
ClubAdmin
Implementing a Sports Club Event Manager

Bachelor Thesis

Dominik Fankhauser
from

Trub BE

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

29. October 2017

Prof. Dr. Oscar Nierstrasz
Claudio Corrodi

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Today, no existing club management software offers clubs a possibility
to organize the human resources at their events in an adequate way. Available
applications do not provide organizing committees with enough functionality
to ensure that tasks and responsibilities are distributed fairly between a
club’s members over the course of a full season. Instead, clubs often rely on
techniques such as e-mail and spreadsheets to keep track of the tasks at an
event or the member collaboration throughout a season.

The use of these simple techniques and processes increases the com-
plexity for the responsible event managers. Their work needs more com-
munication, takes more time, and is more error prone. On the other hand,
club members need to keep in mind when and where they have to help at
upcoming events as they do not have a way to look up this information
except for contacting the responsible person directly.

In this thesis we describe the web application ClubAdmin which has
been developed for the floorball club Unihockeyteam Eggiwil1. Aside from
member, sponsor, and open issue management modules, our system provides
an event management module which is accessible to the board (as the event
organizer) and to the club members. The club can manage all aspects of event
management such that existing cumbersome workflows are fully replaced.

1www.uht-eggiwil.ch

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Outline . 3

2 Related Work 4
2.1 Fairgate . 4
2.2 Clubdesk . 5
2.3 Webling . 5
2.4 Conclusion . 5

3 Requirements 7
3.1 Board requirements . 7

3.1.1 Member management . 7
3.1.1.1 Add a member . 8
3.1.1.2 Member overview 9
3.1.1.3 View and update a member 9
3.1.1.4 Delete a member . 9

3.1.2 Sponsor management . 9
3.1.2.1 Add a sponsor . 9
3.1.2.2 Delete a sponsor . 10

3.1.3 Event management . 10
3.1.3.1 The season . 11
3.1.3.2 The event . 12
3.1.3.3 The helper service 13

3.1.4 Open issue management . 14
3.2 Member requirements . 15

3.2.1 Event management requirements 15
3.3 General requirements . 16

3.3.1 Authentication . 16

ii

CONTENTS iii

4 Solution 17
4.1 Technologies and architecture . 17

4.1.1 MVC (Model-view-controller) 18
4.1.2 MVC in the context of Spring MVC 19
4.1.3 Spring Security . 23

4.2 User level . 25
4.2.1 Main page and navigation . 25
4.2.2 Member management . 25
4.2.3 Sponsor management . 28
4.2.4 Open issue management . 28
4.2.5 Event management . 28

4.2.5.1 Manage events as a board member 28
4.2.5.2 Manage personal helper tasks as a club member . . . 34

4.2.6 Feedback . 36

5 Validation 38
5.1 First meeting: 16th May 2017 . 38
5.2 Second meeting: 26th June 2017 . 39
5.3 Final evaluation of the board part . 40
5.4 Testing the member part (20th August 2017) 40

6 Conclusion and Future Work 42
6.1 Lessons learned . 43
6.2 Future work . 44

6.2.1 E-mail connection . 44
6.2.2 Team management module . 44

A Anleitung zu wissenschaftlichen Arbeiten 45
A.1 Preparation . 46

A.1.1 Record the teams . 46
A.1.2 Record the sponsor types . 48

A.2 Add the club members . 48
A.3 Manage the events . 48

A.3.1 Add a season . 52
A.3.2 Manage an event . 53

A.3.2.1 Add the event . 53
A.3.2.2 Manage helper services as a member 56
A.3.2.3 Close the event . 57

A.3.3 Get hours overview . 58
A.3.4 Manage the events throughout the season 64
A.3.5 Close the season . 64

CONTENTS iv

A.4 Conclusion . 65

1
Introduction

The Unihockeyteam Eggiwil is a floorball club located in the canton of Bern. The club
has over 200 members, around 40 sponsors and competes with eleven teams in different
leagues in the Swiss championship. A board of seven persons leads the club and is
responsible for the entire organization.

Most of the challenges the board members face during their work are very typical
for a club: keep an overview of the members, manage the club’s sponsors, and organize
different events (e.g., season matches, sponsor events, and internal activities). Prior to
this work, most of these tasks were managed with manual processes like mailing Excel
sheets back and forth or simple face-to-face communication. Using these techniques
leads to a lot of coordination issues and administrative overhead.

The goal of this work is to replace and simplify the current processes with an online
tool for both club and board members. The solution provides facilities to manage
members, sponsors, and events in a single, shared place. In the remainder of this chapter,
we motivate our work (section 1.1), state the thesis goal (section 1.2), and outline the
structure of the thesis (section 1.3).

1.1 Motivation
The tasks and responsibilities of the board encompass a wide range of more or less
complex activities. Each board member is in charge of a subset of these tasks. The roles
in focus in this thesis are as follows.

The cashier has the responsibility over the member register and updates it once

1

CHAPTER 1. INTRODUCTION 2

changes emerge.
The president handles everything that is related to the sponsors. This includes

updating the sponsor register, negotiating contracts and maintaining the contact with the
sponsors.

Last but not least, the two organizers manage all the events. One of them is respon-
sible for the organization of all the club’s matches while the other one manages all the
remaining events such as lottos, markets, and sponsor events.

All events require several persons (from the active members) helping with different
jobs like refereeing, cashing in at the bistro, controlling lotto cards, and so on. The
constitution says that every member has to help a certain number of hours during a season
by doing some of these services. If they do not reach the (not publicly communicated)
goal, they can be sanctioned or even suspended. So the two event organizers have to keep
an overview of all the hours helped at the events. On the other hand, the different teams
have to assist at specific events and split up the services between the team members.
Individual club members have to keep track of the services they applied for and of the
total hours served so far in a season.

Today, the board mainly uses Microsoft Excel files to manage all the previously
mentioned tasks and does not apply any synchronization solution (like Dropbox1). This
leads to abstruse situations like this: Assume that the secretary has to write a letter to
all club members to inform them about the upcoming match schedule. So first of all,
the secretary writes an e-mail to the cashier and asks for the current member register.
The cashier replies that the register is currently being updated by the president. So the
secretary has to write another e-mail to the president and wait for the next answer. After
some days, the current version finally finds its way into the secretary’s inbox so that the
letter can be sent to all designated receivers.

Another common situation is the following one: At the end of the season, the two
event managers meet to determine the total number of hours helped per member and
to decide which members have to pay a fee. To answer these questions, they have to
collect reports from events (possibly from other people), verify the validity, aggregate
the results, and calculate the totals for each member.

Both described situations are unnecessarily complex in spite of all the technical aids,
but they still occur very often in the environment of the Unihockeyteam Eggiwil.

1.2 Goal
The goal of this thesis is to replace the existing, Excel-based workflow with a system
that covers all requirements and avoids shortcomings of the current workflow. To our
knowledge, no existing software solution covers all required features in a combined and

1https://www.dropbox.com

https://www.dropbox.com

CHAPTER 1. INTRODUCTION 3

adequate way. Consequently, a custom solution is necessary.
We developed a web application that allows the board members to manage all the

data about members, sponsors, and events in one place. Additionally, we offered access
to the system for all the club members so that they can manage and get an overview
of their services online without getting insight in the administration part of the board
members. This reduced the administrative overhead for the individuals and improved the
collaboration between the board and the club members as well.

During the entire duration of the project, we worked closely with our two customers
Jakob Limacher, the current president of the Unihockeyteam Eggiwil, and Christoph
Wüthrich, a computer scientist and former secretary of the Unihockeyteam Eggiwil,
who knows the board’s administrative processes well. The latter already tried to find a
software solution that fits the requirements, without success. To ensure that the solution
also suits the needs of all other stakeholders (board and club members) and is useful to
them, we involved them in the development process as well.

1.3 Outline
This thesis encompasses the following chapters:

Chapter 2 – Related Work: Gives an overview of existing software solutions in the
club management domain and explains why none meets our customer requirements.

Chapter 3 – Requirements: Introduces and explains the concrete problem domains
and gives a detailed view of the customer requirements.

Chapter 4 – Solution: On the one hand, this chapter explains our solution in terms of
the architecture and the technical implementation. On the other hand, we show
how the system works and looks at user level.

Chapter 5 – Validation: Describes the way we validated our solution against the cus-
tomer requirements together with the customer. Gives insight into how the system
changed during the development process due to change requests from the customer.

Chapter 6 – Conclusion and Future Work: Recapitulates the project and shows some
possible system extensions in the future.

2
Related Work

Today, a wide range of club management applications exists. Before we started our work,
we took a look at these systems to make sure none fits the customer requirements already.
We found many interesting solutions which provide some functionality to manage a
sports club.

