
Software Testing in Industry
Assessing Unit Testing in an Industrial Software Project

Bachelor Thesis

Markus Eggimann
from

Grosshöchstetten, Switzerland

Philosophisch-naturwissenschaftliche Fakultät
der Universität Bern

Summer 2018

Prof. Dr. Oscar Nierstrasz
Dr. Mohammad Ghafari

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Automated testing is an important technique to ensure the quality of a software system,
and there is a general consensus in industry that testing is a critical part of the development
process. However, recent studies suggest that unit testing is not that widely practiced.
In this thesis, we studied an industrial software project called EPOF with respect to
testing. We tried to answer the question whether the discovery of bugs pushes the writing
of tests, whether unit tests help to prevent bugs, and whether the system’s architecture
facilitates or impedes unit testing. To answer those questions, we studied the bug reports
and associated bug fix reports of the project. Our results showed that the test coverage
was rather low, and most bugs were fixed without adding or changing any tests, most
bugs were detected by manual testers or customers and not by the existing tests and that
the testability of the code is low in most parts of the system. In 2017, the development
team decided to give unit testing higher priority. Our results show that this decision,
together with other development process improvements, indeed had a positive effect on
the bug rate and the testability of the system.

i

Contents

1 Introduction 1

2 Case Study 5
2.1 Description of the case . 5
2.2 Insights into the development process 5
2.3 Common setup . 7

2.3.1 Relevant sources of information about the EPOF project 7
2.3.2 Collection of data . 8
2.3.3 Intermediate results . 9

3 Inspection of Bugs 11
3.1 Setup . 11
3.2 Results . 13

3.2.1 Bugs in defective classes covered by tests 13
3.2.2 Number of modified files per bug fix 14

4 Effectiveness of Unit Tests 16
4.1 Recurring bugs . 16

4.1.1 Setup . 16
4.1.2 Results . 17

4.2 Proneness to bugs . 21
4.2.1 Setup . 21
4.2.2 Results . 22

4.3 Mutation testing . 33
4.3.1 Setup . 33
4.3.2 Results . 34

5 Assessment of Testability 37
5.1 Setup . 37
5.2 Results . 38

5.2.1 The bug is a usability or design issue 39

ii

CONTENTS iii

5.2.2 The erroneous component has many dependencies 40
5.2.3 The defective component violates SRP 45

6 Related Work 50

7 Threats to Validity 52

8 Conclusion and Future Work 54
8.1 Answers to research questions . 54
8.2 General insights . 56
8.3 Future work . 56

9 Anleitung zum wissenschaftlichen Arbeiten 58
9.1 Exploiting the Jira API . 59

9.1.1 The Jira API . 59
9.1.2 The database model . 60
9.1.3 Importing the data from Jira 62
9.1.4 Customizing the tool . 63
9.1.5 Querying the imported data 64

9.2 Cloning repositories . 65
9.2.1 Customizing the tool . 65

9.3 Comparison of diffs on method level 65
9.3.1 The algorithm . 66
9.3.2 Implementation details . 66
9.3.3 Customizing and extending the tool 69

List of Figures 71

List of Tables 71

Listing 72

Bibliography 73

1
Introduction

Automated testing is an important technique to ensure the quality of large scale software
systems. Especially recent trends in software development like continuous integration
(CI) and continuous delivery (CD) require efficient and simple ways to test software and
ensure that recent changes in the code base do not break existing functionalities.

The theory of software testing focusing on automated testing distinguishes several
different categories of tests: Unit tests, Integration tests and End-to-End tests.

Unit tests are the most basic tests that test single components of a software system in
isolation and verify the correct behavior of a component. In the context of unit testing, the
notion of a component is used as a synonym for a class in object-oriented systems. Unit
tests typically are only a few lines of code long, rarely need external components like a
file, the hardware or a database and take just few milliseconds to execute. Large software
systems usually contain hundreds or thousands of unit tests that are run often during the
development process by the developers and help them to verify that the code they just
wrote behaves like it should in the given scenario. Unit tests are written by the developers
themselves using a programming language specific unit testing framework like JUnit
[29] for Java or XUnit [6] for C#. Most integrated development environments (IDE)
have native support for one or multiple such frameworks and can detect and execute tests
automatically and display afterwards the results of a test run.

Integration tests are used to test the functionality and interaction of multiple com-
ponents. They typically take longer to execute than unit tests, they may involve calls
to external systems, and they are often run by a build server and not on the developers’
computer. Integration tests are more complex to write than unit tests because they require
the correct configuration and setup of notable parts of the software system under test.

1

CHAPTER 1. INTRODUCTION 2

Furthermore, they operate on test data that are often read from external data sources
like files or a database. Integration tests are usually written by using the same testing
frameworks used for unit tests.

End-to-end tests aim to test the whole system. They focus on real usage scenarios
of the system and therefore require the whole system to run. These tests are the hardest
to automate, and many different tools exist that can be used to create such tests like
Selenium [24] or Tosca [30].

There is a general consensus in industry that software testing in general, and au-
tomated testing as one discipline of it, is a critical part of the development process.
Multiple studies show that even though automated testing slows down the development
process a little bit, it saves money during the operational and maintenance phase of the
software project because bugs are discovered before they get into production and, as a
result, debugging is less expensive. But when it comes to the question how automated
testing is actually done in industry, research results show a completely different picture.
Zaidman et al. [2] show that automated testing and test-first practices like TDD are not
that widely used as developer surveys suggest. Their results also show that developers
systematically overestimate the time they spend for testing. Borle et al. [3] show that
only 16.1% of the Java Repositories on Github contain test files. Fucci et al. [8] tried
to find out which aspects of TDD have an influence on the quality of tests and the on
productivity of the developers. They found that the key aspect of TDD — test-first —
seems to have no influence or only a minor one.

This obvious contradiction between the general agreement that unit testing is im-
portant and the way it is actually adopted in software projects motivated us to study
this subject in an industrial context. We studied a software project in a large enterprise
that provides a digital platform for receiving and sending electronic and physical mail.
During the study, we had full access to the source code, the version control system, the
issue tracker, and the developer team of the project. When something was unclear or
if we had questions concerning the project, we could approach the developers or other
project stakeholders. Our research project focused on unit tests because, when a project
team uses automated testing, it usually starts developing unit tests first. Integration and
end-to-end tests are more advanced kinds of tests that are usually introduced after a
notable part of the code base is covered by unit tests.

The following three research questions guided this study:

RQ1: Does the discovery of bugs push the writing of tests? We wanted to find out
what actions developers take after a bug has been discovered. They could add new tests
to document the bug, they could modify existing tests, or they could just fix the bug
without changing any tests.

To answer this question, we studied which parts of the code were modified in order

CHAPTER 1. INTRODUCTION 3

to fix a bug. Our results showed that in most cases the bugs were fixed without making
changes to any tests. Furthermore, we observed that for more than half of the analyzed
bugs, it was necessary to change multiple files to fix them.

RQ2: Do existing tests prevent the occurrence of bugs? We wanted to find out
whether the existing tests actually help the developers to find or prevent bugs. If the
existing tests are not able to detect bad changes to the source code or resulting changes
in the behavior of the software, they are probably useless.

To find an answer to this question, we checked whether a certain bug occurred
multiple times and whether there are components that are affected by multiple different
bugs and hence are more prone to bugs. Our results showed that there were only very few
bugs that occurred multiple times. There were indeed components that are more prone to
bugs than others. Many of those components play an important role in the system and
often do too many different things.

Furthermore, we applied mutation testing to parts of the source code that was covered
by tests. We wanted to see whether the existing tests detected changes to the source
code. Our analysis showed that the existing tests are generally not good at detecting code
manipulations.

RQ3: Is the system’s architecture designed in a way that addition of new tests is
easy? It might happen that a developer has to add a new unit test for an existing
component. Perhaps because a bug was discovered that had not been caught by the
existing tests. Or because the developer simply wants to add some tests before he
changes a certain component. Using the tests, he can verify that his changes did not
break any functionality. Either way, adding a test requires some effort. But it generally
depends on the design of the component, its dependencies, and its complexity how much
effort is needed to write a unit test for it.

We wanted to find out how test-friendly the software system under investigation is
designed. Our results showed that the testability of a majority of the system’s components
is low. Thus, adding a test involves much work for developers. The main reasons for the
low testability are the following:

• A component violates the single responsibility principle

• A component has many dependencies on other parts of the system or external
components.

• The bug is a usability or design problem for which no exact definitions of what is
good or what is bad exist.

CHAPTER 1. INTRODUCTION 4

The rest of this thesis is organized as follows: Chapter 2 describes the case study
that was done to find answers to the research questions above for a specific industrial
software project. Chapters 3, 4 and 5 describe the different analysis that were done during
the case study including the results found. Chapter 6 indicates related work, chapter 7
discusses threats to validity, and chapter 8 summarizes and classifies the results of the
study. Finally, chapter 9 gives some technical details about the tools and techniques used
in this study and how to use them in other research projects.

2
Case Study

2.1 Description of the case
This thesis seeks to answer the research questions by doing a case study of a large
industrial software project. The software project that was chosen for this research project
is developed by a large logistics company of Switzerland, which will be referred to as
Company P in this paper. The software project is called EPOF. It is a digital platform
for sending and receiving physical as well as electronic mail. Customers of the platform
are companies and also private persons. The main functionality of the platform is that
customers can decide for every sender whether they want to get incoming mail of this
sender in physical or electronic form. If a customer chooses to receive the mail in
electronic form, Company P opens and digitalizes the customer’s incoming physical mail
and provides the image of the mail in the EPOF portal. The customer can access the
platform with a mobile application or through a web interface. Also, the customer can
deposit his bank account details in the portal and pay incoming bills directly within the
portal.

2.2 Insights into the development process
The EPOF project was launched in 2011. It uses a variety of technologies for different
parts of the system. The back-end uses a Microsoft SQL Server database and is written in
C#. There exist mobile applications for Android (developed with Java) and iOS devices
(developed with Objective-C), and the web front end uses Angular as its GUI engine.

5

CHAPTER 2. CASE STUDY 6

The different parts of the application (back-end, mobile apps, web app) are developed by
different developer subteams. The project uses Confluence for requirements engineering
and documentation, Bitbucket for the hosting of the Git version control repositories, and
Jira for issue tracking. All those three tools are developed by Atlassian, and they are
hosted in-house at Company P.

The development team uses the SCRUM agile project method [23] with a develop-
ment sprint duration of two weeks. The quality of the project is ensured by a quality
process that includes a variety of quality assurance mechanisms:

• Automated unit tests are written to test small units of the business logic. However,
the coverage varies between the various components of the system and is generally
low.

• A team of testers does manual testing of the portal and the mobile apps. Manual
regression tests are executed after every development sprint.

• The static analysis tool SonarQube [25] is used to find different kinds of issues in
the code. The tool finds common code smells and suggests possible solutions to
resolve them. The tool is applied only to the Android mobile app.

• Recently, the team is pushing towards automated UI and regression tests using
Selenium [24] and Tosca [30].

There were two major changes in the development process of the EPOF project that
are relevant to this study:

• In the early days of the project, the developers used Subversion as the version
control system. The team later moved to Git and did not migrate the project’s
source history to the new version control system.

• The project started as a simple web application and grew larger over time. The
back-end is a large monolithic system which had its origins in that web application.
In summer 2017, the team decided to structure the whole system in a more modular
way. New features should be added as modules, and these modules should be
covered by unit tests. The team and the project management agreed to strive for
40%-80% code coverage of those new modules.

Table 2.1 shows some additional information about the EPOF project. The version
control system related numbers in the table are not accurate because the source code was
moved from Subversion to Git. However, the magnitude of those numbers is correct.

CHAPTER 2. CASE STUDY 7

Number of developers with at least one commit 42
Number of commits in total 22’461
Number of files in repository 14’102
Number of issues in Jira 15’474
Number of reported bugs in Jira 6’531

Table 2.1: Information about the EPOF project

2.3 Common setup
The following sections describe the setup that served as common ground for the different
analyses that are described in chapters 3, 4 and 5.

2.3.1 Relevant sources of information about the EPOF project
There are three sources of information about the EPOF project that are interesting for
this research project.

Bug reports They are very useful because they document bugs that had occurred and
provide an entry point for further investigation of the circumstances of a bug. These
reports are created and maintained with labels “Bug” or “Sub-Bug” in the Jira issue
tracker. The person who detects the bug usually creates an issue which contains certain
information about the bug. The issue contains the steps necessary to reproduce the
bug, the component affected, a description what exactly went wrong, and other details
which may help the developers to locate and fix the bug. If a bug is critical, it is fixed
immediately and the corrections are deployed as a hotfix. If the bug is not critical, it is
moved to the backlog of the project and resolved in one of the next development sprints.

Code changes of a bug fix By examining the code changes that were done to fix a
certain bug, it is possible to reconstruct what exactly the problem was. To gather this
information, it is usually required to manually inspect the commits that were pushed to
the version control system after a bug has been detected. Other hints like the issue key,
which is perhaps mentioned in commit comments, might also be useful. In the case of
the EPOF project, there was an easier way to gather this information. Internally Jira is
linked to Bitbucket server, the software for hosting Git repositories. A developer usually
creates a new branch in the Git repository for every Jira issue he works on. Jira keeps
track of the branches and commits, which belong to a certain issue, and allows access to
this information through its web interface and through its API.

CHAPTER 2. CASE STUDY 8

Figure 2.1: Setup for the analysis of the EPOF project. The colors indicate the data flow
of the different kinds of analysis.

Unit tests This research project focuses on unit tests. Thus, the unit tests that are
contained in the code base of the project are of special interest. It is necessary to be able
to change and execute those tests to assess their quality. Futhermore, it is important to
know which parts of the code the unit tests cover.

2.3.2 Collection of data
For this research project a tool was developed that collected some information about the
EPOF project and stored them in structured form, which facilitated further analysis. A
general view of the architecture of the tool, its environment, and the relevant data flows
are shown in figure 2.1. The tool basically has three components.

