
Pervasive Visualization in Immersive
Augmented Reality for Software

Performance Monitoring

Bachelor Thesis

Mario Hess

from

Biel BE, Switzerland

Faculty of Science
University of Bern

08 February 2019

Prof. Dr. Oscar Nierstrasz

Dr. Leonel Merino

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Developers are usually unaware of the impact of code changes to the performance of software
systems. Although developers can analyze the performance of a system by executing, for
instance, a performance test to compare the performance of two consecutive versions of the
system, changing from a programming task to a testing task would disrupt the development
flow. Most performance visualization tools provide the user with a detailed view, which can
be overwhelming and cause a high cognitive load.

In this thesis, we propose the use of a city visualization that dynamically provides develop-
ers a pervasive view of the continuous performance of a system and lessens the cognitive load
required to monitor it. We use an immersive augmented reality device (Microsoft HoloLens)
to display our visualization and extend the integrated development environment on a computer
screen to use the physical space. We report on technical details of the design and implemen-
tation of our visualization tool. Our effort explores a new visual metaphor to support the
exploration and analysis of possibly very large and multidimensional performance data. Our
initial result indicates that the city metaphor can be effectually employed to analyze dynamic
performance data on a large and non-trivial software system.

Additionally, we conducted an initial user study with ten participants, comparing perfor-
mance and user experience in immersive augmented reality to that with a standard computer
screen, and we report on the results. We asked participants to complete a set of ten tasks in-
spired by questions that arise from performance issues. To measure performance, we collected
correctness, completion time and recollection of users. We measured user experience by
collecting emotions that participants experienced during experiments, and we also measured
perceived cognitive load. We observe that participants achieve comparable performance in
immersive augmented reality and with a computer screen. We found that developers felt:
(i) interested, (ii) open but also (iii) confused and (iv) angry when working in immersive aug-
mented reality while achieving comparable performance to working with a standard computer
screen.

i

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 3

2 State of the Art 4
2.1 3D Visualization . 4
2.2 Visualization in Virtual and Augmented Reality . 5
2.3 Visualization of Performance . 6

3 PerfVis Overview 8
3.1 Design . 9

3.1.1 Medium: Immersive Augmented Reality . 9
3.1.2 Technique: City visualization and Scatter plot. 10

3.1.2.1 City visualization. 10
3.1.2.2 Scatter plot. 10

3.1.3 Interaction: Selection and Navigation . 11
3.2 Implementation . 11
3.3 Workflow . 13

4 Evaluation 16
4.1 User Study . 16

4.1.1 Study Design . 17
4.1.2 Quality Focus . 22
4.1.3 Participants . 22
4.1.4 Procedure . 22
4.1.5 Data Collection . 23

4.2 Results . 23
4.2.1 User Performance . 23

4.2.1.1 Correctness . 24
4.2.1.2 Completion Time . 25

ii

CONTENTS iii

4.2.1.3 Recollection . 26
4.2.2 User Experience . 26

4.2.2.1 Emotions . 27
4.2.2.2 Cognitive Load . 29

4.3 Lessons Learned . 32
4.3.1 Threats to Validity . 33

5 Conclusion and Future work 35

A Anleitung zum wissenschaftlichen Arbeiten 41
A.1 Anleitung zu wissenschaftlichen Arbeiten . 41

A.1.1 Required Tools . 41
A.1.2 Install Tools and Environments . 42

A.1.2.1 Pharo Environment . 42
A.1.2.2 Web server . 43
A.1.2.3 Unity Project & HoloLens . 43

A.1.3 Running the Visualization . 44

1
Introduction

Among the many questions that arise during software development, programmers often formulate questions
about the performance of software systems [2, 12]. They ask, for instance, “what is the software doing
when performance issues arise?” [24], and “where is most of the time being spent?” [25]. Since developers
introduce multiple changes to the source code during the implementation of a software system, being
aware of the impact of a code change task to the performance of a software system is an important concern
for developers [12].

Methods such as profilers and performance tests allow developers to analyze the performance of only a
single version of a system at a time, and force developers to change to a different task (interrupting their
flow). Our intuition is that developers would benefit from analyzing the live performance of an evolving
system as its source code changes. We expect that such an analysis would help them identify changes that
severely decrease the performance of a system.

We conjecture that a pervasive tool, (i.e., a tool that is omnipresent during the implementation of a software
system) can make developers aware of important changes in the performance of a system without disrupting
the implementation flow. Although using this visualization approach, developers could obtain such a
pervasive view of the live performance of a system, we observe that they can be reluctant to sacrifice space
in their integrated development environment (IDE). Developers willing to adopt a visualization tool to
monitor software performance, either need to use a stand-alone tool that forces them to leave the IDE, or
they need to include an add-on to their IDE, sacrificing valuable screen space. We consider that a tool

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A pervasive visualization tool displayed in immersive augmented reality that uses a city
metaphor and complementary scatter plot techniques.

displayed in immersive augmented reality (see Figure 1.1) can alleviate these issues, promote the use of
performance visualization, and increase developer’s awareness of the impact of code changes to software
performance. Consequently, we formulate the following research question:

RQ: How can a visualization tool support developers in the analysis of the impact of source code

changes to the performance of a system?

To increase developer awareness of the impact of code changes in the performance of software systems, we
present PerfVis, a pervasive visualization tool displaying in immersive augmented reality. PerfVis provides
an omnipresent overview of the system’s performance, taking advantage of visualization techniques to
increase developer’s awareness to the impact of code changes. We build on previous work [18], and
focus on designing a visualization tool to support software performance analysis tasks. To unveil the
benefits of our tool, we present the results of an initial evaluation that focuses on user performance and
user experience. In the evaluation, we not only measure traditional variables of user performance such as
completion time and correctness, but also include recollection. Furthermore, we also measure variables of
user experience such as cognitive load and emotions.

1.1 Contributions

The main contributions of this thesis are: (i) PerfVis, a tool to visualize software performance in immersive
augmented reality, (ii) a discussion on design choices, and (iii) a user study. We also contribute to the

CHAPTER 1. INTRODUCTION 3

reproducibility of our research by making the implementation of PerfVis publicly available1.

1.2 Outline

The remainder of this thesis is structured as follows: In Chapter 2 we elaborate on the state-of-the-art of
research in 3D software visualization and the use of immersive augmented and virtual reality. Chapter 3
introduces PerfVis, and describes its design and implementation details. Chapter 4 presents an empirical
user study. We conclude the thesis in Chapter 5 and outline future work.

1http://scg.unibe.ch/research/perfvis

http://scg.unibe.ch/research/perfvis

2
State of the Art

We identify three main categories of related work (i) 3D visualizations, (ii) visualizations displayed in
immersive augmented and virtual reality, and (iii) visualization of software performance. In the following
we elaborate on the main aspects of the related work, and discuss how they differ from our proposed
approach.

2.1 3D Visualization

A number of 3D visualization tools have been proposed to support software development concerns. SeeIt

3D [26] uses a 3D scatter plot visualization to represent software metrics collected from Java source code
to support developers in software comprehension tasks. A comparative evaluation between the proposed
visualization tool with a popular IDE (i.e., Eclipse) that included the analysis of data collected from eye
tracking showed that participants who used SeeIT 3D achieved a better performance in overview tasks, but
took longer time for bug-fix tasks. SynchroVis [31] presents a visualization based on the 3D city metaphor
that displays the structure and metrics of software systems, as well as program traces and synchronization
aspects (e.g., semaphores/wait) to support the analysis of the behavior of concurrent software systems.
Tymchuk et al. [29] propose a tool to identify quality anomalies in dynamically typed software systems
by providing a 3D visualization that allows developers to analyze the co-evolution of source code and

4

CHAPTER 2. STATE OF THE ART 5

quality metrics in a software system. The visualization uses the space-time cube technique to represent
(i) software components, (ii) software versions, and (iii) broken quality rules. We observe that these tools
display the 3D visualization on a standard computer screen and focus on performance data collected using
static analysis. In contrast, we propose visualizations displayed in immersive augmented reality that focus
on live performance data collected using dynamic analysis.

2.2 Visualization in Virtual and Augmented Reality

Some studies have focused on the perceptual and cognitive properties of visualizations displayed in
immersive virtual and augmented reality. Elliott et al. [9] elaborate on movement and cognitive mechanisms
for which virtual reality is of advantage. The study also discusses that spatial memory (boosted by virtual
reality) benefits navigation. Also, the manipulation of objects that resemble real reality can improve
perception and retention. A number of studies [5, 23, 30] have shown various potential benefits of using
visualization in immersive augmented and virtual reality proposed in multiple domains other than software
engineering. In contrast, we focus on proposing a visualization tool specifically to support software
developers in the analysis of performance.

A few studies have focused on evaluating visualizations displayed in immersive augmented and virtual
reality to support software comprehension tasks. Merino et al. [15] conjectures that usability issues (e.g
navigation, occlusion, selection and text readability) of 3D visualizations are an effect of displaying them
in a 2D medium (e.g., standard computer screen). The study proposes that the use of immersive augmented
reality can help to overcome these issues. The study elaborates on a user study that analyzes the prevalence
of these usability issues by comparing a similar visualization displayed on a standard computer screen to
one displayed in immersive augmented reality. An evaluation showed that immersive augmented reality
facilitates navigation and reduces occlusion, however, selection and text readability remain open issues.
Another study [17] hypothesizes that the medium used to display visualizations has an impact on its
effectiveness. The study discusses the results of a user study that compares visualizations that use the
city metaphor displayed using (i) a standard computer screen, (ii) a immersive virtual reality device, and
(iii) a 3D printed model. The study found that participants using city visualizations displayed in immersive
virtual reality achieved the highest recollection. As opposed to these studies, our research focuses on live
visualization of a stream of software performance data.

