Information.

Representation Information Part of the Content Information that helps to make the
target of preservation understandable to the Consumer.

Figure 2.1 represents the abstract OAIS model of an archive system. It especially visual-
izes the interface and the environment of an archive system. Each path of communication
is characterized by a defined information package (SIP, AIP, DIP, Descriptive Informa-
tion). The dotted lines indicate an implicit data flow from the Administration to distribute
information. Only Ingest, Access and Administration offer an interface to external actors.
All other communication should be internal. The OAIS model splits the external sources
which interact with the archive system in three groups:

Producer This entity is an external participant who is providing data to the archive.
This can be an user, another archive or information system.

Consumer A user (or entity) with the goal to retrieve data from the archive system.
OAIS defines a specific class of consumer: “A special class of Consumers is the
Designated Community. The Designated Community is the set of Consumer who
should be able to understand the preserved information.”(The Magenta Book p.
2-2 [1])

Management Sets the policy for the archive system. For example access rights, user
management or data structure of the AIP and DIP.

We now know all the stakeholders that are interacting with the archive system and have
some definitions for the most frequently used terms in the OAIS model. All these inter-
actions and the communication happens through interfaces. The OAIS model provides
a detailed explanation for each access and communication channel. Furthermore the
internal interfaces and information flows are described. The process and the information
distribution is split into six functional entites. In figure 2.2 we see a possible and concrete

CHAPTER 2. CONCEPT 7

Figure 2.2: Class structure according to OAIS

implementation for an archive system accordingly to the OAIS model. This figure is the
blueprint of my implementation for the WebArchive. The blueprint from figure 2.2 is a
more detailed view for the OAIS model in figure 2.1. The terms used in figure 2.1 and
during this bachelor thesis are according to the OAIS model from the Magenta Book
([1] p. 4-1,4-2,4-3 section 4.1: Functional Model). Each of the six parts is reference
as a “Functional Entity” (Ingest Functional Entity, Data Management Functional En-
tity, Archival Storage Functional Entity, Access Functional Entity and Administration
Functional Entity). For convenience the term “Functional Entity” is omitted.

2.1.1.1 Ingest

The entity Ingest provides the entry point for every SIP and handles the communication
with the Producer. Every SIP will first be submitted to the “Submission Controller” who
handles the communication with the Producer (request and response). The “Submission
Controller” extracts from the SIP (and the additional header data) the needed information
and transforms it into an AIP. The AIP will be forwarded to the “File Controller” and

CHAPTER 2. CONCEPT 8

will be validated according to the specifications given by the Administration (more on
the subject file validation see section 3.4). After the validation process is successfully
terminated the “Submission Controller” immediately calls the “File Certification” along
with the validated AIP. The “File Certification” extracts the Content Information and
creates the certificated file (for some thoughts on certification and encryption see section
3.3.3). As soon as this process is terminated the Descriptive Information is separated
from the AIP and sent to the Data Management.

2.1.1.2 Data Management

The Data Management works under the assumption that the Descriptive Information is
complete and formatted correctly. All database transactions concerning the Descriptive
Information are handled entirely in this entity. The Ingest entity sends the Descriptive
Information of the currently processed AIP to the Data Mangement where the statements
for the database are prepared and executed. The part “File Modeling” is there to cor-
rectly fill in the needed models and database fields. The Data Management is not only
responsible for storing the data but also has to prepare queries from the Consumer in the
“File Info Retriever”. The search statements are provided by the search engine and sent
to the “File Info Retriever”. As soon as a result for the search is available the “File Info
Retriever” returns a proper formatted response.

2.1.1.3 Archival Storage

Archival storage does the actual storing and retrieving of the AIP packages. It’s also
responsible for disaster recovery and surveillance of the storage environment. From the
Ingest entity the Archival Storage receives a valid and prepared AIP. The “FileSaver”
only searches the right path based on the AIP and stores the Content Information. On the
other side the Archival Storage has to retrieve the Content Information for any Consumer
requests. The Content Information has to be checked and validated before returning to
the Access entity. These steps are handled by the “File Retriever” and “File Preparation”.

2.1.1.4 Access

The communication with the Consumer is carried out by the Access entity. All incoming
requests from the Consumer are sent to the “Dissemination Controller”. Search requests
are forwarded to the Data Management and if the Consumer eventually decides to
download a file, then the request is handled by the Archival Storage. The response from
the Archival Storage will be wrapped up in a DIP and sent to the Consumer.

CHAPTER 2. CONCEPT 9

2.1.1.5 Administration

Only the Management has access to the Administration and is therefore responsible for
the administration of the archive system. This includes user management, surveillance,
(if needed) migration and contracting. The Administration takes the control over the
authentication and authorization in “Authority”. Furhermore all responsibilities of
creating and surveilling the protocol is handled by the Administration. The protocol is
created when Ingest or Access make an authentication request and also the actions of the
Producer or Consumer will be logged as soon as the process is terminated. Additionally
the Management is able to manage the contract between Producer / Consumer in the
entity Administration. This contract describes the process of uploading / downloading a
file and defines the data set that has to be provided by the Producer.

2.1.1.6 Preservation Planning

This part of the OAIS model targets the long-term archiving. The Preservation Planning
ensures the accessability and understandaility of all the files stored in the archive over
the long term, even if technologies to represent stored data are deprecated or no longer
supported. Periodic analysis reports, constant surveillance and recommended updates
are part of the Preservation Planning entity. A simple way of implementation is adding a
documentation to the archive system with guidelines and rules. This requires manual
reviews by the developer to update the documentation.

2.1.2 Web Access and Definition
Producer, Consumer and Administration need a reliable way to communicate with the
WebArchive. It should enable the users to do their job and at the same time restrict
them from malicous access. I had to define a standard interface and routes where
the Producer, Consumer and Administration can reach the system. To offer a simple
and intuitive solution, the WebArchive makes use of the RESTful API architecture.
The communication with the environment of the WebArchive happens with the HTTP
protocol (or rather the HTTPS protocol to ensure additional security measures). A
RESTful API has to meet six constraints which are first asserted by R. T. Fielding1. The
following criteria are based on the dissertation “Architectural Styles and the Design of
Network-based Software Architectures” of R. T. Fielding (p. 76-86, chapter 5 [4]) and
written in own words:

Client-Server Clear separation between client and server. This enables both parts to
evolve independently.