We reviewed several applications and found three systems that match some of the
customer’s requirements. However, none of those covers all requirements. We are briefly
introducing these most promising systems in the following sections and explain, for each
one, why it cannot be used for the desired purpose.

2.1 Fairgate
Fairgate1 is a web portal that is used by over 300 sports clubs in Switzerland2. It
offers member and sponsor management modules that fit most of our needs. As a
nice-to-have feature, our customer could manage the billing, the different teams and his
internet appearance with this application. Fairgate seems to be very intuitive and user
friendly, but has big disadvantages as well. It does not support event management in
any sense. Additionally, the software is quite expensive and modules like the sponsor
management have to be paid extra. Therefore, Fairgate is not suitable as a solution for
the Unihockeyteam Eggiwil.

1http://fairgate.ch/, accessed 26 February 2017
2http://www.fairgate.ch/kunden

4

http://fairgate.ch/

CHAPTER 2. RELATED WORK 5

2.2 Clubdesk
Clubdesk3 is in many ways very similar to Fairgate except for one point: it supports
event management. The event management module works similar to Microsoft Outlook,
where one can invite people to events, get a calendar overview and see who accepted
the invitations. But Clubdesk does not allow users to organize and assign roles (such as
referee, cashier, etc.) or time slots. Due to this missing key feature, Clubdesk also drops
out as a possible solution for our customer.

2.3 Webling
Webling4 is another web solution that provides functionality to manage members, do
accounting tasks and manage documents. The member management module looks very
similar to Fairgate and would therefore fit our needs. But unlike Fairgate, Webling does
not offer any sponsor management. Additionally, the system lacks event management
support and is thus rejected.

In general, Webling seems to be a tool that focuses on the administrative board work.
The advantages of the system would be the good and easy-to-use role management
to handle different access rights as well as a material management module (which no
other solution offers). However, these two features are not key requirements for the
Unihockeyteam Eggiwil so we reject Webling as well.

2.4 Conclusion
Table 2.1 sums up the capabilities of the three software systems regarding some of
our key requirements. While all of the considered solutions offer member and role
management functionality, only Clubdesk provides users with a module to manage
events. But unfortunately, these event management capabilities are limited and do not
include some of the desired features, namely the administration of time slots and roles
at events. Therefore, we need to build a customer-specific application that combines
member, sponsor, and event management functionalities.

3http://clubdesk.ch/, accessed 27 February 2017
4http://webling.ch/, accessed 27 February 2017

http://clubdesk.ch/
http://webling.ch/

CHAPTER 2. RELATED WORK 6

Webling Clubdesk Fairgate

Member management X X X
Sponsor management X X
Event management – member participation X
Event management – time slots
Event management – roles
User frontend X X X

Table 2.1: Summary of the capabilities of the solutions regarding our key features.

3
Requirements

Our next step was to meet the customer to get an overview of their requirements. We
created a software requirements specification document which we discussed in a second
meeting with them to verify that we understood everything correctly. Since the system
will be split up in two parts, one for the board and the other for the members, we are
going to describe the requirements for these two parts in separate sections of this chapter
(section 3.1 for the board and section 3.2 for the member requirements). Last but not least,
we will introduce system requirements which are relevant to both parts in section 3.3.

3.1 Board requirements
Independent from the individual committee role, board members get access to the full
board functionalities so that they can help out each other in busy times or in case of
unexpected absences. The system should basically provide four main components for the
board: sponsor management, member management, event management, and open issue
handling. The requirements for all these modules are described in detail in the following
paragraphs.

3.1.1 Member management
The member management allows the board to keep track of active and inactive members
and replaces the Excel file which is currently used as member register. The system
will make use of the recorded information to associate information about the events

7

CHAPTER 3. REQUIREMENTS 8

(e.g., hours served) with the members and to handle the access rights. Every recorded
member is a potential system user, but no one should be able to access the system without
being a recorded member.

3.1.1.1 Add a member

Every board member should be able to add a new member to the system. The following
mandatory fields need to be recorded:

• Sex (male or female)

• First name

• Last name

• Address (street and house number)

• Zip code

• City

The subsequent items are optional values that can be registered for every member.

• Date of birth

• Team

• License

• Two phone numbers

• Two e-mail addresses

• Profession

• Status (active, passive, neutral or leaved the club)

The Unihockeyteam Eggiwil uses some special member types which should be repre-
sented. The necessary data fields to record them are as follows.

Referee License number, partner (since every game is led by two referees and referee
pairs stay together during a season), remarks, and the salary.

Honorary member Date of promotion (the date of the general assembly at which they
got elected as honorary member).

Functionary Function and indication if they are part of the board or not. This second
information is a Boolean value and determines the access rights, that is, it dictates
whether a user sees the member frontend or the board frontend.

CHAPTER 3. REQUIREMENTS 9

3.1.1.2 Member overview

A system user also wants to get an overview of all recorded members. This general
summary should display some of the attributes recorded about the members (e.g., name,
address, team, e-mail, and status) and offer a keyword search. Further, the customer
wishes to have a function that exports this (potentially partial) view to an Excel file
containing all known data about the currently displayed members.

3.1.1.3 View and update a member

The previously mentioned member overview provides buttons to view and edit the
information about a member. The view function simply displays all recorded data about
the selected member. To change the information, one has to edit the member. In this case,
the same fields as in the function to add a member (see section 3.1.1.1) are mandatory.

3.1.1.4 Delete a member

System users need the option to delete a member from the system by clicking a button
in the member overview. This process can only be completed if no reference to the
selected member exists in the event management section. Otherwise, a message is shown
indicating that the member cannot be deleted.

3.1.2 Sponsor management
The sponsor management offers our customer the possibility to manage all sponsors in
one place and replaces the Excel sheet that has been used so far. Since the functionality is
equal to the member management, we only describe the differences concerning addition
and deletion of sponsors.

3.1.2.1 Add a sponsor

One can add a sponsor by recording the following mandatory information:

• Sponsor name

• Address (street and house number)

• Zip code

• City

• E-mail

• Contact name (a representative of the sponsor)

• Sponsor type (e.g., club sponsor, team sponsor, patron, outfitter)

CHAPTER 3. REQUIREMENTS 10

The optional data about a sponsor encompasses the items listed below.

• Phone number

• Contract information (start date, end date, amount paid per year, and remarks)

• E-mail and phone number of the contact person

3.1.2.2 Delete a sponsor

A sponsor can be deleted without checking any remaining references since it is not
reused in another system module. Like for the members, the system should display a
confirmation dialog before a sponsor is effectively deleted.

3.1.3 Event management
Before we describe the requirements concerning the event management, we need to
introduce some terms which will occur repeatedly.

Season Normally describes the time during which the championship is played. In
floorball, the championships get under way mid September and finish between
February and April. In our terms, a season is equivalent to a club year which lasts
from May to April so that every event can be related clearly to one season.

Event For example, a season match, a lotto, or an intern activity which is organized by
the club. It is associated with one particular season.

Helper service Every event needs some club members as helpers for different tasks
like game secretary, bistro assistant, speaker, and so on. Each of these services is
related to a particular event and will take a predefined number of hours.

As already mentioned in the introduction (see chapter 1), every member has to
serve a (not publicly communicated) number of hours doing helper services. Members
who are off the target risk to be sentenced by the board to pay a fine. The goal is not
communicated on purpose because the club does not know the exact number of events at
the start of a new season and would otherwise risk not having enough helpers over the
course of a season.

We will now introduce the requirements in a top-down approach starting with the
season and then going into more details step-by-step, first with the events and then with
the helper services. The workflow is illustrated in figure 3.1.

CHAPTER 3. REQUIREMENTS 11

Event Helper serviceSeasonBoard

Event Helper serviceSeasonBoard

add

add

add

edit

delete

close

close

Figure 3.1: Simplified event management workflow.

3.1.3.1 The season

The season acts as a container for the events of a year and the club manages the helper
services season-by-season. The new system should therefore allow a season based event
management. The new workflow over the course of a season is straight-forward: add
a season at the beginning, then modify it throughout the year (manage events, edit the
members that have to help, . . .), and finally close it at the end.

Add and edit a season

Board members should be able to add a new season to the system by giving it a title
and selecting the members that have to help during it. In principle, all recorded club
members are required to help and should therefore be selected by default. As soon as a
season is added to the system, the selection of the helpers can be adapted by adding new
members or deleting existing ones.

Get helper overview

At any point, board members should be able to get an overview of the helpers that shows
them how many hours each member achieved so far during the season. Furthermore,
they also want a possibility to get a detailed view of the already fulfilled services as well
as the planned services for a specific member. The general member overview should be

CHAPTER 3. REQUIREMENTS 12

searchable and exportable to an Excel file so that, for example, a team’s request for the
current status can be easily served.