The first component (IssueImporter in figure 2.1) uses the REST API provided by

CHAPTER 2. CASE STUDY 9

Jira to collect all issues, all commits that belong to those issues and the file changes
by these commits and stores them into a local SQLite database. The data flow of this
process is indicated with red color in figure 2.1. Technical details of this part of the tool
and the database schema that is used for the database are described in section 9.1.

The second component (RepositoryCloner) creates a local copy of all Git repositories
that belong to the EPOF project by cloning them from the Bitbucket server. The data
flow of this process is indicated with green color in figure 2.1. Technical details of this
part of the tool are outlined in section 9.2.

The third component (Analyzer) seeks to find possible related bugs in the EPOF
project. It uses information about commits and source code file diffs on method level
and finally produces a list of suggestions of recurring bugs. The suggestions are then
inspected and verified manually. The data flow of this process is indicated with blue
color in figure 2.1. Technical details of the Analyzer part of the tool can be found in
section 9.3.

Finally, some SQL queries are executed against the database to collect certain in-
formation about the bugs, the components they affect, and associated commits and file
changes. This data flow is indicated with purple color in figure 2.1.

2.3.3 Intermediate results
Most information that could be gathered automatically from the database and the repos-
itories consists of just intermediate results which require further manual processing.
However, they provide some insight into the EPOF project. Table 2.2 shows some key
information about the project. They were all retrieved by executing some SQL queries
against the database. Some of the intermediate results in the table need some further
explanation:

• “With commit” means that the association between issue and the commits which
resolve it could be automatically retrieved from Jira API.

• “Without commits” means that the link between issue and commit could not be
established.

• “Bug” and “Sub-Bug” are just special kinds of issues, thus the total number of
issues includes bugs and sub-bugs.

• “With test change” means that at least one test file was modified during the bug fix.
Test files were identified by their names: If a file’s name starts with “Test” or ends
with “Test” or “Tests”, the file is considered to be a test file. This naming convention
is well adhered to throughout the EPOF project with only few exceptions.

CHAPTER 2. CASE STUDY 10

Category Number of issues
Total number of issues 15’474
Issues with commits 2’009
Issues without commits 13’465
Issues with commits with test changes 347
Total number of Bugs / Sub-Bugs 6’531
Bugs / Sub-Bugs with commits 1’119
Bugs / Sub-Bugs without commits 6’531
Bugs / Sub-Bugs with test changes 122
Bugs / Sub-Bugs with commits without test changes 997

Table 2.2: Some information about the EPOF project with respect to issues and commits

There are two aspects to point out: First, it was possible to retrieve the commits that
belong to an issue for 13% of all issues (or in absolute numbers: for 2’009 of 15’474
issues), which is a rather low fraction. When it comes to bugs, this fraction rises slightly
to 17.1%. This research project focuses only on those 1’119 bugs for which the commit
information is available. Hence, the validity of this study might be threatened because
roughly 80% of the bugs are not taken into account in most of the analysis.

The second aspect to point out, and which is another threat to validity, is the fact that
the linking between issues and commits, which is done by Jira, is not always complete or
reliable:

• There might be commits that belong to an issue but are not linked to it. A typical
example are commits that are committed after a bug fix was already merged back
into the main development branch.

• There might be commits that are linked to an issue but in fact do not belong to it.
A typical example for this case are merge commits from another branch, which are
usually done before the bug fix is merged back into the main development branch.

The intermediate results presented above served as a starting point for further analysis,
which is presented in the following three chapters. Each chapter deals with one of the
research questions described in the introduction in chapter 1 and presents the different
kinds of analysis that should provide answers to the research questions.

3
Inspection of Bugs

In section 2.3.3 the number of bugs with commits was presented. There are 1’119
bugs where the commits that fixed the bug could be gathered from Jira and Bitbucket
automatically. To find an answer to the first research question, which covers the relation
between unit tests and bugs, further analysis of the reported bugs is required.

3.1 Setup
Even though the commits, which resolved a certain bug could be gathered from Jira, it
is a non-trivial task to comprehend the changes that were made by those commits. It
requires manual inspection of the commits. Hence, a subset of 200 randomly chosen
bugs was extracted from the 1’119 bugs and then the commits associated to those bugs
were analyzed.

The analysis comprises two aspects. The first aspect is the test coverage of a bug. We
checked whether the code part which caused the bug was covered by a unit test. If so,
then we analyzed why these tests did not fail and, as a result, did not detect the bug. We
also checked whether the developer modified, added, or removed tests during the bug fix.

The second aspect of the analysis was on the distribution of a bug fix. The main
question here is how many files have to be changed for a bug fix. This information could
be gathered by executing the SQL statement shown in listing 1 against the database. The
query gets all file changes from the database, filters out non code file changes, groups
them by bug, and finally counts them. The result is a list that contains for each bug fix
the number of distinct changed files.

11

CHAPTER 3. INSPECTION OF BUGS 12

Listing 1: Query to retrieve number of changed files per bug fix
1 WITH distFileChangesPerIssue AS (
2 SELECT DISTINCT
3 i.Id AS `IssueId`,
4 f.FilePath AS `FilePath`
5 FROM Issues AS i
6 INNER JOIN Commits AS c ON c.IssueId = i.Id
7 INNER JOIN FileChanges AS f ON f.CommitId = c.Id
8 WHERE
9 (

10 −− Restrict query to code files
11 (
12 FilePath LIKE '%.cs' AND
13 −− Exclude auto generated designer files
14 FilePath NOT LIKE '%.designer.cs'
15)
16 OR FilePath LIKE '%.java' OR FilePath LIKE '%.ts' OR FilePath LIKE '%.m'
17 OR
18 (
19 FilePath LIKE '%.js' AND
20 −− Exclude bundles, map and minified files
21 FilePath NOT LIKE '%.min.js' AND
22 FilePath NOT LIKE '%.map.js' AND
23 FilePath NOT LIKE '%.bundle.js'
24)
25)
26 −− Exclude merge commits from main development branch
27 AND c.Message NOT LIKE
28 'Merge branch ''develop'' into %'
29)
30

31 −− Number of unique code file changes per bug. Each changed file is
32 −− only counted once even if multiple commits affect the same file.
33 SELECT
34 p.`KEY`, p.Name, i.Id, i.OriginalId, i.`KEY`,
35 i.Summary, COUNT(dfc.FilePath) AS `FileChanges`
36 FROM Issues AS i
37 INNER JOIN IssueTypes AS t ON t.Id = i.IssueTypeId
38 INNER JOIN Projects AS p ON p.Id = i.ProjectId
39 INNER JOIN distFileChangesPerIssue AS dfc
40 ON dfc.IssueId = i.Id
41 WHERE t.Name IN ('Bug', 'Sub−Bug')
42 GROUP BY i.Id
43 ORDER BY p.Id, i.Id

CHAPTER 3. INSPECTION OF BUGS 13

3.2 Results

3.2.1 Bugs in defective classes covered by tests
In only 17 out of 200 analyzed cases, the defective component had associated unit tests
or tests that were added during the bug fix:

• In seven cases, tests were added to verify the correctness of the bug fix or to
improve the overall coverage of the component. In the later case, the tests which
were added did not necessarily cover the scenario that caused the bug to occur.

• In five cases, there existed tests for the defective component, but they did not cover
the scenario in which the bug occurred. Furthermore, in those five cases, the tests
were not extended during the bug fix to cover the problematic scenarios.

• In two cases, the tests were changed because some part of the code was refactored
(e.g., renaming of a method or a property) without changing its functionality.

• In one case, a test was introduced in an early commit of the bug fix and later
removed again because it became obsolete.

• In another case, the tests were commented out during the bug fix. And they are still
commented out in the current version of the code base. It seems like the developer
forgot to either uncomment or remove them.

• In one case, the bug was misclassified as defect. In fact, it was a new non-functional
requirement which was requested by the security responsible.

These observations provide some interesting insights: The first insight is that only
few (in absolute numbers: 17) defective components are covered by unit tests. That goes
along with the fact that the overall test coverage of the code base is very low. Section 5.2
will present a possible explanation why the test coverage is low.

The more interesting insight is that there exist classes that were partly covered by
tests, but the part of the classes that later caused a bug was not. The question here is,
which parts of the code should be covered by tests, and which parts should not. Usually,
a developer must decide for which parts of the code she invests time into writing unit
tests. To make this decision, she needs to take different factors into account like the
criticality and importance of the code, and its testability.

Another insight is that in three cases tests are just changed because the compiler
complained. The developer changed the code in a way that the test code does not compile
anymore. To make the tests run and pass again, the developer has to modify them.
However, the developer can just comment the tests out, which is done in one case. But if
a test ever gets commented out, it is likely that this action will never be reverted. The

CHAPTER 3. INSPECTION OF BUGS 14

commented test is not maintained anymore and becomes useless. So it might be a better
idea to just remove the test. If it happens that the test is needed again later, it can be
recovered from the version control system.

3.2.2 Number of modified files per bug fix
Figure 3.1 shows a histogram of the number of files that were changed for a bug fix. The
x-axis shows the number of changed code files while the y-axis indicates the number of
bugs. Consider the following reading examples: For 14 bugs, it was necessary to change
3 different code files to fix them. For 9 bugs, it was necessary to change 6 different code
files to fix the bug.

A special case, which requires further explanation, are those 20 bugs where no code
file changes were required to fix them. In those 20 cases, there was no need to change
source code to fix those bugs. But it was necessary to change other kinds of files like
configuration or resource files, which were excluded from the analysis.

There are two interesting insights about the number of changed files per bug fix. The
first insight is that in 71 of 200 cases (i.e., 35.5%), only one code file is modified to fix a
bug. This means that quite often a bug just affects one class or component. The second
insight is that in 109 of 200 cases (or in 54.5%), more than one code file is changed to fix
a bug and, hence, the bug affects multiple classes or components of the software system.

The first insight suggests that those 71 bugs could be detected by unit tests that test
only a single component. However, the second insight shows that those 109 bugs, which
affect multiple classes, might not be detectable by simple unit tests. Those 109 bugs are
rather integration issues than defects in a single component. Even though unit tests might
reveal some of those integration issues, it is often necessary to write integration tests to
catch such bugs in more complex scenarios. Hence, a possible advice for developers is
that they should first focus on unit tests but also think about integration tests.

CHAPTER 3. INSPECTION OF BUGS 15

0 1 2 3 4 5 6 7 8 9 1011121314
0

20

40

60

80

20

71

26

14

2223

9
4 3 1 3

0 1 1 2

Number of changed code files

N
um

be
ro

fb
ug

s

Figure 3.1: Histogram showing the number of changed files per bug fix. n = 200

4
Effectiveness of Unit Tests

The main goals of unit tests are the detection and prevention of bugs. The tests should
fail if a developer makes a change to the system that breaks existing functionality. The
problem is that just the existence of tests in the source code is not sufficient. There might
be tests that do nothing useful and, as a result, do not help the developer to find and
prevent bugs. Hence, the question is whether the existing tests are useful and prevent the
introduction of bugs.

4.1 Recurring bugs
Software systems nowadays are very complex in structure. They have many interde-
pendencies between their components. Therefore, it is not unusual that a certain bug
occurs again after it was supposedly fixed in a previous release. Unit tests offer a way to
avoid such recurring bugs by documenting a previous bug and fail if the same bug occurs
again. Hence, it is reasonable to check whether there are any recurring bugs in the EPOF
project.

4.1.1 Setup
We implemented a tool that reports possible recurring bugs. We describe it in detail in
section 9.3.1. The idea behind it is sketched below:

1. Get a list of bug fix commits that changed a certain source code file. Order them

16

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 17

by date and group them by file. This list can be gathered with a query against the
database.

2. For each file entry in this list, detect how each associated commit changed that file.
The detection produces a list of methods that were changed by the commit.

3. Compare the list of changed methods with respect to the different commits that
affected the same file. If two commits changed the same method, they might be
related.

4. If related commits belong to different issues, those issues might be similar and,
hence, are candidates for being recurring bugs. Such pairs of issues are added to a
suggestion list.

5. Return the suggestion list.

The algorithm only considers changes to the method’s body. The following other
kinds of changes to methods are not taken into account because they are hard to detect:
renaming, signature changes, removal or addition of methods.

The suggestions returned by the algorithm were then inspected manually in order
to check which ones are really recurring bugs. During the inspection, the following
information was considered to verify whether a suggestion is a recurring bug:

• The description of the issues: If the descriptions are similar or keywords like
“regression” or “occurred again” are mentioned in the description, it might be a
real recurring bug.

• The code changes made during the commits: If the changes are within the same
lines of code within the method, or if the changes are similar, this might be an
evidence that it is actually a recurring bug.

• The content of the commit message might also give some evidence.

For every suggestion, the reason why it was classified or not classified as recurring
bug was recorded.

4.1.2 Results
The list of suggestions of possible recurring bugs, which was returned by the tool,
contained 183 entries of which 35 suggestions were detected in C# code files and 148 in
Java code files.

Of those 183 suggestions, only 8 pairs of bugs were classified as real recurring bugs
or more precisely as similar bugs. We now present the details.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 18

4.1.2.1 Identified recurring bugs

As mentioned above, there were 8 pairs of bugs that were identified as being recurring
bugs. Those 8 pairs are described in detail in the following paragraphs.

Navigation problems One pair of bugs describes problems with the navigation within
the mobile application. After a certain action was taken by the user, the application
navigated to another screen which was the wrong one. Both bugs reported similar
navigation mistakes in two different parts of the app. The bug fixes changed the same
part of the code, which is not covered by unit tests. The defective code is tightly coupled
to GUI components and is triggered by certain events which are hard to simulate in a
unit test.

Screen orientation problems Another pair of issues both describe problems with the
orientation of the screen of the mobile device. When the mobile device was rotated, the
screen rotated into the wrong position. After the first bug was fixed, another problem
with the screen orientation was reported, and the same code needed to be changed again
to solve this second problem. The affected part of the code was also not covered by unit
tests. The screen rotation depends on the sensors of the device which are hard to simulate.
Furthermore, it is hard to check whether the orientation is correct in a unit test. Although
detection of orientation is an easy task for a human (who needs just one glance at the
screen), it is a non-trivial task for a computer.

