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Abstract

The ubiquity of smartphones, and their very broad capabilities and usage, make the security
of these devices tremendously important. Unfortunately, despite all progress in security
and privacy mechanisms, vulnerabilities continue to proliferate. Research has shown that
many vulnerabilities are due to insecure programming practices. However, each study has
often dealt with a specific issue, making the results less actionable for practitioners. To
promote secure programming practices, we have reviewed related research, and identified
avoidable vulnerabilities in Android-run devices and the security code smells that indicate
their presence. In particular, we explain the vulnerabilities, their corresponding smells, and we
discuss how they could be eliminated or mitigated during development. Moreover, we develop
a lightweight static analysis tool and discuss the extent to which it successfully detects several
vulnerabilities in about 46,000 apps hosted by the official Android market.
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1
Introduction

Smartphones and tablets have recently overtaken the number of computers.1 They provide powerful
features once offered only by computers, however, the potential impact of malware on these devices is
not on a par with traditional desktop programs; smartphones are increasingly used for security sensitive
services like e-commerce, e-banking, and personal healthcare, which make these multi-purpose devices an
irresistible target of attack for criminals. A recent survey on the Stackoverflow website shows that about
65% of mobile developers work with Android.2 This platform has captured over 80% of the smartphone
market,3 and just its official app store contains more than 2.8 million apps. As a result, a security mistake
in an in-house app may jeopardize the security and privacy4 of billions of users. Making matters worse,
this is particularly important with respect to Android as it is aiming beyond smartphones and tablets,
appearing in smart TVs (i.e., Android TV) and watches (i.e., Android Wear), car navigation systems (i.e.,
Android Auto), and home automation systems (i.e., Android Brillo). As a result, it is also considered one
of the most promising platforms for the growing Internet-of-Things (IoT) ecosystem. This highlights the
importance of a platform-related security smell collection and contributes hopefully to platform’s overall
security.

The security of smartphones has been studied from various perspectives such as the device manufac-
turer [83], its platform [87], and end users [42]. Manifold security APIs, protocols, guidelines, and tools

1http://www.pewinternet.org/fact-sheet/mobile
2http://insights.stackoverflow.com/survey/2017
3http://www.gartner.com
4In short, referred to as security in this thesis
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CHAPTER 1. INTRODUCTION 2

are proposed. Nevertheless, security concerns, in effect, are outweighed by other concerns [11]. Reaves et

al. assessed Android app analysis tools, and found that they mainly suffered from lack of maintenance,
and were often unable to produce functional output for applications with known vulnerabilities [64].
Linares-Vasquez et al. mined 660 Android vulnerabilities available in the official Android bulletins
and the CVE-details5 and acknowledged that most of them can be avoided by relying on secure coding
practices [48]. Xie et al. interviewed 15 professional developers about their software security knowledge,
and realized that many of them have reasonable knowledge but do not adopt it as they believe it is others
responsibility [84]. As a result, apps still suffer from serious proliferating security issues.6 For instance,
analysing 100 popular apps downloaded at least 10M times, revealed that over 90% of them, due to
development mistakes, are prone to SSL vulnerabilities that allow criminals to access credit card numbers,
chat messages, contact list, files, and credentials [59]. Another weak point in Android’s ecosystem is the
version fragmentation, effectively preventing OS level approaches from getting integrated promptly into
Android due to several vendor-specific concerns, e.g., for compatibility or performance reasons, fostering
the long-term prevalence of issues.

The primary goal of this work is to shed light on the root causes of programming choices that
compromise users’ security. In contrast to previous research that has often dealt with a specific issue,
we study this phenomenon from a broad perspective. We introduce the notion of security code smells
i.e., symptoms in the code that signal the prospect of a vulnerability. We have identified avoidable
vulnerabilities, their corresponding smells in the code; and discuss how they could be eliminated or
mitigated during development. We have also developed a lightweight static analysis tool to look for several
of the identified security smells in 46,000 apps. In particular, we answer the following research questions:

• RQ1: What are the security code smells in Android apps? We have reviewed major related work,
especially those appearing in top-tier conferences/journals, and identified 28 avoidable vulnerabilities
and the smells that indicate their presence. In this thesis, we thoroughly discuss each smell, the risk
associated with it, and its mitigation during app development.

• RQ2: How prevalent are security smells in benign apps? We have developed a lightweight tool that
statically analyses apps for the existence of ten security smells. We applied the tool to a repository
of about 46,000 apps hosted by Google. We realized that despite the diversity of apps in popularity,
size, and release date, the majority suffers from at least three different security smells.

• RQ3: To which extent does identifying security smells facilitate detecting vulnerabilities? We
manually inspected 160 apps, and compared our findings to the result of the tool. Our investigation
showed that the identified smells are in fact a good indicator of security vulnerabilities, thus our tool
reports primarily real security threats.

5Common Vulnerabilities and Exposures, a platform that assigns each vulnerability to a unique identifier shared among different
security contributors together with details regarding the issue

6http://www.cvedetails.com

http://www.cvedetails.com


CHAPTER 1. INTRODUCTION 3

1.1 Contributions

To summarise, this work represents an initial effort to spread awareness about the impact of programming
choices in making secure apps. We identified 28 security code smells in 5 different categories, namely
Insufficient Attack Protection, Security Invalidation, Broken Access Control, Sensitive Data Exposure

and Lax Input Validation. We collected for each security code smell its symptoms and the potential
impact, together with basic remediation measures. We argue that this helps developers who develop
security mechanisms or other sensitive code to identify frequent problems, and also provides developers
inexperienced in security with caveats about the prospect of security issues in their code.

1.2 Outline

The remainder of this thesis is structured as follows. We summarize the work related to Android security
in Chapter 2. Chapter 3 briefly explains the application level attacks and then presents 28 security code
smells and associate each smell to the attack(s). Chapter 4 shows our empirical study and presents the
obtained results. Finally, this thesis concludes in Chapter 5.



2
State of the Art

Impelled by Android’s large-scale distribution, security research has become very popular in academia,
hence many scientific papers have been published. Security in mobile devices involves many actors. In
this chapter we particularly discuss device vendors, operating systems and apps in detail and present state
of the art publications accordingly.

2.1 Vendor

Device drivers frequently need direct hardware access and thus utilise elevated privileges. Inappropriately
developed drivers could expose system components such as cameras, microphones, GPS receivers, etc. to
adversaries [95]. Pereira et al. unveiled exposed serial modem interfaces over USB connections that allow
adversaries, without user consent, various low-level device manipulations, i.e., reflashing of boot partitions
or enabling of Android’s debug bridge [61]. Weinmann discovered various issues within the compiled C
code running on WWAN modem baseband firmwares [80]. Machiry et al. found multiple vulnerabilities
in various Trusted Execution Environments (TEEs) which enable an attacker to gain full control of the
host OS [51]. Similarly, Shen found kernel-level vulnerabilities in Huawei’s HiSilicon TEE [68].

Pre-installed apps are very popular among vendors to introduce new functionalities and user interfaces
to ease access to their services. In many cases these customisations severely collide with security
requirements. For instance, researchers have analysed the inter-component communication (ICC) among

4



CHAPTER 2. STATE OF THE ART 5

vendor apps with attention to numerous privilege escalation attacks and observed that the degree of
vulnerability to such attacks correlates with the degree of vendor-based customisations [33, 35, 83].
Aafer et al. studied the distribution of dangling attribute references (i.e., ICC accesses to destinations that
do not exist among all device series) which they prevalently found in apps that were adapted to multiple
device categories [1]. Building on the previous work, Aafer et al. performed differential analysis of
inconsistent security configurations in custom Android ROMs and discovered severe vulnerabilities like
private data exposures and privilege escalations [2]. Mitchel et al. got very similar results in their analysis
performed with DexDiff and especially revealed the invasive Carrier IQ mobile intelligence software, a
very common software package that provided comprehensive monitoring features for vendors and service
providers [52].1 Zhang et al. disclosed sensitive data residue in Android images after uninstallation of
pre-installed apps [89].

Outdated and malicious OS releases are very common in the market. Vendors often try to reduce
overall maintenance costs of a product by integrating profitable advertisement modules, shortening its
life span through outdated initial firmware images and partial or complete denial of future firmware
updates which actually leads to a huge OS fragmentation.2 Thomas et al. examined predominant security
flaws in different Android releases and their distribution between vendors, and found that each device
on average was updated 1.26 times per year and 88% of all tested devices were exposed to at least one
critical Android vulnerability at the time[72]. Zheng et al. tested 250 firmwares with 24,009 pre-installed
apps and discovered that 7.6% of all images contained malware and 99.6% of firmwares suffer at least
from one security issue. They further enlightened the distribution of the malware CEPlugnew with its
geographical penetration and found that this threat primarily existed on low-cost devices. They concluded
that “malware writers pay money to manufacturers of low-cost mobile devices to pre-install malware in
their devices, or they release malicious firmwares with pre-installed malware to the wild” [93].