1www.ics.uci.edu/∼fielding/pubs/dissertation/rest arch style.htm accessed 2018-01-17

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

CHAPTER 2. CONCEPT 10

Figure 2.3: Webaccess

Stateless Each request from the client is clear and does not need additional status
information stored on the server. Each request with the same data should result in
the same response.

Cache It should be possible to mark data as cachable (explicit or implicit) to provide
more efficient access to already retrieved data.

Uniform Interface The server provides a uniform interface to which the client is able to
“talk”. This requires that the server implement generalizations of communication
like making use of the HTTP actions GET, POST, PUT and DELETE.

Layered System The system is a multi layered system where on each layer different
representations of data can be obtained. This is mostly useful for legacy services.

Code On Demand This allows the client to download and execute code in form of ap-
plets and scripts. This requirement is optional and doesn’t have to be implemented.

In figure 2.3 a simple representation of the available interface is visible. For each user
group a set of routes are available and only the authentication (POST /login) is shared

CHAPTER 2. CONCEPT 11

between users. Naturally, it is possible for a user to be a Producer and Consumer. This
allows one user to access two sets of access routes with proper authenticaiton. All paths
in the section Administration require additional user authorization and are only accessible
to the Management.

Ingest takes all archiving requests. To make use of this route, the user has to be
properly authenticated and authorized. As soon as the user is logged in, he is able to
upload a file which he wants to store on the WebArchive. Along with the file, additional
header data has to be submitted. In several processes the posted data is validated. If
inconsistencies happen in this process, all data is dropped and the user will be notified
with a “BadRequest” response.

Like with Ingest, the user has to be authenticated and authorized to use the platform
from the Access. On this platform, the user is allowed to search and download data from
the archive. Similar to the Ingest, invalid queries end in a “BadRequest” response. If an
error occurs in the WebArchive an “Internal Server Error” is returned.

Management needs more connections because the administrator has to be able to
survey the allowed users and the corresponding contract between client and server (see
section 2.1.1.5). This set of access routes is a first attempt to give the Management some
rights to manage a digital archive. The access routes for the administration can be (and
eventually has to be) further extended to offer more flexibility to the management.

In this section we should also address the risk of sensitive data exposure. It is not
advised to put sensitive data in an URL string, not even when we make use of the HTTPS
protocol. The URL is saved in the browser history and everyone with access to this
workstation could read the sensitive data. A common way of use is to add parameters to
the URL for saving user requests. If the URL carries IDs from models, any user would
be able to simply add some numbers to get access to other documents. Sometimes it is
necessary or useful to just send the ID with the URL to avoid saving the state of the user
on the server side. In this case it would be advised to use UUID instead of normal ID.
The users would still see the UUID of the model but they can’t exploit it.

2.2 Database
The OAIS model always uses Information Packages (AIP, DIP, SIP, Descriptive Infor-
mation) for communication. The Information Package is split into two parts: Content
Information and Preservation Description Information (PDI). I already explained the
term Content Information briefly. For the database, the PDI is more important and is
absolutely necessary to store. Although it could be possible to store the complete Content
Information in the Database and for long-term archive it becomes necessary eventually.
Representation Information can be an especially important part of the Information Pack-
age. If this part is stored in the database, it would be possible to open files even when the
format is out-of-date. In the WebArchive I assume that the formats I allow to be stored

CHAPTER 2. CONCEPT 12

are existing at the time of storage and can be opened by the Consumer without further
information. In this section we take a closer look at the PDI. The OAIS model gives a
good overview of the values that should be gathered and stored in the database. PDI can
be categorized in five parts. Following, these parts are shortly explained.

Provenance relates to the origin of the Content Information and the processing history.

Context describes the relation of the document to the outside.

Reference is a set of identifiers with which the information content is uniquely identified.

Fixity protects the document from malicious alteration (hash value, certification, en-
cryption)

Access rights define the distribution and usage of the preservation data.

Figure 2.4: Database Model

Based on the provided structure of the OAIS model, I created the database model in
figure 2.4. This is the simplest way to implement the database model and can surely be
extended with additional values and tables. The focus lies on the tables that are essential
for the archive system and how they are associated with the OAIS model. Naturally, each
system works in a different way and therefore more tables are necessary. Additional
information concerning authentication, authorization or cache has to be stored in separate
tables.

CHAPTER 2. CONCEPT 13

Saving / Access Protocol For each login and the following action (upload or download)
a corresponding entry will be made. This is a requirement from the government to
offer traceability and indicates the originality of the document. It also relates to
the Provenance of the OAIS model. Each protocol entry is related to a version and
document that was uploaded or downloaded.

Document The table Document holds data that is unchanged for every version of a file
that is uploaded. As soon as a file is uploaded, a new entry will be made with a
unique ID. The ID for the Document table is an UUID because I want to use this
ID as a parameter in the URL to retrieve corresponding versions. The Document
holds a reference ID called d1 object id. This is the ID used in the ERP system.
Furthermore the Document stores the filename, bucket and tags.

Version To every Document entry a new version is created. For every change to a
document that should be archived, a new version is created. Versions will never be
replaced or altered. The database entry Version stores the file-specific data: version
number, file size, hash value, date and author. This data set targets the requirement
Fixity and fullfiels a part of Provenance by storing the author.

Bucket This is a helper table. The purpose of this table is to store the absolute path
to folders where the files are being stored. The concept of the bucket will be
explained later in section 3.5.

Reference, Authentication, Authorization, Cache These tables are suggestions about
what a system also has to include for proper functionality. However, the Authen-
ticaion and Authorization have to be implemented in someway to guarantee the
point Access Rights from the OAIS model.