Some studies have proposed visualization tools displayed in virtual reality to support software compre-
hension tasks. Code Park [11] proposes an immersive visualization of software metrics and source code.
An evaluation showed that the proposed visualization displayed in virtual reality excels at usability and
significantly helps in code understanding. ExplorViz [10] presents visualization of software landscapes to
support software comprehension tasks. CityVR [18] proposes to gamify software implementation using a
3D city visualization displayed in virtual reality to boost developer engagement. The tool visualizes the
static structure of software using the city metaphor. Early results of developers using the visualization show

CHAPTER 2. STATE OF THE ART 6

benefits in engagement such as promoting curiosity, immersion, and excitement, and making developers
willing to spend considerable time using the visualization. By contrast, we propose the use of immersive
augmented reality to improve the awareness of the impact of changes to the source code to the performance
of software systems. Moreover, these tools focus on various static software metrics, while our tool includes
visualization of dynamic live performance data.

2.3 Visualization of Performance

The visualization of live performance is challenging due to the short time span that users have to analyze
the data. In consequence, several performance visualizations have focused on the post-hoc analysis
of performance data. JOVE [24] is a visualization tool for monitoring performance of Java programs.
To obtain an omnipresent view of the performance of the system, the tool adds little overhead to the
programming environment. Using the visualization, developers can obtain details on demand to identify
routines and threads in which the application spends a long time. Another tool [4] includes visualization
of the structure of parallel software systems. The visualization uses an execution graph to simplify the
analysis of the complex run-time behavior. Moreta and Telea [21] include a visualization of the behavior
of the memory allocator in C programs to optimize functionality, decrease fragmentation, and improve
response time. A scatter-plot is used to show how the memory usage changes over time. Another tool [22]
facilitates a visualization of software performance in real-time, using the city metaphor to represent the
structure and performance of a program. The buildings in the city represent the classes in the system, and
the height of the buildings represent the number of times the methods of a class are called during execution.
All these tools support the analysis of various aspects of software performance through visualization
displayed on a standard computer screen. In contrast, we rely on immersive augmented reality to display
our visualization.

Some studies have proposed visualization to support the understanding of performance of large software
landscapes. can be hard and crucial, since impeded performance might not be obvious. One study [8]
introduces a pattern-based visualization approach to help understand the behavior of large and complex
groups of web service applications. Another study [6] proposes a visualization tool, Streamsight, for
parallel processing systems, to develop, understand and debug these application, which is hard due to their
dynamic nature. Streamsight visualizes software systems as graphs, and includes views at different levels
of detail. The visualization updates in real time, adding and removing new nodes and updating the flows
through each node. Both tools focus on the performance of large software systems. While they might offer
visualizations on the application level, the focus of PerfVis is only on the application level.

The data obtained from profiling some software can be overwhelming. Several other approaches have
proposed visualization to support software performance analysis. Lin et al. [13] propose visualization
to navigate and analyze profiling call trees. The study confirms that filtering and aggregation are key
techniques to cope with the complexity of large call trees. They propose an approach to set the appropriate

CHAPTER 2. STATE OF THE ART 7

abstraction level of the visualized data. Another study [7] introduces a novel visualization tool, Zinsight,
to help understand and analyze operation system traces. Adamoli et al. [1] introduce Trevis, a tool that
visualizes calling context trees produced by profilers. Trevis produces calling context ring charts to
better scale to large data. Additionally, ring charts (i.e., calling context trees) can be compared with
intersection clustering and other methods. Another study [33] introduces lviz, a visualization tool to
analyze operation system traces to cope with complex and large data sets. All these approaches focus
on reducing the complexity of analyzing calling graphs produced by profilers through visualization that
use various techniques displayed on a standard computer screen. In contrast, we opted to use well-know
visualization techniques that displayed in immersive augmented reality can complement an integrated
development environment of choice unobtrusively.

A few software visualizations adopt augmented reality as a display medium. One study [15] evaluated
a city visualization displayed in immersive augmented reality to support software comprehension tasks.
Another study [28] that used the city metaphor in augmented reality to support the analysis of software
evolution. In contrast, we propose a city based visualization using immersive augmented reality to support
software performance tasks, which is an innovative and not yet explored effort.

3
PerfVis Overview

PerfVis is a tool to visualize software performance through immersive augmented reality [20]. Using
PerfVis developers can be aware of the workload of a software system without requiring their constant
attention. We summarize the characteristics of the context of PerfVis using a taxonomy proposed by
Maletic et al. [14] and Merino et al. [19].

PerfVis provides visualization in immersive augmented reality to support the programmer audience’s
efforts in system performance tasks. The visualization shows static data of the structure of the system
and dynamic data of the live performance of the system.

PerfVis is an extension of CityVR by Merinoet al. [18]. They implement the city metaphor to visualize a
software system in immersive virtual reality to support developers in system comprehension tasks. We
extend this tool with: (i) visualization of live dynamic performance data, (ii) the complementary scatter
plot, (iii) and implementing interactions.

8

CHAPTER 3. PERFVIS OVERVIEW 9

Figure 3.1: a© A detailed view of the dynamic city visualization, and b© the complementary scatter plot
that keeps the history of the overall performance of the system for a configurable interval of time.

3.1 Design

3.1.1 Medium: Immersive Augmented Reality

Most visualizations that support performance analysis tasks are displayed on a computer screen [19]. They
require developers to either use an application outside their development environment, or add a plug-in
to their environment that sacrifices some valuable screen space. Amongst the few visualizations that
implement a different medium most are displayed in immersive virtual reality [17]. These visualizations
require that developers completely change their development environment, and isolate themselves wearing
a headset. As opposed to these approaches, we argue that a medium that disrupts the development flow
as little as possible can significantly increase the usability of visualizations, since research [16] suggests
that the medium used to display a visualization can impact its effectiveness and efficiency . Immersive
augmented reality can reduce the effort required to find information, ease navigation, and improve
engagement of the users [5, 23, 30]. Consequently, we chose immersive augmented reality to display
PerfVis, because (i) developers can use the visualization as a complement to their usual development
environment (i.e., developers are required to wear a headset, but not to modify the rest of their environment),
and (ii) visualizations in immersive augmented reality are inherently displayed in 3D, which provides an
extra dimension to encode performance data of a software system.

We chose the Microsoft HoloLens to display the visualizations in immersive augmented reality and support
interaction with the user.

CHAPTER 3. PERFVIS OVERVIEW 10

3.1.2 Technique: City visualization and Scatter plot.

In a previous study [19], we observed that most visualizations to support developers in monitoring
performance used pixel-based techniques. These visualizations usually attempt to provide an overview of
a significant amount of data to promote the detection of visual patterns that may signal anomalies in the
performance of software systems. Instead, we adopt lightweight visualization techniques that involve less
cognitive effort to make developers aware of the performance of a system. Our visualization includes two
views: (i) a city visualization that provides a pervasive overview of the structure and performance of a
software system, and (ii) a scatter plot that displays the history of the performance of the system in the
past. We chose the city metaphor not only because it has shown to be effective in system comprehension
tasks [32] but also because of our familiarity with navigating a city. Since the visualization is intended as
an omnipresent companion to an IDE, we expect that the tool can offer opportune information without
overwhelming the user with the data’s complexity.

3.1.2.1 City visualization.

We opted to represent a metric of the performance of the software system using the color of buildings.
The visualization is always on and indicates the system performance collected during a short time frame.
In consequence, a glimpse at the city can make developers aware of the current overall status of the
performance, and a detail of the classes that are involved. Figure 3.1 a© shows a visualized software city.
Each building represents a class in the software system. Buildings are grouped into districts according
to their packages. Each building can be configured to represent software metrics using three properties:
(i) height, (ii) footprint (e.g., squared base), and (iii) color. We consequently configured the city in the
following manner: each building’s (i) height encodes the number of methods of the represented class,
(ii) footprint (i.e., squared base) encodes the number of attributes of the represented class, and (iii) color
encodes the number of times that methods of the class are called during execution. A building turning red
represents the number of times methods of the respective class have been called in the immediate past.
The more intense the red, the higher is the number of method calls to that class.

3.1.2.2 Scatter plot.

The scatter plot helps developers analyze changes in the dynamic city visualization that might be overlooked
by providing an overview of the immediate past performance. With the scatter plot a developer can:
(i) compare performance at different times, (ii) search for outliers or (iii) inspect the behavior over time.
Figure 3.1 b© shows the scatter plot to the right of the city visualization. The X-axis encodes time, and the
Y -axis encodes the classes in the system. Each mark represents a class that was involved in the execution
of the system at a point in time. The color of a mark encodes the number of times methods of a class were
called. The more intense the red, the more times methods of a class were called. Each row in the scatter

CHAPTER 3. PERFVIS OVERVIEW 11

plot represents the evolution of the number of times the methods of a class are called along time. Each
column is a snapshot of the performance of the whole system at a point in time.

3.1.3 Interaction: Selection and Navigation

Developers can interact with the visualizations through:

1. Selection: Through head movements users can point at and select elements in the visualization.
When the pointer hovers over a building in the city visualization or a mark in the scatter plot,
the name of the corresponding class is displayed. Users select buildings by performing an airtap

gesture1. Once a building is selected that building and the marks that represent the same class
are simultaneously highlighted with a yellow background. Similarly, when selecting a mark in
the scatter plot, the building and marks that represent the same class are highlighted. Using this
feature developers relate the information they get from one visualization to the elements in the
complementary visualization. Highlighting elements is also useful to re-identify buildings after
focus was disturbed.

2. Navigation: To gain an overview over the whole system, the user can move around and inspect the
city from different angles. This way the user can compare metrics between different buildings.