Close a season

At the end of a season, board members can close it so that no more changes can be made.
This means that all data recorded for the season are still accessible with read access, but
nobody can edit anything.

Manage events

The most important thing a board member wants to manage during the season are the
events. We should provide them with an event overview page from where all activities
concerning the events can be controlled. The following section takes a deeper look at the
customer’s perspective of how the event management shall be handled in the new system.

3.1.3.2 The event

An event (e.g., a league match of one of the teams) acts as a container to bundle several
helper services to a unit. As already mentioned, every event belongs to exactly one
season. The workflow for events is straightforward and resembles the one for seasons:
add it, edit it, and then close it.

Add and edit an event

As a board member, one can add an event by specifying the following five items:

• Event date

• Event title

• Event location

• Registration deadline

• Description

Except for the description, all of the values are mandatory and can be changed at any
time.

Close an event

Once the event date lies in the past, the event can be closed so that no more changes are
feasible. At the latest when a season shall be closed, all events for this season have to be
closed.

CHAPTER 3. REQUIREMENTS 13

A closed event cannot be deleted any more (while pending events can be deleted) and
one can only take a look at the recorded information or export it to an Excel file. The
export functionality should also be provided for upcoming events so that, for example,
the organizer can print out an overview of the members that should be present.

3.1.3.3 The helper service

The last layer of our container model (figure 3.2) is the smallest piece, called helper
service. At a league match the club needs, for example, a speaker, somebody cashing
in at the bistro, a time keeper, and so on. All these tasks represent one helper service.
Therefore, each helper service can be related to exactly one event. We are going to use a
similar workflow as before (add, edit, and close helper services for an event).

Event title Helper Service A Event title Helper Service D

Event date Task Event date Task

Registration date Start time Registration date Start time

Location End time Location End time

Remarks Member I Remarks Member II

Helper Service B Helper Service C Helper Service E Helper Service F

Task Task Task Task

Start time Start time Start time Start time

End time End time End time End time

Member II Member III Member IV Member II

Event title Helper Service G Event title Helper Service H

Event date Task Event date Task

Registration date Start time Registration date Start time

Location End time Location End time

Remarks Member V Remarks Member IV

Event 1 Event 2

Event 3 Event 4

Season 2017/2018

Figure 3.2: Container model for the event management. The season acts as a container
to bundle the different events that belong to it. Each event then is a container to bundle
one or several helper services.

CHAPTER 3. REQUIREMENTS 14

Add and edit helper services

Every helper service consists of the following information:

• Task that has to be done

• Start and end time

• Member

• Indication whether the member was present

We agreed with the customer to use a two-step approach to add new helper services
to reduce copy-and-paste work. In a first step, the board member enters only the task
and the number of required members for this task (so that not every single task has to be
created by hand). For example, one could state that two speakers, one time keeper, and
three persons in the bistro are needed at the event. Our system will then automatically
create the correct number of helper services so that they can be edited in a second step
by specifying the time slots and optionally recording a member. While editing a helper
service, all data except for the task itself can be changed. If any task is not needed any
more, one can delete it.

Close a helper service

The completion of helper services happens in the same step as the closing of an event.
To close an event, all helper services have to be completed by filling out all fields and
mark if the appropriate member was present or not. This information is very important
since the helped hours are only credited if the member was present. Otherwise, no hours
are credited and the member may has to help for more hours than others. Helper services
are still editable as described before during the completion and new ones can be added.

3.1.4 Open issue management
The last module accessible for board members, the open issue management, is a nice-
to-have feature for our customer. Today, the board has a monthly meeting where the
secretary writes two protocols, one for the open issues and one containing the decisions.
These two files are distributed by e-mail afterwards. The open issue protocol consists of
a list with tasks and a responsible person for every task. If an open issue is completed,
it is deleted from the list at the successive board meeting so that the protocol always
contains only the open tasks.

We would like to replace the open issue protocol with an online solution. A board
member should be able to add a new task to the system by entering the task and optionally
selecting a responsible person (one of the board members recorded in the system). One
can also get an overview of all open issues and mark a selected issue as completed.

CHAPTER 3. REQUIREMENTS 15

According to the customer, a completed issue can be deleted from the system without
offering any possibility to view the completed tasks again.

3.2 Member requirements
The requirements concerning the second user group are all related to the event manage-
ment except for one point. Since many members forget to inform the club about address
changes, our system should offer the members a possibility to update their contact infor-
mation in the new system. This means, a member will be able to update the following
information of its entry in the member management part:

• Address (street and house number)

• Zip code

• City

• Both e-mail addresses

• Both phone numbers

• Profession

The benefit of this function will be a reduction of dead letters and therefore less extra
work for the board members.

3.2.1 Event management requirements
With the new system, the distribution process for the helper services changes substantially.
They are not allocated to the different teams and then distributed within the team any
more. Instead, every club member has the possibility to manage their services with our
new system and is therefore able to fulfill any available helper service.

We provide the members with a search feature to find open helper services. We call
a helper service open if no member has already signed up for it. Since some of the
services are reserved for specific members or should not be available to everybody, we
need to expand the helper services with an additional flag which can be used by the board
members to specify if a service can be seen from the members or not. As the entire event
management is based on seasons, the search should include only the current season as
well.

If one wants to take over a helper service (found through the search), it should be
possible to register for this service. The registration should then also be visible in the
corresponding event on the board part of the application. We therefore do not need
approval from a board member if one wants to take over a specified service. If a member
gets a conflict and is not able to do a task for which he is already registered, we should

CHAPTER 3. REQUIREMENTS 16

provide a possibility to unsubscribe from the appropriate helper service. Registration as
well as withdrawal are only available until the registration deadline. Afterwards, only
board members can change the helper services of an event (e.g., by removing a member
from a service).

To keep an overview of one’s personal services, the system should provide a func-
tionality that allows members to get a summary of all (planned and performed) personal
services of a season. According to our customer, a member should see the amount of his
personal services during the current season. But one should never get any information
about the total hours (or the average) of all members during a season.

3.3 General requirements
The application should have a responsive design so that its usability does not depend on
the screen size and can be used on any end device (computer, tablet, mobile phone, and
so on). Concerning the system’s language, the customer wishes German since this is the
mother tongue of the club members. Aside of these non-functional requirements, there
are some functional requirements that touch both application parts. These requirements
mainly concern the user authentication and are discussed in the following section.

3.3.1 Authentication
The login credentials to the application consist of a username and a password. Since
the e-mail address is not a required field in the member management part, our customer
agreed to use a system-generated username.

The users for the board members shall be created during the setup of the application.
All the other user accounts can be created by the board members trough a provided
functionality in the member management. After a user account has been created, the
board member can set an initial password for the newly created user and pass it to the
corresponding member on another channel (e.g., per e-mail).

Our system should provide every logged-in user with a password reset function. The
board members additionally get a password reset function at their disposal so that they
can reset the password for every system user. The request for a password reset is sent to
a board member on another communication channel.

4
Solution

During a three-month period, we developed the web application ClubAdmin by using
iterative development. In the first cycle, the member management has been developed
since it is the basis for two other modules (event management and open issues). In the
second cycle, we finished the member management and then moved towards the event
management functionality. We continued the implementation of this module in the third
cycle and started the implementation of the sponsor management and the open issue
management in parallel. The fourth and last cycle was used for improvements and clean
up work.

One of the advantages of this iterative approach was that our customers saw a func-
tioning version of the system three weeks after we started with the implementation and
that they could follow the progress of our work throughout the iterations. This reduced
the risk of going into a wrong direction since we could collect feedback frequently to
make sure that we are on the right track.

In the remainder of this chapter, we explain our solution in detail. We start by
introducing the used architecture and technologies in section 4.1 and then describe the
user experience in section 4.2.

4.1 Technologies and architecture
The first decision we had to take was about the framework we use for our work. We
considered several Java and PHP frameworks which all offer enough functionality to
implement the required features. Finally, we have chosen the Java-based Spring Web

17

CHAPTER 4. SOLUTION 18

MVC1 framework since it is most familiar to us and it offers all needed functionality to
implement the requirements. As the name suggests, Spring MVC is a web framework
that follows the Model–View–Controller concept which we will introduce briefly in
general before taking a look at the Spring implementation.

We used the build automation tool Apache Maven2, which simplifies our deployment
process. It acts as a dependency manager and can be used to build the project as well.

4.1.1 MVC (Model-view-controller)
MVC is an architectural pattern for software systems which divides the application in
the three parts model, view, and controller. There exist a lot of prominent frameworks
that implement it, for example, AngularJS3, Ruby on Rails4, Laravel5, and many others.
The benefits of the pattern are that code can be reused (due to the decoupling of the
components) and that one can extend the system easily. The components interactions are
illustrated in figure 4.1.