2.2 Operating System

Permission control is one of the key security features in Android’s security architecture, however, various
flaws arise through its complexity. Bagheri et al. distinguished three flaws regarding permission reservation,
revoked URIs and permission re-delegation, in which each of these flaws could cause permission escalation
attacks [10]. Conti et al. proposed CRePE, a system that extends the existing permission system by
continuously adapting fine-grained permission policies during runtime [20]. Fragkaki et al. introduced
secrecy and integrity policies, i.e., permission flows among components that are either allowed or not, to
the permission system [32]. Wang et al. proposed a framework called Compac that extends the existing
permission system by linking permissions to components, hence they found a suitable methodology to
effectively mitigate the risk of permission re-delegation among apps [78]. Subsequently, permission
re-delegation and its remediation became a popular research topic [30, 92]. To identify unnecessary

1http://www.computerworld.com/article/2499667/application-security/
at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html

2http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of

http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of
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permissions, Au et al. tried to extract Android’s permission specification statically from source code and
created the tool Pscout [7]. Bartel et al. elaborated on these extractions and proposed more sophisticated
field-sensitive mappings that consider variable assignments for more precise flow graph creation in
contrast to plain reachability analysis in Pscout [12]. Rasthofer et al. incorporated machine-learning
approaches guided by a hand-annotated ground truth set with which they further improved accuracy
of these mappings [63]. Xing et al. discovered that permission declarations introduced by developers
themselves could be upgraded during Android platform upgrades [85].

Ren et al. found design flaws in Android’s multitasking subsystem, named handling of tasks, i.e.,
a collection of activities with which users interact to perform a job [65]. The flaws facilitated task
hijacking attacks initiated by activation of the device’s back button or a background service. Nadkarni et

al. elaborated on the novel concept of system-wide sensitive data life-cycle confinement and developed a
system called Aquifer that allows an application to retain control of data even after it was shared among
other apps with support from a background kernel module [56]. Dietz et al. modified the Android
platform to perform inter-process communication (IPC) tracking during execution, allowing a user finally
the choice of operating with reduced privileges to increase security [24]. They further implemented
a lightweight signature system that allowed any app to create and verify signed ICC calls facilitating
originator verification mechanisms for ICC message receivers. Cooley et al. described activity spoofing
attacks enabled by a background service which continuously monitors app launches [21]. As a mitigation,
they proposed the concept of trusted activity chains that extends the Android Java framework to establish
an exclusive interrupt lock.

Cao et al. analysed Android system service interfaces and identified 16 data validation vulnerabilities in
these services [15]. Poeplau et al. investigated dynamic code loading of popular apps and found that 9.25%
suffered from vulnerabilities caused by insufficient verification and filtering mechanisms [62]. Chen et

al. proposed KARMA which enables live patching, i.e., in memory patching of loaded vulnerable code,
for Android kernel [17]. KARMA allowed patches to be written in LUA and was verified against several
well-known exploits in native code which mostly had been mitigated with barely noticeable performance
overhead. Mulliner et al. developed with PatchDroid a similar solution limited to managed app code [53].

2.3 Apps

Mutchler et al. studied several classes of vulnerabilities in a dataset of about 1M web apps, and found
that 28% of these apps had at least one vulnerability [54]. Watanabe et al. classified Java libraries into
official, private, and third-party; they studied the existence of several classes of vulnerabilities in each
category, and found that third-party libraries were the most vulnerable ones. They further showed that at
least 50% of paid and free vulnerable apps were actually vulnerable due to software libraries [79]. Li et

al. studied the state-of-the-art work that statically analysed Android apps [45]. They found that much of
this work supported detection of private data leaks and vulnerabilities, a moderate amount of research was
dedicated to permission checking, and only three studies dealed with cryptography issues. Unfortunately,
much state-of-the-art work did not publicly share their artefacts.
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Ho et al. monitored native libraries by using a dynamic anomaly detection system called PREC with
which they could mitigate 10 root exploits and substantially reduce the false positives over traditional
malware detection algorithms [38]. Falsina et al. covered dynamic code loading threats with their tool
Grab ’n Run, a drop-in Java library that securely loaded and verified external code [27]. Another approach
was published by Schütte et al. with ConDroid, a tool that first performed static call path analysis to detect
security-critical code sections and then analysed these sections by fully automated execution of every code
path, enabling a thorough analysis of dynamically loaded code [66]. Vidas et al. tried to preserve Android
developers from over-permissioning apps through an Eclipse plug-in that indicated unused permissions to
the user [74]. On the task of estimating the prevalence of overprivileged permissions, Felt et al. developed
Stowaway, a static byte code analysis tool that was able to detect overprivileged permissions [29]. Their
test set consisted of 940 apps, in which they found about 33% overprivileged permissions. They concluded
that developers try the least privilege principle, but fail because of bad documentation. Similar work
was published by Backes et al. with their tool AppGuard that patched a security monitor into an app’s
installation file thus providing continuous permission checks during runtime without the need to change
OS components [9]. Another major concern is being represented by weak cryptographic configurations,
occurring in many different flavours, e.g., usage of insecure cryptographic parameters. Egele et al. studied
crypto implementation mistakes and found with CryptoLint that 88% of 11,748 apps made at least one
mistake [25]. In 2014, Shuai et al. with regard to 13 generic crypto issues built CMA, a hybrid tool
which uses static analysis for determination of crypto parts exploiting control flow and call graphs [69].
These parts were then run dynamically and they detected that more than 50% of all apps were vulnerable
to man-in-the-middle (MITM) attacks. Arzt et al. recognized that many application developers are not
cryptographic experts and thus introduced OpenCCE, an interactive Eclipse plug-in that allows developers
to graphically assemble secure cryptographic configurations and export them to plain Java [5].

Fahl et al. discovered with MalloDroid that 8% (1,074) apps were vulnerable to potential MITM
attacks caused by SSL certificate validation hacks resulting in potential data leakage or manipulation [26].
They also provided 41 attacks to verify their findings and performed an online survey revealing that half of
754 users were misinterpreting Android’s SSL/TLS user-interface protection indicators, i.e., users were
not able to distinguish between secure and non-secure connections. Onwuzurike et al. found that almost
32% of the analysed apps contain partially wrong handling of SSL errors [59]. Similarly, Buhov et al.

found missing certificate validation in 30% of all tested apps [14]. Zuo et al. investigated the soundness
of WebView’s certificate validation in 13,820 apps, unravelling that 4.7% of all tested apps suffer from
insecure onReceivedSslError implementations [96].

Chin et al. used ComDroid for their work and found that 60% of tested real-world apps contained
sensitive ICC data flows [18]. Lu et al. analysed with CHEX much larger datasets, their test set included
5,486 apps, and found 254 potential component hijacking vulnerabilities, i.e., permission leakage, unau-
thorised data access and intent spoofing [50]. Wu et al. found that 17% of 7,190 apps in chinese markets
were vulnerable to confused deputy attacks [82]. Zhongyang et al. developed a tool called DroidAlarm
which identifies capability leak paths existed in unprotected files and network sockets [94]. Zhang et al.

developed AppSealer to automatically create and deploy patches in byte code in order to mitigate several



CHAPTER 2. STATE OF THE ART 8

component hijacking exploits [88]. The patch code represented on average 16% of the entire program
and introduced merely 2% runtime overhead. Bugliesi et al. described π-Perms, a calculus for Android
applications and provided the necessary plug-in Lintent, a security type-checker for Android Studio to
verify and enforce modelled constraints that mitigate potential privilege escalation attacks [13]. Shao et al.

developed SInspector tool that inspects data leaks in Unix domain sockets [67].
Li et al. investigated cloud service authentication issues and proposed Secomp that provides secure

communication across different cloud platform providers, i.e., Google Cloud Messaging and Amazon
Device Messaging [46]. Similarly, Wang et al. used AuthDroid to find OAuth protocol implementation
errors by analysing app code and network traffic, and found that 86.2% of all Chinese market apps, and
58.7% of all Google Play apps were vulnerable [75]. Jin et al. found that around 3% of PhoneGap apps
are vulnerable to XSS-like code injection attacks caused by insecure addJavascriptInterface
uses and developed NoInjection, a prototype to defend against these attacks [41]. Fang et al. were able to
detect 37 input validation vulnerabilities in ICC including confused deputy as well as denial-of-service
(DOS) [28].