Concurrency problems A third pair of issues describes concurrency issues that were
only partly fixed by the first commit and needed final corrections with the second commit.
Such concurrency issues are usually very hard to reproduce in a unit test because their
occurrence is unpredictable.

Missing null checks There are three pairs of issues that are all caused by missing null
checks within the code. In those three cases, the second commit added a necessary null
check that had not been added with the first commit. In all three cases, there were no
tests covering the defective component. In two cases, the testability of the defective
component was low, but in one case it would have been easy to write a test that would
have caught the bug.

Report generation problems One pair of issues is associated with the creation of a
report. The corresponding source code performs some calculations and finally creates
a report containing calculated key numbers. Both issues stated that the calculation of
some key numbers was not correct. The second issue was reported two months after the
first issue. The problem could have been avoided if the calculation of the key numbers

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 19

would have been covered with a unit test. But there was no test written even after the
bug occurred for the second time. The reason might be that it is not easy to write a test
for this part of the code: It heavily draws on data from the database, and the calls to the
database are spread all over the report generation code. Providing suitable test data and
injecting them into the test requires hard work and is impeded by the code’s architecture.

Password validation problems The last pair of related bugs concerns password val-
idation on a form. The form contains a field for the password and a second field for
repeating the password. The first issue reports that the password should only be validated
after both fields are filled in. Some time after this issue was fixed, another issue reported
that the validation does not fire anymore at all. The second commit then added a single
line to the code that should have been added before with the first commit. There is no
test case covering the defective component because the component has dependencies to
other parts of the application and therefore it is not easy to set up a test for it.

The results above show that there are only few bugs that occurred multiple times.
That might be surprising considering the fact that large parts of the code base are not
covered by any unit tests. All those bugs were detected by testers who performed manual
tests. Usually, the bugs were discovered quite quickly and before the release was rolled
out to the customers.

The question that comes to mind is why there were no tests added after the first bug
had been discovered, or at latest when a bug was discovered the second time. There are
multiple possible answers to this question.

One answer is based on the fact that it is usually very hard to add tests. Many parts of
the code are designed in a way that it is really hard to test single components in isolation.
As a consequence, the effort required to add a test is very high and, hence, no unit tests
were written. This aspect is discussed in detail in chapter 5.

Another reason why no tests are added might be the fact that some of the issues
described above are usability issues that are hard or even impossible to catch with a
simple unit test.

And a third possible explanation is that the developer was unaware of the fact that a
specific bug had occurred before. As a consequence, she does not pay special attention
to it.

4.1.2.2 Non-recurring bugs

The algorithm returned 175 pairs of possibly related bugs, which were later classified as
non-recurring ones. But those 175 “false positives” were interesting as well. Assume that
the algorithm reports the following pair of bugs (BugA, BugB), and further assume that
the bug fix that resolved BugA only changed the method methodY () of class ClassX .
Then, because the algorithm reports the pair (BugA, BugB), this means that the bug

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 20

fix that resolved BugB also changed ClassX.methodY (). So, even though BugA and
BugB are later classified as non-recurring bugs, they are at least related because they
affect similar parts of the code. Further inspection of those 175 pairs revealed the
following findings:

• Many of those pairs are reported because some refactoring during one bug fix
changed parts of the code that were also changed by the second bug fix. But the
second bug was not caused by the refactoring.

• Another reason why bugs were reported by the algorithm are code formatting
changes. Such changes are often done by the IDE automatically when the developer
opens or closes a file, and often the developer is not aware of those changes.

• A third category of reported related bugs are not recurring bugs because there
was a long time between their discovery. In that time, the common component
may have changed considerably because new functionality was added. Hence, the
two bugs might affect the same component, but that component changed so much
between the discovery of those two bugs that it is in fact not the “same” component
anymore. Thus, the two bugs are not related.

• The algorithm reports some pairs of bugs because their bug fixes both changed a
special class, which centralizes a specific cross-cutting aspect of the system. An
example for this is the registration of a component into a dependency injection
(DI) container, which is done in one single method in a single class for the whole
system. If a bug fix needs to register a new component, it changes that method.
But if a second bug fix adds another registration, it does not mean that those bug
fixes are related even though they changed the same method.

These results show that even though two bug fixes may change similar parts of
the code, this does not mean that their bugs are related. This is a contradiction to the
well-known single responsibility principle (SRP). SRP states that a class should have
only one single responsibility. Given the assumption that a class follows the SRP, then
two different bugs that affect that class must be related. But in the EPOF project, there
were many bugs that affected the same class but were not related. As a consequence,
there must be some violations of the SRP in the EPOF project. This issue is discussed in
chapter 5.

The results above raise another question: Why are there components that are changed
by multiple different bug fixes, and hence are more prone to bugs, than other components?
This question is answered in section 4.2.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 21

4.2 Proneness to bugs
The results in section 4.1.2 suggest that not every part of a software system is equally
susceptible to errors. There are some parts that contain more bugs than others. In general,
a component’s proneness to bugs might also change over time. In an earlier stage of the
development, more bugs might be discovered, and, thus, the component may change
often before it gets more stable in a later stage of development. The analysis presented in
this section deals with different aspects of the EPOF project’s proneness to bugs.

4.2.1 Setup
The information within the issue tracker served as starting point for every analysis in the
following sections.

Bug report history All bugs in the EPOF project are reported using the Jira issue
tracker. Jira tracks the dates when a bug was discovered, and when it was fixed. This
information was gathered from the issue tracker and used to plot a timeline and to analyze
the time it took the developers to fix a bug. This analysis should reveal whether there
were times when significantly more or less bugs were discovered and whether there were
changes in the bug resolution duration.

Bug fix commit history The information stored in the database could be used to gather
bug fix commits. The commits were then grouped by component and plotted on a
timeline, which allowed visual inspection of the development history. The resulting plot
was analyzed to find conspicuous features within the development history of the system’s
components.

Bug fixes per component Using the information in the database, it was possible to
get the number of bugs that affected a certain component of the EPOF system. This
information was used to create a ranking of the components by their number of bugs.
For the top 15 of the most error-prone components, the developers were asked why these
components seem to be more susceptible to bugs than others.

In chapter 3, a subset of 200 bugs was further analyzed to identify whether a defective
component is covered by a unit test. This information was reused for another analysis
in this chapter: We checked how many bugs affected the components that are covered
by a test. The same analysis was done for the components that are not covered by a test.
The results were then compared to each other, and we checked whether there were some
differences between the tested and the untested components.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 22

4.2.2 Results
4.2.2.1 Bug report history

Figure 4.1 on page 24 shows when bugs were reported during the lifetime of the EPOF
project. The vertical axis shows the number of bugs, and the horizontal axis shows the
time. The red dots show the total number of reported bugs at a given point in time.
The green dots show the number of resolved bugs at a given point in time. The gray
vertical lines show the releases of the EPOF project. There was a change in the version
numbering between version 2.5 and 17.10: In 2017, the team switched from incrementing
version numbers to the schema Year.Quarter. The release dates of release 2.2 and 2.3
could not be determined anymore. That is the reason why these releases are missing in
the graph. The slope of the red line indicates how frequently bugs are reported. If many
bugs are discovered in a short time period, the slope is very steep. The vertical distance
between the red and the green dots represents the number of open bugs at a given point
in time. If the distance between the red and the green line grows, the number of open
bugs in the system increases. If the distance shrinks, the number of open bugs decreases.

There are three observations to point out: Shortly before and shortly after the releases
2.10 and 2.40 the slope gets steeper which means that more bugs are reported in a short
period of time. The same pattern occurs again around all 17.XX releases. Members of
the development team were confronted with this observation. They said that this might
be due to the fact that there were testing phases before the releases, which revealed many
bugs. And right after the releases, the application and the application’s error log were
monitored closely and more bugs were discovered. Those issues were then resolved with
a hotfix if they were critical.

The second, and more interesting observation, is the bend of the red line after release
2.5 at the end of the year 2016. This bend indicates that after this release, fewer bugs were
discovered. Members of the development team explained this clear bend with drastic
changes of the project’s organization. In the time between release 2.10 and release 2.60,
the developer team was under permanent pressure to add more features. Furthermore, the
communication between the customer and the development team was not very effective.
The team had already started implementing new features before all requirements were
clear. This led to misunderstandings between the developers and the customers and
resulted in many bug reports, which in fact were changes of the requirements. There
was also a strong staff fluctuation. As a consequence, the project team neglected testing
and quality assurance activities, which resulted in many bugs that got into production.
To prevent the project from failure, some measures were taken at the end of 2016. In
the time after December 2016, the team improved the SCRUM process and followed it
more strictly. They improved the quality of communication between the customer and
the development team so that it is more open and better structured. Implementation of
a user story did not start before all necessary information was available. Furthermore,

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 23

the responsibilities of the developers were refined, and quality assurance, especially
automated unit testing, was given higher priority. The introduction of the test coverage
goal in 2017 was one concrete measure that is shown in the figure. Those improvements
of the development process took some time. But as a consequence, the quality of the
product improved during the releases 17.XX and 18.XX, which is confirmed by feedback
of the customers and developers as well. Thus, the observed decreasing number of
reported bugs in figure 4.1 confirms that the described measures had a positive effect
on the EPOF project. Because the test coverage goal was just one of many measures
to improve code quality and the development process, it is not possible to distinguish
its effects from those of the other measures. It is therefore not possible to say whether
the test coverage goal alone had a positive effect on the code quality or the number of
reported bugs.

The third observation concerns the number of resolved bugs: Most of the time the
green line closely follows the red line. This means that the total number of open bugs in
the system at a given point in time remains more or less constant. Thus, the developers
were fixing bugs during the whole lifetime of the project. There was no period in
the development history during which the developers neglected bug fixing. But after
November 2016, the green line and the red line take different paths. The number of open
bugs slightly increases: The average number of open bugs was 210 before November
2016 and 249 afterwards. The development team explained this with a “cleanup” measure:
They observed that there were some bugs in the system that were neither reported by
the quality management team nor by the customers but by the developers themselves.
Those bugs usually were not critical (e.g., log messages that were classified as error but
in fact were just warnings), but the developers found them annoying. In spring 2017, the
team started to systematically collect and report such bugs. Those additional bug reports
might explain the increase of open bugs after November 2016.

The number of open bugs in a system is just one key number related to bugs within
a project. Another important key number is the time it took the developers to fix them.
Figure 4.2(a) on page 26 shows the results of this analysis. Each bug was assigned a
unique number as an ID. The x-axis in the figure then shows the ID of the bug. The
bugs are ordered by the date they were reported. So for example, the bug with ID 1 was
reported before the bug with ID 45. The y-axis shows the number of days it took the
developers to fix a certain bug. Table 4.2(b) shows some statistical results of the data.
The statistics were evaluated for the whole lifetime of the project, the time before and
the time after November 2016. In November 2016, the major process transformations
happened, which should prevent the project from failure. While the number of reported
bugs decreased after the transformation, there were no clear changes in the duration of
bug fixes. So, it seems that the measures to ensure the quality, and the enforced usage of
unit testing do not have an impact on the bug fix duration as of spring 2018. However,
linear approximation of the data (indicated by the black line in figure 4.2(a)) shows a

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 24

20
13
-0
7

20
13
-0
9

20
13
-1
1

20
14
-0
1

20
14
-0
3

20
14
-0
5

20
14
-0
7

20
14
-0
9

20
14
-1
1

20
15
-0
1

20
15
-0
3

20
15
-0
5

20
15
-0
7

20
15
-0
9

20
15
-1
1

20
16
-0
1

20
16
-0
3

20
16
-0
5

20
16
-0
7

20
16
-0
9

20
16
-1
1

20
17
-0
1

20
17
-0
3

20
17
-0
5

20
17
-0
7

20
17
-0
9

20
17
-1
1

20
18
-0
1

20
18
-0
3

20
18
-0
5

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500 1.
00

1.
10

2
.0
0

2
.1
0

2
.4
0

2
.5
0

1
7.
10

1
7.
20

1
7.
30

1
7.
40

1
8.
10

1
8.
20

Time

N
u
m
b
er

of
b
u
gs

Release version

Number of resolved bugs
Number of reported bugs

Introduction of test coverage goal

Figure 4.1: Discovery of bugs over time

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 25

slightly decreasing trend. But in absolute numbers, the average fix duration of 30 days is
still rather high.

4.2.2.2 Bug fix commit history

Figure 4.3 on page 28 shows a timeline of all commits of the EPOF project that were
made in order to fix a bug. The horizontal axis shows the time. The vertical axis shows
the code files which were assigned a unique ID. Whenever there is a colored mark, this
means that the file was changed by a commit at that point of time. All marks on the
same vertical height represent changes to the same file. The shapes of the marks are used
only to distinguish neighbouring files. The colors of the marks encode the number of
the commits per file: The first change to a file is marked yellow, the second a little more
green, the third one even more green and so on. The vertical gray lines show the release
dates of the EPOF project.

Two areas in the graph are shown in figures 4.4(a) and 4.4(b) and discussed below.
In the first interesting part in figure 4.4(a), there are multiple files that are changed by

many commits as indicated by the green marks. Namely the files with ID 30, 85, 90, 91,
114, and 123 (marked with gray dashed lines in figure 4.4(a)). Furthermore, one can see
that the files 90 and 91 are often changed at the same time. The same observation holds
true for the files 114 and 123. Further inspection of those pairs of files revealed that they
are closely related: Both pairs of files are part of the Android mobile app, and all files are
part of the payment functionality of the app. Hence, this part of the app seems to be more
prone to bugs than other parts. The files with ID 30 and 85 both deal with the display of
documents in the Android mobile app, which is one of the core functionality of the app.
The developers confirmed that those 6 files are rather large and play an important role
within the app. They said that those components are likely to be affected by multiple
bugs because of their size and complexity. The developers also confirmed that adding
tests for those components is hard due to their complexity.

The second interesting part is shown in figure 4.4(b). There is a gap in the devel-
opment history. In the time between December 2016 and February 2017, no bug fix
commits were recorded (note the vertical broad white “gap” in the graph). This break in
development history might partly be explained by the shortcomings of Jira to associate
commits and bugs, but the bug history shown in figure 4.1 on page 24 shows that there
are also fewer bugs reported in this time span. Team members confirmed that there was
less development activity in this period because the transformations of the development
process and the reorganization of the developer team happened in this period.