Controller

View

Model
manipulates

Figure 4.1: Interaction between the different components of the MVC pattern.

A model holds the application’s data (e.g., the information about the members) and
contains the business logic. Each model object represents one object from the problem
domain (for example a member or an event) and defines therefore one table in the
database. All the modifications in the model are initiated by the controller. The model is
independent from the presentation (i.e., the view).

1http://projects.spring.io/spring-framework/
2https://maven.apache.org/
3https://angularjs.org
4http://rubyonrails.org/
5https://laravel.com/

http://projects.spring.io/spring-framework/
https://maven.apache.org/
https://angularjs.org
http://rubyonrails.org/
https://laravel.com/

CHAPTER 4. SOLUTION 19

The view is responsible to display the data it receives from the controller and to
offer the user a possibility to manipulate the data with input interactions. A view object
knows the model (with all the attributes) it has to represent, but cannot modify the model
directly. It is possible to represent the same information with different views depending
on parameters (user rights, context, etc.).

Controllers act as intermediaries between the model and the view. They accept user
inputs from the views, ask the model to perform a certain action (depending on the input)
and then inform the views to update themselves.

4.1.2 MVC in the context of Spring MVC
We will now show how the components of the MVC pattern are implemented and used
in Spring. The following sections describe model, view, and controller.

Model
We used Spring MVC together with the Java Persistence API (JPA)6 (an interface that
provides a persistence model) and Hibernate7, which allows us to represent each model
as a simple class. All that is needed is the Hibernate annotation @Entity at the beginning
of the class. When using this annotation, the framework knows that the class represents a
model and creates the corresponding database table in the background if it does not exist
already. The model class itself only contains the attributes for the represented object and
accessors (getters and setters) for all these attributes. The following code example acts
as a simplified excerpt of the model of a task (which consists only of an id and a name)
in our application:
@Entity
public class Task {

@Id
@GeneratedValue
private Long id;

private String name;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

6http://www.oracle.com/technetwork/java/javaee/tech/
persistence-jsp-140049.html

7http://hibernate.org/

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://hibernate.org/

CHAPTER 4. SOLUTION 20

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

The database itself is accessed through data access objects (DAO). A DAO is an
object which is used to access data from a database. The DAO implements a particular
interface on which all classes that need to access data depend. With this approach, the
application’s data access can be separated from the concrete data access implementation
and therefore simplifies an eventual change of the underlying database.

In Spring, one only needs to define the interface for the DAO and the framework
will then create the concrete implementation automatically so that we do not need to
care about it. One possible implementation of these data access objects is to define an
interface that extends the Spring class CrudRepository (CRUD stands for the database
operations create, read, update, and delete). The methods of the interface represent the
executable queries on the table that contains the corresponding model. For example, the
DAO for the task model from above looks like this:

public interface TaskDao extends CrudRepository<Task,Long> {
public List<Task> findAll();
public Task findFirstByName(String name);

}

We can query the task table either for all tasks (which are returned as a list) or for a
task with a specific name (which is returned as single task object).

Together with the correct configuration, we only inject the DAO into the classes that
have to access task data and then we can use it directly to query the database as follows:

public class TaskService implements ITaskService {

@Autowired private TaskDao taskDao;

public Task getTaskByName(String name){
assert(name != null);
return taskDao.findFirstByName(name);

}
...

}

The method simply returns the task object with the specified name or null if no matching
entry in the table was found.

CHAPTER 4. SOLUTION 21

Database

Our application uses a MySQL8 database in which the tables are created automatically
by the framework. A model of the database schema is shown in figure 4.2. The most
interesting part of our system is the event management which uses the six tables in the
upper left corner (Member, SeasonMember, Season, Event, EventTask, and Task).

The table SeasonMember represents an n-to-n relationship between the two models
Season and Member without storing any additional values. We use it to determine which
member has to help in which season.

For every season, there can exist between zero and n events which are represented
in the table Event. On the other hand, every event belongs to exactly one season so that
we have a 1-to-n relationship between these two models. The Event table stores some
additional information about the event such as the date or the registration deadline.

Another 1-to-n relationship exists between the tables Event and EventTask since every
event can be related to zero, one, or several tasks that have to be done at the event, while
every event task belongs to exactly one event. We store some more information about the
task that has to be done, for example, the start and end time, the visibility, the member
that will do the job (in an 1-to-n relationship with the table Member), and which task has
to be done. This last information is stored in the event task and is associated with exactly
one entry from the Task table in an 1-to-n relationship as well.

Event Season SeasonMember

id id id

season_id isActive season_id

title title member_id

date

registrationDeadline

location Member

description id

isFinished firstName OpenIssue

lastName id Sponsor

street finished id

EventTask zipCode openIssue name

id … member_id contactName

event_id … street

member_id … zipCode

startTime isPartOfTheBoard Team city

endTime team_id id contractStart

hoursHelped licence_id abbrevation contractEnd

memberWasPresent name amountPerYear

isVisible …

task_id …

SponsorType …

id sponsorType_id

Task type

id

name

∞

∞

1

1

∞

1

∞

1

∞

11

∞

∞

1

∞

1

∞1

1

∞

Figure 4.2: Database diagram of the system.

8https://www.mysql.com/

https://www.mysql.com/

CHAPTER 4. SOLUTION 22

View
Our views are implemented as JavaServer Pages (JSP)9 files. These files can contain
both static (in the form of normal HTML content) and dynamic content. For the creation
of this dynamic content we mainly use JSTL (JavaServer Pages Standard Tag Library)10,
a library of commands for JSP pages. This way, we can avoid plain Java code in the
views. For the styling of our application we use the CSS framework Bootstrap11 which
allows us to implement the desired responsive design with little effort.

The following example shows the combination of JSTL and HTML. First of all, we
test with JSTL if a Java object flashMessage has been added to the view (flash messages
are notifications that are displayed to notify the user, for example, when a field is not
filled correctly). If so, we display a HTML division (div tag) with the Bootstrap class
“alert” and the value of the object flashMessageType. The division then simply contains
the message the controller has added to the view.
<c:if test="${ flashMessage != null }">

<div class="alert <c:out value="${ flashMessageType }"/>">
<c:out value="${ flashMessage }" />

</div>
</c:if>

Controller
The controller connects the model and the view as follows: it accepts input from the view,
then asks the model to perform a certain action and eventually informs the view to update
itself. The mapping of HTTP requests to the controller is specified using annotations.
This time, we have to use @RequestMapping to annotate the controller method so that
Spring knows which method has to be executed when a request comes in.

In the example below, the first two lines indicate that the method is called as soon
as a GET request to the URL “/board/settings/teams” is performed. The method itself
then creates a new view from the specified JSP file on the web server and adds two Java
objects to it.
@RequestMapping(value = "/board/settings/teams",

method = RequestMethod.GET)
public ModelAndView getDisplayTeamSettings() {

ModelAndView model = new ModelAndView("settings/teams");
model.addObject("teams", settingsService.getAllTeams());
model.addObject("addAndEditTeamForm", new AddAndEditTeamForm());
return menuService.getTeams(model);

}

9http://www.oracle.com/technetwork/java/javaee/jsp/index.html
10http://www.oracle.com/technetwork/java/index-jsp-135995.html
11http://getbootstrap.com/

http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://getbootstrap.com/

CHAPTER 4. SOLUTION 23

As mentioned before, we can access and therefore also output all data of the two
added objects in our JSP files. The controller does not care about the final representation
of the data, it is only responsible to provide the data to the view.

4.1.3 Spring Security
For the authentication and the authorization in our application we used the Spring
Security12 framework which is part of the Spring framework family and can be easily
integrated. As before, we focus on the most important parts of the configuration here.

Authorization and URL mapping

To handle the access rights for the two system parts, we use two Spring Security roles
ADMIN and USER. All club members will get the role USER and the board members
will additionally receive the role ADMIN. Together with our chosen URL mapping, this
allows us to keep the authorization configuration very simple.

The two entries from our Spring Security configuration file below determine that
only users with the role ADMIN can access a URL starting with “/board” while everyone
with role USER has the permission to open a page with “/member” at the beginning of
the URL.

<security:intercept-url pattern="/board/**"
access="hasRole('ROLE_ADMIN')" />

<security:intercept-url pattern="/member/**"
access="hasRole('ROLE_USER')" />

Table 4.1 shows the URL prefixes we used for the different parts of our system. In
case someone tries to access a page without having the necessary permission, we defined
the following configuration entry which returns the view specified in the file “403.jsp”
(see figure 4.3).