3
App-level Security

In computer programming, the term code smell refers to symptoms in the code that could lead to a problem.
Martin Fowler introduced several of such smells in his code refactoring book [31], and by then, many
researchers studied the existence of various types of code smells. Particularly in Android, research on code
smells has mostly focus on maintainability issues [37, 60], performance [36] or energy consumption [34].

In this thesis, we introduce the notion of security code smells, i.e., symptoms in the code that signal the
prospect of a security vulnerability, whereas security vulnerabilities are security issues that compromise
user’s security and privacy. Like traditional code smells, security code smells tend to exhibit technical
dept, but with an explicit aspect of security. In this chapter we first briefly present common threats in
Android-powered devices, and then introduce 28 security smells and associate their potential vulnerabilities
to the attacks.

3.1 Threats

In this section we briefly explain major Android application level threats that we have seen during a
state-of-the-art review.

• Data exfiltration threats are caused by stealing valuable data from a device through hardware or
software connections. Hardware connections require direct access to the device. This issue can be
mitigated by restricting physical access to the device and employing strong encryption mechanisms
to protect data. Software connections, as used in man in the middle attacks (MITM), enable attackers

9
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to eavesdrop and alter connections between two parties. The problem very frequently can be pinned
down to certificate validation code that has been tampered with. In case certificates for potentially
secure SSL connections are not validated accordingly, an attacker could replace them with forged
ones without notice, enabling interception of all data transmitted. The attack surface can be reduced
by using standard secure certificate validators and protocols. In addition, clickjacking, phishing, or
spoofing attacks could cause data exfiltration threats as well. These attacks trick users with forged
views. In Android, these can be of ordinary user interface elements or web content. Such forged
layers are placed on top of existing benign ones, or arranged in another way so that users will get
tricked.

• Service inavailability or system downtime threats are caused by denial-of-service (DoS) attacks to
components, so they are forced into stalled state and cannot respond to further requests. Examples
hereof are SMS validation flaws in Android’s communication framework that lead to system reboots
or temporal loss of data connections. Such threats originate from lack of proper input validation in
system APIs, and can be resolved by adopting input validation strictly.

• Miscellaneous risks are caused by malicious apps or libraries that perform undesired operations.
The impact varies from privilege escalation e.g., by advertisement libraries that collect private
information to creating backdoors for activating various sensors on the phone, etc.

3.2 Security Smells

Although Android security is a fairly new field, it is very active, so researchers in this area have published
a large number of articles in the past few years. We were essentially interested in any paper explaining
an issue, or a countermeasure that involves the security of apps in Android. We used a keyword search
over the title and abstract of papers in IEEE Xplore and ACM Digital Library, as well as those indexed
by the Google Scholar search engine. We formulated a search query comprising Android and any other
security-related keywords such as security, privacy, vulnerability, attack, exploit, breach, leak, threat, risk,
compromise, malicious, adversary, defence, or protect. We read the title and, if necessary, skimmed the
abstract of each paper and included security-related ones. We further read the introduction of these papers
and excluded those whose concerns were not about app security. In order to extend the search, for each
included paper we also recursively looked at both citations and cited papers. Finally, we carefully reviewed
all remaining papers. During the whole process, we resolved any disagreement by discussion.

We finally identified 28 security smells that may lead to vulnerabilities in Android-powered devices.
We group these smells into five categories. We explain each smell, its consequence i.e., potential risk, and
its symptom i.e., an identifiable property in the code. We also mention any possible resolution i.e., a more
secure practice to eliminate or mitigate the issue during app development.
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3.2.1 Insufficient Attack Protection

This category lists smells related to development decisions whose security impacts are essentially under-
mined by developers.

• Unreliable Information Sources
Developers acquire their programming knowledge from various sources such as official documen-
tations, books, crowd sources, etc. Issue: According to recent research, developers increasingly
resort to studying code examples provided by informal sources like StackOverflow, which are easy
to access and integrate, but often lack security concerns [3]. Consequently, vulnerabilities could
make their way into apps in the absence of security expertise. Symptom: Existence of copy-pasted
code from untrustworthy sources. Tools already exist that assist in detection of duplicated code,1

however, they still require manual code snippet collections from external repositories. Mitigation:

Use official sources which are more reliable, and vet the security of any external code before and
after integration in your code.

• Untrustworthy Libraries
Developers cope with the complexity of modern software systems and speed up the development
process by relying on the functionalities provided by off-the-shelf libraries. Issue: Many third-
party libraries are unsafe by design i.e., introduce vulnerabilities and compromise user data [79].
Consequently, the ramification of adopting such libraries could be manifold. Symptom: The app
utilises unsafe libraries such as advertising libraries that are known to be prone to data leakage [23].
Mitigation: Solely use reliable libraries that are not known for any vulnerabilities [8], e.g., not
reported in any vulnerability database like CVE.2

• Outdated Library
The risk of using third-party libraries is not resolved by only using trusted libraries per se. Issue:

Libraries usually offer various bug fixes and improvements in newer releases, but often different
developers maintain libraries and apps, and their update cycles generally do not coincide. Conse-

quently, a security breach in an old library or a deprecated API could lead to serious issues. Symptom:

An included library is behind the latest release, or the app exercises a deprecated API that is not
maintained anymore (e.g., the SHA1 cryptographic hash function). Mitigation: Integrate the latest
release of a library into your app and replace deprecated APIs with their newer counterparts. Publish
an update not only when the app itself has some improvements but also when there is a new version
of a library which the app uses.

• Native Code
Developers often incorporate native code in their apps to perform intensive computations or to use
many third-party libraries which exist in this form. Issue: Native code is hard to analyse; there
is no distinction between code and data at the native level, and attackers can load and execute

1http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
2https://cve.mitre.org/

http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
https://cve.mitre.org/
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code from native executables, in a variety of ways much easier than in Java. Consequently, native
code is susceptible to severe vulnerabilities like buffer overflow, and an attacker could exploit such
vulnerabilities, for instance, to execute malicious code [77]. Symptom: Existence of native code or a
native code library in the app. Mitigation: Use native code only when necessary, and only integrate
trustworthy libraries [8] into your code.

• Open to Piggybacking
Android apps are often easy to repackage. Issue: Adversaries could add their malicious code to a
benign app before repackaging it [43]. Consequently, depending on the original app’s popularity,
users can be infected when installing a seemingly benign app that has evaded the analyses of leading
app markets [16]. Symptom: No technique (e.g., watermarking, signature checking) is applied to
hardening repackaging. Mitigation: Leverage obfuscation to make retro-engineering of apps harder.
Also, verify the app’s authenticity before any sensitive operation.

• Unnecessary Permissions
The use of protected features on Android devices requires explicit permissions, and developers
occasionally ask for more permissions than necessary [70]. Issue: The more permission-protected
features an app can access, the more sensitive data it can reach. Consequently, a more permission-
hungry app may expose users to additional security risks [71]. Symptom: The manifest file contains
permissions for APIs that are not used. The large number of different Android API levels and the
incompletely documented mappings between permissions and method calls increase the complexity
of the detection. Mitigation: Utilize tools like PScout3 to exclude from the manifest file any
permission whose corresponding API calls are absent in the app.

3.2.2 Security Invalidation

The smells within this category are basically due to misusing security features that in the end invalidate a
desired security.

• Weak Crypto Algorithm
The fundamental set of cryptograph algorithms can be categorized into symmetric, asymmetric, and
hash functions. Issue: Each category includes several algorithms, each of which may have various
features and attack resilience. Consequently, incautious adoption of an algorithm could subject to
security issues. Symptom: The use of weak cryptographic hash functions like SHA1 or MD5, insecure
modes e.g., ECB for block ciphers. Up-to-date recommendations for encryption algorithms can be
found on the Open Web Application Security Project (OWASP) website.4 Mitigation: Consult the
state of the art guidelines to choose an appropriate cryptography, and utilize expert systems [5].

• Weak Crypto Configuration
The majority of security breaches come from exploiting developer’s mistakes. Issue: Cryptography

3http://pscout.csl.toronto.edu
4https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

http://pscout.csl.toronto.edu
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
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APIs are widely perceived as being complex with many confusing options [55]. Consequently,
a strong but poorly configured algorithm could jeopardise the in-place security. Symptom: Each
algorithm has different parameters, and cryptographic parameters in each library could have different
defaults. PBE (password-based encryption) with fewer than 1000 iterations, short keys and salts, or
none random seeds and initialisation vectors are common mistakes. Mitigation: Use libraries that
provide strong documentation and working code examples, and rely on simplified APIs with secure
defaults [4].