3.2 Implementation

We used Unity in conjunction with the Microsoft Mixed Reality Toolkit2 to develop PerfVis. Designing
a tool for immersive augmented reality can pose a great challenge due to the novelty of the medium.
The aforementioned combination of tools allowed us, with limited computer graphics experience, to
start developing in immersive augmented reality. We used Unity to design holograms and program their
behaviours, while the Mixed Reality Toolkit provides interfaces for gesture recognition and renders
the virtual objects into immersive augmented reality. In Unity, entities are realized with GameObjects,
containing transform-, material-, behaviour-components and also other GameObjects. This allows child
objects to inherit properties from their parents, especially the position. In this section we elaborate on
some components and particularities we encountered during development. See Figure 3.2 for an graphical
overview.

Data Flow We animate PerfVis with the dynamic performance data of the monitored system to visualize
the current number of method calls to all classes in the system. To attain this data, PerfVis periodically
queries a web server that exposes a file generated by a profiler. The file (.csv) is a list of pairs of a class
name and a value between 0 and 1 (e.g., MapBuilder: 0.5). The file is then iterated through and the

1https://docs.microsoft.com/en-us/hololens/
2https://github.com/Microsoft/MixedRealityToolkit-Unity

https://docs.microsoft.com/en-us/hololens/
https://github.com/Microsoft/MixedRealityToolkit-Unity

CHAPTER 3. PERFVIS OVERVIEW 12

Figure 3.2: An overview over a few components of the implementation and their communication.

corresponding buildings are colored accordingly. Additionally, all received data is aggregated and saved
for later display in the scatter plot.

City Visualization Each time the visualization is started, the city visualization is built from the .csv
file created by CodeCity. Each line in the file contains information to create one building with: (i) the
dimensions, (ii) position, (iii) and the scale. In the same step, each building is assigned the name of the
corresponding class and the behaviour to change color. After all buildings are created, a dictionary is set
up to find buildings in the city by their name. As the visualization is running, and buildings are colored red,
each building has its own behaviour to turn back to its base color after a set amount of time has elapsed.

Scatter Plot The scatter plot contains an overview over the past performance of the whole system,
a time vs class chart. The implementation posed a number of challenges during development, first of
all, visualization of time. With the passing of time, marks in the scatter plot have to move backwards.
Due to concerns about computational power of our immersive augmented reality device, we opted for
discrete instead of continuous time steps (i.e., marks periodically move backwards a set distance and are

CHAPTER 3. PERFVIS OVERVIEW 13

still otherwise). Another question we encountered was about how to insert marks into the scatter plot.
Marks have to: (i) be able to be inserted at the correct height, according to a class name, (ii) be moved
backwards in the scatter plot, (iii) highlighted when the corresponding building is selected, Consequently
we implemented the scatter plot in the following manner: Marks in the scatter plot are aggregated into an
object by their position on the x-axis. With this approach, when elements in the scatter plot have to move
backwards, we only have to move each x-object backwards one step, and thus moving all marks (through
inheritance). When a row has to be highlighted, the tool simply traverses all x-groups and passes on which
mark to highlight. To ascertain at which height a mark has to be inserted, in order to represent the correct
class, we used a dictionary that maps class names to a float value representing the classes height in the
scatter plot.

Consequently when the visualization starts, the background, the axes are created, an array is set up to
contain the objects representing the discrete steps on the x-axis and the dictionary mapping class names to
a height is created. During operation, the graph moves through these steps:

1. Move all objects in the x-axis backwards.

2. Delete the object that leaves the scatter plot, create a new empty object and place it at the beginning
of the scatter plot.

3. Fetch the aggregated performance data, calculate the average for each class and then insert the
corresponding marks.

4. Repeat from step 1.

Interaction Handlers All elements (i.e., buildings in the city and marks in the scatter plot) can be
interacted with either by hovering or selection. When the user hovers over an object, the cursor is placed
on the hovered object and rotated to be aligned with the surface. When a building in the city visualization
is hovered over, the corresponding class name is displayed in a fixed relation to the camera (top left of
the users vision). When an element is selected (in the scatter plot or the city visualization), the element is
highlighted with a orange glow, see figure 3.3, and the selection is forwarded to the respective other view.

3.3 Workflow

PerfVis uses the Moose analysis environment3 to extract data of the structure and metrics of a software
system. The static landscape of the city visualization is built using the CodeCity4 implementation. The
dynamic data of the performance of the system is obtained using the Spy25 profiler tool. The visualizations

3http://moosetechnology.org
4http://smalltalkhub.com/#!/˜RichardWettel/CodeCity
5https://github.com/ObjectProfile/Spy2

http://moosetechnology.org
http://smalltalkhub.com/#!/~RichardWettel/CodeCity
https://github.com/ObjectProfile/Spy2

CHAPTER 3. PERFVIS OVERVIEW 14

Figure 3.3: A building in the city visualization a© unselected, b© hovered and c© selected and highlighted

are built using Unity6. Figure 3.4 shows 5-step workflow that developers have to follow when working
with PerfVis, the steps are:

(1) Create Model: Using Moose, developers create a model of the software system they want to monitor.
The model contains data of the structure and static metrics of the system.

(2) Build the City: Using CodeCity, developers create a city visualization of the modeled system. The
properties of the visualization (e.g., position and size of buildings) are exported to a file.

(3) Profiling: Using Spy2, our tool obtains a stream of metric performance data of the running system.
The stream is made available online using a web server.

(4) Setup Unity: Using the “Holographic Remoting Player” for Unity, users connect Unity to their
HoloLens through a wireless network 7. Unity then has to be configured to use the model created in
Step (2) as input for the visualization, and the IP address of the web server that exposes the performance
data. Additional parameters can then be set, such as the size of the buffer of the scatter plot, and the
rate at which the dynamic performance data is retrieved.

(5) Immersive City Visualization: Using a MS HoloLens device, the developer can use the live visual-
ization to monitor the performance of the running software system.

After following the steps, the setup will look like in Figure 3.5. Three machines are involved: (i) Computer
1, running the software system to be monitored, the web server, and the profiler tool, (ii) Computer 2
running the visualization tool, and streaming the visualization to the HoloLens device, and a (iii) HoloLens,

6https://unity3d.com/de
7https://docs.microsoft.com/en-us/windows/mixed-reality/holographic-remoting-player

Figure 3.4: Workflow when working with PerfVis

https://unity3d.com/de
https://docs.microsoft.com/en-us/windows/mixed-reality/holographic-remoting-player

CHAPTER 3. PERFVIS OVERVIEW 15

rendering the visualization in immersive augmented reality as a companion tool for the IDE. A wireless
network is used for communication. We argue that a visualization that disturbs the existing workflow as
little as possible is more effective. This setup allows for minimal disturbance of the existing workflow, as
only a profiler and web server have to be installed, while the remaining parts (i.e., Computer 2 and the
HoloLens) only have to be set up once. Connectivity between Computer 1 and Computer 2 is established
by configuring Unity with the IP address of the web server, and between Computer 2 and the HoloLens
through the ”Holographic Remoting Player”. Although all the components could co-exist in a single
computer, we think this distributed architecture could be useful to extend the uses of our visualizations for
remote monitoring.

Figure 3.5: Setup required to work with PerfVis. Three machines are involved: (i) Computer 1, (ii)
Computer 2 and the (iii) HoloLens.

More details are available in the PerfVis web page8.

8http://scg.unibe.ch/research/perfvis

http://scg.unibe.ch/research/perfvis

4
Evaluation

In this Chapter we present a user study we carried out to evaluate PerfVis. Firstly, we elaborate on the
design of the study. Secondly, we present an analysis and discussion of the results. Finally, we discuss
lessons learned during the development of the tool.

4.1 User Study

We conducted a user study to evaluate the effectiveness of PerfVis to support software performance tasks.
We characterize the evaluation of PerfVis using a taxonomy proposed by Maletic et al. [14] and Merino
et al. [19]. Firstly, we discuss our design choices, and explain our thought process. We then present the
procedure that we followed and the data we collected.

The objective of the study is to assess the impact of using PerfVis on the user performance and user
experience of developers in software performance tasks. Since PerfVis is a prototype tool that uses
visualization in immersive augmented reality, comparing PerfVis to a state-of-the-art software performance
tool (e.g., AppDynamics1, New Relic APM2) could produce misleading conclusions (since these tools
are mostly based on text and they are displayed on the computer screen). We evaluate our tool via a user

1https://www.appdynamics.com/
2https://newrelic.com/products/application-monitoring

16

https://www.appdynamics.com/
https://newrelic.com/products/application-monitoring

CHAPTER 4. EVALUATION 17

study in which the only independent variable is the medium. To this end, we compare PerfVis to a similar
visualization tool displayed on the computer screen. Using the capabilities of the development environment
used to implement our tool (i.e., Unity), we deployed PerfVis on a standard computer screen as well as in
immersive augmented reality.

4.1.1 Study Design

The results of previous studies [15, 17, 18] indicate that immersive augmented (and virtual) reality can
increase the effectiveness of 3D visualizations. To evaluate the effectiveness of our tool, we include in the
evaluation dependent variables of user performance (i.e., completion time, correctness, and recollection)
and user experience (i.e., emotions, cognitive load) of participants who used our visualization tool in a
laboratory setting.

We choose to use a within-subjects design. That is, all participants use our visualization tool both displayed
in immersive augmented reality, and also displayed on a computer screen. This design allows participants
to reflect and compare the two setups, and by using the think-aloud protocol allows us to obtain valuable
insights. Based on the results of pilots to test various configurations, we adapted the design of the study.
We especially took care that the difficulty of tasks and the complexity of scenarios allowed participants to
complete the session in approximately one hour.