<security:access-denied-handler error-page="/403" />

Authentication

Most of the log-on process is handled automatically by Spring Security so that we do
not need to deal with the implementation of it. However, to allow the users access to
the appropriate system parts, we need to implement a custom authentication provider
and add to the current user the necessary roles. We therefore need to tell Spring Security
in the configuration file that it should use our custom authentication provider named
“customUserDetailsService”:

12https://projects.spring.io/spring-security/

https://projects.spring.io/spring-security/

CHAPTER 4. SOLUTION 24

<security:authentication-manager>
<security:authentication-provider user-service-ref=

"customUserDetailsService">
<security:password-encoder ref="bcryptEncoder"/>

</security:authentication-provider>
</security:authentication-manager>

In this authentication provider, we then add the necessary roles for the user:

private Collection<? extends GrantedAuthority> getAuthorities
(Member member) {

List<GrantedAuthority> list = new ArrayList<GrantedAuthority>();
SimpleGrantedAuthority roles =

new SimpleGrantedAuthority("ROLE_USER");
list.add(roles);

if (member.getIsPartOfTheBoard()){
roles = new SimpleGrantedAuthority("ROLE_ADMIN");
list.add(roles);

}

return list;
}

So every user of the system gets the USER role, while only board members addi-
tionally get the role ADMIN. As already mentioned in chapter 3, the access rights are
handled through a Boolean value that indicates whether a member is part of the board or
not. Together with the previously introduced configuration for the authorization, we have
met all the related customer requirements.

Figure 4.3: Access denied page.

CHAPTER 4. SOLUTION 25

4.2 User level
In this section, we would like to provide the reader with a short insight into the look-and-
feel and the features of the application from a user’s point of view. We will briefly go
through all parts of the application for both board and normal members. The focus is on
the event management, since this module has the most complex workflows and offers
access for both user types, making it the most interesting part of our system.

4.2.1 Main page and navigation
As soon as board members have entered their credentials correctly, they will be redirected
to the main page of the application. This index page looks slightly different depending
on the used end device. Figure 4.4 shows what the index page looks like on a desktop
computer, while figure 4.5 represents the view on a mobile phone. After customer
meetings, we opted for a simple and clean layout that focuses on the core functionality.

For board members, the navigation bar (figure 4.6) contains links to the different parts
of the system and also to some settings. We will not discuss the settings in this chapter,
but refer the interested reader to appendix A, where we cover these in more detail. In
addition, the application offers breadcrumbs right below the navigation to indicate the
current location in the navigation hierarchy.

4.2.2 Member management
When board members open the member management, they first see the overview page
(figure 4.7). This site contains all the recorded members ordered alphabetically by last
name. For each member in the list, the user has different available functions: view all the
recorded data about the member, edit it, delete it, or create an account for this member
(respectively reset the password if the member already has an account).

The member list can be queried with a full-text search over all displayed attributes.
Both a partial list (obtained by applying a search criteria), as well as the entire register

Part URL prefix

Member management /board/membermanagement/*
Sponsor management /board/sponsormanagement/*
Open issue management /board/issues/*
Event management (board) /board/seasons/*
Event management (members) /member/events/*

Table 4.1: URL prefix mapping for core features.

CHAPTER 4. SOLUTION 26

Figure 4.4: Index page of a board member (desktop view).

Figure 4.5: Index page of a board member (mobile view).

CHAPTER 4. SOLUTION 27

Figure 4.6: Navigation bar and breadcrumbs. (1) Link to the index page. (2) Links to the
different system modules. (3) Link to the settings. (4) Breadcrumb.

can be exported as Excel files. The last feature the member overview provides users with
is a way to add a new member to the system.

Figure 4.7: Member management overview. (1) Full-text search. (2) Functions to modify
the member. (3) Button to add a new member. (4) Export functions.

CHAPTER 4. SOLUTION 28

4.2.3 Sponsor management
As shown in the database diagram from chapter 4.1.2 (figure 4.2), the sponsor manage-
ment is completely decoupled from the rest of the system. But it works analogously to
the member management. The only differences are the alternative data fields for the
sponsors and that sponsors cannot log into the application. We therefore refrain from
going into more detail about this module here.

4.2.4 Open issue management
This piece of the application consists of one page and is structured similar to the Word
document that has been used previously to track the open issues. As shown in figure 4.8,
the upper part displays all the open issues grouped by board member and also a section
for issues that are not related to a board member or were related to a member that has
been deleted from the system. At the bottom of the page, one can add new open issues
by entering the issue and selecting one of the recorded board members as a responsible
person.

4.2.5 Event management
Both board and normal members have access to the event management. Since the
interface is different depending on the type of user, we describe the interfaces individually
in the following sections.

4.2.5.1 Manage events as a board member

If board members select the event management in the navigation bar (see figure 4.9),
they have three possibilities. They can either add a new season, go to an active season, or
get an overview of the past seasons.

After selecting one of the active seasons, the overview page for this season is dis-
played (figure 4.10) where one has several options. The upper part of the page contains
different functions, for example, the possibility to get an overview over the achieved
hours, add an event, edit the members that have to help during the season, export the
events, or close the season. The lower part contains a list with all the events of the current
season grouped into upcoming events and past events. The past events are split up again
into those that are already closed and those that are not yet (which we will name open
events from now on). Depending on this status, one has several options for the events.
While closed events can only be accessed to read the data, upcoming as well as open
events can be edited. For the open events, one has additionally the possibility to close
them. All events can be exported but only events that are not closed so far can be deleted.

CHAPTER 4. SOLUTION 29

Figure 4.8: Open issue management page. The upper part contains all the open issues
grouped by member. The bottom of the page contains a form to record a new open issue.

Figure 4.9: Menu for the event management module. (1) Add a new season. (2) Open an
active season. (3) Get an overview of all past seasons.

CHAPTER 4. SOLUTION 30

The already closed events cannot be deleted since the credited hours for them should stay
in the system (independent from the status of the members that helped).

Figure 4.10: Season overview. (1) The different available functions for the season (e.g.,
get an overview over the achieved hours, add an event, close the season, and so on).
(2) Depending on the status of the event, the user has several options for the events.

Add an event

By clicking on the “add event” button, a new page with a form is displayed (figure 4.11).
First, all the necessary information about the event has to be recorded like event date,
registration deadline (for the members), location, and so on. Afterwards, all the tasks
that have to be done at the event can be filled in together with the number of times this
task has to be done.

CHAPTER 4. SOLUTION 31

Figure 4.11: Form to add an event.

CHAPTER 4. SOLUTION 32

Edit an event

In a second step, one can edit the event (figure 4.12) by specifying the time slots for the
different tasks, select a member if it is already clear who will do the job, or determine
that a service should not be visible to the normal members. Individual tasks can also be
deleted from an event by clicking on the trash icon at the end of every task.

Figure 4.12: Form to edit an event. (1) Time slots for the different tasks. (2) Drop-down
to select a member if it is already clear who will do the job. (3) Check mark to determine
if the helper service should be visible to the normal members (if the check mark is set,
the service is visible). (4) By clicking the trash icon, the helper service is deleted.

CHAPTER 4. SOLUTION 33

Close an event

After the event has taken place, one of the responsible board members closes the event
in the frontend. The form to close the event (figure 4.13) resembles the edit event page.
The board member can still edit the time slots and members, delete tasks, or add new
tasks. But instead of selecting the visibility, one can specify at the beginning of every
line if the corresponding member was present or not. This flag controls the crediting of
the hours: if it is set, the hours are credited to the member. Afterwards, the hours are
used to calculate the average and amounts in the member overview (see the following
chapter) and also displayed in the members profile (see chapter 4.2.5.2).

Figure 4.13: Form to finish an event. (1) Check mark to determine whether the member
was present or not. This information is used to credit the hours (if the mark is set, the
member was present and will therefore get the hours).

CHAPTER 4. SOLUTION 34

Get member overview

As a board member, one can always get an overview of the current hours standing of the
different members. The corresponding page (figure 4.14) displays the current average
and all the members with their registered and fulfilled hours. With the icon at the end of
every line, one can get a detailed list of all the tasks the selected member is associated
with.

Figure 4.14: Overview of the currently supplied and planed hours. (1) Current average
over all members. (2) Icon to get a detailed list of all tasks the corresponding member is
associated with.

4.2.5.2 Manage personal helper tasks as a club member

Users that are not part of the board will see a slightly different view after the log-in.
As shown in figure 4.15, the navigation bar contains only the active seasons where the

CHAPTER 4. SOLUTION 35

member has to help. For every season, a member has two options: either view the helper
services (served and registered) or search for open tasks.

Figure 4.15: Navigation bar for the normal members. (1) View the member’s helper
services. (2) Search for open tasks.