• Unpinned Certificate
Digital certificates are needed to ensure secure communication. Unpinned certificates, i.e., cer-
tificates not stored in any secure local key store, are easy to maintain and are frequently used
in the appified world [58]. Issue: Ensuring the authenticity of a certificate is non-trivial, if it is
not pinned. In such cases someone has to trust potentially compromised certificate authorities.
Consequently, an app may inadvertently end up trusting a certificate issued by an adversary who
has intercepted network communication. Symptom: The app uses unpinned certificates. Mitigation:

Pinning certificates is always recommended to increase the security.5

• Improper Certificate Validation
Android provides a built-in process for validating the certificates signed by the trusted Certificate
Authorities (CA). Issue: In other cases, e.g., when a certiifcate is self-signed, the OS devolves this
validation process to the app itself. However, developers often fail to implement it properly [26].
Consequently, this leaves the communication channel over SSL/TLS insecure and susceptible
to man-in-the-middle attacks [19]. Symptom: The presence of a X509TrustManager or a
HostNameVerifier that does not perform any validity check. The TrustManager may
only use checkValidity to assess the expiration of a certificate without any further check,
e.g., verifying the certificate’s signature or asking the user consent to trust a self-signed certificate.
Overridden onReceiveSslError in WebView which ignores any certification errors. Mitigation:

Ensure the certificate chain is valid i.e., the root certificate of the chain is issued by a trusted authority,
none of the certificates in the chain are expired, and each certificate in the chain is signed by its
immediate successor in the chain. Moreover, the certificate should match its designated destination,
i.e., the “Common Name” field or the “Subject Alternative Name” in the certificate should match
the domain name of the server being connected to. Finally, utilize network security testing tools like
“Nogotofail”6 to examine your communication.

• Unacknowledged Distribution
Google Play, Google’s official marketplace for Android, strives to identify potential security enhance-
ments when an app is uploaded to it. However, developers may distribute their packages via other
channels to circumvent out-of-order updates, bypassing the slow release cycles and security restric-
tions of this market place. Issue: The protection provided by Google, including code and signature

5Since Android 6.0 pinning can be enabled using the Network Security Configuration feature.
6https://github.com/google/nogotofail

https://github.com/google/nogotofail
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checks, is neglected. Consequently, the risk of distributing a vulnerable app increases especially
when the app utilises uncertified libraries, or in a worse case, an attacker can replace installation pack-
ages with malicious ones [93]. Symptom: The android.permission.INSTALL PACKAGES

permission exists in the manifest. Mitigation: Distribute your apps and updates exclusively through
official app stores that perform security checks.

3.2.3 Broken Access Control

This category contains smells that arise when one party in a communication trusts the other party without
any checks, i.e., not enforcing any authentication nor authorisation controls. Especially insufficiently
secured communication protocols, e.g., used by ICC or debug interfaces, that are exposed to external code
are prone to these kinds of smells.

• Unauthorised Intent Receipt
An intent is an abstract specification of an operation that apps can use to utilise the actions provided
by other apps. An explicit intent guarantees communication with the specified recipient, but it is the
Android system that determines the recipient(s) of an implicit intent among available apps. Issue:

Any app that declares itself able to serve the requested operation is potentially eligible to fulfill the
intent. Consequently, if such an app is malicious, a threat called intent hijacking could arise in which
user information carried by the intent could be manipulated or leaked [18]. Symptom: The existence
of an intent with sensitive data (e.g., tokens, credentials, etc.), but without a particular component
name (the fully-qualified class name). Mitigation: Only use explicit intents for sending sensitive
data. In addition, always validate the results returned from other components to ensure they comply
with your expectation.

• Unconstrained Inter-Component Communication
One app can reuse components (e.g., activities, services, content provider, and broadcast receivers)
of other apps, provided those apps permit it. Issue: Android apps are independently restricted
in accessing resources. Consequently, a threat called component hijacking arises when a ma-
licious app escalates its privilege for originally prohibited operations through other apps that
access those operations [22, 81]. Symptom: The existence of the intent-filter element
or android:exported = true attribute in the manifest file without any permission check
to ensure that a client app is originally permitted to receive that service. Mitigation: Exclu-
sively export components that are meant to be accessed from other apps and avoid placing any
critical state changing actions within such components. Enforce custom permissions with the
android:permission attribute to prohibit access from apps with lower privileges. Finally, use
tools like IccTA, which detects flaws in inter-component communication [44].

• Unprotected Unix Domain Socket
Android IPCs do not support cross-layer IPC, i.e., communication between an app’s Java and native
processes/threads. To circumvent this limitation developers resort to using Unix domain sockets.
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Moreover, developers may reuse Linux code that already utilizes such sockets. Issue: Developers
are barely guided to protect Unix domain sockets with appropriate authentication. Consequently,
adversaries are capable of abusing these exposed IPC channels to exploit vulnerabilities within
privileged system daemons and the kernel [67]. Symptom: The server socket channel accepts clients
without performing any authentication or similarly a client connects to a server without properly
authenticating the server. Mitigation: Enforce proper security checks when using the sockets.

• Exposed adb-level Capabilities
Android Debug Bridge (adb) is a versatile tool that provides communication with a connected
Android device. Many developers opt for adb-level capabilities to legitimately access a subset
of signature-level resources [47]. Issue: For this purpose, an app communicates locally with
an adb-level proxy through the TCP sockets opened on the same device, which exposes the adb
server to any app with the INTERNET permission. Consequently, a malign app with ordinary
permissions can command the adb and establish serious attacks [39]. Symptom: The existence
of adb-specific commands or TCP connection to local host in the code. Mitigation: Avoid using
adb-level capabilities in your app, as they are also prohibited since Android 6.0.

• Debuggable Release
During app development there exist two major build configurations, debug and release. The first is
meant for active development, while the latter is for signed in-market releases. However, developers
may forget to switch to release mode before publishing an app [86]. Issue: Apps shipped with
debugging enabled always try to connect to a local Unix socket opened by the Android Debug
Bridge (adb). While adb is not running on every consumer device, a malign app could disguise
itself as an adb service and connect to random debuggable apps. Consequently, a malicious app
is able to gain full access to the Java process and can execute arbitrary code in the context of the
debuggable app [40]. Symptom: The manifest file contains the attribute android:debuggable
= true. Mitigation: The debug mode should be disabled in the signed release version i.e., either
the debuggable attribute should not exist in the manifest file, or its value should be false. More
recent build environments already perform this task automatically.

• Custom Scheme Channel
Scheme channels (a.k.a. protocol prefixes) like fblite:// for Facebook allow seamless interac-
tions between web and Android apps. Issue: The sender of a scheme message is not able to verify the
recipient of the message so that malign apps could register themselves as a receiver of another app’s
unified resource identifier (URI) scheme. Consequently, adversaries could collect access tokens or
other sensitive information [76]. Although custom schemes simplify some user interactions, these
should be avoided where possible, as they increase the attack surface. Symptom: The registration of a
URI scheme within the intent-filter in manifest file. The SchemeRegistry.register
method is in the code. Mitigation: Adopt the dedicated system scheme i.e., Intent which is harder
to compromise.
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3.2.4 Sensitive Data Exposure

Smells in this category are related to suffering from data protection mechanisms that prevent the disclosure
of sensitive data to unauthorised parties.

• Header Attachment
The header section of data transport protocols like HTTP comprises key/value pairs to store op-
erational parameters. Issue: Developers may rely on headers to transfer sensitive data, e.g., they
store credentials to auto-login into a service. Consequently, any adversary eavesdropping on the
network may easily access the attached data [76]. Symptom: Calls like HttpGet.addHeader()
are present in the code to store private data. Mitigation: Do not store sensitive data in headers,
instead rely on dedicated mechanisms like OAuth2 protocol7 to authenticate to third-party services.

• Unique Hardware Identifier
Each device often has a couple of globally unique identifiers such as the IMEI number, MAC
address, etc. Issue: For various purposes like user profiling, apps utilize these IDs, which are tied
to each device. Consequently, anyone in the possession of such IDs would be able to track the
user’s activities across various sources. Symptom: Method calls that return IDs from associated
classes like TelephonyManager or BluetoothAdapter exist in the code. Mitigation: Use
the UUID.randomUUID() API to ensure that the retrieved ID is globally unique for each user,
but only within the same app identity.