We split the session into two parts: one in which participants used our visualizations displayed in immersive
augmented reality, and one in which the visualizations are displayed on a standard computer screen. In
each part of the study participants followed the same protocol. First, participants had a training phase
to understand the visualization techniques and to get comfortable with our tool deployed in a particular
medium. Then we asked participants to complete a set of tasks using our proposed visualization tool.
Finally, participants filled in a questionnaire to collect their impressions.

To analyze recollection we showed participants five pictures as shown in Figure 4.1. Each picture contains

Figure 4.1: An exemplary figure we used to measure user recollection

CHAPTER 4. EVALUATION 18

Figure 4.2: Example of the data set we used to collect experienced emotions.

a view of the city visualization that participants actually used during the session as well as three other
views of similar city visualizations. On each picture participants were asked to identify the city they used
to solve the tasks.

To measure user experience we reused a set of emotions introduced by Merino et al. [17]. In it, emotions
are divided into pleasant and unpleasant and then further grouped into categories (e.g., interested, alive,
confused, afraid). Each category contains around fifteen emotions. After the session, participants were
asked to select ten emotions they experienced from the set. Figure 4.2 shows how we arranged the emotion
cards on a table, for participants to select from. This allowed us to then aggregate the experienced emotions
by category.

We elaborate on the main characteristics of our study according to the extended benchmark properties
proposed by [17] (i.e., medium, technique, tasks, data set, and interactions).

Medium We design the study to use the following media: 1. Immersive Augmented Reality 2. Standard
Computer Screen. In particular, we choose the following apparatus to conduct the study:

1. Microsoft HoloLens: We choose Microsoft HoloLens to render our visualization in immersive
augmented reality. The HoloLens is an untethered head-mounted stereoscopic display, featuring two
stereoscopic displays with 1268×720 pixel resolution, 60 Hz content refresh rate, and a 30° H and
17.5° V field of view. Interaction is possible through head tracking, gesture input, and voice support.

2. Alienware Laptop: We choose an Alienware laptop to render our visualizations on a standard
computer screen. The laptop features a four core 3.8 GHz CPU, a Nvidia GTX 1060 GPU, a 13.3
inch 2560×1440 display, and 16GB of memory.

Technique The PerfVis tool includes two visualization techniques:

1. City Metaphor: In a software city buildings represent the classes of a software system. Buildings

CHAPTER 4. EVALUATION 19

are grouped into districts that represent the packages of the system. Each building can encode
three metrics of the classes of the software system. The city metaphor can visualize data in three
dimensions: (i) the height, (ii) the base, and (iii) the color of a building, Consequently, we configured
our city visualization so buildings (i) height represents the number of methods in classes, (ii) square
base size represents the number of attributes in classes, and (iii) color represents the number of
method calls to a class in a interval of time.

2. Scatter Plot: The X-axis represents time and the Y -axis represents the classes in the system. A
mark in the scatter plot represents that methods of a class have been called at some point in the
execution of the program. The color of the mark represents the number of method calls to the class
in a interval of time. Following a row in the scatter plot reveals the evolution of the number of
method calls to a class over time. Each column is a snapshot of the performance of the whole system
at a point in time.

Tasks To formulate appropriate tasks we draw inspiration from questions that involve performance
concerns that arise during software development. Table 4.1 presents the tasks we included in the study as
well as our rationale to include them. Firstly, we included five tasks (i.e., T1, T2, T3, T4 and T5) to observe
participants as they obtain an overview over the city visualization. Tasks T6 and T7 require participants
to identify outliers in the city visualization and the scatter plot. Tasks T8 and T9 require participants to
analyze multiple metrics of static and dynamic aspects of the system using the city visualization (i.e.,
participants have to consider height and color of buildings at the same time). Finally, we wanted to observe
participants as they navigated the visualizations to get the most useful view of the city visualization to
concentrate on multiple buildings at the same time with task T10.

Data Set Since multiple changes in the source code can impact the performance of system, to reproduce
a data set that captures realistic anomalies in the performance of a software system is a challenging task.
To conduct a user study that allows us to evaluate the benefits of our visualization approach, we define a
criterion to which the data set has to comply. In consequence, two data sets are used to conduct our study:
(i) a file of static metric data of a software system that are visualized as a city, and (ii) a stream of dynamic
performance data that are visualized in the colors of the city and the scatter plot. To this end, we selected
the Roassal3 system for Pharo Smalltalk as the subject system to be visualized with PerfVis. To mitigate a
learning effect due the use of a within-subjects approach, we require two different city visualizations to be
used in each part of the sessions. To achieve this, we build a synthetic data set by preserving the layout of
buildings and arbitrarily exchanging the heights of pairs of buildings in the city. As a result we obtain two
similar city visualizations with the same layout, a similar distribution of heights, but different landscapes.

When conducting pilot observational studies we observed that simply stressing the application to collect
performance data, and thus animating the city, presents several issues. Reproducibility is not guaranteed
(a software system might not work in a deterministic way). Furthermore, it is difficult to stress an

3http://agilevisualization.com/

http://agilevisualization.com/

CHAPTER 4. EVALUATION 20

Ta
bl

e
4.

1:
Ta

sk
s

in
cl

ud
ed

in
ou

ru
se

rs
tu

dy

ID
Ta

sk
R

at
io

na
le

T
1

Id
en

tif
y

th
re

e
cl

as
se

s
th

at
w

er
e

in
vo

lv
ed

in
th

e
ex

ec
ut

io
n

of
th

e
sy

st
em

To
ga

in
an

in
iti

al
un

de
rs

ta
nd

in
g

of
ch

an
ge

s
in

th
e

pe
rf

or
m

an
ce

of
a

so
ftw

ar
e

sy
st

em
,w

e
as

se
ss

w
he

th
er

ou
r

vi
su

al
iz

at
io

ns
bo

os
tt

he
ab

ili
tie

s
of

de
ve

lo
pe

rs
to

ob
ta

in
an

ov
er

vi
ew

.

T
2

Id
en

tif
y

th
e

3
cl

as
se

s
th

at
w

er
e

ac
tiv

e
fo

rt
he

m
os

ta
m

ou
nt

of
tim

e
du

rin
g

th
e

ex
ec

ut
io

n

T
3

Id
en

tif
y

th
e

3
cl

as
se

s
th

at
w

er
e

ac
tiv

e
m

os
ti

nt
en

si
ve

ly
du

rin
g

th
e

ex
ec

ut
io

n
(h

in
t:

m
os

t
in

te
ns

e
re

d
co

lo
r)

T
4

Id
en

tif
y

3
cl

as
se

s
th

at
w

er
e

ex
ec

ut
ed

se
qu

en
tia

lly
.

(h
in

t:
bu

ild
in

gs
th

at
tu

rn
re

d
se

qu
en

tia
lly

)

T
5

Id
en

tif
y

3
cl

as
se

s
th

at
w

er
e

ac
tiv

e
in

pa
ra

lle
l

O
nc

e
de

ve
lo

pe
rs

ob
ta

in
an

ov
er

vi
ew

,
th

ey
us

ua
lly

ne
ed

to
id

en
tif

y
ou

tli
er

s
th

at
ca

n
be

sy
m

pt
om

s
of

ab
no

rm
al

be
ha

vi
or

of
pe

rf
or

m
an

ce
.

T
6

Id
en

tif
y

th
e

cl
as

s
w

ith
th

e
hi

gh
es

tn
um

be
ro

fe
xe

cu
te

d
m

et
ho

ds

T
7

Po
in

tt
o

th
e

tim
e

du
ri

ng
th

e
ex

ec
ut

io
n

at
w

hi
ch

th
e

hi
gh

es
ta

m
ou

nt
of

cl
as

se
s

w
er

e
ac

tiv
e

To
id

en
tif

y
an

ab
no

rm
al

be
ha

vi
or

,w
e

ev
al

ua
te

d
w

he
th

er
th

e
vi

su
al

iz
at

io
ns

he
lp

ed
de

ve
lo

pe
rs

to
ob

ta
in

qu
ic

k
es

tim
at

io
ns

of
pe

rf
or

m
an

ce
m

et
ri

cs
.

T
8

E
st

im
at

e
th

e
pe

rc
en

ta
ge

of
th

e
sy

st
em

th
at

w
as

ex
ec

ut
ed

at
le

as
t

on
ce

in
te

rm
s

of
vo

lu
m

e
of

bu
ild

in
gs

T
9

E
st

im
at

e
th

e
pe

rc
en

ta
ge

of
th

e
sy

st
em

th
at

w
as

ex
ec

ut
ed

at
le

as
t

on
ce

in
te

rm
s

of
nu

m
be

ro
fb

ui
ld

in
gs

T
10

R
at

e
th

e
ac

tiv
ity

le
ve

lo
fc

la
ss

es
X

,Y
,Z

du
ri

ng
th

e
ex

ec
ut

io
n

(0
ne

ve
ru

se
d

-5
al

w
ay

s
ac

tiv
e)

To
ga

in
in

si
gh

ts
in

to
th

e
us

ab
ili

ty
of

th
e

vi
su

al
iz

at
io

ns
as

a
co

m
pl

em
en

tt
o

de
ve

lo
pe

r’
s

en
vi

ro
nm

en
t,

w
e

ev
al

ua
te

d
w

he
th

er
ou

rv
is

ua
liz

at
io

ns
pr

ov
id

e
su

ita
bl

e
na

vi
ga

tio
n

an
d

in
te

ra
ct

io
ns

.