Search for open helper tasks

By selecting this functionality for one of the available seasons, the member gets an
overview of all helper services at upcoming events where the registration deadline has
not yet passed and where no member is recorded so far. For every helper task, a green
button to register oneself is available (figure 4.16).

Figure 4.16: Overview of all open helper tasks at upcoming events. By clicking the green
button, the member subscribes for the corresponding helper service.

CHAPTER 4. SOLUTION 36

Get overview of personal tasks

The other option offers the member an overview of all tasks of the current season as
shown in figure 4.17. This means, the member sees all the past as well as upcoming
services it is related to. For those tasks with an open registration window, the member can
cancel the registration by clicking on the red button at the end of every entry. Additionally,
the member sees the number of hours helped and planned.

Figure 4.17: Overview of all personal tasks for the current season. By clicking the red
button, one can cancel the registration for the corresponding helper service. (1) Number
of hours helped and planned.

4.2.6 Feedback
In cases where the user tries to perform an invalid action (e.g., trying to view a member
with an id that does not exist), we rarely use dedicated error pages. Instead, we tried
to implement most of the feedback by flash messages that are displayed on the page on
which the error occurred. This way, the user can directly retry the action that caused the
misbehaviour. Apart from the error flash message types, the system also uses warning
and success flash message types to inform the user about the result of the performed
action. Examples of the three flash message types can be seen in figure 4.18. The flash
messages are always displayed right below the breadcrumb at the top of the page content.

Additionally, we used Javascript to validate the forms on the client side so that users
get quick feedback through the user interface. For example, the fields on the upper part
of the form in figure 4.11 have a green border and a mark to indicate that they have been

CHAPTER 4. SOLUTION 37

filled out correct. If one would, for example, enter a letter in a field that accepts only
numeric values, the border would be red and the field would contain a cross.

After the submission, every form is validated on the server to make sure that we only
store valid data in the database. If this validation fails, the user gets informed about the
error and has to adapt the faulty fields in the form.

Figure 4.18: The different flash message types.

5
Validation

We offered our customer (represented by Jakob and Christoph) access to the system
already in a very early stage of the development process. The deployed system was
always fully functional so that they could use the system and follow changes without the
need of additional install or update instructions. All current board members got access
to the system as well, since they will be the main users in the future, and may provide
valuable input and requirement changes too. All system testers were encouraged to give
us feedback about errors and change requests at any time.

In addition to the continuous review and feedback, we had two formal meetings with
our customer to discuss the current standing of our system and possible modifications
and changes to the requirements. We will now present the findings from the two meetings
and then introduce some of the feedback we got from the board members.

5.1 First meeting: 16th May 2017
The focus of the first meeting with Jakob and Christoph was on the two modules member
and sponsor management, as well as on some general topics like the structure and design
of the application. Due to the good preparation of our customer, we simply discussed
their issues and remarks point-by-point. The most notable points that should be changed
in the system after the meeting were the following ones:

• All lists (member overview, sponsor overview, settings) should be displayed in
alphabetical order by name.

38

CHAPTER 5. VALIDATION 39

• The export should create Excel files (replacing the comma separated file output in
the initial requirements). In addition, it should be possible to export partial views
from the member and sponsor overview (for example after searching for an entry)
and not only the entire register.

• The customer wished to extend the model of the sponsors with the “remarks” field
for special cases (for example, to note why a sponsor does not have to pay).

• According to the club’s constitution, a board member that does not play in one
of the teams is not a formal club member. But since their address data should be
recorded in the system as well, we introduce a neutral status that can be used for
these members.

The initial design ideas were accepted by the board with only minor comments and
change requests.

5.2 Second meeting: 26th June 2017
In the second formal meeting with Jakob and Christoph, we focused mainly on the
account creation and the event management. Since the customer was again very well
prepared, we proceeded like at the first meeting. Among other things, we made the
following decisions and changes to the requirements:

• Contrary to the original requirements, the e-mail address should not be a mandatory
field any more since the youngest members may not have a personal e-mail account.
This also impacted the log-on process, since it does not make any sense to use a
field that is not mandatory as a username. We therefore decided together with the
customer to use the log-on process described in chapter 3.

• Since we had no requirements for the design of the main page (the one displayed
after the log-on), we asked the customer about it. They stated that it is enough if
the page contains links to the different system parts and nothing else.

• Members with related event management data records cannot be deleted due to
database constraints. For these members, the status of the member should be set to
“left the club” instead.

• Board members should have a possibility to specify if an event task has public
visibility (and therefore normal members can subscribe for it) or if it is only visible
to the board members.

• Members that have registered for an event task should be able to cancel their
registration. But this function should only be active until the registration deadline.

CHAPTER 5. VALIDATION 40

In addition to these findings, we also received feedback from the other board members
by mail or during regular board meetings. Most of the questions regarding features or
the lack thereof could be answered directly by referencing to the software requirements
specification and possibly informing them that the desired functionality was not part of
the project scope. One person requested the ability to rename teams, which can be, for
example, necessary after a team is relegated (since the team name normally contains the
league in which the team plays). After consulting the customer, we added this feature to
our solution.

5.3 Final evaluation of the board part
After having implemented all features and the change requests from the second meeting,
we asked our customer to test the system again and give us feedback. Since we got
the reply that everything was the way they wanted it and that they had no more change
requests in the scope of the project, we did not schedule an additional formal meeting to
discuss the system again and decided that the board part will remain the way it is.

The customer agreed that the initial SRS, along with the changes made during the
meeting, has been fulfilled. Our system meets all must-have as well as most of the
nice-to-have requirements. However, our customers have more things in mind that could
be part of the system in the future. We will discuss some of these possible system
extensions in the next chapter.

5.4 Testing the member part (20th August 2017)
As we had only tested the system with board members so far, we decided to do a test
for the other part together with two club members. To assess the user-friendliness of the
website, we designed two tasks for the members and observed them as they solved them.

First, we asked them to register for a service at one of the upcoming events for the
current season. Both of them completed the task in few seconds by clicking on the link
on the main page and clicking the subscribe button for the specified task afterwards. So
both testers had chosen our designated path to complete a registration without any detour.
In the discussion that followed, both stated that it was quite obvious what they had to do
and they could not suggest any improvements.

The second task we gave our testers was to find out the number of hours they had
helped so far during the current season. While one of the testers found the correct
information via the designated path within some seconds, the other struggled a little bit.
He first tried to find the appropriate information by using the same link as before. After
taking a closer look at the page, he finally found the correct link in the navigation bar and
could tell us the correct number of hours. In the discussion, the second tester explained

CHAPTER 5. VALIDATION 41

that he thought that one could find everything directly from the main page and did not
even notice that a navigation bar was present. He therefore suggested to add the links
to the overview of the personal services to the main page as well so that one can find
everything directly from there. We ended up adding this accordingly.

Additionally, we received a suggestion of improvement from the first tester which we
have implemented as well. He recommended to move the number of hours helped and
planned in front of the overview of the personal tasks since this is the information most
of the members will be interested in when opening this page.

Aside from these two design issues, both testers described the application as usable
and straightforward so that one can find the needed information. We therefore decided to
leave the rest of the member part as it is.

6
Conclusion and Future Work

In this thesis, we presented a software solution that allows sports clubs to manage their
member, sponsor, and event data in one place. We developed the application for the
specific needs of the floorball club Unihockeyteam Eggiwil. We conclude that the system
covers all requirements and will be used by the club to replace the existing solution.

The Unihockeyteam Eggiwil is led by a board of seven persons of whom two are
responsible to organize and manage the club events (e.g., league matches, sponsor events,
and so on). All these events require a lot of helpers doing jobs like refereeing, cashing
in at the bistro, or being a speaker. At the end of a season, all members should have
helped approximately the same amount of hours. To check this as well as to manage
the distribution of the task between the different teams, the event organizers use simple
Microsoft Excel files. The member register and the sponsor register both consist of an
Excel file as well, which leads to a lot of time-consuming communication between the
board members to get the latest versions of all these files.

Before we started our project, we reviewed several existing applications to ensure that
no one already fulfills the customer requirements. Indeed, all current solutions only offer
little to no event management functionality so that we had to develop an own application.
We had two meetings with the customer to collect all the requirements. We then wrote a
software requirements specification to determine the project scope on which the customer
agreed.

As a next step, we developed the web application ClubAdmin during three months
using iterative development. The solution bases on the two frameworks Spring MVC and
Spring Security and covers all the must-have requirements and most of the nice-to-have
requirements. To make sure that the solution is useful to the customer, we offered

42

CHAPTER 6. CONCLUSION AND FUTURE WORK 43

them access to a running version of the system throughout the development process and
encouraged them to give us feedback at any point. Additionally, we had two formal
meetings to talk about the system and change requests. At the end, the customer agreed
that the system fulfills the SRS accepted at the begin of the project and therefore, the
club plans to use the system in production.