2.2.1 Database CRUD
CRUD stands for Create, Read, Update and Delete. These are the four basic functions
of persistent storage2. In a relational database, each function can be assigned to an
operation (create - INSERT, read - SELECT, update - UPDATE, delete - DELETE). In
each database the root database user is able to create new users with different rights.
With this simple functionality (that is provided by the database) I am able to ensure
some protection for the data. In an archive system I can limit and control the work of an
application by assigning a user with specific rights. In reference to the figure 2.4 shown
above, the application should not be allowed all rights to ensure that important data is not
altered or deleted by accident or through malicous attacks. My first approach suggests to
create two different database users and grant them different access rights. For one, the

2https://en.wikipedia.org/wiki/Create, read, update and delete accessed 2018-12-14

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

CHAPTER 2. CONCEPT 14

web application WebArchive would receive a set of permissions (refered to as DB-user)
and the administrator of the WebArchive would receive a separate set of permissions
(refered to as DB-administrator).

The protocols for example should only be inserted once and the DB-user would
have no authority to alter or change such a protocol. The SELECT command should
be reserved for the DB-administrator only. This would prevent accidental or malicious
alterations of the protocols from the daily workload of the WebArchive.

Based on the OAIS model the storing of the Descriptive Information happens after
the validation of the file. The DB-user should be able to create the Document and Version
entry for the corresponding AIP. Afterwards, the DB-user has no reason to alter or delete
these values. However, the user must be able to search for specific names or even tags
that are stored in the database. The DB-user has therefore the right to INSERT and
SELECT all values on the tables Document and Version.

Only the DB-administrator should be permitted to alter the content of the Bucket
table. Accidental deletion or changing through the DB-user would not erase all stored
files but the files would be lost on the storage unit. The administrator would have to
manually search the bucket and restore the bucket entry. However the DB-user must
have access to this table because the absolute path to a bucket is stored there. Therefore
permission to SELECT is sufficient for the DB-user.

The approach of two different roles for database users would add an additional layer
of protection to the data. Nevertheless both of these roles would be embedded in the same
application. The question arises if this implementation is worth the effort. Depending
on the used framework it could be a cumbersome process to add an additional user
and clearly separate these two users. With the authentication and authorization of the
WebArchive I already define different access rights for separate entities and therefore
I don’t see the advantage of two separate database users. The documentation of the
WebArchive includes a set of rules about how the database should be used and which
tables should be accessed by the WebArchive user and the WebArchive administrator.
For further development of the WebArchive, these guidelines should ensure proper use
of the data and prevent developers from misusing the database.

Eventually it could be a possibility to extract the part of Administration completely
from the WebArchive and develop a separate application. In this case the permissions
for the WebArchive database user could be reduced to a minimum and simultaneously it
would be possible to enrich the set of permissions for the administrator. Depending on
the development in the company where I work, a new concept would be required for the
Administration.

3
Implementation

The next step was to implement the WebArchive according to the concept. The OAIS
provides a well defined structure and organisation to an archive. The organisation of the
system is visible in figure 2.2 and I tried to stick to it as closely as possible. I did that by
organising the package and class structure as shown in figure 2.2.

In almost every stage of development a problem surfaced or I had to decide on
a specific technology. I would like to highlight these problems in this chapter and
explain why I classfied them as problems. I also would like to present some solutions
or approaches to fix these problems. Most of these suggestions are theoretical only and
have not been implemented in the actual version of WebArchive 1.0. Nonetheless I tried
to take all possibilities (or at least many of them) into account and explain how they
could be useful or provide additional usability.

3.1 MVC in the Context of the WebArchive
Generally, the implementation of the WebArchive follows the rules and guidelines of
the MVC (Model, View, Controller) pattern. The implementation of a system is split
into three different parts. The Controller takes responsibility for initialzing and updating
the View. Based on the user interactions on the View, the Controller is notified and
eventually has to change the Model. Changes to the Model can influence the presentation
of the View, therefore the Model itself notifies the View.

In figure 2.2 the class structure of the WebArchive shows three Controllers: Submis-
sion Controller, Management Controller and Dissemination Controller. With the help

15

CHAPTER 3. IMPLEMENTATION 16

Figure 3.1: MVC pattern

of various helper classes these Controllers have the responsibility over an entity. Each
of them need a different View to display their content. Each of them offer one or more
Views to allow user interaction. Based on the input from the user the Information Pack-
ages AIP, SIP, DIP or Descriptive Information are created or updated. Also additional
tables from the WebArchive are representations of models. The entity Administration
has therefore the possibility to update models, if needed.

3.2 Authentication and Authorization
First thing that comes to mind when we are talking about security is authentication.
There are different ways to implement authentication in a web application. I will focus
on three possible approaches.

Centralized Credentials The most straightforward way is to implement a login page
for the user. A normal user would submit his username and his password. Based
on this information the system would be able to verify the user and also assign
an authorization level to the user. Such a system is implemented relatively fast
and offers some security for the system. In the context of multiple web applica-
tions, that would restrict the system to a monolithic architecture (for more on this
architecture see chapter 5) because all attached systems must have direct access
to the credentials. If this is not possible each web application needs to implement

CHAPTER 3. IMPLEMENTATION 17

centralized credentials on his own. In this case the user is obliged to login multiple
times although the web applications are in the same environment.

Authentication with AuthServer In this scenario we would use an additional server
which would only handle the authentication request for the users. Users and
external applications would be redirected to this authentication server for a proper
login. With this solution you would be able to create multiple self contained
systems (for more on this architecture see chapter 5) with a central authentication
authority. This approach is somewhat similar to the oAuth2 but does not implement
the standardized protocol.

oAuth2 [3] This is a more complex approach but offers more possibilities and ensures
proper authorization. Applications can be authenticated through a registration
on the resource server (server hosting the protected data). At the same time it
would also be possible to allow a login mask for users. The authentication will
still require a username and password. The great advantage is the authorization. A
user can request access for all the applications which are hosted in the resource
server and the resource owner can then decide to grant or dismiss the request. If
the access is granted, the user receives an access token and with it he can access
the requested application without logging in again.