• Exposed Clipboard
Users usually rely on a clipboard to copy and paste data across apps. Issue: The clipboard content is
readable and writable by all apps. Consequently, a malign app could perform versatile attacks on the
clipboard content from URL hijacking to data exfiltration and code injection [90]. Symptom: The
related calls on ClipboardManager exist in the code. The app uses the common TextView
and EditText controls, which allow copy and paste to handle sensitive data [57]. Mitigation:

Never allow sensitive data to be copied and pasted in your app. Perform input validation before
exercising any input from the clipboard.

• Exposed Persistent Data
Android provides various storage options to store persistent data. These options vary depending
on the size, type, and accessibility of data.8 Issue: Developers may opt for a particular option
without considering its security implication. Consequently, they expose private data. Symptom:

The existence of a private storage with global access scope (i.e., MODE WORLD READABLE or
MODE WORLD WRITEABLE) in the app. The app relies on ContentProvider to access data,
but there is no access restriction for other apps. Mitigation: Specify permissions to protect who can
access your shared data. Encrypt any (internally or esp. externally) stored sensitive data, and place
the encryption key in KeyStore, protected with a user password that is not stored on the device.

7https://oauth.net/2
8https://developer.android.com/guide/topics/data/data-storage.html

https://oauth.net/2
https://developer.android.com/guide/topics/data/data-storage.html
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• Insecure Network Protocol
Data transportation channels exist in various flavours, and insecure ones like HTTP are more
prevalent and easy to maintain. Issue: Insecure channels transfer data without encryption per se.
Consequently, an attacker can secretly relay the data and possibly alter it [59]. Symptom: APIs
related to opening insecure network connections like http or ftp exist in the code. Mitigation: All
app traffic should happen over a secure channel. Otherwise, any sensitive data should be encrypted
before it is sent out. Android 6.0 or above provides the cleartextTrafficPermitted

property which protects app from any usage of cleartext traffic.

• Exposed Credentials
Passwords, private keys, secret keys, certificates, and other similar credentials are commonly used
for authentication, communication, or data encryption. Issue: In some circumstances such data is
inadvertently disclosed to unauthorised parties. Consequently, this could break the intended security.
Symptom: The app contains hard-coded credentials, or they are stored without any password
protection such as when the KeyStore.ProtectionParameter is null. Mitigation: Store
such data in a KeyStore in a protected format which restricts unauthorised accesses.

• Data Residue
According to recent research, about 80% of abandoned apps are likely to be uninstalled in less than
a week [49]. Issue: After an app is uninstalled, various types of data associated to the app, ranging
from its permissions, operation history, configuration choices, and so on may still remain in a few
system services [91]. Consequently, such so-called “data residue” can be associated to another app
and empower adversaries to access sensitive information [89, 91]. Symptom: The app calls system
services that are known to be subject to data residue problem. Mitigation: Unfortunately, an app
may not always be aware of its data being stored in system services, and the mitigation is to avoid
sharing private data with these services, if possible.

3.2.5 Lax Input Validation

The smells listed in this category originate from the lack of input validation which consequently let a
malicious input (i.e., code or resources) compromise security.

• XSS-like Code Injection
WebView is an essential component that enables developers to use web technologies such as HTML
and JavaScript to deliver web content within an app. Unlike Web browsers like Chrome, FireFox,
etc. which are developed by well-recognized companies that we trust, each app using a WebView is
like a customized browser which may not have undergone thorough security tests. Issue: An app
may load web content unsafely i.e., without sanitising the input from any code. Consequently, an
adversary could inject malicious code through any channel that the app uses to get web content [41].
Symptom: The setJavaScriptEnabled call with value true which enables execution of
JavaScript exists in the code, and the app fetches web content from untrustworthy sources (e.g., by
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calling loadUrl or loadData on WebView) without applying proper sanity checks. Mitigation:

Invoke the default browser to display untrusted data. Use a HTML sanitizer to filter out any code
inside the data, and show plain text only using safe APIs that are immune to code injection (i.e.,
do not execute JavaScript code). Beware of third-party libraries that employ WebView. Disable
JavaScript, if you do not need it.

• Broken WebView’s Sandbox
There is a sandbox inside WebView that separates its JavaScript from the rest of system. Issue:

WebView provides an API, addJavascriptInterface, through which an app can access Java
APIs, and therefore mobile resources, from within JavaScript code inside the sandbox. Consequently,
if the app renders the web content unsafely, a code injection attack is possible [41]. Symptom: In
addition to the symptoms of the previous issue, the addJavascriptInterface call exists in
the code. Mitigation: Take into account the suggestions of the previous issue, and as well use the
@JavascriptInterface annotation to specify any method that is exposed by JavaScript to
prevent reflection-based attacks.

• Dynamic Code Loading
Android allows apps to load and execute external code and resources. Issue: Although dynamic
code loading is widely adopted, developers are often unaware of the risks associated to this generally
unsafe mechanism or fail to implement it securely [62]. An attacker can replace the code that is
to be loaded with a malicious one. Consequently, this can lead to severe vulnerabilities such as
remote code injection [27]. Symptom: Use of any class loader in the code. In case of loading
the code and resources of another installed app, a call to createPackageContext() on the
Context object exists in the code. Mitigation: Either bundle the required resources within each
app package, or verify the integrity and authenticity of the loaded code e.g., by imposing restrictions
on its location or provenance [73]. Analyse your app with the help of tools like Grab ’n Run [27].

• SQL Injection
Data-driven apps organize their data through a database. Issue: An app might directly use inputs to
build a query that will be run by the database engine. Consequently, an adversary who succeeds
at inserting malicious code into SQL statements, can access or modify database data. Symptom:

Inputs from untrustworthy sources are passed to the database without proper validation. Mitigation:

Instead of dynamic SQL generation, rely on parameterized queries and stored procedures which
let the database distinguish between code and data. Validate inputs and filter suspicious values e.g.,
escape characters to ensure they do not end up in the query.



4
Empirical Study

In this chapter we present the lightweight tool we developed to statically identify the presence of several
security smells in the code. We apply the tool to two different repositories of benign and malicious apps
and study the prevalence of the smells. We also manually inspect some apps to assess the performance of
our lightweight analysis tool and the extent to which identifying smells indicate the presence of security
vulnerabilities.

4.1 Prototype Implementation

We developed a lightweight analysis tool that statically detects 10 kinds of security smells in an app. We
rely on the Apktool to reverse engineer Android app package installation (apk) files and generate Smali
output that can be understood as human-readable Java bytecode.1 We defined a set of rules to capture the
symptoms of each security smell. In particular, we utilize a parser for parsing the manifest files and use
regular expressions to define and match the code pattern corresponding to the identified symptoms of each
smell in the code.

4.1.1 Tool Architecture

The tool itself is built upon Java 8 and takes the desired app’s apk file as input parameter. The Main class
shown in Figure 4.1 is the entrypoint and provides the setup for the analysis. It first decompiles the app

1https://ibotpeaches.github.io/Apktool
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Figure 4.1: Composition of our lightweight tool

Security Code Smell ManifestAnalyser SmaliAnalyser
Debuggable Release X
Custom Scheme Channel X X
Header Attachment X
Unique Hardware Identifier X
Exposed Clipboard X
Insecure Network Protocol X
Improper Certificate Validation X
Dynamic Code Loading X
XSS-like Code Injection X
Broken WebView’s Sandbox X

Table 4.1: Analyser class dependencies of the 10 detected smells

with Apktool before it initialises individual analysers. We have analysers for manifest and Smali code files,
and each collects its data in a ResultCollector. Finally, the FileStore class stores the ResultCollector data
in a persistent store. In Table 4.1 we present the dependencies of each security smell on each analyser.

4.1.2 Smali Code

The Android Dalvik executable format is not easily analysable,2 thus inappropriate for our analysis. Instead,
we worked with the Smali intermediate (IR) textual code representation, retrieved from the DEX code
decompilation. This IR representation was superior to analyse with respect to its internal structure, i.e., it
is based on plain and human readable text rather than on byte code, and the translation even performed
almost in linear time. Another benefit is the language’s comprehensiveness, each command in bytecode3

has a counterpart in Smali ensuring maximum compatibility. We show the single letter type identifiers
used by Smali in Table 4.2 to foster interpretation of provided Smali code samples.