There is a third interesting observation in figure 4.3: The bug fix commits before and
after February 2017 happen in different parts of the system. Most changes to the files
1-350 are done before February 2017 (with few exceptions). The files 350-800 are all
changed after February 2017. Further inspection of those two file groups revealed that
most of the files in range 1-350 are part of the Android mobile app whereas most of the

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 26

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Bug ID (ordered by creation date)

R
es
o
lu
ti
o
n
ti
m
e
[d
ay
s]

−0.0031x+ 40.155, R2 = 0.011

(a)

2013-2018 before Nov 2016 after Nov 2016
Number of reported bugs 6531 5237 1294
Average fix duration [days] 31.7 31.5 32.8
Median fix duration [days] 14 14 11
Maximum fix duration [days] 757 757 404
Minimum fix duration same day same day same day

(b)

Figure 4.2: Time between the reporting of a bug and its resolution.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 27

files in range 350-800 are part of the EPOF back-end. It seems that there was heavy
development of the Android app in 2016 and then, starting in 2017, the team focused
on bug fixes in the back-end. The developers explained this change with the fact that
the development of the Android app was temporarily suspended as of the end of 2017.
Furthermore, the architecture of the back-end was changed slightly: New features should
be implemented as micro-services to enforce low coupling and separation of concerns.
Thus, the back-end was changed often in this time which resulted in the discovery and
fixing of bugs.

One of the measures that were introduced in 2017 was the test coverage goal for new
parts of the system. This measure might explain the fourth observation that there are no
components that are changed excessively often after January 2017. Such components
would be shown with green commit marks, but nearly all commit marks in 2017 and
2018 are yellow, which means that most components are only changed by few commits.

4.2.2.3 Bug fixes per component

Figure 4.5(a) and table 4.5(b) on page 31 show how many components are changed by
which number of bug fixes. Consider the following reading examples: 465 components
are changed by only one bug fix. This means that they are affected by only one reported
bug or at least changed only once during a bug fix. 229 components are changed by 2 to
4 bug fixes.

The results show that of the total 793 components that are changed by at least one bug
fix, 58.6% (in absolute numbers: 465) are changed by only a single bug fix, and 41.4%
(328) by more than one bug fix. 15 components are changed by at least 15 bug fixes,
which might indicate that those components are more error-prone than other components.

The developers who made most changes to those 15 components were asked whether
they can explain why those components are changed so often during different bug fixes.
They stated that most of those components play a central role in the application and are
involved in many different tasks. They contain large parts of the business logic of the
application and also GUI-logic. So, they are likely to be changed often. Another reason
for the numerous modifications are changes in the environment. One example is the
usage of the fingerprint API of Android, which was used shortly after it was introduced.
So, it took some time to use it right within the app. Another example is the API of the
EPOF back-end, which also changed multiple times and, as a consequence, some errors
occurred in the Android app.

The developers were asked whether they considered writing unit tests for those critical
parts of the application. They said that many components of the app are designed in a
way that they require a complete Android environment to run in order to test them. Hence,
it is hard to write unit tests for the app and hard to test only parts of it in isolation. But
starting in 2018, the Android developers introduced the Model-View-Presenter (MVP)
pattern to decouple the GUI and the business logic. This allows unit testing for newer

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 28

’1
5-
03

’1
5-
05

’1
5-
07

’1
5-
09

’1
5-
11

’1
6-
01

’1
6-
03

’1
6-
05

’1
6-
07

’1
6-
09

’1
6-
11

’1
7-
01

’1
7-
03

’1
7-
05

’1
7-
07

’1
7-
09

’1
7-
11

’1
8-
01

’1
8-
03

’1
8-
05

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

In
tr
o
d
u
ct
io
n
te
st

co
ve
ra
g
e
g
oa
l

1
.0
0

1
.1
0

2.
0
0

2
.1
0

2
.4
0

2
.5
0

17
.1
0

17
.2
0

17
.3
0

17
.4
0

18
.1
0

D
et
ai
l
1

D
et
ai
l
2

Date

F
il
e
ID

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Figure 4.3: Bug fix commits to files over time

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 29

’1
6-
01

’1
6-
02

’1
6-
03

’1
6-
04

’1
6-
05

’1
6-
06

’1
6-
07

’1
6-
08

’1
6-
09

’1
6-
10

’1
6-
11

’1
6-
12

’1
7-
01

0

50

100

150

2
.4
0

2.
50

30

85
90
91

114

123

Date

F
il
e
ID

(a) Detail 1

’1
6-
09

’1
6-
10

’1
6-
11

’1
6-
12

’1
7-
01

’1
7-
02

’1
7-
03

’1
7-
04

’1
7-
05

’1
7-
06

’1
7-
07

’1
7-
08

’1
7-
09

300

350

400

450

In
tr
o
d
u
ct
io
n
te
st

co
ve
ra
ge

go
a
l

1.
00

1.
10

2.
00

2.
10

2.
40

2.
50

17
.1
0

17
.2
0

17
.3
0

17
.4
0

18
.1
0

Date

F
il
e
ID

(b) Detail 2

Figure 4.4: Details of figure 4.3

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 30

parts of the Android app. It is planned to refactor older parts of the application, but due
to time and budget constraints, this task has not high priority.

In chapter 3, two hundred randomly chosen bugs were analyzed in depth. From all
244 components that were affected by those bugs, there were 8 components that are
covered by unit tests. It was then evaluated how many bugs affected those 8 tested and the
remaining 234 untested components. The results are shown in figures 4.6(a) and 4.6(b) on
page 32. The graphics are the same as in 4.5(a), but only the components that are affected
by the 200 sampled bugs are considered. The figures reveal that most components under
test are affected by 5 or less bugs. This suggests that tested components are less prone
to bugs than untested ones. However, because the number of tested components in the
sample is relatively low, this conclusion is not very reliable. Furthermore, there is one
tested component that is affected by 19 bugs. That component handles the fingerprinting
feature via a new Android API, and it took some time for the developers to use it in the
right way. So, there is at least one component where the tests are not able to prevent
bugs.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 31

[1
,2

)
[2
,5

)

[5
,1

0
)

[1
0,

15
)

[1
5,

20
)

[2
0,

30
)

[3
0,

40
)

[4
0,

50
)

0

50

100

150

200

250

300

350

400

450

500

Bugfixes

C
o
m

p
o
n

en
ts

(a)

Bug fixes Components
1 465
2-4 229
5-9 66
10-14 18
15-19 8
20-29 3
30-39 2
40-49 2
50- 0

(b)

Figure 4.5: Bug fixes per component

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 32

(0
,5
]

(5
,1
0]

(1
0,
15
]

(1
5,
20
]

(2
0,
3
0]

(3
0,
4
0]

(4
0,
5
0]

0

50

100

150

200

172

35

15
5 3 2 2

Bugs

C
o
m
p
o
n
en
ts

(a) Bugs per component for untested components, n = 234

(0
,5
]

(5
,1
0]

(1
0,
15
]

(1
5,
20
]

(2
0,
30
]

(3
0,
40
]

(4
0,
50
]

0

50

100

150

200

7
1

Bugs

C
om

p
o
n
en
ts

(b) Bugs per component for tested components, n = 8

Figure 4.6: Bugs per component

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 33

4.3 Mutation testing
Mutation testing is a method to assess the quality of unit tests. The key idea behind it is
to create multiple copies of the production code (called “mutants”) and include some
small changes into their code. Then, the existing test suite is run on those mutants and
checked how many tests fail. If one or more tests fail, the test suite was able to detect the
changes (the tests “killed” the mutants) and, hence, the quality of the test suite is good.
If no tests fail, the changes were not detected and, as a result, the tests might also fail to
catch real bugs.

Mutation testing is an expensive process, mainly because the process involves test
suite execution for every mutant. There are multiple techniques available that should
speed up the whole process:

One technique called “goal-oriented mutation testing with focal methods” restricts
the number of methods that are mutated. This approach was proposed by Vercammen et
al. [31]. The idea behind it is to make a connection between a unit test and the actual
method it tests (the “focal method” under test). During the mutation testing process, only
those focal methods are mutated.

Another technique to speed up the mutation testing process is the restriction of the
set of applied mutations. In a project that performs many numerical calculations it is
generally more interesting to apply mutations to the numerical operators (e.g., replace +
with / or − with ∗) whereas in a project with many logical decisions, it is more useful to
replace true with false or = with 6=.

The test coverage in the EPOF project is rather low. But the test coverage is a key
number with a low expressive power when it comes to assessing the quality of the test
suite. Hence, mutation testing was applied to parts of the EPOF project to get some
information about the quality of its unit tests.

4.3.1 Setup
There exist different tools to automate the mutation testing process. VisualMutator [4]
and NinjaTurtles [20] are two tools that are available for C# projects. However, neither
of them are used on a large scale, and NinjaTurtles is not actively developed anymore.
Both tools were tested together with the EPOF source code. But neither was able to deal
with the large size of the code base and, therefore, both tools failed to create mutants.
Hence, the mutation testing was done manually. To keep the manual work at a reasonable
level, the mutation testing was only applied to parts of the code where bugs were located
and that were under test control.

15 classes matched this criterion. But four of those classes did not exist anymore in
the current version of the source code and, for different reasons, it was not possible to
execute tests on older versions of the project. For one class, there were tests that still
existed in the latest version of the code but were commented out.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 34

Hence, mutation testing was applied to the 10 remaining classes. Both optimizations
described above in section 4.3 were used to speed up the whole process:

Focal methods under test were identified for every test that covered the 10 selected
classes. Ghafari et al. [9] presented a technique to perform this linking between test
and production code automatically. However, for C# projects there is no implementation
available. As a consequence, the identification of focal methods under test was done
manually.

Furthermore, because most of the selected classes perform boolean operations, if-
else-decisions, and numerical calculations, the set of applied mutations was restricted to
the following operations:

• Replace == with ! = and vice versa

• Replace a boolean expression with its negation

• Replace true with false and vice versa

• Replace + with / and vice versa

• Replace − with ∗ and vice versa

• Replace + = with − = and vice versa

• Replace ++ with −− and vice versa

Only one mutation was applied at a time. As such, each modification yielded a new
mutant. The mutant was then compiled, and afterwards the tests covering the mutated
code were executed.

4.3.2 Results
Table 4.1 on page 36 shows aggregated results of the mutation testing process while table
4.2 shows more detailed results of it. The results are grouped by the components of the
EPOF projects that the mutated classes belong to. The score in table 4.1 is calculated by
dividing the number of killed mutants by the total number of mutants.

The lowest score is achieved by the component PkPortal. This is in line with the
fact that this component is a large monolithic subsystem with very low test coverage.
PkPortal was the starting point of the whole EPOF project and constantly grew larger
and more complex over time. The few existing tests only cover small parts of the classes
(usually the main code path) and they do not cover border conditions. This is reflected in
their inability to detect mutations.

The other components achieve higher scores. That goes along with the fact that they
are all components that were developed after the project team committed itself to the

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 35

goal of achieving a certain test coverage percentage in newer parts of the system. So, the
classes in those newer components are usually covered by more than one unit test and,
consequently, those tests are able to detect more mutations.

There is one class of the PkPortal that seems to be rather well tested: the class Price.
This is a class that has no dependencies to other components and performs some financial
calculations. This class was added after the test coverage goal was defined by the project
team. Furthermore, it is very easy to write tests for this class. Those two factors might
explain why this class is unusually well tested compared to other classes in the PkPortal
component.

CHAPTER 4. EFFECTIVENESS OF UNIT TESTS 36

Component # Mutated classes # Mutants # Killed Score
DelOrd 2 11 9 81.8%
GkPortal 2 24 21 87.5%
PkPortal 3 66 44 66.7%
RecPref 2 31 26 83.9%
Transfer 1 2 2 100.0%
Total 10 134 102 76.1%

Table 4.1: Aggregated results of mutation testing

Component Class # Tests # Mutants # Killed
DelOrd ProtocolDeliveriesController 3 2 2
DelOrd DeliveryCommitProcessor 11 9 7
GkPortal KlpUtils 4 5 4
GkPortal KurepoUtils 5 19 17
PkPortal ShippingJobService 1 23 7
PkPortal ProfileService 1 12 6
PkPortal Price 84 31 31
RecPref SendersController 6 17 15
RecPref MigrationsController 6 14 11
Transfer CleanupDeliveriesJob 2 2 2

Table 4.2: Detailed results of mutation testing

5
Assessment of Testability

The testability or “test-friendliness” of code is a concept to describe how much effort is
necessary to write unit tests for that code. The testability is determined by multiple factors
of the system like its architecture, the dependencies within the system, the coupling
between the components, and their complexity and size. The testability of the code might
give an answer to the question why a certain component is not covered by unit tests.

5.1 Setup
The analysis in this chapter focusses on the question why a certain component is not under
test control and how complicated it would be to cover it with unit tests. To answer this
question, the 200 randomly chosen bugs from chapter 3 were analyzed again: For each
bug, the defective code was identified. Then the testability of that code was classified
into three categories: good, normal and bad. Good testability means that it does not
require much effort to write a test for the code. Bad testability means that a significant
effort is required to write unit tests. Normal testability means something in between:
Adding tests to cover the code is not trivial but also not very complicated. The criteria
that we suggest for classification are outlined in table 5.1. They are all rather soft criteria
based on project knowledge and testing experience and focus primarily on the aspect how
easy a component can be instantiated and configured within a unit test. This approach
was chosen over the usage of common code metrics (like the maintainability index [21]
or the cyclomatic complexity [17]) due to practical reasons. The EPOF project uses a
wide variety of technologies and, hence, calculating code metrics for different types of

37

CHAPTER 5. ASSESSMENT OF TESTABILITY 38

code files at different points in development history is very expensive. Furthermore, such
metrics usually do not take domain and project knowledge into account.

Category Criteria

Good

The SUT can be easily instantiated in a unit test.

The SUT has no or only very few dependencies to other components.

Verification of correct behavior is possible by direct inspection of the state
of the SUT.

Normal

The SUT has only few dependencies which can be mocked easily.