As said before, these scenarios of authentication and authorization are a process of
an evolving environment of different web applications. At the moment everything is
managed through a single database. So the simplest way for some sort of authentication
and authorization happens based on centralized credentials. This is the current imple-
mentation of the WebArchive to ensure authenticity. In the WebArchive authorization
is implemented with three different authority levels. Each user has to be assigned an
authority level at creation. By the time the user logs himself in, the authority level is
retrieved from the database. The version of a document and each bucket also has an
authority level assigned. If the authority level of the user is too low, he can’t access the
bucket or version of the file. This is a very simple solution which fulfils authorization
on a very basic level. The goal would be to have a server that handles permissions for
multiple services and web applications. To accomplish this, the company where I work
is setting up an oAuth2 environment.

3.3 Security
In the environment of a company, the archive always contains a lot of sensitive data. To
protect this data, authentication and authorization is only one part of the security. As
soon as the WebArchiv knows who the user is and if he is authorized the focus changes
to the target of preservation. This section addresses the security of the file and all access

CHAPTER 3. IMPLEMENTATION 18

points. The whole process of archiving should be secure. I have to make sure that the file
is uploaded correctly, stored safely and can be downloaded unchanged.

3.3.1 Access Points

Figure 3.2: SSL/TLS Handshake[2]

To ensure that no one is able to tamper with the data on the way to and from the
archive, it is necessary to implement the SSL/TLS [5] protocol. With this protocol the
client and server are able to establish a secure connection.

In figure 3.2 we see an illustration of an SSL/TLS handshake. Before the essential
messages are exchanged, the server and the client define the way of communication. For
websites it is usually the client who initiates the contact. With his first request he asks for
the wished SSL/TLS version and cipher suites (a combination of several cryptographic
algorithms; one suite uses different algorithms for key exchange, authentication, bulk
encryption and message authentication1). If the server can fulfill the requirements it will
answer with its certificate. To be able to do this, it is important that the server owns a
certificate from a trusted Certification Authority (CA). When this is the case, the client is
able to make sure that the server is a trusted communication partner by checking with
the validation authority (VA) if the certificate is valid. As soon as the client has verified
the certificate, a pre-master secret is created with the agreed cipher suite and encrypted

1www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5 accessed 2018-12-30

https://www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5/

CHAPTER 3. IMPLEMENTATION 19

with the public key from the server. Now the server is able to decipher the secret with
its private key and both can establish a secure connection. With this technology we can
ensure a secure communication between client and server. In the WebArchive every
connection has to be HTTPS. So I force the user to establish a secure channel to the
archive system for whatever service the user is requesting.

An additional measurement is to limit the available access to the system. The goal is
to minimize all accessible URL connections to the archive. For the normal user only two
access points exist. This access is restricted to GET and POST requests (see figure 2.3).
They should only be able to login, upload, download and nothing more. DELETE and
UPDATE requests are specifically forbidden so that no accidental or malicious changes
can happen. The concept of the access routes can be seen in section 2.1.2. For the
administrator I have to offer a wider set of accessability so that he is able to fullfill his
duty. Eventually the administrator needs additional rights for updating or even deleting
but this is not yet defined. In a newer version of the WebArchive a more elaborate
concept for the administratior access routes should be created.

3.3.2 WORM
To ensure the data integrity it should absolutely not be possible to delete or alter any
stored data. The best way to enforce this would be to use specialized hardware like
WORM (Write Once Read Many). This type of storage only allows one to store a file
once and is then only readable until the defined retention date. When the retention date
expires, the file will be removed from the disk. This way it would be possible to ensure
the data integrity on a very low level of the system. The downside is that a special
hardware component is necessary which would be very expensive.

It is also possible to implement a WORM on a software basis. Although this way it
is not possible to ensure the same security and data integrity as with a hardware WORM.
In my project I concentrate on software-based WORM because I don’t have access to
resources to use hardware WORM. For the user it is not possible to alter or delete any
files (see database concept in section 2.2.1) with the URL access (see Access points
3.3.1) but the files are all available on the server and any user with administration rights
and access to the server is able to change existing CRUD permissions and delete or alter
any file.

3.3.3 File Encryption and Certification
Each file that submitted to the archive is stored unchanged. An additional security
measure would be to encrypt the file on the client side. During the time of storage no one
would be able to view and alter the file without damaging it. In the process of decryption
the client would realize the alteration. This would require an universally used desktop
application which contains the secret and handles the encryption and decryption of the file.

CHAPTER 3. IMPLEMENTATION 20

The file would be sent to the server in an encrypted form and the corresponding metadata
would be provided in the header or in a separate JSON body. This approach has some
drawbacks and that’s why I didn’t use this implementation. The process of validation
would only be possible if the server also has access to the encryption key, otherwise the
WebArchive has to trust the user or application that uploads the file. Holding the key
on the server would greatly reduce the effectiveness of the client side encryption. An
attacker who has access to the server would in turn also have access to the encryption key.
Although this would increase security on the server side, the server would be too reliant
on the provided data of the client. I decided to store the data in the original representation
in the server storage. This allows the WebArchive to validate all incoming files (more on
file validation in section 3.4) and extract meta data directly from the file if possible.

A more common way to ensure the integrity of a file would be to add a certificate to
the file. There exist different services and companies that offer a Public Key Infrastructure
(PKI) which is able to issue certificates and also check issued certificates. A PKI is split
into three main services. The Registration Authority (RA) handles all requests for a
certificate. Users or machines call the RA for a certificate whereupon the RA checks
the validity of the caller. If the user or machine is valid, the RA sends the request to the
Certification Authority (CA). The CA returns the certificate. If another user or machine
wants to check the certificate, he calls the Validation Authority (VA). The VA checks the
certificate and lets the user or machine know if the certificate is trusted or not.

However, not all file formats support certificates. Sometimes it is not possible to
embed the issued certificate directly in the file. For PDF this is easily possible and
there exist various tools to achieve this. For formats like JPG it would be advised to
use XMLDsig2. With XMLDsig it is possible to store an additional XML file with the
signature in it. This would be a detached signature and has to be stored close to the
original. In the context of the WebArchive, this would be part of the AIP.