Listing 1 shows basic semantics of Smali code for a method invocation. The first element represents
the bytecode operation for the Dalvik virtual machine (VM). It is followed by specific source or destination
register pointers used in the register-based VM assigned by the specified bytecode operation. Next, a type

2https://source.android.com/devices/tech/dalvik/dex-format
3https://source.android.com/devices/tech/dalvik/dalvik-bytecode

https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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Identifier Assigned Type Primitive Type?
V void (only return types) yes
Z boolean yes
B byte yes
S short yes
C char yes
I int yes
J long (64 bits) yes
F float yes
D double (64 bits) yes
L object no

Table 4.2: Type declarations in Smali

and fully qualified Java class define the class affected by the Dalvik command. Subsequently, we have
two different syntaxes, either the object’s instance name together with a type and fully qualified class to
prepare and load the specified object for the latter method call placement, or the method name combined
with input and return parameters for the actual method invocation, yet again potentially consisting of fully
qualified classes with their types. Furthermore, Smali identifiers and other features we did not use in our
detection can be found in some listings. It is particularly interesting to note that in case of primitive types
only the single letter identifiers are used without any separators, and arrays are represented by one or more
opening square brackets according to the dimension, e.g., an int[][] array would be defined as [[I.

Listing 2 and Listing 3 both represent the very same behavior. As we spot in the Smali code, the method
names, try-blocks and object relations were maintained, allowing us to apply regular expression patterns to
Smali code. Therefore, in Listing 3 line 5 loads the reference to the callee object in parameter register
p0 into value register v7. Line 6 calls the method java.lang.String getDeviceID() on the
TelephonyManager reference in v7. Line 7 moves the result of the method call from the working
register into the value register v7. Finally, line 8 calls the static method IoHandler.saveData with
the two parameters v6 and v7. We can further see the used types, i.e., L for object types.

DalvikCommand {Register1, ..., RegisterN}, [Type][Packages/ClassName];->[[ObjectName:]

↪→ [Type][Packages/ObjectClassName];] | [[method(ParameterType1;...;ParameterTypeN

↪→ ;)][ReturnType][Packages/Classname];]

Listing 1: Smali code structure for method invocations
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Smell Symptom in Manifest and Qualified Entities

Debuggable Release
Debuggable attribute is set in manifest
application.android:debuggable = true

Custom Scheme Channel

Scheme channels are registered in manifest
application.*.intent-filter.data.android:scheme

↪→ = "SCHEME HERE"

(replace * with activity|activity-alias|service|receiver)

Table 4.3: XML elements and attributes inspected in our tool

1 public List<CellData> getAllCellDataCompatible(boolean saveCollectedMeasurements) {

2 ...

3 try {

4 TelephonyManager tel = telephonyManager;

5 IoHandler.saveData(s.toString(), tel.getDeviceId());

6 } catch (Exception e) {}

7 ...

8 }

Listing 2: Sample Java code of a traditional code smell in Android applications

1 .method public getAllCellDataCompatible(Z)Ljava/util/List;

2 ...

3 :try_start_0

4 ...

5 iget-object v7, p0, Linfo/smapper/smapper/logic/DataFetcher;->tel:Landroid/telephony/

↪→ TelephonyManager;

6 invoke-virtual {v7}, Landroid/telephony/TelephonyManager;->getDeviceId()Ljava/lang/

↪→ String;

7 move-result-object v7

8 invoke-static {v6, v7}, Linfo/smapper/smapper/logic/IoHandler;->saveData(Ljava/lang/

↪→ String;Ljava/lang/String;)V

9 :try_end_0

10 .catch Ljava/lang/Exception; {:try_start_0 .. :try_end_0} :catch_0

11 ...

12 .end method

Listing 3: Java code from Listing 2 translated to Smali

4.1.3 XML Parser

Android’s meta-information files (i.e., manifest, layout resources and definitions) heavily rely on XML and
were easily analysable through the standard Java XML libraries. As an additional benefit by using these
reliable libraries we could increase the tool’s robustness against the diverse XML structures that especially
exist in malign apps, e.g., issues with regard to incompletion or misused attributes. Mixed lower and upper
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case definitions required us for compatibility reasons to normalise all strings to lower case. Several XML
attributes that our tool inspects are presented in Table 4.3.

4.1.4 Regex Matching

We applied straightforward regular expression (regex) matching using Java’s built-in regex implementation.
Some of the smells mentioned in this section also relied on results from the ManifestAnalyser, i.e., Custom

Scheme Channel, or involved multiple method calls, increasing the overall complexity. Several regular
expressions are noted in Table 4.4.

4.1.5 Website Data Scraping

Finally, to interpret data and get better insight about characteristics of each app we mined some meta-data
features from Google Play. Table 4.5 shows the features and their corresponding regex statements. The
scraper constructed for each app the URL according to a specific pattern,4 downloaded the HTML page
and matched it with regular expressions.

4.2 Study Design

The test subjects consisted of benign and malign Android app packages. An overview of our app inspection

workflow is illustrated in Figure 4.2. We started by downloading apps from AndroZoo and VirusShare
(steps 1 and 2) and filtered the latter ones, because the VirusShare packages were not only for Android
apps (step 3). Next, we uploaded them onto the compute cluster of our university called Ubelix and let the
analysis run (step 4). Once the process finished, we downloaded the results and exported them into a local
database, simplifying the evaluation. This database allowed us to dynamically export tables containing the
significant values for further analysis with GUI-based tools (step 5).

Data Extraction
(Ubelix Cluster)

Data Analysis
(Tables)

App Download
(AndroZoo)

App Download
(VirusShare)

App Filtering
(Distinct Device)

2 3

1

4 5

Figure 4.2: The workflow of our analysis with its different stages.

4https://play.google.com/store/apps/details?id=my.packagename.here&hl=en

https://play.google.com/store/apps/details?id=my.packagename.here&hl=en
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Smell Symptom in Smali Code and Corresponding Escaped Regexes

Custom Scheme Channel

Scheme registration code exists
Lorg/apache/http/conn/scheme/SchemeRegistry;->

↪→ register\(Lorg/apache/http/conn/scheme/Scheme;\)
↪→ Lorg/apache/http/conn/scheme/Scheme

Header Attachment

Header attachment code exists
Lorg/apache/http/client/methods/HttpGet;->

↪→ addHeader\(Ljava/lang/String;Ljava/lang/String;\)
↪→ V

Unique Hardware Identifier

Hardware identifier access code for MACs and IMEI exists
Landroid/telephony/TelephonyManager;->

↪→ getDeviceId\(\)
↪→ Ljava/lang/String

Landroid/bluetooth/BluetoothAdapter;->

↪→ getAddress\(\)
↪→ Ljava/lang/String

Landroid/net/wifi/WifiInfo;->

↪→ getMacAddress\(\)
↪→ Ljava/lang/String

Exposed Clipboard

Clipboard manipulation code exists
Landroid/content/ClipboardManager;->

↪→ getPrimaryClip\(\)
↪→ Landroid/content/ClipData

Landroid/content/ClipboardManager;->

↪→ setPrimaryClip\(Landroid/content/ClipData;\)
↪→ V

Insecure Network Protocol

Http connection establishment code exists
Ljava/net/HttpURLConnection;->

↪→ <init>\(Ljava/net/URL;\)
↪→ V

Improper Certificate Validation
Customised certificate validation code exists
.implements Ljavax/net/ssl/X509TrustManager;

Dynamic Code Loading

Dynamic code loading mechanism exists
Landroid/content/Context;->

↪→ createPackageContext\(Ljava/lang/String;I\)
↪→ Landroid/content/Context

XSS-like Code Injection

WebView JavaScript setting code exists
Landroid/webkit/WebSettings;->

↪→ setJavaScriptEnabled\(Z\)
↪→ V

Broken WebView’s Sandbox

WebView Java interface code exists
Landroid/webkit/WebView;->

↪→ addJavascriptInterface\(Ljava/lang/Object;
↪→ Ljava/lang/String;\)V

Table 4.4: Regular expressions used in our tool containing Smali type identifiers as shown in Table 4.2
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Feature Description and Escaped Regular Expression

App Name
The name of the app
\"id-app-title\" tabindex=\"0\">([ˆ<]+)<

Category
The app’s assigned Google Play Store category
\(\\w*)\"> <span itemprop=\"

Contact Mail
Mail address of the app’s developer
mailto:([ˆ\"]+)\"

Content Rating
Maturity rating of the app
itemprop=\"contentRating\">([\\w\\s,\\.-]+)<

Current Version
Current version number of the app
itemprop=\"softwareVersion\">([\\w\\s,\\.-]+)<

Last Update Date
The last time an update was released for the app
itemprop=\"datePublished\">([\\w\\s,]+)<

Number of Downloads
The amount of downloads an app received, also referred to as popularity
in our work
itemprop=\"numDownloads\">([\\w\\s,\\.-]+)<

Offered by
The app’s developer name, more precisely an individual or company
Offered By </div> <div class=\"content\">([ˆ<]+)<