N
ot

e:
X

,Y
an

d
Z

w
er

e
th

e
cl

as
se

s
L

ab
el

G
en

er
at

or
,M

ap
B

ui
ld

er
an

d
A

xi
sA

da
pt

ed
B

ui
ld

er
E

xa
m

pl
e

in
im

m
er

si
ve

au
gm

en
te

d
re

al
ity

,a
nd

B
ro

w
se

rC
lo

si
ng

,
B

ro
w

se
rC

lo
se

d
an

d
E

xa
m

pl
es

in
th

e
st

an
da

rd
co

m
pu

te
rs

cr
ee

n
de

pl
oy

m
en

t.

CHAPTER 4. EVALUATION 21

application in a consistent way manually. Consequently, we had find a way to feed performance data into
the visualization that delivers consistent results and had to come up with a way to generate performance
data.

We developed a small tool to generate a synthetic stream of performance data. We stored performance data
as files (using a comma separated values format). Each line in the file contains a name of a class followed
by a float number between 0 and 1 (e.g., LabelGenerator: 0.7). When the visualization reads the data of
each line then the corresponding building is colored according to the value (i.e., 0, the building stays gray,
1 the building turns red). Sequentially reading the files periodically allows the tool to animate the city
visualization in a way that resembles authentic performance data.

The method we use to generate performance data to be used in the study has to meet the following criteria:

1. Time: We have to be able to set the duration so that the dynamic performance data animates the city
for six to ten seconds.

2. Complexity: The approach has to generate dynamic performance data with normally distributed
values (i.e., different classes have to be animated in a variety of shades of red).

3. Flexibility: The approach has to be flexible enough to allow us to tailor data sets for a particular
task. For example for T3 three classes have to be used in a sequential order.

We first collected performance data from the Spy2 [3] profiler tool. However, data generated this way
did not stress the capabilities of our visualization tool (animated only a few buildings for most of the
execution). In consequence, we decided to generate the performance data randomly. We ensured that
our approach allowed us to: (i) set the length of a data set stream (meeting criterion one), (ii) distribute
animated classes and shades of red normally, and (iii) build a tailored stream of performance data that
fulfill the needs of specific tasks, e.g., task T3 requires three buildings to be active sequentially.

Interactions We aimed at providing interactions in the visualizations displayed in both media (i.e.,
immersive augmented reality, computer screen) that were as similar as possible. To produce similar
interactions in both deployments, we implemented:

1. Selection: In PerfVis users hover over elements using head movements, and select elements with
airtap gestures. In the visualizations displayed on the computer screen, selection is carried out using
the mouse to hover over elements, and click to select them.

2. Navigation: In PerfVis users freely navigate the visualization using their body (e.g., approaching,
standing up, walking). In the visualizations displayed on the computer screen users can rotate the
city visualization by clicking and dragging using the mouse. The position of the city visualization
and the scatter plot are otherwise fixed (in both media).

CHAPTER 4. EVALUATION 22

4.1.2 Quality Focus

The quality focus of our study is twofold: user performance and user experience. We observe that the
standard computer screen is the display medium used in most software visualizations. Also developers are
used to interacting with applications using a mouse and keyboard. Due to these facts we expect that user
performance could be higher for participants who use visualizations displayed on the computer screen.
Previous studies found that immersive augmented and virtual reality can boost user experience. Therefore,
we conjecture that user experience could be greater when using visualizations displayed in immersive
augmented reality.

4.1.3 Participants

A total of 10 developers participated in the study, of whom 4 were PhD students and 6 were Bachelor
students in Computer Science. Participants were not paid, but they were invited and opted to participate
freely. The average age was 25.9 years with a standard deviation of 3.28. The average self reported
experience as software developer was 3.9 years (participants had up to 10 years of experience). We
also collected data of the previous experience of participants using immersive augmented reality devices
and using 3D visualizations in general. To this end, we used a 5-step Likert scale. We observe that
most participants have limited experience using augmented reality (rated 1.5 average), and using 3D
visualizations (rated 1.9 average). We mitigated this lack of experience by including a training phase, in
which participants could develop familiarity with such technologies. Due to incomplete information we
had to remove one participant from recollection analysis, and three participants from the cognitive load
analysis.

4.1.4 Procedure

We conducted the study in locations in two cities of Switzerland: Biel and Bern. The rooms in both
locations had a similar size and lighting. When participants arrived, they were asked to fill out a form
of consent to allow us to collect data during the session (e.g., video recordings). The session consisted
of a sequence of tasks that participants had to complete with the visualizations displayed in both media.
When working in immersive augmented reality, participants wore an immersive augmented reality device
(i.e., Microsoft HoloLens). When working with the standard computer screen, participants were seated
at a table, and interacted using a mouse and keyboard. A printout of the legend of the encoding of the
visualizations was available on the desk during the whole sessions.

Firstly, we read an introduction to the context of the study to the participants. In the introduction, we
explained to the participants the structure of the study, the visualizations to be used during study (e.g.,
city metaphor), the available interactions in the visualizations, and the tasks that they had to complete.
Secondly, participants had a training phase to learn the encoding and the interactions available in the

CHAPTER 4. EVALUATION 23

visualizations, and to understand the type of tasks they had to complete using the visualizations. When
participants felt comfortable using the visualizations and did not have more questions, they continued with
the following phase. Third, participants completed the phase to collect performance data, in which we
asked them to complete 10 tasks. For each task, we read out loud a task, then loaded a data set tailored to
the task, and then made annotations of the answers of participants. Fourth, participants were presented
with a table in which we placed 250 emotion cards. To facilitate search, we sorted the cards into pleasant
and unpleasant emotions (and placed them in different sides of the table), and grouped the cards into eight
categories of positive emotions (i.e., open, happy, alive, good, love, interested, positive, and strong, and
eight of negative emotions (i.e., angry, depressed, confused, helpless, indifferent, afraid, and hurt, and sad)
(see Figure 4.2). The set of emotions used was previously introduced by Merino et al. [17]. Participants
were asked to select 10 cards that identify the emotions they experienced when using the visualizations
displayed in each medium. Fifth, participants were asked to fill out the NASA TLX questionnaire 4 to
measure cognitive load. Finally, we measured recollection. We prepared five sets of four different city
visualizations (see Figure 4.1). Participants were shown each set in a sequence, and for each asked to
identify the city visualization that they used previously to complete the set of tasks.

4.1.5 Data Collection

To collect relevant data during the study that allowed us to explore our conjectures, we

(i) video recorded participants as they interacted with the visualizations and answered questions,

(ii) video recorded the view of visualizations as seen by participants,

(iii) kept records of the list of emotion cards that participants introspectively selected to identify their
emotions when using visualizations, and

(iv) kept records of the cognitive load index from the NASA TLX questionnaire.

4.2 Results

We collected user performance (i.e., correctness, completion time and recollection) and user experience
(i.e., emotions and cognitive load) data. In the following we present an analysis and discussion of the
results.

4.2.1 User Performance

An effective use of visualizations implies achieving the desired goal. An efficient use implies achieving
the goal (i.e., accurately support the analysis of software performance data) with the least resources (i.e.,

4https://en.wikipedia.org/wiki/NASA-TLX

https://en.wikipedia.org/wiki/NASA-TLX

CHAPTER 4. EVALUATION 24

Figure 4.3: Average correctness of all participants in each task.

completion time). We now present and discuss the results related to user performance.

4.2.1.1 Correctness

To measure correctness, we rated the answers of participants using a percentage scale (i.e., 100% being
completely correct, and 0% being completely incorrect). See Table 4.1 for a list of all tasks. To rate tasks in
which we asked participants to identify one or three classes (i.e., T1, T2, T3, T4, T5, and T6) we calculated
the percentages in the following way:

1. In most tasks (i.e., T1, T2, T3, T4, and T5) we calculated the percentage by interpolating the values
using the most incorrect and the most correct answer.

2. In task T6 we observe that defining the most incorrect answer could be misleading. Comparing
to the shortest building would not represent a realistic answer, and it would hide the differences
between the answers of participants. To this end, we chose to interpolate a value by comparing the
top ten closest answers to the correct one.

3. When participants had to answer numerical or percentage values (i.e., T7, T8, T9 and T10) we also
calculated the percentage by interpolating between the most correct and the most incorrect answer.

Figure 4.3 shows the average correctness of all participants for the tasks. We observe that correctness
is fairly similar in all tasks, with the exception of tasks T8, T9, and T10 that present lower levels of
correctness. Participants who used immersive augmented reality reached a slightly higher correctness in

CHAPTER 4. EVALUATION 25

Figure 4.4: Average completion time of all participants in each task

tasks T1, T2, T3, and T4. These tasks were included to observe participants as they get an overview. A
reason for the higher correctness in these tasks could be that participants in immersive augmented reality
were able to navigate the visualization using natural body movements, which facilitated their navigation to
obtain an overview. Additionally, immersive augmented reality allows participants to get a better overview
by providing a much larger display area.

Correctness in tasks T5 through T10 turned out as initially expected, as participants using the standard
computer screen achieved higher correctness. The difference in correctness is on average 7% (tasks T8

presents a difference of 19%). We asked participants to estimate the percentage of the classes of the
system that were called at least once during the execution weighted by the number of buildings in the city
visualization (T9), and weighted by the volume of buildings (T8). We observe that participants achieved
higher correctness in task T9 than in T8, which could be due to the added complexity of weighing buildings
by their volume.

4.2.1.2 Completion Time

We define completion time as the interval beginning when the dynamic visualization starts and ending
with the definitive answer of participants. We extracted completion time from videos recorded during the
study. Since all participants have significantly more experience using a standard computer screen than an
immersive augmented reality device, we expected participants to achieve faster completion time using a
computer screen.