For the time being I decided not to use any PKI. The costs for such a service would
be too high and most of our customers wouldn’t be willing to pay for it. An approach we
are currently exploring at the company is to issue a self-signed certificate. This would
require for our company to build a self managed PKI. Nevertheless it would be a difficult
process to build such an environment and we most likely would not be able to get a
trusted certificate. That would mean that every tool and also browser (for SSL/TLS)
would show a warning that this certificate is not offically trusted.

3.4 File Validation
According to the OAIS model it should be possible to archive all sorts of files with
different formats. In every archiving system it is essential that the information to format

2www.w3.org/TR/xmldsig-core1 accessed 2018-01-08

https://www.w3.org/TR/xmldsig-core1/

CHAPTER 3. IMPLEMENTATION 21

and represent a file is also part of the AIP (and DIP). This allows the Consumer to read
and make a file understandable. In the scope of this bachelor thesis it was not possible
to implement such a system that would be able to support all kinds of file formats. The
accepted file formats have to be narrowed down to the most popular and most used ones
at the time of development. To validate the format I used an additional library called
JHOVE3. JHOVE is a “format-specific digital object validation API written in Java” 4. It
was developed by the Harvard University Library. The tool checks a file in three steps:

Identification This is the process of determining which format the file has. It does this
with different modules, one module for each format. Standard supported formats
and corresponding modules are: AIFF, ASCII, bytestream, GIF, HTML, JPEG,
JPEG2000, PDF, TIFF, UTF-8, WAV and XML. It would also be possible to write
your own modules to extend the library and so check for additional formats with
those.

Validation The prerequisite is that the format is known which is taken care of by the
Identification. As soon as the format is clear, JHOVE tests syntactical correctness.
If this test returns a successful response the file is well formed. The tool can
to some extent also test for semantic requirements. If they are also correct the
file is deemed valid. For some formats there exist standard representations from
external sources and if the internal represented format is consistent with this
specific standard then the file is deemed consistent.

Characterization When the file is at least well formed JHOVE extracts predefined
values from the file. The standard characterization consists of: file pathname, last
modification date, byte size, format, format version, MIME type, format profiles
(optional: CRC32, MD5 and SHA-1 digests)5

The first step in the Ingest (see process Ingest in section 2.1.1.1) JHOVE takes initiative
and identifies the format and verifies the file. Currently the WebArchive is restricted
to the formats PDF, TIFF and JPEG. The reason for that is the popular usage of these
formats and because the corresponding ERP system uses mostly these formats. It is
possible to extend the WebArchive with additional formats, assuming that a JHOVE
module for this format is available or can be created.

Currently not all standard characterizations of JHOVE are extracted and used. The
WebArchive makes use of the last modification date, byte size, format and MIME type.
The hash values are computed with the available Java library MessageDigest6. Despite
this very useful tool the WebArchive relies on additional information. Authorship, file
name and bucket name have to be provided by the Producer.

3www.jhove.openpreservation.org accessed 2019-01-08
4https://en.m.wikipedia.org/wiki/JHOVE accessed 2018-12-15
5https://jhove.openpreservation.org/getting-started accessed 2018-12-15
6https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html accessed 2018-12-15

http://jhove.openpreservation.org/
https://en.m.wikipedia.org/wiki/JHOVE
https://jhove.openpreservation.org/getting-started
https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html

CHAPTER 3. IMPLEMENTATION 22

3.5 Storing Structure
The WebArchive implements a simple bucket system. The Management is responsible
for maintaining the bucket system and creates (if necessary) new buckets. For every
module in the ERP system at least one bucket is necessary (e.g. the material planning
module has its own bucket for delivery orders). In figure 2.4 we see the database model.
The table Bucket holds the actual path to the files and the corresponding bucket name and
description. If all files were stored directly at the path where the bucket points, that would
cause a chaos of unsorted files, so the system creates additional folders accordingly to
the object ID of the file (see table Document in figure 2.4). For most of the files this
object ID is given by the corresponding ERP system, otherwise the system assigns one to
the file. The object ID will be formatted as a ten-digit number and split into three parts
(e.g. object ID 3 will be formatted to 0000000003 and then split to 0000 + 000 + 003).
This more structured system only allows us to store 1’000’000’000 - 1 files.

When we are talking about storing we don’t want to forget about the backup storage.
It is absolutely crucial that the archive system has a backup and is able to restore files in
case of emergencies. The easiest way of creating a backup would be to set up a backup
server which replicates the storage units of the archive system, so we wouldn’t have to
implement a backup service inside the archive system but would still be able to retrieve
and access restored files if necessary. At the company where I work I have the possibility
to use a backup server to ensure data security.

3.6 User Interface
Although I mostly focused on the machine to machine interaction for the archive, it was
important to me to implement a simple user interface. This allowed me to see what is
needed and how to proceed from there. A simple access platform didn’t consume a lot of
time but it revealed how much work still has to be done to present a useful and practical
access panel. There’s a lot you have to keep in mind and just small errors can drive a
user crazy and can lead to never using the application again.

3.6.1 Search
The simplest search includes a text search so the user can type in a filename or part of it
and with a simple LIKE command on the database, possible matches can be retrieved.
This is the current implementation of the WebArchive (see figure 3.3). Based on the
query and the chosen bucket a list of suggestions is shown. A list entry can obtain one or
more versions. When an user clicks on a list element all available versions are shown
(see figure 3.4). The user has then the possibility to download a file. The search is still
missing a lot of elements: What if a user has a typo or wants also to search for similar

CHAPTER 3. IMPLEMENTATION 23

Figure 3.3: WebArchive Search

notations (eg. Meier and Mayer)? Should the results be loaded instantly or only on
confirmation? What if the user searches for a category or tags? Does the search also
already order and filter the results and how far can the user control this?