Required Version
The Android API level an app requires
itemprop=\"operatingSystems\">([\\w\\s,\\.-]+)<

Star Rating
An app’s star rating provided from end users
Rated ([0-9.]+) stars out of five stars

Table 4.5: Features and escaped regex strings thereof extracted from apps Google Play Store pages
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Figure 4.3: Distribution of apps’ star ratings

4.3 App Collection

For our benign dataset we randomly selected our apps from the AndroZoo dataset5 and downloaded them
with a small Java tool using the AndroZoo publicly available index file as reference. This dataset currently
provides more than 5,5M apps collected from several sources. We initially collected a random subset of
70,000 apps whose sources are in Google Play. However, to collect more meta data information such as an
app’s category, its number of downloads, update cycle, and star rating we still needed to parse information
from the Google Play website. Unfortunately, we could not access 25,000 apps for various reasons, for
example, because they were no longer available on the store, or they were not accessible from Switzerland.
In the end, we included 46,000 APK files of benign apps in our dataset with a total size of about 440GB.
About 90% of these apps were released within 2014 to 2016, a quarter of apps was updated in less than 3
months, the median size of an apk was 5.5MB, the majority of the apps were rated with 4 or more stars
(Figure 4.3), and slightly more than 26% of apps were downloaded more than 50,000 times from the
official Google market (Figure 4.4).

For our malign dataset we relied on the VirusShare database.6 Although the interface was not as
sophisticated as in AndroZoo, we were able to retrieve around 81GB of data. However, we suffered from
several issues leading to a more complex retrieval and separation process:

5https://androzoo.uni.lu
6https://virusshare.com/

https://androzoo.uni.lu
https://virusshare.com/
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Figure 4.4: Distribution of apps’ popularities

• No direct HTTP or HTTPS downloads for archives, but only BitTorrent, hence we had to set up a
distinct machine with fast and unrestricted internet access. We used Vuze,7 a popular free BitTorrent
client, to download and share the encrypted collections.

• No meta-data summaries were available, thus we had to extract the meta-data (e.g., package name,
targeted Android version, app version number and many more) ourselves during the analysis in the
cluster.

• Explicit Android malware collections have been released until early 2014, however, we were also
interested in more recent malware samples. Therefore we had to download more recent ordinary
collections containing malware for other platforms (e.g., Windows, Linux, Apple macOS) as well.

• Separation of Android malware files is not a trivial task, because the risk of infection is omnipresent
while working with such files. Hence, we had to separate them by parsing the malware files on a
distinct device without any network access or window manager as a protective measure.

4.4 App Analysis

Although our analysis is light-weight, the sheer number of apps we analysed required parallel processing.
However, we allocated much more resources than our tool actually needed as precautionary measure,

7https://sourceforge.net/projects/azureus/

https://sourceforge.net/projects/azureus/
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Figure 4.5: The architectural view on Ubelix, the compute cluster.

because the precise runtime requirements for each app were not available in advance. As a benchmark,
the analysis of the “Facebook” app required 536 seconds on a traditional notebook PC with dual core
Intel Core i7-4600U CPU and 8 GB of RAM. The university of Bern Linux compute cluster (Ubelix)
provided resources for our static code analysis; maintaining many compute nodes with an architecture
as shown in Figure 4.5. The system provided user-level access over SSH remote console (1) to a front
end server for orchestrating the cluster (2). The front end server users home directory resided on the
storage pool that was collectively used by front and back end servers (3). This server further ran the cluster
management software (i.e., Slurm8) with its job engine distributing compute jobs automatically among
available nodes (4). These nodes then started working on the assigned jobs, as soon as they finished their
remaining queues and got available. The results were afterwards written to the shared storage pool and
ready for later retrieval through the SSH connection.

During our work we encountered some issues regarding the complex infrastructure of Ubelix:

• Uploading huge data, i.e., 985GB, took much time and needed a fast and stable connection.

• Change of workload manager from Grid Engine to Slurm was forced by cluster operators and
required modifications of job scripts and our custom job manager.

• Outdated software packages were installed on Ubelix, hence we had to compile and integrate our
own packages (e.g., Java virtual machine).

• Restricted user-rights caused serious issues with some tools expecting additional system applications
available on the environment.

• Best-effort assignment of resources unexpectedly delayed transactions when other projects were
causing heavy loads on the system.

• Down-time through periodical maintenance caused aborted experiments that had to be rerun.

8https://slurm.schedmd.com/

https://slurm.schedmd.com/
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• Size and quantity restrictions on the storage pool forced us to implement additional routines for
instantly cleaning up finished analyses.

• Job queue length restrictions enforced us to implement our own job monitor that was able to dynam-
ically enqueue jobs below the threshold. Moreover, it was able to cope with system failures due to
down-time by reuploading skipped jobs.

A traditional Slurm Job Script as we can see in Listing 4 configures the cluster node according to our
specifications. We specified the maximum runtime on the cluster (i.e., 45 minutes), the total amount of
available RAM (i.e., memory per CPU multiplied by CPU cores, thus we assigned 20GB in total), amount
of CPU cores (i.e., 8) and paths for storing standard and error messages into the same file. The last line
starts the execution of our analysis tool through a Java 64-bit virtual machine. These resources were not
always available as various other projects shared the same infrastructure.

1 #!/bin/bash

2 #SBATCH --time=00:45:00

3 #SBATCH --mem-per-cpu=2500M

4 #SBATCH --cpus-per-task=8

5 #SBATCH --job-name="executor_analysis_r001_000000001"

6 #SBATCH --error='logs/r001_000000001_sample.apk.log'

7 #SBATCH --output='logs/r001_000000001_sample.apk.log'

8 ../../jdk1.8.0_101/bin/java -d64 -Xmx20g -jar Executor.jar './apks/sample.apk'

Listing 4: Sample job script for SLURM, ready to be assigned to the compute cluster with the command
sbatch.

4.5 Results

We applied our lightweight tool to all apps in the dataset. Figure 4.6 shows how prevalent the smells are in
our dataset, and in Subsection 4.5.5 we discuss the quality of the results. A majority of apps potentially
suffer from XSS-like code injection (85%) followed by dynamic code loading (61%). About 40% use
custom scheme channels and expose a unique hardware identifier. More than 12% use an insecure network
protocol, and almost 11% are subject to header attachment as well as clipboard issues. Finally, just under
1% of the apps have debug mode enabled.

We also studied how many of security smells usually appear in the apps (see Figure 4.7). Only 9% of
apps are free of any smell, a majority i.e., above 50% suffer from at least three different smells, and over a
quarter are subject to more than four smells, which is catastrophic.

We also investigated the prevalence of security smells at different API levels as the proportion of
devices running different API versions varies. Figure 4.8 shows the distribution of smells within each API
level. We noticed that the prevalence of Debuggable Release has been dramatically reduced. We believe
this is mainly due to the fact that Google market no longer accepts apps in debug mode. We conjecture
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Figure 4.6: Distribution of security smells in the apps

this issue should have decreased also in other markets without this constraint as recent build platforms
automatically disable the debug mode in the signed release version. In contrast, there is an increase in the
existence of the Exposed Clipboard security smell. This could stem from the many sharing options for
social media in the apps. Similarly, the issue of Dynamic Code Loading has become more common. We
observed that many developers adopt this feature to implement their own update mechanisms.

Figure 4.9 shows how many of these classes of smells appear within each API level. There is a
correlation between feature availability and feature usage, and apparently these uses have introduced more
insecurity. It seems the peak of issues was reached around API level 15, which introduced amongst other
things a social stream API in the Contacts provider enabling additional social media interactions for users.

In the remainder of this section we discuss our findings from a few more perspectives, since we
collected more meta-data from the apps and Google’s Play store, we are able to discuss other interesting
correlations as well.

4.5.1 Category

Figure 4.10 shows the number of different security smells appearing in the apps in each category. The
apps in the Libraries and Demo category are the most secure ones as they usually rely on local content.
We noted that security smells are prevalent in gaming apps, and that Casino and Role Playing games are
more problematic. Finally, Dating as well Food and Drink apps suffer from the highest number of security
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Figure 4.9: Number of smells within each API level

smells. We assume that Dating apps are not very restrictive when it comes to user privacy, as Dating
apps track user’s movements and various system sensors including cameras. Food and Drink apps, often
published from franchises like McDonald’s or Burger King, are surprisingly vulnerable as we believe this
has been caused by the intense advertisement, tracking and online functionality they commonly use in
current releases.