CHAPTER 4. EVALUATION 26

Figure 4.4 shows average completion time for all tasks. Participants completed most tasks in less time
when using visualizations displayed on a computer screen than when visualizations were displayed in
immersive augmented reality. Interestingly, tasks T4 and T6 were completed much faster in immersive
augmented reality. Task T6 asked participants to identify the class with the highest number of classes (i.e.,
the highest building) that was used. In immersive augmented reality, participants can position themselves
to view the visualization from a side (i.e., a skyline view). Possibly this made it easier to identify the
highest building in the city visualization.

Participants in immersive augmented reality completed tasks on average 4 seconds slower. Completion
time in task T8 shows the highest difference (on average participants required 13 seconds more to complete
the task when using the visualizations in immersive augmented reality). We reflect this could be due the
previous experience of participants using a computer screen (and interacting with a keyboard and a mouse).

4.2.1.3 Recollection

We chose to measure recollection as another aspect of user performance. To measure recollection we used
five pictures that contain four similar city visualizations (as shown in Figure 4.1). Participants were shown
the pictures in a sequence and asked to identify in each of the pictures the city visualization they used to
complete the tasks.

We observe that most participants report little experience using augmented reality devices (1.5 out of 5 in
average). Therefore, we conjecture that they could be willing to spend some time using the visualizations,
and so to increase their recollection. Consequently, we expect recollection in immersive augmented reality
to be comparable to or higher than with a computer screen.

Figure 4.5 shows recollection scores of participants using immersive augmented reality and Figure 4.6
the computer screen. Participants achieved a fairly similar recollection in both deployments. After using
visualizations in immersive augmented reality only six recollection questions were answered incorrectly
(one more incorrect answer than participants who visualized using a computer screen).

4.2.2 User Experience

The rise of unpleasant emotions when using a visualization tool can make developers reluctant to adopt it
for daily usage. Therefore, we opted to include user experience (in the dependent variables) to evaluate the
effectiveness of PerfVis.

A previous study [15] suggests that displaying visualizations in immersive augmented reality can help
to alleviate usability issues (e.g., navigation, occlusion). Another study [18] suggests that immersive
augmented reality can boost user experience. Hence, we expect user experience could be higher when
using visualizations in immersive augmented reality than when they are displayed on a computer screen.

CHAPTER 4. EVALUATION 27

Figure 4.5: Scores for each participant in Recollection for the HoloLens

4.2.2.1 Emotions

The emotions felt while working with a software visualization tool are important to measure the overall
user experience. However, for developers to identify the emotions they felt when using visualizations can
be challenging.

To collect emotions we utilize a set of emotions introduced by Merino et al. [17]. In it, emotions are divided
into pleasant and unpleasant emotions, and then further grouped into categories (e.g., interested, alive,
confused or afraid). Each category contains fifteen emotions on average. After each session, participants
were asked to select ten emotions they experienced from the emotion cards. This facilitated developers to
identify their emotions, and also allowed us to then aggregate the experienced emotions by category.

Since immersive augmented reality can reduce usability issues of 3D visualizations, we expect participants
of the study to experience more pleasant emotions when using the visualizations displayed in immersive
augmented reality. Additionally, the novelty effect of using an augmented reality device, can make a
positive impact on the experienced emotions when using visualizations in immersive augmented reality.

HoloLens Figure 4.7 shows collected emotions (aggregated into categories) from participants using
immersive augmented reality. Although there are more pleasant emotions experienced, participants
experienced a considerable number of unpleasant emotions (53 pleasant, 40 unpleasant). Most unpleasant
emotions (31 out of 40) belong to the categories confused, angry, and helpless. This could be due to

CHAPTER 4. EVALUATION 28

Figure 4.6: Scores for each participant in Recollection for the Screen

difficulties in interacting with the visualizations. We observed that some participants struggled to perform
a correct airtap gesture, and to select an element in the scatter plot (due to its small size). We consider
this a fault in our design choices when developing PerfVis and plan to address these issues in future work.
Four pleasant categories of emotions (interested, open, alive and positive) were frequently experienced (40
out of 53 selected emotions), and no outlier can be identified. The most commonly experienced pleasant
category interested) could be due to the novelty effect of using immersive augmented reality. The second
most commonly experienced category (open) can be related to the feeling of freedom that immersive
augmented reality frequently offers (since visualizations are not limited to the size of a screen). Three
participants experienced significantly more pleasant than unpleasant emotions (7 pleasant, 3 unpleasant).
On the other hand, only one participant experienced just 3 pleasant and 7 unpleasant emotions. Several
positive and negative emotions were common amongst participants: interested (x6), playful (x5), intrigued,
free and curious (x3 each), frustrated and irritated (x4 each), and annoyed (x3).

Standard computer screen Figure 4.8 shows the collected emotions of participants using a standard
computer screen (that we aggregated into categories). When working with the computer screen, participants
experienced many more pleasant (49) than unpleasant (32) emotions. Most positive emotions (16 out of
49) belong to the open category, which could be due to participant’s familiarity with the medium, giving
them confidence (experienced 5 times) to accomplish the tasks. Although no clear outlier can be identified
from the unpleasant categories, most emotions commonly experienced belonged to the categories confused

CHAPTER 4. EVALUATION 29

Figure 4.7: Collected emotions per category experienced when working in immersive augmented reality

and angry. We think this is due to participants being frustrated with the tool, since they expected higher
quality or more features. Common emotions amongst the participants were: confident (×5), interested

(×4), challenged (×3), irritated and uncertain (×3 each).

Comparison We expected participants to have a better experience when working in immersive aug-
mented reality. Comparing emotions gathered in both implementations does not entirely confirm this
expectation. Although most pleasant emotions were experienced in immersive augmented reality (53)
the difference to those experienced with the computer screen (49) is not significant. Additionally, fewer
unpleasant emotions were experienced with the computer screen (32) than in immersive augmented reality
(40). In immersive augmented reality, participants felt interested and open, but also confused and angry.
When using visualizations on a computer screen participants felt open and positive, but also confused and
angry. In conclusion, we do not identify clear distinctions between the emotions experienced in immersive
augmented reality and a computer screen.

4.2.2.2 Cognitive Load

We argue that the cognitive load has an impact on the user experience. Working for a long time with a
tool that involves high cognitive load can be tiring, and thus decrease the user experience. We gather data
of the cognitive load of participants of the study by using the NASA TLX questionnaire, a widely used

CHAPTER 4. EVALUATION 30

Figure 4.8: Collected emotions per category experienced when working with a computer screen

assessment tool. Since all participants have little experience using and interacting in immersive augmented
reality, we expect the cognitive load could be higher in that medium.

Figure 4.9 and Figure 4.10 contain answers of seven participants to the TLX questionnaire for both
deployments. From the figures it is apparent that participants experienced various levels of mental demand.
Only two participants (P2 and P5) experienced higher physical demand when working in immersive
augmented reality, where body movement is used to navigate the visualizations, while usually participants
were sitting to work with the computer screen. During the session, most participants in immersive
augmented reality mostly sat in a chair and approached the visualizations to navigate them. Participants
using the computer screen tended to perceive themselves to be more successful in accomplishing tasks,
which could be explained by their familiarity with the computer screen setup. P3, P5, P6 and P7 show
a similar trend in questions four and five. Each perceived themselves to be similarly successful in
accomplishing tasks (question four) in both deployments, and perceived a similar effort required to achieve
that level of performance (question five). P2, on the other hand, was more successful when using the
computer screen than in immersive augmented reality, even though the participant perceived the same
amount of work was necessary to reach the same level of performance. P4 expressed a similar perception.
Frustration was experienced by participants using both deployments in various levels. Interestingly, a trend
can be identified, in that participants who perceived high frustration in one deployment, perceived less
frustration with the other. In augmented reality P3 felt average mental demand but only slight physical
demand, while feeling very successful in accomplishing tasks and reporting very low frustration. P3

CHAPTER 4. EVALUATION 31

Figure 4.9: Answers to the NASA TLX questionnaire after working in immersive augmented reality

Figure 4.10: Answers to the NASA TLX questionnaire after working with a computer screen

CHAPTER 4. EVALUATION 32

also reported many positive emotions (7) and only few negative emotions (3). With a computer screen,
P3 reported similar mental, physical and temporal demand but felt less successful and more frustrated.
Consequently P3 had a worse experience with the computer screen, experiencing many more negative
emotions(7 negative, 3 positive emotions), probably due to frustration with the medium. P4 on the other
hand, answered similarly in mental demand, physical demand, temporal demand and success but very
dissimilarly in all other questions. In immersive augmented reality P4 felt that he had to work very hard to
accomplish his level of success and high frustration, thus reported only 4 positive emotions and 6 negative
emotions. With a computer screen, P4 hard to work less and felt little to no frustration, thus having a
much better experience (9 positive, 1 negative emotion). P4 was very frstrated when working in immersive
augmented reality, which could come from inexperience with the medium but also lack in quality of the
tool. P2 reported that he had to put in similar amounts of effort in both deployments, but felt significantly
more successful working with a computer screen and reported higher frustration working in immersive
augmented reality. He felt much more efficient, working more successfully with the same effort, with the
computer screen and consequently reported emotions like reliable and confident.

4.3 Lessons Learned

Scatter plot When surveying software performance in the city visualization developers can miss some
detail, in which case an overview of the immediate past performance can help. Our approach to provide
such an overview is the scatter plot. We observed that participants used the scatter plot well to compare
performance at different times (T7) but otherwise struggled to interact with it. We observe some issues
with the scatter plot:

1. Selection involves head movement. Reliable selection thus requires stable head movement and
posture, which can be hard when the developer is not used to it. Additionally, performing an airtap
gesture can further disturb the steady head posture.

2. Since the Y -axis represents classes (i.e., contains all classes in the system), marks in the scatter plot
are very small in that dimension and difficult to select.

3. Configuring the buffer of the scatter plot to be too large can lead to performance issues, since too
many marks would be contained, making the visualization tool slow.