It would be possible to manually implement some of the requirements but it would
probably be better to use an already existing search library. The company I am working
at uses Elastic Search7 most of the time which is why I will probably also implement this
search engine for the WebArchive. A search library brings a lot of value to the system
but needs a lot of time to read into and a lot of effort to implement. That is the reason
why in WebArchive 1.0 no such library is integrated. This answers the questions about
typos, autocompletion and search performance but if the search engine should be able
to search for tags or categories, the system has to gather information from the user and
corrctely store them in the database. The implementation of the search engine is the
second step but first we should define the data that has to be provided to the WebArchive.
To get an overview of what data we should store, we would have to meet with different
customers and analyze the requirements.

3.6.2 Authorization
I already dedicated a subsection of this bachelor thesis to this subject (see 3.2). This
part is more about the influence on the user interface. Like already mentioned, not
every user should be able to see and download all files. The file system is structured

7https://www.elastic.co/de/products/elasticsearch accessed 2018-12-15

https://www.elastic.co/de/products/elasticsearch

CHAPTER 3. IMPLEMENTATION 24

Figure 3.4: WebArchive Download

and built according to a bucket system (see Storing Structure in section 3.5). The first
layer of authorization is the bucket. The user is only able to select and search in those
buckets where he is authorized. Each bucket is assigned to a module and not every user
should have access to the documents of each module. The dropdown in figure 3.3 only
contains the buckets which the user is authorized. The second layer includes the version
of the file. Every version can be separately marked with a higher authorization level
than the bucket itself, so it is not absolutely necessary to store delicate files in a separate
bucket. That way I am able to rule out a lot of unallowed access already because the
system only loads the content which the user is allowed to see. This is a pretty rough
implementation of authorization and eventually has to be improved in a later stage of
development. Especially when authorization will happen with oAuth2 or over an external
authorization server.

3.6.3 Administration
The implementation of the WebArchive only allows the administrator to change settings
in the background and directly in the database. A user interface doesn’t exist at the
moment and is planned for the next iteration of the WebArchive implementation. As
you can see in section 2.1.2 some functionalities are already ready to be implemented.
With these available routes the administrator should have access to a platform where he
can manage all users and the contract for the submitted data. The goal would be for this
platform to be extendable with additional features. The administration should also be

CHAPTER 3. IMPLEMENTATION 25

able to surveil the database and ongoing procedures.
The administration is a more complex platform so I didn’t implement this part of

the WebArchive yet because a more precise concept is needed. The embedding of the
WebArchive in a web application environment could possibly change the management
possibilities of the Administration. For example, the user management would not be a
part of the WebArchive Administration as this would be handled through an external
authentication and authorization server.

3.7 Summary
The result of this bachelor thesis is a simple but working solution for an archive system.
Based on the guidelines and structure of the OAIS model I built the WebArchive. Single
files (PDF, JPG or TIFF) can be uploaded through a UI. Also machine to machine
interaction is possible through different URL access routes. After completing the file
validation with the help of JHOVE, the file is stored on the harddrive and the meta data is
stored on the database. The WebArchive operates as an independent web application and
therefore has an own database. The concept for the database and the initialization also
was part of the implementation. Along with the UI to submit files, an additional simple
access platform is available to search for a file and eventually download it.

The documentation in this bachelor thesis and the prototype serve as proof of concept
for an independent web application in the vicinity of the ERP system. During the process
of this bachelor thesis it became more and more clear that it is currently not possible to
embed the WebArchive in the environment of the ERP system. The important link to the
ERP system and also a general interface for communication with other web applications
is currently missing. The missing interface between web application is due to the lack
of other web application in the environment of the ERP system. It is not yet clear what
kind of web applications will be deployed and therefore no concept for the interface
exist. The implementation of the URL routes is based on the features the WebArchive
uses. Therefore other web applications and the ERP system are able to make use of the
features of the WebArchive. However adjustments in the ERP system are necessary to
ensure automatical exchange between ERP system and the WebArchive.

However the main focus remains on the digital archiving. The implementation of the
prototype was only useful for myself, to proof that it is possible to build a digital archive
based on the OAIS model. Furthermore the bachelor thesis showed that in theory it is
possible to implement a valid digital archive system. Every section of chapter 3 point out
different approaches to solving problems and describe the current implementation of the
WebArchive. Not only do these sections help focus on most needed implementations in
the next iteration of the WebArchive, they also provide approaches for general solutions
in web application. The validation of the functionalities of the WebArchive were made
be myself only. In this stage of development no other user tested the features of the

CHAPTER 3. IMPLEMENTATION 26

WebArchive. As soon as the connection to the ERP system exist, the prototype will be
used as a demo project for interested customers and eventually I will be able to start a
pilot project at one of the customers of the company where I work.

4
Conclusion and future work

4.1 Lessons Learned
The first thing I realized is that I’ve never designed a concept for such a big and complex
system. The first struggle was where and how to start. I began to create a lot of documents
and in a later state of my work I realized that some of the work was unnecessary or
the information got lost in the documents. I think the beginning of the project was the
hardest part because I was reading a lot and made no visible progress during this stage.
In retrospect it was absolutely necessary to read about the subject because I had only a
little knowledge about what archiving is about. Moreover I never implemented a web
application on my own. This is why the creation of a concept consumed a lot of time and
still had some flaws or wasn’t thought through. It is really hard to create a meaningful
and helpful concept, but thanks to this bachelor thesis I now understand better on what I
have to focus on. I hope it is not the last time I designed a concept, as next time I could
use my newly gained knowledge on the subject.

Another thing I realized was that I missed a co-worker or a team who also deals with
the same problem. Sometimes I became lost in unnecessary details. That’s when it would
have been really helpful if someone said that I was on the wrong track, or if there was
someone I could just share or discuss some ideas with.

All in all I expanded my knowledge about archiviving and all the challenges that
arises during the implementation of a digital archive. Furthermore I learned a lot about
web application implementation and specifically about the framework we use at our
company. Until now I barely worked with this framework and only touched the surface

27

CHAPTER 4. CONCLUSION AND FUTURE WORK 28

of it. Developing the WebArchive forced me to dive deeper in the code and understand
basic concepts of web applications. This knowledge now empowers me to extend my
work on the web application developement and contribute to it.