4.5.2 Popularity

Figure 4.11a shows the relationship between the number of downloads and the security smells. The
majority of apps with millions of downloads suffer from five kinds of smells. Although about 73% of
apps within our dataset were downloaded less than 50,000 times, there were still enough apps with more
downloads to conclude that the number of downloads never guarantees security. However, it appears that
we can observe a very interesting pattern: Up to 500M downloads apps begin to use more features, thus
reducing protection, before the security finally increases when the apps get mature with more than 500M
downloads. This pattern gets even more noticeable when working with smaller groups on the x-axis. We
further noticed these apps vary in size, and there is no relationship between the number of downloads and
the size of apps.

Figure 4.11b shows the relationship between the number of security smells and star ratings. Despite
the number of stars, apps often suffer from three kinds of security smells. In particular, the star rating
correlates negatively with the presence of security smells. We assume that the studied security smells are
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Figure 4.10: Distribution of smells in app categories
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Figure 4.11: A set of two subfigures: (a) The relationship between number of smells and number of
downloads; (b) The relationship between number of smells and app star ratings
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barely noticeable by end-users, hence they are not reflected in the ratings.

4.5.3 Release Date

We further studied whether the prevalence of security smells changes over time. In fact, with advances in
developer support (e.g., tools, learning resources) we expected that security smells in more recent apps
should be rarer than in older apps. Nonetheless, the result showed that neither the number of smells nor
the likelihood of a particular smell relates to the release date of an app. Moreover, we noted that in general
the security of apps with short update cycles is similar to those with longer update cycles. That is, either
security issues in one release still remain in future releases, or they get fixed but new releases also introduce
new smells.

4.5.4 App Size

We were interested to know whether the existence of security smells is ever related to the size of an app.
Our investigation showed that an app may suffer from various kinds of security smells, despite its size. In
fact, increase in app size may only increase the frequency of a security smell. It is also worth mentioning
that some apps are larger not because of having more code but because they contain other resources such
as image, video and audio content.

4.5.5 Manual Analysis

To assess how reliable these findings are to detect security vulnerabilities, we manually analysed 160 apps.
For each smell, we inspected 20 apps manually and compared our findings to the result of the lightweight
analysis tool. We did not consider any false negatives, because their evaluation would require manual
large-scale analysis of random apps not reported by our tool. As is shown in Figure 4.12, the results were
encouraging. The manual analysis completely agreed with the tool in the security risk associated with six
security smells. In the case of the exposed clipboard smell the tool achieved a very good performance i.e.,
above 90% agreement with the manual analysis. The level of agreement in insecure network protocol and
improper certificate validation was 80%. We realized some apps use http connections to exclusively load
local contents which is legitimate in development frameworks like Apache Cordova or Adobe PhoneGap.
And some apps implemented their own custom TrustManager which in fact was secure. Finally, our
tool was unable to correctly detect the security risk associated with header attachment in 40% of cases,
which is mainly due to the fact that discerning data sensitivity is non-trivial.

4.5.6 Malicious Apps

We conjecture malicious apps should have more smells as their developers are incautious about user’s
security. Therefore, we also run our tool on a dataset of malicious apps to grasp knowledge about the
dissimilarities between benign and malign code. Figure 4.13 shows our app corpus’ API level distribution
in which the benign corpus experiences a wider API level support due to its larger and more consistent
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Figure 4.12: The precision of obtained results

dataset, while the malign datasets suffers a skew towards older API levels. Figure 4.14 reveals differences
of security smell prevalences between both corpora. Whereas benign apps suffer heavily from XSS-like
code injection, dynamic code loading and custom scheme channel, malign apps suffer especially from
unique hardware identifier. This could be a side effect of the premium call or SMS misuse other researchers
reported [6] that requires the very same permissions and classes. Surprisingly, dynamic code loading
is much less prevalent in malicious apps, while the debuggable release appears more often in malign
code. Similarly, Figure 4.15 presents the distribution of smells across API levels. It is interesting to
see that exposed clipboard starts in malign apps to evolve much later than in benign ones, possibly with
the introduction of piggybacked social media apps. Unlike for benign apps, malign applications behave
different to the rest not only for the exposed clipboard issue, also improper certificate validation and
dynamic code loading became popular at a later date with respect to the app’s compilation timestamp as
illustrated in Figure 4.16. In Figure 4.17, which illustrates the compilation dates of analysed apps, we
observe an interesting anomaly around February-2008, seven months before release of Android 1.0. It
appears that malign apps are being developed as soon as a platform gets announced. According to our
results, legit app development entities, in contrast, await the rollout first and start to act on its success. It is
intriguing to see in Figure 4.18 that for the malign corpus issues correlate to the code size. Nevertheless,
we should consider that this could be a side-effect of our skewed malign corpus which contains more old
and not that many recent (possibly piggybacked) apps with more complexity and thus more potential to
suffer from vulnerabilities. A similar behavior can be seen in Figure 4.19 for Exposed Clipboard, that
could be either induced by more recent or piggybacked apps.
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Figure 4.13: A set of two subfigures: (a) The benign app distribution according to API levels; (b) The
malign app distribution according to API levels
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Figure 4.14: A set of two subfigures: (a) Prevalence of security smell classes in benign apps; (b) Prevalence
of security smell classes in malign apps
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Figure 4.15: A set of two subfigures: (a) Security smell class distribution among benign apps and API
levels; (b) Security smell class distribution among malign apps and API levels
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Figure 4.16: A set of two subfigures: (a) Prevalence of security smell classes in benign apps with respect to
compilation date; (b) Prevalence of security smell classes in malign apps with respect to compilation date
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Figure 4.17: A set of two subfigures: (a) Compilation date distribution of benign apps; (b) Compilation
date distribution of malign apps
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Figure 4.18: A set of two subfigures: (a) Relation of code size and smell classes of benign apps; (b)
Relation of code size and smell classes of malign apps
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Figure 4.19: A set of two subfigures: (a) Relation of smell classes and code size of benign apps; (b)
Relation of smell classes and code size of malign apps

4.5.7 Threats to Validity

We note several limitations and threats to validity of the results pertinent to our research. One important
threat is the completeness of this study i.e., whether we could identify and study all related papers in the
literature. We could not review all the publications, but we strived to explore top-tier software engineering
and security journals and conferences as well as highly cited work in the field. For each relevant paper we
also recursively looked at both citations and cited papers. Moreover, to ensure that we did not miss any
important paper, for each identified issue we further constructed more specific queries and looked for any
new paper on Google Scholar.

We analysed the existence of security smells in the source code of an app, whereas third-party libraries
could also introduce smells.

We were only interested in studying benign apps as in malicious ones developers may not spend any
effort to accommodate security. Thus, we merely collected apps which were available on the official
Google market. However, our dataset may still have malicious apps that evaded the security checks of the
market.

Finally, the fact that the results of our lightweight analysis tool are validated against manual analysis
performed by the authors is a threat to construct validity through potential bias in experimenter expectancy.



5
Conclusion

In contrast to all advances in software security, software systems are suffering from increasing security and
privacy issues. Security in Android, the dominant mobile platform, is even more crucial as these devices
often contain manifold sensitive data, and a security issue in a small home-brewed app can threaten the
security of billions of users.

To fundamentally reduce the attack surface in Android, we promote the adoption of secure programming
practices. We reviewed state of the art papers in security and identified smells whose presence may indicate
a security issue in an app. We developed a static analysis tool to study the prevalence of ten of such smells
in 46,000 apps. We realized that despite the diversity of apps in popularity, size, and release date, the
majority suffers from at least three different security smells. Moreover, the manual inspection of 160 apps
showed that the identified security smells are actually a good indicator of security vulnerabilities.

The detection of some security code smell symptoms could easily be implemented in Android in-
tegrated development environment (IDE) plug-ins helping developers to improve code security already
during development, as IDEs already construct internal dependency graphs containing all the necessary
information. The security code smell reporting component could also leverage online web services and
provide instant online analysis of apps.

A more thorough study of our collected but not yet detected smells, together with more specific
symptoms, consequences and mitigation techniques for the already evaluated smells are left for future
work.

To summarise, this work represents an initial effort to spread awareness about the impact of program-
ming choices in making secure apps. We identified 28 security code smells in 5 different categories, namely

39
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Insufficient Attack Protection, Security Invalidation, Broken Access Control, Sensitive Data Exposure

and Lax Input Validation. We collected for each security code smell its symptoms and the potential
impact, together with basic remediation measures. We argue that this helps developers who develop
security mechanisms or other sensitive code to identify frequent problems, and also provides developers
inexperienced in security with caveats about the prospect of security issues in their code.
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