Verification of correct behavior is possible by direct inspection of the state
of the SUT or indirectly by its calls to the environment.

Bad

The SUT has many dependencies to other components.

The SUT depends on complex data from the database which are hard to
replace with test data.

The SUT has dependencies to GUI components or device properties.

The defective method that causes the bug is not directly accessible by the
test (e.g., private or protected).

The defective method is very complex (e.g., nested structures)

Table 5.1: Categories and heuristics used for classification of testability of source code.
SUT = system or component under test.

5.2 Results
Figure 5.1 shows the results of the testability analysis. To clarify the graphics, consider
the following reading example: In 16 cases it would have been easy to add unit tests
that cover the defective class that caused a bug. A special case, which requires further
explanation, is the category “n/a” (not available). Those bug fixes involved only changes
to non-code files like resource files, images or to static data in the database (e.g., missing
translations). Therefore, they are irrelevant for this analysis which focuses on code files.

There are two observations that are interesting:

• There are 16 cases where the testability of the code is good. In 7 of those 16 cases,
there are indeed tests that at least partly cover the defective component. Some of

CHAPTER 5. ASSESSMENT OF TESTABILITY 39

good normal bad n/a

50

100

150

16
29

140

15

Testability of defective code

N
um

be
ro

fb
ug

s

Figure 5.1: Testability of code affected by bugs. n = 200

those tests existed before the bug was discovered, and some of them were added
when the bug was corrected.

• In 140 cases, it would be very hard to add tests for the defective components. In
only 3 of those cases, the defective components are partly covered by tests.

Further inspection of the second observation above revealed that there are some few
main reasons why testability is low.

1. The bug is a usability or design issue

2. The erroneous component has many dependencies to other components

3. The defective component violates the single responsibility principle (SRP)

The remainder of this section presents for each of these main reasons a typical
example, describes what the problem is, and offers possible solutions.

5.2.1 The bug is a usability or design issue
Example There was one bug report that reported the following problem: There was
a popup dialog in the mobile app where an animation of a wheel was used to indicate
that some background activity was going on. The issue reported that this animation was
not displayed at the correct location. It should have been centered vertically. Figure
5.2 shows the state before the issue was solved. It is obvious that the animation was
positioned too low.

CHAPTER 5. ASSESSMENT OF TESTABILITY 40

Figure 5.2: Wrong position of spinner

Problem description The problem with issues like the one in this example is that they
concern usability or graphical design problems where an exact definition of what is right
and what is wrong is missing. There exist best practices that may guide the developers
and are sometimes subject of ongoing controversial debates between different experts
in the same field. As a consequence, it is hard or impossible to catch such issues with
automated tests.

Solutions Manual acceptance testing, sometimes by the end-users themselves, is to
date the common approach to address such issues. Other approches like automated GUI
tests with Selenium or Cucumber require exact specification of the desired behaviour
and look of the application in advance. Furthermore, such tests are likely to break on
even small changes made to the GUI. Another approach is followed by Moran et al. [19]
and Mahajan et al. [15] who both use computer vision techniques to detect differences
between the expected look of a screen (as defined by mockups) and the actual look of
the screen (when the application runs). The solution of Moran et al. is already used in
industrial contexts.

5.2.2 The erroneous component has many dependencies
Example The code in listing 2 is an excerpt from a C# API controller of the EPOF
back-end. The class is called DocumentsController and implements a REST API for
accessing documents of a customer. The method shown in the listing does the following:

1. Validates the input parameter, returning an error code if it is invalid

2. Gets the document from the database and marks it as read

CHAPTER 5. ASSESSMENT OF TESTABILITY 41

3. Checks whether the document was changed since the last time that it was accessed.
If it was not modified, returns a NOT MODIFIED status code.

4. Checks whether the document is an email. If this is the case, returns it as a
structured document.

5. If the document is not an email, returns its raw content as a binary stream.

There was a bug-report that stated that the format of the data that had been returned
from the method GetDocument was wrong. To fix the bug, some lines of code had to be
deleted from the controller. The controller was not covered by any test code.

Listing 2: Excerpt from class DocumentsController
1 PUBLIC VIRTUAL IHttpActionResult GetDocument(STRING id)
2 {
3 VAR validationResult = globalValidaters.CheckDocumentId(id);
4 IF (!validationResult.IsValid)
5 {
6 RETURN ResponseMessage(Request.CreateResponse(
7 (HttpStatusCode)validationResult.Errors
8 .First().AttemptedValue,
9 STRING.Join(”;”, validationResult.Errors)));

10 }
11

12 INT isNumber;
13 VAR tryParse = INT.TryParse(id, out isNumber);
14 IF (!tryParse)
15 {
16 RETURN ResponseMessage(Request.CreateResponse(
17 HttpStatusCode.BadRequest,
18 ”DocumentId is not a number.”));
19 }
20

21 VAR content = documentFileService
22 .RenderDocumentFile(id);
23

24 documentService.MarkDocumentAsRead(content.Entity);
25

26 IF (Request.Content.Headers.LastModified.HasValue
27 && Request.Content.Headers.LastModified.Value
28 .CompareTo(content.Entity.LastModified) >= 0)
29 {
30 RETURN ResponseMessage(Request.CreateResponse(
31 HttpStatusCode.NotModified, ”Not Modified”));
32 }
33

34 HttpContext.Current.Response.AppendHeader(”FolderStructureEtag”,
35 folderService.GetFolderStructure().Etag);

CHAPTER 5. ASSESSMENT OF TESTABILITY 42

36

37 HttpContext.Current.Response.AppendHeader(”DocumentEtag”,
38 content.Entity.Version.ToEtag());
39

40 HttpContext.Current.Response.AddHeader(”DocumentType”,
41 ”application / octet − stream”);
42

43

44 HttpContext.Current.Response.ContentType =
45 NEW MediaTypeHeaderValue(”application/octet−stream”)
46 .ToString();
47

48 VAR documentEmail = content.Entity AS DocumentEmailDto;
49

50 IF (documentEmail != null)
51 {
52 // Deserialize the email document
53 VAR emailContent = documentFileService.GetDocumentFile(id);
54 VAR emailMessage = emailService
55 .DeserializeMessage(emailContent.BinaryContent);
56

57 // GetEmailMessage, set the document as Read => eTag changes,
58 // so we return the new ones in the header
59 HttpContext.Current.Response.AppendHeader(”DocumentEtag”,
60 documentEmail.Version.ToEtag());
61

62 // Get the dto object
63 VAR emailDto = EmailMessageDto.MapToDto(emailMessage);
64

65 //Set the date format handling to ”\/Date(1234656000000)\/”
66 VAR microsoftDateFormatSettings = NEW JsonSerializerSettings
67 {
68 DateFormatHandling = DateFormatHandling.MicrosoftDateFormat
69 };
70

71 // Serialize in JSON
72 STRING emailJson = JsonConvert
73 .SerializeObject(emailDto, microsoftDateFormatSettings);
74

75 RETURN Ok(emailJson);
76 }
77

78 HttpContext.Current.Response.AppendHeader(”DocumentEtag”,
79 content.Entity.Version.ToEtag());
80 HttpResponseMessage result =
81 NEW HttpResponseMessage(HttpStatusCode.OK);
82 result.Content = NEW ByteArrayContent(content.BinaryContent);
83 result.Content.Headers.ContentType =
84 NEW MediaTypeHeaderValue(”application/octet−stream”);

CHAPTER 5. ASSESSMENT OF TESTABILITY 43

85 RETURN ResponseMessage(result);
86 }

Problem description The main reason why it is hard to write tests for the method
GetDocument is the large number of other components it depends on:

• In line 3, a validator object is used to validate the parameters.

• At various locations within the code, static references to Request or HttpCon-
text.Current are used (e.g., line 6, 16, 44).

• In lines 21 and 53, a DocumentFileService is used to gather the document from the
database.

• In line 24, a DocumentService is used.

• In line 35, a FolderService is used.

• In line 54, a EmailService is used.

For all those dependencies, a stub or mock object has to be injected that behaves
exactly the way it is required for a unit test. Due to the large number of dependencies, this
process is expensive and rather complicated. The static reference to HttpContext.Current
is particularly hard to replace with a mock object because the part of the .Net framework,
which provides this object is not designed in a test-friendly way.

Solutions There are many solutions to overcome the problem of too many dependen-
cies. They usually involve a refactoring of the existing code to reduce coupling between
the components. One typical refactoring is the introduction of abstraction layers to make
the code less dependent on other external or internal components. It depends on the
concrete case which refactoring techniques are applicable. Feathers [5] and Fowler [7]
both show some techniques, and when one should apply them.

The following section describes a possible solution for the example in listing 2. A
technique called “Dependency Injection” (DI) was already used to inject components
like DocumentService and EmailService through the constructor of the controller class.
Therefore, it is easy to provide fake implementations for those required components to
the DocumentsController when executing a unit test. A more difficult case is the static
reference to HttpContext. A technique that can be used to resolve this problem is called
“Extract and override method” and is described by Feathers [5]. The application of the
technique is sketched in listing 3. The key steps are as follows:

1. Write a wrapper interface IHttpContext for HttpContext that defines only the
methods and properties that are required by the code in the controller.

CHAPTER 5. ASSESSMENT OF TESTABILITY 44

2. Add a class that implements this interface and just forwards the method calls to
the real HttpContext.

3. In the controller, add a method GetCurrentHttpContext that returns an object that
implements IHttpContext. Make the method protected.

4. Replace all calls to HttpContext in the controller with calls to the method created
in the previous step.

5. Create a class MockDocumentsController that inherits from the real DocumentsCon-
troller

6. Override the method GetCurrentHttpContext and return a stub that implements
IHttpContext and does not use the real HttpContext

7. Use the MockDocumentsController for all test cases and use the real Docu-
mentsController in production code.

Listing 3: Possible solution to avoid tight coupling.
1 PUBLIC interface IHttpContext {
2 VOID AddResponseHeader(STRING header, STRING value);
3 VOID SetContentType(STRING contentType);
4 }
5

6 PUBLIC class RealHttpContext : IHttpContext {
7 PUBLIC VOID AddResponseHeader(STRING header, STRING value){
8 HttpContext.Current.Response.AppendHeader(header, value);
9 }

10

11 PUBLIC VOID SetContentType(STRING contentType){
12 HttpContext.Current.Response.ContentType = contentType;
13 }
14 }
15

16 PUBLIC class MockHttpContext : IHttpContext {
17 PUBLIC VOID AddResponseHeader(STRING header, STRING value){
18 // Mock implementation goes here
19 }
20

21 PUBLIC VOID SetContentType(STRING contentType){
22 // Mock implementation goes here
23 }
24 }
25

26 PUBLIC class DocumentsController {
27

CHAPTER 5. ASSESSMENT OF TESTABILITY 45

28 protected VIRTUAL IHttpContext GetHttpContext() {
29 RETURN NEW RealHttpContext();
30 }
31

32 PUBLIC VIRTUAL IHttpActionResult GetDocument(STRING id){
33 // some code omitted
34

35 IHttpContext httpContext = GetHttpContext();
36

37 httpContext.AddResponseHeader(”FolderStructureEtag”,
38 folderService.GetFolderStructure().Etag);
39

40 httpContext.AddResponseHeader(”DocumentEtag”,
41 content.Entity.Version.ToEtag());
42

43 httpContext.AddResponseHeader(”DocumentType”,
44 ”application / octet − stream”);
45

46

47 httpContext.SetContentType(
48 NEW MediaTypeHeaderValue(”application/octet−stream”)
49 .ToString());
50

51 // some code omitted
52 }
53 }
54

55 PUBLIC class MockDocumentsController : DocumentsController {
56 // Inherited from base class
57 protected override IHttpContext GetHttpContext(){
58 RETURN NEW MockHttpContext();
59 }
60 }

5.2.3 The defective component violates SRP
Example The code in listing 4 is an excerpt from the Android mobile app of the EPOF
project. The containing class is called SetupEPofPayListFragment and represents one
specific screen which is displayed to the user. The class contains many other methods
besides the ones shown in the listing. The methods shown in the listing basically prepare
loaded data to be displayed on the screen. The method onLoadFinished is executed when
some data loading task is completed and then calls the private method normalizeForGui
that performs some processing on the previously loaded data. The method aggregates
some of the loaded data to improve the readability of the result.