To ease selection we coped with the former issue by enlarging marks automatically when hovering over
them. Since the size of the buffer is configurable, the latter issue can be avoided. We observe that additional
work has to be put into the scatter plot to increase its usability.

Scale PerfVis aims to give developers an overview of the live performance of a software system with the
least disruption possible to the IDE. We tested PerfVis visualizations scaled at various sizes. We observed

CHAPTER 4. EVALUATION 33

that the visualizations had to be scaled to be large enough to give an overview of the complete system, but
also small enough to be used as a complement to a computer screen.

Text We learned that the position, rotation, and scale of text can greatly impact usability when navigating
by head movement. In an early prototype we chose to display the name of classes on top of their
corresponding building, however, we found that depending on the position of the user and the size of the
building, the text might be difficult to read or occluded by neighbouring buildings. We addressed these
issues by positioning the text in relation to the position of the camera. Specifically, we positioned the text
at the top left corner of the user’s field of view. Benefits of this approach are: (i) text is never occluded,
(ii) text always faces the user, and (iii) no movement of the head and only little movement of the eyes is
required to read the text.

Color We confirmed that selecting colors with high contrast eases distinction, recognition, and readability
of the elements of the visualizations. Also that abrupt changes in the color of buildings burden the analysis
of the city visualization. For instance, classes that are intensively called at some point in time and then
stop being called afterwards can lead to a sequence of colors that can abruptly change from an intense red
to a light gray. The result looks closer to a sequence of independent pictures than to an animation of the
same city visualization. To address this issue we standardized the minimum time after which a building is
colored and added an animation to smoothly change colors.

We used a continuous range of colors to represent the number of method calls to classes (i.e., color of
buildings). During the study, we observed that the continuous range may not constitute the best approach,
since participants struggled to distinguish the shades of red. In future, a discontinuous range of colors to
visualize method calls could be used.

4.3.1 Threats to Validity

Various issues might influence the validity this evaluation: (1) we compared user performance and user
experience (dependent variables) of participants using two different media (dependent variable), i.e.,
immersive augmented reality and a standard computer screen. To mitigate the learning effect we designed
the study to use multiple city visualizations and dynamic performance data for each deployment. In an
effort to produce similar city visualizations that do not a represent bias, we derived one city visualization
from the other one, by keeping the layout and randomly reassigning heights to buildings. All dynamic
performance data was generated following the same procedure, which guarantees to produce uniformly
distributed values; (2) To mitigate external bias, we included in the study the use of the city visualization
of a fairly popular software system (i.e., Roassal for Pharo Smalltalk). Tasks were inspired from questions
that arise in software performance issues described in the literature. To mitigate bias introduced by
the characteristics of the dynamic performance data, we used data randomly generated. Additionally,
developers participating in the study represent a convenience sample, and might have introduced a bias.

CHAPTER 4. EVALUATION 34

Finally, as the quality of the visualizations might have affected the obtained results, we mitigated this
fact by using the ”Holographic Remoting Player” feature to stream the visualization through a wireless
network, and making sure of a suitable bandwidth and latency. (3) To increase the reliability of the study,
we provide the protocol that we followed, furthermore we present the procedure used to score participants
answers in the tasks, and the procedures used to calculate completion time in Section 4.2. The set we used
to collect participant’s emotions and the NASA TLX is publicly available.

5
Conclusion and Future work

The impact code changes have on performance are hard to predict. A visualization can raise the awareness
for the impact but visualization tools force the user to change focus to a different task (e.g., from the
IDE to the visualization tool). We conjecture that a pervasive tool (an omnipresent companion during the
development process) can provide insight into the performance, without development process.

We propose PerfVis, a pervasive visualization approach to support developers in the analysis of software
performance. We display PerfVis in augmented reality, to gain an additional visualization dimension
and leave the IDE undisturbed. We selected the city metaphor to visualize a software, since research has
show its effectiveness in software visualization [15, 17, 18]. We included a complementary scatter plot, to
give developers an overview of the performance during the last minutes. We argue that our approach can
provide pervasive performance awareness without disrupting the development process.

We report on lessons learned collected from the development of PerfVis. For instance, we observed that
scaling the visualization to a suitable size was a challenging task. On the one hand the visualization
needs to be as large as possible to allow users obtain a detailed view, but there is a risk of scaling the
visualization to a too large size which would present a barrier to the purpose of our tool (i.e., as an
unobtrusive companion to the existing development setup). On the other hand, scaling the visualization to
a too small size would impede the users ability to accurately interact with the visualizations, in particular,
with small elements. Therefore, we explored various sizes during pilot experiments and found a suitable
size that balances user performance in interaction and exploration.

35

CHAPTER 5. CONCLUSION AND FUTURE WORK 36

We also learned that text position and rotation can be an issue in immersive augmented reality if choices
are not well grounded. For instance, we placed the text on top of the buildings and observed that when
the name of a small class is displayed the text can be hidden by surrounding buildings. We explored
some other ways and realized that since selection is based on head movement the displayed text has to
be readable with little head and eye movement, since both kinds of movement might slightly change the
positioning of the head thus moving selection away from the desired element.

Finally, we chose to place the text in a fixed position and rotation in respect to the camera, which guaranteed
that the text was always facing the developers and never occluded behind the buildings.

To evaluate the effectiveness of our tool we designed and conducted a user study. We carried out a pilot
study to identify ways to improve our tool. For instance, we observed that to trigger functionalities of the
visualizations through new types of interactions (e.g., airtap, head movements) can be hard to achieve
for users who have little or no experience with the involved technology. In the study, we compare our
visualization tool displayed in immersive augmented reality to the same visualization displayed on the
computer screen. We collect data of the user performance (i.e., completion time, correctness, recollection)
and user experience (i.e., emotions, cognitive load)of ten participants. We analyze the data, and discuss the
results.

In the evaluation of PerfVis we found that user performance was similar for participants who used
visualizations in an immersive augmented reality and on a computer screen. We consider this result
positive since participants had much less experience using an immersive augmented reality device than a
computer screen. Independent of the medium used to display the visualizations participants reported to
obtain a good user experience. After working in immersive augmented reality, participants reported many
positive emotions that might be a symptom of a high engagement (e.g., interested, open), but also some
negative emotions (e.g., confused, angry) possibly due the lack of functionalities and complex interactions.
We observe mixed results in terms of cognitive load. Some participants experienced a high cognitive load,
especially high frustration and low success when working in immersive augmented reality, while others
felt more successful and less frustrated in immersive augmented reality whom in return felt frustrated when
working with a computer screen. We conjecture that our design choices (e.g., implementation of the scatter
plot) might have some impact in the negative experience of participants during the experiment. However,
we gained valuable insight for future work in order to mitigate some negative feelings of user experience.

All in all we discuss the benefits and challenges of an immersive augmented visualization tool. Our work
demonstrates that a pervasive visualization is feasible, and also that it can bring possibilities to improve
the quality of the working environment for software developers.

We outline various avenues for future work:

1. Time Control: We observe that users would benefit from being able to stop and rewind the dynamic
scatter plot visualization. For example, user can use the city visualization to detect an anomaly in
the performance of a system, and then use the scatter plot visualization to investigate what occurred
in the past to identify potential explanations of such abnormal behavior of performance.

CHAPTER 5. CONCLUSION AND FUTURE WORK 37

2. User Specific Layout: Users could benefit from being able to modify the layout of the city visual-
ization. For instance, they could move particular buildings of interest to the front, and keep other
buildings in the back.

3. Filtering: Following the visualization mantra [27], users could filter the displayed buildings accord-
ing to their current needs (for instance, by making them transparent).

4. Aggregation: Users could set the granularity at which they want to analyze the performance of a
system. For example, they could be interested in analyzing performance at the package level. Thus,
all classes that belong to the same package would be represented as a single building.

5. Collaborative Visualization: We could allow multiple users to explore the same visualization
simultaneously and interact with each other.

6. Scale: In future work, choosing the scale more deliberately and allowing re-scaling when the
visualization is running could improve the usability.

Acknowledgment

I would like to thank Dr. Leonel Merino for supervising this thesis and all participants for taking part in
the user study.

Bibliography

[1] A. Adamoli and M. Hauswirth. Trevis: a context tree visualization & analysis framework and its use
for classifying performance failure reports. In Proc. of SOFTVIS, pages 73–82. ACM, 2010.

[2] J.-P. S. Alcocer, A. Bergel, S. Ducasse, and M. Denker. Performance evolution blueprint: Under-
standing the impact of software evolution on performance. In 2013 First IEEE Working Conference

on Software Visualization (VISSOFT), pages 1–9, Sept. 2013.

[3] A. Bergel, F. Bañados, R. Robbes, and D. Röthlisberger. Spy: A flexible code profiling framework.
Journal of Computer Languages, Systems and Structures, 38(1), Dec. 2011.

[4] W. Blochinger, M. Kaufmann, and M. Siebenhaller. Visualizing structural properties of irregular
parallel computations. In Proc. of SOFTVIS, pages 125–134. ACM, 2005.

[5] D. A. Bowman and R. P. McMahan. Virtual reality: how much immersion is enough? Computer,
40(7), 2007.

[6] W. De Pauw, H. Andrade, and L. Amini. Streamsight: a visualization tool for large-scale streaming
applications. In Proc. of SOFTVIS, pages 125–134. ACM, 2008.

[7] W. De Pauw and S. Heisig. Zinsight: a visual and analytic environment for exploring large event
traces. In Proceedings of the 5th international symposium on Software visualization, SOFTVIS ’10,
pages 143–152, New York, NY, USA, 2010. ACM.