6.1 Lessons learned
Over the course of this project, we faced several challenges concerning different topics.
On the technical level, the biggest challenge was the limited and cumbersome form
handling capabilities of Spring MVC. It took quite a long time to figure out how one
can generate dynamic forms using the framework (i.e., forms with a dynamic number
of fields). We use such forms, for example, to allow users the modification of all helper
services of an event at the same time.

Concerning the implementation, our biggest issue was the maintenance of tests and
code documentation. One needs a lot of self control to always update the tests and all
related information when changing a piece of code.

Another challenge on a completely different level was writing down this report since
it was our first longer report in a scientific context. Therefore, it took some time to
become aware of the correct language and the dos and don’ts when writing to a scientific
community.

On the other hand, we learned a lot on managing a software project and writing a
scientific report. Due to our pre-existing domain knowledge, we got a good understanding
of the requirements and needs which helped us throughout the whole project. We also
benefited from our previous work with Spring MVC in the sense that we did not loose a
lot of time for setting up the framework. This allowed us to spend most of the time on
programming the application during the implementation phase. Therefore, we were able
to fulfill all the customer requirements within the scope of this project.

Finally, we also profited from the good collaboration with the customers. Whenever
we asked them, for example, to test a new functionality, we received feedback within a
short amount of time. This encouraged us to keep working on the project even in stressful
times.

6.2 Future work
Additional features that are out of scope of this project have been suggested by the client.
The two biggest extensions that may be implemented in the future are described in the
following sections.

CHAPTER 6. CONCLUSION AND FUTURE WORK 44

6.2.1 E-mail connection
Nowadays, the board normally uses letters to inform the members about important topics
and news. This leads to a lot of administrative work for the secretary (print and pack the
letters) as well as costs for the club (for the stamps). To reduce the incurred workload, it
would make sense to inform the members by e-mail. Since our application maintains
all the necessary information (especially the e-mail address), it would be the easiest to
send the mails directly from our system. Members without an e-mail address would still
receive the information via letters.

Such an e-mail connection could be used to send reminders as well. For example,
the president currently needs to track the expiration of sponsor contracts on his own. If
he misses to update the contract, the sponsor does not pay any more and the club lacks
money. In this case, we could use an e-mail connection to remind the president some
weeks in advance about the expiration.

6.2.2 Team management module
One of the board members is responsible for the athletic sector and, amongst other
things, schedules the games for all the teams. To complete this task, information about
the absences within the different teams has to be provided from the coaches (so that
the person does not schedule a game when half the team is on vacation). On the other
hand, the board often gets requests from trainers to provide them with the latest contact
information of their team members.

One possible solution to reduce the communication overhead between the responsible
board member and the coaches could be, for example, enlarging our system with a team
management module. In this module, the coaches would see the latest available contact
information (coming from the member management) and the presence of their players.
This last information could be entered by the players themselves if we offer them access
to this system component as well. With this extension, the scheduling could happen
without sending e-mails back and forth.

A
Anleitung zu wissenschaftlichen Arbeiten

In this tutorial, we are going to show how one can use the application ClubAdmin to
manage an entire season of a sports club. To do this, we assume that the application has
been installed correctly and that at least one board member is recorded in the database so
that we can log into the application.

We use the following scenario for our tutorial even if we know that it has not
the dimension for which we designed the application. The curling club CC Software
Composition has ten regular members (divided in two teams) and is led by a board of two
additional persons. In this tutorial, we play the role of a board member. The season of
the club lasts from September to April. One of the two teams only meets once a month
to play some hours of curling for fun while the other team trains weekly and participates
in several tournaments in the region as well. Some of these tournaments are organized
by the club itself and require therefore a lot of manpower from the members. To earn
some more money in addition to that raised by the bistro at the tournaments, the club
participates at the local market twice a year by selling chicken wings to the crowd.

The constitution of the club says that every member from the fun team needs to help
at events at least 5 hours a year, while the members of the other team have to help at
least 15 hours. If players do not help enough hours, they will be forced to pay double the
member contribution. To keep an overview of the supplied hours, the club will start to
use our system right now.

45

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 46

A.1 Preparation
Before we can start using the system, we need to set up our settings. To do this, one
needs to be logged into the system.

A.1.1 Record the teams
We have to record the different teams that are playing for our club so that we can relate the
members with the corresponding teams. As shown in figure A.1, we select Einstellungen
⇒ Teams verwalten (settings ⇒ manage teams) in the navigation bar, which opens the
empty team overview. We can enter in the form at the bottom the abbreviation and the
team name and then click Hinzufügen (add) to record our fun team (figure A.2).

Figure A.1: Navigate to Einstellungen ⇒ Teams verwalten (settings ⇒ manage teams)
to manage the teams.

Figure A.2: The information about the fun team are recorded in the form.

The team we just added then appears in the team overview (see figure A.3). We
can edit this team by clicking on the pen icon or delete it with a click on the trash icon.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 47

After having added the competitive team as well, our team settings page looks like in
figure A.4.

Figure A.3: The view after the fun team has been added. (1) Edit team. (2) Delete team.

Figure A.4: Team overview after having added both teams.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 48

A.1.2 Record the sponsor types
Since we want to use the sponsor management module as well, we record the different
sponsor types in a similar way via the navigation point Einstellungen ⇒ Sponsorentypen
verwalten (settings ⇒ manage sponsor types). The functionality of the sponsor manage-
ment is similar to the one for the member management which we will describe in the
following section.

A.2 Add the club members
In a second step, we have to add all the club members to our system. To do so, we select
Mitgliederverwaltung ⇒ Mitglied hinzufügen (member management ⇒ add member) in
the navigation bar . As shown in figure A.5, one can then fill out the form with all the
known member data before clicking Hinzufügen (add). Afterwards, the user is forwarded
to the member overview page where one sees all the recorded members and can perform
different actions on them.

Figure A.6 shows the member overview after having added our first member. The
second visible member is our test account we use for this tutorial. In a next step, we
are going to create the user account for the previously added member by clicking on the
user icon. The system automatically assigns a username to the member and displays us a
form to set a new password for the member (see figure A.7).

If we need to change the password for a member, we can click on the lock icon in the
member overview (see the lock icon at the very back of our test account in figure A.6)
which replaces the user icon as soon as the member has an account.

The other icons in the member overview allow the user to view all recorded data
about a member (magnifier icon), edit it (pen icon), or delete it (trash icon). The form to
edit a member is exactly the same as the one to add the member except that all fields are
already filled with the recorded values.

To record the other members of our club, we can proceed as described in the previous
paragraphs: first we add the member to the system and then we create the account for
it. The credentials (username and password) have to be transmitted to the member on
another communication channel (for example by e-mail or text message). After having
added all the club members, our member management overview should look as shown in
figure A.8.

A.3 Manage the events
In this chapter, we show how the events can be managed over the course of a season.
Instead of showing repeatedly the same actions for every event, we will show the
workflow in detail for one event. All other events can be managed the same way.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 49

Figure A.5: Form to add a new member to the system.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

Figure A.6: Member management overview after having added the first member. (1) Icon
to create a system account for the user.

Figure A.7: Form to set a new password for the created user.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

Figure A.8: Member overview after having added all members.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

A.3.1 Add a season
Before we can start managing events, we need to add a season to our system. We therefore
select Eventverwaltung ⇒ Saison hinzufügen (event management ⇒ add season) in the
navigation bar. In the form that is shown afterwards (figure A.9), we can enter the season
title and select all the members that have to help. In our case, all members have to help
(and are therefore selected).

Figure A.9: Form to add a new season to the system.

After the successful addition of the season, we are forwarded to the season overview
page (figure A.10). This overview provides us with some functions for the season which
we will introduce within the next chapters. One of the functions, called Helfer bearbeiten
(edit helpers), allows users to modify the selection of helpers. The form to edit the
helpers is exactly the same as we have seen before while adding the season.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

Figure A.10: The season overview after having added the season. (1) The available
functions for a season.

A.3.2 Manage an event
In this section, we will show what the life cycle for one single event looks like, from the
addition till the closing. We will also provide insight into how a club member subscribes
for helper services of this event and manages its services.

A.3.2.1 Add the event

Our first step to add the event is to click on the button Event hinzufügen (add event) in
the season overview (see again figure A.10). In the form that is displayed afterwards
(figure A.11), we can enter some general information in the upper part (e.g., the event
date, the location, and the title). In the lower part, we can specify line-by-line the different
tasks and the number of helpers we need for them (e.g., two referees, one speaker, and
four persons for the bistro). We then click Hinzufügen (add) to add the event to the
system.