CHAPTER 5. ASSESSMENT OF TESTABILITY 46

Listing 4: Excerpt from class SetupEPofPayListFragment
1 PUBLIC CLASS SetupEPofPayListFragment {
2

3 // Other instance variables and methods omitted
4

5 @Override
6 PUBLIC VOID onLoadFinished(
7 Loader<AsyncTaskResult<PaymentContractCompositionDto[]>> loader,
8 AsyncTaskResult<PaymentContractCompositionDto[]> data) {
9 IF (loader.getId() == EPOF PAY LOADER ID) {

10 IF (data.isSucceeded()) {
11 paymentContracts = data.getResult();
12 dataLoaded = TRUE;
13 ePofPayListAdapter.setData(
14 NEW EPofPayAccounts(
15 normalizeForGui(paymentContracts))
16 .getAccounts());
17 } ELSE {
18 showException(data.getException());
19 }
20 }
21 mRecyclerView.hideLoading();
22 mSwipeRefreshLayout.setRefreshing(FALSE);
23 }
24

25 PRIVATE List<EPofPayItem> normalizeForGui(
26 PaymentContractCompositionDto[] payContrDtos) {
27 List<EPofPayItem> items = NEW ArrayList<>();
28 IF (payContrDtos.length == 0) {
29 items.add(NEW EPofPayNoItems());
30 } ELSE {
31 FOR (INT cur = 0; cur < payContrDtos.length; cur++) {
32 BOOLEAN nextLineIsEquals = (cur + 1 >= payContrDtos.length)
33 ? FALSE
34 : itemsClearingContractNumberEq(payContrDtos[cur],
35 payContrDtos[cur + 1]);
36 PaymentContractCompositionDto curDto = payContrDtos[cur];
37 PaymentContractCompositionDto nextDto = NULL;
38 IF (cur + 1 < payContrDtos.length) {
39 nextDto = payContrDtos[cur + 1];
40 }
41 IF (cur == 0) {
42 items.add(
43 NEW EPofPayGroup(
44 curDto.getFinancialInstituteWithContractName(),
45 ”” + curDto.getId(), ””, ””, curDto, ””));
46

47 FOR (UserBankAccountDto account : curDto.getAccounts()) {
48 String accountState = ((account.isDefault())

CHAPTER 5. ASSESSMENT OF TESTABILITY 47

49 ? getActiv().getString(R.string.epof default account)
50 : ””);
51 items.add(
52 NEW EPofPay(curDto.getFinancialInstitute(),
53 ”” + account.getId(),
54 account.getDescription() + accountState,
55 account.getIban(), account.isDefault(),
56 account.getId(),
57 curDto, account.getDescription(),
58 account.getOwnerName(),
59 account.getOwnerStreet(),
60 account.getOwnerZip(),
61 account.getOwnerCity()));
62 }
63

64 // more nested structures omitted
65

66 } ELSE {
67 IF (!nextLineIsEquals && nextDto != NULL) {
68 items.add(
69 NEW EPofPayGroup(
70 nextDto.getFinancialInstituteWithContractName(),
71 ”” + nextDto.getId(), ””, ””, nextDto, ””));
72 }
73

74 // more nested structures omitted
75 }
76 }
77 }
78

79 RETURN items;
80 }
81 }

Problem description The single responsibility principle (SRP) is a design principle
for object oriented systems that states that each class should only have one responsibility
within a system and should encapsulate all aspects of this responsibility. Other formula-
tions state that a class should only do one thing or should only have one reason to change
[16]. If a class violates this principle, this usually means that it does too many different
things. The main symptoms of a violation of the SRP are usually large classes, long and
complex methods, and many private methods within a class. Those symptoms are a hint
that a class does in fact more things than it should. The class might encapsulate multiple
domain concepts within its implementation that should be modelled by multiple classes.
The code that should be tested is often hidden in private methods, which are not directly
accessible in unit tests. Furthermore, such large classes usually have many dependencies.

CHAPTER 5. ASSESSMENT OF TESTABILITY 48

As a consequence, it is very difficult to write a unit test for such classes.
The class SetupEPofPayListFragment, which contains the methods shown in listing

4, is 564 lines of code long and contains 27 methods of which 14 are private. A
violation of the SRP is shown in the listing. The main responsibility of the class
SetupEPofPayListFragment is the rendering of a screen to show certain information
to the user. It should not be its responsibility to aggregate the data that should be
presented. But exactly this is actually done in the method normalizeForGui. As a
consequence, it is hard to test whether this aggregation is performed correctly because
the aggregation code is only reachable through the public method onLoadFinished. And
the class SetupEPofPayListFragment is generally hard to instantiate within a test due to
its complexity and its many dependencies. Those are all factors that make testing of this
class a very difficult and expensive task.

Solutions The general solution to fix violations of the SRP involves again refactoring
of such large classes. First, one has to clearly define the responsibility of the class.
Then, the code of the class has to be inspected, and all tasks that do not belong to this
responsibility have to be identified. Finally, those parts of the code have to be refactored
out into separate classes. As a result, many smaller classes are created, and the original
class shrinks dramatically. It is then easier to test the smaller classes than the original
large class. Multiple techniques that support such refactoring tasks are presented in [5]
and [7].

In the example of listing 4, the method normalizeForGui could be moved to a new
class PaymentAggregator. A solution is sketched in listing 5. Writing unit tests for the
extracted class PaymentAggregator does not require complex setup and is therefore easier
to do.

Listing 5: Possible solution to avoid violations of SRP.
1 // Define new class
2 PUBLIC CLASS PaymentAggregator {
3

4 PUBLIC List<EPofPayItem> aggregate(
5 PaymentContractCompositionDto[] payContrDtos,
6 Activity activity)
7 {
8 List<EPofPayItem> items = NEW ArrayList<>();
9 IF (payContrDtos.length == 0) {

10 items.add(NEW EPofPayNoItems());
11 } ELSE {
12 FOR (INT cur = 0; cur < payContrDtos.length; cur++) {
13 // rest of code omitted
14 }
15 }
16 RETURN items;
17 }

CHAPTER 5. ASSESSMENT OF TESTABILITY 49

18

19 //Further methods on which aggregate() depends on
20 }
21

22 PUBLIC CLASS SetupEPofPayListFragment {
23 // rest of code omitted
24

25 PRIVATE List<EPofPayItem> normalizeForGui(
26 PaymentContractCompositionDto[] payContrDtos)
27 {
28 // Change original normalizeForGui method to use the new class to do the work.
29 PaymentAggregator agg = NEW PaymentAggregator();
30 RETURN agg.aggregate(payContrDtos, getActiv());
31 }
32 }

6
Related Work

In a large-scale field study, Zaidman et al. [2] used an IDE plugin to record the develop-
ment behavior of 2’443 software engineers. Their results show that half of the developers
in their study do not test, tests are run rarely in the IDE, and most programming sessions
end without any tests being executed. Furthermore, their results show that developers
strongly overestimate the time they spend on testing. These results are in line with our
observation that automated testing is not widely practiced in the EPOF project.

Levin et al. [14] studied the co-evolution of production and test code by analyzing
commits of 61 open source projects. They used machine learning techniques to classify
commits into maintenance categories (adaptive, corrective and perfective) and analyzed
which commits included test changes. Their results show that, more often than not,
developers perform code fixes without changing any tests (in < 24.7% of corrective
commits, < 30.4% of adaptive commits, in < 35.0% of perfective commits). In the EPOF
project, there are 2’009 issues where the associated commits could be reconstructed.
Only 347 (17.3%) of them involved test changes. The statement from Levin et al. that
most maintenance activities are done without changing tests is also valid for the EPOF
project.

Klammer et al. [13] discuss the challenges and experiences of the transformation from
a classical development process, which involves manual testing, to an agile process, which
largely uses automated testing. They accompanied an industrial software development
team, recorded certain events during the project, and analyzed the test coverage of public
methods in the code base after every development iteration. They discovered multiple
evolution patterns like increasing and decreasing coverage, constant low and constant
high coverage, and flaky coverage. A reason for constant low coverage according to

50

CHAPTER 6. RELATED WORK 51

their study are technical challenges that impede the addition of tests. Furthermore, they
state that humans are a very important factor when it comes to automated testing: The
development team must commit itself to testing, and testing activities have to be honored
by the management. Both findings could be observed in the EPOF project. The testability
of the code is generally very low and, therefore, many components are not tested. But
after the introduction of the test coverage goal by the management, the developers put
more efforts into unit testing.

Fucci et al. [8] studied the aspects of test-driven development (TDD), that have an
influence on the quality of the written source code and the productivity of the developers.
They recorded the behavior of professional developers while they solved a specific
programming task and built predictive models based on these data. Their results show
that it is not the test-first characteristics of TDD which improves quality and productivity,
but rather the fact that TDD encourages fine-grained, steady steps which enhance focus
and development flow. TDD is not practiced in the EPOF project. But the introduction
of TDD might have a positive effect on the development process and might also improve
the testability and the test coverage of the system.

Borle et al. [3] analyzed open source Java projects on Github. They tried to determine
how many of them use TDD and whether TDD has some effects on commit velocity, on
the number of commits or on the number of reported bugs. Their results show that only
16.1% of Java repositories on GitHub have test files, and only 0.8% repositories practiced
TDD. Furthermore, they found no statistically significant support of their hypothesis that
TDD affects commit velocity, number of bug fixes, and number of issues. As already
mentioned, TDD is not practiced in the EPOF project. So, the results from Borle et al.
are not directly transferable to EPOF. However, our findings support their observation
that automated testing is not that widely practiced.

7
Threats to Validity

There are multiple issues that might affect the validity of this research project. They are
organized into four categories as suggested by Runeson et al. [22].

Construct validity The results of this research project largely depend on the correct
association of issues in the issue tracker Jira and commits in Git. The association between
those two entities is done by Jira through naming conventions of feature branches (e.g.,
feature-EPO-1234) in the Git repository and the key of the issue (e.g., EPO-1234) and
references to Jira issues in commit messages (e.g., Commit message: This commit fixes
EPO-1234). While the association using feature branches is very reliable, the association
using commit messages is not. The latter depends on the developer’s commit messages
for which no general conventions exist. As a consequence, there might be commits that,
in fact, belong to a certain issue, but Jira does not link them together. It is also possible
that a commit does not belong to a specific issue but is associated with it by Jira. Both of
these threats may impede the traceability of a bug fix.

Another similar problem is imposed by merge conflicts. Before a developer can send
a pull request to the main repository, he needs to merge the current state of the main
repository back into his own feature branch. This merge usually changes many files but
is not directly related to the changes the developers made to fix a certain bug. However,
such merge commits are associated with the bug fix and, therefore, the traceability of the
bug fix is hampered. This issue was addressed by excluding such merge commits from
the possibly impaired analysis.

As mentioned in chapter 2, the project was migrated from Subversion to Git without

52

CHAPTER 7. THREATS TO VALIDITY 53

keeping the development history. So, it is not possible to reconstruct bug fixes that were
done before this migration.

In chapter 4, a tool was used to detect possibly recurring bugs. This tool classifies
two issues as possibly related when their respective bug fixes change the same method
in the same code file. The tool does not consider method additions, removals, signature
changes, and renaming when it compares two files. So, there might be some possibly
related issues that are not detected by the tool. The tool might also indicate false positives:
bug fixes from different bugs that change the same method but are not related. Those
false positives were manually removed from the data set as described in section 4.1.1.

Internal validity To answer the question why many bug fixes do not modify tests,
200 bugs were randomly chosen and further analyzed as described in chapter 3. They
represent only 17.8% of those 1’119 bugs for which the bug fix could be reconstructed
automatically and only 3.1% of all 6’531 reported bugs. Thus, the findings, which were
observed on this sample, might not generalize to the full set of bugs. However, the
programming style and the architecture do not vary significantly between the components
of the EPOF project, and the analyzed bugs are spread over all parts of the system.
Hence, the reported findings (low testability, bug fixes affecting many files) are likely to
be valid for unanalysed parts of the software too.

Due to technical difficulties, the mutation testing described in section 4.3 was applied
to only 10 classes. The EPOF project contains more than 10’000 classes, thus, those
few mutated classes are not representatives for the whole project. Hence, generalizing
the findings from the mutation testing process to the whole EPOF project suffers from a
severe bias.

External validity This research project investigated just one large industrial software
project. So, basically, the findings are valid for at least the EPOF project. However,
related work from Zaidman et al. [2] and Levin et al. [14] (see chapter 6) suggest that the
most important findings — automated testing is not that widely used and most commits
do not affect tests — are also valid for other projects. Furthermore, Klammer et al. [13]
state that technical difficulties (like low testability) might be an explanation for low test
coverage.

Reliability The classification of testability presented in table 5.1 on page 38 is based
on our testing experience rather than objective software metrics (e.g., cyclic dependency,
class couping). The choice of this approach was justified with the technical complexity
of gathering software metrics of the EPOF project, and because software metrics lack
project and domain knowledge. However, the chosen approach introduces a threat to
validity because the classification depends only on our experience.

8
Conclusion and Future Work

8.1 Answers to research questions
There were three research questions that guided this study. The first research question
investigates the relation between unit tests and bugs. It asks whether the discovery of
bugs pushes the writing of tests. In chapter 3, we showed that there are only very few
bug fixes that introduced new tests or modified existing ones. Thus, in most cases the
developer just fixed the bug in the production code and did not add or change any test
code. There were few bug fixes that included changes to tests. However, only roughly
half of those test changes actually covered the bug. Some of the other test changes were
necessary because the compiler complained. The bug fix changed the code in a way that
the tests did not compile anymore. Thus, the developer had to make them compile again.

More than half of the studied bug fixes affected more than a single file. This indicates
that the majority of bugs were not caused by a single component but rather by the
cooperation between multiple components of the system. This suggests that developers
should also consider writing integration and end-to-end tests to ensure the quality of
the software. However, writing only integration tests is not advisable because roughly
one third of the analyzed bug fixes changed only one single component. Thus, unit tests
alone could catch numerous bugs.

The second research question deals with the quality of the existing unit tests and
whether they help to prevent bugs. All reported bugs were detected either by a test team,
which performed manual tests as well as by customers who used the system, or by the
developers themselves. Evidence whether the unit tests helped to discover bugs could

54

CHAPTER 8. CONCLUSION AND FUTURE WORK 55

not be gained from the commits. A sub-commit level analysis, like the one performed by
Zaidman et al. [2], would yield more insights to answer this question.

However, the results presented in chapter 4 showed that there were only very few
bugs that occurred again or that were similar to each other even though the test coverage
in the EPOF project is low. But the results presented in section 4.1.2 also show that there
are usually no tests written after a bug occurred for the first time and also not after the
second time.

We showed that many components of the system are affected by more than one
bug. There was one component that was affected by nearly 50 different bugs. But we
could observe some differences between the parts of the system. Some components
are more prone to bugs than others. Those components usually contain large parts of
the business logic and do many different things or play a central role in the application.
The developers explained that those bug-prone components are huge and have many
dependencies to other components, which has a negative impact on their testability. The
low testability of the components and the time pressure prevented the developer from
writing tests for those critical parts of the application. Furthermore, bad communication
between the customer and the development team led to many bug reports that were in
fact changes of the requirements and not real bugs.

Many of those problems were recognized by the project team in late 2016, and some
measures were taken to improve the development process and the collaboration between
the developer team and the customer. Those measures aimed to prevent the project
from failure. Our results showed that the number of discovered bugs decreased after
those organizational changes. But we could not observe a change in the time it took the
developers to fix a certain bugs.

The results of the mutation testing show that a class should be covered by multiple
test cases to effectively detect mutations of the class. Each test case should test the class
under different conditions. If the test coverage of a class is low, or if only the main
program flow is tested, many mutations of the class are not detected. As a consequence,
bugs within such classes might not be discovered by the test suite.

The project team decided to give unit testing higher priority as of the beginning of
2017. They formulated a code coverage goal to reach for new components. Futhermore,
they changed the architecture of the system in a way that new features can be added as
microservices. The intention behind those changes was to reduce coupling between the
components and to improve their testability. The results of our mutation testing show
that the quality of the unit tests that were introduced after January 2017 is better than the
quality of older tests. Thus, the measures to improve the architecture and testability of
the system achieved their intended goals.