[8] W. De Pauw, S. Krasikov, and J. Morar. Execution patterns for visualizing web services. In
Proceedings ACM International Conference on Software Visualization (SoftVis’06), New York NY,
Sept. 2006. ACM Press.

[9] A. Elliott, B. Peiris, and C. Parnin. Virtual reality in software engineering: Affordances, applications,
and challenges. In Proc. of ICSE, pages 547–550. IEEE Press, 2015.

[10] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and application visualization for
system comprehension with ExplorViz. Information and Software Technology, 87:259–277, 2017.

[11] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola. Code Park: A new 3D code
visualization tool. In Proc. of VISSOFT, pages 43–53. IEEE, 2017.

38

BIBLIOGRAPHY 39

[12] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In Proc of. PLATEAU, pages
8:1–8:6, New York, NY, USA, 2010. ACM.

[13] S. Lin, F. Taı̈ani, T. C. Ormerod, and L. J. Ball. Towards anomaly comprehension: using structural
compression to navigate profiling call-trees. In Proc. of SOFTVIS, pages 103–112. ACM, 2010.

[14] J. I. Maletic, A. Marcus, and M. Collard. A task oriented view of software visualization. In
Proceedings of the 1st Workshop on Visualizing Software for Understanding and Analysis (VISSOFT

2002), pages 32–40. IEEE, June 2002.

[15] L. Merino, A. Bergel, and O. Nierstrasz. Overcoming issues of 3D software visualization through
immersive augmented reality. In VISSOFT’18: Proceedings of the 6th IEEE Working Conference on

Software Visualization, pages 54–64. IEEE, 2018.

[16] L. Merino, A. Bergel, and O. Nierstrasz. Overcoming issues of 3D software visualization through
immersive augmented reality. In Proc. of VISSOFT. IEEE, 2018.

[17] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nierstrasz, M. Behrisch, and
D. Keim. On the impact of the medium in the effectiveness of 3D software visualization. In Proc. of

VISSOFT. IEEE, 2017.

[18] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz. CityVR: Gameful software visualization. In
Proc. of VISSOFT. IEEE, 2017.

[19] L. Merino, M. Ghafari, and O. Nierstrasz. Towards actionable visualization for software developers.
Journal of Software: Evolution and Process, 30(2):e1923–n/a, 2017.

[20] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf. PerfVis: Pervasive visualization in
immersive augmented reality for performance awareness. In Proc. of ICPE, page in review. IEEE,
2019.

[21] S. Moreta and A. Telea. Visualizing dynamic memory allocations. In Proc. of VISSOFT, pages
31–38. IEEE, 2007.

[22] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto. Using high-rising cities to visualize
performance in real-time. arXiv preprint arXiv:1709.05768, 2017.

[23] D. Raja, D. Bowman, J. Lucas, and C. North. Exploring the benefits of immersion in abstract
information visualization. In Proc. Immersive Projection Technology Workshop, pages 61–69, 2004.

[24] S. P. Reiss. The paradox of software visualization. VISSOFT 2005. 3rd IEEE International Workshop

on Visualizing Software for Understanding and Analysis, page 19, 2005.

[25] M. Shahin, P. Liang, and M. A. Babar. A systematic review of software architecture visualization
techniques. Journal of Systems and Software, 94:161–185, 2014.

BIBLIOGRAPHY 40

[26] B. Sharif, G. Jetty, J. Aponte, and E. Parra. An empirical study assessing the effect of SeeIT 3D on
comprehension. In Proc. of VISSOFT, pages 1–10. IEEE, 2013.

[27] B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In
IEEE Visual Languages, pages 336–343, College Park, Maryland 20742, U.S.A., 1996.

[28] R. Souza, B. Silva, T. Mendes, and M. Mendonça. SkyscrapAR: An augmented reality visualization
for software evolution. In Proc. of WBVS, 2012.

[29] Y. Tymchuk, L. Merino, M. Ghafari, and O. Nierstrasz. Walls, pillars and beams: A 3d decomposition
of quality anomalies. In VISSOFT’16: Proceedings of the 4th IEEE Working Conference on Software

Visualization, pages 126–135. IEEE, 2016.

[30] J. A. Wagner Filho, M. F. Rey, C. M. Freitas, and L. Nedel. Immersive visualization of abstract
information: An evaluation on dimensionally-reduced data scatterplots. In Proceedings of the 25th

IEEE Conference on Virtual Reality and 3D User Interfaces (March 2018), page 4, 2018.

[31] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring. Synchrovis: 3D visualization of
monitoring traces in the city metaphor for analyzing concurrency. In Proc. of VISSOFT, pages 1–4.
IEEE, 2013.

[32] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a controlled experiment. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pages 551–
560, New York, NY, USA, 2011. ACM.

[33] Y. Wu, R. H. Yap, and F. Halim. Visualizing windows system traces. In Proc. of SOFTVIS, pages
123–132. ACM, 2010.

A
Anleitung zum wissenschaftlichen Arbeiten

A.1 Anleitung zu wissenschaftlichen Arbeiten

The following Appendix provides a guide to set up the various parts of the install and run PerfVis.
Essentially, four parts are needed to run the visualizations: 1) the Pharo environment, 2) a web server, 3)
the PerfVis Unity Project, and 3) a HoloLens enabled device. The setup can be run in two different ways:

1. The Pharo environment, the web server, and the Unity Project running on the same machine, like in

Figure A.1 a©.

2. The web server and Pharo environment on one machine, and the Unity project on
another, like in Figure A.1 b©.

No matter which setup is chosen, the following instructions apply. These instructions result in a visualiza-
tion of the Roassal2 visualization engine in Pharo. We assume that the reader has basic knowledge in the
navigation of C#, Pharo, and Console scripting.

A.1.1 Required Tools

For the visualization to work you require:

41

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 42

Figure A.1: The two ways to setup the visualizations

• a HoloLens device,

• a computer running Windows 10 (build 14318 or later),

• a wireless network, and

• (Optionally) a second computer machine.

All machines have to be connected through a network.

A.1.2 Install Tools and Environments

A.1.2.1 Pharo Environment

• Download a new Pharo image and VM if necessary

• Install Spy2 from the Catalog browser

• Open the Monticello browser, click +Repository and select the http://smalltalkhub.com button

• Enter owner: merino, project: SpyToHolo, and select the OK button

• Select Spy2-Examples-LeonelMerino.49.mcz, and select the Load button

• Open the System browser, and select Spy-Examples → Counting → S2C → visualization

→ recordData:

• Set the file reference (see Figure A.2) to your preferred location to save the file, e.g.,
’Users/hess/Desktop/city-colors.csv’

• Open a new Playground, and write:

1 profiler := S2C new.

2 profiler startOnPackageNamed: 'Roassal2'.

3 profiler animatedVisualization.

• Select the three lines, and select Inspect It

'Users/hess/Desktop/city-colors.csv'

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 43

Figure A.2: Code reference for the save location of the pharo file

• After a moment the Inspector tool will open, Spy2 will be monitoring

• To stop the monitoring tool, execute S2Profiler remove

A.1.2.2 Web server

For the web server we recommend to use Python, since it offers an easy to set up web server to serve from
the filesystem (but any other web server works as well). The web server needs to be running on the same
machine as the Pharo Environment.

• Acquire a distribution of Python and install it

• In a Console, navigate to the location you set up earlier, e.g., ’Users/hess/Desktop’

• Run py -m http.server 8000 in the Console

• Remember the IP address and port of the web server, e.g., 192.168.2.3:8000

A.1.2.3 Unity Project & HoloLens

• Download Unity 2017.3.0b8.

• Clone the Unity project from its git repository
git://scg.unibe.ch/project-hess-holo-2018 and open it.

• In Unity, select the Cube GameObject, and set the URL variable of the UpdateData.cs compo-
nent to {web server IP address}/{file name}, e.g., 192.168.2.3:8000/city-colors.csv.

git://scg.unibe.ch/project-hess-holo-2018

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 44

• On the HoloLens, go to the Microsoft Store, and install the Holographic Remoting Player.

• On the HoloLens, start the Holographic Remoting Player.

• In Unity, go to the Window menu and select Holographic Emulation.

• Set Emulation Mode to Remote to Device, and enter your HoloLens’ IP address for Remote Machine.

• select the Connect button (the Connection Status should change to Connected, and the screen in
your HoloLens should go blank).

A.1.3 Running the Visualization

The multiple parts of PerfVis should now be connected and configured properly. Before entering play

mode make sure that the Inspector window in Pharo is not minimized, and it is visible. Otherwise the
performance metrics will not be updated in the web server.

Finally, enter play mode in Unity. After a couple seconds the visualizations should be seen. Notice that
there are always two classes active in the visualizations. We suspect this is due to the Inspector window,
which needs to be opened and that displays metric values.

To stress Roassal2 go to the World menu→ Roassal→ Roassal Examples, select some category, and
execute an example.

	Introduction
	Contributions
	Outline

	State of the Art
	3D Visualization
	Visualization in Virtual and Augmented Reality
	Visualization of Performance

	PerfVis Overview
	Design
	Medium: Immersive Augmented Reality
	Technique: City visualization and Scatter plot.
	City visualization.
	Scatter plot.

	Interaction: Selection and Navigation

	Implementation
	Workflow

	Evaluation
	User Study
	Study Design
	Quality Focus
	Participants
	Procedure
	Data Collection

	Results
	User Performance
	Correctness
	Completion Time
	Recollection

	User Experience
	Emotions
	Cognitive Load

	Lessons Learned
	Threats to Validity

	Conclusion and Future work
	Anleitung zum wissenschaftlichen Arbeiten
	Anleitung zu wissenschaftlichen Arbeiten
	Required Tools
	Install Tools and Environments
	Pharo Environment
	Web server
	Unity Project & HoloLens

	Running the Visualization