After the addition, the application automatically forwards us to the edit event page
(figure A.12) where we can add more detailed information for the different helper services.
For each service, we can record the start and end time, the member that will do the
service (if we already know it), and specify if the service should be visible to all members
or not. If a service is not needed any more, we can remove it by clicking on the trash
icon at the end of the line.

As soon as the recorded information about the helper services is saved, the system

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 54

Figure A.11: Form to add an event. In the upper part, the general event information (e.g.,
date, location, title) has to be entered. In the lower part, one can specify line-by-line the
different tasks that have to be done and the number of needed helpers for each task.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

Figure A.12: Form to edit an event. For each helper services, one can enter the following
information: (1) Start and end time of the service. (2) The member that will do the
service (if already known). (3) Specify if the service should be visible to all members
(checked means that the item is visible).

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 56

displays the season overview. This time, we can see the added event listed up in the
section Anstehende Events (upcoming events, figure A.13). At the end of the event entry,
we have the possibility to edit, delete, or export the event. If one decides to edit the event,
the same form as before (figure A.12) will be displayed where the helper services can
be adjusted. Exporting the event creates an Excel file which contains all the recorded
information about the event.

Figure A.13: The season overview with our recorded event listed up in the section
Anstehende Events (upcoming events).

A.3.2.2 Manage helper services as a member

Once the event has been added to the system by the board member, all the other members
can subscribe to the helper services (if they have an account). We briefly switch the
perspective from the board view to a club member’s view. When a member has logged
into the system, they see an index page (figure A.14), which is different from the one
board members see. The navigation bar contains the seasons where the member has to
help (in this case only the one season we added before). For each season, the member
has two options: either search for helper services or get an overview of the subscribed
and fulfilled services.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 57

Figure A.14: The index page for normal members. In the navigation bar, members see
all the seasons where they have to help.

Search for helper services

By selecting Season 2017/2018 ⇒ Helfereinsätze suchen (Season 2017/2018 ⇒ search
for helper services) in the navigation bar, we get forwarded to an overview page with
all open helper services (i.e., helper services where no member is registered so far). As
shown in figure A.15, only four (of seven) helper services for the event are visible to our
member. The reason is simple: the speaker task is already related with a member and the
two referee jobs should not be visible to the members according to what we recorded in
the system (see again figure A.12).

By clicking on the green button for one of the bistro helper services, the member can
subscribe to the corresponding task. On the board side, we can immediately see such a
registration in the corresponding event (figure A.16), since the member gets automatically
filled out for the selected helper services.

Get overview of the personal helper services

A member can select Season 2017/2018 ⇒ Meine Helfereinsätze (Season 2017/2018
⇒ personal helper services) in the navigation bar which forwards it to an overview of
the personal helper services (figure A.17). On this page, we can see the helper service
for which we registered before. If we want to cancel it, we can do this by clicking
the red button, but this function is only available until the event’s registration deadline.
Additionally, we can see the number of hours served and planned by the member until
today.

A.3.2.3 Close the event

We will now switch back to the board perspective. After the event, the season overview
displays the event in the section Noch nicht abgeschlossene Events (open events, fig-

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 58

Figure A.15: The overview of all open helper services. (1) By clicking the green button,
the member can subscribe for the corresponding service.

ure A.18). To close it, one can click on the check mark next to the event.
The form to close an event (figure A.19) is similar to the edit event page. But instead

of having the possibility to determine the visibility of a helper service, we can specify
whether the members were present or not. This information is important for the crediting
of hours: only present members will get the hours credited.

During closure, one can still add new helper services to the event, delete existing
ones, and modify them (e.g., change the member). In our example, all members except
for one were present at the event. We will see the impact of the non-attendance of Fritz
Müller soon. After we have recorded all the information, we can click on Abschliessen
(close) and the system forwards us to the season overview once again. This time, our
event appears in the section with the closed events and can therefore only be opened with
read access (figure A.20).

A.3.3 Get hours overview
After the closure of the first event, we would like to get an overview of the hours
served. This overview can be reached by clicking on the button Übersicht Helferstunden
(overview helper hours). As shown in figure A.21, Fritz Müller did not get any hours
credited. All the other members got credited the hours they served at the event. By
clicking on the magnifier icon for one of the members, we get a detailed list of all the
helper services the member is related to. Additionally, this page provides the board
member with the average number of hours helped.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 59

Figure A.16: The edit event page of our event (board view). In the red square, we can
see the registration we did with the member account.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 60

Figure A.17: The helper service overview for the member. (1) Button to cancel the
registration. (2) Overview of the served and planned hours for this season.

Figure A.18: After the event, the system displays it in the section Noch nicht
abgeschlossene Events (open events). It can be closed by clicking on the check mark.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 61

Figure A.19: The form to close an event. In the first column, one can specify if the
members were present or not. Only members that have helped will get the hours credited.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 62

Figure A.20: The season overview after the event has been closed. The event therefore
appears in the section Abgeschlossene Events (closed events).

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 63

Figure A.21: The overview of the current hours. The red square shows that the member
that was not present (Fritz Müller) did not get any hours credited.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 64

A.3.4 Manage the events throughout the season
Our tutorial to demonstrate the life cycle of an event just used one event in the season
overview. Of course, the system allows users to manage several events at the same time
throughout the course of a season. One example, how the season overview could look
like at an arbitrary point of the season, is shown in figure A.22. At that point, the season
contains three upcoming as well as one open and one closed event.

Figure A.22: The season overview at an arbitrary point during the season. Currently,
three upcoming as well as two past events are recorded.

A.3.5 Close the season
At the end of the season, as soon as all events have been closed, we can close the
season as well by clicking the button Saison abschliessen (close season) in the season
overview. We then have to confirm in a second step that we really want to close the
season (figure A.23).

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 65

Figure A.23: The dialog to close a season.

The closure of a season ensures that no more changes can be done to the season
(and the events of the season). If we want to access a closed season, we can navigate
to Eventverwaltung ⇒ Abgeschlossene Saisons (event management ⇒ closed seasons).
The system will then provide us with an overview of all closed seasons (figure A.24). We
can open the season overview for a past season by clicking on the magnifier icon. The
season overview will then allow us to read all the data, but we cannot record any new
information.

Figure A.24: The overview of all the closed seasons. By clicking on the icon at the end
of a season, one can open the season overview.

A.4 Conclusion
We have covered the main features of the website within this tutorial. We started with
the member management and went through creation, maintenance, and closure of a full
season of a sports club afterwards.

	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Related Work
	2.1 Fairgate
	2.2 Clubdesk
	2.3 Webling
	2.4 Conclusion

	3 Requirements
	3.1 Board requirements
	3.1.1 Member management
	3.1.1.1 Add a member
	3.1.1.2 Member overview
	3.1.1.3 View and update a member
	3.1.1.4 Delete a member

	3.1.2 Sponsor management
	3.1.2.1 Add a sponsor
	3.1.2.2 Delete a sponsor

	3.1.3 Event management
	3.1.3.1 The season
	3.1.3.2 The event
	3.1.3.3 The helper service

	3.1.4 Open issue management

	3.2 Member requirements
	3.2.1 Event management requirements

	3.3 General requirements
	3.3.1 Authentication

	4 Solution
	4.1 Technologies and architecture
	4.1.1 MVC (Model-view-controller)
	4.1.2 MVC in the context of Spring MVC
	4.1.3 Spring Security

	4.2 User level
	4.2.1 Main page and navigation
	4.2.2 Member management
	4.2.3 Sponsor management
	4.2.4 Open issue management
	4.2.5 Event management
	4.2.5.1 Manage events as a board member
	4.2.5.2 Manage personal helper tasks as a club member

	4.2.6 Feedback

	5 Validation
	5.1 First meeting: 16th May 2017
	5.2 Second meeting: 26th June 2017
	5.3 Final evaluation of the board part
	5.4 Testing the member part (20th August 2017)

	6 Conclusion and Future Work
	6.1 Lessons learned
	6.2 Future work
	6.2.1 E-mail connection
	6.2.2 Team management module

	A Anleitung zu wissenschaftlichen Arbeiten
	A.1 Preparation
	A.1.1 Record the teams
	A.1.2 Record the sponsor types

	A.2 Add the club members
	A.3 Manage the events
	A.3.1 Add a season
	A.3.2 Manage an event
	A.3.2.1 Add the event
	A.3.2.2 Manage helper services as a member
	A.3.2.3 Close the event

	A.3.3 Get hours overview
	A.3.4 Manage the events throughout the season
	A.3.5 Close the season

	A.4 Conclusion