The third research question deals with the system’s testability. Our analysis revealed
that most parts of the source code of the EPOF project are designed in a way that makes
it very hard to write unit tests for them. Section 5.2 presented three main problems

CHAPTER 8. CONCLUSION AND FUTURE WORK 56

that cause the low testability: firstly, the violation of the single responsibility principle;
secondly, the large number of dependencies between the components; and thirdly the bug
being a usability or design issue. The first two causes could be resolved by refactoring
parts of the system and by designing the system in a more modular and, consequently,
more testable way. The resolution of the third problem is subject to further research.

8.2 General insights
This study showed that when the testability of a certain part of source code is low, no tests
are written for those parts. Thus, it is important to design the architecture of a software
system with testability in mind. Techniques like Test Driven Development (TDD) or
other test-first development processes might help to ensure testability of the code that is
developed.

Another insight is that the test team which performed manual tests has a very impor-
tant role when it comes to quality assurance. The testers caught many bugs, and they
also caught many non-functional issues that might disturb the users or, in the worst case,
prevent them from using the system.

The third general insight is that humans are an important factor when it comes to
unit testing. If a developer or the whole development team commits itself to automated
testing, and if this decision is supported by the project management, it is likely that the
test coverage and test quality of the system increase. This effect could be observed in the
EPOF project after the transformation and improvement of the development process in
2016/2017.

8.3 Future work
It would be interesting to apply the methods used in this study to other projects of
Company P that use the same toolset (Jira and Git Bitbucket) and see whether they yield
similar or completely different results.

Another direction of research would be to find an answer to the question which parts
of the code need to be tested to catch most bugs. For which part of a system is it worth
investing time into writing unit tests and for which parts of a system is it less critical?

Closely related to the former question is the following aspect: A developer must not
only decide whether he should write a test for a component but also when he should
write one. Should he write a test as soon as the component is created? Should he add
tests even before the component exists (as TDD suggests)? Or should he wait until the
component is not changed often anymore?

An interesting question would be whether a development team should focus on
integration testing rather than on unit testing. Our work showed that many bugs in the

CHAPTER 8. CONCLUSION AND FUTURE WORK 57

EPOF project affected more than one component. So, the question is whether integration
tests would have helped to prevent those bugs.

Another follow-up question is how usability and graphical design aspects can be cov-
ered with automated tests, and how such tests could detect usability or design problems.

9
Anleitung zum wissenschaftlichen

Arbeiten

The following sections describe the helper tool that was developed during the research
project in more detail. The helper tool automates some repeating tasks that needed to be
done during the project. In particular, the tool is able to perform the following tasks:

• Exploit the API of the Jira issue tracker and the Bitbucket server to gather in-
formation about issues and related commits and store them into a local SQLite
database.

• Clone all Git repositories which belong to a certain Jira project into a local direc-
tory.

• Given two commits that modified the same source code file, check whether those
commits made changes to the same methods within these files.

The tool is a cross-platform console application written in C# and builds upon the
.Net Core framework. It uses the Entity Framework Core for database access.

Each of the following sections describes one of the points from above in more detail
and also gives hints for adapting the tool to other research projects that analyze software
projects built upon the same toolchain (Jira server and Bitbucket).

58

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 59

9.1 Exploiting the Jira API
To answer the research question of this project, it was important to be able to link issues
and commits which resolved them together. The project under analysis used Jira as issue
tracker and Bitbucket Server as code repository host. Those two products are developed
by the same company (Atlassian) and, therefore, are tightly integrated. It is possible to
gather commits for a specific issue from the system. The standard way of perceiving
this information is through the web interface of Jira. However, the web interface is not
convenient for quantitative analysis and complex evaluations which are necessary for
this research project. A more structured and faster approach to query this information is
required.

Jira exposes an extensive and well-documented REST application programming
interface (API). This API is better suited to access the information in both the issue
tracker and the code repository, for the purposes of this project. To avoid an excessive
network load and for query performance reasons, we decided to gather all relevant
information from the issue tracker and to store it in a local SQLite database. The use of a
local database allows the usage of standard SQL queries for analysis.

9.1.1 The Jira API
9.1.1.1 API methods

Jira exposes an extensive REST API that allows access to a wide range of information
about the projects in the issue tracker and the issues related to those. The API is generally
well documented [11]. Only few exposed interfaces are interesting for the purposes
of this project. In particular, just four exposed REST methods were used to gather all
required information. Those four methods are shown in table 9.1. The first two are used
to get information about projects and their issues while the third and the fourth methods
are used to get commit related information of the issues.

9.1.1.2 Security

The Jira API uses standard HTTP basic authentication to authenticate a user. The
credentials are therefore passed in the HTTP header of all requests to the API. Jira
has an internal permission system to restrict access of users to the information in the
issue tracker. Those permissions apply to the web frontend as well as to the REST API.
Therefore, a user needs to be granted permissions by a Jira server administrator to access
a given project. The minimal required permission level is “Developer” because the last
two API methods described in 9.1 are not accessible to users with lower permissions.

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 60

https://{urltojira}/rest/api/2/project/
{projectKey}
GET Get detailed information about the Jira project identified by the projectKey.
https://{urltojira}/rest/api/2/search?jql=
project={projectKey}&maxResults={maxResults}&
startAt={startAt}
GET Get detailed information about all issues belonging to the project identified

by the projectKey. The result is paged.
ttps://{urltojira}/rest/dev-status/latest/issue/
detail?issueId={issueId}&applicationType=stash&
dataType=repository
GET Get detailed information about the commits that belong to a specific issue.

This is an undocumented API method.
https://{urltojira}/rest/dev-status/latest/
issue/detail?issueId={issueId}&applicationType=
stash&dataType=pullrequest
GET Get detailed information about the pull requests that belong to a specific

issue. This is an undocumented API method.

Table 9.1: Jira REST API methods used in this project

9.1.2 The database model
The information gathered through the Jira API are stored in a local relational SQLite
database. In order to allow easy querying of the data, the database schema depicted in
figure 9.1 was developed. The tables are described in further detail in this section.

The table Projects holds information about the Jira project. This includes an alphanu-
meric key, which is unique per project and is used extensively throughout Jira and its
API. There is also an integer ID, which is used internally by Jira and is necessary for
some API calls.

The table Components holds information about so-called components of a Jira project.
Components are used within Jira to structure large projects into smaller parts. As an
example, consider a large business application with a desktop frontend, a back-end, and
a mobile app. Then, there might be the components “Desktop app”, “Back-End”, and
“Mobile app”. Issues can be assigned to a component which allows efficient filtering.

The table Issues is the most important table. It holds information about the issues
of a Jira project. The table holds technical information like the issue key, the issue
ID internally used by Jira, and the creation date and also business information like the
title, the description, the reporter, and the state of the issue. The table references other
tables within the database. For instance, there is a reference to the table Projects due

https://{urltojira}/rest/api/2/project/{projectKey}
https://{urltojira}/rest/api/2/project/{projectKey}
https://{urltojira}/rest/api/2/search?jql=project={projectKey}&maxResults={maxResults}&startAt={startAt}
https://{urltojira}/rest/api/2/search?jql=project={projectKey}&maxResults={maxResults}&startAt={startAt}
https://{urltojira}/rest/api/2/search?jql=project={projectKey}&maxResults={maxResults}&startAt={startAt}
ttps://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=repository
ttps://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=repository
ttps://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=repository
https://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=pullrequest
https://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=pullrequest
https://{urltojira}/rest/dev-status/latest/issue/detail?issueId={issueId}&applicationType=stash&dataType=pullrequest

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 61

Figure 9.1: The entity relationship diagram of the database

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 62

to the fact that each issue belongs to exactly one Jira project. There is also a many-to-
many relationship to the table Components because each issue belongs to zero or more
components.

The table IssueTypes holds information about the issue types used in a specific Jira
project. Issue types are for instance “Bug”, “Improvement”, “New feature”, and many
others. There are also sub-types like “Sub-Bug” or “Sub-Improvement” because Jira has
the notion of sub-tasks — issues that are subordinates to another issue. In this research,
especially the categories “Bug” and “Sub-Bug” respectively are interesting.

The tables DevStatusPullRequests and DevStatusRepositories are intermediate tables
that hold the raw result of some Jira API calls. The data in these tables is then later
transformed into a more structured form and stored in the other tables in the database.

The table Commits holds information about commits of the Git repository of the Jira
project. The table holds some standard information about a commit like the author, the
timestamp, and the SHA1 hash. The most precious information is the reference to an
issue the commit belongs to. Using this association, it is possible to relate issues and
commits together.

The table FileChanges finally holds information about changes to files that where
made by a certain commit. The relevant information there is the type of change (“Add”,
“Delete”, “Modify”) and the path to the changed file. There is a foreign key reference
back to the commit the file change belongs to.

9.1.3 Importing the data from Jira
The tool performs multiple steps to retrieve the relevant pieces of information from the
Jira API and store them in the local database.

1. Import the Jira project and related information (components, issue types)

2. Import issues for each project

3. Import raw development information for each issue

4. Extract commits and file changes from the raw development information

The order specified in this list has to be strictly followed because the steps depend on
each other. Regarding the architecture of the tool, each step is modelled by a separate
class in the code.

The first step is performed by the class ProjectImporter. To import a certain Jira
project, the class needs to be passed the project key. A request for gathering the project
information is then sent to the Jira API. The answer in JSON format is then parsed and
converted to entities that are then stored in the database. The ProjectImporter stores the
project as well as its components and issue types.

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 63

The second step is performed by the class IssueImporter which imports all issues of
a certain Jira project and links them to the project information previously imported. It
first gathers the total number of issues from the API and then imports them in batches of
equal size to avoid running into timeouts. This batch mode is possible because the Jira
API supports paging of the result data. Even though the database supports the modelling
of the relation between issues and their sub-issues, this information is not imported by
the tool in its current version.

The third step is performed by the class DevStatusImporter. This is an intermediate
step to gather just the raw data from the third and fourth Jira API call described in table
9.1. The class sends requests to those API methods for every issue of a certain project
and simply stores the result, which is in JSON format, in the database. The reasons
that caused the introduction of this intermediate step are performance and efficiency
considerations. The import of the raw data needs to be done only once and, afterwards,
there is no need to query the API again as the data are stored locally. This allows faster
access to the data than over the network.

The fourth and final step is done by the class CommitImporter. The class takes the
data imported in the third step, parses them, and extracts commits and associated file
changes.

All direct communication with the Jira API is encapsulated by the class JiraAccessor.
This class provides public methods to access the API. Those methods are then called
by the other classes mentioned above. This class is also responsible for authentication
against the API. The necessary credentials are stored inside a text file which is then
embedded as resource into the tool’s executable. The credentials are expected to have
the form username:password.

9.1.4 Customizing the tool
In this section, a step-by-step instruction is provided to import issues and related commit
information for a certain Jira project. Table 9.2 provides a scenario that is used throughout
the instructions.

Name of project TeaTime
Jira project key TEA
Jira base url https://jira.teacompany.com/rest/api/2/
Jira username janedoe
Jira password secretpass1234

Table 9.2: Scenario information for customization of the tool

The .Net Core framework and all necessary tooling should be correctly installed and
configured. Instructions for this process can be found on the Microsoft website [12].

The following steps need to be taken in order to adapt the tool to the scenario above:

https://jira.teacompany.com/rest/api/2/

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 64

1. Ask a Jira server admin to give the user janedoe “Developer” permissions on the
project TeaTime.

2. Modify the class Model/AppDbContext by adjusting the connection string to the
SQLite database in the method OnConfiguring to point to a suitable location. The
database will be created automatically on startup of the tool. Pay attention to the
fact that subdirectories aren’t created by the application but need to be created
manually.

3. In the main source code directory of the tool (where the *.csproj file is located)
add a folder Exclude. Within this folder create a file pwd.txt.

4. Add the line janedoe:secretpass1234 to the file pwd.txt.

5. In the source code class JiraAccessor modify the field BaseUrl to https://
jira.teacompany.com/rest/api/2/.

6. In the source code class Program in the method ImportProjectsAndIssues() add
the project key TEA to the local variable projectKeys. You might need to remove
keys that are already present there.

After all those steps are completed, the tool is ready for being compiled and run.
Depending on the speed of the internet connection and the size of the Jira project, the
import may take a while.

9.1.5 Querying the imported data
After import, the data are stored in a normal SQLite database. There are multiple options
to query the data:

• Use the SQLite command line shell program to access the database. The shell
program as well as the documentation of SQLite can be found on the SQLite
website [27] [28].

• Use the application DB Browser for SQLite, an open-source app that allows
manipulation, querying and managing SQLite databases. The app provides a
graphical user interface and functions for importing and exporting of data. The
documentation and compiled binaries for different platforms can be found on the
website of the application [26]. The source code is hosted on Github [10]

https://jira.teacompany.com/rest/api/2/
https://jira.teacompany.com/rest/api/2/

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 65

9.2 Cloning repositories
This part of the tool builds upon the previously imported data. During import of commits,
the name and the url of the repository to which the commit belongs is stored in the
database. The tool exploits this information to gather all repositories that are used and
clones each repository into a local directory. These operations are performed by the class
GitRepositoryCloner. Internally, it executes Git’s clone command in a separate process.
Therefore, the tool requires Git to be installed.

9.2.1 Customizing the tool
It was already mentioned above that the tool assumes that the information of Jira has
already been imported as described in section 9.1.3. So, the behavior depends on this
data. However, there are some options that one must adapt to make the tool work. The
following modifications all have to be done in the class GitRepositoryCloner:

1. Modify the constant BaseCheckoutPath to point to the correct location where
all repositories should be cloned to. The tool won’t create new folders. So, the
provided path in this constant has to be valid.

2. Modify the constant BitbucketBaseUrl to point to the correct Bitbucket host.

3. Modify the constant PathToGit to point to the Git executable.

Finally, some configuration tasks have to be done before the tool can be compiled
and executed.