4.2 In Process
Right now the company where I work is setting up a more complex environment for
web applications. The goal of the company is to implement a Self-Contained-System
architecture for all their web applications. The WebArchive is one of the first projects
that is implemented with this intention. Because this bachelor thesis was written during a
time of active development and planning it is not in a definite state, it has to be extended
and improved for future use. In chapter 5 I will further explain what is planned and what
the final product should look like.

4.3 Enhancements
For almost every presented part in the section 3 there is at least one point I want or I have
to improve. The current WebArchive is in Version 1.0 and can handle simple requests
and offers a simple access view for users. This should not and can’t be the final version
of the WebArchive. For now I have to wait to see in which direction the company is
evolving, and then adjust the WebArchive to the given circumstances. It would be best if
the company can offer an external authentication and authorization server. This would
allow me to completely delete the login mask from the WebArchive and could redirect
the user to the login server. Apart from the environment of the WebArchive, the whole
UI and the functionalities available to the user have to be improved. Especially the UI
for the Consumer and the Management require a lot of changes. For the Consumer the
search should be improved and for the Management the platform has to be created in the
first place. Because of the flaws in the UI, I didn’t make any user test and validation. I by
myself tested the basic functionalities of the WebArchive. This is surley something I have
to improve and enforce in near future for a more detail assessement of the WebArchive.

5
Anleitung zum wissenschaftlichen

Arbeiten

The architecture of a system is the most important element to define. It is possible
to start a project without a clear concept but soon the process of developing will be
cumbersome and time-consuming. The structure of the system will become increasingly
unclear. The scalability of the system will suffer from this kind of development. It isn’t
possible to make changes without affecting other parts of the program. That’s why a
concept is created in advance to the actual development. In my opinion we have to
differentiate between two sorts: the architecture where an application is embedded and
the architecture of the application itself. In the main part of the bachelor thesis I focused
on the architecture of the application and pointed out some challenges that arose while
developing a web application. I relied on the OAIS model for the architecture of the
WebArchive. In this chapter I want to focus on the architecture for the web application
environment. As soon as I started with the bachelor thesis the company I’m working
at began to restructure the environment where the WebArchive was to be embedded.
In this chapter I would like to explain some of the most common (and currently most
discussed) architectures and try to show the consequences for the WebArchive and for a
web application in general.

29

CHAPTER 5. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 30

5.1 Architectures
All three of the following architectures can be used to organize and structure multiple
systems in one environment. There exist many different approaches to set up an envi-
ronment of different but logically related systems. I picked three of the most discussed
approaches and will explain their architecture. I also try to point out the advantages and
disadvantages of each architecture.

5.1.1 Monolithic Architecture
In a monolithic architecture all components are in one application and run on a single
platform. The goal of such a system is that all requests can be handled in this single
application and don’t need additional services. All the information is centralized and
the application is able to access this data from everywhere and at any time. Also UI and
business logic have direct access to the data storage and are implemented in the same
application. This allows a developer to add features and functionalities everywhere he
likes and he doesn’t have to concern himself too much with messaging or data availability.
A monolithic system tends to grow and get tightly coupled in the process. This results in
difficulties when replacing or maintaining parts of the system. It becomes harder and
harder to keep an overview. Even small changes can trigger major problems somewhere
else.

5.1.2 Self-Contained System Architecture
The self-contained system architecture consists of multiple SCS (self-contained systems).
Each SCS is an independent application with an own domain, data set, UI and logic.
An SCS is able to operate in a single instance and can handle requests on his own.
Generally a SCS doesn’t share the UI (only hyperlinks to other applications are allowed)
or even data with other SCS. However, it is sometimes needed to send messages or
gather information from another part of the environment. This communication is always
through interfaces and it always has to be asynchronous. This architecture offers high
resilience and maintainability. If one SCS is down all other SCSs are not affected and
can continue working. This also allows developers to easily update or replace single
parts of the system without interrupting the other SCSs from working1.

5.1.3 Microservice Architecture
There are a lot of similarities to the self-contained system architecture in a microservice
architecture. The system is modularized and the functionalities are distributed to multiple

1https://scs-architecture.org/ accessed 2018-12-13

https://scs-architecture.org/

CHAPTER 5. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 31

microservices. The main difference to a SCS is that the modules are smaller. SCS
can span a whole system (e.g. WebArchive) whereas a microservice only would take a
small part of the WebArchive (e.g. Ingest) and communicate with other microservices.
The architecture consists of two parts: Macro Architecture (decisions that concern all
microservices) and Micro Architecture (decisions that only concern a single instance).
The advantage of microservices (and SCS) is in this differentiation macro and micro
architecture. Each microservice can be implemented with the needed technology and
specifically target difficulties of this microservice. If each microservice is implemented
differently, that means that the communication with other mircroservices has to be
solid and standardized. Each microservice has an interface to share data with other
microservices. Unlike the SCS architecture, the microservice architecture relies heavily
on communication between microservices2.

5.2 Targeted Architecture

Figure 5.1: Evolving process

The ERP system that is used is a purely monolithic system. It provides multiple
modules but they’re all packed into one program, access the same data set and are made
visible through the same UI. In the near future, this architecture for the ERP system has

2Further reading under https://www.innoq.com/en/articles/2018/12/microservices-oder-doch-nicht/
accessed 2018-12-13

https://www.innoq.com/en/articles/2018/12/microservices-oder-doch-nicht/

CHAPTER 5. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 32

to change gradually. The company where I work wants to expand their web application
products. More and more customers would like to access some of the functionalities
through a browser and don’t want to use just the desktop application. A problem that
arises with this requirement is that the customer must already be in possession of the
ERP system because at the moment the ERP encapsulates and provides all data. To
enable a customer to buy only what he really needs, we have to move away from the
monolithic solution step by step. The first move is to arrange all web applications in a
SCS architecture. The ERP already separates functionalities in different modules which
would be great to adopt into web applications. That is the reason for the company to focus
on SCS architecture. This measure would allow for continuous module development and
separate deployment without affecting already deployed web applications.