• Ask a Bitbucket server administrator to grant you at least read permissions on all
repositories that will be cloned.

• Make sure that the correct credentials are contained in the file Exclude/pwd.txt as
described in section 9.1.4.

9.3 Comparison of diffs on method level
This part of the tool builds upon the information imported from Jira (see section 9.1.3)
and also on the cloned repositories (see section 9.2). During the research project, a
method was needed to recognize similar or recurring bugs in the code. The main idea
was to find commits that belong to different bugs but change the same method in the
same code file. Hence, normal file differences, which are produced by a program like
diff, are not sufficient. An algorithm was developed to solve this task.

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 66

9.3.1 The algorithm
The main idea of the algorithm is as follows: For a given commit, check out the current
version and the previous version of a certain file from the version control system, then
parse both files, extract all method declarations from those files, and finally compare the
method declarations of the current version of the file to those of the previous version
of the file. This yields a list of changed methods of a given commit. This list can be
compared to the list of changed methods of another commit. If there are methods that
are changed by both commits, this might be a hint that the commits and the issues they
belong to are possibly related. The pseudocode of the algorithm is shown in algorithm 1
and algorithm 2.

Algorithm 1 Procedure that suggests possibly recurring bugs.
1: procedure GETCOMMITS

2: possibleRecurring← CREATELIST()
3: commitTuples← GETCOMMITTUPLES() . Get a list of commits that

changed the same code file and belong to different bugs. This information can be
retrieved from the database.

4: for all commitTuple ct of commitTuples do
5: c1← ct.FirstCommit
6: c2← ct.SecondCommit
7: file← ct.CommonChangedFile . Path to file
8: cm1← GETCHANGEDMETHODSOFCOMMIT(c1, file)
9: cm2← GETCHANGEDMETHODSOFCOMMIT(c2, file)

10: commonChangedMethods← INTERSECT(cm1, cm2)
11: if commonChangedMethods not empty then
12: ADD(possibleRecurring, (c1, c2, commonChangedMethods))
13: end if
14: end for
15: return possibleRecurring
16: end procedure

9.3.2 Implementation details
9.3.2.1 Language specific aspects

The algorithm described in section 9.3.1 works for any programming language that has
the notion of methods or functions or procedures. However, there are two language
specific parts of this algorithm:

The first is the call to the database in algorithm 1 on line 3. This call should only
return code files for a single language. For instance, it should return only Java files, or it

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 67

Algorithm 2 Function that compares the current and the previous version of a certain
file and extracts all changed methods.

1: function GETCHANGEDMETHODSOFCOMMIT(commit, file)
2: cur← GETFILEFROMSOURCECONTROL(commit, file)
3: prev← GETFILEFROMSOURCECONTROL(commit.precedent, file)
4: syntaxTreeCur← PARSEFILE(cur)
5: syntaxTreePrev← PARSEFILE(prev)
6: methodsCur← GETMETHODS(syntaxTreeCur)
7: methodsPrev← GETMETHODS(syntaxTreePrev)
8: changedCommonMethods← CREATELIST()
9: commonMethods← INTERSECT(methodsCur, methodsPrev)

10: for all method in commonMethods do
11: methodCur←methodsCur(method) . Current version of method
12: methodPrev←methodsPrev(method) . Previous version of method
13: if methodCur.MethodBody 6=methodPrev.MethodBody then
14: ADD(changedCommonMethods, method) . Add to list
15: end if
16: end for
17: end function

should return only C# files. The second programming language specific part is obviously
the actual parsing of the source code file in algorithm 2 on lines 4 and 5.

9.3.2.2 Architecture

The class diagram in figure 9.2 gives an overview of the architecture of the part of the
tool that implements the algorithm. The architecture is designed to allow easy extension
of the algorithm to other programming languages. The classes and how they collaborate
is explained in the remainder of this section.

The class SameMethodChangeFinder contains the largest part of the algorithm. It
loads the necessary data about commits that change the same file from the database, runs
the algorithm based on these data, and writes the result to a JSON file which can be
processed further. The class delegates some aspects of the algorithm to other classes. It
is an abstract class because the loading of the information of the database is language-
specific as mentioned above. The call to the database must therefore be implemented by
language-specific subclasses of SameMethodChangeFinder. Implementations for Java
and C# are given.

The class CodeFileComparer is responsible for the extraction of changed methods
from code files. It takes two versions of the same file as argument and returns a list
of methods that changed between the two versions. The class CodeFileComparer is

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 68

Figure 9.2: All classes that support finding recurring bugs.

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 69

abstract because this task is language-specific. To implement the procedure for a given
language, a subclass of CodeFileComparer has to be created to do the language-specific
parsing of the code files. Implementations for Java and C# files are already provided. For
parsing they use ANTLR [1] with a Java grammar and the Roslyn Compiler Platform
[18] respectively. Language specific instances of CodeFileComparer are passed to the
SameMethodChangeFinder in its constructor.

All version control system related tasks are handled by the class GitFileRetriever. It
can load the content of a specific file for a specific commit from Git. The class is also
able to load the previous version of a specific file from Git. GitFileRetriever requires Git
to be installed on the system because it uses the Git executable internally.

9.3.3 Customizing and extending the tool
9.3.3.1 Customizing the tool

As already mentioned above, the tool supports Java and C# files out of the box. Java
support is implemented by the classes JavaSameMethodChangeFinder and JavaFile-
Comparer whereas C# support is implemented by the classes CSharpSameMethod-
ChangeFinder and CSharpFileComparer. There are only few options that need to be
changed to make the tool work in an environment similar to the one of this research
project:

• In class GitFileRetriever set the constant BaseCheckoutPath to point to the base
directory where all repositories have been cloned into as described in section 9.2.

• In class GitFileRetriever change the constant PathToGit to point to the Git exe-
cutable.

• In the class GitFileRetriever modify the constant ErrorFilePath to point to a valid
location for an error log file.

9.3.3.2 Extending the tool to support another programming language

Adding language support for a programming language other than Java or C# requires
the creation of two language-specific classes. Assuming that Python language support
should be added to the tool, the following steps need to be done:

1. Add a class PythonFileComparer that derives from CodeFileComparer. It is good
practice to add it to the directory Analysis where the classes for the other supported
languages reside.

2. Implement the abstract method ExtractMethodFromFiles(string fileContent1, string
fileContent2). It should extract all methods from the files passed as arguments and

CHAPTER 9. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 70

return a tuple containing lists of those methods per file. It is left up to the reader
how the parsing of the python code is implemented.

3. Add a new class PythonSameMethodChangeFinder that derives from the class
SameMethodChangeFinder to the project. It is good practice to add it to the
directory Analysis where the classes for the other supported languages reside.

4. Override the method GetCommitsByFile(). It should return all commits that
changed a python source code file, grouped by file. You might want to add
additional restrictions to the query. For instance, you could restrict the result to
return only commits that belong to bugs.

5. In the constructor of PythonSameMethodChangeFinder set the constant Result-
FilePath. The results of the analysis will be stored in this file.

6. Make sure that the base class constructor is being called and passed an AppDbCon-
text and an instance of class PythonFileComparer created in step 1.

List of Figures

2.1 Setup for the analysis of the EPOF project. 8

3.1 Number of changed files per bug fix 15

4.1 Discovery of bugs over time . 24
4.2 Time between the reporting of a bug and its resolution. 26
4.3 Bug fix commits to files over time . 28
4.4 Details of figure 4.3 . 29
4.5 Bug fixes per component . 31
4.6 Bugs per component . 32

5.1 Testability of code affected by bugs 39
5.2 Wrong position of spinner . 40

9.1 The entity relationship diagram of the database 61
9.2 All classes that support finding recurring bugs. 68

List of Tables

2.1 Information about the EPOF project 7
2.2 Some information about the EPOF project with respect to issues and

commits . 10

4.1 Aggregated results of mutation testing 36
4.2 Detailed results of mutation testing . 36

5.1 Criteria to classify testability of code 38

71

9.1 Relevant Jira REST API methods . 60
9.2 Scenario information for customization of the tool 63

Listing

1 Query to retrieve number of changed files per bug fix 12
2 Excerpt from class DocumentsController 41
3 Possible solution to avoid tight coupling. 44
4 Excerpt from class SetupEPofPayListFragment 46
5 Possible solution to avoid violations of SRP. 48

List of Algorithms

1 Procedure to detect recurring bugs . 66
2 Function to compare file diffs on method level 67

72

Bibliography

[1] ANTLR. Antlr: Another tool for language recognition. http://www.antlr.
org/, June 2018.

[2] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. Developer testing in the IDE: Patterns, beliefs and
behaviour. IEEE Transactions on software engineering, Vol. 14, No. 8, 2015.

[3] Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and Abram Hindle.
Analyzing the effects of test driven development in GitHub. Empirical Software
Engineering, 23(4):1931–1958, Aug 2018.

[4] Anna Derezińska and Piotr Trzpil. VisualMutator. https://visualmutator.
github.io/web/index.html, July 2018.

[5] Michael C. Feathers. Working effectively with legacy code. Prentice Hall, 2005.

[6] .Net foundation. Xunit. https://xunit.github.io/, June 2018.

[7] Martin Fowler. Refactoring - improving the design of existing code. Addison-
Wesley, 1999.

[8] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo. A dissection of the
test-driven development process: Does it really matter to test-first or to test-last?
IEEE Transactions on Software Engineering, 43(7):597–614, July 2017.

[9] M. Ghafari, C. Ghezzi, and K. Rubinov. Automatically identifying focal methods
under test in unit test cases. 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 61–70, Sept 2015.

[10] Github. DB browser for SQLite. https://github.com/sqlitebrowser/
sqlitebrowser, June 2018.

[11] Atlassian Inc. Jira REST APIs. https://developer.atlassian.com/
server/jira/platform/rest-apis/, June 2018.

73

http://www.antlr.org/
http://www.antlr.org/
https://visualmutator.github.io/web/index.html
https://visualmutator.github.io/web/index.html
https://xunit.github.io/
https://github.com/sqlitebrowser/sqlitebrowser
https://github.com/sqlitebrowser/sqlitebrowser
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://developer.atlassian.com/server/jira/platform/rest-apis/

BIBLIOGRAPHY 74

[12] Microsoft Inc. Getting started with .Net Core. https://www.microsoft.
com/net/learn/get-started, June 2018.

[13] Claus Klammer and Geort Buchgeher. A retrospective of production and test code
co-evolution in an industrial project. 2018.

[14] Stanislav Levin and Amiram Yehudai. The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes. 2017.

[15] S. Mahajan and W. G. J. Halfond. Detection and localization of HTML presentation
failures using computer vision-based techniques. 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pages 1–10,
April 2015.

[16] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall, 2005.

[17] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, Dec 1976.

[18] Microsoft. Roslyn compiler platform. https://docs.microsoft.com/
en-us/dotnet/csharp/roslyn-sdk/, June 2018.

[19] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. Automated reporting of GUI design violations for mobile apps. CoRR,
abs/1802.04732, 2018.

[20] NinjaTurtles. .Net mutation testing. http://www.mutation-testing.
net/, July 2018.

[21] P. Oman and J. Hagemeister. Metrics for assessing a software system’s maintain-
ability. pages 337–344, Nov 1992.

[22] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131, Dec
2008.

[23] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2016.

[24] Selenium. Selenium. https://www.seleniumhq.org/, June 2018.

[25] SonarQube. SonarQube. https://www.sonarqube.org/, June 2018.

[26] sqlitebrowser.org. DB browser for SQLite. http://sqlitebrowser.org/,
June 2018.

https://www.microsoft.com/net/learn/get-started
https://www.microsoft.com/net/learn/get-started
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/
http://www.mutation-testing.net/
http://www.mutation-testing.net/
https://www.seleniumhq.org/
https://www.sonarqube.org/
http://sqlitebrowser.org/

BIBLIOGRAPHY 75

[27] SQLite.org. SQLite documentation. https://www.sqlite.org/docs.
html, June 2018.

[28] SQLite.org. SQLite downloads. https://www.sqlite.org/download.
html, June 2018.

[29] The JUnit team. Junit. https://junit.org/, June 2018.

[30] Tricentis. Tosca. https://www.tricentis.com/
software-testing-tools/, June 2018.

[31] Sten Vercammen, Mohammad Ghafari, Serge Demeyer, and Markus Borg. Goal-
oriented mutation testing with focal methods. Proceedings of 9th Workshop on
Automated Software Testing, Florida, United States, November 2018.

https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://junit.org/
https://www.tricentis.com/software-testing-tools/
https://www.tricentis.com/software-testing-tools/

	1 Introduction
	2 Case Study
	2.1 Description of the case
	2.2 Insights into the development process
	2.3 Common setup
	2.3.1 Relevant sources of information about the EPOF project
	2.3.2 Collection of data
	2.3.3 Intermediate results

	3 Inspection of Bugs
	3.1 Setup
	3.2 Results
	3.2.1 Bugs in defective classes covered by tests
	3.2.2 Number of modified files per bug fix

	4 Effectiveness of Unit Tests
	4.1 Recurring bugs
	4.1.1 Setup
	4.1.2 Results

	4.2 Proneness to bugs
	4.2.1 Setup
	4.2.2 Results

	4.3 Mutation testing
	4.3.1 Setup
	4.3.2 Results

	5 Assessment of Testability
	5.1 Setup
	5.2 Results
	5.2.1 The bug is a usability or design issue
	5.2.2 The erroneous component has many dependencies
	5.2.3 The defective component violates SRP

	6 Related Work
	7 Threats to Validity
	8 Conclusion and Future Work
	8.1 Answers to research questions
	8.2 General insights
	8.3 Future work

	9 Anleitung zum wissenschaftlichen Arbeiten
	9.1 Exploiting the Jira API
	9.1.1 The Jira API
	9.1.2 The database model
	9.1.3 Importing the data from Jira
	9.1.4 Customizing the tool
	9.1.5 Querying the imported data

	9.2 Cloning repositories
	9.2.1 Customizing the tool

	9.3 Comparison of diffs on method level
	9.3.1 The algorithm
	9.3.2 Implementation details
	9.3.3 Customizing and extending the tool

	List of Figures
	List of Tables
	Listing
	Bibliography