5.3 Consequences for the WebArchive
The implementation and restructuring from a monolithic to a SCS architecture has a
great impact on all web applications and also on the subject of this bachelor thesis: the
WebArchive. All applications have to be embedded in a SCS architecture. In this case the
WebArchive represents an SCS. With the definitions in mind for a SCS I had to consider
some points that will influence the future work of this project.

5.3.1 User Interface
Because the WebArchive is one of the first web applications that is implemented in the
environment of the company, the user interface is uniquely used for the WebArchive and
doesn’t use shared UIs. Naturally, the UI shares a corporate design for an uniformed
appearance. The appearance is currently part of a standardized framework that is used
for every new web application. Eventually we have to move away from a standardized
framework and instead create guidelines for future projects. The goal should be to
provide a uniformed appearnace but not interfere with the basic structure and choice
of technology. Each SCS should be able to use whatever technology or structure that
is suited best for the underlying logic. This makes shared UIs difficult because under
certain circumstances multiple SCSs don’t implement the same technology. Nevertheless
it is allowed and probably best to work with hyperlinks to redirect directly to another
SCS. In one approach of implementing the authentication and authorization I only used a
hyperlink to an external server for the login. For future applications oAuth2 is planned
and absolutely necessary so that the user doesn’t have to login for each SCS.

CHAPTER 5. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 33

5.3.2 Data Set
In the SCS architecture each SCS is obliged to store the necessary data itself. For this
purpose the WebArchive has its own database. The generated data and the cache is stored
internally. In the current implementation, the WebArchive relies on the user information
from the ERP system. We have to implement an external authentication and authorization
service, optimally with the oAuth2 protocol. That would eliminate the synchronisation
of user data with the ERP. Otherwise the WebArchive doesn’t rely on other SCS because
right now, no other SCS exist. Despite the lack of other SCSs the WebArchive already has
a defined interface and can handle incoming requests. The data is not distributed to other
systems and is kept on the database. In the first phase of planning, it was decided that
the archive would just handle the files. The metadata would be stored on the centralized
database from the ERP system. Relatively early it became clear that bigger changes are
coming so I decided to move the data to the WebArchive completely. This saved me a lot
of refactoring later on and it brings more value to the WebArchive because it can operate
more independently.

5.3.3 Business Logic
A SCS should only use code that is part of the implementation itself. No code or
procedures of other SCSs should be used. This approach avoids tight coupling but can
lead to duplicated code. In section 5.3.1 I suggested to eventually reduce the content of
the given framework. This is a trade-off because in this situation it might be worth it to
have a package to avoid having to write duplicated code. In the WebArchive we use a
framework which makes some useful functionalities available. Despite the usefulness of
this framework we have to refactor a lot and perhaps create a completely new concept.
Something that is probably worth standardizing is the handling of requests from other
SCSs. The framework should be able to handle requests based on syntax and the SCS
handles the semantic translation. However we should consider that not every SCS is built
with the same technology. A standardized library may be the best solution if we think
that a change of technology will be unlikely or that a project with different technology
will be very rare.

5.3.4 Technology
With the introduction of SCS I would be free in choosing an appropriate technology.
The single requirement for this technology would be that the communication with other
SCSs should be provided (if necessary). It may be a good idea in further development of
the WebArchive to take some time to evaluate different technologies (e.g. for database,
coding language, libraries). Because the project was very ambitious, I took advantage of
most of the tools we use currently. This gave me a little edge in the development process

CHAPTER 5. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 34

because I was already more or less familiar with them. A complete evaluation about
whether or not the appropriate database or coding language is used for the WebArchive
was not done.

Bibliography

[1] CCSDS(The consultative Commitee for Space Data Systems. Reference model for
an open archival information system (OAIS). CCSDS Secretariat; Space Communi-
cations and Navigation Office; 7L70; Space Operations Mission Directorate; NASA
Headquarters, 2012.

[2] Microsoft Corporation. SSL Handshake [graph]. Website, accessed 2018-12-
25. https://blogs.msdn.microsoft.com/kaushal/2013/08/02/ssl-handshake-and-https-
bindings-on-iis/.

[3] Ed D. Hardt. The OAuth 2.0 Authorization Framework. Internet Engineering Task
Force(IETF), 2012.

[4] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. University of California, 2000. Doctoral dissertation.

[5] S. Chokhani T. Polk, K. McKay. Guidlines for the Selection, Configuration, and Use
of Transport Layer Security (TLS) Implementations. U.S. Departement of Commerce;
National Institute of Standards and Technology, 2014.

35

	1 Introduction
	1.1 Archive Requirements

	2 Concept
	2.1 WebArchive
	2.1.1 OAIS Model
	2.1.1.1 Ingest
	2.1.1.2 Data Management
	2.1.1.3 Archival Storage
	2.1.1.4 Access
	2.1.1.5 Administration
	2.1.1.6 Preservation Planning

	2.1.2 Web Access and Definition

	2.2 Database
	2.2.1 Database CRUD

	3 Implementation
	3.1 MVC in the Context of the WebArchive
	3.2 Authentication and Authorization
	3.3 Security
	3.3.1 Access Points
	3.3.2 WORM
	3.3.3 File Encryption and Certification

	3.4 File Validation
	3.5 Storing Structure
	3.6 User Interface
	3.6.1 Search
	3.6.2 Authorization
	3.6.3 Administration

	3.7 Summary

	4 Conclusion and future work
	4.1 Lessons Learned
	4.2 In Process
	4.3 Enhancements

	5 Anleitung zum wissenschaftlichen Arbeiten
	5.1 Architectures
	5.1.1 Monolithic Architecture
	5.1.2 Self-Contained System Architecture
	5.1.3 Microservice Architecture

	5.2 Targeted Architecture
	5.3 Consequences for the WebArchive
	5.3.1 User Interface
	5.3.2 Data Set
	5.3.3 Business Logic
	5.3.4 Technology

